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~ Curse of dimensionality

~ Richard Bellman (1957) ~

... describes the extraordinarily rapid growth in the difficulty of problems as
the number of variables (the dimension, d) increase.

e.g. The cost of an algorithm (the number of function evaluations, IV)
grows exponentially with d.

How large is d in practical applications?
& Collateralized Mortgage Obligations (CMO)

30 years x 12 monthly repayment calculations = 360 dimensions

& Dally counts of asthma patients seeking hospital treatments
5 years x 365 days = 1825 dimensions

& Macquarie Bank ALPS series (a.k.a. CEO)
5 years x 250 trading days x 80 stocks = one million dimensions
s ., ® Porous flow with permeability modeled as a random field

501 by 501 mesh with circulant embedding = one million dimensions



High dimensional numerical integration

1
[
([ ] ] ]
]
e 6 o6 o o o o
]
([ ] ] ]
]
0000000OCGOCGOOOOOO
[ ]
[ ] [ ] [ ]
[ ]
e 6 o6 o6 o o o
[ ]
[ ] [ ] [ ]
[ ]
0 1

A product rule with 64 points A sparse grid with 49 points
If f(2) = x; then the error of product rule is O(n~1) = O(N~/9)
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First 64 points of a

2D Sobol’ sequence A lattice rule with 64 points




.| MC v.s. QOMC

Monte Carlo method

t; random uniform

N~1/2 convergence

order of variables irrelevant
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Quasi-Monte Carlo methods
t; deterministic

close to N~ convergence (or better)

more effective for earlier variables and lower-order projections
order of variables very important
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First 64 points of a
2D Sobol’ sequence

use randomized QMC methods for error estimation

A lattice rule with 64 points



| omc

Two types of QMC methods:

& open: infinite sequence which is independent of IN (and/or d)
& closed: finite point set which depends on N (and/or d)

Two main families of QMC methods:

& (t,m,s)-nets (closed) and (t,s)-sequences (open)

a group under addition modulo Z

& lattice rules (traditionally closed; now also open) . includes the integer points
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~ Overview of the “lattice” strategy

Given a complicated integral over R¢, where d is hundreds or thousands or

even more, what do we do?
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1. Transform the problem into an integral over the unit cube [0, 1]¢.
2. ldentify a weighted function space to which the transformed

Integrand belongs.
3. Find a lattice rule which gives a small worst case error.
4. Compute the lattice points £; and approximate the integral.

5. Use a number of random shifts for error estimation.
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~ Transformation plays a crucial role

... because it determines the features of the transformed integrand.

- N
transformation 1
__________ _ ~ T ¢
Rd F(u) du change of variable g /[0,1](1 f(x) de N 2 f(t:)
: ,/1 MC -t; random uniform
| importance sampling 7 QMC - t; deterministic
1 ’
; _*° DIRECT CONNECTION:
» y ,
If p(u) = [[;_; ¢(u;) ¢ pdi
- /Rd g(u) p(u) du ’ { P cdf
N substitute u = & '(x) (@' icdf
N ! ¢ then f — g( ('))’ T; ( z)

If p is not of a product form...
MC - 7; random samples drawn

from the distribution p - rotation and re-scaling are required
e.g. BB/PCAJ/LT

- also re-centering may be necessary
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!w EffeCtlve dimenSiOn Caflisch, Morokoff, Owen (1997)

® ANOVA (ANalysis Of VAriance) decomposition

s fydependsonlyonz, = (z;)jecu
s fo= f[O,l]d f(z) de

e.g. f(x1,x2,x3) = fo + fray (1) + Fray(x2) + fisy(xz3)
+ fr1,23 (@1, 22) + fr1,33 (21, @3) + fi2,3) (22, 3)

+ f{1,2,33 (®1, T2, 23)

& unique, under the condition fol fu(®y)dz; =0forallj € u

& orthogonal in L5 (and in “unanchored” Sobolev space)

& decomposition of variance zuC{l,...,d} o?(fu) = o2(f)

#® Truncation dimension dr: Y, cp a1 02 (fu) > 0.99 0% (f)

® Superposition dimension dgs: Z|u|<ds o?(fu) > 0.9902(f)
@PS\COS&OS'://\

§°. 2e.g. f(x1,x2,x3,Ts) = x1 + cos(xzzxz) “truncation” dimension is 3
= ’."-".:':. cn o - . . . .
superposition” dimension is 2
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E‘ WEIg ht@d fu nCtiOn SpaCES Sloan and Wozniakowski (1998):...

®» Associate a weight ~,, with each group of variables ,;:
small v, =— f depends weakly on x,,
Then choose ~, to model the dimension structure of the integrand...

® Assume that f belong to a weighted (“unanchored”) Sobolev space H.

& [t consists of functions with square-integrable mixed first derivatives.

& The norm is weighted: ~ the norm can also be written solely in terms of f ~
1 9 2
1P = 3 AR A= (T, ) A
uC{1,...,d} Tull \jey O%j L

& It has a reproducing kernel.
K(e,:) € H, (f,K(®,-)) = f(z)foral f € Handa € [0,1]%.

® Analyze the worst case error of an integration rule in H.:
N
1
eV (t1,...,tN) := sup / f(x)de — — f(t;)
o 1<t | /0,1 N ;

~ there is an explicit formula in terms of the reproducing kernel ~
Then error < eV (t1,...,tN) || Fll-




.| Lattice rules

z € 7% — the generating vector, with all components coprime to N
frac(-) — means to take the fractional part of all components

~ uality determined by the choice of z ~

3 N=#64 z=(1,19) t; = frac <6—Z4(1, 19))

5 15 o5 542 52 69

A lattice rule with 64 points




.| Randomly shifted lattice rules

Shifted rank-1 lattice rules have points

7
t, = f —z+A), '
rac(Nz—I— ) 1

A € [0,1)% —the shift

~ use a number of random shifts for error estimation ~

° L d ° L d
° o . o. e 0. X ° . o. e . °
® o o ® o o ° ® o e ® o
° L °
e . o °  shifted by ¢ .0,
® e .. ° o .. A = (0.1,0.3) .. ® e .. ® o
N o PY o . Y ° . o PY ° . () °
® e ° o * e, ® o
o PS ® o ° Y
o * . , ® o e ° . ¢
® e [ ] L Y e [ ] hd
0 1 0 1

A lattice rule with 64 points A shifted lattice rule with 64 points




~ Component-by-component construction

®» Want to find z with (shifted-averaged) Worst case error as small possible.
~ Exhaustive search is practically impossible - too many choices! ~

® CBC algorithm [Sloan, Kuo, Joe (2002);...]
1. Setz; = 1.
2. With z; fixed, choose z5 to minimize the worst case error in 2D.
3. With z4, z5 fixed, choose z3 to minimize the worst case error in 3D.
4. etc.

» Cost of algorithm is only O (N log IN d) using FFTS. [Nuyens, Cools (2005)]

» Optimal rate of convergence O (N ~11?) in weighted Sobolev space,
with the implied constant independent of d under an appropriate
condition on the weights. [Kuo (2003); Dick (2004)]

~ Averaging argument: there is always one choice as good as average! ~

® Extensible/embedded variants. [Cools, Kuo, Nuyens (2006);
Dick, Pillichshammer, Waterhouse (2007)]

http://ww. mat hs. unsw. edu. au/ ~f kuo/l atti ce/
http://ww. mat hs. unsw. edu. au/ ~f kuo/ sobol /



http://www.maths.unsw.edu.au/~fkuo/lattice/
http://www.maths.unsw.edu.au/~fkuo/sobol/

MC v.s. Randomized QMC
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Monte Carlo method
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Randomly shifted lattice rule
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~ Randomized QMC methods combine the best of two worlds ~
faster rate of convergence + unbiased + simple error estimation



Applications from statistics

Kuo, Dunsmuir, Sloan, Wand, Womersley (2008)]
2D projections of transformed integrands from maximum likelihood problems:
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no re-scaling (bad) no centering (worse)



E Applications from statistics

[Kuo, Dunsmuir, Sloan, Wand, Womersley (2008)]
2D projections of transformed integrands from maximum likelihood problems:

Normal (good) Logistic (better) Student-t (best)

These integrands fail to lie in our weighted Sobolev space, because
# they are unbounded near the boundary of the unit cube, or

» they have huge derivatives near the boundary of the unit cube.
~ our nice QMC theory cannot be applied ~

NEW theoretical analysis [Kuo, Sloan, Wasilkowski, Waterhouse (2010)]
wess, & @ different reproducing kernel Hilbert space (also weighted) which includes

N eotes > ) . . : . :
g = these integrands (and more) by introducing a weight function in the norm




E Applications from finance

[Giles, Kuo, Sloan, Waterhouse (2008)]
Arithmetic-average Asian call option with 5 stocks and 256 time steps

5 256
1
ayoff = max| ———— E E rice of stock sattime t;) , O

10°

7.2}

o o o o
NN O 0 N

val ue of option
(o]

standard error

o
0

5.6 QVC + PCA
5.4 - = ” > S "
10 10 10 10 10 10
n n

& Black-Scholes model: stock price follows a geometric Brownian motion

wcseg, ® Path construction (affects the relative importance of integration variables):
N e %0 7
RW - random walk, BB - Brownian bridge, PCA - principal components analysis

Ordering the variables is crucial for the success of QMC!



~ Applications from finance

[Giles, Kuo, Sloan, Waterhouse (2008)]
Arithmetic-average Asian call option with 5 stocks and 256 time steps

5 256
1
payoff = max(— > ) (price of stock s at time ;) , 0)

5 X 256 =

The associated integrands fail to lie in our weighted Sobolev space, because
# they are unbounded near the boundary of the unit cube, and

» they have kinks, i.e., no square-integrable mixed first derivatives.
~ our nice QMC theory cannot be applied ~

Why does QMC still work? 100y /
... low effective dimension (under BB/PCA)
recall ANOVA decomposition f = Z fu
uC{1,...,d}

NEW theoretical analysis [Griebel, Kuo, Sloan (2010)]

& RWI/BB: all f, with |u| < % belong to our Sobolev space
& PCA: similar



Applications from physics

Graham, Kuo, Nuyens, Scheichl, Sloan (2010)]
Flow through random porous media

Darcy’s law g+kVp=0

_ on the unit square in 2D
mass conservationlaw V .g=0

PDEs:
Input . permeability is a lognormal random field k(Z, w) = exp(Z (&, w))
Unknowns to be determined : velocity ¢ and pressure p

Boundary conditions

[Cliffe, Graham, Scheichl, Stals (2000)]

Quantities of interest
& pressure head at a point
& effective permeability
& Dbreakthrough time




Applications from physics

[Graham, Kuo, Nuyens, Scheichl, Sloan (2010)]
Flow through random porous media

® Require the permeability field only at a discrete set of M points

X truncate the Karhunen-Loéve expansion of the covariance function
v/ factorize the covariance matrix

® Use QMC to obtain N realizations of the permealbility field
& circulant embedding and FFT — fast factorization of covariance matrix

& very high dimensional integral d = O (M)
e.g. dis one million fora 501 X501 grid

® [or each realization, solve the PDE by mixed finite element method
& Raviart-Thomas elements

& divergence-free reduction — solve an auxiliary problem using standard FEM
& algebraic multigrid angirs. f

® Total costis O(N M log M) and is highly parallelizable
Balance the discretization error with quadrature error (no truncation error)

Multilevel technique should work well



~ Applications from physics

[Graham, Kuo, Nuyens, Scheichl, Sloan (2010)]
Flow through random porous media

Example: effective permeability

| — ﬁlll)

b r(@7) = o exp (17

0'221,)\21
M =129 X 129,d = 16384

Std Error (effective permeability)
5 5

—
o
—_
o
_
o
_
)

To have discretization error < 10~ and quadrature error < 107 3...

o2 A M NgmMmc Nyic

1 0.3 | 129 x129 16700 (28 min) | 982000 (28 h)
1 0.1 | 513 x513 4900 (3 h) 142000 (3 d)
3 0.1 | 1025 x 1025 | 28700 (35h) | 525000 (67 d)
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Summary

Product rules are bad
Sparse grids have pros and cons...
MC method converges slowly

QMC methods are equal-weight quadrature rules over the unit cube

# Transformation to the unit cube plays a crucial role (also for MC and SG)
Better convergence rates than MC

Good for earlier variables and lower-order projections

Ordering the variables is very important

Randomized QMC.:
unbiased, simple error estimation, good convergence rate

e o o o

Challenges:
& Integrands from practical problems do not fit into existing QMC theory
& How to choose the weights?

& In need of ultra-high dimensional QMC ford > N
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