
Springer Series in Computational Mathematics 58

Lattice Rules

Josef Dick
Peter Kritzer
Friedrich Pillichshammer

Numerical Integration, Approximation,
and Discrepancy

Springer Series in Computational Mathematics

Volume 58

Series Editors

Randolph E. Bank, Department of Mathematics, University of California,
San Diego, La Jolla, CA, USA

Wolfgang Hackbusch, Max-Planck-Institut für Mathematik in den
Naturwissenschaften, Leipzig, Germany

Josef Stoer, Institut für Mathematik, University of Würzburg, Würzburg, Germany

Harry Yserentant, Institut für Mathematik, Technische Universität Berlin,
Berlin, Germany

This is basically a numerical analysis series in which high-level monographs are
published.

We develop this series aiming at having more publications in it which are closer
to applications. There are several volumes in the series which are linked to some
mathematical software.

Friedrich Pillichshammer

Lattice Rules

and Discrepancy

123

Josef Dick • Peter Kritzer •

Numerical Integration, Approximation,

Mathematics Subject Classification: 11K36, 11K38, 11K45, 65C05, 65D30, 65D15, 65Y20

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2022
This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, expressed or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with regard
to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Josef Dick
School of Mathematics and Statistics
The University of New South Wales
Sydney, NSW, Australia

Friedrich Pillichshammer
Johannes Kepler University Linz
Linz, Oberösterreich, Austria

Peter Kritzer
RICAM
Austrian Academy of Sciences
Linz, Oberösterreich, Austria

ISSN 0179-3632 ISSN 2198-3712 (electronic)
Springer Series in Computational Mathematics
ISBN 978-3-031-09950-2 ISBN 978-3-031-09951-9 (eBook)
https://doi.org/10.1007/978-3-031-09951-9

https://doi.org/10.1007/978-3-031-09951-9

Für
Rafael und Anna
Simon
Hanna, Lea und Johannes

Preface

Lattice rules are particular instances of quasi-Monte Carlo rules for numerical inte-
gration of functions over the 𝑑-dimensional unit cube [0, 1]𝑑 , where the emphasis lies
on high dimensions 𝑑 in modern practical applications. A special case of the concept
of lattice rules, the method of good lattice points, was introduced by N.M. Korobov
in the year 1959 and a few years later independently by E. Hlawka. The Soviet
school around Korobov quickly developed a quite satisfactory theory of the method
of good lattice points, which is summarized in a first book on lattice rules published
by Korobov himself in 1963. The first steps towards general lattice rules were taken
by K.K. Frolov in 1977, but it was I.H. Sloan, from the 1980s onwards, who devel-
oped a systematic approach to the subject in cooperation with various co-authors.
During these years also an Austrian group around H. Niederreiter, a former student
of Hlawka, contributed important results in the context of the method of good lattice
points. As a particular example of another researcher in this group, we would like to
mention our mentor G. Larcher.

During the 1980s lattice rules became a booming field of research with many
exciting results and applications. These developments are very well summarized in
two seminal books by H. Niederreiter, entitled “Random Number Generation and
Quasi-Monte Carlo Methods” (1992), and by I.H. Sloan and S. Joe, entitled “Lattice
Methods for Multiple Integration” (1994), respectively. From the middle of the 1990s
onwards, these two books significantly contributed to the popularity of lattice rules
and initiated further research on the topic, which has persisted until today. The present
book is, in particular, devoted to these more recent developments, comprising, for
example, lattice rule integration in weighted reproducing kernel Hilbert spaces,
the fast component-by-component construction of lattice rules, questions related to
tractability, integration of not necessarily periodic functions, shifted and/or folded
lattice rules, and lattice rules for function approximation.

The primal aim of this book is to provide an introduction to the topic with detailed
explanations of the basic concepts. Most parts of the book should be accessible to
students in mathematics or computer science with basic knowledge of number theory,
algebra, and calculus. For readers with no previous knowledge of the topic we suggest
starting with Chapter 1, which provides a first overview and a smooth introduction

vii

viii Preface

to the general field, including information on the classical theory of lattice rules and
the basics of modern quasi-Monte Carlo error analysis using elegant methods in the
context of reproducing kernel Hilbert spaces. Next, it is suggested to continue with
Chapters 2 and 3 dealing with lattice rule integration of smooth periodic functions
and with the component-by-component construction of lattice rules, respectively. In
the latter chapter we recommend studying first the error analysis for a prime number
of elements and for product weights, and putting aside the more general cases (i.e., an
arbitrary number of nodes, and weights other than of product form). Likewise, also
the more involved and subtly modified construction schemes in Chapter 4 should
be skipped on a first reading. Parts of Chapter 5, which is concerned with the
discrepancy of lattice point sets, and an outlook on Chapter 7, dealing with lattice
rule integration for smooth but not necessarily periodic functions, complete a first
introduction to the topic. This program, possibly with some restrictions, could also
serve as a rough plan for an introductory university course on quasi-Monte Carlo
integration and lattice rules.

The book also contains more advanced material, and this corresponds to its
second aim, which is to serve as a reference book for practitioners applying lattice
rules to real-world problems and for researchers working in numerical analysis and
scientific computing. Of particular interest for practitioners might be Chapter 4,
in which several refined ways of constructing lattice rules in an efficient way are
presented, Chapter 6 dealing with lattice rules which are extensible in the number of
integration nodes, Chapter 12 which is concerned with stability of lattice rules, i.e.,
rules leading to good results simultaneously for different choices of parameters, and
Chapter 16, which addresses the fast quasi-Monte Carlo matrix-vector multiplication.
The latter is a very useful technique when the main computational cost of evaluating
the integrand at a given point is the multiplication of the point with a matrix. It
can successfully be applied to many practical problems as, e.g., partial differential
equations with random coefficients, which is an important field where quasi-Monte
Carlo methods are applied today; we shall give a short outline of this subject in
Appendix A. Numerical experiments demonstrating the success of the construction
methods presented in this book are provided in Appendix B.

Two very important topics, both from the theoretical as well as the practical point
of view, are presented in Chapter 7, which deals with lattice rule integration of
not necessarily periodic functions, and in Chapter 8 on lattice rule integration over
more general domains than the unit cube. When applying lattice rule integration,
finite smoothness of the integrands is usually assumed. In Chapter 9 the integration
problem for functions that may even be analytic is discussed. In this case one can
obtain exponential convergence of the worst-case error of suitable rules. Although
not being lattice rules in the classical sense, rules of a very similar structure are
presented in Chapter 10. The rules considered there are based on the so-called
Korobov 𝑝-sets, and their errors may have a very favorable dependence on the
dimension of the integration domain. In particular, they allow us to obtain polynomial
tractability results for the integration problem in a certain unweighted subclass of
Hölder-continuous Fourier series. In this book the error analysis for lattice rules is
usually studied with respect to the worst-case setting. In Chapter 11, however, we

Preface ix

take a different perspective and study the error in the so-called randomized setting.
Chapters 13–15 are devoted to the application of lattice rules to the approximation
of functions in the 𝐿2- and the 𝐿∞-case, respectively. The emphasis of Chapter 15 is
on multiple rank-1 lattice point sets, that are, in a nutshell, multi-set unions of usual
rank-1 lattice point sets which allow us to obtain an improved convergence rate in
the 𝐿∞-approximation problem.

In our presentation we also always take care of the dependence of the involved
errors on the dimension of the underlying integration or approximation problem.
This point of view was often neglected in the classical theory of lattice rules but
became an utmost important aspect in the modern theory and is intimately related to
the applicability of lattice rules to real-world problems of very high dimensionality,
where by “high” we mean being in the hundreds or even in the thousands.

We hope that this book will turn out to be useful for teaching, self-study, and as
a reference, and that it will encourage many people to study lattice rules or to apply
them to real-word problems.

Acknowledgements

Appendix B, containing many numerical experiments supporting the theoretical re-
sults in this book, was written by Adrian Ebert, who is a true expert on implementing
numerical methods based on lattice rules. We thank Adrian for his valuable contri-
bution, which is an important supplement to the theoretical results presented in the
body of the book, and which impressively demonstrates the success of lattice rules.

Furthermore, we would like to thank Erich Novak for valuable comments.
We also would like to acknowledge the support of the University of New South

Wales, the Austrian Academy of Sciences, and the Johannes Kepler University Linz.

Sydney and Linz, Josef Dick
March 2022 Peter Kritzer

Friedrich Pillichshammer

Contents

1 Introduction . 1
1.1 Monte Carlo and Quasi-Monte Carlo Integration 1
1.2 Lattice Rules . 4
1.3 The Structure of Lattice Rules . 9
1.4 Lattice Rules for Numerical Integration—the Classical Theory 12
1.5 QMC Integration in Reproducing Kernel Hilbert Spaces 18
1.6 Discrepancy and Koksma–Hlawka Type Inequalities 26
1.7 The Curse of Dimensionality . 34
1.8 Further Quality Criteria for Lattice Rules . 41
Notes and Remarks . 52

2 Integration of Smooth Periodic Functions . 55
2.1 Korobov Spaces . 55
2.2 Integration in Korobov Spaces . 62
2.3 Error Bounds for the Unweighted Case . 64
2.4 Weighted Korobov Spaces . 75
2.5 Integration in Weighted Korobov Spaces . 79
2.6 Tractability . 81
Notes and Remarks . 92

3 Constructions of Lattice Rules . 95
3.1 Exhaustive Search for Generating Vectors . 95
3.2 Korobov Type Generating Vectors . 96
3.3 Component-By-Component Constructions . 100
3.4 The Fast CBC Construction for Product Weights 115
3.5 The Fast CBC Construction for POD Weights 124
3.6 A CBC Algorithm Based on the Quality Criterion 𝑅 126
Notes and Remarks . 138

xi

xii Contents

4 Modified Construction Schemes . 141
4.1 The Reduced CBC Construction . 141
4.2 The Reduced Fast CBC Construction for Product and POD Weights 152
4.3 The Successive Coordinate Search Construction 158
4.4 The Reduced Fast SCS Construction . 160
4.5 Projection-Corrected Constructions . 169
4.6 The Component-By-Component Digit-By-Digit Construction 174
Notes and Remarks . 192

5 Discrepancy of Lattice Point Sets . 195
5.1 Extreme Discrepancy . 195
5.2 CBC Construction of Low Discrepancy Lattice Point Sets 203
5.3 Weighted Star-Discrepancy . 203
5.4 Tractability of the Weighted Star-Discrepancy 208
5.5 Korobov Type Lattice Point Sets With Low Weighted

Star-Discrepancy . 209
5.6 Isotropic Discrepancy and Lattice Point Sets on the Sphere 211
Notes and Remarks . 218

6 Extensible Lattice Point Sets . 221
6.1 The Definition of Extensible Lattice Point Sets 221
6.2 Existence of Extensible Lattice Point Sets With Good Properties . . . 224
6.3 Constructions of Extensible Lattice Rules—Embedded Lattice Rules237
6.4 A Sieve Principle for Constructing Embedded Lattice Rules 245
6.5 The CBC Sieve Algorithm . 251
6.6 The Fast CBC Sieve Algorithm . 254
6.7 A Digit-By-Digit Construction . 256
Notes and Remarks . 263

7 Lattice Rules for Nonperiodic Integrands . 265
7.1 Shifted Lattice Rules and Integration in Weighted Sobolev Spaces . . 266
7.2 Sobolev Spaces of Higher Smoothness and Cosine Spaces 284
7.3 Folded Lattice Rules . 300
7.4 Symmetrized Lattice Rules . 314
Notes and Remarks . 316

8 Integration With Respect to Probability Measures 319
8.1 Transforming the Points Versus Transforming the Integrand 319
8.2 Function Space Setting . 321
8.3 Unanchored Spaces . 324
8.4 The Shift-Invariant Kernel . 327
8.5 Integration Error . 335
Notes and Remarks . 337

Contents xiii

9 Integration of Analytic Functions . 339
9.1 General Korobov Spaces and Korobov Spaces of Analytic Functions 339
9.2 Integration in Korobov Spaces of Analytic Functions 344
9.3 Exponential Tractability . 353
Notes and Remarks . 361

10 Korobov’s 𝒑-Sets . 363
10.1 The Construction of Korobov’s 𝑝-Sets . 363
10.2 The Weighted Star-Discrepancy of the 𝑝-Sets 365
10.3 Integration of Hölder Continuous Fourier Series 372
Notes and Remarks . 375

11 Lattice Rules in the Randomized Setting . 377
11.1 The Randomized Algorithm for Korobov Spaces 378
11.2 Randomized Folded Lattice Rules . 390
11.3 A Brief Discussion of Tractability . 391
Notes and Remarks . 392

12 Stability of Lattice Rules . 395
12.1 A Stability Result . 395
12.2 The CBC Algorithm With Respect to More Than One Criterion 403
12.3 Random Weights . 406
Notes and Remarks . 407

13 𝑳2-Approximation Using Lattice Rules . 409
13.1 𝐿2-Approximation of Functions in Korobov Spaces 409
13.2 Lower Error Bounds for 𝐿2-Approximation in Korobov Spaces

Using Lattice-Based Algorithms . 427
13.3 Tractability of 𝐿2-Approximation Using Lattice Rules 433
13.4 Adaptions for General Weights . 437
Notes and Remarks . 455

14 𝑳∞-Approximation Using Lattice Rules . 457
14.1 𝐿∞-Approximation of Functions in Korobov Spaces 457
14.2 𝐿∞-Approximation of Functions in Korobov Spaces Using Splines . 472
14.3 Tractability of 𝐿∞-Approximation Using Lattice Rules and Splines . 485
Notes and Remarks . 487

15 Multiple Rank-1 Lattice Point Sets . 489
15.1 Multiple Rank-1 Lattice Point Sets for Approximation in Korobov

Spaces . 490
15.2 Error Analysis . 498
15.3 Comparison to Previous Results and Tractability 506
Notes and Remarks . 508

xiv Contents

16 Fast QMC Matrix-Vector Multiplication . 509
16.1 The General Idea . 509
16.2 Fast QMC Matrix-Vector Multiplication for Lattice Point Sets 511
16.3 Fast QMC Matrix-Vector Multiplication for a Special Case of

Korobov’s 𝑝-Sets . 515
16.4 Applications . 516
16.5 Numerical Experiments . 519
Notes and Remarks . 521

A Partial Differential Equations With Random Coefficients 523
A.1 Uniform Random Coefficients . 523
A.2 Log-Normal Random Coefficients . 533

B Numerical Experiments for Lattice Rule Construction Algorithms . . . 541
B.1 Numerical Results for the CBC Construction . 542
B.2 Numerical Results for Alternative Constructions 552

References . 563

Index . 577

List of Symbols

N set of natural numbers N := {1, 2, 3, . . .}
Z set of integers
Z𝑏 set of 𝑏-adic numbers for 𝑏 ≥ 2
R set of real numbers
C set of complex numbers
i

√
−1

e Euler’s number
𝑑 dimension
𝜆𝑑 𝑑-dimensional Lebesgue measure
𝜑 Euler’s totient function
𝜁 Riemann zeta-function, 𝜁 (𝛼) :=

∑∞
ℎ=1 ℎ

−𝛼 for 𝛼 > 1
Γ Gamma function, Γ(𝑥) :=

∫ ∞
0 𝑡𝑥−1e−𝑡 d𝑡 for 𝑥 > 0

E expected value
Var variance
gcd(𝑎, 𝑏) greatest common divisor of 𝑎 and 𝑏
∥ · ∥ 𝑝 ℓ𝑝-norm in R𝑑 for 𝑝 ∈ [1,∞]
∥ · ∥𝐿𝑝

𝐿𝑝-seminorm for 𝑝 ∈ [1,∞]
{·} fractional part, i.e., {𝑥} := 𝑥 − ⌊𝑥⌋ for real 𝑥
⌈·⌉ ceiling function
⌊·⌋ floor function
∥ · ∥ distance to the nearest integer function, ∥𝑥∥ := min𝑚∈Z |𝑥 − 𝑚 |
log natural logarithm
log𝑏 logarithm to the base 𝑏
[𝑑] the set {1, 2, . . . , 𝑑}
𝒙, 𝒌, . . . vectors of length 𝑑 are denoted in bold font and their com-

ponents in normal font with indices, e.g., 𝒙 = (𝑥1, . . . , 𝑥𝑑) or
𝒌 = (𝑘1, . . . , 𝑘𝑑)

0 zero vector (if length is clear from the context)
0𝑑 zero vector of length 𝑑
1 all-1 vector (if length is clear from the context)

xv

xvi List of Symbols

1𝑑 all-1 vector of length 𝑑
𝑈𝑚 identity matrix of size 𝑚 × 𝑚
|𝐴| number of elements of a finite set 𝐴
𝜒𝐴 indicator function of 𝐴; 𝜒𝐴(𝑥) = 1 if 𝑥 ∈ 𝐴 and 0 if 𝑥 ∉ 𝐴
O “big O”-notation; for functions 𝑓 , 𝑔 : 𝐷 ⊆ R → R, 𝑔 ≥ 0, we

write 𝑓 (𝑥) = O(𝑔(𝑥)) if there exists a constant 𝐶 > 0 such that
| 𝑓 (𝑥) | ≤ 𝐶𝑔(𝑥) for all 𝑥 ∈ 𝐷.

≲ for functions 𝑓 , 𝑔 : 𝐷 ⊆ R → R, 𝑔 ≥ 0, we write 𝑓 (𝑥) ≲ 𝑔(𝑥)
if there exists a constant 𝐶 > 0 such that | 𝑓 (𝑥) | ≤ 𝐶𝑔(𝑥) for all
𝑥 ∈ 𝐷.

≍ 𝑓 (𝑥) ≍ 𝑔(𝑥) means that 𝑓 (𝑥) ≲ 𝑔(𝑥) and 𝑔(𝑥) ≲ 𝑓 (𝑥)
≪ 𝑁 ≪ 𝑀 is used on an informal level whenever 𝑁 is “much

smaller” than 𝑀
𝑟1 (ℎ) 𝑟1 (ℎ) := max(1, |ℎ|) for ℎ ∈ Z
𝑟1 (𝒉) 𝑟1 (𝒉) :=

∏𝑑
𝑗=1 𝑟1 (ℎ 𝑗) for 𝒉 = (ℎ1, . . . , ℎ𝑑) ∈ Z𝑑

ΔP local discrepancy function of a point set P
𝐷∗
𝑁

star-discrepancy
𝐷∗
𝑁,𝜸 𝜸-weighted star-discrepancy

𝐷𝑁 extreme discrepancy
𝐿𝑝,𝑁 𝐿𝑝-discrepancy
𝐿𝑝,𝑁 ,1 combined 𝐿𝑝-discrepancy
𝐿𝑝,𝑁 ,𝜸 𝜸-weighted 𝐿𝑝-discrepancy
err𝑁,𝑑 (𝑓 ,P) error functional
𝑒(𝑁, 𝑑) 𝑁-th minimal error in dimension 𝑑
𝑒(0, 𝑑) initial error in dimension 𝑑
𝑁 (𝜀, 𝑑) information complexity
𝐼, 𝐼𝑑 integration functional; usually 𝐼 (𝑓) = 𝐼𝑑 (𝑓) =

∫
[0,1]𝑑 𝑓 (𝒙) d𝒙

H(𝐾) reproducing kernel Hilbert space with reproducing kernel 𝐾
L⊥ dual of an integration lattice L
𝐶 (𝑀) (−𝑀/2, 𝑀/2] ∩ Z for integer 𝑀 ≥ 2
𝐶𝑑 (𝑀) (𝐶 (𝑀))𝑑 for 𝑑 ∈ N
𝐶∗
𝑑
(𝑀) 𝐶𝑑 (𝑀) \ {0}

𝐺𝑑 (𝑁) {0, 1, . . . , 𝑁 − 1}𝑑
𝐺
𝜑

𝑑
(𝑁) {𝑔 ∈ 𝐺1 (𝑁) \ {0} : gcd(𝑔, 𝑁) = 1}𝑑

MC Monte Carlo
QMC quasi-Monte Carlo
IBC Information-Based Complexity
CBC component-by-component
DBD digit-by-digit
SCS successive coordinate search
Λall the information class of continuous linear functionals
Λstd the information class of function evaluations

Chapter 1
Introduction

The problem of numerical integration occurs in many practical applications. These
range from computational mathematics, finance, statistics, and computer graphics
to life sciences, to name just a few areas where integrals or expected values have
to be computed. In most cases this cannot be done analytically, and one has to
resort to numerical methods. For integrands depending only on one or maybe very
few variables there are classical integration methods which can be applied very
successfully. However, in most modern applications the integrands involved depend
on a huge number 𝑑 of variables. An ad hoc approach in such cases is to use
tensor products of univariate integration rules. However, the number of function
evaluations required in such algorithms grows exponentially with the number of
integration variables, which means that tensor product rules are doomed to fail if
𝑑 is only moderately large. This constraint led to the development of probabilistic
methods, which were first applied by E. Fermi in the 1930s, and by J. von Neumann
and S. Ulam in a secret research project at Los Alamos National Laboratory in
the 1940s, and which can be easily applied to very high-dimensional problems.
These methods were named Monte Carlo methods, a code word created in allusion
to Ulam’s uncle who was a gambler in the casino in Monte Carlo, according to a
popular anecdote. Deterministic versions of Monte Carlo methods are quasi-Monte
Carlo methods, and one of the most popular instances of these are lattice rules.
The development of lattice rules from the 1950s onwards was promoted by a Soviet
school and an Austrian school, led by N.M. Korobov and E. Hlawka, respectively.

In this introductory chapter we describe these developments with an emphasis on
lattice rules, which are the primary object of this book.

1.1 Monte Carlo and Quasi-Monte Carlo Integration

Monte Carlo and quasi-Monte Carlo rules are generally applicable methods for
the numerical integration of multivariate functions, even in high dimensions, with a
wide range of possible applications, as for example in finance, physics, and computer

1
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_1

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_1&domain=pdf

2 1 Introduction

science. We shall usually normalize the integration domain to be the 𝑑-dimensional
unit cube [0, 1]𝑑 for 𝑑 ∈ N (an exception to this setting will be considered in
Chapter 8). For a Lebesgue-integrable function 𝑓 on [0, 1]𝑑 , Monte Carlo methods
use the estimate ∫

[0,1]𝑑
𝑓 (𝒙) d𝒙 ≈ 1

𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘), (1.1)

where 𝒙0, 𝒙1, . . . , 𝒙𝑁−1 are independent and uniformly distributed random samples
from [0, 1]𝑑 .

The right-hand side in (1.1) is called a Monte Carlo (MC) rule (or algorithm)
applied to 𝑓 . Let us denote it by 𝑀𝑁,𝑑 (𝑓). The MC rule 𝑀𝑁,𝑑 (𝑓) is an unbiased
estimator of the integral

∫
[0,1]𝑑 𝑓 (𝒙) d𝒙, since, using linearity of expectation, we

have

E[𝑀𝑁,𝑑 (𝑓)] =
1
𝑁

𝑁−1∑︁
𝑘=0
E[𝑓] = E[𝑓] =

∫
[0,1]𝑑

𝑓 (𝒙) d𝒙,

where we write E[𝑓] to denote the expected value of 𝑓 (𝑋), with 𝑋 being uniformly
distributed on [0, 1]𝑑 .

If 𝑓 ∈ 𝐿2 ([0, 1]𝑑), then the expected absolute error in (1.1) is of order O(𝑁−1/2).
To be more precise, let

Var[𝑓] :=
∫
[0,1]𝑑

(
𝑓 (𝒙) −

∫
[0,1]𝑑

𝑓 (𝒚) d𝒚
)2

d𝒙

be the variance of the function 𝑓 . Then, from the Bienaymé formula in conjunction
with the independence of 𝒙0, 𝒙1, . . . , 𝒙𝑁−1, we directly obtain the following result,
which is a fundamental property of the MC method.

Theorem 1.1 Let 𝑓 ∈ 𝐿2 ([0, 1]𝑑). Then for any 𝑑, 𝑁 ∈ N we have

Var[𝑀𝑁,𝑑 (𝑓)] =
Var[𝑓]
𝑁

.

From Jensen’s inequality in probability theory and from Theorem 1.1 we obtain
for the expected absolute error,

E

[����∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 − 𝑀𝑁,𝑑 (𝑓)
����] ≤

(
E

[����∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 − 𝑀𝑁,𝑑 (𝑓)
����2])1/2

=
√︁

Var[𝑀𝑁,𝑑 (𝑓)]

=
𝜎[𝑓]
√
𝑁
,

1.1 Monte Carlo and Quasi-Monte Carlo Integration 3

where 𝜎[𝑓] :=
√︁

Var[𝑓] is the standard deviation of the function 𝑓 . Hence the
expected absolute error of 𝑀𝑁,𝑑 (𝑓) is bounded by 𝜎[𝑓]/

√
𝑁 . Note that 𝜎[𝑓] is

independent of 𝑁 and therefore the convergence rate is independent of the dimen-
sion 𝑑 (however, the standard deviation 𝜎[𝑓] is in general not independent of 𝑑, an
issue closely related to so-called variance-reduction techniques, see, e.g., [78, 178]).

An advantage of the MC method is that it is very general and easy to implement,
although the generation of good “random” samples is in general an involved topic that
is beyond the scope of this book. Keeping in mind that only square integrability of the
integrand 𝑓 is demanded, the expected convergence rate is of order O(𝑁−1/2). One
may hope, though, that smoother integrands may yield an improved convergence rate.
This, however, is not the case, for crude MC rules. More smoothness of the integrand
does in general not imply a better convergence rate of the expected integration error
for crude MC. Nevertheless, the MC convergence rate O(𝑁−1/2) will serve as a
benchmark throughout the whole book.

If the integrand is smooth, a possible way to take advantage of this property is
to switch from MC to quasi-Monte Carlo (QMC) methods, which are, in a nutshell,
deterministic versions of MC methods. QMC methods for an integral over [0, 1]𝑑
again use the approximation (1.1), but in this case 𝒙0, 𝒙1, . . . , 𝒙𝑁−1 ∈ [0, 1]𝑑 are
deterministic points that are chosen to obtain convergence rates of the deterministic
integration error which are better than O(𝑁−1/2). The integration rule (1.1) is, in
this context, called a QMC rule and will be denoted by 𝑄𝑁,𝑑 , i.e.,

𝑄𝑁,𝑑 (𝑓) :=
1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘).

To get an idea about the possible error convergence rate for deterministic QMC
rules, consider for instance the following. Assume that the integrand 𝑓 is continuous
and in 𝐿2 ([0, 1]𝑑). We can then interpret the expected value of the MC error as
the average over all possible choices of 𝑁 quadrature points. It is clear that there
always exist particular examples of 𝑁-element point sets P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1}
which yield an error bound that is at least as good as average (by “point set” we
mean a multi-set, i.e., points are allowed to occur multiple times). Hence we know
that there exist deterministic point sets P, for which the integration error is at most
𝜎[𝑓]/

√
𝑁 . For integrands with more smoothness, we would like to improve this rate

of convergence, and we would like to have one quadrature rule which guarantees this
improved rate of convergence for an entire function class.

There are three principal approaches: (i) via Halton sequences and their variants;
(ii) via the theory of (𝑡, 𝑚, 𝑠)-nets; (iii) via the theory of lattice rules. This book is
devoted to the third approach, the theory of lattice rules. Previous introductions to
this theory were given in the book [199] by Niederreiter and the book [230] by Sloan
and Joe. The aim of the present book is to discuss the topic from the current point
of view, with a particular focus on developments from recent years.

4 1 Introduction

1.2 Lattice Rules

A lattice rule is a generalization of the classical rectangle rule∫ 1

0
𝑓 (𝑥) d𝑥 ≈ 1

𝑁

𝑁−1∑︁
𝑘=0

𝑓

(
𝑘

𝑁

)
, (1.2)

which, in the case of an integrand 𝑓 with 𝑓 (0) = 𝑓 (1), coincides with the 𝑁-point
trapezoidal rule for the interval [0, 1].

We can generalize (1.2) for instance by using the points {𝑘𝑔/𝑁} for 𝑘 ∈
{0, 1, . . . , 𝑁 − 1}, where 𝑔 ∈ {0, 1, . . . , 𝑁 − 1} and by {𝑧} = 𝑧 − ⌊𝑧⌋ ∈ [0, 1)
we mean the fractional part of a real number 𝑧. In the case when 𝑁 is a prime
number this yields exactly the same quadrature rule as (1.2), only the ordering of the
points is different (which obviously does not change the value of the sum). However,
this approach leads us to a method to generalize a rectangle rule to higher dimen-
sions. For each coordinate 𝑗 ∈ [𝑑], where here and throughout the whole book we
denote by [𝑑] the set {1, 2, . . . , 𝑑} of the first 𝑑 positive integers, choose a number
𝑔 𝑗 ∈ {0, 1, . . . , 𝑁 − 1}, or, more generally, 𝑔 𝑗 ∈ Z. Then for 𝑓 : [0, 1]𝑑 → R we
define the quadrature rule

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘 (𝑔1, 𝑔2, . . . , 𝑔𝑑)

𝑁

})
. (1.3)

Here, the fractional part of a vector is understood component-wise. It turns out that
the quadrature points defined in this way are part of a lattice in R𝑑 , hence rules of
this form are called lattice rules (or more precisely, rank-1 lattice rules, the reason
for this nomenclature will become more clear later). The numerical integration
schemes in (1.3) were historically the first lattice rules and they are collectively
known as the method of good lattice points. For given 𝑁 ∈ N and given vector
𝒈 = (𝑔1, 𝑔2, . . . , 𝑔𝑑) ∈ Z𝑑 we denote the collection of points used in (1.3) by
P(𝒈, 𝑁), i.e.,

P(𝒈, 𝑁) :=
{{
𝑘

𝑁
𝒈

}
: 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}

}
, (1.4)

which is again to be understood as a multi-set, i.e., points are allowed to occur
multiple times. In this context, we call 𝒈 the generating vector or sometimes also
lattice point, and 𝑁 the modulus of the lattice rule, respectively. Figure 1.1 shows an
example of quadrature points P(𝒈, 𝑁) used in the rule (1.3).

Lattice rules can also be introduced from a group theoretic and a geometric per-
spective. We start with the former point of view, and in the remainder of this section
and the next section we discuss algebraic properties of lattices and the underlying
point set of lattice rules. Readers less interested in those algebraic properties may
skip this part.

1.2 Lattice Rules 5

Fig. 1.1: A quadrature point set P(𝒈, 𝑁) as in (1.3) consisting of 𝑁 = 8 elements in
the unit square generated by the lattice point (𝑔1, 𝑔2) ∈ {1, 2, . . . , 𝑁−1}2. The whole
point set is obtained by successive addition modulo one of the vector (𝑔1, 𝑔2)/𝑁 .

For a given dimension 𝑑 ∈ N, the Euclidean space R𝑑 is an abelian group under
addition which has Z𝑑 as a subgroup. Thus, we can form the factor group R𝑑/Z𝑑 ,
also called the 𝑑-dimensional torus group. Now we consider, for the moment, the
nodes 0, 1/𝑁, . . . , (𝑁 − 1)/𝑁 in (1.2) and their corresponding cosets 0 + Z, 1/𝑁 +
Z, . . . , (𝑁 − 1)/𝑁 +Z in the one-dimensional torus group R/Z. Clearly, these cosets
form a finite subgroup of R/Z; in fact, it is the cyclic group generated by 1/𝑁 + Z.
The generalization to higher dimensions is now obvious. For an arbitrary 𝑑, let
L/Z𝑑 be any finite subgroup of R𝑑/Z𝑑 and let 𝒚𝑘 + Z𝑑 with 𝒚𝑘 ∈ [0, 1)𝑑 for
𝑘 ∈ {0, 1, . . . , 𝑁 − 1} be the distinct cosets making up the group L/Z𝑑 . The point
set consisting of the points 𝒚0, 𝒚1, . . . , 𝒚𝑁−1 is called a lattice point set, denoted by
P(L), and the corresponding QMC approximation∫

[0,1]𝑑
𝑓 (𝒙) d𝒙 ≈ 1

𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒚𝑘) (1.5)

6 1 Introduction

is called a lattice rule.
Why do we speak of a “lattice rule” and not, for instance, of a “finite group rule”?

The reason is a nice geometric interpretation of lattice rules that we already alluded
to above. A 𝑑-dimensional lattice is defined to be a discrete subgroup of R𝑑 that is
not contained in any proper linear subspace of R𝑑 . Equivalently, a 𝑑-dimensional
lattice is obtained by taking a basis 𝒃1, 𝒃2, . . . , 𝒃𝑑 of the vector spaceR𝑑 and forming
the set

L =

𝑑∑︁
𝑗=1

𝑘 𝑗𝒃 𝑗 : 𝑘 𝑗 ∈ Z for 𝑗 ∈ [𝑑]

of all linear combinations of 𝒃1, 𝒃2, . . . , 𝒃𝑑 with integer coefficients. The set
{𝒃1, 𝒃2, . . . , 𝒃𝑑} is called a lattice basis for L and the 𝑑 × 𝑑 matrix 𝐵 with row
vectors 𝒃1, 𝒃2, . . . , 𝒃𝑑 is called a generator matrix. Note that a lattice has more
than one generator matrix, since any matrix of the form 𝑈𝐵 with 𝑈 being a 𝑑 × 𝑑
unimodular matrix with integer entries is again a generator matrix of the same lattice.

The lattices corresponding to lattice rules are required to have an additional
property stated in the following definition.

Definition 1.2 A 𝑑-dimensional lattice is called a 𝑑-dimensional integration lattice
if it contains Z𝑑 as a subset.

If we take a 𝑑-dimensional integration lattice L as the starting point, then the
intersection L ∩ [0, 1)𝑑 is a finite set since L is discrete, and this finite set of points
in [0, 1)𝑑 forms a lattice point set P(L) = L ∩ [0, 1)𝑑 (sometimes also called the
abscissa set of the lattice rule). Furthermore, all lattice point sets can be obtained in
this way.

An interesting special case arises when the finite subgroup L/Z𝑑 of R𝑑/Z𝑑 is
cyclic. Let 𝑁 be the order of the group L/Z𝑑 and let 𝒚 +Z𝑑 be a generator of L/Z𝑑 .
Then 𝑁 𝒚 ∈ Z𝑑 , and so 𝒚 = (1/𝑁)𝒈 for some 𝒈 ∈ Z𝑑 . The lattice rule (1.5) then
attains the form ∫

[0,1]𝑑
𝑓 (𝒙) d𝒙 ≈ 1

𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘

𝑁
𝒈

})
, (1.6)

where the curly brackets {·} again denote fractional parts, i.e., the points (𝑘/𝑁)𝒈,
𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, are considered modulo 1 in each coordinate. This is exactly
what we have already seen in (1.3). We recall that the set of quadrature points is
denoted by P(𝒈, 𝑁) in this case, see (1.4).

The dual lattice

An important concept for the analysis of lattice rules is that of the dual lattice.

1.2 Lattice Rules 7

Definition 1.3 The dual lattice L⊥ of the 𝑑-dimensional integration lattice L is
defined by

L⊥ :=
{
𝒉 ∈ Z𝑑 : 𝒉 · 𝒚 ∈ Z for all 𝒚 ∈ L

}
,

where · denotes the standard inner product on the R𝑑 .

It is easy to see that the dual lattice of a 𝑑-dimensional integration lattice is always
a subgroup of Z𝑑 .

In case of a lattice rule of the form (1.6) the dual lattice L⊥ reduces to

L⊥ = {𝒉 ∈ Z𝑑 : 𝒉 · 𝒈 ≡ 0 (mod 𝑁)}, (1.7)

since 𝒉 · 𝒚 ∈ Z for all 𝒚 ∈ L is equivalent to the number-theoretic property
𝒉 · 𝒈 ≡ 0 (mod 𝑁). In order to emphasize the dependence of the dual lattice on
𝒈 and on 𝑁 we will sometimes also write L⊥ (𝒈, 𝑁).

The determinant of a lattice

We now introduce an important invariant of a lattice. To this end we again turn our
attention to the generator matrices 𝐵 of a lattice. Recall that these are not uniquely
determined; however, for any lattice L, the absolute determinant | det(𝐵) | of the
generator matrices of L is invariant, since unimodular matrices with integer entries
have determinant ±1. This number is called the determinant of a lattice, which
is denoted by det(L). Geometrically, det(L) is the volume of the parallelepiped
spanned by the vectors in a lattice basis of L,

U := {𝑡1𝒃1 + 𝑡2𝒃2 + · · · + 𝑡𝑑𝒃𝑑 : 𝑡𝑖 ∈ [0, 1) for all 𝑖 ∈ [𝑑]},

called the unit cell or the fundamental parallelepiped of the lattice. This can be
interpreted in the sense that the average number of lattice points per unit volume is
the reciprocal of the determinant.

The following result for integration lattices is due to Sloan and Kachoyan [231].

Theorem 1.4 If L is an integration lattice yielding an 𝑁-element lattice point set,
then det(L) = 1/𝑁 . If 𝐵 is a generator matrix of L, then (𝐵⊤)−1 is a generator
matrix of the dual lattice L⊥ and det(L⊥) = 𝑁 .

Proof Since |L∩ [0, 1)𝑑 | = 𝑁 , for every 𝑘 ∈ N the 𝑑-dimensional cube 𝐴 := [0, 𝑘)𝑑
contains exactly 𝑘𝑑𝑁 elements of L, i.e.,

|L ∩ 𝐴| = 𝑘𝑑𝑁. (1.8)

Let now
𝐴◦ :=

⋃
𝒙∈L

(𝒙+U)⊆𝐴

(𝒙 + U)

8 1 Introduction

be the union of all shifted unit cells 𝒙 +U with 𝒙 ∈ L that are fully contained in 𝐴,
and let

𝐴 :=
⋃
𝒙∈L

(𝒙+U)∩𝐴≠∅

(𝒙 + U)

be the union of all shifted unit cells 𝒙+U with 𝒙 ∈ L that have nonempty intersection
with 𝐴. It is clear that

𝐴◦ ⊆ 𝐴 ⊆ 𝐴.

Furthermore, for the volume 𝜆𝑑 (𝐴) of 𝐴 we have

𝜆𝑑 (𝐴) = 𝜆𝑑 (U) |{𝒙 ∈ L : (𝒙 + U) ∩ 𝐴 ≠ ∅}| = det(L) |L ∩ 𝐴|,

and in the same way we obtain

𝜆𝑑 (𝐴◦) = det(L) |L ∩ 𝐴◦ |.

This yields

det(L) |L ∩ 𝐴| − 𝑘𝑑 ≤ det(L) |L ∩ 𝐴| − 𝜆𝑑 (𝐴) + 𝜆𝑑 (𝐴 \ 𝐴) = 𝜆𝑑 (𝐴 \ 𝐴),

and

det(L) |L ∩ 𝐴| − 𝑘𝑑 ≥ det(L) |L ∩ 𝐴◦ | − 𝜆𝑑 (𝐴◦) − 𝜆𝑑 (𝐴 \ 𝐴◦) = −𝜆𝑑 (𝐴 \ 𝐴◦).

In summary,

−𝜆𝑑 (𝐴 \ 𝐴◦) ≤ det(L) |L ∩ 𝐴| − 𝑘𝑑 ≤ 𝜆𝑑 (𝐴 \ 𝐴).

Let 𝛿 be the diameter of the unit cell U. Note that 𝛿 is finite and does not depend on
𝑘 . We then have, for sufficiently large 𝑘 ,

𝐴 \ 𝐴 ⊆ [−𝛿, 𝑘 + 𝛿]𝑑 \ [0, 𝑘]𝑑 and 𝐴 \ 𝐴◦ ⊆ [0, 𝑘]𝑑 \ [𝛿, 𝑘 − 𝛿]𝑑 ,

and hence

𝜆𝑑 (𝐴 \ 𝐴) ≤ (𝑘 + 2𝛿)𝑑 − 𝑘𝑑 and 𝜆𝑑 (𝐴 \ 𝐴◦) ≤ 𝑘𝑑 − (𝑘 − 2𝛿)𝑑 .

These estimates together with (1.8) imply

−(𝑘𝑑 − (𝑘 − 2𝛿)𝑑) ≤ det(L)𝑘𝑑𝑁 − 𝑘𝑑 ≤ (𝑘 + 2𝛿)𝑑 − 𝑘𝑑 ,

which implies

−
(
1 −

(
1 − 2𝛿

𝑘

)𝑑)
≤ det(L)𝑁 − 1 ≤

(
1 + 2𝛿

𝑘

)𝑑
− 1.

Letting 𝑘 tend to infinity yields det(L) = 1/𝑁 , as desired.

1.3 The Structure of Lattice Rules 9

If 𝒃1, 𝒃2, . . . , 𝒃𝑑 are the row vectors of 𝐵 and 𝒂1, 𝒂2, . . . , 𝒂𝑑 are the row vectors
of (𝐵⊤)−1, then 𝒂𝑖 · 𝒃 𝑗 = 𝛿𝑖, 𝑗 for 𝑖, 𝑗 ∈ [𝑑], where 𝛿𝑖, 𝑗 = 1 if 𝑖 = 𝑗 and 0 otherwise.
This implies that 𝒂1, 𝒂2, . . . , 𝒂𝑑 ∈ L⊥ by definition of L⊥. If 𝒉 is an arbitrary
element of L⊥, then we have

𝒉 = 𝒉𝐵⊤ (𝐵⊤)−1 =

𝑑∑︁
𝑗=1

(𝒉 · 𝒃 𝑗)𝒂 𝑗 .

Since 𝒉 · 𝒃 𝑗 ∈ Z for all 𝑗 ∈ [𝑑] it follows that 𝒉 is a Z-linear combination of
𝒂1, 𝒂2, . . . , 𝒂𝑑 . Thus, these vectors form a basis of L⊥, and (𝐵⊤)−1 is a generator
matrix of L⊥. Furthermore,

det(L⊥) = | det((𝐵⊤)−1) | = 1
| det(𝐵) | =

1
det(L) = 𝑁. □

1.3 The Structure of Lattice Rules

In Section 1.2, we have defined lattice rules as QMC rules using the points of an
integration lattice in [0, 1)𝑑 as the integration nodes. An obvious question is how
such lattice rules can be represented in general. From (1.6), it can be seen that at least
some lattice rules for approximating the integral of a function 𝑓 defined on [0, 1]𝑑
by 𝑁 lattice points can be written as

𝑄𝑁,𝑑 (𝑓) =
1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘

𝑁
𝒈

})
.

One may observe that the above representation is not unique. Indeed, choosing
an integer 𝑚 ≥ 2 and replacing 𝑁 and 𝒈 by 𝑚𝑁 and 𝑚𝒈, respectively, yields an
integration rule with 𝑚𝑁 points, each of them occurring with multiplicity 𝑚, such
that the newly obtained rule is effectively equivalent to the one we started with.
Furthermore, it is easy to construct examples where for the same 𝑁 two distinct
generating vectors 𝒈1 and 𝒈2 yield rules with identical sets of integration nodes.
Another question is of course whether there may be other lattice rules that can be
represented in a different way than the one above. Hence, it is natural to ask for a
canonical way of denoting lattice rules that makes it easier to structure and classify
these, and to detect equivalences. Regarding this problem, it were Sloan and Lyness
who used group theory to provide a systematic way of representing lattice rules. We
state a crucial theorem from [233] here.

Theorem 1.5 Let 𝑄𝑁,𝑑 be a 𝑑-dimensional lattice rule with 𝑁 ≥ 2 points. Then
there exist uniquely determined integers

• 𝑟, with 𝑟 ∈ [𝑑], and
• 𝑛1, . . . , 𝑛𝑟 > 1 with 𝑛𝑘+1 |𝑛𝑘 for 1 ≤ 𝑘 ≤ 𝑟 − 1, and 𝑁 = 𝑛1 · · · 𝑛𝑟 ,

10 1 Introduction

such that 𝑄𝑁,𝑑 applied to a function 𝑓 can be represented as

𝑄𝑁,𝑑 (𝑓) =
1
𝑁

𝑛𝑟−1∑︁
𝑘𝑟=0

· · ·
𝑛1−1∑︁
𝑘1=0

𝑓

({
𝑘1
𝑛1

𝒈1 + · · · + 𝑘𝑟
𝑛𝑟

𝒈𝑟

})
,

where 𝒈1, . . . , 𝒈𝑟 are linearly independent (over Q) integer vectors in Z𝑑 .

The proof of Theorem 1.5 is based on the group structure of lattice points, and
can be found in [233], see also [199, Theorem 5.28], [204, Section 4.3.2], or [230].

Remark 1.6 The integer 𝑟 in Theorem 1.5 is called the rank of the lattice rule𝑄𝑁,𝑑 ,
and 𝑛1, . . . , 𝑛𝑟 are the invariants. In this terminology, the lattice rule in (1.3) based
on a lattice point set P(𝒈, 𝑁) is, as already indicated, a rank-1 lattice rule.

Theorem 1.5 implies that the rank and the invariants of any given lattice
rule are determined uniquely. What about the generating vectors 𝒈1, . . . , 𝒈𝑟 of a
rank-𝑟 lattice rule? In general, these cannot be determined uniquely. However, Sloan
and Lyness [234] identified a class of lattice rules for which even the generating
vectors can, in a certain sense, be identified unambiguously. This class is known
as projection-regular lattice rules, which shall be described briefly here. Given a
𝑑-dimensional lattice rule 𝑄𝑁,𝑑 and 𝑠 ∈ [𝑑], we speak of the 𝑠-dimensional princi-
pal projection of 𝑄𝑁,𝑑 when we consider the 𝑠-dimensional lattice rule obtained by
omitting the last 𝑑 − 𝑠 components of the integration nodes.

Note now that we can modify the representation of lattice rules outlined in
Theorem 1.5 to a so-called extended canonical form by setting 𝑛𝑟+1 = · · · = 𝑛𝑑 = 1,
and by choosing arbitrary integer vectors 𝒈𝑟+1, . . . , 𝒈𝑑 . Then we can represent a
lattice rule 𝑄𝑁,𝑑 as

𝑄𝑁,𝑑 (𝑓) =
1
𝑁

𝑛𝑑−1∑︁
𝑘𝑑=0

· · ·
𝑛1−1∑︁
𝑘1=0

𝑓

({
𝑘1
𝑛1

𝒈1 + · · · + 𝑘𝑑
𝑛𝑑

𝒈𝑑

})
,

where we now trivially have 𝑁 = 𝑛1 · · · 𝑛𝑑 . Furthermore the rank 𝑟 is in this case
the maximal index 𝑟 such that 𝑛𝑟 > 1. Using the latter representation of lattice rules,
projection regularity is defined as follows.

Definition 1.7 Let 𝑄𝑁,𝑑 be a 𝑑-dimensional lattice rule with invariants 𝑛1, . . . , 𝑛𝑑
in its extended canonical form. The rule 𝑄𝑁,𝑑 is called projection regular if
for any choice of 𝑠 ∈ [𝑑] the 𝑠-dimensional principal projection of 𝑄𝑁,𝑑 has
𝑛1𝑛2 · · · 𝑛min(𝑟 ,𝑠) points.

The benefit of projection-regular lattice rules is that, by demanding some structure
of the generating vectors, their choice is unique. Indeed, note that, given a lattice
rule 𝑄𝑁,𝑑 in its extended canonical form, we can define a 𝑑 × 𝑑 matrix 𝑍 with the
generating vectors 𝒈1, . . . , 𝒈𝑑 as its rows, i.e., 𝑍 = (𝒈1, . . . , 𝒈𝑑)⊤. The matrix 𝑍
corresponding to a lattice rule is simply called 𝑍-matrix. We say that 𝑍 is unit upper

1.3 The Structure of Lattice Rules 11

triangular if 𝑍 is upper triangular and has only 1s as the entries on the main diagonal.
Using this terminology, we can state the following theorem, which is the main result
of [234].

Theorem 1.8 A lattice rule 𝑄𝑁,𝑑 is projection-regular if and only if the rule 𝑄𝑁,𝑑
can be represented in an extended canonical form such that the corresponding
𝑍-matrix is unit upper triangular.

A question that remains is whether a projection-regular lattice rule can be repre-
sented in two different ways in an extended canonical form with unit upper triangular
𝑍-matrices? The answer to this question is “no”, so it makes sense to speak of the
standard form of a projection-regular lattice with unit upper triangular 𝑍-matrix. For
further details, we refer to the monograph [230] and the original paper [234].

Due to their simple structure, rank-1 lattice rules have many convenient properties
and have frequently been studied in many papers. Nevertheless, also lattice rules of
higher or even maximal rank are worth being considered, since in some instances
they may perform better than rules of rank 1 with respect to certain criteria, such as
the quantity 𝑃𝛼 used in the classical literature on lattice rules (see Section 1.4).

Copy rules

A prominent way of obtaining higher-rank lattice rules are copy rules. The principle
idea of copy rules is elegant and simple. Given a lattice rule 𝑄𝑁,𝑑 based on an
integration lattice L, we obtain an integration rule consisting of 𝑚𝑑 scaled “copies”
of 𝑄𝑁,𝑑 by considering the lattice rule based on the integration lattice 𝑚−1L for
some positive integer𝑚. In other words, a copy rule is obtained by scaling the original
rule 𝑄𝑁,𝑑 and copying it to each of the cubes obtained by partitioning [0, 1]𝑑 into
cubes of volume 𝑚−𝑑 . Using the canonical representation form, let us suppose we
start with a rank-1 rule 𝑄𝑁,𝑑 with generating vector 𝒈, i.e.,

𝑄𝑁,𝑑 (𝑓) =
1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘

𝑁
𝒈

})
.

The 𝑚𝑑 copy rule 𝑄𝑚,𝑁,𝑑 is then given by

𝑄𝑚,𝑁,𝑑 (𝑓) :=
1

𝑚𝑑𝑁

𝑚−1∑︁
𝑘𝑑=0

· · ·
𝑚−1∑︁
𝑘1=0

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘

𝑚𝑁
𝒈 + (𝑘1, . . . , 𝑘𝑑)

𝑚

})
.

It was shown by Sloan and Lyness in [233] that an 𝑚𝑑 copy rule has rank 𝑑; to
be more precise, a 𝑑-dimensional lattice rule is of rank 𝑑 if and only if it is an 𝑚𝑑
copy rule obtained from a rule of lower rank.

12 1 Introduction

Embedded lattice rules

The rank plays a role in yet another variant of lattice rules, namely so-called em-
bedded (sometimes also imbedded) lattice rules. The crucial feature of embedded
lattice rules is that, at least up to a certain point, these can be extended by adding
further points to the rule without having to discard previous ones. This property
can be a desirable advantage in practical implementations. In this context one then
more precisely speaks of sequences of embedded integration rules, a concept that
not only occurs with lattice rules but also other types of quadratures. Sequences of
embedded lattice rules, as they shall be presented here, were originally described by
Sloan and Joe [122, 230]; they have the additional property that the more points we
add, the higher the rank of the lattice rule gets. Using a representation form similar to
the canonical representation form introduced above, a sequence of embedded lattice
rules is defined as follows. For a fixed positive integer 𝑚 that is relatively prime to
𝑁 , let for 𝑟 ∈ [𝑑] the rule 𝑄𝑟 ,𝑚,𝑁 ,𝑑 be defined by

𝑄𝑟 ,𝑚,𝑁 ,𝑑 (𝑓) :=
1

𝑚𝑟𝑁

𝑚−1∑︁
𝑘𝑟=0

· · ·
𝑚−1∑︁
𝑘1=0

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘

𝑁
𝒈 + (𝑘1, . . . , 𝑘𝑟 , 0, . . . , 0)

𝑚

})
,

where 𝒈 is a generating vector with components that are relatively prime to 𝑚. The
𝑄𝑟 ,𝑚,𝑁 ,𝑑 have the property that the integration nodes in 𝑄𝑟 ,𝑚,𝑁 ,𝑑 also occur in
𝑄𝑟+1,𝑚,𝑁 ,𝑑 for 𝑟 ∈ {0, 1, . . . , 𝑑 − 1}, and that 𝑄𝑟 ,𝑚,𝑁 ,𝑑 is a lattice rule with 𝑚𝑟𝑁
points and rank 𝑟 for 𝑟 ∈ {0, 1, . . . , 𝑑 − 1}, the only exception being the rank of
𝑄0,𝑚,𝑁 ,𝑑 , which is 1. Hence we see that 𝑄𝑑,𝑚,𝑁 ,𝑑 , which is the rule based on the
largest number of integration nodes and, thus, intuitively the “most precise”, has
maximal rank. From the representation of the 𝑄𝑟 ,𝑚,𝑁 ,𝑑 we see much similarity to
copy rules, and indeed, 𝑄𝑑,𝑚,𝑁 ,𝑑 is nothing but an 𝑚𝑑 copy rule obtained from
𝑄0,𝑚,𝑁 ,𝑑 . References to further results related to this subject can be found in the
“Notes and Remarks” Section at the end of the present chapter. We shall return to
embedded lattice rules in Chapter 6.

1.4 Lattice Rules for Numerical Integration—the Classical
Theory

Lattice rules are perfectly configured for the numerical integration of smooth func-
tions that are one-periodic in each variable, as is very well known from the classical
theory.

Suppose that a one-periodic function 𝑓 can be represented by an absolutely
convergent Fourier series

𝑓 (𝒙) =
∑︁
𝒉∈Z𝑑

�̂� (𝒉) e2𝜋i𝒉 ·𝒙 for 𝒙 ∈ R𝑑 , (1.9)

1.4 Lattice Rules for Numerical Integration—the Classical Theory 13

where the Fourier coefficients are given by

�̂� (𝒉) =
∫
[0,1]𝑑

𝑓 (𝒙) e−2𝜋i𝒉 ·𝒙 d𝒙 for 𝒉 ∈ Z𝑑 . (1.10)

Obviously, the Fourier coefficient �̂� (0) is the exact value of the integral
∫
[0,1]𝑑 𝑓 (𝒙) d𝒙.

For a 𝑑-dimensional lattice rule based on the 𝑁-element lattice point set P(L) =

{𝒙0, 𝒙1, . . . , 𝒙𝑁−1}, where L is an integration lattice, we therefore obtain

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘) −
∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 =
1
𝑁

𝑁−1∑︁
𝑘=0

∑︁
𝒉∈Z𝑑

�̂� (𝒉) e2𝜋i𝒉 ·𝒙𝑘 − �̂� (0)

=
1
𝑁

∑︁
𝒉∈Z𝑑\{0}

�̂� (𝒉)
𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘 . (1.11)

It is a fundamental property of lattices that the exponential sum that appears in
(1.11) can have only the two values 𝑁 or 0, depending on whether 𝒉 belongs to the
dual lattice L⊥ or not. This property, stated in the following lemma, highlights the
importance of the concept of the dual lattice.

Lemma 1.9 Let L be an integration lattice and let P(L) = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} be
the corresponding lattice point set. Let 𝒉 ∈ Z𝑑 , then we have

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘 =

{
𝑁 if 𝒉 ∈ L⊥,
0 if 𝒉 ∉ L⊥.

Remark 1.10 In the light of (1.7) it is clear that Lemma 1.9 can be stated for rank-1
lattice rules as

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘 =

{
𝑁 if 𝒉 · 𝒈 ≡ 0 (mod 𝑁),
0 if 𝒉 · 𝒈 . 0 (mod 𝑁).

In this case we can prove this result directly using a geometric sum, since for
𝒉 · 𝒈 . 0 (mod 𝑁) we have

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘 =

𝑁−1∑︁
𝑘=0

e2𝜋i𝑘𝒉 ·𝒈/𝑁 =
e2𝜋i𝑁𝒉 ·𝒈/𝑁 − 1
e2𝜋i𝒉 ·𝒈/𝑁 − 1

= 0,

and for 𝒉 · 𝒈 ≡ 0 (mod 𝑁), say 𝒉 · 𝒈 = 𝑐 𝑁 for some 𝑐 ∈ Z, we have

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘 =

𝑁−1∑︁
𝑘=0

e2𝜋i𝑘𝑐 =

𝑁−1∑︁
𝑘=0

1 = 𝑁.

We now give the proof of the fundamental result in Lemma 1.9 in general form.
Before we do so, we need to make a short detour to the theory of characters of
finite abelian groups. Let (𝐺, ◦) be a finite abelian group. A character of 𝐺 is a

14 1 Introduction

group homomorphism 𝜒 : 𝐺 → C×, where C× denotes the multiplicative group
of complex numbers. That is, for all 𝑥, 𝑦 ∈ 𝐺 we have 𝜒(𝑥 ◦ 𝑦) = 𝜒(𝑥)𝜒(𝑦). This
already implies 𝜒(1𝐺) = 1, where 1𝐺 is the identity in𝐺. Every finite abelian group
of order 𝑁 has exactly 𝑁 distinct characters denoted by 𝜒0, 𝜒1, . . . , 𝜒𝑁−1, where
the character 𝜒0 ≡ 1, which is 1 for all 𝑥 ∈ 𝐺, is called the trivial character or the
principal character. The set 𝐺 of all characters of 𝐺 forms an abelian group under
the multiplication (𝜒𝜓) (𝑥) = 𝜒(𝑥)𝜓(𝑥) for all 𝑥 ∈ 𝐺, for 𝜒, 𝜓 ∈ 𝐺.

Characters have the following important property which can be exploited in many
applications, e.g., in the proof of Lemma 1.9.

Lemma 1.11 (Character properties) Let 𝜒 be a character of a finite abelian group
(𝐺, ◦). Then we have∑︁

𝑥∈𝐺
𝜒(𝑥) =

{
|𝐺 | if 𝜒 is the trivial character,
0 otherwise.

Let 𝑥 ∈ 𝐺. Then we have ∑︁
𝜒∈𝐺

𝜒(𝑥) =
{
|𝐺 | if 𝑥 = 1𝐺 ,
0 otherwise.

Proof We just prove the first identity, the second follows by a similar reasoning. The
result is clear when 𝜒 is the trivial character. Otherwise there exists some 𝑎 ∈ 𝐺 for
which we have 𝜒(𝑎) ≠ 1. Then we have

𝜒(𝑎)
∑︁
𝑥∈𝐺

𝜒(𝑥) =
∑︁
𝑥∈𝐺

𝜒(𝑎 ◦ 𝑥) =
∑︁
𝑥∈𝐺

𝜒(𝑥),

since as 𝑥 runs through all elements of 𝐺 so does 𝑎 ◦ 𝑥. Hence we have

(𝜒(𝑎) − 1)
∑︁
𝑥∈𝐺

𝜒(𝑥) = 0,

and the result follows since 𝜒(𝑎) ≠ 1. □

Now we can use Lemma 1.11 to prove Lemma 1.9.

Proof of Lemma 1.9 Let 𝒉 ∈ Z𝑑 . Then

𝜒𝒉 (𝒙 + Z𝑑) := e2𝜋i𝒉 ·𝒙 for 𝒙 ∈ L

is a well-defined character of the additive group L/Z𝑑 . This character is trivial if
and only if 𝒉 ∈ L⊥, where L⊥ is the dual lattice as defined in Definition 1.3. Recall
that P(L) = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1}. Now we have

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘 =
∑︁

𝑥∈L/Z𝑑
𝜒𝒉 (𝑥),

1.4 Lattice Rules for Numerical Integration—the Classical Theory 15

and therefore the result follows directly from Lemma 1.11. □

Returning to (1.11) and applying Lemma 1.9, we obtain the following result.

Proposition 1.12 For a lattice rule with integration lattice L we have

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘) −
∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 =
∑︁

𝒉∈L⊥\{0}
�̂� (𝒉),

where P(L) = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1}, and where L⊥ is the dual lattice.

We now classify the functions 𝑓 with absolutely convergent Fourier series ac-
cording to the rate of convergence with which the Fourier coefficients �̂� (𝒉) tend to
zero as ∥𝒉∥∞ → ∞. The rate of decay of the Fourier coefficients can be related to the
smoothness of the function. As mentioned at the beginning of this chapter, our goal
is to construct QMC rules which can take advantage of smoothness. Considering
classes of periodic integrands whose Fourier coefficients decay with a certain rate
is one approach to try to find QMC rules (in particular, lattice rules) that yield a
convergence rate of the integration error beyond O(𝑁−1/2).

For ℎ ∈ Z we define 𝑟1 (ℎ) := max(1, |ℎ|), and for 𝒉 = (ℎ1, . . . , ℎ𝑑) ∈ Z𝑑 we
define

𝑟1 (𝒉) :=
𝑑∏
𝑗=1
𝑟1 (ℎ 𝑗). (1.12)

Definition 1.13 Let 𝛼 > 1 and 𝐶 > 0. Then E𝑑𝛼 (𝐶) is defined to be the class of all
continuous one-periodic functions 𝑓 on R𝑑 with

| �̂� (𝒉) | ≤ 𝐶

(𝑟1 (𝒉))𝛼
for all nonzero 𝒉 ∈ Z𝑑 .

Furthermore, let
E𝑑𝛼 :=

⋃
𝐶>0

E𝑑𝛼 (𝐶),

i.e., the class of all functions 𝑓 with 𝑓 ∈ E𝑑𝛼 (𝐶) for some 𝐶 > 0. Occasionally, the
function classes E𝑑𝛼 (𝐶) or E𝑑𝛼 are called Korobov classes.

It is known (see [140]) that 𝑓 ∈ E𝑑𝛼 implies that all mixed partial derivatives of 𝑓
of order less than 𝛼 − 1 in each variable exist. On the other hand, the existence and
continuity of all mixed partial derivatives

𝜕𝑟1+···+𝑟𝑑 𝑓

𝜕𝑥
𝑟1
1 · · · 𝜕𝑥𝑟𝑑

𝑑

with 0 ≤ 𝑟𝑖 ≤ 𝛼 for 𝑖 ∈ [𝑑]

of a function 𝑓 of order up to 𝛼 in each variable imply that 𝑓 ∈ E𝑑𝛼 (see again [140]
or [199]).

16 1 Introduction

We now motivate the definition of 𝑟1 in (1.12) geometrically. From Proposi-
tion 1.12 we see that the integration error of a lattice rule is the sum over all Fourier
coefficients with frequencies in the dual lattice, except for the origin which corre-
sponds to the 0-th Fourier coefficient (and which equals the integral that we want to
approximate).

In Definition 1.13 we define a function class of integrands, where we use 𝑟1 (𝒉)
to put a condition on the decay rate of the Fourier coefficients �̂� (𝒉) for 𝒉 ∈ Z𝑑 . Our
goal is to have a large class of functions for which the integration error is small.

Consider now the function class E𝑑𝛼 (1). The frequencies 𝒉 for which the cor-
responding Fourier coefficients of functions in E𝑑𝛼 (1) are allowed to be large, say
�̂� (𝒉) > 𝑐−1 for some real number 𝑐 > 0, are in the set

Γ𝑐 := {𝒉 ∈ R𝑑 : (𝑟1 (𝒉))−1 > 𝑐−1} = {𝒉 ∈ R𝑑 : 𝑟1 (𝒉) < 𝑐},

by extending the definition of 𝑟1 from Z𝑑 to R𝑑 in the natural way. For a given,
generic lattice rule with dual lattice L⊥, choose 𝑐 > 0 as large as possible such that
Γ𝑐 ∩L⊥ = {0}, i.e., such that for all frequencies 𝒉 ∈ Γ𝑐 ∩Z𝑑 the terms �̂� (𝒉) e2𝜋i𝒉 ·𝒙

are integrated exactly by our lattice rule, except for 𝒉 = 0, as the 0-th Fourier
coefficient is just the integral we would like to approximate. In order to make the
function class large, we want to make also Γ𝑐 “large”. Note that the choice of 𝑟1
influences the shape of the set Γ𝑐, whereas 𝑐 only expands or shrinks it. Hence we
focus on the shape, i.e., on 𝑟1.

The function 𝑟1 could be defined in various ways. For instance, for 𝑟1 (𝒉) :=
max(|ℎ1 |, . . . , |ℎ𝑑 |) the set Γ𝑐 is a cube, for 𝑟1 (𝒉) := (ℎ2

1 + · · · + ℎ2
𝑑
)1/2 the set Γ𝑐

is a ball, or for 𝑟1 (𝒉) :=
∏𝑑
𝑗=1 max(1, |ℎ 𝑗 |) the set Γ𝑐 is a hyperbolic cross. Out

of these, it turns out that in dimensions 𝑑 > 1 the hyperbolic cross is the largest
set, see Figure 1.2. Indeed, the choice of 𝑟1 in (1.12) will yield a convergence rate
of the integration error in dimension 𝑑 which is close to the convergence rate in
dimension 1, see (1.13). This is not true for other choices of 𝑟1; e.g., for Γ𝑐 being a
cube, the convergence rate in dimension 𝑑 is only of order 𝑁−𝛼/𝑑 .

Hyperbolic crosses play an essential role in many high-dimensional approxima-
tion problems. The monograph [33] is devoted to hyperbolic cross approximation.

The quality criterion 𝑃𝛼

Now we define a first important quality criterion for lattice rules, namely a quantity
usually referred to as 𝑃𝛼.

Definition 1.14 For a real number 𝛼 > 1 and an integration lattice L let

𝑃𝛼 (L) :=
∑︁

𝒉∈L⊥\{0}

1
(𝑟1 (𝒉))𝛼

.

The following theorem is due to Sloan and Kachoyan [231].

1.4 Lattice Rules for Numerical Integration—the Classical Theory 17

Fig. 1.2: The dual lattice L⊥ (𝒈, 𝑁) of the two-dimensional lattice point set with 𝒈 =

(1, 89) and 𝑁 = 144 with a hyperbolic cross. All the points of the dual lattice, except
for the origin, lie outside the interior of the hyperbolic cross. The red points indicate
those elements of L⊥ (𝒈, 𝑁) \{0} minimizing 𝑟1; here min𝒉∈L⊥ (𝒈,𝑁)\{0} 𝑟1 (𝒉) = 55,
and this value is attained for the elements (1, 55), (−1,−55), (55, 1), (−55,−1) of
L⊥ (𝒈, 𝑁).

Theorem 1.15 For any real number 𝛼 > 1 and 𝐶 > 0, and for a 𝑑-dimensional
lattice rule based on P(L) = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} we have

max
𝑓 ∈E𝑑

𝛼 (𝐶)

����� 1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘) −
∫
[0,1]𝑑

𝑓 (𝒙) d𝒙

����� = 𝐶𝑃𝛼 (L).

Proof It follows from Proposition 1.12 and the definition of E𝑑𝛼 (𝐶) that the result
holds if we weaken equality to “≤”. To prove equality we choose a function 𝑓0 such
that

𝑓0 (𝒙) = 𝐶
∑︁
𝒉∈Z𝑑

1
(𝑟1 (𝒉))𝛼

e2𝜋i𝒉 ·𝒙 for 𝒙 ∈ R𝑑 .

Then 𝑓0 ∈ E𝑑𝛼 (𝐶) and

18 1 Introduction

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓0 (𝒙𝑘) −
∫
[0,1]𝑑

𝑓0 (𝒙) d𝒙 = 𝐶𝑃𝛼 (L).

This completes the proof. □

Theorem 1.15 shows that, for given 𝛼 > 1 and 𝑁 ∈ N, a lattice rule should
be chosen such that 𝑃𝛼 (L) is small. There are several results available that show
that such lattice rules indeed exist, see [113, 199, 230]. For the moment we only
present an existence result by Disney and Sloan [60] for rank-1 lattice rules, and
refer to that paper for a proof. In the following we write 𝑃𝛼 (𝒈, 𝑁) for 𝑃𝛼 (L) when
L corresponds to a rank-1 lattice rule with lattice point set P(L) = P(𝒈, 𝑁).

Theorem 1.16 For every 𝑑 ≥ 3 and every 𝛼 > 1 we have

min
𝒈∈Z𝑑

𝑃𝛼 (𝒈, 𝑁) ≤
((

2e
𝑑

)𝛼𝑑
+ 𝑜(1)

)
(log 𝑁)𝛼𝑑

𝑁𝛼
as 𝑁 → ∞. (1.13)

This result implies that with the method of good lattice points one can obtain a
convergence rate O(𝑁−𝛼) for 𝑓 ∈ E𝑑𝛼, up to logarithmic factors. We will return to
this issue in Chapter 2.

1.5 QMC Integration in Reproducing Kernel Hilbert Spaces

In the current literature, QMC rules are mostly studied in the context of reproducing
kernel Hilbert spaces of functions, as this setting makes it possible to tailor the QMC
rules (or, respectively, their node sets) to the properties of the function class under
consideration, and to represent the integration error in a very convenient way, as we
shall see below.

We first give the definition of a reproducing kernel Hilbert space of functions
defined on a general domain 𝐷 ⊆ R𝑑 . In this section, however, the reader may think
of 𝐷 as being equal to the unit cube [0, 1]𝑑 in most cases.

Definition 1.17 A Hilbert space H of functions 𝑓 : 𝐷 → C with inner product
⟨·, ·⟩ is said to be a reproducing kernel Hilbert space if there exists a function
𝐾 : 𝐷 × 𝐷 → C, called the reproducing kernel of H , with the following properties.

1. For all 𝒚 ∈ 𝐷 we have 𝐾 (·, 𝒚) ∈ H ;
2. for all 𝒚 ∈ 𝐷 and for all 𝑓 ∈ H we have 𝑓 (𝒚) = ⟨ 𝑓 , 𝐾 (·, 𝒚)⟩.

The second property of a reproducing kernel is called the reproducing property,
which means that the evaluation of function values can be expressed or “reproduced”
as the inner product of the function with the kernel.

Any kernel that satisfies Properties 1 and 2 in Definition 1.17 is symmetric,
uniquely defined, and positive semi-definite. To be more precise, the following
proposition holds.

1.5 QMC Integration in Reproducing Kernel Hilbert Spaces 19

Proposition 1.18 Let 𝐾 : 𝐷 × 𝐷 → C be the reproducing kernel of a Hilbert space
H . Then 𝐾 satisfies the following properties.

3. Conjugate symmetry: for all 𝒙, 𝒚 ∈ 𝐷 we have 𝐾 (𝒙, 𝒚) = 𝐾 (𝒚, 𝒙).
4. Uniqueness: for any function 𝐾 : 𝐷 × 𝐷 → C satisfying the properties in Defini-

tion 1.17 we have 𝐾 = 𝐾 .
5. Positive semi-definiteness: for any choice of 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ C and any choice of

𝒙1, 𝒙2, . . . , 𝒙𝑛 ∈ 𝐷 we have

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
𝑎𝑖𝑎 𝑗𝐾 (𝒙𝑖 , 𝒙 𝑗) ≥ 0.

Proof For showing Property 3, using the conjugate symmetry of the inner product
and the fact that 𝐾 (·, 𝒚) ∈ H for every 𝒚 ∈ [0, 1]𝑑 we get, for every 𝒙 ∈ 𝐷,

𝐾 (𝒙, 𝒚) = ⟨𝐾 (·, 𝒚), 𝐾 (·, 𝒙)⟩ = ⟨𝐾 (·, 𝒙), 𝐾 (·, 𝒚)⟩ = 𝐾 (𝒚, 𝒙).

Regarding Property 4, we have, for every 𝒙, 𝒚 ∈ 𝐷,

𝐾 (𝒙, 𝒚) = ⟨𝐾 (·, 𝒚), 𝐾 (·, 𝒙)⟩ = ⟨𝐾 (·, 𝒙), 𝐾 (·, 𝒚)⟩ = 𝐾 (𝒚, 𝒙) = 𝐾 (𝒙, 𝒚).

Finally, for Point 5, note that for every choice of 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ C and of
𝒙1, 𝒙2, . . . , 𝒙𝑛 ∈ 𝐷, we have

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑎𝑖𝑎 𝑗𝐾 (𝒙𝑖 , 𝒙 𝑗) =

𝑁∑︁
𝑖=1

𝑁∑︁
𝑗=1
𝑎𝑖𝑎 𝑗 ⟨𝐾 (·, 𝒙 𝑗), 𝐾 (·, 𝒙𝑖)⟩

=

〈
𝑁∑︁
𝑗=1
𝑎 𝑗𝐾 (·, 𝒙 𝑗),

𝑁∑︁
𝑖=1

𝑎𝑖𝐾 (·, 𝒙𝑖)
〉

=

 𝑁∑︁
𝑖=1

𝑎𝑖𝐾 (·, 𝒙𝑖)
2

≥ 0. □

On the other hand, it can be shown that a function 𝐾 : 𝐷 × 𝐷 → C satisfying
Properties 3 and 5 in Proposition 1.18 uniquely determines a reproducing kernel
Hilbert space of functions with kernel 𝐾 . In this context we will sometimes write
H(𝐾) instead of H in order to stress that 𝐾 is the reproducing kernel of H .

Let us now give some examples of reproducing kernel Hilbert spaces.

Example 1.19 Let H𝑟 = {𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑟𝑥𝑟 : 𝑎0, 𝑎1, . . . , 𝑎𝑟 ∈ R} be the space
of all polynomials over R defined on the real line of degree at most 𝑟 . Define an
inner product on H𝑟 in the following way. For 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥 + · · · + 𝑎𝑟𝑥𝑟 and
𝑞(𝑥) = 𝑏0 + 𝑏1𝑥 + · · · + 𝑏𝑟𝑥𝑟 in H𝑟 let

⟨𝑝, 𝑞⟩ = 𝑎0𝑏0 + · · · + 𝑎𝑟𝑏𝑟 .

20 1 Introduction

The reproducing kernel of this space is given by

𝐾 (𝑥, 𝑦) = 1 + 𝑥𝑦 + 𝑥2𝑦2 + · · · + 𝑥𝑟 𝑦𝑟 for 𝑥, 𝑦 ∈ R,

because

1. for all 𝑦 ∈ R we obviously have 𝐾 (·, 𝑦) ∈ H𝑟 , and
2. ⟨𝑝, 𝐾 (·, 𝑦)⟩ = 𝑎0 + 𝑎1𝑦 + · · · + 𝑎𝑟 𝑦𝑟 = 𝑝(𝑦) holds for all 𝑝 ∈ H𝑟 and all 𝑦 ∈ R.

Example 1.20 Let H𝑟 = {𝑎0 + 𝑎1e2𝜋i𝑥 + · · · + 𝑎𝑟e2𝜋i𝑟 𝑥 : 𝑎0, 𝑎1, . . . , 𝑎𝑟 ∈ C} be
the space of all trigonometric polynomials on [0, 1]𝑑 of degree at most 𝑟 . Define an
inner product on H𝑟 in the following way. For 𝑓 , 𝑔 ∈ H𝑟 with 𝑓 (𝑥) = 𝑎0 + 𝑎1e2𝜋i𝑥 +
· · · + 𝑎𝑟e2𝜋i𝑟 𝑥 and 𝑔(𝑥) = 𝑏0 + 𝑏1e2𝜋i𝑥 + · · · + 𝑏𝑟e2𝜋i𝑟 𝑥 , let

⟨ 𝑓 , 𝑔⟩ = 𝑎0𝑏0 + · · · + 𝑎𝑟𝑏𝑟 .

The reproducing kernel of this space is

𝐾 (𝑥, 𝑦) = 1 + e2𝜋i(𝑥−𝑦) + · · · + e2𝜋i𝑟 (𝑥−𝑦) for 𝑥, 𝑦 ∈ [0, 1]𝑑 ,

because

1. for all 𝑦 ∈ [0, 1]𝑑 we obviously have 𝐾 (·, 𝑦) ∈ H𝑟 , and
2. ⟨𝑝, 𝐾 (·, 𝑦)⟩ = 𝑎0 + 𝑎1e2𝜋i𝑦 + · · · + 𝑎𝑟e2𝜋i𝑟 𝑦 = 𝑝(𝑦) for every 𝑝 ∈ H𝑟 and every
𝑦 ∈ [0, 1]𝑑 .

The following example is of great importance in the context of Koksma–Hlawka
type inequalities, which will be introduced in the next section.

Example 1.21 For absolutely continuous functions 𝑓 , 𝑔 : [0, 1] → R define an inner
product by

⟨ 𝑓 , 𝑔⟩1 := 𝑓 (1)𝑔(1) +
∫ 1

0
𝑓 ′(𝑥)𝑔′(𝑥) d𝑥 (1.14)

and the corresponding norm ∥ 𝑓 ∥1,2 :=
√︁
⟨ 𝑓 , 𝑓 ⟩1. We have ∥ 𝑓 ∥1,2 < ∞ whenever

the first derivative 𝑓 ′ of 𝑓 is in 𝐿2 ([0, 1]). Based on this norm we define a Hilbert
space H1 by

H1 = { 𝑓 : [0, 1] → R : 𝑓 absolutely continuous and ∥ 𝑓 ∥1,2 < ∞}.

It is well known that a function 𝑓 : [0, 1] → R is absolutely continuous if and
only if there exists a Lebesgue integrable function 𝑔 : [0, 1] → R such that 𝑓 can be
written in the form

𝑓 (𝑥) = 𝑓 (0) +
∫ 𝑥

0
𝑔(𝑡) d𝑡 = 𝑓 (1) −

∫ 1

𝑥

𝑔(𝑡) d𝑡 for all 𝑥 ∈ [0, 1] .

In this case 𝑓 is almost everywhere differentiable and 𝑔 = 𝑓 ′ almost everywhere.

1.5 QMC Integration in Reproducing Kernel Hilbert Spaces 21

We now show that the function 𝐾1 defined by

𝐾1 (𝑥, 𝑦) = 1 + min(1 − 𝑥, 1 − 𝑦) (1.15)

is the reproducing kernel of H1. For fixed 𝑦 ∈ [0, 1] we have

𝐾1 (𝑥, 𝑦) =
{

2 − 𝑥 if 𝑥 > 𝑦,
2 − 𝑦 if 𝑥 ≤ 𝑦,

and
𝜕𝐾1 (𝑥, 𝑦)

𝜕𝑥
=

{
−1 if 𝑥 > 𝑦,

0 if 𝑥 ≤ 𝑦.

Thus with 𝑔 : [0, 1] → R defined by

𝑔(𝑥) :=
{
−1 if 𝑥 > 𝑦,

0 if 𝑥 ≤ 𝑦,

we obtain

𝐾1 (1, 𝑦) −
∫ 1

𝑥

𝑔(𝑡) d𝑡 = 1 +
∫ 1

max(𝑥,𝑦)
d𝑡 = 1 + min(1 − 𝑥, 1 − 𝑦) = 𝐾1 (𝑥, 𝑦),

and it is checked analogously that 𝐾1 (0, 𝑦) +
∫ 𝑥
0 𝑔(𝑡) d𝑡 = 𝐾1 (𝑥, 𝑦). Therefore the

function 𝐾1 (·, 𝑦) is absolutely continuous. In particular, 𝐾1 (·, 𝑦) is also integrable.
Furthermore, we have

⟨𝐾1 (·, 𝑦), 𝐾1 (·, 𝑦)⟩1 = (𝐾1 (1, 𝑦))2 +
∫ 1

0

(
𝜕𝐾1 (𝑥, 𝑦)

𝜕𝑥

)2
d𝑥

= 1 +
∫ 1

𝑦

d𝑥 = 2 − 𝑦 < ∞,

and hence ∥𝐾1 (·, 𝑦)∥1,2 < ∞. This implies that 𝐾1 (·, 𝑦) ∈ H1. It remains to check
the reproducing property of 𝐾1. We have

⟨ 𝑓 , 𝐾1 (·, 𝑦)⟩1 = 𝑓 (1)𝐾1 (1, 𝑦) +
∫ 1

0
𝑓 ′(𝑥) 𝜕𝐾1 (𝑥, 𝑦)

𝜕𝑥
d𝑥

= 𝑓 (1) −
∫ 1

𝑦

𝑓 ′(𝑥) d𝑥 = 𝑓 (𝑦).

Altogether, we have shown that 𝐾1 is the reproducing kernel of the space H1.

In this book, we shall frequently study QMC integration over [0, 1]𝑑 of functions
from a given Hilbert spaceH . For the application of QMC rules we require that point
evaluation of functions in H , the integrands, makes sense. In particular, we demand

22 1 Introduction

that for every 𝒚 ∈ [0, 1]𝑑 the evaluation functional 𝑇𝒚 : H → C that evaluates 𝑓 at
𝒚 is continuous. It turns out, however, that this requirement is exactly equivalent to
the existence of a reproducing kernel of H .

Theorem 1.22 Let H be a Hilbert space of functions on [0, 1]𝑑 with inner product
⟨·, ·⟩. Then H is a reproducing kernel Hilbert space if and only if the evaluation
functionals

𝑇𝒚 (𝑓) = 𝑓 (𝒚) for 𝑓 ∈ H , 𝒚 ∈ [0, 1]𝑑

are continuous.

Proof If the evaluation functionals are continuous, then the representation theorem
of Fréchet–Riesz guarantees, for every 𝒚 ∈ [0, 1]𝑑 , the existence of a uniquely
determined function 𝑘𝒚 ∈ H with the property that

𝑇𝒚 (𝑓) = ⟨ 𝑓 , 𝑘𝒚⟩ for all 𝑓 ∈ H .

If we now define 𝐾 (𝒙, 𝒚) = 𝑘𝒚 (𝒙) for 𝒙, 𝒚 ∈ [0, 1]𝑑 , then 𝐾 satisfies the two
properties in Definition 1.17, and thus H is a reproducing kernel Hilbert space with
reproducing kernel 𝐾 .

Conversely, assume that 𝐾 is a reproducing kernel for H . Let 𝒚 ∈ [0, 1]𝑑 . Using
the Cauchy–Schwarz inequality, we get for every 𝑓 ∈ H that

|𝑇𝒚 (𝑓) | = | 𝑓 (𝒚) | = |⟨ 𝑓 , 𝐾 (·, 𝒚)⟩| ≤ ∥ 𝑓 ∥ ∥𝐾 (·, 𝒚)∥.

From the reproducing property we obtain ∥𝐾 (·, 𝒚)∥2 = ⟨𝐾 (·, 𝒚), 𝐾 (·, 𝒚)⟩ = 𝐾 (𝒚, 𝒚),
such that |𝑇𝒚 (𝑓) | ≤ 𝐶 for every 𝑓 with ∥ 𝑓 ∥ ≤ 1, where 𝐶 :=

√︁
𝐾 (𝒚, 𝒚). This means

that 𝑇𝒚 is continuous. □

From now on we will always assume that the functions in H(𝐾) are absolutely
integrable so that H(𝐾) is embedded in 𝐿1 ([0, 1]𝑑). For our analysis, we also need
to consider the integration functional, which shall be denoted by 𝐼, or 𝐼𝑑 if we would
like to emphasize dependence on 𝑑. Indeed, we require that the integration functional

𝐼 (𝑓) :=
∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 for 𝑓 ∈ H (𝐾)

is continuous. This is guaranteed if the embedding operator 𝐽H : H(𝐾) →
𝐿1 ([0, 1]𝑑) is continuous. The following result is due to Hinrichs [108].

Lemma 1.23 Let H(𝐾) be a reproducing kernel Hilbert space of absolutely in-
tegrable functions on [0, 1]𝑑 . Then the embedding operator 𝐽H : H(𝐾) →
𝐿1 ([0, 1]𝑑) is continuous. In particular, the integration functional is continuous
and we have ∫

[0,1]𝑑
| 𝑓 (𝒙) | d𝒙 ≤ ∥𝐽H ∥ ∥ 𝑓 ∥H(𝐾) for all 𝑓 ∈ H (𝐾),

where ∥𝐽H ∥ < ∞ is the operator norm of 𝐽H .

1.5 QMC Integration in Reproducing Kernel Hilbert Spaces 23

Proof The result is a consequence of the closed graph theorem which states that a
linear operator 𝑇 : 𝑋 → 𝑌 is continuous if and only if its graph

{(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : 𝑇𝑥 = 𝑦}

is closed in 𝑋 × 𝑌 . In the present case we have to show that the graph

{(𝑓 , 𝑔) ∈ H (𝐾) × 𝐿1 ([0, 1]𝑑) : 𝑓 = 𝑔} (1.16)

of the embedding operator 𝐽H : H(𝐾) → 𝐿1 ([0, 1]𝑑) is closed.
Let now (𝑓𝑛)𝑛≥1 be a sequence of functions from H(𝐾) which converges to 𝑓 in

H(𝐾) and to 𝑔 in 𝐿1 ([0, 1]𝑑). For 𝒙 ∈ [0, 1]𝑑 we have

| 𝑓 (𝒙) − 𝑓𝑛 (𝒙) | = |⟨ 𝑓 , 𝐾 (·, 𝑥)⟩ − ⟨ 𝑓𝑛, 𝐾 (·, 𝑥)⟩|
= |⟨ 𝑓 − 𝑓𝑛, 𝐾 (·, 𝑥)⟩| ≤ ∥ 𝑓 − 𝑓𝑛∥ ∥𝐾 (·, 𝑥)∥,

and hence 𝑓 is also the pointwise limit of the sequence (𝑓𝑛)𝑛≥1. On the other hand,
convergence in 𝐿1 ([0, 1]𝑑) implies convergence in measure with respect to the
measure d𝑥. Convergence of (𝑓𝑛)𝑛≥1 to 𝑔 in measure now implies that a subsequence
of (𝑓𝑛)𝑛≥1 converges to 𝑔 almost everywhere with respect to d𝑥. Now 𝑓 and 𝑔 are
equal almost everywhere with respect to d𝑥, so they are equal in 𝐿1 ([0, 1]𝑑). Thus,
the graph (1.16) is closed, and therefore 𝐽H : H(𝐾) → 𝐿1 ([0, 1]𝑑) is continuous.

□

Remark 1.24 In general, integrability of the kernel function 𝐾 is not sufficient
to guarantee integrability of all elements of H(𝐾). An example where 𝐾 (·, 𝒚) is
integrable for every 𝒚, but H(𝐾) contains functions that are not integrable can be
found in [212, Notes on Section 23.4]. However, we remark that a sufficient condition
for the continuity of the integration operator 𝐼 is the condition∫

[0,1]𝑑

√︁
𝐾 (𝒙, 𝒙) d𝒙 < ∞, (1.17)

since then for all 𝑓 ∈ H (𝐾) with ∥ 𝑓 ∥ ≤ 1 we have

|𝐼 (𝑓) | =
����∫

[0,1]𝑑
𝑇𝒙 (𝑓) d𝒙

���� ≤ ∫
[0,1]𝑑

|𝑇𝒙 (𝑓) | d𝒙 ≤
∫
[0,1]𝑑

√︁
𝐾 (𝒙, 𝒙) d𝒙 < ∞.

Continuity of the integration functional is important since then one is allowed to
interchange inner product and integral, which is made more precise in the following
lemma.

Lemma 1.25 Let H(𝐾) be a reproducing kernel Hilbert space of absolutely inte-
grable functions on [0, 1]𝑑 with inner product ⟨·, ·⟩. Then we have∫

[0,1]𝑑
⟨ 𝑓 , 𝐾 (·, 𝒚)⟩ d𝒚 =

〈
𝑓 ,

∫
[0,1]𝑑

𝐾 (·, 𝒚) d𝒚
〉
.

24 1 Introduction

Proof According to Lemma 1.23 the integration functional 𝐼 (𝑓) is a continuous
linear functional on H(𝐾). Consequently, the representation theorem of Fréchet–
Riesz guarantees the existence of a unique function 𝑅 ∈ H (𝐾), such that∫

[0,1]𝑑
𝑓 (𝒚) d𝒚 = 𝐼 (𝑓) = ⟨ 𝑓 , 𝑅⟩ for all 𝑓 ∈ H (𝐾).

Since 𝑅 ∈ H (𝐾), the evaluation of 𝑅 at some 𝒙 can be expressed in terms of the
inner product with the kernel function 𝐾 (·, 𝒙) and hence

𝑅(𝒙) = ⟨𝑅, 𝐾 (·, 𝒙)⟩ = ⟨𝐾 (·, 𝒙), 𝑅⟩ =
∫
[0,1]𝑑

𝐾 (𝒚, 𝒙) d𝒚 =

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒚,

where we used that 𝐾 is conjugate symmetric. Thus we have∫
[0,1]𝑑

⟨ 𝑓 , 𝐾 (·, 𝒚)⟩ d𝒚 =

∫
[0,1]𝑑

𝑓 (𝒚) d𝒚 = ⟨ 𝑓 , 𝑅⟩ =
〈
𝑓 ,

∫
[0,1]𝑑

𝐾 (·, 𝒚) d𝒚
〉
. □

QMC integration in reproducing kernel Hilbert spaces

We now study QMC integration for elements of a reproducing kernel Hilbert space
H(𝐾) of absolutely integrable functions in the so-called worst-case setting. For an
integrable function 𝑓 defined on [0, 1]𝑑 and a point set P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in
[0, 1)𝑑 we use the notation

err𝑁,𝑑 (𝑓 ,P) :=
∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 − 1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘)

for the integration error. We remind the reader that we call

𝑄𝑁,𝑑 (𝑓) :=
1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘) (1.18)

a quasi-Monte Carlo (QMC) rule (based on P) and err𝑁,𝑑 (·,P) : H → C the error
functional.

Definition 1.26 The worst-case error of a QMC rule based on an 𝑁-element point
set P in [0, 1)𝑑 in a Hilbert space H of absolutely integrable functions on [0, 1]𝑑 is
defined as

err𝑁,𝑑 (H ,P) := sup
𝑓 ∈H
∥ 𝑓 ∥≤1

|err𝑁,𝑑 (𝑓 ,P)|.

If H = H(𝐾) is a reproducing kernel Hilbert space, the worst-case error can be
expressed by means of the kernel function 𝐾 , as we shall show in the next theorem.

1.5 QMC Integration in Reproducing Kernel Hilbert Spaces 25

Theorem 1.27 Let H(𝐾) be a reproducing kernel Hilbert space of absolutely inte-
grable functions on [0, 1]𝑑 and let P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} be an 𝑁-element point
set in [0, 1)𝑑 . Then we have

[err𝑁,𝑑 (H (𝐾),P)]2 =∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒙 d𝒚 − 2
𝑁

𝑁−1∑︁
𝑘=0

∫
[0,1]𝑑

𝐾 (𝒙𝑘 , 𝒚) d𝒚 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾 (𝒙𝑘 , 𝒙ℓ).

Proof We have

𝑄𝑁,𝑑 (𝑓) =
1
𝑁

𝑁−1∑︁
𝑘=0

⟨ 𝑓 , 𝐾 (·, 𝒙𝑘)⟩ =
〈
𝑓 ,

1
𝑁

𝑁−1∑︁
𝑘=0

𝐾 (·, 𝒙𝑘)
〉

and, according to Lemma 1.25,

𝐼 (𝑓) =
∫
[0,1]𝑑

⟨ 𝑓 , 𝐾 (·, 𝒚)⟩ d𝒚 =

〈
𝑓 ,

∫
[0,1]𝑑

𝐾 (·, 𝒚) d𝒚
〉
.

Therefore the integration error of the QMC rule 𝑄𝑁,𝑑 applied to 𝑓 ∈ H (𝐾) can be
expressed as an inner product,

err𝑁,𝑑 (𝑓 ,P) = ⟨ 𝑓 , ℎ⟩ , (1.19)

where

ℎ(𝒙) :=
∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒚 − 1
𝑁

𝑁−1∑︁
𝑘=0

𝐾 (𝒙, 𝒙𝑘) for 𝒙 ∈ [0, 1]𝑑 .

This function is frequently called the representer of the integration error. Taking the
absolute value and applying the Cauchy–Schwarz inequality leads to

|err𝑁,𝑑 (𝑓 ,P)| ≤ ∥ 𝑓 ∥ ∥ℎ∥.

Moreover it follows from (1.19) that among all functions in the unit ball of
H(𝐾) the normalized representer ℎ/∥ℎ∥ is the hardest to integrate. Therefore, the
worst-case error can be written as err𝑁,𝑑 (H (𝐾),P) = ∥ℎ∥. Hence, for the squared
worst-case error we obtain

[err𝑁,𝑑 (H (𝐾),P)]2 = ⟨ℎ, ℎ⟩

=

〈∫
[0,1]𝑑

𝐾 (·, 𝒚) d𝒚 − 1
𝑁

𝑁−1∑︁
𝑘=0

𝐾 (·, 𝒙𝑘),
∫
[0,1]𝑑

𝐾 (·, 𝒚) d𝒚 − 1
𝑁

𝑁−1∑︁
𝑘=0

𝐾 (·, 𝒙𝑘)
〉

26 1 Introduction

=

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒙 d𝒚 − 2
𝑁

𝑁−1∑︁
𝑘=0

∫
[0,1]𝑑

𝐾 (𝒙𝑘 , 𝒚) d𝒚 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾 (𝒙𝑘 , 𝒙ℓ).

□

Remark 1.28 Instead of QMC rules one might also study more general linear rules
of the form

𝐴𝑁,𝑑 (𝑓) :=
𝑁−1∑︁
𝑘=0

𝑤𝑘 𝑓 (𝒙𝑘),

where again P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} is a point set in [0, 1)𝑑 and where 𝒘 =

(𝑤0, 𝑤1, . . . , 𝑤𝑁−1) ∈ C𝑁 are so-called integration weights, not to be confused
with the concept of weights for different coordinates, which shall be introduced later
in this book. If 𝒘 = (1/𝑁, 1/𝑁, . . . , 1/𝑁), we are back to the QMC case. We write

err𝑁,𝑑 (𝑓 ,P, 𝒘) :=
∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 − 𝐴𝑁,𝑑 (𝑓)

for the error functional and

err𝑁,𝑑 (H ,P, 𝒘) := sup
𝑓 ∈H
∥ 𝑓 ∥≤1

|err𝑁,𝑑 (𝑓 ,P, 𝒘) |

for the worst-case error of the linear rule 𝐴𝑁,𝑑 . Then one can show by the same
methods as above that

[err𝑁,𝑑 (H (𝐾),P, 𝒘)]2 =∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒙 d𝒚 − 2 Re

(
𝑁−1∑︁
𝑘=0

𝑤𝑘

∫
[0,1]𝑑

𝐾 (𝒚, 𝒙𝑘) d𝒚

)
+
𝑁−1∑︁
𝑘,ℓ=0

𝑤𝑘𝑤ℓ𝐾 (𝒙𝑘 , 𝒙ℓ).

1.6 Discrepancy and Koksma–Hlawka Type Inequalities

The notion of discrepancy of a point set has its roots in the field of uniform distribution
modulo one, going back to a seminal paper of Weyl [264] published in the year
1916. From this paper, the following classical result is known. Let (𝒙𝑘)𝑘≥0 be an
infinite sequence in [0, 1)𝑑 , and consider a sequence of QMC rules based on the
first 𝑁 ≥ 1 points of (𝒙𝑘)𝑘≥0 applied to a continuous function 𝑓 on [0, 1]𝑑 . Then
the approximate values returned by the QMC rules converge to the integral of the
function for 𝑁 → ∞, i.e.,

1.6 Discrepancy and Koksma–Hlawka Type Inequalities 27

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘) →
∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 for 𝑁 → ∞,

if and only if the sequence (𝒙𝑘)𝑘≥0 in [0, 1)𝑑 is uniformly distributed modulo
one. The rate at which this convergence takes place can be described in terms of
discrepancy, which is a quantitative measure for the uniformity of a point set.

Definition 1.29 For a finite point set P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in [0, 1)𝑑 the local
discrepancy function ΔP : [0, 1]𝑑 → R is defined as

ΔP (𝒕) :=
|{𝑘 ∈ {0, 1, . . . , 𝑁 − 1} : 𝒙𝑘 ∈ [0, 𝒕)}|

𝑁
− 𝜆𝑑 ([0, 𝒕)),

where, for 𝒕 = (𝑡1, . . . , 𝑡𝑑) ∈ [0, 1]𝑑 , we write [0, 𝒕) = [0, 𝑡1) × · · · × [0, 𝑡𝑑), and
where 𝜆𝑑 denotes the 𝑑-dimensional Lebesgue measure.

Fig. 1.3: The local discrepancy ΔP (𝒕) is the difference of the relative number of
points in [0, 𝒕) and the volume of this interval (shaded area).

28 1 Introduction

The local discrepancy measures the difference between the relative number of
points of the point set P that belong to the axes-parallel box [0, 𝒕), that is anchored in
the origin and has its opposite corner in 𝒕, and the volume of this box (see Figure 1.3).
Taking a suitable norm of the local discrepancy function yields a “global” measure
for the irregularity of distribution of P that is called discrepancy. Most prominent
are the 𝐿𝑝-norms leading to the notions of 𝐿𝑝-discrepancies.

Definition 1.30 For an 𝑁-element point set P in [0, 1)𝑑 and for 𝑝 ≥ 1 the 𝐿𝑝-
discrepancy is defined as the 𝐿𝑝-norm of the corresponding local discrepancy func-
tion, i.e., if 𝑝 ∈ [1,∞) we define

𝐿𝑝,𝑁 (P) :=
(∫

[0,1]𝑑
|ΔP (𝒕) |𝑝 d𝒕

)1/𝑝
.

If 𝑝 = ∞ we also speak of the star-discrepancy, which is denoted by

𝐷∗
𝑁 (P) = 𝐿∞,𝑁 (P) := sup

𝒕∈[0,1]𝑑
|ΔP (𝒕) |.

Sometimes a slightly stricter notion of discrepancy is used, which is called the
extreme discrepancy. Instead of only intervals anchored in the origin, the extreme
discrepancy uses all subintervals of the unit cube as test sets.

Definition 1.31 For an 𝑁-element point set P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in [0, 1)𝑑 the
extreme discrepancy is defined as

𝐷𝑁 (P) := sup
𝒙≤𝒚

���� |{𝑘 ∈ {0, 1, . . . , 𝑁 − 1} : 𝒙𝑘 ∈ [𝒙, 𝒚)}|
𝑁

− 𝜆𝑑 ([𝒙, 𝒚))
���� ,

where the supremum is extended over all 𝒙, 𝒚 ∈ [0, 1]𝑑 for which 𝑥 𝑗 ≤ 𝑦 𝑗 for all
coordinates 𝑗 ∈ [𝑑].

It is clear that for every point set P we have𝐷∗
𝑁
(P) ≤ 𝐷𝑁 (P). On the other hand,

using the inclusion-exclusion principle it can be shown that 𝐷𝑁 (P) ≤ 2𝑑𝐷∗
𝑁
(P).

General lower bounds on the discrepancy

We collect some well-known general lower bounds on the discrepancy of 𝑁-element
point sets in [0, 1)𝑑 . For every 𝑝 ∈ (1,∞] and 𝑑 ∈ N there exists a 𝑐𝑝,𝑑 > 0 such
that for every 𝑁-element point set P in [0, 1)𝑑 with 𝑁 ≥ 2 we have

𝐿𝑝,𝑁 (P) ≥ 𝑐𝑝,𝑑
(log 𝑁) (𝑑−1)/2

𝑁
and 𝐷∗

𝑁 (P) ≥ 𝑐∞,𝑑
(log 𝑁) (𝑑−1)/2+𝜂𝑑

𝑁
(1.20)

1.6 Discrepancy and Koksma–Hlawka Type Inequalities 29

for some 𝜂𝑑 ∈ (0, 1/2). The first result in (1.20) for 𝑝 ≥ 2 is a celebrated result
by Roth [222] that was extended later by Schmidt [226] to the case 𝑝 ∈ (1, 2).
The general lower bound for the star-discrepancy is an important result of Bilyk,
Lacey, and Vagharshakyan [14]. In the two-dimensional case, the results in (1.20)
can be made tighter. There exist positive constants 𝑐1,2 and 𝑐∞,2 such that for every
𝑁-element point set P in [0, 1)2 with 𝑁 ≥ 2 we have

𝐿1,𝑁 (P) ≥ 𝑐1,2

√︁
log 𝑁
𝑁

and 𝐷∗
𝑁 (P) ≥ 𝑐∞,2

log 𝑁
𝑁

. (1.21)

The result for the 𝐿1-discrepancy in (1.21) was shown by Halász [91] and the result
for the star-discrepancy by Schmidt [224].

We will see later that the notions of the 𝐿𝑝-discrepancies are intimately related
to the worst-case errors of QMC rules in certain function spaces. This leads us to
error estimates which are known as Koksma–Hlawka type inequalities. Koksma–
Hlawka type inequalities are the fundamental error estimates for QMC rules. These
inequalities separate the influence of the integrand on the integration error from
that of the underlying integration nodes. The classical Koksma–Hlawka inequality
based on the star-discrepancy was proven by Koksma [134] for dimension 𝑑 = 1 and
later generalized to arbitrary dimension 𝑑 ∈ N by Hlawka [112]. The inequality in its
classical form is a very general error estimate valid for all functions of finite variation
in the sense of Hardy and Krause, which reduces to the total variation in dimension
𝑑 = 1. We will present the inequality at the end of this section. The deduction of
this general version can be found in [155, Chapter 2, Section 5]. Here we choose
a slightly more specific but very elegant approach by means of reproducing kernel
Hilbert spaces.

The anchored Sobolev space of smoothness one

We consider the reproducing kernel 𝐾𝑑 : [0, 1]𝑑 × [0, 1]𝑑 → R given by

𝐾𝑑 (𝒙, 𝒚) :=
𝑑∏
𝑗=1

𝐾1 (𝑥 𝑗 , 𝑦 𝑗) =
𝑑∏
𝑗=1

(1 + min(1 − 𝑥 𝑗 , 1 − 𝑦 𝑗)), (1.22)

where 𝒙 = (𝑥1, . . . , 𝑥𝑑) ∈ [0, 1]𝑑 and 𝒚 = (𝑦1, . . . , 𝑦𝑑) ∈ [0, 1]𝑑 , and where 𝐾1 is
defined as in Example 1.21 by 𝐾1 (𝑥, 𝑦) = 1 +min(1− 𝑥, 1− 𝑦) for 𝑥, 𝑦 ∈ [0, 1]. The
corresponding inner product is given by

⟨ 𝑓 , 𝑔⟩𝑑 :=
∑︁

𝔲⊆[𝑑]

∫
[0,1] |𝔲 |

𝑓 (𝔲) (𝒙𝔲 , 1)𝑔 (𝔲) (𝒙𝔲 , 1) d𝒙𝔲 . (1.23)

Here, for 𝔲 ⊆ [𝑑] and 𝒙 = (𝑥1, . . . , 𝑥𝑑) ∈ [0, 1]𝑑 , we put (𝒙𝔲 , 1) = (𝑧1, . . . , 𝑧𝑑),
where

30 1 Introduction

𝑧 𝑗 =

{
𝑥 𝑗 if 𝑗 ∈ 𝔲,

1 if 𝑗 ∉ 𝔲,

for 𝑗 ∈ [𝑑]. Furthermore,

𝑓 (𝔲) =
𝜕 |𝔲 |

𝜕𝒙𝔲
𝑓 =

∏
𝑗∈𝔲

𝜕

𝜕𝑥 𝑗
𝑓 with 𝑓 (∅) = 𝑓

denotes the mixed first partial derivative of 𝑓 with respect to those components of
𝒙 whose index is in 𝔲. We note that, with some abuse of notation, we just write
𝑓 (𝒙𝔲 , 1) instead of 𝑓 ((𝒙𝔲 , 1)), and likewise for partial derivatives.

Let now H𝑑 be the reproducing kernel Hilbert space with reproducing kernel 𝐾𝑑
and norm ∥ · ∥𝑑,2 := ⟨·, ·⟩1/2

𝑑
. We call H𝑑 = H𝑑 (𝐾𝑑) the anchored Sobolev space of

smoothness one with anchor in 1.
This space contains all functions 𝑓 defined on [0, 1]𝑑 whose mixed partial deriva-

tives 𝑓 (𝔲) up to order one in each variable belong to 𝐿2 ([0, 1]𝑑) and that can be
represented in the form

𝑓 (𝒙) = ⟨ 𝑓 , 𝐾𝑑 (·, 𝒙)⟩𝑑

=
∑︁

𝔲⊆[𝑑]
(−1) |𝔲 |

∫
[0,1] |𝔲 |

𝑓 (𝔲) (𝒚𝔲 , 1) 𝜒[0, (𝒚𝔲 ,1)) (𝒙) d𝒚𝔲 for 𝒙 ∈ [0, 1]𝑑 ,

where 𝜒𝐴 denotes the indicator function of a set 𝐴.
In Example 1.21 we have already considered the univariate case H1 and learned

that it consists of all absolutely continuous functions 𝑓 with square integrable first
derivative. For 𝑑 > 1 one can show that H𝑑 is the 𝑑-fold tensor product of H1, i.e.,

H𝑑 := H1 ⊗ · · · ⊗ H1︸ ︷︷ ︸
𝑑-fold

= span
𝒙 ↦→

𝑑∏
𝑗=1

𝑓 𝑗 (𝑥 𝑗) : 𝑓 𝑗 ∈ H1

,
where 𝒙 = (𝑥1, . . . , 𝑥𝑑), and where by 𝐴 we denote the closure of a set 𝐴. Here the
closure is taken with respect to the norm ∥ · ∥𝑑,2.

We have∫
[0,1]𝑑

√︁
𝐾𝑑 (𝒚, 𝒚) d𝒚 =

(∫ 1

0

√︁
2 − 𝑦 d𝑦

)𝑑
=

(
2(
√

8 − 1)
3

)𝑑
< ∞,

and hence the integration operator 𝐼 is continuous (cf. Remark 1.24). Thus it follows
from (1.19) that

err𝑁,𝑑 (𝑓 ,P) = ⟨ 𝑓 , ℎ⟩𝑑
for all 𝑓 ∈ H𝑑 and all 𝑁-element point sets P in [0, 1)𝑑 , where ℎ is the representer
of the integration error in H𝑑 . Moreover,

1.6 Discrepancy and Koksma–Hlawka Type Inequalities 31

ℎ(𝒙) =
∫
[0,1]𝑑

𝐾𝑑 (𝒙, 𝒚) d𝒚 − 1
𝑁

𝑁−1∑︁
𝑘=0

𝐾𝑑 (𝒙, 𝒙𝑘)

=

𝑑∏
𝑗=1

(∫ 1

0
(1 + min(1 − 𝑥 𝑗 , 1 − 𝑦 𝑗)) d𝑦 𝑗

)
− 1
𝑁

𝑁−1∑︁
𝑘=0

𝑑∏
𝑗=1

(1 + min(1 − 𝑥 𝑗 , 1 − 𝑥𝑘, 𝑗))

=

𝑑∏
𝑗=1

3 − 𝑥2
𝑗

2
− 1
𝑁

𝑁−1∑︁
𝑘=0

𝑑∏
𝑗=1

(1 + min(1 − 𝑥 𝑗 , 1 − 𝑥𝑘, 𝑗)),

where we write 𝒙𝑘 = (𝑥𝑘,1, . . . , 𝑥𝑘,𝑑). For 𝔲 ⊆ [𝑑] we have

ℎ (𝔲) (𝒙𝔲 , 1) =(−1) |𝔲 |
(∏
𝑗∈𝔲

𝑥 𝑗 −
1
𝑁

𝑁−1∑︁
𝑘=0

∏
𝑗∈𝔲

𝜒[0,𝑥 𝑗) (𝑥𝑘, 𝑗)
)

=(−1) |𝔲 |
(∏
𝑗∈𝔲

𝑥 𝑗 −
1
𝑁

𝑁−1∑︁
𝑘=0

𝜒[0, (𝒙𝔲 ,1)) (𝒙𝑘)
)

=(−1) |𝔲 |+1ΔP (𝒙𝔲 , 1),

where ΔP denotes the local discrepancy of the 𝑁-element point set P as given in
Definition 1.29. Note that ΔP (𝒙∅, 1) = ΔP (1) = 0.

From these considerations we obtain a formula for the integration error in H𝑑

which is known as Hlawka’s identity or Zaremba’s identity.

Theorem 1.32 (Hlawka’s identity, Zaremba’s identity) For 𝑓 ∈ H𝑑 and an 𝑁-
point set P in [0, 1)𝑑 we have

err𝑁,𝑑 (𝑓 ,P) =
∑︁

∅≠𝔲⊆[𝑑]
(−1) |𝔲 |

∫
[0,1] |𝔲 |

𝑓 (𝔲) (𝒙𝔲 , 1)ΔP (𝒙𝔲 , 1) d𝒙𝔲 .

Now, we define a norm, depending on a parameter 𝑞 ∈ [1,∞], by

∥ 𝑓 ∥∗𝑑,𝑞 :=
(∫

[0,1]𝑑

����𝜕𝑑 𝑓𝜕𝒙 (𝒙)
����𝑞 d𝒙

)1/𝑞

if 𝑞 ∈ [1,∞) and

∥ 𝑓 ∥∗𝑑,∞ := sup
𝒙∈[0,1]𝑑

����𝜕𝑑 𝑓𝜕𝒙 (𝒙)
����

if 𝑞 = ∞.

32 1 Introduction

Furthermore, we put

∥ 𝑓 ∥𝑑,𝑞 := ©«
∑︁

𝔲⊆[𝑑]

∫
[0,1] |𝔲 |

| 𝑓 (𝔲) (𝒙𝔲 , 1) |𝑞 d𝒙𝔲
ª®¬

1/𝑞

(1.24)

for 𝑞 ∈ [1,∞) and

∥ 𝑓 ∥𝑑,∞ := sup
𝔲⊆[𝑑]

sup
𝒙∈[0,1]𝑑

| 𝑓 (𝔲) (𝒙𝔲 , 1) | (1.25)

for 𝑞 = ∞. In these definitions the term for 𝔲 = ∅ corresponds to | 𝑓 (1) |.
First we consider the space

F ∗
𝑑,𝑞 := { 𝑓 ∈ H𝑑 : 𝑓 (𝒙) = 0 if 𝑥 𝑗 = 1 for some 𝑗 ∈ [𝑑], and ∥ 𝑓 ∥∗

𝑑,𝑞
< ∞}.

Since we have boundary conditions for functions in F ∗
𝑑,𝑞

, Hlawka’s and Zaremba’s
identity reduces to

err𝑁,𝑑 (𝑓 ,P) = (−1)𝑑
∫
[0,1]𝑑

𝜕𝑑 𝑓

𝜕𝒙
(𝒙) ΔP (𝒙) d𝒙 for 𝑓 ∈ F ∗

𝑑,𝑞
.

Applying the absolute value and Hölder’s inequality, we obtain for all 𝑝, 𝑞 ∈ [1,∞]
with 1/𝑝 + 1/𝑞 = 1 that

|err𝑁,𝑑 (𝑓 ,P)| ≤ ∥ 𝑓 ∥∗𝑑,𝑞𝐿𝑝,𝑁 (P). (1.26)

This is our first variant of a Koksma–Hlawka type inequality, which we can also
reformulate as an equality by means of the worst-case error in the sense that the
worst-case error of QMC integration in F ∗

𝑑,𝑞
is exactly the 𝐿𝑝-discrepancy of the

underlying point set. For 𝑝, 𝑞 ∈ (1,∞) this follows from the fact that Hölder’s
inequality is sharp for particular choices of functions. The result even holds for
𝑝 = ∞, which follows from [199, Theorem 2.12].

Theorem 1.33 Let P be an 𝑁-element point set in [0, 1)𝑑 . Let 𝑝, 𝑞 ∈ [1,∞] be such
that 1/𝑝 + 1/𝑞 = 1. Then we have

err𝑁,𝑑 (F ∗
𝑑,𝑞 ,P) = 𝐿𝑝,𝑁 (P).

Next, we would like to avoid the boundary conditions in the definition of F ∗
𝑑,𝑞

,
i.e., we consider the function class

F𝑑,𝑞 := { 𝑓 ∈ H𝑑 : ∥ 𝑓 ∥𝑑,𝑞 < ∞}, (1.27)

where the norm is given by (1.24) or (1.25), respectively. In this context we need
to introduce a further notion of discrepancy, namely the so-called combined 𝐿𝑝-
discrepancy.

1.6 Discrepancy and Koksma–Hlawka Type Inequalities 33

Definition 1.34 For an 𝑁-element point set P in [0, 1)𝑑 and for 𝑝 ≥ 1 the combined
𝐿𝑝-discrepancy is given by

𝐿𝑝,𝑁 ,1 (P) := ©«
∑︁

∅≠𝔲⊆[𝑑]

∫
[0,1] |𝔲 |

|ΔP (𝒕𝔲 , 1) |𝑝 d𝒕𝔲
ª®¬

1/𝑝

,

with the usual adaptions if 𝑝 = ∞.

Note that 𝐿∞,𝑁 ,1 (P) = 𝐿∞,𝑁 (P) = 𝐷∗
𝑁
(P). The meaning of the index 1 in

the notation will become clear later when we discuss weighted 𝐿𝑝-discrepancy (see
Sections 5.3 and 7.1).

We continue with the error analysis of QMC rules in F𝑑,𝑞 . Applying again
Hölder’s inequality to Hlawka’s and Zaremba’s identity, now for integrals and sums,
we conclude the following.

Theorem 1.35 Let P be an 𝑁-element point set in [0, 1)𝑑 , and let 𝑝, 𝑞 ∈ [1,∞] be
such that 1/𝑝 + 1/𝑞 = 1. Then we have

err𝑁,𝑑 (F𝑑,𝑞 ,P) = 𝐿𝑝,𝑁 ,1 (P).

As a corollary we state a “weak” form of the classical Koksma–Hlawka inequality
that is obtained by choosing 𝑞 = 1 (and hence 𝑝 = ∞).

Corollary 1.36 (Koksma–Hlawka inequality) Let P be an 𝑁-element point set in
[0, 1)𝑑 . Then, for all functions 𝑓 defined on [0, 1]𝑑 with ∥ 𝑓 ∥𝑑,1 < ∞, we have

|err𝑁,𝑑 (𝑓 ,P)| ≤ ∥ 𝑓 ∥𝑑,1𝐷∗
𝑁 (P).

Remark 1.37 The Koksma–Hlawka inequality in its original, more general form
states that

|err𝑁,𝑑 (𝑓 ,P)| ≤ 𝑉 (𝑓)𝐷∗
𝑁 (P),

where 𝑉 (𝑓) denotes the variation of 𝑓 in the sense of Hardy and Krause. We do not
give the definition of the latter notion here (see, e.g., [155, 199]), but we would like
to mention that if all partial mixed derivatives of 𝑓 up to order one in each variable
are continuous on [0, 1]𝑑 , then

𝑉 (𝑓) =
∑︁

∅≠𝔲⊆[𝑑]

∫
[0,1] |𝔲 |

| 𝑓 (𝔲) (𝒙𝔲 , 1) | d𝒙𝔲 = ∥ 𝑓 ∥𝑑,1 − | 𝑓 (1) |.

We have now seen that the discrepancy is an important figure of merit for the
nodes of QMC rules. The discrepancy of lattice point sets will be discussed in
Chapter 5, where we will also study further notions of discrepancy, namely the so-
called weighted discrepancy and the isotropic discrepancy. The weighted discrepancy
is very important in the context of the next section, which deals with the dependence
of the error bounds on the dimension.

34 1 Introduction

1.7 The Curse of Dimensionality

The classical worst-case error analysis of integration rules is focused on the decay
rate of the errors when the number of nodes used tends to infinity. The dimension
𝑑 is assumed to be fixed. In many cases one has excellent asymptotic results which,
however, may be delusive. We explain this by means of two examples.

Example 1.38 Consider QMC integration in the class F𝑑,1. Then, according to
Theorem 1.35, the worst-case error is exactly the star-discrepancy of the underlying
integration nodes. This means that we require point sets in [0, 1)𝑑 with very low
star-discrepancy. The best constructions known so far yield point sets P with star-
discrepancy of order

𝐷∗
𝑁 (P) = O

(
(log 𝑁)𝑑−1

𝑁

)
. (1.28)

Here, also the implicit constant may depend on 𝑑 in a very adverse form. Examples
of such constructions are Hammersley point sets and digital nets in the sense of
Niederreiter. But we also know from (1.20) that this order of magnitude cannot
be improved substantially for the star-discrepancy. This means that the order of
magnitude is essentially best possible for growing 𝑁 and fixed 𝑑. However, the
function 𝑁 ↦→ (log 𝑁)𝑑−1/𝑁 is increasing for 𝑁 ≤ e𝑑−1, and only for larger 𝑁 it
decreases to zero with the asymptotic rate of almost 1/𝑁 . This behavior is illustrated
in Figure 1.4.

Fig. 1.4: The function 𝑁 ↦→ (log 𝑁)𝑑−1/𝑁 .

1.7 The Curse of Dimensionality 35

I.e., in order to have meaningful error bounds for QMC rules one requires point
sets in [0, 1)𝑑 with at least e𝑑−1 elements or even more, but e𝑑−1 is huge, even for
moderate choices of 𝑑. Furthermore, if we assume, for example, 𝑑 = 200, which may
happen in applications from financial mathematics, then e𝑑−1 ≈ 2.65829 × 1086, a
number exceeding the estimated number of atoms in our known, observable universe
(which is estimated to be between 1078 and 1082). This means that, according to the
classical theory, QMC methods cannot be expected to work for very high dimensions.
Nevertheless, and surprisingly, we know from practical applications that QMC rules
often do very well and even work much better than we have any right to expect.

Example 1.39 For the numerical integration of functions 𝑓 : [0, 1] → R there are
many classical quadrature rules available. Examples are the rectangle or midpoint
rule, the trapezoidal rule, Simpson’s rule, or the Gauss rule, which all have the
general form

𝑇𝑚 (𝑓) :=
𝑚∑︁
𝑘=0

𝑞𝑘 𝑓 (𝑥𝑘) (1.29)

with nodes 𝑥0, 𝑥1, . . . , 𝑥𝑚 ∈ [0, 1] and with integration weights 𝑞0, 𝑞1, . . . , 𝑞𝑚 ∈ R.
As an example consider the trapezoidal rule for which 𝑞0 = 𝑞𝑚 = 1/(2𝑚), 𝑞𝑘 = 1/𝑚
for 𝑘 ∈ {1, 2, . . . , 𝑚 − 1}, and 𝑥𝑘 = 𝑘/𝑚 for 𝑘 ∈ {0, 1, . . . , 𝑚}. If 𝑓 ∈ 𝐶2 ([0, 1]) the
error of the trapezoidal rule is well known to be of order O(1/𝑚2).

In the multidimensional case, i.e., for the integration of functions over the domain
[0, 1]𝑑 , the classical methods use 𝑑-fold Cartesian products of one-dimensional
quadrature rules that are then often referred to as product rules. This means that one
applies a one-dimensional quadrature rule of the form (1.29) to each component,
which results in a product rule of the form

𝑚∑︁
𝑘1=0

· · ·
𝑚∑︁
𝑘𝑑=0

𝑞𝑘1 · · · 𝑞𝑘𝑑 𝑓 (𝑥𝑘1 , . . . , 𝑥𝑘𝑑).

When rewriting this rule as
𝑀∑︁
𝑘=0

𝑤𝑘 𝑓 (𝒙𝑘), (1.30)

the set of quadrature points {𝒙0, 𝒙1, . . . , 𝒙𝑀 } is exactly the 𝑑-fold product of the
collection of the one-dimensional quadrature points {𝑥0, 𝑥1, . . . , 𝑥𝑚}. Note that the
product rule (1.30) employs 𝑁 = 𝑀 + 1 = (𝑚 + 1)𝑑 integration nodes, a number
growing exponentially with the dimension 𝑑. For example, if 𝑑 = 30, a product rule
based on a one-dimensional rule with only two points already involves 𝑁 = 230 ≈ 109

nodes. Again, if 𝑑 = 200, then a product rule based on a 2-element one-dimensional
rule already requires 2200 = 1.60694 × 1060 nodes. Needless to say, it is infeasible
to compute that many function evaluations.

The error analysis of product rules is based on the underlying one-dimensional
quadrature rules. For instance, the error of the product rule based on one-dimensional
trapezoidal rules applied to functions on [0, 1]𝑑 is of order O(1/𝑚2), provided that
all partial derivatives of order two in each variable are continuous on [0, 1]𝑑 . Here,

36 1 Introduction

𝑚+1 is the number of nodes used in the underlying one-dimensional rule. This looks
quite promising at first sight, but in terms of the actual number 𝑁 of integration nodes,
this error is of order O(𝑁−2/𝑑). For large dimensions, which may be in the hundreds
or thousands for practical problems, such an error convergence is less than satisfying.

Both of these examples suggest that the classical error analysis yields bounds
that are not useful for high-dimensional integration problems. Although we have
excellent or even best possible asymptotic error rates in many cases, we do in general
not know how long we have to wait to see these excellent rates, especially when
the dimension 𝑑 is large. This problem is the core of the field of Information-Based
Complexity (IBC), where also the dependence of the error bounds on the dimension 𝑑
is crucial.

In IBC the so-called information complexity is studied rather than actual error
bounds. Roughly speaking, the information complexity is the minimal amount of
information (e.g., in the case of numerical integration, the number of function eval-
uations) that is necessary to solve a problem within a prescribed level of precision.
In order to give the exact definition we need some notation.

Consider the integration problem for functions defined on [0, 1]𝑑 from a normed
space (F𝑑 , ∥ · ∥) in the worst-case setting, i.e., we study the worst-case error of
integration. It is well known that it is sufficient to study linear algorithms of the form

𝐴𝑁,𝑑 (𝑓) =
𝑁−1∑︁
𝑘=0

𝑤𝑘 𝑓 (𝒙𝑘) (1.31)

based on a point set P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in [0, 1)𝑑 and integration weights
𝒘 = (𝑤0, 𝑤1, . . . , 𝑤𝑁−1) ∈ C𝑁 , which we already encountered in Remark 1.28. (A
proof of this fact is beyond the scope of the present book. Instead, we refer to the
paper [8] by Bakhvalov, see also [210, Section 4.2].)

The worst-case error of the algorithm 𝐴𝑁,𝑑 is defined as the supremal integration
error over the unit ball of F𝑑 , i.e.,

err𝑁,𝑑 (F𝑑 ,P, 𝒘) := sup
𝑓 ∈F𝑑

∥ 𝑓 ∥≤1

|𝐼 (𝑓) − 𝐴𝑁,𝑑 (𝑓) |,

where 𝐼 again denotes the integration operator.
Now we can define the 𝑁-th minimal error.

Definition 1.40 For 𝑑, 𝑁 ∈ N, the 𝑁-th minimal worst-case error in dimension 𝑑 for
the integration problem 𝐼 : F𝑑 → R is defined as

𝑒(𝑁, 𝑑) := inf
P,𝒘

|err𝑁,𝑑 (F𝑑 ,P, 𝒘) |,

where the infimum is extended over all 𝑁-element point sets P in [0, 1)𝑑 and over
all 𝒘 ∈ C𝑁 , i.e., over all linear algorithms of the form (1.31).

1.7 The Curse of Dimensionality 37

For 𝑁 = 0 the initial error is defined as

𝑒(0, 𝑑) := sup
𝑓 ∈F𝑑

∥ 𝑓 ∥≤1

|𝐼 (𝑓) |.

The initial error is the norm of the integral operator, and it is used as a reference
value for the integration problem in the space F𝑑 .

Remark 1.41 If F𝑑 = H(K) is a reproducing kernel Hilbert space with kernel 𝐾 ,
then

𝑒(0, 𝑑) =
(∫

[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒙 d𝒚
)1/2

.

This follows from����∫
[0,1]𝑑

𝑓 (𝒙) d𝒙
���� = ����∫

[0,1]𝑑
⟨ 𝑓 , 𝐾 (·, 𝒙)⟩ d𝒙

����
=

����〈 𝑓 ,∫
[0,1]𝑑

𝐾 (·, 𝒙) d𝒙
〉����

≤ ∥ 𝑓 ∥
����〈∫

[0,1]𝑑
𝐾 (·, 𝒙) d𝒙,

∫
[0,1]𝑑

𝐾 (·, 𝒚) d𝒚
〉����1/2

= ∥ 𝑓 ∥
(∫

[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒙 d𝒚
)1/2

,

where we used the Cauchy–Schwarz inequality. Hence

𝑒(0, 𝑑) ≤
(∫

[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒙 d𝒚
)1/2

.

Equality follows from the fact that the Cauchy–Schwarz inequality is sharp for the
particular choice

𝑓 =

(∫
[0,1]𝑑

𝐾 (·, 𝒙) d𝒙
)
/
∫

[0,1]𝑑
𝐾 (·, 𝒙) d𝒙

 .
Next, we introduce the information complexity, which is the minimal number of

function evaluations that is necessary in order to be able to reduce the initial error
by a given factor 𝜀, the so-called error demand.

Definition 1.42 For 𝑑 ∈ N and 𝜀 ∈ (0, 1) the information complexity is defined as

𝑁 (𝜀, 𝑑) := min{𝑁 ∈ N : 𝑒(𝑁, 𝑑) ≤ 𝜀 𝑒(0, 𝑑)}.

In IBC one is interested in the growth rate of the information complexity when the
error demand 𝜀 tends to zero and when the dimension 𝑑 tends to infinity. This is the
idea underlying the concept of tractability. There are several notions of tractability

38 1 Introduction

which classify the growth rate of the information complexity. The essence of all
these notions is that the information complexity, i.e., the minimal number of function
evaluations needed to solve the 𝑑-dimensional integration problem to within an error
demand 𝜀, must not be exponential in 𝜀−1 or 𝑑. If the latter occurs (i.e., if we have
exponential dependence on 𝑑), then the problem is said to be suffering from the
curse of dimensionality, a phrase that was coined already in 1957 by Bellman [13].

In order for the following definitions to make sense, we need to consider a whole
sequence of integration problems, one for each 𝑑 ∈ N.

Definition 1.43 The sequence of integration problems (𝐼 : F𝑑 → R)𝑑≥1 is said to
suffer from the curse of dimensionality, if there exist numbers 𝐶 > 0, 𝜏 > 0, and
𝜀0 ∈ (0, 1) such that

𝑁 (𝜀, 𝑑) ≥ 𝐶 (1 + 𝜏)𝑑 for all 𝜀 ∈ (0, 𝜀0) and for infinitely many 𝑑 ∈ N.

Problems which do not suffer from the curse of dimensionality are usually clas-
sified by the help of several notions of tractability, some of which we introduce in
the next definition.

Definition 1.44 The sequence of integration problems (𝐼 : F𝑑 → R)𝑑≥1 is said to
be

1. weakly tractable, if

lim
𝑑+𝜀−1→∞

log 𝑁 (𝜀, 𝑑)
𝑑 + 𝜀−1 = 0;

2. polynomially tractable, if there exist numbers 𝐶, 𝜎 > 0 and 𝜏 ≥ 0 such that

𝑁 (𝜀, 𝑑) ≤ 𝐶𝑑𝜏𝜀−𝜎 for all 𝜀 ∈ (0, 1) and all 𝑑 ∈ N; (1.32)

3. strongly polynomially tractable, if there exist numbers 𝐶 > 0 and 𝜎 > 0 such that

𝑁 (𝜀, 𝑑) ≤ 𝐶𝜀−𝜎 for all 𝜀 ∈ (0, 1) and all 𝑑 ∈ N. (1.33)

The infimum of all 𝜎 > 0 such that a bound of the form (1.33) holds is called the
𝜀-exponent of strong polynomial tractability.

We remark that in IBC sometimes much finer notions of tractability are con-
sidered, as for example quasi-polynomial tractability, (𝑠, 𝑡)-weak tractability, and
uniform weak tractability. For this book the notions of weak, polynomial, and strong
polynomial tractability suffice. Furthermore, in this book we only consider integra-
tion problems, and, in later chapters, function approximation, but in IBC much more
general problems are studied.

1.7 The Curse of Dimensionality 39

Example 1.45 Consider again the integration problem for functions from F𝑑,1. The
worst-case error of a QMC rule is exactly the star-discrepancy of the underlying
point set P. The question is whether this integration problem suffers from the curse
of dimensionality or not, and if not, to which tractability class the problem belongs.
While the known asymptotic bounds on the star-discrepancy (1.28) are of no help in
answering this question, there is a seminal paper by Heinrich, Novak, Wasilkowski,
and Woźniakowski [96], who were the first to study the star-discrepancy from the
viewpoint of IBC. They proved that there exists an absolute constant𝐶 > 0 such that
for every 𝑑, 𝑁 ∈ N there exists an 𝑁-element point set P in [0, 1)𝑑 satisfying

𝐷∗
𝑁 (P) ≤ 𝐶

√︂
𝑑

𝑁
, (1.34)

and hence

𝑒(𝑁, 𝑑) ≤ 𝐶
√︂
𝑑

𝑁
for all 𝑁, 𝑑 ∈ N.

This implies that
𝑁 (𝜀, 𝑑) ≤ 𝐶2𝑑𝜀−2,

which in turn means that the integration problem in F𝑑,1 is polynomially tractable.
In the present context 𝑁 (𝜀, 𝑑) is sometimes also referred to as the inverse of the
star-discrepancy. The currently smallest known admissible value of 𝐶 is 2.5287 as
shown by Gnewuch and Hebbinghaus [79]. We remark that the bound (1.34) is a pure
existence result. So far, no explicit construction of a point set with star-discrepancy
of at most𝐶

√︁
𝑑/𝑁 for some positive constant𝐶 is known. For further information on

this question we refer to the “Notes and Remarks” Section at the end of the present
chapter.

Furthermore, we remark that the dependence on the dimension 𝑑 in the previous
result is known to be best possible. Indeed, Hinrichs [107] proved that there exist
numbers 𝑐 > 0 and 𝜀0 ∈ (0, 1) such that

𝑁 (𝜀, 𝑑) ≥ 𝑐𝑑𝜀−1 for all 𝑑 ∈ N and 𝜀 ∈ (0, 𝜀0).

Thus, the exact dependence of 𝑁 (𝜀, 𝑑) on the dimension 𝑑 is linear, whereas the
exact dependence on 𝜀−1 is still an open question.

Strong polynomial tractability of the related concept of weighted star-discrepancy
is discussed in Section 5.4 of the present book.

Example 1.46 Consider integration in E𝑑𝛼 (1), i.e., integration of functions 𝑓 satis-
fying

| �̂� (𝒉) | ≤ 1
(𝑟1 (𝒉))𝛼

for all 𝒉 ∈ Z𝑑 \ {0},

where 𝑟1 is given by (1.12), using arbitrary linear algorithms 𝐴𝑁,𝑑 with integration
nodes P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} and integration weights 𝒘 = (𝑤0, 𝑤1, . . . , 𝑤𝑁−1) ∈
C𝑁 , as introduced in Remark 1.28. Let

40 1 Introduction

𝑃𝛼 (P, 𝒘) := sup
𝑓 ∈E𝑑

𝛼 (1)

����∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 − 𝐴𝑁,𝑑 (𝑓)
����

be the worst-case integration error of the linear algorithm 𝐴𝑁,𝑑 for the class E𝑑𝛼 (1).
Define

𝑒(𝑁, 𝑑) := inf{𝑃𝛼 (P, 𝒘) : 𝒘 ∈ C𝑁 and P ⊆ [0, 1)𝑑 with |P | = 𝑁}.

The following result of Sloan and Woźniakowski [238, Theorem 1] implies that
integration in the Korobov class E𝑑𝛼 (1) suffers from the curse of dimensionality.

Theorem 1.47 Consider integration in the Korobov class E𝑑𝛼 (1). If 𝑁 < 2𝑑 , then
𝑒(𝑁, 𝑑) = 1.

This result means that the number of function evaluations required to obtain a worst-
case error less than one is exponential in the dimension, and this implies the curse
of dimensionality.

Proof of Theorem 1.47 Taking 𝒘 = 0 we get

𝑃𝛼 (P, 0) = sup
{
| �̂� (0) | : 𝑓 ∈ E𝑑𝛼 (1)

}
= 1

and so 𝑒(𝑁, 𝑑) ≤ 1. To show equality, let 𝐵𝑑 := {0, 1}𝑑 . Take an arbitrary linear
algorithm 𝐴𝑁,𝑑 (𝑓) =

∑𝑁−1
𝑘=0 𝑤𝑘 𝑓 (𝒙𝑘). Define

𝑔(𝒙) =
∑︁
𝒉∈𝐵𝑑

𝑏𝒉 e2𝜋i𝒉 ·𝒙 for all 𝒙 ∈ [0, 1]𝑑

and choose 𝑏𝒉 for 𝒉 ∈ 𝐵𝑑 such that 𝑔(𝒙𝑘) = 0 for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. Since
we have 𝑁 homogeneous linear equations and |𝐵𝑑 | = 2𝑑 > 𝑁 unknowns 𝑏𝒉 , there
exists a nonzero vector of such 𝑏𝒉 , and we can normalize the 𝑏𝒉 by assuming that

max
𝒉∈𝐵𝑑

|𝑏𝒉 | = 𝑏𝒉∗ = 1 for some 𝒉∗ ∈ 𝐵𝑑 .

Define

𝑓 (𝒙) = e−2𝜋i𝒉∗ ·𝒙 𝑔(𝒙) =
∑︁
𝒉∈𝐵𝑑

𝑏𝒉e2𝜋i(𝒉−𝒉∗) ·𝒙 for all 𝒙 ∈ [0, 1]𝑑 .

For 𝒉, 𝒉∗ ∈ 𝐵𝑑 we have

ℎ 𝑗 − ℎ∗𝑗 ∈ {−1, 0, 1} for all 𝑗 ∈ [𝑑] .

Hence 𝑓 is a trigonometric polynomial (see (1.40) for the formal definition of a
trigonometric polynomial) of degree at most 1 in each component, and furthermore,

𝑟1 (𝒉 − 𝒉∗) = 1 for 𝒉, 𝒉∗ ∈ 𝐵𝑑 .

1.8 Further Quality Criteria for Lattice Rules 41

Since |𝑏𝒉 | ≤ 1 for all 𝒉 ∈ 𝐵𝑑 it follows that | �̂� (𝒉) | ≤ 1 for all 𝒉 ∈ Z𝑑 and therefore
𝑓 ∈ E𝑑𝛼 (1).

Note that 𝑓 (𝒙𝑘) = 0 for all 𝑘 ∈ {0, 1, . . . , 𝑁−1}, and this implies that 𝐴𝑁,𝑑 (𝑓) =
0. Consequently,

𝑃𝛼 (P, 𝒘) ≥
����∫

[0,1]𝑑
𝑓 (𝒙) d𝒙 − 𝐴𝑁,𝑑 (𝑓)

���� = ����∫
[0,1]𝑑

𝑓 (𝒙) d𝒙
���� = |𝑏𝒉∗ | = 1.

Since this holds for all 𝒘 ∈ C𝑁 and P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1}, we conclude that
𝑒(𝑁, 𝑑) ≥ 1. Together with the upper bound we obtain 𝑒(𝑁, 𝑑) = 1, as claimed. □

In this book we will put a focus on the question for which problems the curse of
dimensionality can be broken with the help of lattice rules and, if so, which notion
of tractability can be obtained then.

1.8 Further Quality Criteria for Lattice Rules

In this final section of our introductory chapter, let us return to lattice rules. So far we
have already encountered the most important quality criteria for lattice rules, namely
the quantity 𝑃𝛼, the discrepancies of the corresponding lattice point sets, and the
worst-case errors of lattice rules with respect to normed spaces of integrands. In this
section we briefly discuss further important quality criteria for lattice rules.

The criterion 𝑅

The first criterion is a quantity usually referred to as 𝑅 in the literature, and it is
related to 𝑃𝛼 as well as to the extreme discrepancy of lattice point sets. Before we
state its exact definition, we need to introduce some notation.

For 𝑀 ∈ N, 𝑀 ≥ 2, let 𝐶 (𝑀) := (−𝑀/2, 𝑀/2] ∩ Z, and let

𝐶𝑑 (𝑀) := 𝐶 (𝑀) × · · · × 𝐶 (𝑀)︸ ︷︷ ︸
𝑑 times

be the 𝑑-fold Cartesian product of 𝐶 (𝑀). Furthermore, we write 𝐶∗
𝑑
(𝑀) :=

𝐶𝑑 (𝑀) \ {0}.

Definition 1.48 For a 𝑑-dimensional integration lattice L with det(L⊥) = 𝑁 , with
𝑑, 𝑁 ≥ 2, we put

𝑅(L) :=
∑︁

𝒉∈𝐶∗
𝑑
(𝑁)∩L⊥

1
𝑟1 (𝒉)

, (1.35)

where 𝑟1 is defined in (1.12). When L is a rank-1 lattice with lattice point set
P(𝒈, 𝑁), we write 𝑅(𝒈, 𝑁) instead of 𝑅(L).

42 1 Introduction

Note that the range of summation in the definition of 𝑅 in (1.35) is finite. It is
easily seen that |𝐶∗

𝑑
(𝑁) ∩ L⊥ | = 𝑁𝑑−1 − 1 (see [199, Remark 5.25]).

As already mentioned, the quantity 𝑅 is related to 𝑃𝛼. The following two results
are classical (see [199, Theorem 5.26] and [199, Theorem 5.5]) and show that 𝑃𝛼
can be upper-bounded in terms of 𝑅. Here and in the following, for 𝛼 > 1, let
𝜁 (𝛼) :=

∑∞
ℎ=1 ℎ

−𝛼 be the Riemann zeta function.

Theorem 1.49 Let 𝑑, 𝑁 ∈ N, 𝑑, 𝑁 ≥ 2, and let L be a 𝑑-dimensional integration
lattice with det(L⊥) = 𝑁 . Then, for any real 𝛼 > 1, we have

𝑃𝛼 (L) < (1 + 𝜁 (𝛼)𝑑) (𝑅(L))𝛼 +
(
1 + 2𝜁 (𝛼)

𝑁𝛼

)𝑑
− 1 + (2𝛼𝜁 (𝛼))𝑑

𝑁𝛼𝑑−𝑑+1

+
𝑑−2∑︁
𝑗=1

(
𝑑

𝑗

)
(2𝛼𝜁 (𝛼))𝑑− 𝑗 (1 + 2𝜁 (𝛼)) 𝑗 1

𝑁 (𝛼−1) (𝑑− 𝑗) .

In particular, if either 𝑑 = 2 or 𝛼 ≥ 2,

𝑃𝛼 (L) < (1 + 𝜁 (𝛼)𝑑) (𝑅(L))𝛼 + O
(

1
𝑁𝛼

)
.

For rank-1 lattice rules we have the following slight improvement according to
Niederreiter [200].

Theorem 1.50 Let 𝑑, 𝑁 ∈ N, 𝑑, 𝑁 ≥ 2, and let 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ Z𝑑 with
gcd(𝑔 𝑗 , 𝑁) = 1 for all 𝑗 ∈ [𝑑]. Then, for any real 𝛼 > 1, we have

𝑃𝛼 (𝒈, 𝑁) < (𝑅(𝒈, 𝑁))𝛼 +
(
1 + 2𝜁 (𝛼)

𝑁𝛼

)𝑑
− 1

+ 1
𝑁

(
1 + 2𝜁 (𝛼) + 2𝛼𝜁 (𝛼)

𝑁𝛼−1

)𝑑
− 1
𝑁
(1 + 2𝜁 (𝛼))𝑑 .

In particular,

𝑃𝛼 (𝒈, 𝑁) ≤ (𝑅(𝒈, 𝑁))𝛼 + O
(

1
𝑁𝛼

)
.

The advantage of the quality criterion 𝑅 is that it is independent of the smoothness
parameter 𝛼. Hence integration lattices with small 𝑅 are universal in the sense that
a low value of 𝑅 yields also low values of 𝑃𝛼 simultaneously for all 𝛼 > 1. The
relation of 𝑅 to the extreme discrepancy will be discussed in detail in Section 5.1,
and the construction of integration lattices with a low value of 𝑅 in Sections 3.6 and
5.2, respectively. There we will construct, for prime numbers 𝑁 , generating vectors
𝒈 ∈ Z𝑑 satisfying

𝑅(𝒈, 𝑁) = O
(
(log 𝑁)𝑑

𝑁

)
.

For the error 𝑃𝛼 this implies

1.8 Further Quality Criteria for Lattice Rules 43

𝑃𝛼 (𝒈, 𝑁) = O
(
(log 𝑁)𝛼𝑑

𝑁𝛼

)
for all 𝛼 > 1.

A weighted version of the quality criterion 𝑅 will be introduced in Section 3.6
(see Definition 3.12).

The Zaremba index 𝜌

Another quality measure is the Zaremba index, sometimes also referred to as the
figure of merit, which is based on the idea that 𝑃𝛼 and 𝑅 will be small if the nonzero
elements of L⊥ are in a certain sense far away from the origin.

Definition 1.51 For a 𝑑-dimensional integration lattice L with det(L⊥) = 𝑁 with
𝑑, 𝑁 ≥ 2, the Zaremba index or figure of merit is defined as

𝜌(L) := min
𝒉∈L⊥\{0}

𝑟1 (𝒉).

If L is a rank-1 lattice with lattice point set P(𝒈, 𝑁), then we write 𝜌(𝒈, 𝑁) instead
of 𝜌(L).

Using the geometric illustration in Figure 1.2, the Zaremba index is the value of
𝑟1 (𝒉∗) which is attained by points 𝒉∗ in the dual lattice L⊥ which also lie on the
boundary of the hyperbolic cross (marked by red dots in Figure 1.2).

The relation of the Zaremba index to numerical integration is well known (see,
e.g., [199, 230]). The following theorem illustrates how the quality measures 𝑃𝛼 and
𝑅 can be bounded in terms of the Zaremba index.

Theorem 1.52 Let 𝑑, 𝑁 ∈ N, 𝑑, 𝑁 ≥ 2, and let L be a 𝑑-dimensional integration
lattice L with det(L⊥) = 𝑁 . Then we have

2
(𝜌(L))𝛼 ≤ 𝑃𝛼 (L) ≤ 𝑐(𝑑, 𝛼) (1 + log 𝜌(L))𝑑−1

(𝜌(L))𝛼 for all 𝛼 > 1, (1.36)

where the quantity 𝑐(𝑑, 𝛼) depends only on 𝑑 and 𝛼, and

1
𝜌(L) ≤ 𝑅(L) ≤

(
2

log 2

)𝑑−1 2(log 𝑁)𝑑 + 3(log 𝑁)𝑑−1

𝜌(L) . (1.37)

The upper bound in (1.36) was first shown by Zaremba [268], and the lower
bound is trivial. The upper bound in (1.37) goes back to Niederreiter [193], where
the presented form is taken from [199, Theorem 5.35]. The lower bound follows
from the observation that 1 ≤ 𝜌(L) ≤ 𝑁/2 (see [199, Remark 5.33]). If the rank
𝑟 of L satisfies 𝑟 ≥ 2, then we even have the improved estimate 1 ≤ 𝜌(L) ≤ 𝑛1,
where 𝑛1 is the first invariant of L as given in Theorem 1.5 (see [199, Lemma 5.32]).

44 1 Introduction

Theorem 1.52 suggests that the Zaremba index has to be large in order to obtain
small values of 𝑃𝛼 and 𝑅, respectively. In this context Zaremba [269] established
the following result for rank-1 lattice rules.

Theorem 1.53 For every dimension 𝑑 ≥ 2 and every sufficiently large integer 𝑁 ,
there exists a lattice point 𝒈 ∈ 𝐶𝑑 (𝑁), with first component 𝑔1 = 1, such that

𝜌(𝒈, 𝑁) > (𝑑 − 1)!𝑁
(2 log 𝑁)𝑑−1 .

In the two-dimensional case there is an important connection to continued fraction
expansions. Let 𝑔 ∈ {1, 2, . . . , 𝑁 − 1} with gcd(𝑔, 𝑁) = 1. Let 𝑎1, 𝑎2, . . . , 𝑎𝑙 be the
partial quotients in the continued fraction expansion of 𝑔/𝑁 , i.e.,

𝑔

𝑁
=

1

𝑎1 +
1

𝑎2 +
1

. . . + 1
𝑎𝑙

, (1.38)

and let
𝐾

(𝑔
𝑁

)
:= max

1≤ 𝑗≤𝑙
𝑎 𝑗 . (1.39)

It was shown by Zaremba [266] (see also [199, Theorem 5.17]) that the Zaremba
index 𝜌(𝒈, 𝑁) for 𝒈 = (1, 𝑔) can be bounded in terms of 𝐾 (𝑔/𝑁), namely

𝑁

𝐾 (𝑔/𝑁) + 2
≤ 𝜌(𝒈, 𝑁) ≤ 𝑁

𝐾 (𝑔/𝑁) .

Example 1.54 (Fibonacci lattices) Let (𝐹𝑛)𝑛≥1 be the sequence of Fibonacci num-
bers defined recursively by 𝐹1 = 𝐹2 = 1 and 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2 for 𝑛 ≥ 3. Now let
𝑁 = 𝐹𝑛 for some 𝑛 ≥ 3 and let 𝒈 = (1, 𝐹𝑛−1). The two-dimensional lattice point
set P(𝒈, 𝑁) is then called Fibonacci lattice point set. A Fibonacci lattice point set
with 𝑁 = 𝐹9 = 34 points and generating vector 𝒈 = (1, 𝐹8) = (1, 21) is illustrated in
Figure 1.5.

Since all partial quotients of 𝐹𝑛−1/𝐹𝑛 are equal to 1, we have 𝐾 (𝐹𝑛−1/𝐹𝑛) = 1
and hence

𝑁

3
≤ 𝜌(𝒈, 𝐹𝑛) ≤ 𝑁.

According to a formula of Zaremba [266] we even know that 𝜌(𝒈, 𝐹𝑛) = 𝐹𝑛−2.
Furthermore, Theorem 1.52 implies

𝑃𝛼 (𝒈, 𝑁) = O
(
log 𝑁
𝑁𝛼

)
.

Remark 1.55 (Zaremba’s conjecture) In [268, p. 76] Zaremba conjectured that
there exists a number 𝐴 such that for every denominator 𝑁 ≥ 2 there exists a
numerator 𝑔 relatively prime to 𝑁 such that 𝐾 (𝑔/𝑁) ≤ 𝐴. This conjecture is known

1.8 Further Quality Criteria for Lattice Rules 45

Fig. 1.5: The Fibonacci lattice point set P((1, 21), 34).

as Zaremba’s conjecture. In fact, Zaremba conjectured that 𝐴 can be chosen equal to
5. Obviously, the conjecture is true when 𝑁 is a Fibonacci number. Niederreiter [196]
proved that Zaremba’s conjecture holds true if 𝑁 is of the form 2𝑚 or 3𝑚, in which
case one may even choose 𝐴 = 3, or of the form 5𝑚, where 𝐴 can be chosen equal
to 4. Niederreiter’s proof provides an effective construction of 𝑔 with the desired
properties.

In [17] Bourgain and Kontorovich proved that Zaremba’s conjecture holds true
for 𝐴 = 50 for a set of denominators 𝑁 of density 1, i.e.,

lim
𝑚→∞

|{𝑁 ∈ {2, 3, . . . , 𝑚} : ∃𝑔 such that gcd(𝑔, 𝑁) = 1 and 𝐾 (𝑔, 𝑁) ≤ 50}|
𝑚

= 1.

Returning to the 𝑑-dimensional case, it is an open question how to find, for
given 𝑑 and 𝑁 , lattice points 𝒈 ∈ Z𝑑 for which the lower bound in Theorem 1.53
is attained. Korobov [139] suggested considering lattice point sets with generating
vectors 𝒈 = (1, 𝑔, . . . , 𝑔𝑑−1) ∈ Z𝑑 with 𝑔 ∈ {1, 2, . . . , 𝑁−1} such that gcd(𝑔, 𝑁) = 1
(generating vectors of this specific form are called Korobov type generating vectors,

46 1 Introduction

see also Section 3.2). The size of the search space for lattice points of this form
reduces to 𝜑(𝑁). At least for prime powers 𝑁 and in dimension 𝑑 = 3, there is an
existence result of Larcher and Niederreiter [174] that we state now.

Proposition 1.56 There exists an absolute constant 𝐶 > 0 such that for every prime
power 𝑁 there exists an integer 𝑔 (which is coprime with 𝑁) such that for 𝒈 =

(1, 𝑔, 𝑔2) we have

𝜌(𝒈, 𝑁) ≥ 𝐶𝑁

(log 𝑁)2 .

The enhanced trigonometric degree

A trigonometric polynomial of degree 𝑘 is a function 𝑓 of the form

𝑓 (𝒙) =
∑︁
𝒉∈Z𝑑
∥𝒉 ∥1≤𝑘

𝑎𝒉 e2𝜋i𝒉 ·𝒙, (1.40)

where the coefficients 𝑎𝒉 are complex numbers and where ∥ · ∥1 denotes the ℓ1-norm
of a vector. It is clear that the coefficients 𝑎𝒉 are exactly the Fourier coefficients of
𝑓 , i.e.,

𝑎𝒉 = �̂� (𝒉) =
∫
[0,1]𝑑

𝑓 (𝒙) e−2𝜋i𝒉 ·𝒙 d𝒙,

and, in particular, 𝑎0 =
∫
[0,1]𝑑 𝑓 (𝒙) d𝒙. Likewise, one may define a trigonometric

polynomial in an equivalent way as a function having only a finite number of nonzero
Fourier coefficients. It is of degree 𝑘 , or equivalently of enhanced degree 𝜅 = 𝑘 + 1,
if

�̂� (𝒉) = 0 whenever ∥𝒉∥1 ≥ 𝜅, (1.41)

and it is said to be of strict enhanced degree 𝜅 if it is not of enhanced degree 𝜅 − 1.

Definition 1.57 An integration rule based on a lattice L is said to have enhanced
trigonometric degree 𝜅(L) = 𝜅, if it integrates all trigonometric polynomials of
enhanced degree 𝜅 exactly. We say that it is of strict enhanced degree 𝜅 if it is not of
enhanced degree 𝜅 + 1. If L is a rank-1 lattice with lattice point set P(𝒈, 𝑁), then
we will write 𝜅(𝒈, 𝑁) instead of 𝜅(L).

For the moment, let 𝜅 be an arbitrary positive integer. For a lattice rule with
corresponding integration lattice L we get from Proposition 1.12 that

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘) −
∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 =
∑︁
𝒉∈L⊥

1≤∥𝒉 ∥1<𝜅

�̂� (𝒉) +
∑︁
𝒉∈L⊥
∥𝒉 ∥1≥𝜅

�̂� (𝒉),

where P(L) = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1}, and where L⊥ is the dual lattice. If 𝑓 is a
trigonometric polynomial of enhanced degree 𝜅, then (1.41) implies that the second
sum on the right-hand side of the above equation is zero. If in addition L⊥ contains

1.8 Further Quality Criteria for Lattice Rules 47

no elements with 1 ≤ ∥𝒉∥1 < 𝜅, then the entire right-hand side of the above
equation vanishes. This means that the lattice rule corresponding to L integrates the
trigonometric polynomial 𝑓 exactly, which in turn implies that the lattice rule is of
enhanced degree 𝜅. From these considerations we find that the enhanced degree of a
lattice rule depends only on the location of the elements of the dual lattice L⊥ with
respect to the ℓ1-norm. To be more precise, we have the following theorem.

Theorem 1.58 The enhanced trigonometric degree of a lattice L is

𝜅(L) = min
𝒉∈L⊥\{0}

∥𝒉∥1.

Additionally, we have the following upper bound on the enhanced trigonometric
degree of a lattice.

Theorem 1.59 The enhanced trigonometric degree 𝜅 = 𝜅(L) of a 𝑑-dimensional
lattice L with det(L⊥) = 𝑁 , where 𝑁 ≥ 2, satisfies 𝜅(L) ≤ (𝑑!𝑁)1/𝑑 .

The proof of Theorem 1.59 is based on Minkowski’s fundamental theorem, which
we state below. For a proof of Theorem 1.60 we refer, e.g., to [93, Theorem 447].

Theorem 1.60 (Minkowski’s fundamental theorem) Let L be a lattice in R𝑑 with
determinant det(L). Then any convex set in R𝑑 which is symmetric with respect to
the origin and with volume greater than 2𝑑 det(L) contains a nonzero lattice point
of L.

We now give the proof of Theorem 1.59.

Proof of Theorem 1.59 Let L be an integration lattice with det(L⊥) = 𝑁 . Consider
the centered ℓ1-ball

𝐶𝑑𝜌 := {𝒙 ∈ R𝑑 : ∥𝒙∥1 ≤ 𝜌},

for some 𝜌 > 0. Then 𝐶𝑑𝜌 is symmetric with respect to the origin and the volume of
𝐶𝑑𝜌 is

𝜆𝑑 (𝐶𝑑𝜌) =
2𝑑𝜌𝑑

𝑑!
.

Hence, by Minkowski’s fundamental theorem applied to L⊥, we have that if

2𝑑𝜌𝑑

𝑑!
≥ 2𝑑 det(L⊥) = 2𝑑𝑁,

i.e., if 𝜌 ≥ (𝑑!𝑁)1/𝑑 , then 𝐶𝑑𝜌 contains a nonzero point of L⊥. In other words,
L⊥ contains a nonzero lattice point belonging to 𝐶𝑑(𝑑!𝑁)1/𝑑 , and therefore we have
𝜅(L) ≤ (𝑑!𝑁)1/𝑑 . □

Next, we show that the upper bound in Theorem 1.59 is essentially best possible.
We consider rank-1 lattice rules and show, for prime numbers 𝑁 , the existence of
generators 𝒈 with large enhanced trigonometric degree. The following proposition
is [49, Lemma 2].

48 1 Introduction

Proposition 1.61 For any prime number 𝑁 , there exists a 𝒈 ∈ {0, 1, . . . , 𝑁 − 1}𝑑
such that

𝜅(𝒈, 𝑁) ≥
⌈
(𝑑! 𝑁)1/𝑑

2

⌉
− 𝑑.

Proof For a given 𝒉 = (ℎ1, . . . , ℎ𝑑) ∈ Z𝑑 \ {0} with |ℎ 𝑗 | < 𝑁 for all 𝑗 ∈ [𝑑],
there are 𝑁𝑑−1 choices of 𝒈 ∈ {0, 1, . . . , 𝑁 − 1}𝑑 such that 𝒉 · 𝒈 ≡ 0 (mod 𝑁).
Furthermore

|{𝒉 ∈ Z𝑑 : ∥𝒉∥1 = ℓ}| ≤ 2𝑑
(
ℓ + 𝑑 − 1
𝑑 − 1

)
.

Let 𝜅 < 𝑁 be a given positive integer (note that we always have 𝜅(𝒈, 𝑁) < 𝑁). Then

|{𝒉 ∈ Z𝑑 : ∥𝒉∥1 ≤ 𝜅}| ≤ 2𝑑
𝜅∑︁
ℓ=0

(
ℓ + 𝑑 − 1
𝑑 − 1

)
= 2𝑑

(
𝜅 + 𝑑
𝑑

)
.

For every 𝒉 in the set {𝒉 ∈ Z𝑑 : ∥𝒉∥1 ≤ 𝜅} there are 𝑁𝑑−1 choices 𝒈 ∈
{0, 1, . . . , 𝑁−1}𝑑 such that 𝒉·𝒈 ≡ 0 (mod 𝑁). For every such 𝒈we have 𝜅(𝒈, 𝑁) ≤ 𝜅.
Therefore

|{𝒈 ∈ {0, 1, . . . , 𝑁 − 1}𝑑 : 𝜅(𝒈, 𝑁) ≤ 𝜅}| ≤ 𝑁𝑑−12𝑑
(
𝜅 + 𝑑
𝑑

)
.

Note that the total number of possible generators 𝒈 ∈ {0, 1, . . . , 𝑁 −1}𝑑 is 𝑁𝑑 . Thus
if

𝑁𝑑−12𝑑
(
𝜅 + 𝑑
𝑑

)
< 𝑁𝑑 , (1.42)

then there exists a 𝒈 ∈ {0, 1, . . . , 𝑁 − 1}𝑑 such that 𝜅(𝒈, 𝑁) > 𝜅. We estimate

2𝑑
(
𝜅 + 𝑑
𝑑

)
≤ 2𝑑 (𝜅 + 𝑑)𝑑

𝑑!
.

Thus (1.42) is satisfied if 2𝑑 (𝜅 + 𝑑)𝑑/𝑑! < 𝑁 , i.e., for 𝜅 = ⌈2−1 (𝑑! 𝑁)1/𝑑⌉ − 𝑑 − 1. □

Proposition 1.61 is a pure existence result. However, it is possible to give—in
some sense—a construction of generating vectors 𝒈 satisfying

𝜅(𝒈, 𝑁) ≥ 𝑐(𝑑)𝑁1/𝑑

for a positive but weaker 𝑐(𝑑) as compared to Proposition 1.61. To this end, consider
an algebraic number field 𝐹 of degree 𝑑+1, and let 1, 𝛿1, . . . , 𝛿𝑑 be algebraic integers
forming a basis of 𝐹. Let 𝛿 (1)

𝑗
, . . . , 𝛿

(𝑑)
𝑗

be the conjugates of 𝛿 𝑗 for all 𝑗 ∈ [𝑑].
For 𝑁 ∈ N, let 𝑔 𝑗 = 𝑔 𝑗 (𝑁) be the nearest integer to 𝛿 𝑗𝑁 (in case there are two

integers with this property, one is free to choose either of them). Then by Dirichlet’s
theorem (see, e.g., [20, p. 23]), for any 𝑀 ∈ N there exists an 𝑁 ∈ [𝑀] such that

max
𝑗∈[𝑑]

����𝛿 𝑗 − 𝑔 𝑗 (𝑁)
𝑁

���� ≤ 1
𝑁 𝑀1/𝑑 .

1.8 Further Quality Criteria for Lattice Rules 49

Let now 𝒉 = (ℎ1, . . . , ℎ𝑑) ∈ Z𝑑 \{0} be such that ℎ1𝑔1+· · ·+ℎ𝑑𝑔𝑑 ≡ 0 (mod 𝑁).
For 𝑗 ∈ [𝑑] define

𝑥 𝑗 = ℎ1𝛿
(𝑗)
1 + · · · + ℎ𝑑𝛿 (𝑗)𝑑 − ℎ1𝑔1 + · · · + ℎ𝑑𝑔𝑑

𝑁
,

and
𝑥𝑑+1 = ℎ1𝛿1 + · · · + ℎ𝑑𝛿𝑑 −

ℎ1𝑔1 + · · · + ℎ𝑑𝑔𝑑
𝑁

.

Then we have

|𝑥𝑑+1 | =
���ℎ1𝛿1 + · · · + ℎ𝑑𝛿𝑑 − ℎ1

𝑔1
𝑁

− · · · − ℎ𝑑
𝑔𝑑

𝑁

���
≤

𝑑∑︁
𝑗=1

|ℎ 𝑗 |
���𝛿 𝑗 − 𝑔 𝑗

𝑁

��� ≤ ∥𝒉∥1

𝑁 𝑀1/𝑑 ,

and for 𝑗 ∈ [𝑑] we have

|𝑥 𝑗 | ≤ |𝑥 𝑗 − 𝑥𝑑+1 | + |𝑥𝑑+1 |

≤
𝑑∑︁
𝑖=1

|ℎ𝑖 | |𝛿 (𝑗)𝑖 − 𝛿𝑖 | +
∥𝒉∥1

𝑁 𝑀1/𝑑

≤ ∥𝒉∥1

(
max
𝑖∈[𝑑]

|𝛿 (𝑗)
𝑖

− 𝛿𝑖 | +
1

𝑁 𝑀1/𝑑

)
.

By the definition of the 𝑥 𝑗 , the product 𝑥1 · · · 𝑥𝑑+1 is a nonzero integer, and therefore

1 ≤ |𝑥1 · · · 𝑥𝑑+1 | ≤
∥𝒉∥𝑑+1

1
𝑁 𝑀1/𝑑

𝑑∏
𝑗=1

(
max
𝑖∈[𝑑]

|𝛿 (𝑗)
𝑖

− 𝛿𝑖 | +
1

𝑁 𝑀1/𝑑

)
.

Let 𝛽 =
∏𝑑
𝑗=1

(
max𝑖∈[𝑑] |𝛿 (𝑗)𝑖 − 𝛿𝑖 | + 1

)
. Then

∥𝒉∥1 ≥ 𝑁1/(𝑑+1)𝑀1/(𝑑 (𝑑+1))

𝛽1/(𝑑+1) ,

and therefore for 𝒈(𝑁) = (𝑔1 (𝑁), . . . , 𝑔𝑑 (𝑁)) we have

𝜅(𝒈(𝑁), 𝑁) ≥ 𝑁1/(𝑑+1)𝑀1/(𝑑 (𝑑+1))

𝛽1/(𝑑+1) . (1.43)

Using the fact that 𝑁 ∈ [𝑀], (1.43) implies that

𝜅(𝒈(𝑁), 𝑁) ≥ 𝑁1/𝑑

𝛽1/(𝑑+1) .

We summarize the obtained result in the following proposition.

50 1 Introduction

Proposition 1.62 With the notation from above, there are infinitely many 𝑁 ∈ N
such that

𝜅(𝒈(𝑁), 𝑁) ≥ 𝑁1/𝑑

𝛽1/(𝑑+1) .

Example 1.63 If we take, for example, 𝛿 𝑗 = 2 𝑗/(𝑑+1) for 𝑗 ∈ [𝑑], then

max
𝑖∈[𝑑]

|𝛿 (𝑗)
𝑖

− 𝛿𝑖 | ≤ 4

for all 𝑗 ∈ [𝑑], i.e., 𝛽 ≤ 5𝑑 . Hence

𝜅(𝒈(𝑁), 𝑁) ≥ 𝑁1/𝑑

5
for infinitely many 𝑁 ∈ N.

Note that for given 𝑁 the generating vectors 𝒈 = 𝒈(𝑁) can be computed easily.
However, we still need to find suitable values of 𝑁 . To this end, we can use Inequality
(1.43), which is useful to obtain an upper bound on the number of points needed to
increase the enhanced trigonometric degree by one.

Assume that for some 𝑁∗ > 1 we have found a generating vector 𝒈∗ = 𝒈(𝑁∗) with
enhanced trigonometric degree 𝜅∗ = 𝜅(𝒈∗, 𝑁∗) such that 𝜅(𝒈(𝑁), 𝑁) < 𝜅∗ for all
1 ≤ 𝑁 < 𝑁∗. Then, from (1.43), we know that there exists an 𝑁 with 𝑁∗ < 𝑁 ≤ 𝑀∗

and a vector 𝒈(𝑁) with enhanced trigonometric degree 𝜅(𝒈(𝑁), 𝑁) = 𝜅∗ + 1, where

𝑀∗ =

⌊(
𝛽(𝜅∗)𝑑+1

𝑁∗ + 1

)𝑑⌋
+ 1.

Thus 𝑀∗ − 𝑁∗ is the size of the maximal gap towards the next increase of the
enhanced trigonometric degree. In particular, this shows that there exists a sequence
of integers 𝑁1, 𝑁2, . . . with 1 ≤ 𝑁1 < 𝑁2 < 𝑁3 < · · · such that

𝜅(𝒈(𝑁1), 𝑁1) < 𝜅(𝒈(𝑁2), 𝑁2) < 𝜅(𝒈(𝑁3), 𝑁3) < · · · ,

and

𝜅(𝒈(𝑁𝑘), 𝑁𝑘) ≥
𝑁

1/𝑑
𝑘

𝛽1/(𝑑+1) for 𝑘 ∈ N.

The spectral test

The spectral test is a quantity to assess the coarseness of integration lattices L in R𝑑 .

Definition 1.64 The spectral test of an integration lattice L is defined as

𝜎(L) :=
1

min{∥𝒉∥2 : 𝒉 ∈ L⊥ \ {0}} ,

1.8 Further Quality Criteria for Lattice Rules 51

where ∥ · ∥2 denotes the ℓ2-norm in R𝑑 . If L is a rank-1 lattice with lattice point set
P(𝒈, 𝑁), then we will write 𝜎(𝒈, 𝑁) instead of 𝜎(L).

The spectral test has the following geometric interpretation: 𝜎(L) is the maxi-
mal distance between two adjacent hyperplanes, taken over all families of parallel
hyperplanes that cover the lattice L.

The following theorem states a general lower bound on the spectral test of lattice
point sets.

Theorem 1.65 Let P(L) be an 𝑁-element lattice point set in [0, 1)𝑑 . Then we have

𝜎(L) ≥
√
𝜋

2

(
Γ

(
𝑑

2
+ 1

))−1/𝑑 1
𝑁1/𝑑 ,

where Γ denotes the Gamma function Γ(𝑥) :=
∫ ∞
0 𝑡𝑥−1e−𝑡 d𝑡 for 𝑥 > 0.

Proof The proof is almost the same as the proof of Theorem 1.59. Let L be the
integration lattice yielding the 𝑁-element lattice point set and let L⊥ be the cor-
responding dual lattice. According to Theorem 1.4 we have det(L⊥) = 𝑁 . Now
consider the centered ℓ2-ball

𝐶𝑑𝑟 = {𝒙 ∈ R𝑑 : 𝑥2
1 + · · · + 𝑥2

𝑑 ≤ 𝑟2}

of radius 𝑟 > 0. Then 𝐶𝑑𝑟 is symmetric with respect to the origin and the volume of
𝐶𝑑𝑟 is

𝜆𝑑 (𝐶𝑑𝑟) = 𝑟𝑑
𝜋𝑑/2

Γ(𝑑/2 + 1) .

Consequently, by Minkowski’s fundamental theorem (see Theorem 1.60) applied to
L⊥, we have that if

𝑟𝑑
𝜋𝑑/2

Γ(𝑑/2 + 1) ≥ 2𝑑 det(L⊥) = 2𝑑𝑁,

i.e., if 𝑟 ≥ (2/
√
𝜋) (Γ(𝑑/2 + 1))1/𝑑𝑁1/𝑑 =: �̃� (𝑑, 𝑁), then 𝐶𝑑𝑟 contains a nonzero

point of L⊥. In other words, L⊥ contains a nonzero lattice point which belongs to
𝐶𝑑
�̃� (𝑑,𝑁) , and therefore we have (𝜎(L))−1 ≤ �̃� (𝑑, 𝑁). Taking the reciprocal values

we obtain the desired result. □

The order of magnitude 𝑁−1/𝑑 is best possible for the spectral test of integration
lattices in dimension 𝑑. This order can even be attained by using rank-1 lattice point
sets.

Proposition 1.66 For every dimension 𝑑 there exists a positive number𝐶𝑑 depending
only on 𝑑 with the following property. For every prime number 𝑁 there exists a lattice
point 𝒈 ∈ {0, 1, . . . , 𝑁 − 1}𝑑 such that

𝜎(𝒈, 𝑁) ≤ 𝐶𝑑

𝑁1/𝑑 .

52 1 Introduction

Proof The result can be shown by the same methods that we already used in the
proof of Proposition 1.61 with the ℓ1-norm replaced by the ℓ2-norm. Likewise, one
may use Proposition 1.61 directly together with the fact that the ℓ2- and the ℓ1-norm
in R𝑑 are equivalent. □

Lattices with a low value of the spectral test can be shown to have good isotropic
discrepancy. Such point sets may be employed for the numerical integration of
functions over the sphere S2 in R3. We will discuss this issue further in Section 5.6.

Notes and Remarks

More detailed introductions to Monte Carlo methods can be found in the books
by Lemieux [178] and by Müller-Gronbach, Novak, and Ritter [189]. An extensive
treatment of applications of MC to problems in finance is given in the book [78]
by Glasserman. QMC in the context of finance, in particular techniques to value
European and Asian options, are discussed in the paper [177] by L’Ecuyer. See
also the survey article [173] by Larcher and Leobacher and the references therein.
Thorough surveys of the application of QMC methods in computer graphics can be
found in [132, 133] by Keller.

The Halton sequence was first introduced by Halton in [92]. The currently best
estimates for the discrepancy of the Halton sequence are based on the method of
Atanassov from [5]. For further information see [74, Section 4.2]. The concept of
(𝑡, 𝑚, 𝑠)-nets and digital nets was introduced by Niederreiter in [197]; extensive
surveys can be found in [199, Chapter 4] and [180, Chapter 5], and in the book [52].

The method of good lattice points, a special instance of lattice rules, was intro-
duced by Korobov [138] in 1959 and a few years later independently by Hlawka [113].
The Soviet school quickly developed a quite satisfactory theory of the method of
good lattice points (see, e.g., Bakhvalov [6]), which is summarized in the book of
Korobov [140] from 1963. Further expository texts on early results are the book
[115] by Hua and Wang and the survey articles by Zaremba [268] and Niederre-
iter [195] (with an update in [198]). During the 1980s lattice rules became a booming
field of research with many exciting results and applications. These developments
are very well summarized in two seminal books by Sloan and Joe [230] and by
Niederreiter [199], respectively.

Further details on copy rules can be found in [61] and [230]. The papers [122,
124], and again the book [230], contain further remarks, results, and numerical
experiments related to embedded lattice rules. We remark that, though sometimes
using slightly different techniques, the question of how to extend the number of
points of lattice rules has been addressed in numerous papers from theoretical and
practical viewpoints, see, for example, [27, 58, 103, 104, 105, 159, 201]. We will
return to this issue in Chapter 6.

1.8 Further Quality Criteria for Lattice Rules 53

The study of numerical integration in reproducing kernel Hilbert spaces of func-
tions goes back to Hickernell in [98, 99] and to Sloan and Woźniakowski in [239].
General information on reproducing kernel Hilbert spaces can be found in [4] by
Aronszajn.

A comprehensive introduction to uniform distribution theory (modulo one), which
lays the basis for QMC integration, is given in the book [155] by Kuipers and Nieder-
reiter. Roth’s paper [222], where the fundamental lower bound on 𝐿2-discrepancy
is shown, can nowadays be seen as the starting point of modern discrepancy theory.
Detailed information on this fascinating topic, including the proof of Roth’s result,
can be found in the books by Beck and Chen [12], by Drmota and Tichy [66], by
Kuipers and Niederreiter [155], and by Matoušek [188]. A concise proof of Roth’s
lower bound (1.20) by means of Haar function analysis can be found in [41]. Books
presenting constructions of low-discrepancy point sets are [52, 180, 199]. Survey ar-
ticles about the connection between discrepancy and quasi-Monte Carlo integration
are, for example, [53, 195].

The classical reference for Information-Based Complexity is the book [251] by
Traub, Wasilkowski, and Woźniakowski. On a rather informal level is the collection
[208] containing five essays on the complexity of continuous problems. For a com-
prehensive survey of tractability theory we refer to the trilogy [210, 211, 212] by
Novak and Woźniakowski. A survey of the complexity of numerical integration is
[207] by Novak, and another survey, at a very introductory level, regarding the curse
of dimensionality is [206].

The result (1.34) in Example 1.45 is only an existence result. Until now no
explicit constructions of 𝑁-element point sets P in [0, 1)𝑑 for which𝐷∗

𝑁
(P) satisfies

(1.34) are known. A first constructive approach was given by Doerr, Gnewuch, and
Srivastav [64], which was further improved by Doerr and Gnewuch [62], Doerr,
Gnewuch, and Wahlström [65], and Gnewuch, Wahlström, and Winzen [83]. There,
a deterministic algorithm is presented that constructs point setsP in [0, 1)𝑑 satisfying

𝐷∗
𝑁 (P) ≪

√︂
𝑑

𝑁

√︁
log(𝑁 + 1)

in a runtime of O(𝑑 log(𝑑 𝑁) (𝜎𝑁)𝑑) operations, where

𝜎 = 𝜎(𝑑) = O((log 𝑑)2/(𝑑 log log 𝑑)) → 0

as 𝑑 tends to infinity, and where the implied constants in the O-notation are inde-
pendent of 𝑑 and 𝑁 . However, this is by far too expensive to obtain point sets for
high-dimensional applications. A slight improvement on the runtime is presented in
[63], but this improvement has to be paid for by a worse dependence on the dimension
of the bound on the star-discrepancy.

Detailed information on classical figures of merit for lattice rules can be found in
the books by Niederreiter [199] and Sloan and Joe [230]. The Zaremba index 𝜌 for
rank-2 lattices is studied in [51]. For a bound on the worst-case error for numerical
integration in function spaces of dominating mixed smoothness on the unit cube with

54 1 Introduction

homogeneous boundary condition in terms of the Zaremba index see [57]. Details on
the enhanced degree of lattice rules are given in the survey article [185] by Lyness.
The construction of lattice point sets with large enhanced trigonometric degree
preceding Proposition 1.62 is taken from [49]. In this paper, also a close relation
between the enhanced trigonometric degree of lattice rules and the integration error
for infinitely smooth periodic integrands is established (see [49, Lemma 1]). Further
information on the spectral test can be found in [97] by Hellekalek, and in [123] by
Joe and Sloan. An overview of quality and construction criteria for lattice rules can
also be found in [32].

Fibonacci lattice point sets are well studied in the literature and have excellent
properties with respect to various aspects. See, for example, [15, 16, 19, 110, 154,
248].

Chapter 2
Integration of Smooth Periodic Functions

We have already seen in Section 1.4 that lattice rules are perfectly configured for
the numerical integration of smooth functions that are one-periodic in each variable.
Nowadays it is most convenient to examine lattice rules in the context of reproducing
kernel Hilbert spaces of smooth and one-periodic functions and to analyze their
worst-case errors in this setting. In this chapter we will introduce Korobov spaces,
which can be seen as some of the most classical examples of function classes to
which lattice rules for numerical integration have been applied.

As the name indicates, Korobov spaces go back to theory developed by Korobov
in the 1960s, and since the late 1990s it is common to study these spaces in their
weighted version, where the term “weighted” refers to a way of reflecting possibly
different influence of single variables or groups of variables on the integration
problem. We shall outline both the unweighted and the weighted setting here.

2.1 Korobov Spaces

Korobov spaces are sometimes also referred to as periodic Sobolev spaces of dom-
inating mixed smoothness in the literature. However, we will use the former name
here, as this is the most commonly used in the context of lattice rules.

For the introduction of Korobov spaces, let us first consider the univariate case.

The univariate case

The Korobov space we are now going to define depends on a real parameter 𝛼 > 1/2,
which is related to the decay of the Fourier coefficients of the functions in the space
and is therefore often referred to as the smoothness parameter.

We define the Hilbert spaceHkor,𝛼 of absolutely integrable functions over the unit
interval [0, 1] that consists of all one-periodic functions 𝑓 with absolutely convergent
Fourier series

55© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_2&domain=pdf

56 2 Integration of Smooth Periodic Functions

𝑓 (𝑥) =
∑︁
ℎ∈Z

�̂� (ℎ) e2𝜋iℎ𝑥

with Fourier coefficients

�̂� (ℎ) =
∫ 1

0
𝑓 (𝑥) e−2𝜋iℎ𝑥 d𝑥

and with finite norm ∥ 𝑓 ∥kor,𝛼 = ⟨ 𝑓 , 𝑓 ⟩1/2
kor,𝛼, where the inner product is defined by

⟨ 𝑓 , 𝑔⟩kor,𝛼 :=
∑︁
ℎ∈Z

𝑟2𝛼 (ℎ) �̂� (ℎ)�̂�(ℎ),

with
𝑟𝜏 (ℎ) :=

{
1 if ℎ = 0,
|ℎ|𝜏 if ℎ ≠ 0

for real 𝜏 > 0. Note that in accordance with the definition of 𝑟1 in Section 1.4 we
can also write 𝑟𝜏 (ℎ) := max(1, |ℎ|𝜏).
Definition 2.1 The Hilbert space Hkor,𝛼 of Fourier series on [0, 1] given by

Hkor,𝛼 :=

{
𝑓 : 𝑓 (𝑥) =

∑︁
ℎ∈Z

�̂� (ℎ) e2𝜋iℎ𝑥 for 𝑥 ∈ [0, 1], and ∥ 𝑓 ∥kor,𝛼 < ∞
}

is called the (univariate) Korobov space of smoothness 𝛼.

We now show that Hkor,𝛼 is indeed a reproducing kernel Hilbert space, with
kernel

𝐾kor,𝛼 (𝑥, 𝑦) =
∑︁
ℎ∈Z

1
𝑟2𝛼 (ℎ)

e2𝜋iℎ (𝑥−𝑦) for 𝑥, 𝑦 ∈ [0, 1]. (2.1)

First, note that, due to 𝛼 > 1/2, the series in (2.1) is absolutely convergent, so
𝐾kor,𝛼 (·, 𝑦) is absolutely integrable and

𝐾kor,𝛼 (·, 𝑦) (ℎ) =
∫ 1

0
𝐾𝛼 (𝑥, 𝑦) e−2𝜋iℎ𝑥 d𝑥

=
∑︁
𝑘∈Z

1
𝑟2𝛼 (ℎ)

e−2𝜋i𝑘𝑦
∫ 1

0
e2𝜋i(𝑘−ℎ)𝑥 d𝑥

=
1

𝑟2𝛼 (ℎ)
e−2𝜋iℎ𝑦 .

Thus

∥𝐾kor,𝛼 (·, 𝑦)∥2
𝛼 = ⟨𝐾kor,𝛼 (·, 𝑦), 𝐾kor,𝛼 (·, 𝑦)⟩kor,𝛼

=
∑︁
ℎ∈Z

𝑟2𝛼 (ℎ)
1

𝑟2
2𝛼 (ℎ)

= 1 + 2𝜁 (2𝛼).

2.1 Korobov Spaces 57

For 𝛼 > 1/2 we have 𝜁 (2𝛼) < ∞, and therefore we obtain 𝐾kor,𝛼 (·, 𝑦) ∈ H𝛼.
Furthermore, for every 𝑦 ∈ [0, 1], we have

⟨ 𝑓 , 𝐾kor,𝛼 (·, 𝑦)⟩kor,𝛼 =
∑︁
ℎ∈Z

𝑟2𝛼 (ℎ) �̂� (ℎ)
e2𝜋iℎ𝑦

𝑟2𝛼 (ℎ)
= 𝑓 (𝑦),

which shows that also the reproducing property of 𝐾kor,𝛼 is satisfied. Hence, in sum-
mary, 𝐾kor,𝛼 is indeed the reproducing kernel of Hkor,𝛼, i.e., Hkor,𝛼 = H(𝐾kor,𝛼).

Note that 𝐾kor,𝛼 is actually real-valued since 𝑟2𝛼 (ℎ) = 𝑟2𝛼 (−ℎ) for ℎ ∈ Z \ {0}
and so

𝐾kor,𝛼 (𝑥, 𝑦) = 1 +
∞∑︁
ℎ=1

1
𝑟2𝛼 (ℎ)

(
e2𝜋iℎ (𝑥−𝑦) + e−2𝜋iℎ (𝑥−𝑦)

)
= 1 + 2

∞∑︁
ℎ=1

1
ℎ2𝛼 cos(2𝜋ℎ(𝑥 − 𝑦)) ∈ R. (2.2)

If 𝛼 ≥ 1 is an integer, then it is directly related to the number of existing square
integrable derivatives of 𝑓 . This justifies, once again, why we refer to 𝛼 as the
smoothness parameter.

Proposition 2.2 If 𝛼 ∈ N, then Hkor,𝛼 consists of all one-periodic functions whose
derivatives up to order 𝛼 − 1 are absolutely continuous, and whose 𝛼-th derivative
belongs to 𝐿2 ([0, 1]). In particular, for 𝑓 ∈ Hkor,𝛼, we have

∥ 𝑓 ∥2
kor,𝛼 =

(∫ 1

0
𝑓 (𝑡) d𝑡

)2

+ 1
(2𝜋)2𝛼

∫ 1

0
(𝑓 (𝛼) (𝑡))2 d𝑡. (2.3)

Proof For 𝑓 ∈ Hkor,𝛼 we have

∥ 𝑓 ∥2
kor,𝛼 =

∑︁
ℎ∈Z

𝑟2𝛼 (ℎ) | �̂� (ℎ) |2 = | �̂� (0) |2 +
∑︁

ℎ∈Z\{0}
|ℎ|2𝛼 | �̂� (ℎ) |2 < ∞.

On the other hand, we know that

𝑓 (𝑥) =
∑︁
ℎ∈Z

�̂� (ℎ) e2𝜋iℎ𝑥 .

Now, for 𝑘 ∈ {1, 2, . . . , 𝛼}, we have

𝑓 (𝑘) (𝑥) = (2𝜋i)𝑘
∑︁

ℎ∈Z\{0}
ℎ𝑘 �̂� (ℎ) e2𝜋iℎ𝑥 .

If 𝑘 ≤ 𝛼 − 1, then, using first the triangle inequality and then the Cauchy–Schwarz
inequality, we obtain

| 𝑓 (𝑘) (𝑥) | ≤ (2𝜋)𝑘
∑︁

ℎ∈Z\{0}
| �̂� (ℎ) | (𝑟2𝛼 (ℎ))1/2 |ℎ|𝑘 (𝑟2𝛼 (ℎ))−1/2

58 2 Integration of Smooth Periodic Functions

≤ (2𝜋)𝑘 ©«
∑︁

ℎ∈Z\{0}
| �̂� (ℎ) |2𝑟2𝛼 (ℎ)ª®¬

1/2 ©«
∑︁

ℎ∈Z\{0}
|ℎ|2𝑘 (𝑟2𝛼 (ℎ))−1ª®¬

1/2

≤ (2𝜋)𝑘 ∥ 𝑓 ∥kor,𝛼 (2 𝜁 (2(𝛼 − 𝑘)))1/2 < ∞.

Therefore the series in the representation of 𝑓 (𝑘) (𝑥) is pointwise convergent if
𝑘 ≤ 𝛼 − 1. For 𝑘 = 𝛼 we have∫ 1

0
| 𝑓 (𝛼) (𝑥) |2 d𝑥 = (2𝜋)2𝛼

∑︁
ℎ∈Z\{0}

ℎ2𝛼 | �̂� (ℎ) |2 ≤ ∥ 𝑓 ∥2
kor,𝛼 .

As a consequence we have ∫ 1

0
| 𝑓 (𝛼) (𝑥) |2 d𝑥 < ∞,

and hence 𝑓 (𝛼) ∈ 𝐿2 ([0, 1]).
We have

| 𝑓 (𝑘) (𝑥) − 𝑓 (𝑘) (𝑦) | ≤ (2𝜋)𝑘
∑︁

ℎ∈Z\{0}
|ℎ𝑘 | · | �̂� (ℎ) | · |e2𝜋iℎ𝑥 − e2𝜋iℎ𝑦 |

= (2𝜋)𝑘
∑︁

ℎ∈Z\{0}
|ℎ𝑘 | · | �̂� (ℎ) | · |2 sin(𝜋ℎ(𝑥 − 𝑦)) |

≤ (2𝜋)𝑘
∑︁

ℎ∈Z\{0}
|ℎ𝑘 | · | �̂� (ℎ) | · |2𝜋ℎ(𝑥 − 𝑦) |

≤ (2𝜋)𝑘+1 |𝑥 − 𝑦 |
∑︁

ℎ∈Z\{0}
|ℎ|𝑘+1 · | �̂� (ℎ) |.

If 𝑘 < 𝛼−1, then one can see in the same way as above that the last series converges.
Thus, for 𝑘 < 𝛼 − 1 the derivatives 𝑓 (𝑘) are Lipschitz continuous and therefore
absolutely continuous.

Now we consider the case 𝑘 = 𝛼 − 1. For 𝑥 ∈ [0, 1] we have by Carleson’s
theorem, which implies that the Fourier series of 𝑓 (𝛼) converges pointwise almost
everywhere, and the dominated convergence theorem that∫ 𝑥

0
𝑓 (𝛼) (𝑡) d𝑡 = (2𝜋i)𝛼

∑︁
ℎ∈Z\{0}

ℎ𝛼 �̂� (ℎ)
∫ 𝑥

0
e2𝜋iℎ𝑡 d𝑡

= (2𝜋i)𝛼−1
∑︁

ℎ∈Z\{0}
ℎ𝛼−1 �̂� (ℎ) (e2𝜋iℎ𝑥 − 1)

= 𝑓 (𝛼−1) (𝑥) − 𝑓 (𝛼−1) (0).

This implies

𝑓 (𝛼−1) (𝑥) = 𝑓 (𝛼−1) (0) +
∫ 𝑥

0
𝑓 (𝛼) (𝑡) d𝑡,

2.1 Korobov Spaces 59

and therefore 𝑓 (𝛼−1) is absolutely continuous as well.
It remains to be shown that (2.3) holds. Since 𝑓 (𝛼) ∈ 𝐿2 ([0, 1]), we obtain by

applying integration by parts 𝛼 times, and using the one-periodicity of 𝑓 , that

�̂� (ℎ) = 1
(2𝜋iℎ)𝛼 𝑓 (𝛼) (ℎ) for ℎ ≠ 0.

We obtain

∥ 𝑓 ∥2
kor,𝛼 =

∞∑︁
ℎ=−∞

𝑟2𝛼 (ℎ) | �̂� (ℎ) |2

= | �̂� (0) |2 +
∑︁

ℎ∈Z\{0}
|ℎ|2𝛼 · | �̂� (ℎ) |2

=

(∫ 1

0
𝑓 (𝑡) d𝑡

)2

+ 1
(2𝜋)2𝛼

∑︁
ℎ∈Z\{0}

| 𝑓 (𝛼) (ℎ) |2

=

(∫ 1

0
𝑓 (𝑡) d𝑡

)2

+ 1
(2𝜋)2𝛼

∫ 1

0
(𝑓 (𝛼) (𝑡))2 d𝑡,

where in the last step we used Parseval’s identity and the fact that 𝑓 (𝛼) (0) = 0 due
to the periodicity of 𝑓 and its derivatives. □

The multivariate case

Now we turn to the 𝑑-variate case, where 𝑑 ∈ N. In the following, we write, for
𝒉 = (ℎ1, . . . , ℎ𝑑) ∈ Z𝑑 and 𝜏 > 0,

𝑟𝜏 (𝒉) :=
𝑑∏
𝑗=1
𝑟𝜏 (ℎ 𝑗).

For 𝛼 > 1/2 we define the Hilbert space Hkor,𝑑,𝛼 as the space of all one-
periodic functions 𝑓 with absolutely convergent Fourier series as in (1.9), with
Fourier coefficients as in (1.10), and with finite norm ∥ 𝑓 ∥kor,𝑑,𝛼 = ⟨ 𝑓 , 𝑓 ⟩1/2

kor,𝑑,𝛼,
where the inner product is given by

⟨ 𝑓 , 𝑔⟩kor,𝑑,𝛼 :=
∑︁
𝒉∈Z𝑑

𝑟2𝛼 (𝒉) �̂� (𝒉)�̂�(𝒉).

Definition 2.3 The Hilbert space Hkor,𝑑,𝛼 given by

Hkor,𝑑,𝛼 =

{
𝑓 : 𝑓 (𝒙) =

∑︁
𝒉∈Z𝑑

�̂� (𝒉) e2𝜋i𝒉 ·𝒙 for 𝒙 ∈ [0, 1]𝑑 , and ∥ 𝑓 ∥kor,𝑑,𝛼 < ∞
}

60 2 Integration of Smooth Periodic Functions

is called the Korobov space of smoothness 𝛼.

Again Hkor,𝑑,𝛼 is a reproducing kernel Hilbert space, with the kernel given by

𝐾kor,𝑑,𝛼 (𝒙, 𝒚) =
𝑑∏
𝑗=1

©«
∑︁
ℎ 𝑗 ∈Z

e2𝜋iℎ 𝑗 (𝑥 𝑗−𝑦 𝑗)

𝑟2𝛼 (ℎ 𝑗)
ª®¬

=
∑︁
𝒉∈Z𝑑

𝑑∏
𝑗=1

e2𝜋iℎ 𝑗 (𝑥 𝑗−𝑦 𝑗)

𝑟2𝛼 (ℎ 𝑗)

=
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼 (𝒉)

e2𝜋i𝒉 · (𝒙−𝒚) , (2.4)

where 𝒙 = (𝑥1, . . . , 𝑥𝑑) and 𝒚 = (𝑦1, . . . , 𝑦𝑑), both in [0, 1]𝑑 . The reproducing
property of 𝐾kor,𝑑,𝛼 can be shown analogously to the univariate case by using (2.4).

Note that Hkor,𝑑,𝛼 is the 𝑑-fold tensor product of 𝑑 instances of the univariate
space Hkor,𝛼, i.e.,

Hkor,𝑑,𝛼 := Hkor,𝛼 ⊗ · · · ⊗ Hkor,𝛼︸ ︷︷ ︸
𝑑-fold

= span
𝒙 ↦→

𝑑∏
𝑗=1

𝑓 𝑗 (𝑥 𝑗) : 𝑓 𝑗 ∈ Hkor,𝛼

,
where the closure is taken with respect to the norm induced by the inner product.
Furthermore, the kernel of Hkor,𝑑,𝛼 is the 𝑑-fold product of the kernel of Hkor,𝛼, i.e.,

𝐾kor,𝑑,𝛼 (𝒙, 𝒚) =
𝑑∏
𝑗=1

𝐾kor,𝛼 (𝑥 𝑗 , 𝑦 𝑗).

In order to study the smoothness of functions from Hkor,𝑑,𝛼 it is convenient to
introduce the following operators which are in essence as in [210, Appendix A.1].
For 𝛼 ∈ N and ∅ ≠ 𝔲 ⊆ [𝑑] define the differential operator

𝐷𝔲,𝛼 𝑓 :=
𝜕𝛼 |𝔲 |∏
𝑗∈𝔲 𝜕𝑥

𝛼
𝑗

𝑓 ,

and for 𝔲 = ∅ set 𝐷 ∅,𝛼 𝑓 := 𝑓 . Furthermore, for ∅ ≠ 𝔲 ⊆ [𝑑] we need the integration
operator 𝐼𝔲 , given by

(𝐼𝔲 𝑓) (𝒙) :=
∫
[0,1] |𝔲 |

𝑓 (𝒙) d𝒙𝔲 for 𝒙 ∈ [0, 1]𝑑 .

Note that integration in 𝐼𝔲 is with respect to those variables whose indices belong to
𝔲, while the variables with indices not in 𝔲 remain intact. For 𝔲 = ∅ put 𝐼∅ 𝑓 := 𝑓 .
Next, define an operator 𝑉𝔲,𝛼, where(

𝑉𝔲,𝛼 𝑓
)
(𝒙) :=

(
𝐼 [𝑑]\𝔲𝐷𝔲,𝛼 𝑓

)
(𝒙) for 𝒙 ∈ [0, 1]𝑑 . (2.5)

2.1 Korobov Spaces 61

With this definition we have(
𝑉∅,𝛼 𝑓

)
(𝒙) =

∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 and
(
𝑉[𝑑],𝛼 𝑓

)
(𝒙) = 𝑓 (𝛼,𝛼,...,𝛼) (𝒙).

Now we can show how the Korobov space norm involves the mixed partial derivatives
of 𝑓 .

Proposition 2.4 If 𝛼 ∈ N, then for 𝑓 ∈ Hkor,𝑑,𝛼 we have

∥ 𝑓 ∥2
kor,𝑑,𝛼 =

∑︁
𝔲⊆[𝑑]

1
(2𝜋)2𝛼 |𝔲 |

∫
[0,1]𝑑

|
(
𝑉𝔲,𝛼 𝑓

)
(𝒙) |2 d𝒙.

Proof We use the Fourier series expansion

𝑓 (𝒙) =
∑︁
𝒉∈Z𝑑

�̂� (𝒉) e2𝜋i𝒉 ·𝒙

and obtain (
𝐷𝔲,𝛼 𝑓

)
(𝒙) =

∑︁
𝒉∈Z𝑑

�̂� (𝒉) (2𝜋i)𝛼 |𝔲 |
(∏
𝑗∈𝔲

ℎ𝛼𝑗

)
e2𝜋i𝒉 ·𝒙.

If a component ℎ 𝑗 is zero for some 𝑗 ∈ 𝔲, the corresponding term in the sum above
vanishes. Hence it suffices to sum only over those terms 𝒉 for which 𝔲 ⊆ 𝔲(𝒉),
where for 𝒉 ∈ Z𝑑 we put

𝔲(𝒉) := { 𝑗 ∈ [𝑑] : ℎ 𝑗 ≠ 0}.

The previous expression for 𝐷𝔲,𝛼 𝑓 becomes

(
𝐷𝔲,𝛼 𝑓

)
(𝒙) =

∑︁
𝒉∈Z𝑑
𝔲⊆𝔲 (𝒉)

�̂� (𝒉) (2𝜋i)𝛼 |𝔲 |
(∏
𝑗∈𝔲

ℎ𝛼𝑗

)
e2𝜋i𝒉 ·𝒙.

Next, we apply the operator 𝑉𝔲,𝛼 to 𝑓 . We have

(
𝑉𝔲,𝛼 𝑓

)
(𝒙) =

∑︁
𝒉∈Z𝑑
𝔲⊆𝔲 (𝒉)

�̂� (𝒉) (2𝜋i)𝛼 |𝔲 |
(∏
𝑗∈𝔲

ℎ𝛼𝑗

) ∫
[0,1]𝑑−|𝔲 |

e2𝜋i𝒉 ·𝒙 d𝒙 [𝑑]\𝔲

=
∑︁
𝒉∈Z𝑑
𝔲⊆𝔲 (𝒉)
ℎ 𝑗=0 ∀ 𝑗∉𝔲

�̂� (𝒉) (2𝜋i)𝛼 |𝔲 |
(∏
𝑗∈𝔲

ℎ𝛼𝑗

)
e2𝜋i

∑
𝑗∈𝔲 ℎ 𝑗 𝑥 𝑗

=
∑︁
𝒉∈Z𝔲

�̂� (𝒉) (2𝜋i)𝛼 |𝔲 |
(∏
𝑗∈𝔲

ℎ𝛼𝑗

)
e2𝜋i

∑
𝑗∈𝔲 ℎ 𝑗 𝑥 𝑗 ,

62 2 Integration of Smooth Periodic Functions

where Z𝔲 := {𝒉 ∈ Z𝑑 : 𝔲(𝒉) = 𝔲}. This implies∫
[0,1]𝑑

|
(
𝑉𝔲,𝛼 𝑓

)
(𝒙) |2 d𝒙 =

∫
[0,1]𝑑

(
𝑉𝔲,𝛼 𝑓

)
(𝒙)

(
𝑉𝔲,𝛼 𝑓

)
(𝒙) d𝒙

= (2𝜋)2𝛼 |𝔲 |
∑︁
𝒉∈Z𝔲

| �̂� (𝒉) |2
∏
𝑗∈𝔲

ℎ2𝛼
𝑗 .

Now we have

∥ 𝑓 ∥2
kor,𝑑,𝛼 =

∑︁
𝒉∈Z𝑑

©«
∏
𝑗∈𝔲 (𝒉)

|ℎ 𝑗 |2𝛼ª®¬ | �̂� (𝒉) |2
=

∑︁
𝔲⊆[𝑑]

∑︁
𝒉∈Z𝔲

(∏
𝑗∈𝔲

|ℎ 𝑗 |2𝛼
)
| �̂� (𝒉) |2

=
∑︁

𝔲⊆[𝑑]

1
(2𝜋)2𝛼 |𝔲 |

∫
[0,1]𝑑

|
(
𝑉𝔲,𝛼 𝑓

)
(𝒙) |2 d𝒙,

as desired. □

Remark 2.5 Note that in the univariate case the formula for the norm in Proposi-
tion 2.4 coincides with Formula (2.3) in Proposition 2.2. As a further example we
highlight the bivariate case 𝑑 = 2, where we obtain

∥ 𝑓 ∥2
kor,2,𝛼 =

����∫ 1

0

∫ 1

0
𝑓 (𝑥1, 𝑥2) d𝑥1 d𝑥2

����2
+ 1
(2𝜋)2𝛼

∫ 1

0

����∫ 1

0

𝜕𝛼 𝑓 (𝑥1, 𝑥2)
𝜕𝑥𝛼1

d𝑥2

����2 d𝑥1

+ 1
(2𝜋)2𝛼

∫ 1

0

����∫ 1

0

𝜕𝛼 𝑓 (𝑥1, 𝑥2)
𝜕𝑥𝛼2

d𝑥1

����2 d𝑥2

+ 1
(2𝜋)4𝛼

∫ 1

0

∫ 1

0

����𝜕2𝛼 𝑓 (𝑥1, 𝑥2)
𝜕𝑥𝛼1 𝜕𝑥

𝛼
2

����2 d𝑥1 d𝑥2.

2.2 Integration in Korobov Spaces

Let us now study integration in Hkor,𝑑,𝛼 for 𝛼 > 1/2 by means of lattice rules. The
following formula for the worst-case error is fundamental.

Theorem 2.6 Let L be an integration lattice with det(L⊥) = 𝑁 . The worst-case
error of the corresponding lattice rule based on the lattice point set P(L) in the
Korobov space Hkor,𝑑,𝛼,𝜸 with 𝛼 > 1/2 is given by

2.2 Integration in Korobov Spaces 63

[err𝑁,𝑑 (Hkor,𝑑,𝛼,P(L))]2 =
∑︁

𝒉∈L⊥\{0}

1
𝑟2𝛼 (𝒉)

. (2.6)

Remark 2.7 Note that the squared worst-case error in (2.6) is exactly the quantity
𝑃2𝛼 in Definition 1.14.

Proof The proof of this theorem is based on Theorem 1.27. Since 𝛼 > 1/2 we have

𝐾kor,𝑑,𝛼 (𝒚, 𝒚) = (1 + 2𝜁 (2𝛼))𝑑 < ∞.

Hence Condition (1.17) is satisfied and we can apply the formula for the squared
worst-case error in Theorem 1.27. We have

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾kor,𝑑,𝛼 (𝒙, 𝒚) d𝒙 d𝒚 =
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼 (𝒉)

∫
[0,1]𝑑

∫
[0,1]𝑑

e2𝜋i𝒉 · (𝒙−𝒚) d𝒙 d𝒚

=
1

𝑟2𝛼 (0)
= 1.

In the same way one can show that, for any fixed 𝒙𝑘 ∈ [0, 1)𝑑 ,∫
[0,1]𝑑

𝐾kor,𝑑,𝛼 (𝒙𝑘 , 𝒚) d𝒚 = 1.

For an arbitrary 𝑁-element point set P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in [0, 1)𝑑 we now
obtain from Theorem 1.27 that

[err𝑁,𝑑 (Hkor,𝑑,𝛼,P)]2 = − 1 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

∑︁
𝒉∈Z𝑑

1
𝑟2𝛼 (𝒉)

e2𝜋i𝒉 · (𝒙𝑘−𝒙ℓ)

=
∑︁

𝒉∈Z𝑑\{0}

1
𝑟2𝛼 (𝒉)

����� 1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘

�����2 . (2.7)

Let now P = P(L). Then the above formula combined with Lemma 1.9 yields

[err𝑁,𝑑 (Hkor,𝑑,𝛼,P(L))]2 =
∑︁

𝒉∈L⊥\{0}

1
𝑟2𝛼 (𝒉)

. □

From Theorem 2.6 we deduce a result for the special case where the integration
lattice is a rank-1 lattice. For a rank-1 lattice with generating vector 𝒈 ∈ Z𝑑 , we will
in the following frequently write err𝑁,𝑑,𝛼 (𝒈) instead of err𝑁,𝑑 (Hkor,𝑑,𝛼,P(𝒈, 𝑁)),
i.e.,

err𝑁,𝑑,𝛼 (𝒈) := err𝑁,𝑑 (Hkor,𝑑,𝛼,P(𝒈, 𝑁)).

Applying (1.7) to Formula (2.6) in Theorem 2.6 gives the following corollary.

64 2 Integration of Smooth Periodic Functions

Corollary 2.8 For any 𝑁-point rank-1 lattice rule with generating vector 𝒈 ∈ Z𝑑 we
have

[err𝑁,𝑑,𝛼 (𝒈)]2 =
∑︁

𝒉∈Z𝑑\{0}
𝒉 ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼 (𝒉)

.

Remark 2.9 For 𝛼 ∈ N the Bernoulli polynomial 𝐵2𝛼 of degree 2𝛼 has the Fourier
expansion

𝐵2𝛼 (𝑥) =
(−1)𝛼+1 (2𝛼)!

(2𝜋)2𝛼

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑥

|ℎ|2𝛼
for all 𝑥 ∈ [0, 1). (2.8)

Using Corollary 2.8 we therefore obtain for any generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑)
in Z𝑑 ,

[err𝑁,𝑑,𝛼 (𝒈)]2 = −1 +
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼 (𝒉)

1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i(𝒉 ·𝒈)/𝑁 𝑘

= −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

𝑑∏
𝑗=1

(∑︁
ℎ∈Z

1
𝑟2𝛼 (ℎ)

e2𝜋i{𝑘𝑔 𝑗/𝑁} ℎ
)

= −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

𝑑∏
𝑗=1

(
1 + (−1)𝛼+1 (2𝜋)2𝛼

(2𝛼)! 𝐵2𝛼

({
𝑘𝑔 𝑗

𝑁

}))
,

such that [err𝑁,𝑑,𝛼 (𝒈)]2 can be computed in O(𝑑 𝑁) operations.

2.3 Error Bounds for the Unweighted Case

In this section we provide lower and upper bounds on the worst-case error of inte-
gration in the Korobov space Hkor,𝑑,𝛼.

Lower bounds

According to (2.7) the squared worst-case error of a QMC rule based on an arbitrary
𝑁-element point set P in [0, 1)𝑑 can be written as

[err𝑁,𝑑 (Hkor,𝑑,𝛼,P)]2 =
∑︁

𝒉∈Z𝑑\{0}

1
𝑟2𝛼 (𝒉)

����� 1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘

�����2 .
For general linear rules 𝐴𝑁,𝑑 as defined in Remark 1.28, this formula can easily be
generalized to

2.3 Error Bounds for the Unweighted Case 65

[err𝑁,𝑑 (Hkor,𝑑,𝛼,P, 𝒘)]2 = |1 − 𝛽 |2 +
∑︁

𝒉∈Z𝑑\{0}

1
𝑟2𝛼 (𝒉)

�����𝑁−1∑︁
𝑘=0

𝑤𝑘e2𝜋i𝒉 ·𝒙𝑘

�����2 , (2.9)

where 𝛽 :=
∑𝑁−1
𝑘=0 𝑤𝑘 .

We now present a general lower bound on the worst-case error of linear rules 𝐴𝑁,𝑑
for numerical integration in the Korobov space, which is due to Bakhvalov [6, 9].

Theorem 2.10 For every 𝑑 ∈ N and every 𝛼 > 1/2 there exists a positive quantity
𝐶 (𝑑, 𝛼) with the following property. For every 𝑁 ∈ N, every 𝑁-element point set P
in [0, 1)𝑑 , and every choice of integration weights 𝒘 ∈ C𝑁 we have

err𝑁,𝑑 (Hkor,𝑑,𝛼,P, 𝒘) ≥ 𝐶 (𝑑, 𝛼)
(log 𝑁) (𝑑−1)/2

𝑁𝛼
.

Proof The principle idea of the proof is to use the formula (2.9) and to obtain a
suitable lower bound on the terms 1/𝑟2𝛼 (𝒉). This will be done by cleverly choosing
a sequence of functions 𝑓𝒎 for 𝒎 ∈ N𝑑0 and by bounding 1/𝑟2𝛼 (𝒉) by the 𝒉-th
Fourier coefficients of some of the 𝑓𝒎. The choice of the functions 𝑓𝒎 will depend
on the smoothness parameter 𝛼.

Indeed, we choose a function 𝑓 : R→ R as an infinitely many times differentiable
function such that 𝑓 (𝑥) > 0 for 𝑥 ∈ (0, 1) and 𝑓 (𝑟) (𝑥) = 0 for 𝑥 ∈ R \ (0, 1) for all 𝑟
with 0 ≤ 𝑟 ≤ 𝑏 := ⌈𝛼⌉ + 1, namely

𝑓 (𝑥) =
{
𝑥𝑏+1 (1 − 𝑥)𝑏+1 for 𝑥 ∈ (0, 1),
0 otherwise. (2.10)

For 𝑚 ∈ N0 let 𝑓𝑚 (𝑥) = 𝑓 (2𝑚+2𝑥), and for 𝒎 = (𝑚1, . . . , 𝑚𝑑) ∈ N𝑑0 define

𝑓𝒎 (𝒙) =
𝑑∏
𝑗=1

𝑓𝑚 𝑗
(𝑥 𝑗),

where 𝒙 = (𝑥1, . . . , 𝑥𝑑). We obtain

�̂�𝒎 (0) =
𝑑∏
𝑗=1

∫ 1

0
𝑓 (2𝑚 𝑗+2𝑥) d𝑥 =

𝑑∏
𝑗=1

1
2𝑚 𝑗+2

∫ 1

0
𝑓 (𝑦) d𝑦 =

1
2∥𝒎 ∥1+2𝑑 (𝐼 (𝑓))𝑑 ,

where 𝐼 (𝑓) =
∫ 1
0 𝑓 (𝑦) d𝑦. As we chose 𝑓 according to (2.10) we obtain

𝐼 (𝑓) = 𝐵(𝑏 + 2, 𝑏 + 2) = ((𝑏 + 1)!)2

(2𝑏 + 3)! ,

with 𝐵 denoting the beta function.
Let 𝑡 ∈ N0 be such that

2𝑁 ≤ 2𝑡 < 4𝑁,

66 2 Integration of Smooth Periodic Functions

let

𝐹 (𝒚) =
𝑁−1∑︁
𝑘=0

𝑤𝑘 𝑓𝒎 (𝒙𝑘 − 𝒚),

and let
𝐵𝒎 =

{
𝒚 ∈ [0, 1]𝑑 : 𝐹 (𝒚) = 0

}
.

Note that the support of 𝑓𝒎 (𝒙𝑘 − 𝒚) as a function of 𝒚 is contained in the interval∏𝑑
𝑗=1 (𝑥𝑘, 𝑗 − 2−𝑚 𝑗−2, 𝑥𝑘, 𝑗), where 𝑥𝑘, 𝑗 is the 𝑗-th component of 𝒙𝑘 , and hence the

support of 𝐹 is contained in
⋃𝑁−1
𝑘=0

∏𝑑
𝑗=1 (𝑥𝑘, 𝑗 − 2−𝑚 𝑗−2, 𝑥𝑘, 𝑗). Therefore the volume

of the support of 𝐹 is at most 𝑁2−∥𝒎 ∥1 . Thus for all 𝒎 such that ∥𝒎∥1 = 𝑡 we have

𝜆𝑑 (𝐵𝒎) ≥ 1 − 𝑁

2∥𝒎 ∥1
= 1 − 𝑁

2𝑡
>

1
4
.

For the linear rule 𝐴𝑁,𝑑 (𝑓) =
∑𝑁−1
𝑘=0 𝑤𝑘 𝑓 (𝒙𝑘) based on P and 𝒘 we have

𝐴𝑁,𝑑 (𝑓𝒎 (· − 𝒚)) − �̂�𝒎 (0)𝛽 =
∑︁

𝒉∈Z𝑑\{0}

(
�̂�𝒎 (𝒉)

𝑁−1∑︁
𝑘=0

𝑤𝑘e2𝜋i𝒉 ·𝒙𝑘

)
e−2𝜋i𝒉 ·𝒚 ,

where we recall that 𝛽 =
∑𝑁−1
𝑘=0 𝑤𝑘 , and for 𝒚 ∈ 𝐵𝒎 we have

𝐴𝑁,𝑑 (𝑓𝒎 (· − 𝒚)) = 𝐹 (𝒚) = 0.

Therefore,

𝜆𝑑 (𝐵𝒎) | �̂�𝒎 (0) |2 |𝛽 |2 =

∫
𝐵𝒎

|𝐴𝑁,𝑑 (𝑓𝒎 (· − 𝒚)) − �̂�𝒎 (0)𝛽 |2 d𝒚

≤
∫
[0,1]𝑑

|𝐴𝑁,𝑑 (𝑓𝒎 (· − 𝒚)) − �̂�𝒎 (0)𝛽 |2 d𝒚

=
∑︁

𝒉∈Z𝑑\{0}
| �̂�𝒎 (𝒉) |2

�����𝑁−1∑︁
𝑘=0

𝑤𝑘e2𝜋i𝒉 ·𝒙𝑘

�����2 ,
where in the last step we used Parseval’s identity.

We have

�̂�𝑚 (ℎ) =
∫ 1

0
𝑓 (2𝑚+2𝑥) e−2𝜋iℎ𝑥 d𝑥

=
1

2𝑚+2

∫ 1

0
𝑓 (𝑦) e−2𝜋iℎ2−𝑚−2𝑦 d𝑦

=
1

2𝑚+2 �̂�

(
ℎ

2𝑚+2

)
.

2.3 Error Bounds for the Unweighted Case 67

Since 𝑓 is infinitely many times differentiable, integration by parts shows that for
any 𝑚 ∈ N0 we have

| �̂�𝑚 (ℎ) | =
1

2𝑚+2

���� �̂� (
ℎ

2𝑚+2

)���� ≤ 𝐶𝑏 1
2𝑚+2 min

(
1,

2𝑏 (𝑚+2)

ℎ𝑏

)
,

where the factor 𝐶𝑏 > 0 depends only on 𝑏 and 𝑓 . Then, for 𝒎 with ∥𝒎∥1 = 𝑡, we
have

| �̂�𝒎 (𝒉) | ≤ 𝐶 (𝑏, 𝑑)
𝑑∏
𝑗=1

1
2𝑚 𝑗

min
(
1,

2𝑏𝑚 𝑗

𝑟𝑏 (ℎ 𝑗)

)
= 𝐶 (𝑏, 𝑑)2(𝛼−1)𝑡

𝑑∏
𝑗=1

1
2𝛼𝑚 𝑗

min
(
1,

2𝑏𝑚 𝑗

𝑟𝑏 (ℎ 𝑗)

)
,

with 𝐶 (𝑏, 𝑑) := 22(𝑏−1)𝐶𝑑
𝑏

. Taking the square and summing over all choices of 𝒎
with ∥𝒎∥1 = 𝑡 on both sides of the latter inequality, we obtain∑︁

𝒎∈N𝑑
0

∥𝒎 ∥1=𝑡

| �̂�𝒎 (𝒉) |2 ≤ 22(𝛼−1)𝑡 (𝐶 (𝑏, 𝑑))2
∑︁

𝒎∈N𝑑
0

∥𝒎 ∥1=𝑡

𝑑∏
𝑗=1

1
22𝛼𝑚 𝑗

min
(
1,

22𝑏𝑚 𝑗

𝑟2𝑏 (ℎ 𝑗)

)

≤ 22(𝛼−1)𝑡 (𝐶 (𝑏, 𝑑))2
𝑑∏
𝑗=1

(∞∑︁
𝑚=0

1
22𝛼𝑚 min

(
1,

22𝑏𝑚

𝑟2𝑏 (ℎ 𝑗)

))
.

The sum in the latter expression can now be bounded by

∞∑︁
𝑚=0

1
22𝛼𝑚 min

(
1,

22𝑏𝑚

𝑟2𝑏 (ℎ 𝑗)

)
=

∑︁
0≤𝑚≤(log2 𝑟2𝑏 (ℎ 𝑗))/(2𝑏)

22(𝑏−𝛼)𝑚

𝑟2𝑏 (ℎ 𝑗)
+

∑︁
𝑚> (log2 𝑟2𝑏 (ℎ 𝑗))/(2𝑏)

1
22𝛼𝑚

≤
𝑟2(𝑏−𝛼) (ℎ 𝑗)22(𝑏−𝛼) − 1

22(𝑏−𝛼) − 1
1

𝑟2𝑏 (ℎ 𝑗)
+ 22𝛼

22𝛼 − 1
1

𝑟2𝛼 (ℎ 𝑗)

≤ 1
𝑟2𝛼 (ℎ 𝑗)

(
1 + 22𝛼

22𝛼 − 1

)
≤ 3
𝑟2𝛼 (ℎ 𝑗)

.

Thus, with 𝐶1 (𝑏, 𝑑) := (3𝑑 (𝐶 (𝑏, 𝑑))2)−1 we have

𝐶1 (𝑏, 𝑑)
1

22(𝛼−1)𝑡

∑︁
𝒎∈N𝑑

0
∥𝒎 ∥1=𝑡

| �̂�𝒎 (𝒉) |2 ≤ 1
𝑟2𝛼 (𝒉)

.

68 2 Integration of Smooth Periodic Functions

Using the formula (2.9) for the worst-case error of the algorithm 𝐴𝑁,𝑑 we obtain

[err𝑁,𝑑 (Hkor,𝑑,𝛼,P, 𝒘)]2 = |1 − 𝛽 |2 +
∑︁

𝒉∈Z𝑑\{0}

1
𝑟2𝛼 (𝒉)

�����𝑁−1∑︁
𝑘=0

𝑤𝑘e2𝜋i𝒉 ·𝒙𝑘

�����2
≥ |1 − 𝛽 |2 + 𝐶1 (𝑏, 𝑑)

1
22(𝛼−1)𝑡

∑︁
𝒎∈N𝑑

0
∥𝒎 ∥1=𝑡

∑︁
𝒉∈Z𝑑\{0}

| �̂�𝒎 (𝒉) |2
�����𝑁−1∑︁
𝑘=0

𝑤𝑘e2𝜋i𝒉 ·𝒙𝑘

�����2

≥ |1 − 𝛽 |2 + 𝐶1 (𝑏, 𝑑)
1

22(𝛼−1)𝑡

∑︁
𝒎∈N𝑑

0
∥𝒎 ∥1=𝑡

𝜆𝑑 (𝐵𝒎) | �̂�𝒎 (0) |2 |𝛽 |2

≥ |1 − 𝛽 |2 + 𝐶2 (𝑏, 𝑑) |𝛽 |2
22𝑡

𝑁2𝛼

∑︁
𝒎∈N𝑑

0
∥𝒎 ∥1=𝑡

(𝐼 (𝑓))2𝑑

22𝑡+4𝑑

≥ |1 − 𝛽 |2 + 𝐶3 (𝑏, 𝑑) |𝛽 |2
1
𝑁2𝛼

(
𝑡 + 𝑑 − 1
𝑑 − 1

)
,

with suitably chosen positive quantities 𝐶2 (𝑏, 𝑑) and 𝐶3 (𝑏, 𝑑). Since(
𝑡 + 𝑑 − 1
𝑑 − 1

)
≥ (𝑡 + 1)𝑑−1

(𝑑 − 1)! ,

and since 𝑡 ≥ log2 𝑁 , we can therefore find a 𝐶4 (𝑏, 𝑑) > 0 such that

[err𝑁,𝑑 (Hkor,𝑑,𝛼,P, 𝒘)]2 ≥ |1 − 𝛽 |2 + 𝐶4 (𝑏, 𝑑) |𝛽 |2
(log 𝑁)𝑑−1

𝑁2𝛼 .

We set 𝐴 = 𝐶4 (𝑏, 𝑑) (log 𝑁)𝑑−1/𝑁2𝛼. Then the lower bound in the previous inequal-
ity can be written as |1− 𝛽 |2 + 𝐴|𝛽 |2, and by minimizing the latter term with respect
to 𝛽 shows that it is bounded below by 𝐴/(1 + 𝐴). Consequently,

[err𝑁,𝑑 (Hkor,𝑑,𝛼,P, 𝒘)]2 ≥ |1 − 𝛽 |2 + 𝐴|𝛽 |2 ≥ 𝐴

1 + 𝐴 ≥ 𝐶5 (𝑏, 𝑑)
(log 𝑁)𝑑−1

𝑁2𝛼 ,

with a positive quantity𝐶5 (𝑏, 𝑑) depending only on 𝑏 and 𝑑. This implies the desired
result. □

Upper bounds

We now study lattice rules for integration in the Korobov space Hkor,𝑑,𝛼, whose
worst-case error satisfies in some sense optimal upper bounds when compared to
Bakhvalov’s lower bound in Theorem 2.10. It suffices to restrict our attention to the
rank-1 lattice rule case here.

2.3 Error Bounds for the Unweighted Case 69

We first show a result which relates the quantity 𝑅(𝒈, 𝑁), as defined in (1.35), to
the worst-case error of a lattice rule in the Korobov space Hkor,𝑑,𝛼.

Theorem 2.11 Let 𝛼 > 1/2 and let 𝑁 > 1 be an integer. Then for all 𝒈 ∈ Z𝑑 we
have that

[err𝑁,𝑑,𝛼 (𝒈)]2 ≤ (1 + 2𝜁 (2𝛼))𝑑
(

1
𝑁2𝛼 + (𝑅(𝒈, 𝑁))2𝛼

)
.

Proof From Corollary 2.8 we have

[err𝑁,𝑑,𝛼 (𝒈)]2 =
∑︁

𝒉∈Z𝑑\{0}
𝒉 ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼 (𝒉)

=: Σ1 + Σ2,

where Σ1 is the sum over all 𝒉 ∈ Z𝑑 \ {0} which are a multiple of 𝑁 , i.e., 𝒉 = 𝑁𝒌
with 𝒌 ∈ Z𝑑 \ {0}. In this case we obviously have 𝒉 · 𝒈 ≡ 0 (mod 𝑁). In Σ2 we sum
over the remaining 𝒉 in Z𝑑 \ {0} satisfying 𝒉 · 𝒈 ≡ 0 (mod 𝑁).

For 𝒉 = 𝑁𝒌 with 𝒌 ∈ Z𝑑 \ {0} we have

1
𝑟2𝛼 (𝒉)

=
1

𝑟2𝛼 (𝑁𝒌) ≤ 1
𝑁2𝛼

1
𝑟2𝛼 (𝒌)

,

and hence we obtain

Σ1 ≤ 1
𝑁2𝛼

∑︁
𝒌∈Z𝑑

1
𝑟2𝛼 (𝒌)

=
1
𝑁2𝛼

(∑︁
𝑘∈Z

1
𝑟2𝛼 (𝑘)

)𝑑
=

1
𝑁2𝛼 (1 + 2𝜁 (2𝛼))𝑑 .

Each of the remaining 𝒉 occurring in Σ2 can be uniquely represented in the form

𝒉 = 𝒉∗ + 𝑁𝒌,

where 𝒌 ∈ Z𝑑 and 𝒉∗ = (ℎ∗1, . . . , ℎ
∗
𝑑
) ∈ 𝐶∗

𝑑
(𝑁) with 𝒉∗ · 𝒈 ≡ 0 (mod 𝑁), and where

𝐶∗
𝑑
(𝑁) is defined at the beginning of Section 1.8. Thus,

Σ2 =
∑︁
𝒌∈Z𝑑

∑︁
𝒉∗∈𝐶∗

𝑑
(𝑁)

𝒉∗ ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼 (𝒉∗ + 𝑁𝒌) .

Next, we show that
𝑟1 (𝒉∗ + 𝑁𝒌) ≥ 𝑟1 (𝒉∗)𝑟1 (𝒌) (2.11)

for 𝒉∗ and 𝒌 as above. To this end it suffices to show that

max(1, |ℎ∗𝑗 + 𝑁𝑘 𝑗 |) ≥ max(1, |ℎ∗𝑗 |) max(1, |𝑘 𝑗 |) (2.12)

holds true for all 𝑗 ∈ [𝑑]. If ℎ∗
𝑗
= 0 or 𝑘 𝑗 = 0, then (2.12) is obviously satisfied. If

ℎ∗
𝑗
≠ 0 and 𝑘 𝑗 ≠ 0, then

70 2 Integration of Smooth Periodic Functions

|ℎ∗𝑗 + 𝑁𝑘 𝑗 | ≥ 𝑁 |𝑘 𝑗 | − |ℎ∗𝑗 | ≥ 𝑁 |𝑘 𝑗 | −
𝑁

2
=
𝑁

2
(2|𝑘 𝑗 | − 1) ≥ |ℎ∗𝑗 | · |𝑘 𝑗 |,

and (2.12) follows as well, which implies that (2.11) is shown.
From (2.11) we obtain

𝑟2𝛼 (𝒉∗ + 𝑁𝒌) = (𝑟1 (𝒉∗ + 𝑁𝒌))2𝛼 ≥ (𝑟1 (𝒉∗))2𝛼 (𝑟1 (𝒌))2𝛼 .

Using this estimate we find that

Σ2 ≤
∑︁
𝒌∈Z𝑑

1
(𝑟1 (𝒌))2𝛼

∑︁
𝒉∗∈𝐶∗

𝑑
(𝑁)

𝒉∗ ·𝒈≡0 (mod 𝑁)

1
(𝑟1 (𝒉∗))2𝛼

= (1 + 2𝜁 (2𝛼))𝑑
∑︁

𝒉∗∈𝐶∗
𝑑
(𝑁)

𝒉∗ ·𝒈≡0 (mod 𝑁)

1
(𝑟1 (𝒉∗))2𝛼

≤ (1 + 2𝜁 (2𝛼))𝑑 (𝑅(𝒈, 𝑁))2𝛼 .

The result now follows by adding the estimates for Σ1 and Σ2. □

Remark 2.12 We have already pointed out that the quantity 𝑅(𝒈, 𝑁) does not depend
on the smoothness parameter𝛼. Hence, if we can construct, for given integer 𝑁 > 1, a
generating vector (or, using a different term, a lattice point) 𝒈 ∈ Z𝑑 with reasonably
small 𝑅(𝒈, 𝑁), then the worst-case error of the lattice rule based on P(𝒈, 𝑁) is
small, simultaneously for all smoothness parameters 𝛼 > 1/2. This is an important
feature especially in practice, when one might not know the actual smoothness of an
integrand 𝑓 .

It remains to show the existence of lattice rules with a small value of 𝑅, which
will be done by means of an averaging argument in the following lemma. In this
lemma, and also in the following, we shall write

𝐺𝑑 (𝑁) := {0, 1, . . . , 𝑁 − 1}𝑑

for 𝑑 and 𝑁 ∈ N.

Lemma 2.13 Let 𝑁 be a prime number. Then,

1
𝑁𝑑

∑︁
𝒈∈𝐺𝑑 (𝑁)

𝑅(𝒈, 𝑁) ≤ 2𝑑
(log 𝑁 + 1)𝑑

𝑁
. (2.13)

In particular, there exists at least one 𝒈 ∈ 𝐺𝑑 (𝑁) such that

𝑅(𝒈, 𝑁) ≤ 2𝑑
(log 𝑁 + 1)𝑑

𝑁
.

Proof Averaging the values of 𝑅(𝒈, 𝑁) over all 𝒈 ∈ 𝐺𝑑 (𝑁) we obtain

2.3 Error Bounds for the Unweighted Case 71

1
𝑁𝑑

∑︁
𝒈∈𝐺𝑑 (𝑁)

𝑅(𝒈, 𝑁) = 1
𝑁𝑑

∑︁
𝒈∈𝐺𝑑 (𝑁)

∑︁
𝒉∈𝐶∗

𝑑
(𝑁)

𝒉 ·𝒈≡0 (mod 𝑁)

1
𝑟1 (𝒉)

=
∑︁

𝒉∈𝐶∗
𝑑
(𝑁)

1
𝑟1 (𝒉)

1
𝑁𝑑

∑︁
𝒈∈𝐺𝑑 (𝑁)

𝒉 ·𝒈≡0 (mod 𝑁)

1,

where we just changed the order of summation. The inner sum in the latter expression
counts the number of elements 𝒈 ∈ 𝐺𝑑 (𝑁) such that 𝒉 · 𝒈 ≡ 0 (mod 𝑁). Let
𝒉 = (ℎ1, . . . , ℎ𝑑) ∈ Z𝑑 \ {0}, so there exists an index 𝑗 ∈ [𝑑] such that ℎ 𝑗 ≠ 0.
Assume first that ℎ1 ≠ 0. Then, for arbitrary 𝑔2, . . . , 𝑔𝑑 ∈ 𝐺1 (𝑁), the condition
𝒉 · 𝒈 ≡ 0 (mod 𝑁) is equivalent to

ℎ1𝑔1 ≡ −(ℎ2𝑔2 + · · · + ℎ𝑑𝑔𝑑) (mod 𝑁).

Since 𝑁 is a prime number, there exists exactly one 𝑔1 ∈ 𝐺1 (𝑁) satisfying this
congruence. However, for choosing 𝑔2, . . . , 𝑔𝑑 we have 𝑁𝑑−1 possibilities altogether.
Thus we have

|{𝒈 ∈ 𝐺𝑑 (𝑁) : 𝒉 · 𝒈 ≡ 0 (mod 𝑁)}| = 𝑁𝑑−1

in the case where ℎ1 ≠ 0.
The same argument applies if ℎ 𝑗 ≠ 0 for any other 𝑗 ∈ [𝑑]. So,

1
𝑁𝑑

∑︁
𝒈∈𝐺𝑑 (𝑁)

𝒉 ·𝒈≡0 (mod 𝑁)

1 =
𝑁𝑑−1

𝑁𝑑
=

1
𝑁
.

This implies

1
𝑁𝑑

∑︁
𝒈∈𝐺𝑑 (𝑁)

𝑅(𝒈, 𝑁) = 1
𝑁

∑︁
𝒉∈𝐶∗

𝑑
(𝑁)

1
𝑟1 (𝒉)

=
1
𝑁

(
−1 + (1 + 𝑆𝑁)𝑑

)
, (2.14)

where we put

𝑆𝑁 :=
∑︁

ℎ∈𝐶∗
1 (𝑁)

1
|ℎ| . (2.15)

Using a straightforward estimate for the initial segment of the harmonic series we
have

𝑆𝑁 ≤ 2
⌊𝑁/2⌋∑︁
ℎ=1

1
ℎ
≤ 2

(
1 +

∫ 𝑁/2

1

d𝑡
𝑡

)
= 2(log 𝑁 + 1 − log 2). (2.16)

Hence

1
𝑁𝑑

∑︁
𝒈∈𝐺𝑑 (𝑁)

𝑅(𝒈, 𝑁) ≤ 1
𝑁

(1 + 2(log 𝑁 + 1 − log 2))𝑑 ≤ 2𝑑
(log 𝑁 + 1)𝑑

𝑁
,

72 2 Integration of Smooth Periodic Functions

which shows (2.13). Since there always exists at least one element 𝒈 ∈ 𝐺𝑑 (𝑁) that
is at least as good as average, also the existence result follows. □

Remark 2.14 To obtain the existence result in Lemma 2.13 we used the principle
that for any set of real numbers 𝑎0, 𝑎1, . . . , 𝑎𝑁−1 ≥ 0 we have that there exists an
𝑎𝑘∗ , 𝑘∗ ∈ {0, 1, . . . , 𝑁 − 1}, which is at least as small as the average, i.e.

𝑎𝑘∗ ≤
1
𝑁

𝑁−1∑︁
𝑘=0

𝑎𝑘 .

To obtain a more general result, we could also proceed in the following way. Let
𝜆 ∈ (0, 1]. Then again there exists an 𝑎𝜆

𝑘∗ , 𝑘
∗ ∈ {0, 1, . . . , 𝑁 −1} (which may depend

on 𝜆), that is at least as small as the average of 𝑎𝜆0 , 𝑎
𝜆
1 , . . . , 𝑎

𝜆
𝑁−1, i.e.,

𝑎𝜆𝑘∗ ≤
1
𝑁

𝑁−1∑︁
𝑘=0

𝑎𝜆𝑘 or, equivalently, 𝑎𝑘∗ ≤
1

𝑁1/𝜆

(
𝑁−1∑︁
𝑘=0

𝑎𝜆𝑘

)1/𝜆

.

In particular,

min
0≤𝑘<𝑁

𝑎𝑘 ≤ inf
0<𝜆≤1

1
𝑁1/𝜆

(
𝑁−1∑︁
𝑘=0

𝑎𝜆𝑘

)1/𝜆

.

These observations are sometimes referred to as the standard averaging argument
in this book.

Lemma 2.13 is only an existence result. In its proof we computed the average of
𝑅 over all lattice points in the set 𝐺𝑑 (𝑁) which is a finite set of cardinality 𝑁𝑑 . The
effective search for good generating vectors 𝒈 with respect to 𝑅 will be discussed in
Section 3.6 (see Theorem 3.15).

Combining Theorem 2.11 with Lemma 2.13, we obtain the following result.

Theorem 2.15 Let 𝑑 ∈ N and let 𝑁 be a prime number. Then there exists a lattice
point 𝒈 ∈ 𝐺𝑑 (𝑁) such that

err𝑁,𝑑,𝛼 (𝒈) ≤
1
𝑁𝛼

(1 + 2𝜁 (2𝛼))𝑑/2
(
1 + (2(log 𝑁 + 1))2𝛼𝑑

)1/2

simultaneously for all 𝛼 > 1/2.

Theorem 2.15 shows the existence of rank-1 lattice rules for which the convergence
rate of the worst-case error in the Korobov space Hkor,𝑑,𝛼 is of order

O𝑑,𝛼
(
(log 𝑁)𝛼𝑑

𝑁𝛼

)
,

where by O𝑑,𝛼 we indicate that the implied factors may depend on 𝑑 and 𝛼. Note
that this bound reflects the smoothness 𝛼 of the problem. Higher smoothness 𝛼 leads
to improved convergence rates of the worst-case integration error. Furthermore, in

2.3 Error Bounds for the Unweighted Case 73

comparison to Bakhvalov’s lower bound in Theorem 2.10, this convergence rate
is—up to logarithmic factors—best possible. However, it remains open how long
we have to wait to observe this almost optimal asymptotic rate, especially when the
dimension 𝑑 is large. In practical applications 𝑑 can be huge, e.g., in the hundreds
or thousands for problems in mathematical finance or uncertainty quantification.
The dependence of the worst-case error on the dimension 𝑑 is the subject of a large
number of papers and books dealing with the concept of tractability. Naturally, we
would like to see that numerical integration in the Korobov space is tractable in
some form as introduced in Section 1.7. This, however, is not possible, at least for
the unweighted case that is considered in the present section. For technical reasons
we show this negative result only for QMC rules here. The general case is treated in
the book [211] by Novak and Woźniakowski.

The curse of dimensionality

We will show that if we are only allowed to use QMC rules, then the integration
problem in the unweighted Korobov space Hkor,𝑑,𝛼 suffers from the curse of dimen-
sionality. To this end, we define a slightly modified reproducing kernel Hilbert space
H̃𝑑,𝛼 of one-periodic functions with absolutely convergent Fourier series by means
of a function �̃�𝜏 : Z→ R, with

�̃�𝜏 (ℎ) :=

{
1 if ℎ = 0,
2𝜁 (2𝛼) |ℎ|𝜏 if ℎ ≠ 0,

for 𝜏 > 0, and we put �̃�𝜏 (𝒉) :=
∏𝑑
𝑗=1 �̃�𝜏 (ℎ 𝑗) for 𝒉 ∈ Z𝑑 . In this way, we define an

inner product in H̃𝑑,𝛼 by

⟨ 𝑓 , 𝑔⟩𝑑,𝛼,�̃� :=
∑︁
𝒉∈Z𝑑

�̃�2𝛼 (𝒉) �̂� (𝒉)�̂�(𝒉).

It can be checked analogously to what is done in Section 2.1 that H̃𝑑,𝛼 with the
corresponding norm ∥·∥𝑑,𝛼,�̃� is a reproducing kernel Hilbert space with kernel

𝐾𝑑,𝛼 (𝒙, 𝒚) =
𝑑∏
𝑗=1

©«
∑︁
ℎ 𝑗 ∈Z

e2𝜋iℎ 𝑗 (𝑥 𝑗−𝑦 𝑗)

�̃�2𝛼 (ℎ 𝑗)
ª®¬ =

∑︁
𝒉∈Z𝑑

1
�̃�2𝛼 (𝒉)

e2𝜋i𝒉 · (𝒙−𝒚) .

Since 2𝜁 (2𝛼) ≥ 1 we obtain ∥ 𝑓 ∥𝑑,𝛼,�̃� ≥ ∥ 𝑓 ∥kor,𝑑,𝛼 and hence

{ 𝑓 ∈ H̃𝑑,𝛼 : ∥ 𝑓 ∥𝑑,𝛼,�̃� ≤ 1} ⊆ { 𝑓 ∈ Hkor,𝑑,𝛼 : ∥ 𝑓 ∥kor,𝑑,𝛼 ≤ 1}.

This implies that integration in H̃𝑑,𝛼 is no harder than integration in Hkor,𝑑,𝛼, i.e.,
err𝑁,𝑑 (H̃𝑑,𝛼,P) ≤ err𝑁,𝑑 (Hkor,𝑑,𝛼,P) for any 𝑁-element point set P in [0, 1)𝑑 .
Furthermore, according to the definition of �̃�𝜏 , we have that 𝐾𝑑,𝛼 is nonnegative.

74 2 Integration of Smooth Periodic Functions

Due to the product structure of 𝐾𝑑,𝛼, it suffices to show this for the univariate case.
We have from (2.2) that

𝐾1,𝛼 (𝑥, 𝑦) = 1 + 2
2𝜁 (2𝛼)

∞∑︁
ℎ=1

1
ℎ2𝛼 cos(2𝜋iℎ(𝑥 − 𝑦)) ≥ 1 − 1

𝜁 (2𝛼)

∞∑︁
ℎ=1

1
ℎ2𝛼 = 0.

Now we bound err𝑁,𝑑 (Hkor,𝑑,𝛼,P) from below. We have

[err𝑁,𝑑 (Hkor,𝑑,𝛼,P)]2 ≥ [err𝑁,𝑑 (H̃𝑑,𝛼,P)]2 = −1 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾𝑑,𝛼 (𝒙𝑘 , 𝒙ℓ),

where we used Theorem 1.27. Since 𝐾𝑑,𝛼 is nonnegative, we can bound the latter
term from below by omitting the nondiagonal terms in the double sum. In this way
we find that

[err𝑁,𝑑 (Hkor,𝑑,𝛼,P)]2 ≥ −1 + 1
𝑁2

𝑁−1∑︁
𝑘=0

𝐾𝑑,𝛼 (𝒙𝑘 , 𝒙𝑘)

= −1 + 1
𝑁2

𝑁−1∑︁
𝑘=0

(
1 + 2𝜁 (2𝛼)

2𝜁 (2𝛼)

)𝑑
= −1 + 2𝑑

𝑁
.

Consequently,

𝑒QMC (𝑁, 𝑑) := inf
P

|err𝑁,𝑑 (Hkor,𝑑,𝛼,P)| ≥
(
max

(
0,−1 + 2𝑑

𝑁

))1/2
,

where the infimum is extended over all 𝑁-element point sets P in [0, 1)𝑑 .
According to Remark 1.41, the initial error in the unweighted Korobov space

equals one, since ∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾kor,𝑑,𝛼 (𝒙, 𝒚) d𝒙 d𝒚 = 1.

Therefore,

𝑁QMC (𝜀, 𝑑) := min{𝑁 ∈ N : 𝑒QMC (𝑁, 𝑑) ≤ 𝜀}

≥ min
{
𝑁 ∈ N : −1 + 2𝑑

𝑁
≤ 𝜀2

}
=

⌈
2𝑑

𝜀2 + 1

⌉
.

2.4 Weighted Korobov Spaces 75

This shows that the information complexity grows exponentially with the dimension
𝑑 when we consider only QMC rules. Consequently, QMC integration in the (un-
weighted) Korobov space suffers from the curse of dimensionality.

We remark that this argument can easily be extended to linear algorithms with
nonnegative integration weights 𝒘 ∈ [0,∞)𝑁 .

2.4 Weighted Korobov Spaces

The reason for the curse of dimensionality in many problems lies in the fact that for
standard spaces all variables and all groups of variables are equally important. As
a way out, Sloan and Woźniakowski [239] suggested considering weighted spaces,
in which the relative importance of variables and groups of variables is modeled
by corresponding weights. The motivation for introducing weights is that in many
practical multivariate problems it can be observed that not all variables or groups of
variables have the same influence. An extreme example is the numerical integration
of a function 𝑓 : [0, 1]𝑑 → R for 𝑑 ∈ N that is given by 𝑓 (𝑥1, . . . , 𝑥𝑑) = 𝑥1.
Quite obviously, even though the problem is nominally 𝑑-variate, it boils down
to a much simpler univariate problem. In functions occurring in applications, a
similar phenomenon, though usually to a lesser extent than in the extreme example,
can occur. This may, e.g., be caused by a function depending on a number of
cash flows, some of which lie in the (distant) future that need to be discounted
accordingly. Observations like these led Sloan and Woźniakowski to introducing
additional parameters, so-called weights, in the definition of the norm of Hilbert
spaces studied in numerical integration problems. We remark that this notion of
weights is not to be confused with the notion of integration weights 𝑤𝑘 in linear
integration rules 𝐴𝑛,𝑑 (𝑓) =

∑𝑁−1
𝑘=0 𝑤𝑘 𝑓 (𝒙𝑘).

From the strictly mathematical point of view the introduction of weights may lead
to multivariate problems in which the curse of dimensionality can be overcome, and
one can have tractability (see Section 2.6 below), provided that suitable conditions
on the weights hold. This effect also corresponds to intuition; if a problem depends
on many variables, of which only some have significant influence, it is natural to
expect that the problem will be easier to solve than one where all variables have the
same influence.

As a first example of a weighted function space let us now formally introduce the
weighted Korobov space. To this end, as outlined above, we first define additional
parameters, which we call weights. For a 𝑑-variate problem, in the most general
setting, we assign one weight 𝛾𝔲 to each possible group of variables with indices in
one of the subsets 𝔲 of [𝑑]. Indeed, let

𝜸 = {𝛾𝔲 : 𝔲 ⊆ [𝑑]}

76 2 Integration of Smooth Periodic Functions

be a set of nonnegative integers, where we use the convention that 𝛾∅ = 1. For short,
we shall also write 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] in the following.

For 𝛼 > 1/2 we define the Hilbert space Hkor,𝑑,𝛼,𝜸 as the space of all one-
periodic functions 𝑓 with absolutely convergent Fourier series as in (1.9), with
Fourier coefficients as in (1.10), and with finite norm ∥ 𝑓 ∥kor,𝑑,𝛼,𝜸 := ⟨ 𝑓 , 𝑓 ⟩1/2

kor,𝑑,𝛼,𝜸,
where the inner product is given by

⟨ 𝑓 , 𝑔⟩kor,𝑑,𝛼,𝜸 :=
∑︁
𝒉∈Z𝑑

©« 1
𝛾𝔲 (𝒉)

∏
𝑗∈𝔲 (𝒉)

|ℎ 𝑗 |2𝛼ª®¬ �̂� (𝒉)�̂�(𝒉),
where for 𝒉 ∈ Z𝑑 we put

𝔲(𝒉) := { 𝑗 ∈ [𝑑] : ℎ 𝑗 ≠ 0},

and where we define the empty product to be one if 𝒉 = 0. Using this notation, we
also write, for 𝒉 ∈ Z𝑑 and 𝜏 > 0,

𝑟𝜏,𝜸 (𝒉) :=
1

𝛾𝔲 (𝒉)

∏
𝑗∈𝔲 (𝒉)

|ℎ 𝑗 |𝜏 . (2.17)

If 𝛾𝔲 (𝒉) = 0, we formally set 𝑟𝜏,𝜸 (𝒉) := ∞. Consequently,

⟨ 𝑓 , 𝑔⟩kor,𝑑,𝛼,𝜸 =
∑︁
𝒉∈Z𝑑

𝑟2𝛼,𝜸 (𝒉) �̂� (𝒉)�̂�(𝒉), (2.18)

which is the weighted analogue of the inner product in the unweighted spaceHkor,𝑑,𝛼.
If for some 𝒉 ∈ Z𝑑 \ {0} in (2.18) we have 𝑟2𝛼,𝜸 (𝒉) = ∞, then we assume that
�̂� (𝒉) = 0 for all 𝑓 in the space, and interpret ∞ · 0 as equal to 0, so that such terms
do not contribute to the sum.

If all weights are positive, we can alternatively rearrange the sums and express
the inner product in Hkor,𝑑,𝛼,𝜸 as

⟨ 𝑓 , 𝑔⟩kor,𝑑,𝛼,𝜸 =
∑︁

𝔲⊆[𝑑]

1
𝛾𝔲

∑︁
𝒉𝔲 ∈(Z\{0}) |𝔲 |

𝑟2𝛼 (𝒉𝔲) �̂� (𝒉𝔲 , 0) �̂�(𝒉𝔲 , 0),

where, for 𝒉 ∈ Z𝑑 , (𝒉𝔲 , 0) denotes the vector (ℓ1, . . . , ℓ𝑑) with ℓ 𝑗 = ℎ 𝑗 if 𝑗 ∈ 𝔲 and
ℓ 𝑗 = 0 otherwise, for 𝑗 ∈ [𝑑].

Definition 2.16 The Hilbert space Hkor,𝑑,𝛼,𝜸 is called the weighted Korobov space
of smoothness 𝛼 with weights 𝜸.

Analogously to the unweighted case, Hkor,𝑑,𝛼,𝜸 is a reproducing kernel Hilbert
space with kernel

2.4 Weighted Korobov Spaces 77

𝐾kor,𝑑,𝛼,𝜸 (𝒙, 𝒚) =
∑︁

𝔲⊆[𝑑]
𝛾𝔲

∏
𝑗∈𝔲

©«
∑︁

ℎ 𝑗 ∈Z\{0}

e2𝜋iℎ 𝑗 (𝑥 𝑗−𝑦 𝑗)

|ℎ 𝑗 |2𝛼
ª®¬

=
∑︁
𝒉∈Z𝑑

𝛾𝔲 (𝒉)
∏
𝑗∈𝔲 (𝒉)

e2𝜋iℎ 𝑗 (𝑥 𝑗−𝑦 𝑗)

|ℎ 𝑗 |2𝛼

=
∑︁
𝒉∈Z𝑑

©«𝛾𝔲 (𝒉)
∏
𝑗∈𝔲 (𝒉)

1
|ℎ 𝑗 |2𝛼

ª®¬ e2𝜋i𝒉 · (𝒙−𝒚)

=
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

e2𝜋i𝒉 · (𝒙−𝒚) . (2.19)

The reproducing property of 𝐾kor,𝑑,𝛼,𝜸 can be shown analogously to the unweighted
case by using (2.19).

In analogy to Proposition 2.4 one can show how the weighted Korobov space
norm involves the mixed partial derivatives of 𝑓 .

Proposition 2.17 If 𝛼 ∈ N, then we have, for 𝑓 ∈ Hkor,𝑑,𝛼,𝜸,

∥ 𝑓 ∥2
kor,𝑑,𝛼,𝜸 =

∑︁
𝔲⊆[𝑑]

1
𝛾𝔲

1
(2𝜋)2𝛼 |𝔲 |

∫
[0,1]𝑑

|
(
𝑉𝔲,𝛼 𝑓

)
(𝒙) |2 d𝒙,

where 𝑉𝔲,𝛼 𝑓 is defined as in (2.5).

Example 2.18 In the univariate case with weight 𝛾, Proposition 2.4 yields

∥ 𝑓 ∥2
kor,1,𝛼,𝛾 =

(∫ 1

0
𝑓 (𝑡) d𝑡

)2

+ 1
𝛾

1
(2𝜋)2𝛼

∫ 1

0
(𝑓 (𝛼) (𝑡))2 d𝑡. (2.20)

This formula should be compared to the formula for the norm in the univariate
unweighted Korobov space given in (2.3).

Product weights

A particularly important type of weights are so-called product weights of the form

𝛾𝔲 =
∏
𝑗∈𝔲

𝛾 𝑗 for 𝔲 ⊆ [𝑑], (2.21)

where (𝛾 𝑗) 𝑗≥1 is a sequence of positive reals. For 𝔲 = ∅, we define the empty
product to be one, so 𝛾∅ = 1. We can therefore consider 𝛾 𝑗 to represent the influence
of the 𝑗-th variable in a problem like numerical integration defined on the Hilbert
space. For simplicity, we will assume that the variables are ordered according to
their influence in the case of product weights, i.e., one usually assumes that

𝛾1 ≥ 𝛾2 ≥ · · · > 0.

78 2 Integration of Smooth Periodic Functions

This assumption is justified by practical examples. If not explicitly stated otherwise,
we will tacitly assume this ordering of product weights throughout the rest of this
book. Historically, product weights were the first weights considered in the context
of weighted QMC integration, introduced by Sloan and Woźniakowski in [239]. For
the case of product weights, we slightly abuse notation, and write 𝜸 not only to
represent the set

𝜸 =

{
𝛾𝔲 =

∏
𝑗∈𝔲

𝛾 𝑗 : 𝔲 ⊆ [𝑑]
}
,

but also the sequence of the weights, i.e., we shall write 𝜸 = (𝛾 𝑗) 𝑗≥1 (this is justified
as the sequence (𝛾 𝑗) 𝑗≥1 determines the collection of the 𝛾𝔲 and vice versa).

In the case of product weights we can write, for 𝜏 > 0 and 𝒉 ∈ Z𝑑 ,

𝑟𝜏,𝜸 (𝒉) =
𝑑∏
𝑗=1
𝑟𝜏,𝛾 𝑗 (ℎ 𝑗),

where

𝑟𝜏,𝛾 𝑗 (ℎ 𝑗) :=

{
1 if ℎ 𝑗 = 0,
𝛾−1
𝑗

��ℎ 𝑗 ��𝜏 if ℎ 𝑗 ≠ 0.
(2.22)

In the following, we will frequently write, for 𝛾 > 0, Hkor,𝛼,𝛾 := Hkor,1,𝛼,𝛾
and 𝐾kor,𝛼,𝛾 := 𝐾kor,1,𝛼,𝛾 . For product weights 𝜸 = (𝛾 𝑗) 𝑗≥1 the Korobov space
Hkor,𝑑,𝛼,𝜸 is the tensor product of the spaces Hkor,𝛼,𝛾1 ,Hkor,𝛼,𝛾2 , . . . ,Hkor,𝛼,𝛾𝑑 of
univariate functions, i.e.,

Hkor,𝑑,𝛼,𝜸 = Hkor,𝛼,𝛾1 ⊗ Hkor,𝛼,𝛾2 ⊗ · · · ⊗ Hkor,𝛼,𝛾𝑑

= span
𝒙 ↦→

𝑑∏
𝑗=1

𝑓 𝑗 (𝑥 𝑗) : 𝑓 𝑗 ∈ Hkor,𝛼,𝛾 𝑗

 ,
where 𝒙 = (𝑥1, . . . , 𝑥𝑑), and where the closure is taken with respect to the norm
induced by the inner product. Furthermore,

𝐾kor,𝑑,𝛼,𝜸 (𝒙, 𝒚) =
𝑑∏
𝑗=1

𝐾kor,𝛼,𝛾 𝑗 (𝑥 𝑗 , 𝑦 𝑗),

where 𝒙 = (𝑥1, . . . , 𝑥𝑑) and 𝒚 = (𝑦1, . . . , 𝑦𝑑).

2.5 Integration in Weighted Korobov Spaces 79

2.5 Integration in Weighted Korobov Spaces

Let us now consider integration in Hkor,𝑑,𝛼,𝜸 for 𝛼 > 1/2 by means of lattice rules.
The following formula for the worst-case error is of great importance, and will be
referred to many times throughout this book, which is why we include the full proof,
though it is analogous to the proof of Theorem 2.6.

Theorem 2.19 Let L be an integration lattice with det(L⊥) = 𝑁 . Let 𝛼 > 1/2.
The worst-case error of the corresponding lattice rule based on the lattice point set
P(L) in the weighted Korobov space Hkor,𝑑,𝛼,𝜸 is given by

[err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P(L))]2 =
∑︁

𝒉∈L⊥\{0}

1
𝑟2𝛼,𝜸 (𝒉)

. (2.23)

Proof The proof of this theorem is based on Theorem 1.27. We have

𝐾kor,𝑑,𝛼,𝜸 (𝒚, 𝒚) =
∑︁

𝔲⊆[𝑑]
𝛾𝔲 (1 + 2𝜁 (2𝛼)) |𝔲 | < ∞,

because 𝛼 > 1/2. Hence Condition (1.17) is satisfied and we can apply the formula
for the worst-case error in Theorem 1.27, which yields∫

[0,1]𝑑

∫
[0,1]𝑑

𝐾kor,𝑑,𝛼,𝜸 (𝒙, 𝒚) d𝒙 d𝒚

=
∑︁
𝒉∈Z𝑑

©«𝛾𝔲 (𝒉)
∏
𝑗∈𝔲 (𝒉)

1
|ℎ 𝑗 |2𝛼

ª®¬
∫
[0,1]𝑑

∫
[0,1]𝑑

e2𝜋i𝒉 · (𝒙−𝒚) d𝒙 d𝒚

= 𝛾𝔲 (0)
∏
𝑗∈𝔲 (0)

1
|ℎ 𝑗 |2𝛼

= 1,

since 𝔲(0) = ∅. In the same way one can show that for any fixed 𝒙𝑘 ∈ [0, 1)𝑑 we
have ∫

[0,1]𝑑
𝐾kor,𝑑,𝛼,𝜸 (𝒙𝑘 , 𝒚) d𝒚 = 1.

For an arbitrary 𝑁-element point set P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in [0, 1)𝑑 we now
obtain from Theorem 1.27 and the kernel representation (2.19) that

[err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P)]2 = − 1 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

e2𝜋i𝒉 · (𝒙𝑘−𝒙ℓ)

=
∑︁

𝒉∈Z𝑑\{0}

1
𝑟2𝛼,𝜸 (𝒉)

����� 1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘

�����2 . (2.24)

80 2 Integration of Smooth Periodic Functions

Let now P = P(L). Then the above formula combined with Lemma 1.9 yields

[err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P(L))]2 =
∑︁

𝒉∈L⊥\{0}

1
𝑟2𝛼,𝜸 (𝒉)

. □

Remark 2.20 Note that in the unweighted case, i.e., 𝛾𝔲 = 1 for all 𝔲 ⊆ [𝑑], the
squared worst-case error in (2.23) coincides with the quantity 𝑃2𝛼 in Definition 1.14.

From Theorem 2.19 we deduce a result for the special case when the integration
lattice is a rank-1 lattice. In this case, for a generating vector 𝒈 ∈ Z𝑑 , we will fre-
quently write err𝑁,𝑑,𝛼,𝜸 (𝒈) instead of err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P(𝒈, 𝑁)) in the following,
i.e.,

err𝑁,𝑑,𝛼,𝜸 (𝒈) := err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P(𝒈, 𝑁)).

Applying (1.7) to Formula (2.23) in Theorem 2.19 yields the following corollary.

Corollary 2.21 For any 𝑁-point rank-1 lattice rule with generating vector 𝒈 ∈ Z𝑑
we have

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 =
∑︁

𝒉∈Z𝑑\{0}
𝒉 ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

.

Remark 2.22 Ordering the summation according to the nonzero components of
𝒉 ∈ Z𝑑 , the formula in Corollary 2.21 can also be written in the form

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 =
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲

∑︁
𝒉𝔲 ∈(Z\{0}) |𝔲 |

𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |2𝛼

.

Remark 2.23 As pointed out in Remark 2.9, if 𝛼 ∈ N, the Bernoulli polynomial 𝐵2𝛼
of degree 2𝛼 has the Fourier expansion

𝐵2𝛼 (𝑥) =
(−1)𝛼+1 (2𝛼)!

(2𝜋)2𝛼

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑥

|ℎ|2𝛼
for all 𝑥 ∈ [0, 1).

Using Corollary 2.21, we therefore obtain in the case of product weights that

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 = −1 +
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i(𝒉 ·𝒈/𝑁) 𝑘

= −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

𝑑∏
𝑗=1

(∑︁
ℎ∈Z

1
𝑟2𝛼,𝛾 𝑗 (ℎ)

e2𝜋i{𝑘𝑔 𝑗/𝑁} ℎ
)

= −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

𝑑∏
𝑗=1

(
1 + 𝛾 𝑗

(−1)𝛼+1 (2𝜋)2𝛼

(2𝛼)! 𝐵2𝛼

({
𝑘𝑔 𝑗

𝑁

}))
,

such that [err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 can be computed in O(𝑑 𝑁) operations.

2.6 Tractability 81

2.6 Tractability

As mentioned above, suitable conditions on the weights can help in overcoming
the curse of dimensionality of an integration problem and yield tractability. In
this section, we study tractability for the weighted Korobov space Hkor,𝑑,𝛼,𝜸. The
following existence result was shown in [59].

Theorem 2.24 For any prime number 𝑁 , any dimension 𝑑, and any 𝜏 ∈ [1/2, 𝛼) the
following statements hold.

1. There exists a generating vector 𝒈 ∈ 𝐺𝑑 (𝑁) such that

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤
2𝜏

𝑁 𝜏
©«

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏

.

2. In the case of product weights the bound in Item 1 can be simplified to

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤
2𝜏

𝑁 𝜏
©«−1 +

𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))ª®¬
𝜏

.

3. For any real number 𝑐 ≥ 1 and

A𝑐 (𝜏)

:=
𝒈 ∈ 𝐺𝑑 (𝑁) : err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤

(2𝑐2)𝜏
𝑁 𝜏

©«
∑︁

∅≠𝔲⊆[𝑑]
𝛾

1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏

it holds that
|A𝑐 (𝜏) | ≥ 𝑁𝑑

(
1 − 1

𝑐2

)
.

We first need an inequality which is sometimes referred to as Jensen’s inequality,
and will be used in the proof of Theorem 2.24 as well as in many other instances in
this book.

Lemma 2.25 (Jensen’s inequality) For any 𝜆 ∈ (0, 1] and nonnegative reals 𝑎𝑘
we have (∑︁

𝑘

𝑎𝑘

)𝜆
≤

∑︁
𝑘

𝑎𝜆𝑘 .

Proof We have 0 ≤ 𝑎 𝑗/(
∑
𝑘 𝑎𝑘) ≤ 1 and thus, since 𝜆 ∈ (0, 1],

𝑎 𝑗∑
𝑘 𝑎𝑘

≤
(
𝑎 𝑗∑
𝑘 𝑎𝑘

)𝜆
.

Summation over all 𝑗 implies

82 2 Integration of Smooth Periodic Functions

1 =

∑
𝑗 𝑎 𝑗∑
𝑘 𝑎𝑘

≤
∑
𝑗 𝑎
𝜆
𝑗

(∑𝑘 𝑎𝑘)𝜆
,

which finally yields the desired inequality. □

Using Lemma 2.25, we are ready to give the proof of Theorem 2.24.

Proof of Theorem 2.24 We first prove Item 1. Let av(𝑁, 𝑑) denote the average of the
squared worst-case error, where the average is taken over all 𝒈 ∈ 𝐺𝑑 (𝑁), i.e.,

av(𝑁, 𝑑) = 1
𝑁𝑑

∑︁
𝒈∈𝐺𝑑 (𝑁)

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2.

Then, using Corollary 2.21, we obtain

av(𝑁, 𝑑) = 1
𝑁𝑑

∑︁
𝒈∈𝐺𝑑 (𝑁)

∑︁
𝒉∈Z𝑑\{0}

𝒉 ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

=
1
𝑁𝑑

∑︁
𝒉∈Z𝑑\{0}

1
𝑟2𝛼,𝜸 (𝒉)

|{𝒈 ∈ 𝐺𝑑 (𝑁) : 𝒉 · 𝒈 ≡ 0 (mod 𝑁)}|.

If 𝒉 ≡ 0 (mod 𝑁), then

|{𝒈 ∈ 𝐺𝑑 (𝑁) : 𝒉 · 𝒈 ≡ 0 (mod 𝑁)}| = 𝑁𝑑 .

Otherwise, if 𝒉 . 0 (mod 𝑁), we find as in the proof of Lemma 2.13 that

|{𝒈 ∈ 𝐺𝑑 (𝑁) : 𝒉 · 𝒈 ≡ 0 (mod 𝑁)}| = 𝑁𝑑−1.

Hence it follows that

av(𝑁, 𝑑) =
∑︁

𝒉∈Z𝑑\{0}
𝒉≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

+ 1
𝑁

∑︁
𝒉∈Z𝑑\{0}

𝒉.0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

=
∑︁

𝒉∈Z𝑑\{0}

1
𝑟2𝛼,𝜸 (𝑁𝒉) +

1
𝑁

∑︁
𝒉∈Z𝑑\{0}

𝒉.0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

≤ 2
𝑁

∑︁
𝒉∈Z𝑑\{0}

1
𝑟2𝛼,𝜸 (𝒉)

=
2
𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲

∏
𝑗∈𝔲

©«
∑︁

ℎ 𝑗 ∈Z\{0}

1
|ℎ 𝑗 |2𝛼

ª®¬
=

2
𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 (2𝜁 (2𝛼)) |𝔲 | .

2.6 Tractability 83

Since there is always at least one element which is at least as good as average (see
Remark 2.14), we find that there exists at least one particular 𝒈 ∈ 𝐺𝑑 (𝑁) for which
the squared worst-case error satisfies the bound

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 ≤ 2
𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 (2𝜁 (2𝛼)) |𝔲 | . (2.25)

Next, we use Jensen’s inequality to improve the convergence rate in (2.25). When
applied to the formula for the squared worst-case error, Lemma 2.25 yields

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2𝜆 =

©«
∑︁

𝒉∈Z𝑑\{0}
𝒉 ·𝒈≡0 (mod 𝑁)

𝛾𝔲 (𝒉)
∏
𝑗∈𝔲 (𝒉)

1
|ℎ 𝑗 |2𝛼

ª®®®®¬
𝜆

≤
∑︁

𝒉∈Z𝑑\{0}
𝒉 ·𝒈≡0 (mod 𝑁)

©«𝛾𝜆𝔲 (𝒉)
∏
𝑗∈𝔲 (𝒉)

1
|ℎ 𝑗 |2𝛼𝜆

ª®¬
= [err𝑁,𝑑,𝛼𝜆,𝜸𝜆 (𝒈)]2, (2.26)

where we have to restrict 𝜆 to the interval (1/(2𝛼), 1] in order to guarantee conver-
gence of the series involved. Here 𝜸𝜆 denotes the set of weights of the form 𝛾𝜆𝔲 for
𝛾𝔲 in 𝜸, i.e.,

𝜸𝜆 = {𝛾𝜆𝔲 : 𝔲 ⊆ [𝑑]} for 𝜸 = {𝛾𝔲 : 𝔲 ⊆ [𝑑]}.

Applying the existence result (2.25) to [err𝑁,𝑑,𝛼𝜆,𝜸𝜆 (𝒈)]2 we finally obtain the
existence of 𝒈 ∈ 𝐺𝑑 (𝑁) such that

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2𝜆 ≤ 2
𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 | .

Note that 𝜁 (2𝛼𝜆) < ∞ since 𝜆 ∈ (1/(2𝛼), 1]. Now the desired result follows by
substituting 𝜏 for 1/(2𝜆). This substitution also implies that 𝜏 ∈ [1/2, 𝛼).

Regarding Item 2, if the weights are of product form, 𝛾𝔲 =
∏
𝑗∈𝔲 𝛾 𝑗 for 𝔲 ⊆ [𝑑],

then ∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |
=

∑︁
∅≠𝔲⊆[𝑑]

∏
𝑗∈𝔲

(
𝛾

1/(2𝜏)
𝑗

2𝜁
(𝛼
𝜏

))
= −1 +

𝑑∏
𝑗=1

(
1 + 𝛾1/(2𝜏)

𝑗
2𝜁

(𝛼
𝜏

))
.

For Item 3, let, for 𝜆 ∈ (1/(2𝛼), 1] and 𝑐 ≥ 1,

84 2 Integration of Smooth Periodic Functions

B :=
𝒈 ∈ 𝐺𝑑 (𝑁) : [err𝑁,𝑑,𝛼𝜆,𝜸𝜆 (𝒈)]2 ≤ 2𝑐2

𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 |
 .

From the above averaging argument we obtain

2
𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 | =
1
𝑁𝑑

∑︁
𝒈∈𝐺𝑑 (𝑁)

[err𝑁,𝑑,𝛼𝜆,𝜸𝜆 (𝒈)]2

>
|B𝑐 |
𝑁𝑑

2𝑐2

𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 | ,

where B𝑐 := 𝐺𝑑 (𝑁) \ B is the complement of the set B. Hence

|B𝑐 | < 𝑁𝑑

𝑐2 and therefore |B| ≥ 𝑁𝑑
(
1 − 1

𝑐2

)
.

From (2.26) we find that B ⊆ A𝑐 (1/(2𝜆)). Writing again 𝜏 for 1/(2𝜆) yields the
desired result. □

Remark 2.26 Since 𝜏 can be chosen arbitrarily close to 𝛼 we obtain a convergence
rate of O(𝑁−𝛼+𝛿) for every 𝛿 > 0, which is in accordance with Theorem 2.15. The
result in Theorem 2.24 can even be made explicit using a component-by-component
algorithm, which we will present in Section 3.3.

Theorem 2.24 provides upper bounds on the 𝑁-th minimal worst-case error in
the weighted Korobov space that we can use to establish conditions on the weights
for which the integration problem in the Korobov space is tractable in some form.
As in Section 2.3 we consider only QMC rules; the general case is treated in [211,
Theorem 16.16]. We define the 𝑁-th minimal worst-case error of QMC integration,

𝑒QMC (𝑁, 𝑑) := inf
P

��err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P)
�� ,

where the infimum is extended over all 𝑁-element point sets P in [0, 1)𝑑 . Obviously,

𝑒(𝑁, 𝑑) ≤ 𝑒QMC (𝑁, 𝑑)

for all 𝑑, 𝑁 ∈ N, since in the definition of the 𝑁-th minimal error 𝑒(𝑁, 𝑑), the
infimum is extended over all linear rules, which comprises the class of QMC rules.
From this observation we obtain

𝑁QMC (𝜀, 𝑑) := min{𝑁 ∈ N : 𝑒QMC (𝑁, 𝑑) ≤ 𝜀 𝑒(0, 𝑑)} ≥ 𝑁 (𝜀, 𝑑).

Note again that according to Remark 1.41 the initial error 𝑒(0, 𝑑) in the weighted
Korobov space equals one for all 𝑑 ∈ N.

Let us study tractability with respect to 𝑁QMC (𝜀, 𝑑) instead of the general in-
formation complexity 𝑁 (𝜀, 𝑑). We give necessary and sufficient conditions on the
weights 𝜸 under which integration in the 𝜸-weighted Korobov space is tractable for

2.6 Tractability 85

QMC rules. Obviously, sufficient conditions on the weights for tractability for QMC
rules are then also sufficient conditions for the respective notion of tractability for
the general class of linear algorithms. However, necessary conditions in the QMC
case do not imply necessary conditions for the general case where arbitrary linear
algorithms are allowed.

The case of general weights

The formulation of the following corollary and its proof is based on [211, Theo-
rem 16.4].

Corollary 2.27 Consider multivariate integration in the weighted Korobov space
Hkor,𝑑,𝛼,𝜸 with 𝛼 > 1/2. For 𝜏 ∈ [1/2, 𝛼) and 𝑞 ≥ 0 define

𝐵𝜏,𝑞 := sup
𝑑∈N

©« 1
𝑑𝑞

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬ .
Then the following statements hold true.

1. If 𝐵𝜏,𝑞 < ∞ for some 𝜏 ∈ [1/2, 𝛼) and 𝑞 ≥ 0, then the integration problem is
polynomially tractable.

2. If 𝐵𝜏,0 < ∞ for some 𝜏 ∈ [1/2, 𝛼), then the integration problem is strongly
polynomially tractable with an 𝜀-exponent of at most 1/𝜏. If 𝐵𝜏,0 < ∞ holds for
all 𝜏 ∈ [1/2, 𝛼), then the 𝜀-exponent is 1/𝛼, which is optimal.

3. Assume that the weights 𝜸 are chosen such that 𝐾kor,𝑑,𝛼,𝜸 is nonnegative. Then
integration is strongly polynomially tractable for QMC rules if and only if 𝐵1/2,0 <
∞, and it is polynomially tractable for QMC rules if and only if 𝐵1/2,𝑞 < ∞ for
some number 𝑞.

4. If

lim
𝑑→∞

1
𝑑

log ©«
∑︁

𝔲⊆[𝑑]
𝛾𝔲 (2𝜁 (2𝛼)) |𝔲 |

ª®¬ = 0, (2.27)

then integration in Hkor,𝑑,𝛼,𝜸 is weakly tractable. If the weights 𝜸 are chosen such
that 𝐾kor,𝑑,𝛼,𝜸 is nonnegative, then (2.27) is also necessary for weak tractability
for QMC rules.

The positive results on tractability stated in Items 1–4 can be obtained by means of
rank-1 lattice rules.

Proof We show the four items in the corollary in sequence.
Regarding Item 1, assume that 𝐵 := 𝐵𝜏,𝑞 is finite for some 𝜏 ∈ [1/2, 𝛼) and

𝑞 ≥ 0. Then we have for all 𝑑 ∈ N that∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |
≤ 𝐵 𝑑𝑞 .

86 2 Integration of Smooth Periodic Functions

Moreover, for every prime number 𝑁 , Theorem 2.24 implies the existence of a
generating vector 𝒈 ∈ 𝐺𝑑 (𝑁) such that

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤
(2𝐵)𝜏 𝑑𝑞𝜏

𝑁 𝜏
.

For 𝜀 > 0, let 𝑁 be the smallest prime number that is greater than or equal to
⌈2𝐵𝑑𝑞𝜀−1/𝜏⌉ =: 𝑀 . Then we have 𝑒(𝑁, 𝑑) ≤ 𝜀 and hence

𝑁QMC (𝜀, 𝑑) ≤ 𝑁 < 2𝑀 = 2⌈2𝐵𝑑𝑞𝜀−1/𝜏⌉,

where we used Bertrand’s postulate which states that 𝑀 ≤ 𝑁 < 2𝑀 . Therefore, we
have polynomial tractability.

Regarding Item 2, if 𝐵𝜏,0 < ∞ for some 𝜏 ∈ [1/2, 𝛼), we get, from the previous
considerations, strong polynomial tractability with an 𝜀-exponent of at most 1/𝜏. If,
however, 𝐵𝜏,0 < ∞ for all 𝜏 ∈ [1/2, 𝛼), then the 𝜀-exponent is at most

inf
{

1
𝜏

: 𝜏 ∈
[
1
2
, 𝛼

)}
=

1
𝛼
.

From Theorem 2.10 we know that 𝑁−𝛼 is the best possible convergence rate of
numerical integration in the (weighted) Korobov space by linear rules 𝐴𝑁,𝑑 , even in
the case 𝑑 = 1. Thus, an 𝜀-exponent of 1/𝛼 is optimal.

As regards Item 3, according to Theorem 1.27 the squared worst-case error of an
arbitrary QMC rule based on a point set P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in [0, 1)𝑑 is

[err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P)]2 = −1 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾kor,𝑑,𝛼,𝜸 (𝒙𝑘 , 𝒙ℓ).

Since 𝐾kor,𝑑,𝛼,𝜸 is assumed to be nonnegative we can bound the latter double sum
from below by omitting the nondiagonal terms. In this way we obtain

[err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P)]2 ≥ −1 + 1
𝑁2

𝑁−1∑︁
𝑘=0

𝐾kor,𝑑,𝛼,𝜸 (𝒙𝑘 , 𝒙𝑘).

We have

𝐾kor,𝑑,𝛼,𝜸 (𝒙𝑘 , 𝒙𝑘) = 𝐾kor,𝑑,𝛼,𝜸 (0, 0)
=

∑︁
𝔲⊆[𝑑]

𝛾𝔲 (1 + 2𝜁 (2𝛼)) |𝔲 | ≥
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲 (2𝜁 (2𝛼)) |𝔲 | ,

and so

[err2
𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P)]2 ≥ −1 + 1

𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 (2𝜁 (2𝛼)) |𝔲 | . (2.28)

2.6 Tractability 87

Assume now that we have (strong) polynomial tractability for QMC algorithms.
This means that there exists an 𝑁-element point set P in [0, 1)𝑑 such that

err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P) ≤ 𝜀 for 𝑁 = 𝑁QMC (𝜀, 𝑑) ≤ 𝐶𝜀−𝑝𝑑𝑞

for some nonnegative numbers 𝐶, 𝑝, and 𝑞, where 𝑞 = 0 in the case of strong
polynomial tractability. Fix 𝜀 to some value, say 𝜀 = 1/2. Then the lower bound
(2.28) for 𝑁 = 𝑁QMC (1/2, 𝑑) yields∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲 (2𝜁 (2𝛼)) |𝔲 | ≤

(
1 + [err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P)]2

)
𝑁 ≤

(
1 + 1

4

)
𝐶 2𝑝𝑑𝑞 ,

such that we obtain

sup
𝑑∈N

1
𝑑𝑞

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 (2𝜁 (2𝛼)) |𝔲 | ≤
5𝐶
4

2𝑝 < ∞.

Hence we have 𝐵1/2,𝑞 < ∞ as desired.
Finally, for Item 4, we know from Theorem 2.24 that we have, for prime numbers

𝑁 and any 𝜏 ∈ [1/2, 𝛼),
err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤

𝐶 (𝜏, 𝑑)
𝑁 𝜏

for some 𝒈 ∈ 𝐺𝑑 (𝑁), where

𝐶 (𝜏, 𝑑) := ©«2
∑︁

∅≠𝔲⊆[𝑑]
𝛾

1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏

.

We choose 𝜏 = 1/2 and use the abbreviation 𝐶 (𝑑) := 𝐶 (1/2, 𝑑). Let 𝜀 > 0 and let
𝑁 be the smallest prime number greater than or equal to ⌈(𝐶 (𝑑)𝜀−1)2⌉ =: 𝑀 . Then
we have 𝑒QMC (𝑁, 𝑑) ≤ 𝜀 and therefore 𝑁QMC (𝜀, 𝑑) ≤ 𝑁 ≤ 2𝑀 , where

𝑀 = ⌈(𝐶 (𝑑)𝜀−1)2⌉ ≤ (𝐶 (𝑑)𝜀−1)2 + 1 ≤ 𝜀−2 (1 + (𝐶 (𝑑))2).

Consequently,

log 𝑁QMC (𝜀, 𝑑)
𝜀−1 + 𝑑

≤ log 2 + 2 log 𝜀−1 + log(1 + (𝐶 (𝑑))2)
𝜀−1 + 𝑑

.

Letting 𝜀−1 + 𝑑 tend to infinity we therefore get

lim
𝜀−1+𝑑→∞

log 𝑁QMC (𝜀, 𝑑)
𝜀−1 + 𝑑

≤ lim
𝜀−1+𝑑→∞

log(1 + (𝐶 (𝑑))2)
𝜀−1 + 𝑑

.

The limit on the right-hand side of the latter inequality is zero, since

88 2 Integration of Smooth Periodic Functions

1 + (𝐶 (𝑑))2 ≤ 2
∑︁

𝔲⊆[𝑑]
𝛾𝔲 (2𝜁 (2𝛼)) |𝔲 | ,

and hence
lim
𝑑→∞

log(1 + (𝐶 (𝑑))2)
𝑑

= 0

when Condition (2.27) is satisfied.
Now assume that the kernel 𝐾kor,𝑑,𝛼,𝜸 is nonnegative and that we have weak

tractability for QMC rules. This means that there exists a QMC rule with a worst-
case error of at most 𝜀 that is based on 𝑁QMC (𝜀, 𝑑) points in [0, 1)𝑑 , and that

lim
𝜀−1+𝑑→∞

log 𝑁QMC (𝜀, 𝑑)
𝜀−1 + 𝑑

= 0.

From (2.28) we then obtain∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 (2𝜁 (2𝛼)) |𝔲 | ≤ (1 + 𝜀2)𝑁QMC (𝜀, 𝑑).

Fix 𝜀 > 0, take the logarithm, divide both sides of the latter inequality by 𝑑, and let
𝑑 tend to infinity. This yields

lim
𝑑→∞

1
𝑑

log ©«
∑︁

𝔲⊆[𝑑]
𝛾𝔲 (2𝜁 (2𝛼)) |𝔲 |

ª®¬ = 0,

which is Condition (2.27). □

The case of product weights

We close this section with an application of Corollary 2.27 to product weights of the
form (2.21).

Corollary 2.28 Let𝜸 = (𝛾 𝑗) 𝑗≥1 be a sequence of positive weights. Then the following
statements hold true for QMC integration in the product-weighted Korobov space
Hkor,𝑑,𝛼,𝜸.

1. The problem suffers from the curse of dimensionality if lim 𝑗→∞ 𝛾 𝑗 > 0.
2. We have strong polynomial tractability if and only if

∑∞
𝑗=1 𝛾 𝑗 < ∞. If

∞∑︁
𝑗=1
𝛾

1/(2𝜏)
𝑗

< ∞ (2.29)

for some 𝜏 ∈ [1/2, 𝛼), then the 𝜀-exponent is at most 1/𝜏. If (2.29) holds for all
𝜏 ∈ [1/2, 𝛼), then the 𝜀-exponent is 1/𝛼, which is optimal.

2.6 Tractability 89

3. We have polynomial tractability if and only if

lim sup
𝑑→∞

∑𝑑
𝑗=1 𝛾 𝑗

log 𝑑
< ∞.

4. We have weak tractability if and only if

lim
𝑑→∞

∑𝑑
𝑗=1 𝛾 𝑗

𝑑
= 0.

Proof To show Item 1, let 𝛾′
𝑗
= min(𝛾 𝑗 , 1/(2𝜁 (2𝛼))) for 𝑗 ∈ N, let 𝛾′𝔲 =

∏
𝑗∈𝔲 𝛾

′
𝑗

for 𝔲 ⊆ [𝑑], and let 𝜸′ = {𝛾′𝔲 : 𝔲 ⊆ [𝑑]}. From the fact that 𝛾′
𝑗
≤ 𝛾 𝑗 for all 𝑗 ∈ N

we obtain

{ 𝑓 ∈ Hkor,𝑑,𝛼,𝜸′ : ∥ 𝑓 ∥kor,𝑑,𝛼,𝜸′ ≤ 1} ⊆ { 𝑓 ∈ Hkor,𝑑,𝛼,𝜸 : ∥ 𝑓 ∥kor,𝑑,𝛼,𝜸 ≤ 1},

which means that integration inHkor,𝑑,𝛼,𝜸′ is no harder than integration inHkor,𝑑,𝛼,𝜸,
and so

err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸′ ,P) ≤ err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P).

According to the definition of 𝜸′ we find that the kernel 𝐾kor,𝑑,𝛼,𝜸′ is nonnegative.
Therefore, for every point set P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in [0, 1)𝑑 , we have

[err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P)]2 ≥ [err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸′ ,P)]2

= −1 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾kor,𝑑,𝛼,𝜸′ (𝒙𝑘 , 𝒙ℓ)

≥ −1 + 1
𝑁2

𝑁−1∑︁
𝑘=0

𝐾kor,𝑑,𝛼,𝜸′ (𝒙𝑘 , 𝒙𝑘)

= −1 + 1
𝑁2

𝑁−1∑︁
𝑘=0

𝑑∏
𝑗=1

(
1 + 2𝛾′𝑗 𝜁 (2𝛼)

)
= −1 + 1

𝑁

𝑑∏
𝑗=1

(
1 + 2𝛾′𝑗 𝜁 (2𝛼)

)
. (2.30)

If 𝛾 𝑗 ≥ 𝛾∗ for some positive 𝛾∗ for all 𝑗 ∈ N, then 2𝛾′
𝑗
𝜁 (2𝛼) ≥ min(1, 2𝛾∗𝜁 (2𝛼)) =:

𝑐∗ uniformly in 𝑗 , and thus

[err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P)]2 ≥ −1 + (1 + 𝑐∗)𝑑
𝑁

.

This implies

𝑒QMC (𝑁, 𝑑) ≥
(
max

(
0,−1 + (1 + 𝑐∗)𝑑

𝑁

))1/2
,

90 2 Integration of Smooth Periodic Functions

and furthermore

𝑁QMC (𝜀, 𝑑) ≥ min
{
𝑁 ∈ N : −1 + (1 + 𝑐∗)𝑑

𝑁
≤ 𝜀2

}
=

⌈
(1 + 𝑐∗)𝑑
𝜀2 + 1

⌉
.

This shows that the information complexity grows exponentially in 𝑑, i.e., integration
in Hkor,𝑑,𝛼,𝜸 suffers from the curse of dimensionality and is intractable.

Regarding Item 2, the necessary and sufficient condition 𝐵1/2,0 < ∞ for strong
polynomial tractability in Corollary 2.27 is, for product weights, equivalent to

∞∏
𝑗=1

(
1 + 2𝛾 𝑗 𝜁 (2𝛼)

)
< ∞.

Assume that we have strong polynomial tractability of QMC integration. Then

2𝜁 (2𝛼)
∞∑︁
𝑗=1
𝛾 𝑗 ≤

∞∏
𝑗=1

(
1 + 2𝛾 𝑗 𝜁 (2𝛼)

)
< ∞.

This implies the necessity of the condition
∑∞
𝑗=1 𝛾 𝑗 < ∞ for strong polynomial

tractability of QMC integration.
Regarding the converse direction, we have

𝑑∏
𝑗=1

(
1 + 2𝛾 𝑗 𝜁 (2𝛼)

)
= exp ©«

𝑑∑︁
𝑗=1

log(1 + 2𝛾 𝑗 𝜁 (2𝛼))ª®¬ ≤ exp ©«2𝜁 (2𝛼)
𝑑∑︁
𝑗=1
𝛾 𝑗

ª®¬ ,
where we have used the estimate log(1+ 𝑥) ≤ 𝑥 for 𝑥 ≥ 0. If now

∑∞
𝑗=1 𝛾 𝑗 < ∞, then

the right-hand side of the latter inequality is uniformly bounded in 𝑑, and so is the
left-hand side. This implies strong polynomial tractability of QMC integration.

It remains to study the 𝜀-exponent. Since, for product weights,∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |
= −1 +

𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))
≤ exp ©«2𝜁

(𝛼
𝜏

) 𝑑∑︁
𝑗=1
𝛾

1/(2𝜏)
𝑗

ª®¬ , (2.31)

we find that (2.29) implies 𝐵𝜏,0 < ∞, and hence the statements on the 𝜀-exponent
follow from Corollary 2.27.

For Item 3, the necessary and sufficient condition 𝐵1/2,𝑞 < ∞ for polynomial
tractability from Corollary 2.27 is, for product weights, equivalent to

sup
𝑑∈N

1
𝑑𝑞

𝑑∏
𝑗=1

(
1 + 2𝛾 𝑗 𝜁 (2𝛼)

)
< ∞. (2.32)

2.6 Tractability 91

Assume first that we have 𝐴 := lim sup𝑑→∞
∑𝑑
𝑗=1 𝛾 𝑗/log 𝑑 < ∞. Then for every

𝛿 > 0 there exists a positive 𝑑𝛿 such that for all 𝑑 ≥ 𝑑𝛿 it is true that∑𝑑
𝑗=1 𝛾 𝑗

log 𝑑
< 𝐴 + 𝛿.

Now we have

𝑑∏
𝑗=1

(
1 + 2𝛾 𝑗 𝜁 (2𝛼)

)
≤ exp ©«2𝜁 (2𝛼)

𝑑∑︁
𝑗=1
𝛾 𝑗

ª®¬
= 𝑑

2𝜁 (2𝛼) (∑𝑑
𝑗=1 𝛾 𝑗)/log 𝑑

≤ 𝑑2𝜁 (2𝛼) (𝐴+𝛿)

for 𝑑 ≥ 𝑑𝛿 . Therefore, there exists a positive number 𝑐𝛿 such that

𝑑∏
𝑗=1

(
1 + 2𝛾 𝑗 𝜁 (2𝛼)

)
≤ 𝑐𝛿 𝑑2𝜁 (2𝛼) (𝐴+𝛿) for all 𝑑 ∈ N. (2.33)

This implies that Condition (2.32) is satisfied for every 𝑞 > 2𝐴𝜁 (2𝛼), and this in
turn implies polynomial tractability.

Assume now that we have polynomial tractability. Then there exists a 𝑞 > 0
such that (2.32) is satisfied. Since we have polynomial tractability, we also have
lim 𝑗→∞ 𝛾 𝑗 = 0, and in particular sup 𝑗 𝛾 𝑗 < ∞. Note that there exists a 𝑐 > 0 such
that

log(1 + 𝑥) ≥ 𝑐𝑥 for all 𝑥 ∈ [0, 2𝜁 (2𝛼) sup 𝑗 𝛾 𝑗].

Thus we find that

log ©«
𝑑∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼))ª®¬ =

𝑑∑︁
𝑗=1

log(1 + 2𝛾 𝑗 𝜁 (2𝛼)) ≥ 2𝑐𝜁 (2𝛼)
𝑑∑︁
𝑗=1
𝛾 𝑗

and therefore

𝑑∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼)) ≥ exp ©«2𝑐𝜁 (2𝛼)
𝑑∑︁
𝑗=1
𝛾 𝑗

ª®¬ = 𝑑
(2𝑐𝜁 (2𝛼)/(log 𝑑)) ∑𝑑

𝑗=1 𝛾 𝑗 .

Consequently, with the existence of the number 𝑞 > 0 from above, we obtain

𝑑
(2𝑐𝜁 (2𝛼)/(log 𝑑)) ∑𝑑

𝑗=1 𝛾 𝑗−𝑞 ≤ 1
𝑑𝑞

𝑑∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼))

≤ sup
𝑑∈N

1
𝑑𝑞

𝑑∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼)) < ∞.

92 2 Integration of Smooth Periodic Functions

This implies that, for sufficiently large 𝑑, we must have∑𝑑
𝑗=1 𝛾 𝑗

log 𝑑
<

𝑞

2𝑐𝜁 (2𝛼) ,

and hence

lim sup
𝑑→∞

∑𝑑
𝑗=1 𝛾 𝑗

log 𝑑
< ∞.

Finally, we show Item 4. For product weights Condition (2.27) in Corollary 2.27
can be reformulated as

lim
𝑑→∞

1
𝑑

𝑑∑︁
𝑗=1

log
(
1 + 2𝜁 (2𝛼)𝛾 𝑗

)
= 0.

This, in turn, is equivalent to

lim
𝑑→∞

∑𝑑
𝑗=1 𝛾 𝑗

𝑑
= 0,

which follows easily from the fact that lim𝑥→0 log(1 + 𝑥)/𝑥 = 1 and thus 𝑥/2 ≤
log(1 + 𝑥) ≤ 𝑥 for 𝑥 close enough to 0. □

Notes and Remarks

Korobov spaces can be seen as 𝐿2-versions of the function class E𝑑𝛼 (𝐶) from Def-
inition 1.13. The use of the smoothness parameter 𝛼 is not unified in the literature.
Some authors, e.g., in [240], describe the smoothness by a parameter that differs
from 𝛼, as used here and in many other texts, by a factor of two. The reason why
we use 2𝛼 in the definition of the functions denoted by 𝑟2𝛼 and 𝑟2𝛼,𝜸 is that in this
way the expression for the Korobov norm in terms of derivatives in Propositions 2.2,
2.4, and 2.17 becomes simpler. In principle (weighted) Korobov spaces can also
be introduced for 𝛼 ∈ [0, 1/2] as the space of all functions with finite norm, with
the same norm and inner product as introduced in Section 2.4 (see, for example,
[143] and the “Notes and Remarks” Section at the end of Chapter 11). Then, for
𝛼 = 0 the Korobov space is the same as the 𝐿2-space of square integrable functions,
i.e., Hkor,𝑑,𝛼 = 𝐿2 ([0, 1]𝑑). For 𝛼 > 0, the Korobov space is a proper subspace of
𝐿2 ([0, 1]𝑑). However, for 𝛼 ∈ [0, 1/2] the (weighted) Korobov spaces are no re-
producing kernel Hilbert spaces anymore. In the literature, Korobov spaces are also
referred to as periodic Sobolev spaces of dominating mixed smoothness or functions
with bounded mixed derivatives. A detailed introduction to the concept of Korobov
spaces can be found in [210, Appendix A.1].

2.6 Tractability 93

The proof of Bakhvalov’s lower bound in Theorem 2.10 follows the exposition of
Temlyakov in [250, Lemma 3.1].

In Section 2.3 we have presented a proof that QMC integration in the unweighted
Korobov space suffers from the curse of dimensionality, and this negative result
holds true for any algorithm. The general proof uses a suitably constructed Sobolev
space for which numerical integration is not harder than in the unweighted Korobov
space; this construction is due to Hickernell and Woźniakowski [106]. Then, one
can show with the method of decomposable kernels that integration in this Sobolev
space suffers from the curse of dimensionality and hence the same holds true for the
unweighted Korobov space. For details we refer to [106] and to [211, Section 16.8].

Also in the weighted case we have restricted ourselves to QMC rules when
considering necessary conditions for tractability of integration in weighted Korobov
spaces. However, as shown by Hickernell and Woźniakowski in [106], the same
results again hold true for arbitrary algorithms. Proofs of these results for (strong)
polynomial tractability are given in [106] and in [211, Theorem 16.16]. A proof of
the necessary condition for weak tractability can be found in [72].

Chapter 3
Constructions of Lattice Rules

As outlined in Chapter 2, we have results based on averaging arguments which
guarantee the existence of lattice rules with excellent behavior regarding a given
quality criterion.

For dimension 𝑑 = 1, a good lattice point set consisting of 𝑁 points is given by
the set {

0,
1
𝑁
,

2
𝑁
, . . . ,

𝑁 − 1
𝑁

}
.

For 𝑑 = 2 one can use a relation to Diophantine approximation to find explicit
constructions, see Sections 1.8 and 5.1. Particularly prominent examples of two-
dimensional lattice rules are Fibonacci lattice rules as outlined in Example 1.54.

Though Fibonacci rules are elegant examples of good lattice rules in dimension
𝑑 = 2, there are no explicit constructions known of good lattice rules with respect to
any of the common figures of merit for 𝑑 > 2. Consequently, it is necessary to resort
to computer search algorithms, which shall be discussed in the present chapter.

3.1 Exhaustive Search for Generating Vectors

Recall that (rank-1) lattice point sets P(𝒈, 𝑁) are, for fixed 𝑁 and 𝑑, fully charac-
terized by their generating vector 𝒈 ∈ Z𝑑 . Since the elements of P(𝒈, 𝑁) are of
the form 𝒙𝑘 = {(𝑘/𝑁)𝒈}, it is clear that two generating vectors 𝒈, 𝒈′ ∈ Z𝑑 with
𝒈 ≡ 𝒈′ (mod 𝑁), where the congruence is assumed to hold component-wise, yield
the same lattice point set. Therefore it suffices to search for lattice points 𝒈 whose
components belong to a complete residue system modulo 𝑁 , and thus in most cases
we will restrict the search to the set

𝐺𝑑 (𝑁) := {0, 1, . . . , 𝑁 − 1}𝑑 ,

which consists of 𝑁𝑑 elements.

95© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_3&domain=pdf

96 3 Constructions of Lattice Rules

A further restriction that is usually made is that every projection of a lattice point
set has 𝑁 distinct values. This is equivalent to requiring that the components of the
generating vector 𝒈 are all coprime with 𝑁 , i.e., 𝒈 is chosen from the set

𝐺
𝜑

𝑑
(𝑁) := {𝑔 ∈ {1, 2, . . . , 𝑁} : gcd(𝑔, 𝑁) = 1}𝑑 . (3.1)

We obviously have |𝐺𝜑
𝑑
(𝑁) | = (𝜑(𝑁))𝑑 , where 𝜑 denotes Euler’s totient function.

It is known that
lim inf
𝑁→∞

𝜑(𝑁) log log 𝑁
𝑁

= e−𝛾EM ,

where 𝛾EM = 0.57721 . . . is the Euler–Mascheroni constant, so 𝜑(𝑁) can be said to
practically grow like 𝑁 (see, for example, [93, Theorem 328]).

For the sake of simplicity, we will often restrict ourselves to prime numbers
𝑁 in the following sections. In this case we have 𝐺𝜑

𝑑
(𝑁) = (𝐺1 (𝑁) \ {0})𝑑 and

𝜑(𝑁) = 𝑁 − 1. Hence, for fixed 𝑑 and prime 𝑁 , an—at the first glance—obvious
approach to identifying a generating vector that yields a lattice rule with good
properties would be to perform an exhaustive search, going through all possible
candidates in 𝐺𝑑 (𝑁) or 𝐺𝜑

𝑑
(𝑁) with 𝑁𝑑 or (𝜑(𝑁))𝑑 elements, respectively. It is

obvious, however, that a full search is infeasible even for moderate values of 𝑁 and
𝑑, which is particularly relevant for modern applications where 𝑁 and 𝑑 may be very
large.

There have been attempts to reduce the size of the search space for good lattice
points for higher rank lattice rules, as it was, e.g., outlined in [236, 237] (see also
[230]) for rank-2 lattice rules with small values of the quality criterion 𝑃𝛼 (see
Definition 1.14). Restricting one’s attention to relatively coprime invariants 𝑚 and
𝑛 allows for writing a rank-2 lattice rule in a very symmetric three-sum form. This
representation makes it easier to eliminate geometrically equivalent rules from the
search. Since 𝑃𝛼 is invariant for geometrically equivalent rules it suffices to calculate
𝑃𝛼 only for one element of each geometrically equivalent family. This may shrink
the search space since there may be a huge number of rules which are distinct but
geometrically equivalent. However, in general this method is still not satisfying for
practically relevant numbers 𝑁 and 𝑑, which is why an exhaustive search is not
feasible in most cases.

The nowadays most common and most effective search algorithms for generating
vectors of good lattice rules are designed for rank-1 lattice rules, on which we will
focus in the following.

3.2 Korobov Type Generating Vectors

One way to reduce the size of the search space for good generating vectors is a
method that goes back to Korobov [139]. Let us again assume that 𝑁 is prime.
Korobov suggested considering generating vectors of a special form, depending on
only one parameter 𝑔 ∈ 𝐺1 (𝑁) = {0, 1, . . . , 𝑁 − 1}.

3.2 Korobov Type Generating Vectors 97

Definition 3.1 (Korobov type lattice point) For 𝑔 ∈ 𝐺1 (𝑁) the lattice point

𝒈𝑑 (𝑔) = (1, 𝑔, 𝑔2, . . . , 𝑔𝑑−1)

in Z𝑑 is called a Korobov type lattice point or Korobov type generating vector. The
corresponding rank-1 lattice rule is called a Korobov type lattice rule.

In searching for good Korobov type lattice points, this restriction reduces the size
of the search space from 𝑁𝑑 to 𝑁 , since for given 𝑁 one only has to search for 𝑔
in the set 𝐺1 (𝑁). The limitation to Korobov type lattice points is in many cases
justified by averaging results that are basically of the same quality as the averaging
results over all lattice points in 𝐺𝑑 (𝑁).

Let us, as an example, consider the use of lattice rules generated by Korobov type
lattice points 𝒈𝑑 (𝑔) for integration in the weighted Korobov space. As in Section 2.5,
let us denote the worst-case error of a lattice rule using P(𝒈, 𝑁) in the Korobov space
Hkor,𝑑,𝛼,𝜸 by err𝑁,𝑑,𝛼,𝜸 (𝒈). We can formulate the following algorithm to identify a
candidate for a good Korobov type generating vector.

Algorithm 3.2 (Finding a Korobov type generating vector) Let 𝑁 be a prime
number and let 𝑑 ∈ N. The optimal Korobov type generating vector is found by
minimizing [err𝑁,𝑑,𝛼,𝜸 (𝒈𝑑 (𝑔))]2 with respect to 𝑔 ∈ 𝐺1 (𝑁).

Recall from Remark 2.9 that for 𝛼 ∈ N the worst-case error in the Korobov space
Hkor,𝑑,𝛼,𝜸 can be computed in O(𝑑 𝑁) elementary operations. In Algorithm 3.2
the worst-case error has to be computed 𝑁 times. Hence, the number of operations
needed to find the optimal Korobov type lattice rule for 𝛼 ∈ N and a dimension 𝑑 is
O(𝑑 𝑁2). This is a remarkable improvement compared to the order O(𝑁𝑑) for a full
search. Surprisingly, the lattice rule obtained by using Algorithm 3.2 is still of good
quality. The following result for product weights was first shown in [259].

Theorem 3.3 Let 𝑁 be a prime number, let 𝑑 ∈ N, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product
weights. Assume that 𝒈𝑑 (𝑔∗) has been found by Algorithm 3.2. Then we have, for
arbitrary 𝜏 ∈ [1/2, 𝛼),

err𝑁,𝑑,𝛼,𝜸 (𝒈𝑑 (𝑔∗)) ≤
𝑑𝜏

𝑁 𝜏

𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

)) 𝜏
. (3.2)

Proof According to Corollary 2.21 we have

1
𝑁

𝑁−1∑︁
𝑔=0

[err𝑁,𝑑,𝛼,𝜸 (𝒈𝑑 (𝑔))]2 =
1
𝑁

𝑁−1∑︁
𝑔=0

∑︁
𝒉∈Z𝑑\{0}

𝒉 ·𝒈𝑑 (𝑔)≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

=
1
𝑁

∑︁
𝒉∈Z𝑑\{0}

1
𝑟2𝛼,𝜸 (𝒉)

𝑁−1∑︁
𝑔=0

𝒉 ·𝒈𝑑 (𝑔)≡0 (mod 𝑁)

1

98 3 Constructions of Lattice Rules

=
1
𝑁

∑︁
𝒉∈Z𝑑\{0}

𝒉≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

𝑁−1∑︁
𝑔=0

𝒉 ·𝒈𝑑 (𝑔)≡0 (mod 𝑁)

1

+ 1
𝑁

∑︁
𝒉∈Z𝑑\{0}

𝒉.0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

𝑁−1∑︁
𝑔=0

𝒉 ·𝒈𝑑 (𝑔)≡0 (mod 𝑁)

1,

where 𝒉 ≡ 0 (mod 𝑁) indicates summation over all 𝒉 ≠ 0 that are multiples of
𝑁 and 𝒉 . 0 (mod 𝑁) indicates summation over all 𝒉 ≠ 0 that have at least one
component that is not a multiple of 𝑁 .

For given 𝒉 = (ℎ1, . . . , ℎ𝑑) ∈ Z𝑑 the innermost sums in the two summands of
the latter expression count the number of solutions 𝑔 ∈ 𝐺1 (𝑁) of the polynomial
congruence

ℎ1 + ℎ2𝑔 + · · · + ℎ𝑑𝑔𝑑−1 ≡ 0 (mod 𝑁). (3.3)

If 𝒉 ≡ 0 (mod 𝑁), then 𝒉 · 𝒈𝑑 (𝑔) ≡ 0 (mod 𝑁) is satisfied for all 𝑔 ∈ 𝐺1 (𝑁),
and hence we have

1
𝑁

∑︁
𝒉∈Z𝑑\{0}

𝒉≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

𝑁−1∑︁
𝑔=0

𝒉 ·𝒈𝑑 (𝑔)≡0 (mod 𝑁)

1 =
∑︁

𝒉∈Z𝑑\{0}
𝒉≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

=
∑︁

𝒉∈Z𝑑\{0}

1
𝑟2𝛼,𝜸 (𝑁𝒉)

≤ 1
𝑁

∑︁
𝒉∈Z𝑑\{0}

1
𝑟2𝛼,𝜸 (𝒉)

,

where in the last estimate we used that at least one component of 𝒉 is different from
zero, and so the term 𝑁 appears at least with multiplicity one in 𝑟2𝛼,𝜸 (𝑁𝒉).

If 𝒉 . 0 (mod 𝑁), the number of solutions 𝑔 ∈ 𝐺1 (𝑁) of the polynomial
congruence (3.3) is at most 𝑑 − 1, since any polynomial of degree 𝑑 − 1 can have at
most 𝑑 − 1 distinct roots. Thus,

1
𝑁

∑︁
𝒉∈Z𝑑\{0}

𝒉.0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

𝑁−1∑︁
𝑔=0

𝒉 ·𝒈𝑑 (𝑔)≡0 (mod 𝑁)

1 ≤ 𝑑 − 1
𝑁

∑︁
𝒉∈Z𝑑\{0}

1
𝑟2𝛼,𝜸 (𝒉)

.

Altogether we obtain

1
𝑁

𝑁−1∑︁
𝑔=0

[err𝑁,𝑑,𝛼,𝜸 (𝒈𝑑 (𝑔))]2 ≤ 𝑑

𝑁

∑︁
𝒉∈Z𝑑\{0}

1
𝑟2𝛼,𝜸 (𝒉)

3.2 Korobov Type Generating Vectors 99

=
𝑑

𝑁

©«−1 +
𝑑∏
𝑗=1

(∑︁
ℎ∈Z

1
𝑟2𝛼,𝛾 𝑗 (ℎ)

)ª®¬
=
𝑑

𝑁

©«−1 +
𝑑∏
𝑗=1

(
1 + 2𝛾 𝑗

∞∑︁
ℎ=1

1
ℎ2𝛼

)ª®¬
≤ 𝑑

𝑁

𝑑∏
𝑗=1

(
1 + 2𝛾 𝑗 𝜁 (2𝛼)

)
.

Since there must be a 𝑔 that is at least as good as average (see the standard
averaging argument in Remark 2.14), we therefore obtain the existence of a �̃� ∈
𝐺1 (𝑁) such that

[err𝑁,𝑑,𝛼,𝜸 (𝒈𝑑 (�̃�))]2 ≤ 𝑑

𝑁

𝑑∏
𝑗=1

(
1 + 2𝛾 𝑗 𝜁 (2𝛼)

)
. (3.4)

Next, we apply this existence result to the worst-case error in Hkor,𝑑,𝛼𝜆,𝜸𝜆 for
𝜆 ∈ (1/(2𝛼), 1]. This yields the existence of a �̃� ∈ 𝐺1 (𝑁) satisfying

[err𝑁,𝑑,𝛼𝜆,𝜸𝜆 (𝒈𝑑 (�̃�))]2 ≤ 𝑑

𝑁

𝑑∏
𝑗=1

(
1 + 2𝛾𝜆𝑗 𝜁 (2𝛼𝜆)

)
.

Then, using (2.26) we see that there exists a �̃� ∈ 𝐺1 (𝑁) such that

[err𝑁,𝑑,𝛼,𝜸 (𝒈𝑑 (�̃�))]2𝜆 ≤ 𝑑

𝑁

𝑑∏
𝑗=1

(
1 + 2𝛾𝜆𝑗 𝜁 (2𝛼𝜆)

)
.

Note that �̃� may depend on 𝜆 here. Putting 𝜏 = 1/(2𝜆), such that 𝜏 ∈ [1/2, 𝛼), we
therefore obtain the existence of �̃�𝜏 ∈ 𝐺1 (𝑁) such that

err𝑁,𝑑,𝛼,𝜸 (𝒈𝑑 (�̃�𝜏)) ≤
(
𝑑

𝑁

) 𝜏 𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

)) 𝜏
. (3.5)

For the optimal Korobov type generating vector 𝒈(𝑔∗) we have

err𝑁,𝑑,𝛼,𝜸 (𝒈𝑑 (𝑔∗)) ≤ err𝑁,𝑑,𝛼,𝜸 (𝒈𝑑 (�̃�𝜏))

for all 𝜏 ∈ [1/2, 𝛼) and so the result follows. □

Remark 3.4 As pointed out in [259], the cost of Algorithm 3.2 can be reduced if
one modifies the search to be applicable to composite 𝑁 . In particular, one can
obtain a construction cost of order arbitrarily close to O(𝑑 𝑁) if one chooses 𝑁

100 3 Constructions of Lattice Rules

as the product of sufficiently many distinct primes. However, there is a trade-off in
that the error convergence and the dependence on the dimension 𝑑 will change in a
disadvantageous way if one improves on the cost of the algorithm like this.

Even though restricting oneself to considering only Korobov type generating vec-
tors drastically reduces the size of the search space for good generating vectors, there
is one drawback that should be highlighted. Considering the bound in Equation (3.2),
we see that there is polynomial dependence on 𝑑 that cannot be avoided even if the
weights 𝛾 𝑗 decay fast. This currently renders it impossible to obtain strong polyno-
mial tractability results by using Korobov type generating vectors, which may be a
considerable disadvantage for very high-dimensional problems. It may be suspected
that this phenomenon is inherent to the structure of Korobov type generating vectors.

3.3 Component-By-Component Constructions

The nowadays most widely used variants of computer search algorithms for lattice
rule generating vectors are component-by-component, or for short CBC, construc-
tions. CBC algorithms are greedy algorithms, where the components 𝑔 𝑗 of a gener-
ating vector 𝒈 are chosen one at a time. Already as early as 1963, Korobov [140] sug-
gested such algorithms to search for good generating vectors of rank-1 lattice rules.
However, this method fell into oblivion and it was only in 2002 that the component-
by-component construction was reinvented by Sloan and Reztsov [235]. At this time,
this result was considered a big surprise. Quoting Sloan and Reztsov [235, p. 263],
“The results may be thought surprising, since it is generally accepted that knowledge
of a good lattice rule in 𝑠 dimensions does not help in finding a good rule in 𝑠 + 1
dimensions.”

The general principle

We now state the component-by-component construction principle for a general error
measure 𝐸𝑁,𝑑 (𝒈) for a lattice point set P(𝒈, 𝑁). Later, we will adapt this principle
to various concrete figures of merit, such as the worst-case error in a Korobov space
or the criterion 𝑅.

Algorithm 3.5 (CBC construction principle) Let 𝑁 and 𝑑 be given. Construct a
generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺𝜑𝑑 (𝑁), where 𝐺𝜑

𝑑
(𝑁) is defined in (3.1), as

follows.

(1) Choose a sufficiently good one-dimensional generator 𝑔1 ∈ 𝐺𝜑1 (𝑁).
(2) For 𝑠 from 1 to 𝑑 − 1:

Assume that 𝑔1, . . . , 𝑔𝑠 ∈ 𝐺𝜑1 (𝑁) have already been found. Consider them as
fixed and choose 𝑔𝑠+1 ∈ 𝐺𝜑1 (𝑁) to minimize 𝐸𝑁,𝑠+1 (𝑔1, . . . , 𝑔𝑠 , 𝑔) as a function
in 𝑔, i.e., as

3.3 Component-By-Component Constructions 101

𝑔𝑠+1 := argmin
𝑔∈𝐺𝜑

1 (𝑁)
𝐸𝑁,𝑠+1 ((𝑔1, . . . , 𝑔𝑠 , 𝑔)).

If the error criterion has the same minimal value for several distinct elements
in a step of the algorithm, it is—if not explicitly stated otherwise—allowed to
choose any of them.
End for.

(3) Set 𝒈 = (𝑔1, . . . , 𝑔𝑑).

Note that the CBC construction as outlined in Algorithm 3.5 is extensible in
the dimension, i.e., if one would like to add further components to the obtained
vector later, this can be done by simply running the loop in the algorithm as often
as required. Furthermore, note that the size of the search space for 𝒈 is reduced to
𝑑 𝜑(𝑁) by the CBC algorithm, since for each component 𝑗 ∈ [𝑑] there are only
|𝐺𝜑1 (𝑁) | = 𝜑(𝑁) possible candidates 𝑔 𝑗 . This is a huge advantage over a full search
where the search space is of size (𝜑(𝑁))𝑑 . However, note that one also needs to take
into account the cost of optimizing 𝐸𝑁,𝑠+1 in each step for determining the overall
cost of the CBC construction.

The CBC construction with respect to the worst-case error in the Korobov
space

Let us now discuss the CBC construction principle in greater detail for the worst-
case error in the weighted Korobov space Hkor,𝑑,𝛼,𝜸. In this case, we try to minimize
the worst-case error of a rank-1 lattice rule in each step of the algorithm, and the
construction has the following form.

Algorithm 3.6 (CBC construction for the weighted Korobov space) Let 𝑁 and 𝑑
be given. Construct a generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺𝜑𝑑 (𝑁) as follows.

(1) Choose 𝑔1 = 1.
(2) For 𝑠 from 1 to 𝑑 − 1:

Assume that 𝑔1, . . . , 𝑔𝑠 ∈ 𝐺
𝜑

1 (𝑁) have already been found. Choose 𝑔𝑠+1 ∈
𝐺
𝜑

1 (𝑁) as
𝑔𝑠+1 := argmin

𝑔∈𝐺𝜑

1 (𝑁)
err𝑁,𝑠+1,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠 , 𝑔)).

End for.
(3) Set 𝒈 = (𝑔1, . . . , 𝑔𝑑).

Algorithm 3.6 can be practically implemented, in particular for product weights
(𝛾 𝑗) 𝑗≥1, as we have the closed error formula for the (squared) worst-case error of
rank-1 lattice rules in weighted Korobov spaces, similarly to Remark 2.9,

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 = −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

𝑑∏
𝑗=1

©«1 + 𝛾 𝑗
∑︁

ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔 𝑗/𝑁

|ℎ|2𝛼
ª®¬ . (3.6)

102 3 Constructions of Lattice Rules

Let us write, for real 𝑥,

𝜑𝛼 (𝑥) :=
∑︁

ℎ∈Z\{0}

e2𝜋iℎ𝑥

|ℎ|2𝛼
. (3.7)

Note that for evaluating (3.6), it is sufficient to know the function values of 𝜑𝛼 for
all arguments of the form 𝑘/𝑁 with 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. These 𝑁 values of 𝜑𝛼
can be reasonably well approximated; in particular, they can be precomputed before
running the actual CBC algorithm and stored in a look-up table of size 𝑁 .

In the special case where𝛼 is a positive integer, we can express 𝜑𝛼 as the Bernoulli
polynomial 𝐵2𝛼 of degree 2𝛼,

𝜑𝛼

(
𝑘𝑔 𝑗

𝑁

)
= 𝜑𝛼

({
𝑘𝑔 𝑗

𝑁

})
=

(−1)𝛼+1 (2𝜋)2𝛼

(2𝛼)! 𝐵2𝛼

({
𝑘𝑔 𝑗

𝑁

})
,

see again Remark 2.9.
Using these facts, we can analyze the construction cost of a straightforward

implementation of Algorithm 3.6 as follows. Let us assume that the values of 𝜑𝛼
have been precomputed. Computing the value of 𝑒𝑁,𝑠,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠 , 𝑔)) has a cost
of at most 𝑑 𝑁 operations for a 𝑔 ∈ 𝐺𝜑1 (𝑁). This has to be done for each element
of 𝐺𝜑1 (𝑁) in each of the 𝑑 steps of the algorithm, which gives a total cost of order
O(𝑑2𝑁𝜑(𝑁)).

This order can, with respect to the dependence on 𝑑, be easily reduced to a total
cost of O(𝑑 𝑁𝜑(𝑁)) by storing the value of the product in each step. Indeed, we can
write in step 𝑠,

[err𝑁,𝑠+1,𝛼,𝜸 (𝒈)]2 = −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

(
1 + 𝛾𝑠+1𝜑𝛼

(
𝑘𝑔𝑠+1
𝑁

)) 𝑠∏
𝑗=1

(
1 + 𝛾 𝑗𝜑𝛼

(
𝑘𝑔 𝑗

𝑁

))
,

and put

𝜂𝑠 (𝑘) :=
𝑠∏
𝑗=1

(
1 + 𝛾 𝑗𝜑𝛼

(
𝑘𝑔 𝑗

𝑁

))
for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. Note that the 𝑁 values of 𝜂𝑠 (𝑘) do not depend on 𝑔𝑠+1,
so they can be stored at the expense of O(𝑁), which yields the desired reduction in
the required operations. (Observe that the values 𝜂𝑠 (𝑘), 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, have
already been computed when searching for 𝑔𝑠 and therefore computing them does
not incur additional computation in the search for 𝑔𝑠+1.)

We shall discuss further significant reductions of this computation cost in Sec-
tions 3.4 and 4.1 below. Before doing so, let us first check that the lattice rules found
using Algorithm 3.6 actually yield a low integration error. Indeed, we will show next
that the error convergence rate of such lattice rules can be arbitrarily close to the
optimal rate in the Korobov space.

3.3 Component-By-Component Constructions 103

Error analysis for prime 𝑁 and product weights

In order to present the basic idea of the error analysis, we consider, as a first step, the
easiest case where the weights are of product form and where 𝑁 is a prime number.
This result was first shown by Kuo [156, Theorem 4].

Theorem 3.7 Let 𝑁 be a prime number, let 𝑑 ∈ N, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product
weights. Assume that 𝒈 = (𝑔1, . . . , 𝑔𝑑) has been found by Algorithm 3.6. Then for
arbitrary 𝜏 ∈ [1/2, 𝛼) and for any 𝑠 ∈ [𝑑] we have

err𝑁,𝑠,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠)) ≤
2𝜏

𝑁 𝜏

𝑠∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

)) 𝜏
. (3.8)

Remark 3.8 Theorem 3.7 is formulated for product weights. A corresponding result
for general weights follows as a special case of Theorem 3.9. Moreover, Theorem 3.7
deals with the case of prime 𝑁 , which is technically easier to handle than general
values of 𝑁 , and for this reason we illustrate this result and its proof first. Note that
in the case of prime 𝑁 the set 𝐺𝜑1 (𝑁) equals {1, 2, . . . , 𝑁 − 1}. For a similar result
for composite 𝑁 and general weights, see Theorem 3.9 below.

Proof of Theorem 3.7 The result is shown by induction on 𝑠.
For 𝑠 = 1, we have, due to (3.6),

[err𝑁,1,𝛼,𝛾1 (1)]2 = −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

©«1 + 𝛾1
∑︁

ℎ∈Z\{0}

e2𝜋iℎ𝑘/𝑁

|ℎ |2𝛼
ª®¬

=
𝛾1
𝑁

𝑁−1∑︁
𝑘=0

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑘/𝑁

|ℎ|2𝛼

=
𝛾1
𝑁

∑︁
ℎ∈Z\{0}

1
|ℎ|2𝛼

𝑁−1∑︁
𝑘=0

e2𝜋iℎ𝑘/𝑁 .

If ℎ ≡ 0 (mod 𝑁),
𝑁−1∑︁
𝑘=0

e2𝜋iℎ𝑘/𝑁 =

𝑁−1∑︁
𝑘=0

1 = 𝑁.

If, however, ℎ . 0 (mod 𝑁), then we obtain from the geometric sum formula that

𝑁−1∑︁
𝑘=0

e2𝜋iℎ𝑘/𝑁 =

𝑁−1∑︁
𝑘=0

(
e2𝜋iℎ/𝑁

) 𝑘
=

e2𝜋iℎ − 1
e2𝜋iℎ/𝑁 − 1

= 0.

104 3 Constructions of Lattice Rules

This yields

[err𝑁,1,𝛼,𝛾1 (1)]2 = 𝛾1
∑︁

ℎ∈Z\{0}
ℎ≡0 (mod 𝑁)

1
|ℎ|2𝛼

= 𝛾1
∑︁

ℎ∈Z\{0}

1
|𝑁ℎ|2𝛼

=
𝛾1

𝑁2𝛼

∑︁
ℎ∈Z\{0}

1
|ℎ |2𝛼

=
𝛾1

𝑁2𝛼 2𝜁 (2𝛼). (3.9)

Note that 𝛼 > 1/2 and hence 𝜁 (2𝛼) < ∞. Using (2.26) we obtain from (3.9) for
𝜆 ∈ (1/(2𝛼), 1] that

[err𝑁,1,𝛼,𝛾1 (1)]2𝜆 ≤ [err𝑁,1,𝛼𝜆,𝛾𝜆1 (1)]
2

≤
𝛾𝜆1
𝑁2𝛼𝜆 2𝜁 (2𝛼𝜆) ≤ 1

𝑁2𝛼𝜆

(
1 + 2𝛾𝜆1 𝜁 (2𝛼𝜆)

)
.

Setting 𝜏 = 1/(2𝜆), which implies 𝜏 ∈ [1/2, 𝛼), we therefore obtain

err𝑁,1,𝛼,𝛾1 (1) ≤
1
𝑁𝛼

(
1 + 2𝛾1/(2𝜏)

1 𝜁

(𝛼
𝜏

)) 𝜏
,

and this yields the result for 𝑠 = 1.
For the induction step, let 𝒈 (𝑠) = (𝑔1, . . . , 𝑔𝑠) ∈ 𝐺𝜑𝑠 (𝑁) denote the 𝑠-dimensional

generating vector that has been found in the first 𝑠 steps of the algorithm, and
suppose that the claimed error bound holds for the lattice rule generated by 𝒈 (𝑠) . In
the following we will write, with some abuse of notation, (𝒈 (𝑠) , 𝑔) for the vector
(𝑔1, . . . , 𝑔𝑠 , 𝑔) ∈ 𝐺𝜑𝑠+1 (𝑁).

We will now deduce that the error bound holds analogously by choosing the
(𝑠 + 1)-st component according to Algorithm 3.6. To this end, we start again from
Equation (3.6),

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔))]2

= −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

©«
𝑠∏
𝑗=1

©«1 + 𝛾 𝑗
∑︁

ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔 𝑗/𝑁

|ℎ|2𝛼
ª®¬ª®¬ ©«1 + 𝛾𝑠+1

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔/𝑁

|ℎ|2𝛼
ª®¬

= −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

𝑠∏
𝑗=1

©«1 + 𝛾 𝑗
∑︁

ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔 𝑗/𝑁

|ℎ|2𝛼
ª®¬

+𝛾𝑠+1
𝑁

𝑁−1∑︁
𝑘=0

©«
𝑠∏
𝑗=1

©«1 + 𝛾 𝑗
∑︁

ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔 𝑗/𝑁

|ℎ|2𝛼
ª®¬ª®¬ ©«

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔/𝑁

|ℎ|2𝛼
ª®¬

3.3 Component-By-Component Constructions 105

= [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2 + 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔),

where we write

𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔)

:=
𝛾𝑠+1
𝑁

𝑁−1∑︁
𝑘=0

©«
𝑠∏
𝑗=1

©«1 + 𝛾 𝑗
∑︁

ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔 𝑗/𝑁

|ℎ|2𝛼
ª®¬ª®¬ ©«

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔/𝑁

|ℎ|2𝛼
ª®¬ .

Note that 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) is the only term in [err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔))]2 that depends
on 𝑔.

We now consider the average of 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) over all possible values of
𝑔 ∈ {1, 2, . . . , 𝑁 − 1},

Θ𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠)) :=
1

𝑁 − 1

𝑁−1∑︁
𝑔=1

𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔)

=
𝛾𝑠+1
𝑁

𝑁−1∑︁
𝑘=0

©«
𝑠∏
𝑗=1

©«1 + 𝛾 𝑗
∑︁

ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔 𝑗/𝑁

|ℎ|2𝛼
ª®¬ª®¬

× 1
𝑁 − 1

𝑁−1∑︁
𝑔=1

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔/𝑁

|ℎ|2𝛼

≤ 𝛾𝑠+1
𝑁

𝑁−1∑︁
𝑘=0

©«
𝑠∏
𝑗=1

©«1 + 𝛾 𝑗
∑︁

ℎ∈Z\{0}

1
|ℎ|2𝛼

ª®¬ª®¬
×

������ 1
𝑁 − 1

𝑁−1∑︁
𝑔=1

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔/𝑁

|ℎ|2𝛼

������
=
𝛾𝑠+1
𝑁

©«
𝑠∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼))
ª®¬
𝑁−1∑︁
𝑘=0

������ 1
𝑁 − 1

𝑁−1∑︁
𝑔=1

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔/𝑁

|ℎ|2𝛼

������ .
For short, we use the notation

𝑇𝑁,𝛼 (𝑘) :=
𝑁−1∑︁
𝑔=1

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔/𝑁

|ℎ|2𝛼
,

and obtain

Θ𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠)) ≤ 𝛾𝑠+1
𝑁

©«
𝑠∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼))ª®¬ 1
𝑁 − 1

𝑁−1∑︁
𝑘=0

��𝑇𝑁,𝛼 (𝑘)�� .

106 3 Constructions of Lattice Rules

If 𝑘 = 0, we have

𝑇𝑁,𝛼 (0) =
𝑁−1∑︁
𝑔=1

∑︁
ℎ∈Z\{0}

1
|ℎ|2𝛼

= 2𝜁 (2𝛼) (𝑁 − 1).

On the other hand, if 𝑘 ∈ {1, 2, . . . , 𝑁 − 1}, we have

𝑇𝑁,𝛼 (𝑘) =
𝑁−1∑︁
𝑔=1

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔/𝑁

|ℎ|2𝛼

=
∑︁

ℎ∈Z\{0}

1
|ℎ|2𝛼

𝑁−1∑︁
𝑔=1

e2𝜋iℎ𝑘𝑔/𝑁

=
∑︁

ℎ∈Z\{0}
ℎ≡0 (mod 𝑁)

1
|ℎ|2𝛼

𝑁−1∑︁
𝑔=1

e2𝜋iℎ𝑘𝑔/𝑁

+
∑︁

ℎ∈Z\{0}
ℎ.0 (mod 𝑁)

1
|ℎ|2𝛼

𝑁−1∑︁
𝑔=1

e2𝜋iℎ𝑘𝑔/𝑁 .

We treat the two sums in the latter expression separately. First,

𝑇
(1)
𝑁,𝛼

(𝑘) :=
∑︁

ℎ∈Z\{0}
ℎ≡0 (mod 𝑁)

1
|ℎ|2𝛼

𝑁−1∑︁
𝑔=1

e2𝜋iℎ𝑘𝑔/𝑁

=
∑︁

ℎ∈Z\{0}

1
|𝑁ℎ |2𝛼

𝑁−1∑︁
𝑔=1

1

=
𝑁 − 1
𝑁2𝛼 2𝜁 (2𝛼).

Moreover, using the fact that

𝑁−1∑︁
𝑔=1

e2𝜋iℎ𝑘𝑔/𝑁 = −1 +
𝑁−1∑︁
𝑔=0

e2𝜋iℎ𝑘𝑔/𝑁 = −1

for ℎ . 0 (mod 𝑁), where in the last step we used the geometric sum formula, we
obtain

𝑇
(2)
𝑁,𝛼

(𝑘) :=
∑︁

ℎ∈Z\{0}
ℎ.0 (mod 𝑁)

1
|ℎ|2𝛼

𝑁−1∑︁
𝑔=1

e2𝜋iℎ𝑘𝑔/𝑁

3.3 Component-By-Component Constructions 107

= −
∑︁

ℎ∈Z\{0}
ℎ.0 (mod 𝑁)

1
|ℎ|2𝛼

=
∑︁

ℎ∈Z\{0}
ℎ≡0 (mod 𝑁)

1
|ℎ|2𝛼

−
∑︁

ℎ∈Z\{0}

1
|ℎ|2𝛼

=
2𝜁 (2𝛼)
𝑁2𝛼 − 2𝜁 (2𝛼).

Adding 𝑇 (1)
𝑁,𝛼

(𝑘) and 𝑇 (2)
𝑁,𝛼

(𝑘) thus yields

𝑇𝑁,𝛼 (𝑘) =
{

2𝜁 (2𝛼) (𝑁 − 1) if 𝑘 = 0,
2𝜁 (2𝛼)

(
𝑁1−2𝛼 − 1

)
otherwise.

Note that the right-hand side of the latter equation is the same for all 𝑘 ∈
{1, 2, . . . , 𝑁 − 1}. Consequently,

1
𝑁 − 1

𝑁−1∑︁
𝑘=0

��𝑇𝑁,𝛼 (𝑘)�� = 2𝜁 (2𝛼) + 2𝜁 (2𝛼)
(
1 − 1

𝑁2𝛼−1

)
≤ 4𝜁 (2𝛼).

This yields

Θ𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠)) ≤ 𝛾𝑠+14𝜁 (2𝛼)
𝑁

𝑠∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼)),

and hence, by the standard averaging argument (see Remark 2.14), there must exist
a �̃�𝑠+1 ∈ {1, 2, . . . , 𝑁 − 1}, which may depend on 𝛼, 𝜸, and 𝒈 (𝑠) , such that

𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , �̃�𝑠+1) ≤
𝛾𝑠+14𝜁 (2𝛼)

𝑁

𝑠∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼)). (3.10)

For the next step in the proof, we again use the function 𝑟2𝛼,𝛾 𝑗 , as defined in
(2.22), to rewrite 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔), for 𝑔 ∈ {1, 2, . . . , 𝑁 − 1}, in the form

𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) = 𝛾𝑠+1
𝑁

𝑁−1∑︁
𝑘=0

©«
𝑠∏
𝑗=1

(∑︁
ℎ∈Z

e2𝜋iℎ𝑘𝑔 𝑗/𝑁

𝑟2𝛼,𝛾 𝑗 (ℎ)

)ª®¬ ©«
∑︁

ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔/𝑁

|ℎ|2𝛼
ª®¬

=
𝛾𝑠+1
𝑁

𝑁−1∑︁
𝑘=0

∑︁
𝒉∈Z𝑠+1
ℎ𝑠+1≠0

e2𝜋i𝑘𝒉 · (𝒈 (𝑠) ,𝑔)/𝑁

|ℎ𝑠+1 |2𝛼
∏𝑠
𝑗=1 𝑟2𝛼,𝛾 𝑗 (ℎ 𝑗)

.

Note that the latter expression is zero if 𝒉 · (𝒈 (𝑠) , 𝑔) . 0 (mod 𝑁), so

108 3 Constructions of Lattice Rules

𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) = 𝛾𝑠+1
𝑁

𝑁−1∑︁
𝑘=0

∑︁
𝒉∈Z𝑠+1
ℎ𝑠+1≠0

𝒉 · (𝒈 (𝑠) ,𝑔)≡0 (mod 𝑁)

1
|ℎ𝑠+1 |2𝛼

∏𝑠
𝑗=1 𝑟2𝛼,𝛾 𝑗 (ℎ 𝑗)

=
∑︁

𝒉∈Z𝑠+1
ℎ𝑠+1≠0

𝒉 · (𝒈 (𝑠) ,𝑔)≡0 (mod 𝑁)

𝛾𝑠+1

|ℎ𝑠+1 |2𝛼
𝑠∏
𝑗=1

1
𝑟2𝛼,𝛾 𝑗 (ℎ 𝑗)

. (3.11)

Recall that for 𝜆 ∈ (1/(2𝛼), 1] we have (𝑟2𝛼,𝛾 𝑗 (ℎ 𝑗))𝜆 = 𝑟2𝛼𝜆,𝛾𝜆
𝑗
(ℎ 𝑗). Thus, applying

Jensen’s inequality (see Lemma 2.25) to (3.11) yields

𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) ≤

©«
∑︁

𝒉∈Z𝑠+1
ℎ𝑠+1≠0

𝒉 · (𝒈 (𝑠) ,𝑔)≡0 (mod 𝑁)

𝛾𝜆
𝑠+1

|ℎ𝑠+1 |2𝛼𝜆
𝑠∏
𝑗=1

1
𝑟2𝛼𝜆,𝛾𝜆

𝑗
(ℎ 𝑗)

ª®®®®®®¬

1/𝜆

=

(
𝜃𝑁,𝑠,𝛼𝜆,𝜸𝜆 (𝒈 (𝑠) , 𝑔)

)1/𝜆
. (3.12)

We can replace 𝛼 by 𝛼𝜆 and 𝜸 by 𝜸𝜆 in (3.10), and hence deduce the existence of a
�̃�𝑠+1 ∈ {1, 2, . . . , 𝑁 − 1}, which may depend on 𝛼𝜆, 𝜸𝜆, and 𝒈 (𝑠) , such that

𝜃𝑁,𝑠,𝛼𝜆,𝜸𝜆 (𝒈 (𝑠) , �̃�𝑠+1) ≤
𝛾𝜆
𝑠+14𝜁 (2𝛼𝜆)

𝑁

𝑠∏
𝑗=1

(1 + 2𝛾𝜆𝑗 𝜁 (2𝛼𝜆)).

Then it follows from (3.12) that this �̃�𝑠+1 satisfies

𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , �̃�𝑠+1) ≤
(
𝛾𝜆
𝑠+14𝜁 (2𝛼𝜆)

𝑁

)1/𝜆 𝑠∏
𝑗=1

(1 + 2𝛾𝜆𝑗 𝜁 (2𝛼𝜆))1/𝜆.

Setting again 𝜏 = 1/(2𝜆) this bound can be rewritten in the form

𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , �̃�𝑠+1) ≤
(
𝛾

1/(2𝜏)
𝑠+1 4𝜁 (𝛼/𝜏)

𝑁

)2𝜏
𝑠∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏
,

and the same bound also applies to 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1), where 𝑔𝑠+1 denotes a min-
imizer of 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) over 𝑔 ∈ 𝐺𝜑1 (𝑁) obtained in Algorithm 3.6. Note that
𝑔𝑠+1 may depend on 𝛼, 𝜸 and 𝒈 (𝑠) , but is independent of 𝜏.

3.3 Component-By-Component Constructions 109

Hence, for a minimizer 𝑔𝑠+1 we obtain, using the induction assumption,

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1))]2

≤ [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2 +
(
𝛾

1/(2𝜏)
𝑠+1 4𝜁 (𝛼/𝜏)

𝑁

)2𝜏
𝑠∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏

≤ 22𝜏

𝑁2𝜏

𝑠∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏

+
(
𝛾

1/(2𝜏)
𝑠+1 4𝜁 (𝛼/𝜏)

𝑁

)2𝜏
𝑠∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏

=
22𝜏

𝑁2𝜏
©«
𝑠∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏ª®¬
(
1 + 22𝜏𝛾𝑠+1

(
𝜁

(𝛼
𝜏

))2𝜏
)

≤ 22𝜏

𝑁2𝜏

𝑠+1∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏
.

Taking the square root yields the desired result. □

Error analysis for the general case

In Theorem 3.7 and its proof we have shown the error bound for rank-1 lattice rules
obtained via the CBC construction for the case of prime 𝑁 and product weights. In
the subsequent theorem, we show a corresponding bound for the most general case,
namely arbitrary 𝑁 ≥ 2 and general weights.

Theorem 3.9 Let 𝑁 ≥ 2 be an arbitrary integer, let 𝑑 ∈ N, and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑]
be general weights. Assume that 𝒈 = (𝑔1, . . . , 𝑔𝑑) has been found by Algorithm 3.6.
Then for arbitrary 𝜏 ∈ [1/2, 𝛼) and for any 𝑠 ∈ [𝑑] we have

err𝑁,𝑠,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠)) ≤
©« 1
𝜑(𝑁)

∑︁
∅≠𝔲⊆[𝑠]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏

. (3.13)

Proof The result is again shown by induction on 𝑠. For 𝑠 = 1 and arbitrary 𝜆 ∈
(1/(2𝛼), 1] we have by (2.26), Theorem 2.19, and since 𝑔1 = 1,

[err𝑁,1,𝛼,𝛾{1} (1)]2𝜆 ≤ [err𝑁,1,𝛼𝜆,𝛾𝜆{1} (1)]
2

= 𝛾𝜆{1}

∑︁
ℎ∈Z\{0}

ℎ≡0 (mod 𝑁)

1
|ℎ|2𝛼𝜆

110 3 Constructions of Lattice Rules

= 𝛾𝜆{1}

∑︁
ℎ∈Z\{0}

1
|𝑁ℎ|2𝛼𝜆

= 𝛾𝜆{1}
2𝜁 (2𝛼𝜆)
𝑁2𝛼𝜆

≤
𝛾𝜆{1}2𝜁 (2𝛼𝜆)
(𝜑(𝑁))2𝛼𝜆 .

Setting 𝜏 = 1/(2𝜆) and taking the root gives the result for 𝑠 = 1.
In the induction step, let again 𝒈 (𝑠) = (𝑔1, . . . , 𝑔𝑠) be the 𝑠-dimensional generating

vector that has been chosen in the first 𝑠 steps of Algorithm 3.6, and suppose
that (3.13) holds for the rank-1 lattice rule generated by 𝒈 (𝑠) . We will show that
(3.13) holds analogously for the (𝑠 + 1)-dimensional case by choosing the (𝑠 + 1)-st
component according to Algorithm 3.6. To this end, we consider

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔))]2 =
∑︁

𝒉∈Z𝑠+1\{0}
𝒉 · (𝒈 (𝑠) ,𝑔)≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

=
∑︁

𝒉∈Z𝑠\{0}
𝒉 ·𝒈 (𝑠)≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

+
∑︁

𝒉∈Z𝑠+1\{0}
ℎ𝑠+1≠0

𝒉 · (𝒈 (𝑠) ,𝑔)≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

= [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2 + 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔),

where we write

𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) =
∑︁

𝒉∈Z𝑠+1\{0}
ℎ𝑠+1≠0

𝒉 · (𝒈 (𝑠) ,𝑔)≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉)

. (3.14)

Note that 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) is the only term in [err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔))]2 that depends
on 𝑔. We can rewrite 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) as

𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) =
∑︁

𝔲⊆[𝑠+1]
𝑠+1∈𝔲

∑︁
𝒉𝔲 ∈(Z\{0}) |𝔲 |

𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

1∏
𝑗∈𝔲 |ℎ 𝑗 |2𝛼

= 𝛾𝑠+1
∑︁

ℎ𝑠+1∈Z\{0}
ℎ𝑠+1𝑔≡0 (mod 𝑁)

1
|ℎ𝑠+1 |2𝛼

+
∑︁

𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝔲

∑︁
ℎ𝑠+1∈Z\{0}

1
|ℎ𝑠+1 |2𝛼

∑︁
𝒉𝔲\{𝑠+1} ∈(Z\{0}) |𝔲 |−1

𝒉𝔲\{𝑠+1} ·𝒈𝔲\{𝑠+1}≡−ℎ𝑠+1𝑔 (mod 𝑁)

1∏
𝑗∈𝔲\{𝑠+1} |ℎ 𝑗 |2𝛼

.

3.3 Component-By-Component Constructions 111

Note that, as 𝑔 ∈ 𝐺𝜑1 (𝑁), we have∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1𝑔≡0 (mod 𝑁)

1
|ℎ𝑠+1 |2𝛼

=
∑︁

ℎ𝑠+1∈Z\{0}
ℎ𝑠+1≡0 (mod 𝑁)

1
|ℎ𝑠+1 |2𝛼

=
2𝜁 (2𝛼)
𝑁2𝛼 ,

and so

𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔)

= 𝛾𝑠+1
2𝜁 (2𝛼)
𝑁2𝛼

+
∑︁

𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝔲

∑︁
ℎ𝑠+1∈Z\{0}

1
|ℎ𝑠+1 |2𝛼

∑︁
𝒉𝔲\{𝑠+1} ∈(Z\{0}) |𝔲 |−1

𝒉𝔲\{𝑠+1} ·𝒈𝔲\{𝑠+1}≡−ℎ𝑠+1𝑔 (mod 𝑁)

1∏
𝑗∈𝔲\{𝑠+1} |ℎ 𝑗 |2𝛼

.

Let now 𝜆 ∈ (1/(2𝛼), 1]. We consider the average of (𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔))𝜆 over
all possible values of 𝑔 ∈ 𝐺𝜑1 (𝑁),

Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠)) :=
1

𝜑(𝑁)
∑︁

𝑔∈𝐺𝜑

1 (𝑁)
(𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔))𝜆

≤ 𝛾𝜆𝑠+1
2𝜁 (2𝛼𝜆)
𝑁2𝛼𝜆

+ 1
𝜑(𝑁)

∑︁
𝑔∈𝐺𝜑

1 (𝑁)

∑︁
𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝜆𝔲

∑︁
ℎ𝑠+1∈Z\{0}

1
|ℎ𝑠+1 |2𝛼𝜆

×
∑︁

𝒉𝔲\{𝑠+1} ∈(Z\{0}) |𝔲 |−1

𝒉𝔲\{𝑠+1} ·𝒈𝔲\{𝑠+1}≡−ℎ𝑠+1𝑔 (mod 𝑁)

1∏
𝑗∈𝔲\{𝑠+1} |ℎ 𝑗 |2𝛼𝜆

,

where we again used Jensen’s inequality (Lemma 2.25). Then,

Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠))

≤ 𝛾𝜆𝑠+1
2𝜁 (2𝛼𝜆)
𝑁2𝛼𝜆

+ 1
𝜑(𝑁)

∑︁
𝑔∈𝐺𝜑

1 (𝑁)

∑︁
𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝜆𝔲

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1≡0 (mod 𝑁)

1
|ℎ𝑠+1 |2𝛼𝜆

×
∑︁

𝒉𝔲\{𝑠+1} ∈(Z\{0}) |𝔲 |−1

𝒉𝔲\{𝑠+1} ·𝒈𝔲\{𝑠+1}≡0 (mod 𝑁)

1∏
𝑗∈𝔲\{𝑠+1} |ℎ 𝑗 |2𝛼𝜆

112 3 Constructions of Lattice Rules

+ 1
𝜑(𝑁)

∑︁
𝑔∈𝐺𝜑

1 (𝑁)

∑︁
𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝜆𝔲

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1.0 (mod 𝑁)

1
|ℎ𝑠+1 |2𝛼𝜆

×
∑︁

𝒉𝔲\{𝑠+1} ∈(Z\{0}) |𝔲 |−1

𝒉𝔲\{𝑠+1} ·𝒈𝔲\{𝑠+1}≡−ℎ𝑠+1𝑔 (mod 𝑁)

1∏
𝑗∈𝔲\{𝑠+1} |ℎ 𝑗 |2𝛼𝜆

= 𝛾𝜆𝑠+1
2𝜁 (2𝛼𝜆)
𝑁2𝛼𝜆

+
∑︁

𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝜆𝔲

∑︁
ℎ∈Z\{0}

1
|𝑁ℎ |2𝛼𝜆

∑︁
𝒉𝔲\{𝑠+1} ∈(Z\{0}) |𝔲 |−1

𝒉𝔲\{𝑠+1} ·𝒈𝔲\{𝑠+1}≡0 (mod 𝑁)

1∏
𝑗∈𝔲\{𝑠+1} |ℎ 𝑗 |2𝛼𝜆

+ 1
𝜑(𝑁)

∑︁
𝑔∈𝐺𝜑

1 (𝑁)

∑︁
𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝑁−1∑︁
𝑐=1

𝛾𝜆𝔲

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1≡−𝑐𝑔−1 (mod 𝑁)

1
|ℎ𝑠+1 |2𝛼𝜆

×
∑︁

𝒉𝔲\{𝑠+1} ∈(Z\{0}) |𝔲 |−1

𝒉𝔲\{𝑠+1} ·𝒈𝔲\{𝑠+1}≡𝑐 (mod 𝑁)

1∏
𝑗∈𝔲\{𝑠+1} |ℎ 𝑗 |2𝛼𝜆

= 𝛾𝜆𝑠+1
2𝜁 (2𝛼𝜆)
𝑁2𝛼𝜆

+
∑︁

𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝜆𝔲
2𝜁 (2𝛼𝜆)
𝑁2𝛼𝜆

∑︁
𝒉𝔲\{𝑠+1} ∈(Z\{0}) |𝔲 |−1

𝒉𝔲\{𝑠+1} ·𝒈𝔲\{𝑠+1}≡0 (mod 𝑁)

1∏
𝑗∈𝔲\{𝑠+1} |ℎ 𝑗 |2𝛼𝜆

+ 1
𝜑(𝑁)

∑︁
𝑔∈𝐺𝜑

1 (𝑁)

∑︁
𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝑁−1∑︁
𝑐=1

𝛾𝜆𝔲

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1≡−𝑐𝑔−1 (mod 𝑁)

1
|ℎ𝑠+1 |2𝛼𝜆

×
∑︁

𝒉𝔲\{𝑠+1} ∈(Z\{0}) |𝔲 |−1

𝒉𝔲\{𝑠+1} ·𝒈𝔲\{𝑠+1}≡𝑐 (mod 𝑁)

1∏
𝑗∈𝔲\{𝑠+1} |ℎ 𝑗 |2𝛼𝜆

,

where by 𝑔−1 we denote the multiplicative inverse of 𝑔 in 𝐺𝜑1 (𝑁).
For 𝑐 ∈ {1, 2, . . . , 𝑁 − 1}, let 𝑧 := gcd(𝑐, 𝑁). Then gcd(𝑐/𝑧, 𝑁/𝑧) = 1. Further-

more, note that

{𝑐 𝑔−1 (mod 𝑁) : 𝑔 ∈ 𝐺𝜑1 (𝑁)} = {𝑐 𝑔 (mod 𝑁) : 𝑔 ∈ 𝐺𝜑1 (𝑁)}.

3.3 Component-By-Component Constructions 113

Hence, ∑︁
𝑔∈𝐺𝜑

1 (𝑁)

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1≡−𝑐𝑔−1 (mod 𝑁)

1
|ℎ𝑠+1 |2𝛼𝜆

=
∑︁

𝑔∈𝐺𝜑

1 (𝑁)

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1≡−𝑐𝑔 (mod 𝑁)

1
|ℎ𝑠+1 |2𝛼𝜆

=
∑︁

𝑔∈𝐺𝜑

1 (𝑁)

∑︁
𝑚∈Z

1
|𝑚𝑁 − 𝑐𝑔 |2𝛼𝜆

=
1
𝑧2𝛼𝜆

∑︁
𝑔∈𝐺𝜑

1 (𝑁)

∑︁
𝑚∈Z

1
|𝑚(𝑁/𝑧) − (𝑐/𝑧)𝑔 |2𝛼𝜆

=
1
𝑧2𝛼𝜆

∑︁
𝑔∈𝐺𝜑

1 (𝑁)

∑︁
ℎ∈Z\{0}

ℎ≡−(𝑐/𝑧)𝑔 (mod 𝑁/𝑧)

1
|ℎ|2𝛼𝜆

≤ 𝑧

𝑧2𝛼𝜆

𝑁/𝑧−1∑︁
𝑎=1

∑︁
ℎ∈Z\{0}

ℎ≡𝑎 (mod 𝑁/𝑧)

1
|ℎ|2𝛼𝜆

.

Note that

𝑁/𝑧−1∑︁
𝑎=1

∑︁
ℎ∈Z\{0}

ℎ≡𝑎 (mod 𝑁/𝑧)

1
|ℎ|2𝛼𝜆

=

𝑁/𝑧−1∑︁
𝑎=0

∑︁
ℎ∈Z\{0}

ℎ≡𝑎 (mod 𝑁/𝑧)

1
|ℎ|2𝛼𝜆

−
∑︁

ℎ∈Z\{0}
ℎ≡0 (mod 𝑁/𝑧)

1
|ℎ|2𝛼𝜆

=
∑︁

ℎ∈Z\{0}

1
|ℎ|2𝛼𝜆

−
∑︁

ℎ∈Z\{0}

1
|ℎ𝑁/𝑧 |2𝛼𝜆

= 2𝜁 (2𝛼𝜆) −
(𝑧
𝑁

)2𝛼𝜆
2𝜁 (2𝛼𝜆).

Consequently,∑︁
𝑔∈𝐺𝜑

1 (𝑁)

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1≡−𝑐𝑔−1 (mod 𝑁)

1
|ℎ𝑠+1 |2𝛼𝜆

≤ 𝑧

𝑧2𝛼𝜆
2𝜁 (2𝛼𝜆)

(
1 −

(𝑧
𝑁

)2𝛼𝜆
)

≤ 2𝜁 (2𝛼𝜆),

since 𝑧 ≥ 1 and 𝜆 > 1/(2𝛼). So we have shown

114 3 Constructions of Lattice Rules

Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠))

≤ 𝛾𝜆𝑠+1
2𝜁 (2𝛼𝜆)
𝑁2𝛼𝜆

+
∑︁

𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝜆𝔲
2𝜁 (2𝛼𝜆)
𝑁2𝛼𝜆

∑︁
𝒉𝔲\{𝑠+1} ∈(Z\{0}) |𝔲 |−1

𝒉𝔲\{𝑠+1} ·𝒈𝔲\{𝑠+1}≡0 (mod 𝑁)

1∏
𝑗∈𝔲\{𝑠+1} |ℎ 𝑗 |2𝛼𝜆

+ 1
𝜑(𝑁)

∑︁
𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝜆𝔲 2𝜁 (2𝛼𝜆)
∑︁

𝒉𝔲\{𝑠+1} ∈(Z\{0}) |𝔲 |−1

𝒉𝔲\{𝑠+1} ·𝒈𝔲\{𝑠+1}.0 (mod 𝑁)

1∏
𝑗∈𝔲\{𝑠+1} |ℎ 𝑗 |2𝛼𝜆

≤ 𝛾𝜆𝑠+1
2𝜁 (2𝛼𝜆)
𝜑(𝑁)

+ 1
𝜑(𝑁)

∑︁
𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝜆𝔲 2𝜁 (2𝛼𝜆)
∑︁

𝒉𝔲\{𝑠+1} ∈(Z\{0}) |𝔲 |−1

1∏
𝑗∈𝔲\{𝑠+1} |ℎ 𝑗 |2𝛼𝜆

=
1

𝜑(𝑁)
∑︁

𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 | . (3.15)

By construction, the 𝑔𝑠+1 chosen by Algorithm 3.6 must satisfy

(𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1))𝜆 ≤ Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠)) ≤ 1
𝜑(𝑁)

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 | .

(3.16)
We then obtain

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1))]2𝜆

≤
(
[err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2 + 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1)

)𝜆
≤ [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2𝜆 + (𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1))𝜆 (3.17)

≤ [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2𝜆 + 1
𝜑(𝑁)

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 | ,

where we used Lemma (2.25) once again, and also (3.16). Setting 𝜏 = 1/(2𝜆) we get

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1))]1/𝜏

≤ [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]1/𝜏 + 1
𝜑(𝑁)

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |
.

3.4 The Fast CBC Construction for Product Weights 115

Using the induction assumption gives

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1))]1/𝜏

≤ 1
𝜑(𝑁)

∑︁
∅≠𝔲⊆[𝑠]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |
+ 1
𝜑(𝑁)

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |
=

1
𝜑(𝑁)

∑︁
∅≠𝔲⊆[𝑠+1]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |
,

which yields the final result. □

3.4 The Fast CBC Construction for Product Weights

As pointed out in Section 3.3, a more or less straightforward implementation of
Algorithm 3.6 needs O(𝑑2𝑁2) or, when using a storage cost of order O(𝑁), O(𝑑 𝑁2)
operations. This order of magnitude is prohibitive when one is in need of constructing
a large number of integration nodes, which is often necessary to obtain sufficiently
high accuracy.

The problem of the rather high computational complexity of an implementation
of Algorithm 3.6 was significantly mitigated by a benchmark result of Nuyens and
Cools (see [213, 214, 215]) who showed that by a clever implementation the cost of
Algorithm 3.6 can be reduced to O(𝑑 𝑁 log 𝑁) operations under the assumption of
product weights, using the fast Fourier transform (FFT). We will now outline how
this reduction of the computation time can be obtained following the ideas of Nuyens
and Cools.

Let us assume that we have product weights 𝜸 = (𝛾 𝑗) 𝑗≥1. Recall from Equa-
tion (3.6) that we can write

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 = −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

𝑑∏
𝑗=1

(
1 + 𝛾 𝑗𝜑𝛼

({
𝑘𝑔 𝑗

𝑁

}))
,

where 𝜑𝛼 is defined in (3.7). If 𝛼 ∈ N, we can express 𝜑𝛼 in terms of the Bernoulli
polynomial 𝐵2𝛼. If 𝛼 > 1/2 is not an integer, we do in general not have an ex-
plicit formula for 𝜑𝛼, but the function values may nevertheless be approximated
numerically using the (inverse) fast Fourier transform.

Approximating 𝜑𝛼

Computing approximate values of 𝜑𝛼 is possible making use of O(𝑁 log 𝑁) opera-
tions, at the expense of O(𝑁) storage. Indeed, we can approximate 𝜑𝛼 by

116 3 Constructions of Lattice Rules

𝜑𝛼 (𝑥) :=
∑︁
ℎ∈Z

0< |ℎ |<𝑁

e2𝜋iℎ𝑥

|ℎ|2𝛼
for 𝑥 ∈ [0, 1] .

For any 𝑥 ∈ [0, 1], the absolute error of this approximation satisfies

|𝜑𝛼 (𝑥) − 𝜑𝛼 (𝑥) | ≤ 2
∞∑︁
ℎ=𝑁

1
ℎ2𝛼 ≤ 2

∫ ∞

𝑁−1

1
ℎ2𝛼 ≤ 2

2𝛼 − 1
1

(𝑁 − 1)2𝛼−1 .

Now the values 𝜑𝛼 (𝑘/𝑁) for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1} can be computed using only
O(𝑁 log 𝑁) operations. To this end consider the column vector

𝝓𝑁 :=
(
𝜑𝛼

(
0
𝑁

)
, 𝜑𝛼

(
1
𝑁

)
, . . . , 𝜑𝛼

(
𝑁 − 1
𝑁

))⊤
,

where

𝜑𝛼

(
𝑘

𝑁

)
=

𝑁−1∑︁
ℎ=1

e2𝜋iℎ𝑘/𝑁

ℎ2𝛼 +
−1∑︁

ℎ=−(𝑁−1)

e2𝜋iℎ𝑘/𝑁

|ℎ |2𝛼

=

𝑁−1∑︁
ℎ=1

(
1
ℎ2𝛼 + 1

(𝑁 − ℎ)2𝛼

)
e2𝜋iℎ𝑘/𝑁

for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. Let 𝑡 (ℎ) := ℎ−2𝛼 + (𝑁 − ℎ)−2𝛼 for ℎ ∈ {1, 2, . . . , 𝑁 − 1}
and put 𝑡 (0) := 0.

For 𝑚 ∈ N, let 𝜔𝑚 := e2𝜋i/𝑚 and let

𝐹𝑚 :=
1
√
𝑚

(
𝜔𝑘ℓ𝑚

)
𝑘,ℓ=0,1,...,𝑚−1

(3.18)

be the Fourier matrix of order 𝑚. Note that 𝐹𝑚 is symmetric and that 𝐹𝑚𝐹𝑚 = 𝑈𝑚,
where 𝑈𝑚 denotes the 𝑚 × 𝑚 identity matrix, and where 𝐹𝑚 denotes the complex
conjugate of the matrix 𝐹𝑚.

With this notation we can write

𝝓𝑁 =
√
𝑁𝐹𝑁 𝒙,

where
𝒙 := (𝑡 (0), 𝑡 (1), 𝑡 (2), . . . , 𝑡 (𝑁 − 1))⊤ .

Using FFT, the matrix-vector product 𝐹𝑁 𝒙 in the computation of 𝝓𝑁 requires only
O(𝑁 log 𝑁) operations. The method of FFT will be explained later in this section
(see Theorem 3.11 below). Note that for the storage of the vector 𝝓𝑁 we require
memory space of size O(𝑁).

3.4 The Fast CBC Construction for Product Weights 117

The CBC algorithm and efficient computation of matrix-vector products

Let us return to the actual CBC algorithm. For the sake of simplicity, we assume
prime 𝑁 in the following.

Suppose that we have precomputed the values

𝜑𝛼 (0), 𝜑𝛼
(

1
𝑁

)
, . . . , 𝜑𝛼

(
𝑁 − 1
𝑁

)
.

Then, we set 𝑔1 := 1 and we write

𝜂1 (𝑘) := 1 + 𝛾1𝜑𝛼

(
𝑘

𝑁

)
.

For 𝑠 ∈ {1, 2, . . . , 𝑑 − 1}, we describe how to perform one step in the CBC
algorithm in an efficient way. Suppose that we have already chosen 𝑔1, . . . , 𝑔𝑠 .
According to Algorithm 3.6, we now have to find 𝑔 ∈ 𝐺

𝜑

1 (𝑁) that minimizes
err𝑁,𝑠+1,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠 , 𝑔)), which is equivalent to minimizing

𝑁−1∑︁
𝑘=0

(
1 + 𝛾𝑠+1𝜑𝛼

({
𝑘𝑔

𝑁

}))
𝜂𝑠 (𝑘) =

𝑁−1∑︁
𝑘=0

𝜂𝑠 (𝑘) + 𝛾𝑠+1

𝑁−1∑︁
𝑘=0

𝜑𝛼

({
𝑘𝑔

𝑁

})
𝜂𝑠 (𝑘),

where, as above,

𝜂𝑠 (𝑘) :=
𝑠∏
𝑗=1

(
1 + 𝛾 𝑗𝜑𝛼

({
𝑘𝑔 𝑗

𝑁

}))
for 𝑠 ∈ N. Thus, minimizing err𝑁,𝑠+1,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠 , 𝑔)) with respect to 𝑔 is equiv-
alent to minimizing

𝑇𝑠+1 (𝑔) :=
𝑁−1∑︁
𝑘=0

𝜑𝛼

({
𝑘𝑔

𝑁

})
𝜂𝑠 (𝑘). (3.19)

A crucial observation is that, using (3.19), we can write the vector

𝑻𝑠+1 := (𝑇𝑠+1 (1), . . . , 𝑇𝑠+1 (𝑁 − 1))⊤

as the product of the (𝑁 − 1) × 𝑁 matrix

𝛀𝑁 :=
(
𝜑𝛼

({
𝑘𝑔

𝑁

}))
𝑔∈𝐺𝜑

1 (𝑁) ,𝑘∈𝐺1 (𝑁)

with the column vector

𝜼𝑠 := (𝜂𝑠 (0), . . . , 𝜂𝑠 (𝑁 − 1))⊤,

i.e.,
𝑻𝑠+1 = 𝛀𝑁𝜼𝑠 .

118 3 Constructions of Lattice Rules

Note that Algorithm 3.6 will choose

𝑔𝑠+1 = argmin
𝑔∈𝐺𝜑

1 (𝑁)
𝑇𝑠+1 (𝑔).

Let us analyze the matrix-vector product 𝛀𝑁𝜼𝑠 . In general the cost of a matrix-
vector multiplication of this size is quadratic in 𝑁 , but due to the special structure of
𝛀𝑁 , this cost can be reduced to O(𝑁 log 𝑁) operations. Indeed, the entries of 𝛀𝑁

are of the form 𝜑𝛼 ({(𝑘/𝑁)𝑔}). As 𝑁 is a prime number, there exists a primitive root
modulo 𝑁 , i.e., there exists 𝑞 ∈ {1, 2, . . . , 𝑁 − 1} such that

{𝑞𝑘 (mod 𝑁) : 0 ≤ 𝑘 ≤ 𝑁 − 2} = {1, 2, . . . , 𝑁 − 1}.

Thus, any product of nonzero integers 𝑘 and 𝑔 can be written as a power of 𝑞
modulo 𝑁 . The key trick is now to reorder the indices 𝑔 ∈ 𝐺𝜑1 (𝑁) and 𝑘 ∈ 𝐺1 (𝑁)
(or, the rows and columns of 𝛀𝑁 , respectively) in a way that allows fast matrix-
vector multiplication. This is done such that 𝛀𝑁 has a circulant submatrix 𝐶𝑁 of
size (𝑁 − 1) × (𝑁 − 1), and it is achieved by using the so-called Rader transform.
For the primitive root 𝑞 define an (𝑁 − 1) × (𝑁 − 1) permutation matrix Π(𝑞) =

(𝜋𝑖, 𝑗 (𝑞))𝑖, 𝑗∈{1,2,...,𝑁−1} by

𝜋𝑖, 𝑗 (𝑞) =
{

1 if 𝑖 ≡ 𝑞 𝑗 (mod 𝑁),
0 otherwise.

The matrix Π(𝑞) is indeed a permutation matrix, since 𝑞 is a primitive root modulo
𝑁 . Note that the first column of 𝛀𝑁 has 𝑁 − 1 identical entries, which are all 𝜑𝛼 (0).
Let 𝛀(𝑁−1)

𝑁
be the (𝑁 − 1) × (𝑁 − 1) matrix obtained by deleting the first column of

𝛀𝑁 . Then we define 𝐶𝑁−1 = (𝑐 (𝑁−1)
𝑖, 𝑗

)𝑖, 𝑗∈{1,2,...,𝑁−1} by

𝐶𝑁−1 := Π(𝑞)𝛀(𝑁−1)
𝑁

Π(𝑞−1), (3.20)

where 𝑞−1 denotes the multiplicative inverse of 𝑞. We then have

𝑐
(𝑁−1)
𝑖, 𝑗

=

𝑁−1∑︁
𝑢,𝑣=1

𝜋𝑢,𝑖 (𝑞) 𝜑𝛼
({𝑢𝑣
𝑁

})
𝜋𝑣, 𝑗 (𝑞−1) = 𝜑𝛼

({
𝑞𝑖𝑞− 𝑗

𝑁

})
.

We write for short 𝑐ℓ := 𝜑𝛼 ({𝑞ℓ/𝑁}), and since 𝑞 is a primitive root modulo 𝑁
we obviously have 𝑐ℓ = 𝑐ℓ′ for integers ℓ, ℓ′ with ℓ ≡ ℓ′ (mod 𝑁 − 1). This implies
𝑐
(𝑁−1)
𝑖, 𝑗

= 𝑐𝑖− 𝑗 (mod 𝑁−1) , and hence

3.4 The Fast CBC Construction for Product Weights 119

𝐶𝑁−1 =

©«

𝑐0 𝑐𝑁−2 · · · · · · 𝑐2 𝑐1
𝑐1 𝑐0 𝑐𝑁−2 · · · · · · 𝑐2
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

𝑐𝑁−3 · · · · · · 𝑐1 𝑐0 𝑐𝑁−2
𝑐𝑁−2 𝑐𝑁−3 · · · · · · 𝑐1 𝑐0

ª®®®®®®®®®¬
. (3.21)

A matrix with a structure like𝐶𝑁−1 is called a circulant matrix. Note that a circulant
matrix is completely determined by its first row or column.

Next, we need a technical lemma which shows how a circulant matrix can be
expressed in terms of a Fourier matrix and a diagonal matrix. We remind the reader
of the definition of a Fourier matrix 𝐹𝑚 in (3.18). Furthermore, we denote, for𝑚 ∈ N,
by diag(𝑎1, 𝑎2, . . . , 𝑎𝑚) the diagonal matrix

(𝐴𝑖, 𝑗)𝑖, 𝑗∈{1,2,...,𝑚} with 𝐴𝑖, 𝑗 =

{
𝑎𝑖 if 𝑖 = 𝑗 ,
0 otherwise.

What is more, for 𝑚 ∈ N and a real or complex vector 𝒗 = (𝑣0, 𝑣1, . . . , 𝑣𝑚−1) of
length 𝑚, we write 𝑝𝒗 (𝑧) := 𝑣0 + 𝑣1𝑧 + · · · + 𝑣𝑚−1𝑧

𝑚−1 for 𝑧 ∈ C.
Using this notation, we can formulate the following lemma for general circulant

matrices.

Lemma 3.10 Let 𝐶𝑚 be a circulant 𝑚 × 𝑚 matrix,

𝐶𝑚 =

©«

𝑐0 𝑐𝑚−1 𝑐2 𝑐1
𝑐1 𝑐0 𝑐𝑚−1 𝑐2
...

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...

𝑐𝑚−2 𝑐1 𝑐0 𝑐𝑚−1
𝑐𝑚−1 𝑐𝑚−2 𝑐1 𝑐0

ª®®®®®®®®®¬
.

Then 𝐶𝑚 can be expressed in terms of a similarity transformation, 𝐶𝑚 = 𝐹𝑚𝐷𝐹𝑚,
where 𝐹𝑚 is the Fourier matrix of order 𝑚, and where

𝐷 = diag
(
𝑝𝒄 (1), 𝑝𝒄 (𝜔𝑚), 𝑝𝒄 (𝜔2

𝑚), . . . , 𝑝𝒄 (𝜔𝑚−1
𝑚)

)
,

where 𝑝𝒄 (𝑧) is defined as outlined above, and where 𝒄 = (𝑐0, 𝑐1, 𝑐2, . . . , 𝑐𝑚−1).

Proof Let 𝐷 = (𝑑𝑘,ℓ)𝑘,ℓ∈{0,1,...,𝑚−1} be given by

𝐷 = 𝐹𝑚𝐶𝑚𝐹𝑚.

Then we have

120 3 Constructions of Lattice Rules

𝑑𝑘,ℓ =
1
𝑚

𝑚−1∑︁
𝑢,𝑣=0

𝜔𝑘𝑢𝑚 𝑐𝑢−𝑣 (mod 𝑚) 𝜔
−ℓ𝑣
𝑚

=
1
𝑚

𝑚−1∑︁
𝑢=0

𝜔
𝑢(𝑘−ℓ)
𝑚

𝑚−1∑︁
𝑣=0

𝑐𝑢−𝑣 (mod 𝑚) 𝜔
ℓ (𝑢−𝑣)
𝑚 .

It is easily checked that
∑𝑚−1
𝑣=0 𝑐𝑢−𝑣 (mod 𝑚) 𝜔

ℓ (𝑢−𝑣)
𝑚 = 𝑝𝒄 (𝜔ℓ𝑚), independently of

𝑢, and therefore

𝑑𝑘,ℓ = 𝑝𝒄 (𝜔ℓ𝑚)
1
𝑚

𝑚−1∑︁
𝑢=0

𝜔
𝑢(ℓ−𝑘)
𝑚 .

The result now follows by noting that (1/𝑚)∑𝑚−1
𝑢=0 𝜔

𝑢(ℓ−𝑘)
𝑚 = 1 if ℓ = 𝑘 , and 0

otherwise. □

Now, combining (3.20) and Lemma 3.10, we obtain

𝛀(𝑁−1)
𝑁

= (Π(𝑞))⊤𝐹𝑁−1𝐷𝐹𝑁−1 (Π(𝑞−1))⊤,

for a certain diagonal matrix 𝐷.
Let 𝒙 ∈ C𝑁−1 be an arbitrary column vector. Then it is obvious that the matrix-

vector products (Π(𝑞))⊤𝒙, 𝐷𝒙, and (Π(𝑞−1))⊤𝒙, respectively, can all be calculated
using O(𝑁) operations.

We are going to outline next how the matrix-vector products 𝐹𝑁−1𝒙 and 𝐹𝑁−1𝒙

can each be computed using O(𝑁 log 𝑁) operations. As 𝐹𝑁−1𝒙 = 𝐹𝑁−1𝒙, we can
restrict ourselves to discussing only 𝐹𝑁−1𝒙. The desired property of this matrix-
vector product can be obtained using FFT, which we will outline now.

The method of FFT

The method of FFT is particularly efficient for Fourier matrices whose size is a
power of 2, while the Fourier matrix 𝐹𝑁−1 is of size 𝑁 − 1, which in general is not
a power of 2. However, this technical issue can be removed easily, by relating the
matrix-vector product 𝐹𝑁−1𝒙 to one in which the size of the Fourier matrix involved
is indeed a power of 2. To this end, let ℎ ∈ N be such that 2ℎ−1 < 𝑁 − 1 ≤ 2ℎ and
let 𝑣 ∈ {0, 1, . . . , 2ℎ−1 − 1}, such that 𝑁 − 1 + 𝑣 = 2ℎ. We extend the matrix 𝐶𝑁−1
in (3.21) by 𝑣 rows and 𝑣 columns, to obtain a matrix 𝑇 , given by

3.4 The Fast CBC Construction for Product Weights 121

𝑇 =

©«

𝑐0 𝑐𝑁−2 · · · · · · 𝑐2 𝑐1 0 0 · · · 0
𝑐1 𝑐0 𝑐𝑁−2 · · · · · · 𝑐2 𝑐1 0 · · · 0
...

. . .
. . .

. . .
... 𝑐2 𝑐1 · · · 0

...
. . .

. . .
. . .

...
...

...
. . .

. . .

𝑐𝑁−3 · · · · · · 𝑐1 𝑐0 𝑐𝑁−2
...

...
. . .

. . .

𝑐𝑁−2 𝑐𝑁−3 · · · · · · 𝑐1 𝑐0 𝑐𝑁−2 𝑐𝑁−3
. . .

. . .

0 𝑐𝑁−2 𝑐𝑁−3 · · · · · · 𝑐1 𝑐0 𝑐𝑁−2
. . .

. . .

0 0 𝑐𝑁−2 𝑐𝑁−3 · · · · · · 𝑐1 𝑐0
. . .

. . .

...
. . .

. . .
. . .

. . .
. . .

. . .

0
. . .

. . .
. . .

. . .
. . . 𝑐1 𝑐0

ª®®®®®®®®®®®®®®®®®®®®®®®®¬

.

Now, 𝑇 is a 2ℎ × 2ℎ matrix, which is no longer a circulant matrix, but a so-called
Toeplitz matrix . In order to obtain a circulant matrix, we define another 2ℎ × 2ℎ
matrix

𝑅 :=

©«

0 · · · 0 𝑐𝑁−2 · · · · · · 𝑐2 𝑐1
...

. . .
. . .

. . .
. . .

. . .
. . .

...

0 · · · 0 · · · 0 𝑐𝑁−2
. . .

...

𝑐1
. . .

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . .
. . .

. . . 𝑐𝑁−2
...

. . . 𝑐1
. . .

. . .
. . .

. . . 0

𝑐𝑁−3
. . .

. . .
. . .

. . .
. . .

. . .
...

𝑐𝑁−2 𝑐𝑁−3 · · · · · · 𝑐1 0 · · · 0

ª®®®®®®®®®®®®®®®®®¬

,

and then put

𝐶 ′
𝑁−1 :=

(
𝑇 𝑅

𝑅 𝑇

)
,

which is now a circulant 2ℎ+1 × 2ℎ+1 matrix.
Suppose now that we want to compute 𝐶𝑁−1𝒙 for a complex vector 𝒙 =

(𝑥1, . . . , 𝑥𝑁−1)⊤. This can also be achieved by computing 𝐶 ′
𝑁−1𝒙

′, where 𝒙′ is a
column vector of length 2ℎ+1 given by

𝒙′ = (𝑥1, . . . , 𝑥𝑁−1, 0, . . . , 0︸ ︷︷ ︸
𝑣+2ℎ components

)⊤.

Indeed,𝐶𝑁−1𝒙 is the projection of𝐶 ′
𝑁−1𝒙

′ onto the first 𝑁−1 components. Note that
Lemma 3.10 can also be applied to 𝐶 ′

𝑁−1, as 𝐶 ′
𝑁−1 is circulant, and hence 𝐶 ′

𝑁−1 can
be represented by the product of Fourier matrices and a diagonal matrix, where the

122 3 Constructions of Lattice Rules

matrices involved all are of size 2ℎ+1. Now, applying the following classical result
by Cooley and Tukey (see [26]) yields the fast matrix-vector multiplication that we
desire.

Theorem 3.11 Let 𝐹2ℎ+1 be the Fourier matrix (3.18) of order 2ℎ+1. Let 𝒖 be a
complex column vector of length 2ℎ+1. Then the matrix-vector product 𝐹2ℎ+1𝒖 can
be computed using O((ℎ + 1)2ℎ+1) operations.

Proof Let 𝒛 = (𝑧0, . . . , 𝑧2ℎ+1−1)⊤ = 𝐹2ℎ+1𝒖, where 𝒖 = (𝑢0, . . . , 𝑢2ℎ+1−1)⊤. Then

𝑧𝑘 = 2−(ℎ+1)/2
2ℎ+1−1∑︁
𝑙=0

𝜔𝑘𝑙2ℎ+1𝑢𝑙 for all 𝑘 ∈ {0, 1, . . . , 2ℎ+1 − 1}.

We show how to compute the above sum recursively. Let 𝑘 and 𝑙 have binary
expansions

𝑘 = 𝜅0 + 𝜅12 + · · · + 𝜅ℎ2ℎ and 𝑙 = 𝜆0 + 𝜆12 + · · · + 𝜆ℎ2ℎ,

with digits 𝜅0, . . . , 𝜅ℎ, 𝜆0, . . . , 𝜆ℎ ∈ {0, 1}, respectively. Put

𝐺0 (𝜆0, . . . , 𝜆ℎ−1, 𝜅0) :=
1∑︁

𝜆ℎ=0
𝜔
𝜅0𝜆ℎ
2 𝑢𝜆0+𝜆12+···+𝜆ℎ2ℎ , (3.22)

and, for 𝑟 ∈ [ℎ], put

𝐺𝑟 (𝜆0, . . . , 𝜆ℎ−𝑟−1, 𝜅0, . . . , 𝜅𝑟) (3.23)

:=
1∑︁

𝜆ℎ−𝑟=0
𝜔

(𝜅0+𝜅12+···+𝜅𝑟2𝑟)𝜆ℎ−𝑟
2𝑟+1 𝐺𝑟−1 (𝜆0, . . . , 𝜆ℎ−𝑟 , 𝜅0, . . . , 𝜅𝑟−1).

Now we show by induction on 𝑟 that, for all 𝑟 ∈ [ℎ], we have

𝐺𝑟 (𝜆0, . . . , 𝜆ℎ−𝑟−1, 𝜅0, . . . , 𝜅𝑟)

=

1∑︁
𝜆ℎ−𝑟=0

· · ·
1∑︁

𝜆ℎ=0
𝜔

(𝜅0+𝜅12+···+𝜅𝑟2𝑟) (𝜆ℎ−𝑟+···+𝜆ℎ2𝑟)
2𝑟+1 𝑢𝜆0+𝜆12+···+𝜆ℎ2ℎ . (3.24)

For 𝑟 = 1, we obtain

𝐺1 (𝜆0, . . . , 𝜆ℎ−2, 𝜅0, 𝜅1) =
1∑︁

𝜆ℎ−1=0
𝜔

(𝜅0+𝜅12)𝜆ℎ−1
4

1∑︁
𝜆ℎ=0

𝜔
𝜅0𝜆ℎ
2 𝑢𝜆0+𝜆12+···+𝜆ℎ2ℎ .

Note that 𝜔𝜅0𝜆ℎ
2 = 𝜔

2𝜅0𝜆ℎ
4 = 𝜔

2𝜅0𝜆ℎ+4𝜅1𝜆ℎ
4 = 𝜔

(𝜅0+2𝜅1)2𝜆ℎ
4 and hence

𝐺1 (𝜆0, . . . , 𝜆ℎ−2, 𝜅0, 𝜅1) =
1∑︁

𝜆ℎ−1=0

1∑︁
𝜆ℎ=0

𝜔
(𝜅0+𝜅12) (𝜆ℎ−1+𝜆ℎ2)
4 𝑢𝜆0+𝜆12+···+𝜆ℎ2ℎ .

3.4 The Fast CBC Construction for Product Weights 123

Thus (3.24) holds for 𝑟 = 1. Assume that (3.24) holds for the index 𝑟. Then

𝐺𝑟+1 (𝜆0, . . . , 𝜆ℎ−𝑟−2, 𝜅0, . . . , 𝜅𝑟+1)

=

1∑︁
𝜆ℎ−𝑟−1=0

𝜔
(𝜅0+···+𝜅𝑟+12𝑟+1)𝜆ℎ−𝑟−1
2𝑟+2 𝐺𝑟 (𝜆0, . . . , 𝜆ℎ−𝑟−1, 𝜅0, . . . , 𝜅𝑟)

=

1∑︁
𝜆ℎ−𝑟−1=0

𝜔
(𝜅0+𝜅12+···+𝜅𝑟+12𝑟+1)𝜆ℎ−𝑟−1
2𝑟+2

×
1∑︁

𝜆ℎ−𝑟=0
· · ·

1∑︁
𝜆ℎ=0

𝜔
(𝜅0+𝜅12+···+𝜅𝑟2𝑟) (𝜆ℎ−𝑟+···+𝜆ℎ2𝑟)
2𝑟+1 𝑢𝜆0+𝜆12+···+𝜆ℎ2ℎ .

Since

𝜔
(𝜅0+𝜅12+···+𝜅𝑟2𝑟) (𝜆ℎ−𝑟+···+𝜆ℎ2𝑟)
2𝑟+1 = 𝜔

(𝜅0+𝜅12+···+𝜅𝑟2𝑟+𝜅𝑟+12𝑟+1) (𝜆ℎ−𝑟+···+𝜆ℎ2𝑟)
2𝑟+1

= 𝜔
(𝜅0+𝜅12+···+𝜅𝑟+12𝑟+1) (𝜆ℎ−𝑟2+···+𝜆ℎ2𝑟+1)
2𝑟+2

we obtain

𝐺𝑟+1 (𝜆0, . . . , 𝜆ℎ−𝑟−2, 𝜅0, . . . , 𝜅𝑟+1)

=

1∑︁
𝜆ℎ−𝑟−1=0

· · ·
1∑︁

𝜆ℎ=0
𝜔

(𝜅0+𝜅12+···+𝜅𝑟+12𝑟+1) (𝜆ℎ−𝑟−1+···+𝜆ℎ2𝑟+1)
2𝑟+2 𝑢𝜆0+𝜆12+···+𝜆ℎ2ℎ ,

and hence (3.24) is shown.
In particular, with the choice 𝑟 = ℎ, (3.24) leads to the desired formula

𝑧𝑘 = 2−(ℎ+1)/2𝐺ℎ (𝜅0, . . . , 𝜅ℎ),

for all 𝑘 = 𝜅0 + 𝜅12 + · · · + 𝜅ℎ2ℎ ∈ {0, 1, . . . , 2ℎ+1 − 1}.
For the calculation of the 𝑧𝑘 we compute 𝐺𝑟 recursively. For 𝑟 ∈ {0, 1, . . . , ℎ}

compute
𝐺𝑟 (𝜆0, . . . , 𝜆𝑚−𝑟−1, 𝜅0, . . . , 𝜅𝑟)

for all 𝜆0, . . . , 𝜆ℎ−𝑟−1, 𝜅0, . . . , 𝜅𝑟 ∈ {0, 1} using (3.22) and the recursion formula
(3.23). For each 𝑟 this requires O(2ℎ+1) operations.

Overall we require O((ℎ + 1)2ℎ+1) operations to compute 𝐺ℎ and hence we can
compute 𝒛 in

O((ℎ + 1)2ℎ+1)

operations. □

Theorem 3.11 can now be directly applied to computing 𝐶 ′
𝑁−1𝒙

′. Since we chose
ℎ such that 2ℎ−1 < 𝑁−1 ≤ 2ℎ, we have ℎ < 1+log2 𝑁 , and so we see that𝐶𝑁−1𝒙 (and
therefore also𝑻𝑠+1 = 𝛀𝑁𝜼𝑠) can be computed using O(𝑁 log 𝑁) operations. In total,
this results in a computational cost of O(𝑑 𝑁 log 𝑁) operations for Algorithm 3.6,

124 3 Constructions of Lattice Rules

if it is implemented accordingly. These observations are the keystones of the results
by Nuyens and Cools, and these made the CBC algorithm feasible for the generation
of high-dimensional lattice rules with many points, which is needed in practice.

We further remark that the order O(𝑑 𝑁 log 𝑁) in the construction cost for product
weights can—if we assume sufficiently fast decreasing weights—be reduced further
using the so-called reduced CBC construction, see Section 4.2.

3.5 The Fast CBC Construction for POD Weights

Other than the aforementioned product weights there is another type of weights
that is important for practical applications of lattice rules (especially in the context
of PDEs with random coefficients, see Appendix A). These weights are so-called
product and order dependent (or, for short, POD) weights, which take the form

𝛾𝔲 = Γ|𝔲 |
∏
𝑗∈𝔲

𝛾 𝑗 , (3.25)

for 𝔲 ⊆ [𝑑], where the 𝛾 𝑗 have a role similar to product weights, and where Γ|𝔲 |
may depend on |𝔲 | but not on the elements of 𝔲. For 𝔲 = ∅, we set Γ|𝔲 | = 1 and
hence (since we define the empty product to be one), we have 𝛾∅ = 1.

A fast implementation of the CBC construction for arbitrary general weights
currently seems out of reach, as one would have to take into account 2𝑑 different
weights 𝛾𝔲 . However, for the special case of POD weights there is a relatively fast
implementation of the CBC construction available.

We again start with the general error formula for the squared worst-case error in
Corollary 2.8,

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 = −1 +
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝑘𝒈 ·𝒉/𝑁

= −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

∑︁
𝔲⊆[𝑑]

𝛾𝔲

∏
𝑗∈𝔲

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔 𝑗/𝑁

|ℎ|2𝛼

= −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

∑︁
𝔲⊆[𝑑]

Γ|𝔲 |
∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

({
𝑘𝑔 𝑗

𝑁

})
,

where 𝜑𝛼 is given by (3.7). Since, in the previous expression, the summand for 𝔲 = ∅
is one, we can rewrite this expression further as

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 =
1
𝑁

𝑁−1∑︁
𝑘=0

∑︁
∅≠𝔲⊆[𝑑]

Γ|𝔲 |
∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

({
𝑘𝑔 𝑗

𝑁

})

3.5 The Fast CBC Construction for POD Weights 125

=
1
𝑁

𝑁−1∑︁
𝑘=0

𝑑∑︁
ℓ=1

∑︁
𝔲⊆[𝑑]
|𝔲 |=ℓ

Γℓ

∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

({
𝑘𝑔 𝑗

𝑁

})
. (3.26)

Let again 𝑠 ∈ [𝑑 − 1], and suppose that 𝑔1, . . . , 𝑔𝑠 have already been chosen
by Algorithm 3.6. Let us write 𝒈 (𝑠+1) := (𝒈 (𝑠) , 𝑔𝑠+1), where 𝒈 (𝑠) denotes the 𝑠-
dimensional vector found in the first 𝑠 steps of the CBC construction, and 𝑔𝑠+1 is
the component selected in step 𝑠 + 1. For selecting 𝑔𝑠+1, we can split the innermost
sum in (3.26) into a sum over all subsets 𝔲 with (𝑠 + 1) ∉ 𝔲 and a sum over 𝔲 with
(𝑠 + 1) ∈ 𝔲. This yields, after short calculation,

[err𝑁,𝑠+1,𝛼,𝜸 (𝒈 (𝑠+1))]2

=
1
𝑁

𝑁−1∑︁
𝑘=0

𝑠+1∑︁
ℓ=1

©«
∑︁
𝔲⊆[𝑠]
|𝔲 |=ℓ

Γℓ

∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

({
𝑘𝑔 𝑗

𝑁

})

+ Γℓ

Γℓ−1
𝛾𝑠+1𝜑𝛼

({
𝑘𝑔𝑠+1
𝑁

}) ∑︁
𝔲⊆[𝑠]
|𝔲 |=ℓ−1

Γℓ−1
∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

({
𝑘𝑔 𝑗

𝑁

})ª®®®¬ .
We write, for short,

Ω𝑁 (𝑔, 𝑘) := 𝜑𝛼
({
𝑘𝑔

𝑁

})
for 𝑔 ∈ 𝐺𝜑1 (𝑁) and 𝑘 ∈ 𝐺1 (𝑁),

and, for 𝑘 ∈ 𝐺1 (𝑁),

𝑝𝑠,ℓ (𝑘) :=
∑︁
𝔲⊆[𝑠]
|𝔲 |=ℓ

Γℓ

∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

({
𝑘𝑔 𝑗

𝑁

})
for ℓ ∈ {0, 1, . . . , 𝑠}. (3.27)

Using this notation, we can write

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1))]2

= [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2 + 𝛾𝑠+1
𝑁

𝑁−1∑︁
𝑘=0

Ω𝑁 (𝑔𝑠+1, 𝑘)
𝑠+1∑︁
ℓ=1

Γℓ

Γℓ−1
𝑝𝑠,ℓ−1 (𝑘)

= [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2 + 𝛾𝑠+1
𝑁

𝛀𝑁 (𝑔𝑠+1)
(
𝑠+1∑︁
ℓ=1

Γℓ

Γℓ−1
𝒑𝑠,ℓ−1

)⊤
,

where

𝛀𝑁 (𝑔𝑠+1) := (Ω𝑁 (𝑔𝑠+1, 0), . . . ,Ω𝑁 (𝑔𝑠+1, 𝑁 − 1)) and

126 3 Constructions of Lattice Rules

𝒑𝑠,ℓ−1 := (𝑝𝑠,ℓ−1 (0), . . . , 𝑝𝑠,ℓ−1 (𝑁 − 1)),

and where 𝛀𝑁 (𝑔𝑠+1) (
∑𝑠+1
ℓ=1 (Γℓ/Γℓ−1) 𝒑𝑠,ℓ−1)⊤ is considered as the product of the

row vector 𝛀𝑁 (𝑔𝑠+1) with the column vector (∑𝑠+1
ℓ=1 (Γℓ/Γℓ−1) 𝒑𝑠,ℓ−1)⊤.

Let us furthermore write 𝑬𝑁,𝑠+1,𝛼,𝜸 (𝒈 (𝑠)) to denote the column vector with
entries [err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔))]2 for 𝑔 ∈ 𝐺

𝜑

1 (𝑁), and let 𝛀𝑁 be the 𝜑(𝑁) × 𝑁

matrix with row vectors 𝛀𝑁 (𝑔) for 𝑔 ∈ 𝐺𝜑1 (𝑁). Then we can write

𝑬𝑁,𝑠+1,𝛼,𝜸 (𝒈 (𝑠)) = [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2 1𝜑 (𝑁) +
𝛾𝑠+1
𝑁

𝛀𝑁

(
𝑠+1∑︁
ℓ=1

Γℓ

Γℓ−1
𝒑𝑠,ℓ−1

)⊤
,

(3.28)
where 1𝜑 (𝑁) denotes the all-1 vector of length 𝜑(𝑁), and where one uses the update
formula

𝒑𝑠+1,ℓ = 𝒑𝑠,ℓ +
Γℓ

Γℓ−1
𝛾𝑠+1 𝛀𝑁 (𝑔𝑠+1) ∗ 𝒑𝑠,ℓ−1

for ℓ ∈ [𝑠 + 1], with “∗” denoting component-wise multiplication of vectors in R𝑁 ,
with the initial values

𝒑𝑠+1,0 = 1𝑁 and 𝒑𝑠+1,ℓ = 0𝑁 for 𝑠 ≥ 0 and ℓ > 𝑠 + 1,

where 0𝑁 denotes the zero vector of length 𝑁 . Regarding the cost of this implemen-
tation, the matrix-vector multiplication in (3.28) can be carried out in a similar way
as for product weights, resulting in a computational cost of order O(𝑁 log 𝑁) in each
step. Updating 𝒑𝑠+1,ℓ needs 𝑁 operations for each ℓ, and thus O(𝑁𝑠) operations in
total in each step. This gives a total order of

O(𝑑 𝑁 log 𝑁 + 𝑑2𝑁)

for the number of elementary operations needed in the fast CBC algorithm. Since
each of the vectors 𝒑𝑠+1,ℓ has length 𝑁 , and there are 𝑠 + 1 such vectors, the storage
cost is O(𝑑 𝑁), and the vectors can be overwritten in the subsequent step.

We remark that the order O(𝑑 𝑁 log 𝑁 + 𝑑2𝑁) in the construction cost for POD
weights can—for sufficiently fast decreasing weights—be reduced further using the
so-called reduced CBC construction, see Section 4.2.

3.6 A CBC Algorithm Based on the Quality Criterion 𝑹

In Section 3.3 we outlined the classical CBC algorithm (Algorithm 3.6) for the
Korobov space with smoothness 𝛼. This construction is based on the worst-case
error. For its application we have to know the smoothness-parameter 𝛼 and the
specific weights 𝜸 of the function space for which the so-obtained lattice rules satisfy
the desired error bounds. This, however, is often a problem in applications, since
these parameters are often not known for a given integrand 𝑓 . Most desirable would

3.6 A CBC Algorithm Based on the Quality Criterion 𝑅 127

be a construction of lattice rules which work well simultaneously for all choices of
the parameters 𝛼 and 𝜸. We have already seen in Theorem 2.15 that such lattice
rules exist, at least in the unweighted case, where we would like to find lattice rules
which work well for several choices of 𝛼 simultaneously. These existence results
are based on the quality criterion 𝑅, but the efficient construction remained open in
Section 2.3. In the present section, we introduce a CBC algorithm that is also based
on the figure of merit 𝑅.

The question regarding algorithms that work simultaneously for different kinds
of weights will be discussed in Chapter 12.

We consider the weighted setting and define a generalization of the classical
quality criterion 𝑅 in Definition 1.48.

Definition 3.12 For 𝜏 ≥ 1, given weights 𝜸, 𝑁 ∈ N, 𝑁 ≥ 2, and 𝒈 ∈ Z𝑑 , define

𝑅𝑁,𝑑,𝜏,𝜸 (𝒈) :=
∑︁

𝒉∈𝐶∗
𝑑
(𝑁)

𝒉 ·𝒈≡0 (mod 𝑁)

1
𝑟𝜏,𝜸 (𝒉)

,

where 𝐶∗
𝑑
(𝑁) is as introduced in Section 1.8 and 𝑟𝜏,𝜸 is as in (2.17).

For 𝜏 = 1 and the unweighted case, i.e., 𝛾𝔲 = 1 for all 𝔲 ⊆ [𝑑], Definition 3.12
recovers the classical criterion 𝑅 introduced in Definition 1.48.

Using Jensen’s inequality (Lemma 2.25) we obtain

𝑅𝑁,𝑑,𝜏,𝜸 (𝒈) ≤
©«

∑︁
𝒉∈𝐶∗

𝑑
(𝑁)

𝒉 ·𝒈≡0 (mod 𝑁)

1
𝑟1,𝜸1/𝜏 (𝒉)

ª®®®®¬
𝜏

= (𝑅𝑁,𝑑,1,𝜸1/𝜏 (𝒈))𝜏 , (3.29)

where 𝜸1/𝜏 denotes the collection of the weights 𝜸𝔲 raised to the power 1/𝜏, i.e.,

𝜸1/𝜏 = {𝛾1/𝜏
𝔲 : 𝔲 ⊆ [𝑑]}.

Re-ordering the summation in the definition of 𝑅𝑁,𝑑,1,𝜸 according to the groups
of nonzero components of the summation index 𝒉 we can write

𝑅𝑁,𝑑,1,𝜸 (𝒈) =
∑︁

∅≠𝔲⊆[𝑑]
𝜸𝔲𝑅𝑁 (𝒈𝔲),

where
𝑅𝑁 (𝒈𝔲) :=

∑︁
𝒉𝔲 ∈(𝐶∗

1 (𝑁)) |𝔲 |
𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

1
𝑟1 (𝒉𝔲)

. (3.30)

Observe that 𝑅𝑁 (𝒈𝔲) = 0 if |𝔲 | = 1 and 𝒈𝔲 ∈ 𝐺
𝜑

|𝔲 | (𝑁) since then the range of
summation is empty. Note, furthermore, that we may write

128 3 Constructions of Lattice Rules

𝑅𝑁 (𝒈𝔲) =
1
𝑁

𝑁−1∑︁
𝑘=0

∏
𝑗∈𝔲

©«
∑︁

ℎ∈𝐶∗
1 (𝑁)

e2𝜋iℎ𝑘𝑔 𝑗/𝑁

|ℎ|
ª®¬ =

1
𝑁

𝑁−1∑︁
𝑘=0

∏
𝑗∈𝔲

𝑆𝑘,𝑁 (𝑔 𝑗),

where, for 𝑧 ∈ Z,

𝑆𝑘,𝑁 (𝑧) :=
∑︁

ℎ∈𝐶∗
1 (𝑁)

e2𝜋iℎ𝑘𝑧/𝑁

|ℎ| for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. (3.31)

Note that for 𝑘 = 0 we have

𝑆0,𝑁 = 𝑆𝑁 =
∑︁

ℎ∈𝐶∗
1 (𝑁)

1
|ℎ| ,

which we already encountered in (2.15).

A relation to the worst-case error in the weighted Korobov space

We now show a proposition implying that the squared worst-case error of integra-
tion using a rank-1 lattice rule in the Korobov space with smoothness 𝛼 > 1/2 is
essentially characterized by 𝑅𝑁,𝑑,2𝛼,𝜸, which in turn can be bounded in terms of
𝑅𝑁,𝑑,1,𝜸1/(2𝛼) . This result is a weighted version of Theorem 2.11.

Proposition 3.13 Let 𝛼 > 1/2, let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be general weights, and let
𝒈 ∈ 𝐺𝜑

𝑑
(𝑁). Then,

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 ≤ 𝑅𝑁,𝑑,2𝛼,𝜸 (𝒈) +
22𝛼

𝑁2𝛼

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 (4𝜁 (2𝛼)) |𝔲 | .

Moreover,

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 ≤ (𝑅𝑁,𝑑,1,𝜸1/(2𝛼) (𝒈))2𝛼 + 22𝛼

𝑁2𝛼

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 (4𝜁 (2𝛼)) |𝔲 | .

Proof We study the difference

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 − 𝑅𝑁,𝑑,2𝛼,𝜸 (𝒈),

which can be written as

∑︁
∅≠𝔲⊆[𝑑]

©«
∑︁

𝒉𝔲 ∈(Z\{0}) |𝔲 |
𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

1
𝑟2𝛼,𝛾𝔲 (𝒉𝔲)

−
∑︁

𝒉𝔲 ∈(𝐶∗
1 (𝑁)) |𝔲 |

𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

1
𝑟2𝛼,𝛾𝔲 (𝒉𝔲)

ª®®®®¬
,

3.6 A CBC Algorithm Based on the Quality Criterion 𝑅 129

motivating us to define, for ∅ ≠ 𝔲 ⊆ [𝑑],

𝑇𝔲 :=
∑︁

𝒉𝔲 ∈(Z\{0}) |𝔲 |
𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

1
𝑟2𝛼,𝛾𝔲 (𝒉𝔲)

−
∑︁

𝒉𝔲 ∈(𝐶∗
1 (𝑁)) |𝔲 |

𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

1
𝑟2𝛼,𝛾𝔲 (𝒉𝔲)

.

We now distinguish two cases.
Case 1: Suppose that |𝔲 | = 1 such that 𝔲 = { 𝑗} for some 𝑗 ∈ [𝑑]. Then,

𝑇{ 𝑗 } =
∑︁

ℎ 𝑗 ∈Z\{0}
ℎ 𝑗𝑔 𝑗≡0 (mod 𝑁)

1
𝑟2𝛼,𝛾{ 𝑗} (ℎ 𝑗)

−
∑︁

ℎ 𝑗 ∈𝐶∗
1 (𝑁)

ℎ 𝑗𝑔 𝑗≡0 (mod 𝑁)

1
𝑟2𝛼,𝛾{ 𝑗} (ℎ 𝑗)

=
∑︁

ℎ 𝑗 ∈Z\{0}
ℎ 𝑗𝑔 𝑗≡0 (mod 𝑁)

𝛾{ 𝑗 }

|ℎ 𝑗 |2𝛼

= 2𝛾{ 𝑗 }
∞∑︁
𝑡=1

1
(𝑡𝑁)2𝛼

=
2𝛾{ 𝑗 }𝜁 (2𝛼)

𝑁2𝛼 ,

which follows since gcd(𝑔 𝑗 , 𝑁) = 1 and thus ℎ 𝑗𝑔 𝑗 ≡ 0 (mod 𝑁) if and only if 𝑔 𝑗 is
a multiple of 𝑁 , but 𝐶∗

1 (𝑁) does not contain any multiple of 𝑁 .
Case 2: Suppose that |𝔲 | ≥ 2. For such a 𝔲 and 𝑖 ∈ 𝔲, and 𝒈, 𝒉 ∈ Z |𝔲 | , we write

for short 𝒈𝔲\{𝑖 } and 𝒉𝔲\{𝑖 } ∈ Z |𝔲 |−1 to denote the projections onto those components
with indices in 𝔲 \ {𝑖}.

Note that
𝑇𝔲 =

∑︁
𝒉𝔲 ∈(Z\{0}) |𝔲 |\(𝐶∗

1 (𝑁)) |𝔲 |
𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

1
𝑟2𝛼,𝛾𝔲 (𝒉𝔲)

.

Hence we can estimate

𝑇𝔲 ≤
∑︁
𝑖∈𝔲

∑︁
𝒉𝔲\{𝑖} ∈(Z\{0}) |𝔲 |−1

∑︁
ℎ𝑖 ∈Z\𝐶1 (𝑁)

𝒉𝔲\{𝑖} ·𝒈𝔲\{𝑖}+ℎ𝑖𝑔𝑖≡0 (mod 𝑁)

1
𝑟2𝛼,𝛾𝔲 (𝒉𝔲)

.

For 𝒉𝔲\{𝑖 } ∈ (Z \ {0}) |𝔲 |−1, we write 𝑏 := 𝒉𝔲\{𝑖 } · 𝒈𝔲\{𝑖 } and consider the expression∑︁
ℎ𝑖 ∈Z\𝐶1 (𝑁)

𝑏+ℎ𝑖𝑔𝑖≡0 (mod 𝑁)

1
𝑟2𝛼,𝛾𝔲 (𝒉𝔲)

= 𝛾𝔲

∑︁
ℎ𝑖 ∈Z\𝐶1 (𝑁)

𝑏+ℎ𝑖𝑔𝑖≡0 (mod 𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |2𝛼

130 3 Constructions of Lattice Rules

= 𝛾𝔲
©«

∏
𝑗∈𝔲\{𝑖 }

1
|ℎ 𝑗 |2𝛼

ª®¬
∑︁

ℎ𝑖 ∈Z\𝐶1 (𝑁)
𝑏+ℎ𝑖𝑔𝑖≡0 (mod 𝑁)

1
|ℎ𝑖 |2𝛼

= 𝛾𝔲
©«

∏
𝑗∈𝔲\{𝑖 }

1
|ℎ 𝑗 |2𝛼

ª®¬
©«

∞∑︁
ℎ𝑖= ⌊𝑁/2⌋+1

𝑏+ℎ𝑖𝑔𝑖≡0 (mod 𝑁)

1
|ℎ𝑖 |2𝛼

+
∞∑︁

ℎ𝑖= ⌈𝑁/2⌉
−𝑏+ℎ𝑖𝑔𝑖≡0 (mod 𝑁)

1
|ℎ𝑖 |2𝛼

ª®®®¬
= 𝛾𝔲

©«
∏
𝑗∈𝔲\{𝑖 }

1
|ℎ 𝑗 |2𝛼

ª®¬
∞∑︁
𝑡=1

©«
(𝑡+1) (⌊𝑁/2⌋+1)−1∑︁
ℎ𝑖=𝑡 (⌊𝑁/2⌋+1)

𝑏+ℎ𝑖𝑔𝑖≡0 (mod 𝑁)

1
|ℎ𝑖 |2𝛼

+
(𝑡+1) ⌈𝑁/2⌉−1∑︁
ℎ𝑖=𝑡 ⌈𝑁/2⌉

−𝑏+ℎ𝑖𝑔𝑖≡0 (mod 𝑁)

1
|ℎ𝑖 |2𝛼

ª®®®¬
≤ 𝛾𝔲

©«
∏
𝑗∈𝔲\{𝑖 }

1
|ℎ 𝑗 |2𝛼

ª®¬
∞∑︁
𝑡=1

22𝛼

(𝑡𝑁)2𝛼

©«
(𝑡+1) (⌊𝑁/2⌋+1)−1∑︁
ℎ𝑖=𝑡 (⌊𝑁/2⌋+1)

𝑏+ℎ𝑖𝑔𝑖≡0 (mod 𝑁)

1 +
(𝑡+1) ⌈𝑁/2⌉−1∑︁
ℎ𝑖=𝑡 ⌈𝑁/2⌉

−𝑏+ℎ𝑖𝑔𝑖≡0 (mod 𝑁)

1
ª®®®¬

≤ 𝛾𝔲
©«

∏
𝑗∈𝔲\{𝑖 }

1
|ℎ 𝑗 |2𝛼

ª®¬ 2 · 22𝛼𝜁 (2𝛼)
𝑁2𝛼 ,

which holds since for any 𝑏, 𝑔 ∈ Z with gcd(𝑔, 𝑁) = 1 the congruence 𝑏 + ℎ𝑔 ≡
0 (mod 𝑁) has at most one solution ℎ in {𝑡 (⌊𝑁/2⌋ + 1), . . . , (𝑡 + 1) (⌊𝑁/2⌋ + 1) − 1}
and at most one solution ℎ in {𝑡 ⌈𝑁/2⌉, . . . , (𝑡 +1) ⌈𝑁/2⌉ −1}. Consequently, we can
bound 𝑇𝔲 for |𝔲 | ≥ 2 by

𝑇𝔲 ≤ 𝛾𝔲
2 · 22𝛼𝜁 (2𝛼)

𝑁2𝛼

∑︁
𝑖∈𝔲

∑︁
𝒉𝔲\{𝑖} ∈(Z\{0}) |𝔲 |−1

∏
𝑗∈𝔲\{𝑖 }

1
|ℎ 𝑗 |2𝛼

= 𝛾𝔲
2 · 22𝛼𝜁 (2𝛼)

𝑁2𝛼

∑︁
𝑖∈𝔲

(
2

∞∑︁
𝑚=1

1
𝑚2𝛼

) |𝔲 |−1

= 𝛾𝔲
22𝛼

𝑁2𝛼 (2𝜁 (2𝛼))
|𝔲 | |𝔲 |

≤ 𝛾𝔲
22𝛼

𝑁2𝛼 (4𝜁 (2𝛼))
|𝔲 | .

In summary, we obtain, using the results for both cases from above,∑︁
∅≠𝔲⊆[𝑑]

𝑇𝔲 ≤ 22𝛼

𝑁2𝛼

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 (4𝜁 (2𝛼)) |𝔲 | ,

as claimed.
The second estimate in terms of 𝑅𝑁,𝑑,1,𝜸1/(2𝛼) follows from the first one after an

application of Inequality (3.29). □

3.6 A CBC Algorithm Based on the Quality Criterion 𝑅 131

A CBC construction based on 𝑅𝑁,𝑑,1,𝜸

Next, we introduce a CBC algorithm that is based on the figure of merit 𝑅𝑁,𝑑,1,𝜸,
which is independent of 𝛼. In the following approach due to Sinescu and Joe [228]
we restrict ourselves to prime 𝑁 .

Algorithm 3.14 (CBC construction based on 𝑅𝑁,𝑑,1,𝜸) Let 𝑁 be a prime number
and let 𝑑 be a positive integer. Construct a generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈
𝐺𝑑 (𝑁) as follows.

(1) Choose 𝑔1 = 1.
(2) For 𝑠 from 1 to 𝑑 − 1:

Assume that 𝑔1, . . . , 𝑔𝑠 ∈ 𝐺1 (𝑁) have already been found. Choose 𝑔𝑠+1 ∈ 𝐺1 (𝑁)
as

𝑔𝑠+1 := argmin
𝑔∈𝐺1 (𝑁)

𝑅𝑁,𝑠+1,1,𝜸 ((𝑔1, . . . , 𝑔𝑠 , 𝑔)).

End for.
(3) Set 𝒈 = (𝑔1, . . . , 𝑔𝑑).

The following theorem shows that the generating vectors returned by Algo-
rithm 3.14 indeed yield low values of 𝑅𝑁,𝑑,1,𝜸.
Theorem 3.15 Let 𝑁 be a prime number, let 𝑑 ∈ N, and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be
general weights. Assume that 𝒈 = (𝑔1, . . . , 𝑔𝑑) has been constructed according to
Algorithm 3.14. Then, for any 𝑠 ∈ [𝑑], we have

𝑅𝑁,𝑠,1,𝜸 ((𝑔1, . . . , 𝑔𝑠)) ≤
1
𝑁

∑︁
∅≠𝔲⊆[𝑠]

𝛾𝔲 𝑆
|𝔲 |
𝑁
,

where 𝑆𝑁 =
∑

𝒉∈𝐶∗
1 (𝑁) |ℎ|−1 as in (2.15). In particular, for product weights 𝛾𝔲 =∏

𝑗∈𝔲 𝛾 𝑗 for 𝔲 ⊆ [𝑑], we have

𝑅𝑁,𝑠,1,𝜸 ((𝑔1, . . . , 𝑔𝑠)) ≤
1
𝑁

𝑠∏
𝑗=1

(1 + 𝛾 𝑗𝑆𝑁),

and in the unweighted case, i.e., when all weights are equal to one, it is true that

𝑅((𝑔1, . . . , 𝑔𝑠), 𝑁) = 𝑅𝑁,𝑠,1,𝜸 ((𝑔1, . . . , 𝑔𝑠)) ≤
(1 + 𝑆𝑁)𝑠

𝑁
.

Remark 3.16 Recall from (2.16) that 𝑆𝑁 ≤ 2(log 𝑁+1−log 2). Hence for the vector
(𝑔1, . . . , 𝑔𝑠) in Theorem 3.15 we obtain

𝑅𝑁,𝑠,1,𝜸 ((𝑔1, . . . , 𝑔𝑠)) ≤
1
𝑁

∑︁
∅≠𝔲⊆[𝑠]

𝛾𝔲 (2(log 𝑁 + 1 − log 2)) |𝔲 | .

Note, furthermore, that in the unweighted case the constructive result in Theo-
rem 3.15 matches the average type result in (2.14).

132 3 Constructions of Lattice Rules

Proof of Theorem 3.15 We prove the result by induction on 𝑠. For 𝑠 = 1 we have
𝑅𝑁,1,1,𝜸 (𝑔) = 0 for any 𝑔 ∈ 𝐺1 (𝑁), and so the desired bound holds trivially.

Assume that we have already constructed a vector 𝒈 (𝑠) = (𝑔1, . . . , 𝑔𝑠) ∈ 𝐺𝑠 (𝑁)
satisfying

𝑅𝑁,𝑠,1,𝜸 (𝒈 (𝑠)) ≤ 1
𝑁

∑︁
∅≠𝔲⊆[𝑠]

𝛾𝔲 𝑆
|𝔲 |
𝑁
. (3.32)

For arbitrary 𝑔 ∈ 𝐺1 (𝑁) we write (𝒈 (𝑠) , 𝑔) := (𝑔1, . . . , 𝑔𝑠 , 𝑔). Recall the defini-
tion of 𝑅𝑁 (𝒈𝔲) from (3.30). Then we have

𝑅𝑁,𝑠+1,1,𝜸 ((𝒈 (𝑠) , 𝑔)) =
∑︁

∅≠𝔲⊆[𝑠+1]
𝛾𝔲𝑅𝑁 ((𝒈 (𝑠) , 𝑔)𝔲)

=
∑︁

∅≠𝔲⊆[𝑠]
𝛾𝔲𝑅𝑁 (𝒈 (𝑠)

𝔲) +
∑︁

𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝔲𝑅𝑁 ((𝒈 (𝑠) , 𝑔)𝔲)

= 𝑅𝑁,𝑠,1,𝜸 (𝒈 (𝑠)) +
∑︁

𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝔲𝑅𝑁 ((𝒈 (𝑠) , 𝑔)𝔲).

The term 𝑅𝑁 ((𝒈 (𝑠) , 𝑔)𝔲) that appears in the latter sum, where 𝔲 ⊆ [𝑠 + 1] with
𝑠 + 1 ∈ 𝔲, is zero if |𝔲 | = 1, and if |𝔲 | ≥ 2 it can be rewritten in the form

𝑅𝑁 ((𝒈 (𝑠) , 𝑔)𝔲) =
1
𝑁

𝑁−1∑︁
𝑘=0

©«
∏

𝑗∈𝔲\{𝑠+1}
𝑆𝑘,𝑁 (𝑔 𝑗)ª®¬ 𝑆𝑘,𝑁 (𝑔)

=
𝑆
|𝔲 |
𝑁

𝑁
+ 1
𝑁

𝑁−1∑︁
𝑘=1

©«
∏

𝑗∈𝔲\{𝑠+1}
𝑆𝑘,𝑁 (𝑔 𝑗)

ª®¬ 𝑆𝑘,𝑁 (𝑔),
where 𝑆𝑘,𝑁 is defined as in (3.31). Therefore we obtain

𝑅𝑁,𝑠+1,1,𝜸 ((𝒈 (𝑠) , 𝑔)) = 𝑅𝑁,𝑠,1,𝜸 (𝒈 (𝑠)) + 1
𝑁

∑︁
𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝔲 𝑆
|𝔲 |
𝑁

+ 1
𝑁

∑︁
𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝔲

𝑁−1∑︁
𝑘=1

©«
∏

𝑗∈𝔲\{𝑠+1}
𝑆𝑘,𝑁 (𝑔 𝑗)

ª®¬ 𝑆𝑘,𝑁 (𝑔).
(3.33)

Now assume that 𝑔𝑠+1 ∈ 𝐺1 (𝑁) has been chosen according to Algorithm 3.14.
Let (𝒈 (𝑠) , 𝑔𝑠+1) = (𝑔1, . . . , 𝑔𝑠 , 𝑔𝑠+1). Again we use the familiar standard averaging
argument (see Remark 2.14). Since the minimum is not larger than the average, we
have

3.6 A CBC Algorithm Based on the Quality Criterion 𝑅 133

𝑅𝑁,𝑠+1,1,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1)) ≤
1
𝑁

𝑁−1∑︁
𝑔=0

𝑅𝑁,𝑠+1,1,𝜸 ((𝒈 (𝑠) , 𝑔)).

Using (3.33) we get

𝑅𝑁,𝑠+1,1,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1))

≤ 𝑅𝑁,𝑠,1,𝜸 (𝒈 (𝑠)) + 1
𝑁

∑︁
𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝔲 𝑆
|𝔲 |
𝑁

+ 1
𝑁

∑︁
𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝔲

𝑁−1∑︁
𝑘=1

©«
∏

𝑗∈𝔲\{𝑠+1}
𝑆𝑘,𝑁 (𝑔 𝑗)ª®¬ 1

𝑁

𝑁−1∑︁
𝑔=0

𝑆𝑘,𝑁 (𝑔).

Now we use that 𝑁 is a prime number. For 𝑘 ∈ {1, 2, . . . , 𝑁 − 1} we have

𝑁−1∑︁
𝑔=0

𝑆𝑘,𝑁 (𝑔) =
∑︁

ℎ∈𝐶∗
1 (𝑁)

1
|ℎ|

𝑁−1∑︁
𝑔=0

(
e2𝜋iℎ𝑘/𝑁

)𝑔
=

∑︁
ℎ∈𝐶∗

1 (𝑁)
ℎ𝑘≡0 (mod 𝑁)

𝑁

|ℎ | = 0,

since no ℎ ∈ 𝐶∗
1 (𝑁) satisfies ℎ𝑘 ≡ 0 (mod 𝑁). Thus,

𝑅𝑁,𝑠+1,1,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1)) ≤ 𝑅𝑁,𝑠,1,𝜸 (𝒈 (𝑠)) + 1
𝑁

∑︁
𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝔲 𝑆
|𝔲 |
𝑁
.

Using the induction hypothesis (3.32) we obtain

𝑅𝑁,𝑠+1,1,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1)) ≤
1
𝑁

∑︁
∅≠𝔲⊆[𝑠]

𝛾𝔲 𝑆
|𝔲 |
𝑁

+ 1
𝑁

∑︁
𝔲⊆[𝑠+1]
|𝔲 | ≥2
𝑠+1∈𝔲

𝛾𝔲 𝑆
|𝔲 |
𝑁

≤ 1
𝑁

∑︁
∅≠𝔲⊆[𝑠+1]

𝛾𝔲 𝑆
|𝔲 |
𝑁
,

and this finishes the proof of the first claim in the theorem. The other claims follow
by straightforward reasoning. □

Combining Theorem 3.15 with Proposition 3.13 we can formulate the following
theorem.

134 3 Constructions of Lattice Rules

Theorem 3.17 Let 𝛼 > 1/2, let 𝑑 ∈ N, and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be general weights.
Then the following two statements hold.

1. Let 𝑁 be a prime number and assume that 𝒈 has been constructed according to
Algorithm 3.14 using the weights {𝜸1/(2𝛼)

𝔲 }𝔲⊆[𝑑] . Then we have

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤
1
𝑁𝛼

©«
©«

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝛼)
𝔲 (2(log 𝑁 + 1 − log 2)) |𝔲 |ª®¬

2𝛼

+ 22𝛼
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲 (4𝜁 (2𝛼)) |𝔲 |

ª®®¬
1/2

.

2. Let 𝑁 be a prime number and assume that 𝒈 has been constructed according to
Algorithm 3.14 using the weights {𝜸𝔲}𝔲⊆[𝑑] . Then we have

err𝑁,𝑑,𝛼,𝜸2𝛼 (𝒈) ≤ 1
𝑁𝛼

©«
©«

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 (2(log 𝑁 + 1 − log 2)) |𝔲 |ª®¬
2𝛼

+ 22𝛼
∑︁

∅≠𝔲⊆[𝑑]
𝛾2𝛼
𝔲 (4𝜁 (2𝛼)) |𝔲 |ª®¬

1/2

.

Remark 3.18 Note that there is a kind of trade-off to be observed in Theorem 3.17.
If we would like to have a good error bound on err𝑁,𝑑,𝛼,𝜸 (𝒈), then we need to run
Algorithm 3.14 using the weights {𝜸1/(2𝛼)

𝔲 }𝔲⊆[𝑑] , which implies that the algorithm
is not independent of the smoothness parameter 𝛼.

However, if we are content with an error bound for the smaller weights 𝜸2𝛼,
i.e., a bound for err𝑁,𝑑,𝛼,𝜸2𝛼 (𝒈), then we can run Algorithm 3.14 using just the
weights {𝜸𝔲}𝔲⊆[𝑑] , which implies that the algorithm is indeed independent of the
smoothness parameter 𝛼. Theorem 3.17 can also be combined with Theorem 12.1
to obtain a result for more general weights.

Remark 3.19 For the unweighted case, i.e., 𝛾𝔲 = 1 for all 𝔲 ⊆ [𝑑], we obviously
have 𝛾1/(2𝛼)

𝔲 = 𝛾𝔲 = 1. Hence, running Algorithm 3.14, which is independent of the
parameter 𝛼, we get the following error bound for the output generating vector 𝒈,

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤
1
𝑁𝛼

(
(2(1 + log 𝑁))2𝛼𝑑 + 22𝛼 (1 + 4𝜁 (2𝛼))𝑑

)1/2
,

simultaneously for every 𝛼 > 1/2. This is essentially the bound from the existence
result in Theorem 2.15.

In summary, we have, at least to a certain extent, achieved the goal we set ourselves
at the beginning of this section.

3.6 A CBC Algorithm Based on the Quality Criterion 𝑅 135

Error bounds independent of the dimension

We aim at finding conditions on the weights which guarantee that the bounds in
Remark 3.16 and Theorem 3.17 can be made independent of the dimension. In the
following we use the notation {𝛾𝔲}𝔲⊆N, |𝔲 |<∞, which indicates that we are not consid-
ering 𝑑 as fixed, but assume that—in the sense of Information-Based Complexity—
the dimension 𝑑 tends to infinity. Hence we have to assume that there is a weight 𝛾𝔲
for every finite 𝔲 ⊆ N.

To start, we state a lemma which was first shown in [69] and which will be crucial
in several instances in this book. For this lemma we need to assume positive weights.

Lemma 3.20 Let {𝛾𝔲}𝔲⊆N, |𝔲 |<∞ be arbitrary but positive weights with 𝛾∅ = 1 such
that

∞∑︁
𝑗=1

max
𝔳⊆[𝑗−1]

𝛾𝔳∪{ 𝑗 }

𝛾𝔳
< ∞. (3.34)

Then, for any 𝛿 > 0, there exists a 𝐶 (𝜸, 𝛿) > 0, which is independent of 𝑑 and 𝑁 ,
such that for all 𝑁 ∈ N we have∑︁

𝔲⊆N
|𝔲 |<∞

𝛾𝔲 (log 𝑁) |𝔲 | ≤ 𝐶 (𝜸, 𝛿) 𝑁 𝛿 .

In the case of product weights 𝛾𝔲 =
∏
𝑗∈𝔲 𝛾 𝑗 for 𝔲 ⊆ N, |𝔲 | < ∞, Condition (3.34)

is equivalent to
∑∞
𝑗=1 𝛾 𝑗 < ∞ and the assertion reads

∞∏
𝑗=1

(1 + 𝛾 𝑗 log 𝑁) ≤ 𝐶 (𝜸, 𝛿)𝑁 𝛿 .

Proof We first recall the proof for product weights from [105, Lemma 3]. In this
case Condition (3.34) boils down to

∑∞
𝑗=1 𝛾 𝑗 < ∞. We need to show then that for

any 𝛿 > 0 there exists a 𝐶 (𝜸, 𝛿) > 0 such that for all 𝑁 ∈ N we have∑︁
𝔲⊆N
|𝔲 |<∞

𝛾𝔲 (log 𝑁) |𝔲 | =
∞∏
𝑗=1

(1 + 𝛾 𝑗 log 𝑁) ≤ 𝐶 (𝜸, 𝛿)𝑁 𝛿 . (3.35)

Let

𝑆(𝜸, 𝑁) :=
∞∏
𝑗=1

(1 + 𝛾 𝑗 log 𝑁),

and define 𝜎ℓ :=
∑∞
𝑗=ℓ+1 𝛾 𝑗 for ℓ ∈ N0. If

∑∞
𝑗=1 𝛾 𝑗 < ∞, it is obviously true that

limℓ→∞ 𝜎ℓ = 0. Then,

136 3 Constructions of Lattice Rules

log 𝑆(𝜸, 𝑁) =
∞∑︁
𝑗=1

log(1 + 𝛾 𝑗 log 𝑁)

≤
ℓ∑︁
𝑗=1

log(1 + 𝜎−1
ℓ + 𝛾 𝑗 log 𝑁) +

∞∑︁
𝑗=ℓ+1

log(1 + 𝛾 𝑗 log 𝑁)

≤ ℓ log(1 + 𝜎−1
ℓ) +

ℓ∑︁
𝑗=1

log(1 + 𝛾 𝑗𝜎ℓ log 𝑁)

+
∞∑︁

𝑗=ℓ+1
log(1 + 𝛾 𝑗 log 𝑁)

≤ ℓ log(1 + 𝜎−1
ℓ) + 𝜎ℓ (log 𝑁)

ℓ∑︁
𝑗=1
𝛾 𝑗 + 𝜎ℓ log 𝑁

≤ ℓ log(1 + 𝜎−1
ℓ) + 𝜎ℓ (𝜎0 + 1) log 𝑁.

Hence we obtain
𝑆(𝜸, 𝑁) ≤ (1 + 𝜎−1

ℓ)ℓ𝑁 (𝜎0+1)𝜎ℓ .

For 𝛿 > 0 choose ℓ sufficiently large to make 𝜎ℓ ≤ 𝛿/(𝜎0 + 1). Then we get (3.35)
for a suitably chosen positive real 𝐶 (𝜸, 𝛿).

Now we deal with the general case. We start by considering a finite sum over all
subsets of [𝑑] for, without loss of generality, 𝑑 ≥ 4,∑︁

𝔲⊆[𝑑]
𝛾𝔲 (log 𝑁) |𝔲 | =

∑︁
𝔲⊆[𝑑−1]

𝛾𝔲 (log 𝑁) |𝔲 | +
∑︁

𝔲⊆[𝑑−1]
𝛾𝔲∪{𝑑 } (log 𝑁) |𝔲 |+1

=
∑︁

𝔲⊆[𝑑−1]
𝛾𝔲 (log 𝑁) |𝔲 |

(
1 +

𝛾𝔲∪{𝑑 }
𝛾𝔲

log 𝑁
)

=
∑︁

𝑑−1∉𝔲⊆[𝑑−1]
𝛾𝔲 (log 𝑁) |𝔲 |

(
1 +

𝛾𝔲∪{𝑑 }
𝛾𝔲

log 𝑁
)

+
∑︁

𝑑−1∈𝔲⊆[𝑑−1]
𝛾𝔲 (log 𝑁) |𝔲 |

(
1 +

𝛾𝔲∪{𝑑 }
𝛾𝔲

log 𝑁
)

=
∑︁

𝔲⊆[𝑑−2]
𝛾𝔲 (log 𝑁) |𝔲 |

(
1 +

𝛾𝔲∪{𝑑 }
𝛾𝔲

log 𝑁
)

+
∑︁

𝔲⊆[𝑑−2]
𝛾𝔲∪{𝑑−1} (log 𝑁) |𝔲 |+1

(
1 +

𝛾𝔲∪{𝑑−1}∪{𝑑 }
𝛾𝔲∪{𝑑−1}

log 𝑁
)

≤
∑︁

𝔲⊆[𝑑−2]
𝛾𝔲 (log 𝑁) |𝔲 |

(
1 +

𝛾𝔲∪{𝑑−1}
𝛾𝔲

log 𝑁
) (

1 + max
𝔳⊆{𝑑−1}

𝛾𝔲∪𝔳∪{𝑑 }
𝛾𝔲∪𝔳

log 𝑁
)

3.6 A CBC Algorithm Based on the Quality Criterion 𝑅 137

≤
∑︁

𝔲⊆[𝑑−3]
𝛾𝔲 (log 𝑁) |𝔲 |

(
1 +

𝛾𝔲∪{𝑑−2}
𝛾𝔲

log 𝑁
)

×
(
1 + max

𝔳⊆{𝑑−2}

𝛾𝔲∪𝔳∪{𝑑−1}
𝛾𝔲∪𝔳

log 𝑁
) (

1 + max
𝔳⊆{𝑑−2,𝑑−1}

𝛾𝔲∪𝔳∪{𝑑 }
𝛾𝔲∪𝔳

log 𝑁
)
.

Repeatedly applying this argument, we obtain∑︁
𝔲⊆[𝑑]

𝛾𝔲 (log 𝑁) |𝔲 | ≤
𝑑∏
𝑗=1

(
1 + �̃� 𝑗 log 𝑁

)
, where �̃� 𝑗 := max

𝔳⊆[𝑗−1]

𝛾𝔳∪{ 𝑗 }

𝛾𝔳
.

Now the general result follows similarly as (3.35). □

We can combine the previous results to the following theorem.

Theorem 3.21 Let 𝑁 > 2 be a prime number. Then the following statements hold
true.

1. Let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be positive weights satisfying

∞∑︁
𝑗=1

max
𝔳⊆[𝑗−1]

𝛾𝔳∪{ 𝑗 }

𝛾𝔳
< ∞.

Then for any 𝛿 > 0 there exists a positive real 𝐶 (𝜸, 𝛿), that depends only on the
weights 𝜸 and on 𝛿, with the following property. For any 𝑑 ∈ N, if 𝒈 = (𝑔1, . . . , 𝑔𝑑)
has been constructed according to Algorithm 3.14 using the weights {𝜸𝔲}𝔲⊆[𝑑] ,
we have

𝑅𝑁,𝑑,1,𝜸 (𝒈) ≤
𝐶 (𝜸, 𝛿)
𝑁1−𝛿 .

2. Let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be positive weights satisfying

∞∑︁
𝑗=1

max
𝔳⊆[𝑗−1]

𝛾𝔳∪{ 𝑗 }

𝛾𝔳
< ∞.

Then for any 𝛼 > 1/2 and any 𝛿 > 0 there exists a positive real 𝐶 (𝜸, 𝛿), that
depends only on the weights 𝜸 and on 𝛿, with the following property. For any
𝑑 ∈ N, if 𝒈 = (𝑔1, . . . , 𝑔𝑑) has been constructed according to Algorithm 3.14
using the weights {𝜸𝔲}𝔲⊆[𝑑] , we have

err𝑁,𝑑,𝛼,𝜸2𝛼 (𝒈) ≤ 𝐶 (𝜸, 𝛿)
𝑁𝛼−𝛿

.

3. Let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be positive weights satisfying

∞∑︁
𝑗=1

max
𝔳⊆[𝑗−1]

𝛾
1/(2𝛼)
𝔳∪{ 𝑗 }

𝛾
1/(2𝛼)
𝔳

< ∞.

138 3 Constructions of Lattice Rules

Then for any 𝛼 > 1/2 and any 𝛿 > 0 there exists a positive real𝐶 (𝜸1/(2𝛼) , 𝛿), that
depends only on the weights 𝜸1/(2𝛼) and on 𝛿, with the following property. For
any 𝑑 ∈ N, if 𝒈 = (𝑔1, . . . , 𝑔𝑑) has been constructed according to Algorithm 3.14
using the weights {𝜸1/(2𝛼)

𝔲 }𝔲⊆[𝑑] , we have

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤
𝐶 (𝜸1/(2𝛼) , 𝛿)

𝑁𝛼−𝛿
.

Proof Regarding Item 1, we have, according to Remark 3.16,

𝑅𝑁,𝑑,1,𝜸 (𝒈) ≤
1
𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 (2 log 𝑁 + 2 − log 4) |𝔲 |

≤ 1
𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 (3 log 𝑁) |𝔲 | .

A simple adaption of Lemma 3.20 yields the result.
Regarding Item 2, this result can be shown by combining Item 2 of Theorem 3.17

with Lemma 3.20, and noting that the assumptions of that lemma imply that the
second sum in the bound in Item 2 of Theorem 3.17 can be bounded by a constant
that is independent of 𝑑.

Regarding Item 3, the reasoning is analogous to Item 2. □

Notes and Remarks

For further information on the relation of two-dimensional lattice point sets to
Diophantine approximation we refer to [6, 9, 199, 230] or [204, Example 4.3.15].

Exhaustive searches for generating vectors of lattice rules were undertaken in
several papers, see, for example, [89, 90, 186, 187, 223].

Averaging results for Korobov type lattice points can be found, for example, in
[139, 199, 204].

The original version of Theorem 3.7 according to Kuo [156, Theorem 4] is slightly
more general. She considered a Korobov space with a reproducing kernel depending
on a sequence of additional parameters (𝛽 𝑗) 𝑗≥1. For the sake of simplicity, we choose
all 𝛽 𝑗 equal to 1 in the present book, as it has been common during the last years.
For further details on the case of general 𝛽 𝑗 , we refer to [156].

The generalization of [156, Theorem 4] to arbitrary 𝑁 ∈ N was done in [35].
The proof of the general error bound in Theorem 3.9 follows the presentation in [48,
Proof of Theorem 5.8].

As already mentioned, the fast CBC approach was developed by Nuyens and
Cools (see [213, 214, 215]). Related survey articles are [31, 32]. In the outline of the
fast matrix-vector product by means of FFT we followed the book [180, Section 4.2].
For the presentation of the fast CBC construction we restricted ourselves to the case

3.6 A CBC Algorithm Based on the Quality Criterion 𝑅 139

of prime 𝑁 for the sake of simplicity. The general case can be handled analogously;
see [215]. Note also that for the case of prime-power 𝑁 the fast implementation of the
CBC algorithm is a special case of the fast implementation of the so-called reduced
CBC algorithm, which we shall outline in Section 4.2. Indeed, by setting all reduction
indices 𝑤 𝑗 equal to zero there, we obtain a fast implementation of Algorithm 3.6
for prime-power 𝑁 . In the present description of the fast CBC construction for POD
weights we followed [48].

For implementations of the fast CBC construction, we refer to the websites of
various active researchers in this field, and to several ongoing projects that provide
software for generating QMC point sets. We also refer to Appendix B of the present
book for numerical experiments corresponding to the construction algorithms intro-
duced in this chapter.

Lemma 3.20 is a generalization of [105, Lemma 3] and of [160, Lemma 4.4] that
hold for product weights.

It should also be noted that a CBC algorithm similar to Algorithm 3.14 with
similar error bounds on the obtained lattice rules has recently been analyzed in
[69], where it was also shown that it can be implemented using the same order of
magnitude of operations as the fast implementation of Algorithm 3.6, but without
the need to use the fast Fourier transform. Furthermore, numerical results indicate
that both algorithms yield lattice rules of similar quality.

Chapter 4
Modified Construction Schemes

In the previous chapter we have introduced the basic concept of the (fast) CBC
construction for lattice rules together with an analysis of the quality of the resulting
generating vectors and an analysis of the runtime of the algorithms. In this chapter
we will continue to study this important topic and will present options to fine-
tune the CBC construction for various situations and applications. These include
the reduced CBC construction, the successive coordinate search construction, the
projection-corrected CBC construction, and the component-by-component digit-by-
digit construction, which all shall be presented here.

This chapter contains advanced material that can be skipped by beginners.
Let us begin with the reduced CBC construction.

4.1 The Reduced CBC Construction

We have outlined in Section 3.4 how the CBC construction can be implemented
using only O(𝑑 𝑁 log 𝑁) operations. In modern applications, however, the values of
𝑁 and 𝑑 might be extremely large simultaneously, which will make even this order of
magnitude infeasible for practical use of the CBC construction. Hence, it would be
beneficial to further reduce the runtime of the CBC construction, at least for certain,
suitably chosen function classes.

A second motivation stems from tractability results for integration in weighted
function spaces as discussed, for example, in Section 2.6. It is known that, in order
to obtain strong polynomial tractability of the integration problem in the weighted
Korobov space Hkor,𝑑,𝛼,𝜸 with product weights 𝜸 = (𝛾 𝑗) 𝑗≥1, it is necessary and
sufficient (see Corollary 2.28) that 𝜸 satisfies

∞∑︁
𝑗=1
𝛾 𝑗 < ∞.

141© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_4&domain=pdf

142 4 Modified Construction Schemes

If even
∞∑︁
𝑗=1
𝛾

1/(2𝜏)
𝑗

< ∞ (4.1)

for some 𝜏 ∈ [1/2, 𝛼), then one can choose the 𝜀-exponent to be 1/𝜏 (see again
Corollary 2.28 or Theorem 3.7). Assume, on the other hand, that (4.1) holds for
some 𝜏 > 𝛼. Then no further advantage is obtained over the results from Chapter 3,
since one still gets strong polynomial tractability with the optimal 𝜀-exponent and
the construction cost of the lattice rule is independent of the choice of weights.
However, since (4.1) implies that the importance of coordinates with bigger index
is much smaller than that of earlier ones, it seems unreasonable to spend the same
amount of work to search for the corresponding component of the generating vector.
This is exactly the key idea that is discussed in this section. We will see below that
in a situation where (4.1) holds for 𝜏 > 𝛼, we can reduce the construction cost of the
generating vector of a lattice rule by making the search space for later components
smaller than for earlier ones, while still achieving strong polynomial tractability with
the optimal 𝜀-exponent.

The reduced fast CBC construction

Our approach is the following. In this section, we do not assume that 𝑁 is a prime
number, but a prime power of the form 𝑁 = 𝑏𝑚, where 𝑏 is prime and 𝑚 ∈
N. Furthermore, let 𝑤1, 𝑤2, . . . , 𝑤𝑑 ∈ N0 with 𝑤1 ≤ 𝑤2 ≤ · · · ≤ 𝑤𝑑 . We will
sometimes refer to the 𝑤 𝑗 as reduction indices in the following. The most interesting
case is when 𝑤1 = 0, since otherwise the construction below results in each point
just being counted 𝑏𝑤1 times.

The reduced fast CBC construction is based on the idea to shrink the search
spaces for later components 𝑔 𝑗 of the generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑) of a rank-1
lattice rule. While in the common CBC construction (cf. Algorithms 3.5 and 3.6) 𝑔 𝑗
is chosen from 𝐺

𝜑

1 (𝑁) for each 𝑗 ∈ [𝑑], we introduce search spaces 𝑍𝑤 𝑗
(𝑁) here,

which depend on the choice of the 𝑤 𝑗 and are in general different for each 𝑗 . To be
more precise, we define

𝑍𝑤 𝑗
(𝑁) :=

{
{𝑔 ∈ {1, 2, . . . , 𝑏𝑚−𝑤 𝑗 − 1} : gcd(𝑔, 𝑏) = 1} if 𝑤 𝑗 < 𝑚,
{1} if 𝑤 𝑗 ≥ 𝑚.

(4.2)

Note that then

|𝑍𝑤 𝑗
(𝑁) | =

{
𝑏𝑚−𝑤 𝑗−1 (𝑏 − 1) if 𝑤 𝑗 < 𝑚,
1 if 𝑤 𝑗 ≥ 𝑚.

In the following, we write

𝑌 𝑗 := 𝑏𝑤 𝑗 for 𝑗 ∈ [𝑑]. (4.3)

4.1 The Reduced CBC Construction 143

We can now formulate the reduced fast CBC construction algorithm for generating
vectors 𝒈 with respect to general weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] .

Algorithm 4.1 (Reduced CBC construction for the weighted Korobov space)
Let 𝑏 be a prime number, let 𝑚 ∈ N0 and 𝑁 = 𝑏𝑚. Let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be general
weights, and let 𝑤1, 𝑤2, . . . , 𝑤𝑑 ∈ N0 with 𝑤1 ≤ 𝑤2 ≤ · · · ≤ 𝑤𝑑 . Furthermore, let
𝑌1, 𝑌2, . . . , 𝑌𝑑 be as in (4.3). Construct 𝒈 = (𝑌1𝑔1, . . . , 𝑌𝑑𝑔𝑑) as follows.

(1) Choose 𝑔1 = 1.
(2) For 𝑠 from 1 to 𝑑 − 1:

Assume that 𝑔 𝑗 ∈ 𝑍𝑤 𝑗
(𝑁), 𝑗 ∈ [𝑠], have already been found. Choose 𝑔𝑠+1 ∈

𝑍𝑤𝑠+1 (𝑁) as

𝑔𝑠+1 := argmin
𝑔∈𝑍𝑤𝑠+1 (𝑁)

err𝑁,𝑠+1,𝛼,𝜸 ((𝑌1𝑔1, . . . , 𝑌𝑠𝑔𝑠 , 𝑌𝑠+1𝑔)).

End for.
(3) Set 𝒈 = (𝑌1𝑔1, . . . , 𝑌𝑑𝑔𝑑).

Just as the classical CBC construction (see Algorithms 3.5 and 3.6), also the
reduced CBC construction is extensible in the dimension. If one would like to
add further components to the obtained vector later, this can be done by choosing
further reduction indices 𝑤𝑑+1, 𝑤𝑑+2, . . . as required, and then running the loop in
the algorithm as often as necessary.

Remark 4.2 Note that when setting 𝑤1 = 𝑤2 = · · · = 𝑤𝑑 = 0, Algorithm 4.1 coin-
cides with Algorithm 3.6, hence the reduced CBC construction is a generalization
of the usual CBC construction.

Error analysis

We show the following theorem from [45], which states that Algorithm 4.1 yields
generating vectors 𝒈 with a small integration error.

Theorem 4.3 Let 𝑏 be a prime number, let 𝑚 ∈ N0 and 𝑁 = 𝑏𝑚. Let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑]
be general weights, and let 𝑤1, 𝑤2, . . . , 𝑤𝑑 ∈ N0 with 𝑤1 ≤ 𝑤2 ≤ · · · ≤ 𝑤𝑑 .
Furthermore, let 𝑌1, 𝑌2, . . . , 𝑌𝑑 be as in (4.3). Assume that 𝒈 = (𝑌1𝑔1, . . . , 𝑌𝑑𝑔𝑑) ∈
Z𝑑 has been constructed according to Algorithm 4.1. Then for arbitrary 𝜏 ∈ [1/2, 𝛼)
and any 𝑠 ∈ [𝑑] we have

err𝑁,𝑠,𝛼,𝜸 ((𝑌1𝑔1, . . . , 𝑌𝑠𝑔𝑠)) ≤ ©«
∑︁

∅≠𝔲⊆[𝑠]
𝛾

1/(2𝜏)
𝔲

2(2𝜁 (𝛼/𝜏)) |𝔲 |

𝑏max(0,𝑚−max 𝑗∈𝔲 𝑤 𝑗)
ª®¬
𝜏

. (4.4)

Proof We recall that we denote the dual lattice of an integration lattice L by L⊥.
Furthermore, for ∅ ≠ 𝔲 ⊆ [𝑑] and a lattice L with generating vector 𝒈, we write

144 4 Modified Construction Schemes

L⊥
𝔲 := {𝒉𝔲 ∈ (Z \ {0}) |𝔲 | : 𝒉𝔲 · 𝒈𝔲 ≡ 0 (mod 𝑁)}. (4.5)

The result is shown by induction on 𝑠.
For 𝑠 = 1, we have 𝑔1 = 1. Thus we have, using (2.23) in Theorem 2.19,

[err𝑁,1,𝛼,𝛾{1} (𝑌1)]2 = 𝛾{1}
∑︁

ℎ∈Z\{0}
ℎ𝑌1≡0 (mod 𝑁)

1
𝑟2𝛼 (ℎ)

.

Let now 𝜆 ∈ (1/(2𝛼), 1]. Applying Jensen’s inequality (Lemma 2.25) to the squared
error [err𝑁,1,𝛼,𝛾{1} (𝑌1)]2, and noting that (𝑟2𝛼 (ℎ))𝜆 = 𝑟2𝛼𝜆 (ℎ) for ℎ ∈ Z, we obtain

[err𝑁,1,𝛼,𝛾{1} (𝑌1)]2𝜆 ≤ 𝛾𝜆{1}
∑︁

ℎ∈Z\{0}
ℎ𝑌1≡0 (mod 𝑁)

1
𝑟2𝛼𝜆 (ℎ)

.

If 𝑤1 ≥ 𝑚, we have 𝑁 |𝑌1, and the condition ℎ𝑌1 ≡ 0 (mod 𝑁) is satisfied for any
integer ℎ. Consequently,

[err𝑁,1,𝛼,𝛾{1} (𝑌1)]2𝜆 ≤ 𝛾𝜆{1}
∑︁

ℎ∈Z\{0}

1
𝑟2𝛼𝜆 (ℎ)

= 𝛾𝜆{1}2𝜁 (2𝛼𝜆).

If 𝑤1 < 𝑚, then ℎ𝑌1 ≡ 0 (mod 𝑁) is equivalent to 𝑏𝑚−𝑤1 |ℎ, and

[err𝑁,1,𝛼,𝛾{1} (𝑌1)]2𝜆 ≤ 𝛾𝜆{1}
∑︁

ℎ∈Z\{0}
𝑏𝑚−𝑤1 |ℎ

1
𝑟2𝛼𝜆(ℎ)

= 𝛾𝜆{1}

∑︁
ℎ∈Z\{0}

1
𝑟2𝛼𝜆 (ℎ𝑏𝑚−𝑤1) .

For ℎ ∈ Z \ {0} we have 𝑟2𝛼𝜆(ℎ𝑏𝑚−𝑤1) = 𝑏−2𝛼𝜆(𝑚−𝑤1)𝑟2𝛼𝜆(ℎ), and we also have
2𝛼𝜆 > 1. Consequently, we obtain

[err𝑁,1,𝛼,𝛾{1} (𝑌1)]2𝜆 ≤
𝛾𝜆{1}

𝑏2𝛼𝜆(𝑚−𝑤1)

∑︁
ℎ∈Z\{0}

1
𝑟2𝛼𝜆 (ℎ)

= 𝛾𝜆{1}
2𝜁 (2𝛼𝜆)
𝑏2𝛼𝜆(𝑚−𝑤1)

.

In any case,

[err𝑁,1,𝛼,𝛾{1} (𝑌1)]2𝜆 ≤ 𝛾𝜆{1}
2𝜁 (2𝛼𝜆)

𝑏2𝛼𝜆max(0,𝑚−𝑤1)
≤ 𝛾𝜆{1}

4𝜁 (2𝛼𝜆)
𝑏2𝛼𝜆max(0,𝑚−𝑤1)

.

Taking the left-hand side and the right-hand side of the previous inequality to the
power 1/(2𝜆) and setting 𝜏 = 1/(2𝜆), which implies 𝜏 ∈ [1/2, 𝛼), we obtain

err𝑁,1,𝛼,𝛾{1} (𝑌1) ≤ 𝛾1/2
{1}

(4𝜁 (𝛼/𝜏))𝜏

𝑏𝛼max(0,𝑚−𝑤1)
≤

(
𝛾

1/(2𝜏)
{1}

4𝜁 (𝛼/𝜏)
𝑏max(0,𝑚−𝑤1)

) 𝜏
,

and this is the desired result (4.4) for the case 𝑠 = 1.

4.1 The Reduced CBC Construction 145

Assume now that we have shown the result for some fixed 𝑠, i.e., the generating
vector 𝒈 (𝑠) = (𝑌1𝑔1, . . . , 𝑌𝑠𝑔𝑠) satisfies

err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠)) ≤ ©«
∑︁

∅≠𝔲⊆[𝑠]
𝛾

1/(2𝜏)
𝔲

2(2𝜁 (𝛼/𝜏)) |𝔲 |

𝑏max(0,𝑚−max 𝑗∈𝔲 𝑤 𝑗)
ª®¬
𝜏

. (4.6)

Furthermore, assume that 𝑔𝑠+1 ∈ 𝑍𝑤𝑠+1 (𝑁) has been chosen according to Algo-
rithm 4.1. Then, using (2.23) in Theorem 2.19,

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑌𝑠+1𝑔𝑠+1))]2

=
∑︁

∅≠𝔲⊆[𝑠+1]
𝛾𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲

1
𝑟2𝛼 (𝒉𝔲)

=
∑︁

∅≠𝔲⊆[𝑠]
𝛾𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲

1
𝑟2𝛼 (𝒉𝔲)

+
∑︁

𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲

1
𝑟2𝛼 (𝒉𝔲)

= [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2 + 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1), (4.7)

where we write

𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1) =
∑︁

𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲

1
𝑟2𝛼 (𝒉𝔲)

, (4.8)

which is the only term in [err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑌𝑠+1𝑔𝑠+1))]2 that depends on 𝑔𝑠+1 (note
that the dependence on 𝑔𝑠+1 is in L⊥

𝔲).
Let 𝜆 ∈ (1/(2𝛼), 1]. We now analyze the average of (𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔))𝜆 over all

possible values 𝑔 ∈ 𝑍𝑤𝑠+1 (𝑁),

Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠)) :=
1

|𝑍𝑤𝑠+1 (𝑁) |
∑︁

𝑔∈𝑍𝑤𝑠+1 (𝑁)
(𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔))𝜆,

where 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) is the analogue of (4.8) for 𝑔 ∈ 𝑍𝑤𝑠+1 (𝑁). We now have,
using Jensen’s inequality (Lemma 2.25) twice,

Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠)) ≤ 1
|𝑍𝑤𝑠+1 (𝑁) |

∑︁
𝑔∈𝑍𝑤𝑠+1 (𝑁)

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝜆𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲

1
𝑟2𝛼𝜆(𝒉𝔲)

=
1

|𝑍𝑤𝑠+1 (𝑁) |
∑︁

𝑔∈𝑍𝑤𝑠+1 (𝑁)
𝛾𝜆{𝑠+1}

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1𝑌𝑠+1𝑔≡0 (mod 𝑁)

1
𝑟2𝛼𝜆(ℎ𝑠+1)

+ 1
|𝑍𝑤𝑠+1 (𝑁) |

∑︁
𝑔∈𝑍𝑤𝑠+1 (𝑁)

∑︁
∅≠𝔳⊆[𝑠]

𝛾𝜆
𝔳∪{𝑠+1}

∑︁
ℎ𝑠+1∈Z\{0}

1
𝑟2𝛼𝜆 (ℎ𝑠+1)

146 4 Modified Construction Schemes

×
∑︁

𝒉𝔳∈(Z\{0}) |𝔳|∑
𝑗∈𝔳 ℎ 𝑗𝑌𝑗𝑔 𝑗≡−ℎ𝑠+1𝑌𝑠+1𝑔 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

= 𝑇1 + 𝑇2,

where

𝑇1 :=
1

|𝑍𝑤𝑠+1 (𝑁) |
∑︁

𝑔∈𝑍𝑤𝑠+1 (𝑁)
𝛾𝜆{𝑠+1}

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1𝑌𝑠+1𝑔≡0 (mod 𝑁)

1
𝑟2𝛼𝜆 (ℎ𝑠+1)

,

and

𝑇2 :=
1

|𝑍𝑤𝑠+1 (𝑁) |
∑︁

𝑔∈𝑍𝑤𝑠+1 (𝑁)

∑︁
∅≠𝔳⊆[𝑠]

𝛾𝜆
𝔳∪{𝑠+1}

∑︁
ℎ𝑠+1∈Z\{0}

1
𝑟2𝛼𝜆 (ℎ𝑠+1)

×
∑︁

𝒉𝔳∈(Z\{0}) |𝔳|∑
𝑗∈𝔳 ℎ 𝑗𝑌𝑗𝑔 𝑗≡−ℎ𝑠+1𝑌𝑠+1𝑔 (mod 𝑁)

1
𝑟2𝛼𝜆 (𝒉𝔳)

.

We first consider 𝑇1. Since gcd(𝑔, 𝑁) = 1, the congruence ℎ𝑠+1𝑌𝑠+1𝑔 ≡
0 (mod 𝑁) is equivalent to ℎ𝑠+1𝑌𝑠+1 ≡ 0 (mod 𝑁). Thus by the same arguments
as for the case 𝑠 = 1 we obtain

𝑇1 ≤
4𝛾𝜆{𝑠+1}𝜁 (2𝛼𝜆)
𝑏max(0,𝑚−𝑤𝑠+1)

. (4.9)

Regarding 𝑇2, we distinguish the two cases 𝑤𝑠+1 ≥ 𝑚 and 𝑤𝑠+1 < 𝑚.
If 𝑤𝑠+1 ≥ 𝑚, we have 𝑍𝑤𝑠+1 (𝑁) = {1}, 𝑔 = 1, and ℎ𝑠+1𝑌𝑠+1𝑔 ≡ 0 (mod 𝑁), since

𝑁 |𝑌𝑠+1 and therefore 𝑁 |ℎ𝑠+1𝑌𝑠+1𝑔. Consequently, 𝑇2 simplifies to

𝑇2 =
∑︁

∅≠𝔳⊆[𝑠]
𝛾𝜆
𝔳∪{𝑠+1}

∑︁
ℎ𝑠+1∈Z\{0}

1
𝑟2𝛼𝜆 (ℎ𝑠+1)

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑌𝑗𝑔 𝑗≡0 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

= 2𝜁 (2𝛼𝜆)
∑︁

∅≠𝔳⊆[𝑠]
𝛾𝜆
𝔳∪{𝑠+1}

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑌𝑗𝑔 𝑗≡0 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

≤ 2𝜁 (2𝛼𝜆)
∑︁

∅≠𝔳⊆[𝑠]
𝛾𝜆
𝔳∪{𝑠+1}

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|

1
𝑟2𝛼𝜆 (𝒉𝔳)

= 2𝜁 (2𝛼𝜆)
∑︁

∅≠𝔳⊆[𝑠]
𝛾𝜆
𝔳∪{𝑠+1} (2𝜁 (2𝛼𝜆))

|𝔳 |

=
∑︁

∅≠𝔳⊆[𝑠]
𝛾𝜆
𝔳∪{𝑠+1} (2𝜁 (2𝛼𝜆))

|𝔳 |+1.

If 𝑤𝑠+1 < 𝑚, we split 𝑇2 into two parts,

4.1 The Reduced CBC Construction 147

𝑇2 = 𝑇2,1 + 𝑇2,2,

where

𝑇2,1 :=
1

|𝑍𝑤𝑠+1 (𝑁) |
∑︁

𝑔∈𝑍𝑤𝑠+1 (𝑁)

∑︁
∅≠𝔳⊆[𝑠]

𝛾𝜆
𝔳∪{𝑠+1}

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1≡0 (𝑏𝑚−𝑤𝑠+1)

1
𝑟2𝛼𝜆(ℎ𝑠+1)

×
∑︁

𝒉𝔳∈(Z\{0}) |𝔳|∑
𝑗∈𝔳 ℎ 𝑗𝑌𝑗𝑔 𝑗≡0 (mod 𝑁)

1
𝑟2𝛼𝜆 (𝒉𝔳)

and

𝑇2,2 :=
1

|𝑍𝑤𝑠+1 (𝑁) |
∑︁

𝑔∈𝑍𝑤𝑠+1 (𝑁)

∑︁
∅≠𝔳⊆[𝑠]

𝛾𝜆
𝔳∪{𝑠+1}

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1.0 (mod 𝑏𝑚−𝑤𝑠+1)

1
𝑟2𝛼𝜆 (ℎ𝑠+1)

×
∑︁

𝒉𝔳∈(Z\{0}) |𝔳|∑
𝑗∈𝔳 ℎ 𝑗𝑌𝑗𝑔 𝑗≡−ℎ𝑠+1𝑌𝑠+1𝑔 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

.

For the term 𝑇2,1, note that if ℎ𝑠+1 ≡ 0 (mod 𝑏𝑚−𝑤𝑠+1), then ℎ𝑠+1𝑌𝑠+1𝑔 ≡ 0 (mod 𝑁)
for any 𝑔 ∈ 𝑍𝑤𝑠+1 (𝑁), so we obtain

𝑇2,1 =
∑︁

∅≠𝔳⊆[𝑠]
𝛾𝜆
𝔳∪{𝑠+1}

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑌𝑗𝑔 𝑗≡0 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1≡0 (𝑏𝑚−𝑤𝑠+1)

1
𝑟2𝛼𝜆 (ℎ𝑠+1)

=
2𝜁 (2𝛼𝜆)

𝑏 (𝑚−𝑤𝑠+1)2𝛼𝜆

∑︁
∅≠𝔳⊆[𝑠]

𝛾𝜆
𝔳∪{𝑠+1}

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑌𝑗𝑔 𝑗≡0 (mod 𝑁)

1
𝑟2𝛼𝜆 (𝒉𝔳)

≤ 2𝜁 (2𝛼𝜆)
𝑏𝑚−𝑤𝑠+1

∑︁
∅≠𝔳⊆[𝑠]

𝛾𝜆
𝔳∪{𝑠+1}

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑌𝑗𝑔 𝑗≡0 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

,

where we used that 2𝛼𝜆 > 1 in the last line.
For 𝑇2,2 we obtain

𝑇2,2 =
1

|𝑍𝑤𝑠+1 (𝑁) |
∑︁

𝑔∈𝑍𝑤𝑠+1 (𝑁)

∑︁
∅≠𝔳⊆[𝑠]

𝛾𝜆
𝔳∪{𝑠+1}

×
𝑏𝑚−𝑤𝑠+1−1∑︁

𝑐=1

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1≡−𝑐𝑔−1 (mod 𝑏𝑚−𝑤𝑠+1)

1
𝑟2𝛼𝜆 (ℎ𝑠+1)

148 4 Modified Construction Schemes

×
∑︁

𝒉𝔳∈(Z\{0}) |𝔳|∑
𝑗∈𝔳 ℎ 𝑗𝑌𝑗𝑔 𝑗≡𝑐𝑌𝑠+1 (mod 𝑁)

1
𝑟2𝛼𝜆 (𝒉𝔳)

,

where 𝑔−1 denotes the multiplicative inverse of 𝑔 in 𝑍𝑤𝑠+1 (𝑁). For fixed 𝑐 ∈
{1, 2, . . . , 𝑏𝑚−𝑤𝑠+1 − 1} let 𝑧 := gcd(𝑐, 𝑏𝑚−𝑤𝑠+1). Then gcd(𝑐/𝑧, 𝑏𝑚−𝑤𝑠+1/𝑧) = 1.
Furthermore, note that

{𝑐 𝑔−1 (mod 𝑏𝑚−𝑤𝑠+1) : 𝑔 ∈ 𝑍𝑤𝑠+1 (𝑁)} = {𝑐 𝑔 (mod 𝑏𝑚−𝑤𝑠+1) : 𝑔 ∈ 𝑍𝑤𝑠+1 (𝑁)}.

Hence ∑︁
𝑔∈𝑍𝑤𝑠+1 (𝑁)

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1≡−𝑐𝑔−1 (mod 𝑏𝑚−𝑤𝑠+1)

1
𝑟2𝛼𝜆 (ℎ𝑠+1)

=
∑︁

𝑔∈𝑍𝑤𝑠+1 (𝑁)

∑︁
ℎ𝑠+1∈Z\{0}

ℎ𝑠+1≡−𝑐𝑔 (mod 𝑏𝑚−𝑤𝑠+1)

1
|ℎ𝑠+1 |2𝛼𝜆

=
∑︁

𝑔∈𝑍𝑤𝑠+1 (𝑁)

∑︁
𝑘∈Z

1
|𝑘𝑏𝑚−𝑤𝑠+1 − 𝑐𝑔 |2𝛼𝜆

=
1
𝑧2𝛼𝜆

∑︁
𝑔∈𝑍𝑤𝑠+1 (𝑁)

∑︁
𝑘∈Z

1
|𝑘 (𝑏𝑚−𝑤𝑠+1/𝑧) − (𝑐/𝑧)𝑔 |2𝛼𝜆

=
1
𝑧2𝛼𝜆

∑︁
𝑔∈𝑍𝑤𝑠+1 (𝑁)

∑︁
ℎ∈Z\{0}

ℎ≡−(𝑐/𝑧)𝑔 (mod 𝑏𝑚−𝑤𝑠+1/𝑧)

1
|ℎ|2𝛼𝜆

≤ 𝑧

𝑧2𝛼𝜆

𝑏𝑚−𝑤𝑠+1/𝑧−1∑︁
𝑡=1

∑︁
ℎ∈Z\{0}

ℎ≡𝑡 (mod 𝑏𝑚−𝑤𝑠+1/𝑧)

1
|ℎ|2𝛼𝜆

≤
∑︁

ℎ∈Z\{0}

1
|ℎ|2𝛼𝜆

= 2𝜁 (2𝛼𝜆), (4.10)

since 𝑧 ≥ 1 and 𝜆 > 1/(2𝛼).
It follows that

𝑇2,2 ≤ 2𝜁 (2𝛼𝜆)
|𝑍𝑤𝑠+1 (𝑁) |

∑︁
∅≠𝔳⊆[𝑠]

𝛾𝜆
𝔳∪{𝑠+1}

𝑏𝑚−𝑤𝑠+1−1∑︁
𝑐=1

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑌𝑗𝑔 𝑗≡𝑐𝑌𝑠+1 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

≤ 2𝜁 (2𝛼𝜆)
|𝑍𝑤𝑠+1 (𝑁) |

∑︁
∅≠𝔳⊆[𝑠]

𝛾𝜆
𝔳∪{𝑠+1}

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑌𝑗𝑔 𝑗.0 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

.

4.1 The Reduced CBC Construction 149

Recall that |𝑍𝑤𝑠+1 (𝑁) | = 𝑏𝑚−𝑤𝑠+1−1 (𝑏 − 1) ≥ 𝑏𝑚−𝑤𝑠+1/2. Therefore we get

𝑇2,2 ≤ 4𝜁 (2𝛼𝜆)
𝑏𝑚−𝑤𝑠+1

∑︁
∅≠𝔳⊆[𝑠]

𝛾𝜆
𝔳∪{𝑠+1}

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑌𝑗𝑔 𝑗.0 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

=
4𝜁 (2𝛼𝜆)
𝑏𝑚−𝑤𝑠+1

∑︁
∅≠𝔳⊆[𝑠]

𝛾𝜆
𝔳∪{𝑠+1}

×
©«

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|

1
𝑟2𝛼𝜆(𝒉𝔳)

−
∑︁

𝒉𝔳∈(Z\{0}) |𝔳|∑
𝑗∈𝔳 ℎ 𝑗𝑌𝑗𝑔 𝑗≡0 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

ª®®®®¬
.

Thus, we obtain for 𝑇2 = 𝑇2,1 + 𝑇2,2,

𝑇2 ≤ 4𝜁 (2𝛼𝜆)
𝑏𝑚−𝑤𝑠+1

∑︁
∅≠𝔳⊆[𝑠]

𝛾𝜆
𝔳∪{𝑠+1}

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|

1
𝑟2𝛼𝜆(𝒉𝔳)

=
∑︁

∅≠𝔳⊆[𝑠]
𝛾𝜆
𝔳∪{𝑠+1}

2(2𝜁 (2𝛼𝜆)) |𝔳 |+1

𝑏𝑚−𝑤𝑠+1
.

In any case, when 𝑤𝑠+1 ≥ 𝑚 and when 𝑤𝑠+1 < 𝑚, we have

𝑇2 ≤
∑︁

∅≠𝔳⊆[𝑠]
𝛾𝜆
𝔳∪{𝑠+1}

2(2𝜁 (2𝛼𝜆)) |𝔳 |+1

𝑏max(0,𝑚−𝑤𝑠+1)
. (4.11)

Combining (4.9) and (4.11) yields

Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠)) ≤
∑︁

𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝜆𝔲
2(2𝜁 (2𝛼𝜆)) |𝔲 |

𝑏max(0,𝑚−𝑤𝑠+1)
.

By construction, the 𝑔𝑠+1 chosen by Algorithm 4.1 must satisfy

(𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1))𝜆 ≤ Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠)) ≤
∑︁

𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝜆𝔲
2(2𝜁 (2𝛼𝜆)) |𝔲 |

𝑏max(0,𝑚−𝑤𝑠+1)
, (4.12)

where we again used the standard averaging argument in Remark 2.14.
We then obtain from (4.7) that

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑌𝑠+1𝑔𝑠+1))]2𝜆

=

(
[err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2 + 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1)

)𝜆
≤ [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2𝜆 + (𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1))𝜆

150 4 Modified Construction Schemes

≤ [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2𝜆 +
∑︁

𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝜆𝔲
2(2𝜁 (2𝛼𝜆)) |𝔲 |

𝑏max(0,𝑚−𝑤𝑠+1)
,

where we once again used Lemma 2.25, and also (4.12). Setting again 𝜏 = 1/(2𝜆)
we arrive at

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑌𝑠+1𝑔𝑠+1))]1/𝜏

≤ [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]1/𝜏 +
∑︁

𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾
1/(2𝜏)
𝔲

2(2𝜁 (𝛼/𝜏)) |𝔲 |

𝑏max(0,𝑚−𝑤𝑠+1)
.

Using the induction hypothesis (4.6) we get

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑌𝑠+1𝑔𝑠+1))]1/𝜏

≤
∑︁

∅≠𝔲⊆[𝑠]
𝛾

1/(2𝜏)
𝔲

2(2𝜁 (𝛼/𝜏)) |𝔲 |

𝑏max(0,𝑚−max 𝑗∈𝔲 𝑤 𝑗)
+

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾
1/(2𝜏)
𝔲

2(2𝜁 (𝛼/𝜏)) |𝔲 |

𝑏max(0,𝑚−𝑤𝑠+1)

=
∑︁

∅≠𝔲⊆[𝑠+1]
𝛾

1/(2𝜏)
𝔲

2(2𝜁 (𝛼/𝜏)) |𝔲 |

𝑏max(0,𝑚−max 𝑗∈𝔲 𝑤 𝑗)
,

which yields the final result. □

Tractability

Recall that we motivated the study of the reduced CBC construction by sufficient
conditions for (strong polynomial) tractability. We formulate two corollaries to The-
orem 4.3 as follows, and use the terminology introduced in Section 1.7.

Corollary 4.4 Let 𝑏 be a prime number, let 𝑚 ∈ N0 and 𝑁 = 𝑏𝑚. Let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑]
be general weights, and let 𝑤1, 𝑤2, . . . , 𝑤𝑑 ∈ N0 with 𝑤1 ≤ 𝑤2 ≤ · · · ≤ 𝑤𝑑 .
Moreover, let 𝑌1, 𝑌2, . . . , 𝑌𝑑 be as in (4.3). Assume that 𝒈 = (𝑌1𝑔1, . . . , 𝑌𝑑𝑔𝑑) ∈ Z𝑑
has been constructed according to Algorithm 4.1. Then,

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤
𝑐𝑑,𝛼,𝜸, 𝛿,𝒘

𝑁𝛼−𝛿
for all 𝛿 ∈ (0, 𝛼 − 1/2] , (4.13)

where

𝑐𝑑,𝛼,𝜸, 𝛿,𝒘 := ©«2
∑︁

∅≠𝔲⊆[𝑑]
𝛾

1/(2𝛼−2𝛿)
𝔲

(
2𝜁

(𝛼

𝛼 − 𝛿

)) |𝔲 |
𝑏max 𝑗∈𝔲 𝑤 𝑗

ª®¬
𝛼−𝛿

.

Furthermore, for 𝛿 ∈ (0, 𝛼 − 1/2] and 𝑞 ≥ 0 define

4.1 The Reduced CBC Construction 151

𝐶𝛿,𝑞 := sup
𝑑∈N

©« 1
𝑑𝑞

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝛼−2𝛿)
𝔲

(
2𝜁

(𝛼

2𝛼 − 2𝛿

)) |𝔲 |
𝑏max 𝑗∈𝔲 𝑤 𝑗

ª®¬ .
With this notation, the following holds.

1. If
𝐶𝛿,𝑞 < ∞ for some 𝛿 ∈ (0, 𝛼 − 1/2] and a nonnegative 𝑞,

then

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤
(2𝑑𝑞𝐶𝛿,𝑞)𝛼−𝛿

𝑁𝛼−𝛿
,

and hence the information complexity depends only polynomially on 𝑑 and 𝜀−1.
In particular, this implies polynomial tractability.

2. If
𝐶𝛿,0 < ∞ for some 𝛿 ∈ (0, 𝛼 − 1/2],

then

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤
(2𝐶𝛿,0)𝛼−𝛿

𝑁𝛼−𝛿
,

and hence the information complexity depends only polynomially on 𝜀−1 and is
independent of 𝑑. In particular, this implies strong polynomial tractability with
an 𝜀-exponent of at most 1/(𝛼 − 𝛿).

3. If

lim
𝑑→∞

log
(∑

∅≠𝔲⊆[𝑑] 𝛾𝔲 (2𝜁 (2𝛼)) |𝔲 |𝑏max 𝑗∈𝔲 𝑤 𝑗
)

𝑑
= 0,

then we obtain weak tractability.

Proof The proof of (4.13) follows by setting 𝜏 := 𝛼 − 𝛿 in Theorem 4.3. The proof
of Items 1–3 follows from an adaption of the proof of the corresponding assertions
in Corollary 2.27. □

Corollary 4.5 Let 𝑏 be a prime number, let𝑚 ∈ N0 and 𝑁 = 𝑏𝑚. Let 𝜸 = (𝛾 𝑗) 𝑗≥1 be
positive product weights, and let 𝑤1, 𝑤2, . . . , 𝑤𝑑 ∈ N0 with 𝑤1 ≤ 𝑤2 ≤ · · · ≤ 𝑤𝑑 .
Furthermore, let 𝑌1, 𝑌2, . . . , 𝑌𝑑 be as in (4.3). Assume that 𝒈 = (𝑌1𝑔1, . . . , 𝑌𝑑𝑔𝑑) ∈
Z𝑑 has been constructed according to Algorithm 4.1. Then the following holds true.

1. The term 𝑐𝑑,𝛼,𝜸, 𝛿,𝒘 in Corollary 4.4 satisfies

𝑐𝑑,𝛼,𝜸, 𝛿,𝒘 ≤ ©«2
𝑑∏
𝑗=1

(
1 + 𝛾1/(2𝛼−2𝛿)

𝑗
2𝜁

(𝛼

𝛼 − 𝛿

)
𝑏𝑤 𝑗

)ª®¬
𝛼−𝛿

.

2. If

𝐴 := lim sup
𝑑→∞

∑𝑑
𝑗=1 𝛾

1/(2𝛼−2𝛿)
𝑗

𝑏𝑤 𝑗

log 𝑑
< ∞,

then for every 𝜂 > 0 there exists a 𝑐𝜂 > 0 such that

152 4 Modified Construction Schemes

𝑐𝑑,𝛼,𝜸, 𝛿,𝒘 ≤ 𝑐𝜂2𝛼−𝛿𝑑𝜁 (𝛼/(𝛼−𝛿)) (𝐴+𝜂) (2𝛼−2𝛿) ,

and thus we obtain polynomial tractability.
3. If

𝐵 :=
∞∑︁
𝑗=1
𝛾

1/(2𝛼−2𝛿)
𝑗

𝑏𝑤 𝑗 < ∞,

then
𝑐𝑑,𝛼,𝜸, 𝛿,𝒘 ≤ 2𝛼−𝛿e(2𝛼−2𝛿)𝜁 (𝛼/(𝛼−𝛿))𝐵

and hence the information complexity depends only polynomially on 𝜀−1 and is
independent of 𝑑. This implies strong polynomial tractability with an 𝜀-exponent
of at most 1/(𝛼 − 𝛿).

4. If

lim
𝑑→∞

1
𝑑

𝑑∑︁
𝑗=1
𝛾 𝑗𝑏

𝑤 𝑗 = 0,

then we have weak tractability.

Proof The results follow from Corollary 4.4 by using similar arguments as in the
proof of the corresponding results in Corollary 2.28. □

Let us briefly return to the main idea of the reduced CBC construction, which
we illustrate using Item 3 of Corollary 4.5. Assume that we want to obtain strong
polynomial tractability with an 𝜀-exponent arbitrarily close to 1/𝛼. Further assume
that

∑∞
𝑗=1 𝛾

1/(2𝜏)
𝑗

< ∞ for some 𝜏 > 𝛼. It would be sufficient if the weights satisfy∑∞
𝑗=1 𝛾

1/(2𝛼)
𝑗

< ∞ to achieve this (see Corollary 2.28). If we use the standard (fast)
CBC approach, in some sense we would “waste” the additional faster decay rate of
the weights. However, the reduced CBC construction allows us to take advantage
of the faster decay rate, since we can introduce reduction indices (𝑤 𝑗) 𝑗≥1 with
0 ≤ 𝑤1 ≤ 𝑤2 ≤ · · · such that

∑∞
𝑗=1 𝛾

1/(2𝛼)
𝑗

𝑏𝑤 𝑗 < ∞. As we have seen above,
Algorithm 4.1 allows us to use those 𝑤1, 𝑤2, . . . to reduce the construction cost
of the fast CBC algorithm. How much reduction in the construction cost can be
achieved in this way will be discussed in the next section.

4.2 The Reduced Fast CBC Construction for Product and POD
Weights

Let us now discuss how the reduced CBC construction in Algorithm 4.1 can be
implemented efficiently for product weights and for POD weights. We start the
discussion with the case of product weights.

4.2 The Reduced Fast CBC Construction for Product and POD Weights 153

Product weights

Let again 𝑠 ∈ [𝑑 − 1], and suppose that 𝑔1, . . . , 𝑔𝑠 have already been chosen. We
describe how to perform the step of selecting 𝑔𝑠+1 in a fast way. If 𝑤𝑠+1 ≥ 𝑚, then we
set 𝑔𝑠+1 = 1 and no computation is necessary. Thus we assume now that 𝑤𝑠+1 < 𝑚.
Then, according to Algorithm 4.1, we need to find a 𝑔 ∈ 𝑍𝑤𝑠+1 (𝑁) which minimizes
the squared error [err𝑁,𝑠+1,𝛼,𝜸 ((𝑌1𝑔1, . . . , 𝑌𝑠𝑔𝑠 , 𝑌𝑠+1𝑔))]2 with respect to 𝑔, which
is equivalent to minimizing

𝑁−1∑︁
𝑘=0

(
1 + 𝛾 𝑗𝜑𝛼

(
𝑘𝑌𝑠+1𝑔

𝑁

))
𝜂𝑠 (𝑘) =

𝑁−1∑︁
𝑘=0

𝜂𝑠 (𝑘) + 𝛾 𝑗
𝑁−1∑︁
𝑘=0

𝜑𝛼

(
𝑘𝑌𝑠+1𝑔

𝑁

)
𝜂𝑠 (𝑘) ,

where 𝜂0 (𝑘) := 1 for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, and, for 𝑠 ∈ N,

𝜂𝑠 (𝑘) :=
𝑠∏
𝑗=1

(
1 + 𝛾 𝑗𝜑𝛼

(
𝑘𝑌 𝑗𝑔 𝑗

𝑁

))
.

Thus, like in (3.19), minimizing [err𝑁,𝑠+1,𝛼,𝜸 ((𝑌1𝑔1, . . . , 𝑌𝑠𝑔𝑠 , 𝑌𝑠+1𝑔))]2 with
respect to 𝑔 is done by minimizing

𝑇𝑠+1 (𝑔) :=
𝑁−1∑︁
𝑘=0

𝜑𝛼

(
𝑘𝑌𝑠+1𝑔

𝑁

)
𝜂𝑠 (𝑘) .

Now the key observations are that the vector 𝑻𝑠+1 := (𝑇𝑠+1 (𝑔))⊤𝑔∈𝑍𝑤𝑠+1 (𝑁) is the
product of a special (𝑏𝑚−𝑤𝑠+1 − 1) × 𝑁 matrix

𝑨𝑁 :=
(
𝜑𝛼

(
𝑘𝑌𝑠+1𝑔

𝑁

))
𝑔∈𝑍𝑤𝑠+1 (𝑁) ,𝑘∈𝐺1 (𝑁)

with the vector 𝜼𝑠 := (𝜂𝑠 (0), 𝜂𝑠 (1), . . . , 𝜂𝑠 (𝑁 − 1))⊤, and that this matrix-vector
product can be computed very efficiently, as we will show in the following.

Note that the rows of 𝑨𝑁 are periodic with period 𝑏𝑚−𝑤𝑠+1 , since 𝑌𝑠+1 = 𝑏𝑤𝑠+1 ,
and 𝑁 = 𝑏𝑚, and therefore

(𝑘 + 𝑏𝑚−𝑤𝑠+1)𝑌𝑠+1𝑔 ≡ 𝑘𝑌𝑠+1𝑔 (mod 𝑏𝑚).

More specifically, 𝑨𝑁 is a block matrix

𝑨𝑁 =

(
𝛀𝑏𝑚−𝑤𝑠+1 , . . . ,𝛀𝑏𝑚−𝑤𝑠+1︸ ︷︷ ︸

𝑏𝑤𝑠+1 times

)
,

where
𝛀𝑏ℓ :=

(
𝜑𝛼

(
𝑘𝑔

𝑏ℓ

))
𝑔∈𝑍0 (𝑏ℓ) ,𝑘∈𝐺1 (𝑏ℓ)

.

154 4 Modified Construction Schemes

If 𝝃 = (𝜉1, . . . , 𝜉𝑁) is a vector of length 𝑁 = 𝑏𝑚, we compute

𝑨𝑁𝝃
⊤ = 𝛀𝑏𝑚−𝑤𝑠+1 𝝃⊤1 + · · · +𝛀𝑏𝑚−𝑤𝑠+1 𝝃⊤𝑏𝑤𝑠+1 = 𝛀𝑏𝑚−𝑤𝑠+1 (𝝃1 + · · · + 𝝃𝑏𝑤𝑠+1)⊤,

where 𝝃1 consists of the first 𝑏𝑚−𝑤𝑠+1 coordinates of 𝝃, where 𝝃2 consists of the next
𝑏𝑚−𝑤𝑠+1 coordinates of 𝝃, and so forth.

We have already seen in the previous chapter (see Section 3.4) how to multiply a
vector of length 𝑏ℓ with𝛀𝑏ℓ using at most O(𝑘𝑏ℓ) elementary operations employing
the method of Nuyens and Cools. Addition of the vectors 𝝃1, . . . , 𝝃𝑏𝑤𝑠+1 uses 𝑏𝑚
single additions. Thus multiplication of a vector of length 𝑏𝑚 with 𝑨𝑁 uses O(𝑏𝑚 +
(𝑚 − 𝑤𝑠+1)𝑏𝑚−𝑤𝑠+1) operations.

It is crucial to note that Algorithm 4.1 only needs actual computations as long as
the reduction indices are strictly less than 𝑚. As soon as we have reached the stage
where the reduction indices are at least 𝑚, the corresponding components of the
generating vector are set equal to one, and no further computations are necessary.

Furthermore, we also need to take into account that the precomputation of the val-
ues of 𝜑𝛼 requires O(𝑁 log 𝑁) = O(𝑚𝑏𝑚) operations, as mentioned in Section 3.4.
Therefore, the computational cost of Algorithm 4.1 is of order

O
(
𝑚𝑏𝑚 + 𝑏𝑚 min(𝑑, 𝑑∗) +

min(𝑑,𝑑∗)∑︁
𝑠=1

(𝑚 − 𝑤𝑠)𝑏𝑚−𝑤𝑠

)
,

where 𝑑∗ := max{𝑠 ∈ N0 : 𝑤𝑠 < 𝑚}. Hence, if the reduction indices are chosen
such that they increase sufficiently fast, the computational cost of Algorithm 4.1 can
be independent of 𝑑. However, one should keep in mind that large reduction indices
have a negative influence on the error bound in Theorem 4.3. So, in general, the
choice of the 𝑤 𝑗 needs to be balanced with the weights 𝛾 𝑗 in order to achieve best
possible results.

POD weights

We outlined in Algorithm 4.1 how we can use reduction indices to modify the CBC
construction for general weights, and we outlined the fast implementation of this
reduced CBC construction for the case of product weights above. Also in the case
of POD weights (see (3.25)), which have gained much attention due to their use in
applications in QMC for PDEs with random coefficients (see Appendix A), we can
use the reduced construction to improve on the runtime of the CBC algorithm. As
seen in Section 3.5, the runtime of the CBC construction for POD weights with no
reduction indices is of order O(𝑑 𝑁 log 𝑁 + 𝑑2𝑁). We now show how to decrease
this runtime by using reduction indices.

Recall that according to (3.26) the worst-case error of integration using a rank-1
lattice rule for POD weights is given by

4.2 The Reduced Fast CBC Construction for Product and POD Weights 155

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 =
1
𝑁

𝑁−1∑︁
𝑘=0

𝑑∑︁
ℓ=1

∑︁
𝔲⊆[𝑑]
|𝔲 |=ℓ

Γℓ

∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

(
𝑘𝑔 𝑗

𝑁

)
.

Let 𝑠 ∈ [𝑑 − 1], and suppose that 𝑔1, . . . , 𝑔𝑠 have already been chosen by the
reduced CBC algorithm. As before we write 𝒈 (𝑠) := (𝑌1𝑔1, . . . , 𝑌𝑠𝑔𝑠). We describe
how to select 𝑔𝑠+1 in a fast way. If 𝑤𝑠+1 > 𝑚, then we set 𝑔𝑠+1 = 1 and no
computation is necessary. Thus we assume now that 𝑤𝑠+1 ≤ 𝑚. Then, according
to Algorithm 4.1, we need to find a 𝑔 ∈ 𝑍𝑤𝑠+1 (𝑁) which minimizes the error
[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑌𝑠+1𝑔))]2 with respect to 𝑔.

Then, again similar to Section 3.5, we can write

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑌𝑠+1𝑔𝑠+1))]2

= [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2 + 1
𝑏𝑚

𝑏𝑚−1∑︁
𝑘=0

𝑠+1∑︁
ℓ=1

Γℓ

Γℓ−1

∑︁
𝔲⊆[𝑠]
|𝔲 |=ℓ−1

Γℓ−1

×
(∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

(
𝑘𝑔 𝑗 (mod 𝑏𝑚−𝑤 𝑗)

𝑏𝑚−𝑤 𝑗

))
𝛾𝑠+1𝜑𝛼

(
𝑘𝑔𝑠+1 (mod 𝑏𝑚−𝑤𝑠+1)

𝑏𝑚−𝑤𝑠+1

)
.

We now represent every 𝑘 ∈ {0, 1, . . . , 𝑏𝑚 − 1} in the form 𝑘 = 𝜅 + 𝑡𝑏𝑚−𝑤𝑠+1 with
𝜅 ∈ {0, 1, . . . , 𝑏𝑚−𝑤𝑠+1 − 1} and 𝑡 ∈ {0, 1, . . . , 𝑏𝑤𝑠+1 − 1} to obtain

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑌𝑠+1𝑔𝑠+1))]2

= [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2 + 1
𝑏𝑚

𝑏𝑚−𝑤𝑠+1−1∑︁
𝜅=0

𝑠+1∑︁
ℓ=1

Γℓ

Γℓ−1

𝑏𝑤𝑠+1−1∑︁
𝑡=0

∑︁
𝔲⊆[𝑠]
|𝔲 |=ℓ−1

Γℓ−1

×
(∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

((𝜅 + 𝑡𝑏𝑚−𝑤𝑠+1)𝑔 𝑗 (mod 𝑏𝑚−𝑤 𝑗)
𝑏𝑚−𝑤 𝑗

))
× 𝛾𝑠+1𝜑𝛼

(
(𝜅 + 𝑡𝑏𝑚−𝑤𝑠+1)𝑔𝑠+1 (mod 𝑏𝑚−𝑤𝑠+1)

𝑏𝑚−𝑤𝑠+1

)
= [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2 + 1

𝑏𝑚

𝑏𝑚−𝑤𝑠+1−1∑︁
𝜅=0

𝑠+1∑︁
ℓ=1

Γℓ

Γℓ−1

𝑏𝑤𝑠+1−1∑︁
𝑡=0

∑︁
𝔲⊆[𝑠]
|𝔲 |=ℓ−1

Γℓ−1

×
(∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

((𝜅 + 𝑡𝑏𝑚−𝑤𝑠+1)𝑔 𝑗 (mod 𝑏𝑚−𝑤 𝑗)
𝑏𝑚−𝑤 𝑗

))
×𝛾𝑠+1𝜑𝛼

(
𝜅𝑔𝑠+1 (mod 𝑏𝑚−𝑤𝑠+1)

𝑏𝑚−𝑤𝑠+1

)
.

We write, for short, for 𝑤 ∈ {0, 1, . . . , 𝑚} and 𝜅 ∈ {0, 1, . . . , 𝑏𝑚−𝑤 − 1},

156 4 Modified Construction Schemes

𝑝𝑠,ℓ,𝑤 (𝜅) :=
𝑏𝑤−1∑︁
𝑡=0

∑︁
𝔲⊆[𝑠]
|𝔲 |=ℓ

Γℓ

∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

((𝜅 + 𝑡𝑏𝑚−𝑤)𝑔 𝑗 (mod 𝑏𝑚−𝑤 𝑗)
𝑏𝑚−𝑤 𝑗

)
.

Additionally, we put 𝑝𝑠,0,𝑤 := 1. Note that if 𝑤 = 0, the quantity 𝑝𝑠,ℓ,𝑤 corresponds
to the quantity 𝑝𝑠,ℓ in (3.27) for 𝑁 = 𝑏𝑚−𝑤 𝑗 . Hence we can write

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑌𝑠+1𝑔𝑠+1)]2

= [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2 + 1
𝑏𝑚

𝑏𝑚−𝑤𝑠+1−1∑︁
𝜅=0

𝑠+1∑︁
ℓ=1

Γℓ

Γℓ−1
𝑝𝑠,ℓ−1,𝑤𝑠+1 (𝜅)

×𝛾𝑠+1𝜑𝛼

(
𝜅𝑔𝑠+1 (mod 𝑏𝑚−𝑤𝑠+1)

𝑏𝑚−𝑤𝑠+1

)
.

Now consider 𝑤𝑠 ∈ {0, 1, . . . , 𝑤𝑠+1}. Every 𝑡 ∈ {0, 1, . . . , 𝑏𝑤𝑠+1 − 1} can be
represented in the form 𝑡 = 𝑡 ′ + 𝑡 ′′𝑏𝑤𝑠+1−𝑤𝑠 with 𝑡 ′ ∈ {0, 1, . . . , 𝑏𝑤𝑠+1−𝑤𝑠 − 1} and
𝑡 ′′ ∈ {0, 1, . . . , 𝑏𝑤𝑠 − 1}. Consequently,

𝑝𝑠,ℓ−1,𝑤𝑠+1 (𝜅) =
𝑏𝑤𝑠+1−1∑︁
𝑡=0

∑︁
𝔲⊆[𝑠]
|𝔲 |=ℓ−1

Γℓ−1
∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

((𝜅 + 𝑡𝑏𝑚−𝑤𝑠+1)𝑔 𝑗 (mod 𝑏𝑚−𝑤 𝑗)
𝑏𝑚−𝑤 𝑗

)

=

𝑏𝑤𝑠+1−𝑤𝑠−1∑︁
𝑡′=0

𝑏𝑤𝑠−1∑︁
𝑡′′=0

∑︁
𝔲⊆[𝑠]
|𝔲 |=ℓ−1

Γℓ−1

×
∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

((𝜅 + (𝑡 ′ + 𝑡 ′′𝑏𝑤𝑠+1−𝑤𝑠)𝑏𝑚−𝑤𝑠+1)𝑔 𝑗 (mod 𝑏𝑚−𝑤 𝑗)
𝑏𝑚−𝑤 𝑗

)
=

𝑏𝑤𝑠+1−𝑤𝑠−1∑︁
𝑡′=0

𝑝𝑠,ℓ−1,𝑤𝑠
(𝜅 + 𝑡 ′𝑏𝑚−𝑤𝑠+1). (4.14)

Next, we define a “fold-and-sum” operator which will be very useful for the
further considerations. For 𝑚 ∈ N and 𝑤′, 𝑤′′ ∈ {0, 1, . . . , 𝑚} with 𝑤′ ≤ 𝑤′′, and
given base 𝑏, let

𝑃𝑚𝑤′′,𝑤′ : R𝑏
𝑚−𝑤′

→ R𝑏𝑚−𝑤′′
, 𝑃𝑚𝑤′′,𝑤′𝒗 = (𝑈𝑏𝑚−𝑤′′ | . . . |𝑈𝑏𝑚−𝑤′′)︸ ︷︷ ︸

𝑏𝑤
′′−𝑤′ times

𝒗⊤, (4.15)

where 𝑈𝑏𝑚−𝑤′′ is the 𝑏𝑚−𝑤′′ × 𝑏𝑚−𝑤′′ identity matrix. This operator divides a real
vector of length 𝑏𝑚−𝑤′ into blocks of equal length 𝑏𝑚−𝑤′′ and sums them up. For
example, for 𝑏 = 2, 𝑚 = 4, 𝑤′ = 1, and 𝑤′′ = 3, the operator 𝑃4

3,1 : R8 → R2 applied
to 𝒗 = (𝑣1, . . . , 𝑣8) ∈ R8 yields

4.2 The Reduced Fast CBC Construction for Product and POD Weights 157

𝑃4
3,1𝒗 =

(
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

)
𝒗⊤ =

(
𝑣1 + 𝑣3 + 𝑣5 + 𝑣7
𝑣2 + 𝑣4 + 𝑣6 + 𝑣8

)
.

Note that the computational cost of applying the operator 𝑃𝑚
𝑤′′,𝑤′ is the length of the

input vector, i.e., it is of order O(𝑏𝑚−𝑤′). Furthermore, the operator has a kind of a
transitivity property, i.e., for 0 ≤ 𝑤′ ≤ 𝑤′′ ≤ 𝑤′′′ ≤ 𝑚 it holds that

𝑃𝑚𝑤′′′,𝑤′′𝑃
𝑚
𝑤′′,𝑤′𝒗 = 𝑃𝑚𝑤′′′,𝑤′𝒗, for 𝒗 ∈ R𝑏𝑚−𝑤′

.

Using the vector notation

𝒑𝑠,ℓ−1,𝑤 = (𝑝𝑠,ℓ−1,𝑤 (0), 𝑝𝑠,ℓ−1,𝑤 (1), . . . , 𝑝𝑠,ℓ−1,𝑤 (𝑏𝑚−𝑤 − 1))⊤

for integers 𝑤 ∈ {0, 1, . . . , 𝑚}, we can rewrite (4.14) in vector form as

𝒑𝑠,ℓ−1,𝑤𝑠+1 = 𝑃
𝑚
𝑤𝑠+1 ,𝑤𝑠

𝒑𝑠,ℓ−1,𝑤𝑠
,

where 𝑃𝑚𝑤𝑠+1 ,𝑤𝑠
is the “fold-and-sum” operator in (4.15) for 𝑤𝑠 and 𝑤𝑠+1.

Similarly to Section 3.5 we use 𝑬𝑁,𝑠+1,𝛼,𝜸 (𝒈 (𝑠)) to denote the column vector
with entries [err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑌𝑠+1𝑔))]2 for 𝑔 ∈ 𝑍𝑤𝑠+1 (𝑁). Then we can write

𝑬𝑁,𝑠+1,𝛼,𝜸 (𝒈 (𝑠)) = [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2 1 |𝑍𝑤𝑠+1 (𝑁) |

+𝛾𝑠+1
𝑁

𝛀𝑏𝑚−𝑤𝑠+1

(
𝑠+1∑︁
ℓ=1

Γℓ

Γℓ−1
𝑃𝑚𝑤𝑠+1 ,𝑤𝑠

𝒑𝑠−1,ℓ−1,𝑤𝑠

)⊤
,

(4.16)

where again 𝛀𝑏ℓ := (𝜑𝛼 ({(𝑘/𝑏ℓ)𝑔}))𝑔∈𝑍0 (𝑏ℓ) ,𝑘∈𝐺1 (𝑏ℓ) . Denote by 𝛀𝑏ℓ (𝑔), 𝑔 ∈
𝑍0 (𝑏ℓ), the rows of the matrix 𝛀𝑏ℓ .

Once 𝑔𝑠+1 has been selected, we can use the update formula

𝒑𝑠+1,ℓ,𝑤𝑠+1 = 𝑃
𝑚
𝑤𝑠+1 ,𝑤𝑠

𝒑𝑠,ℓ,𝑤𝑠
+ Γℓ

Γℓ−1
𝛾𝑠+1𝛀𝑏𝑚 (𝑔𝑠+1) ∗ 𝑃𝑚𝑤𝑠+1 ,𝑤𝑠

𝒑𝑠,ℓ−1,𝑤𝑠

for ℓ ∈ [𝑠 + 1], with “∗” denoting component-wise multiplication of vectors in R𝑁 ,
with the initial values

𝒑𝑠+1,0,𝑤𝑠+1 = 1𝑏𝑚−𝑤𝑠+1 and 𝒑𝑠+1,ℓ,𝑤𝑠+1 = 0𝑏𝑚−𝑤𝑠+1 for ℓ > 𝑠 + 1.

Let us discuss the computational cost of this procedure. For the sake of simplicity,
we assume 𝑤1 = 0, as the case 𝑤1 > 0 can easily be reduced to the case 𝑤1 = 0. For
computing 𝑬𝑁,𝑠+1,𝛼,𝜸 (𝒈 (𝑠)) in (4.16), the following steps have to be taken. In order
to compute the quantity

𝑠+1∑︁
ℓ=1

Γℓ

Γℓ−1
𝑃𝑚𝑤𝑠+1 ,𝑤𝑠

𝒑𝑠−1,ℓ−1,𝑤𝑠

158 4 Modified Construction Schemes

we need O((𝑠 + 1)𝑏𝑚−𝑤𝑠) operations, according to our previous observation re-
garding application of the “fold-and-sum” operator. Performing the matrix-vector
multiplication in (4.16) can be done by exploiting the block-circulant structure of the
matrix, using FFT, at a cost of O((𝑚−𝑤𝑠+1)𝑏𝑚−𝑤𝑠+1) operations. Updating 𝒑𝑠,ℓ,𝑤𝑠+1
needs 𝑏𝑚−𝑤𝑠 operations for each ℓ, and thus O(𝑠𝑏𝑚−𝑤𝑠) operations in total in each
step. As pointed out in [68], this cost can be reduced to O((𝑠 + 1)𝑏𝑚−𝑤𝑠+1) by a
slight rearrangement of the steps of the algorithm, by applying the “fold-and-sum”
operator one iteration earlier. This yields that the construction cost of the reduced
fast CBC construction for POD weights is of order

O
(min(𝑑,𝑑∗)∑︁

𝑠=1
(𝑚 − 𝑤𝑠 + 𝑠)𝑏𝑚−𝑤𝑠

)
,

where again 𝑑∗ := max{𝑠 ∈ N0 : 𝑤𝑠 < 𝑚}. Furthermore, the memory cost of the
implementation is of order O(∑min(𝑑,𝑑∗)

𝑠=1 𝑏𝑚−𝑤𝑠).

4.3 The Successive Coordinate Search Construction

It is inherent to the CBC constructions outlined in Sections 3.3, 3.6, and 4.1 that these
are greedy algorithms, which construct one component of the generating vector 𝒈
at a time. Even though it is known that the error bounds are asymptotically optimal,
it cannot be expected that CBC algorithms yield the generating vectors actually
minimizing the respective error criteria under consideration.

In order to address this problem, a so-called successive coordinate search (for
short, SCS) construction was introduced in [71]. The basic idea of the SCS construc-
tion is that the algorithm is initialized by an existing generating vector 𝒈 of a rank-1
lattice point set, which is then updated in a component-wise fashion. In this way,
it is possible that the worst-case error of a lattice rule with underlying generating
vector 𝒈 is improved by updating 𝒈. In particular, it is possible to use the output
vector of the CBC algorithm as the initial vector for the SCS algorithm, and then
to possibly improve on the quality with respect to the error criterion. Moreover, the
SCS construction can be applied as an iterative method.

In this section, we present the precise formulation of the SCS algorithm and derive
an error estimate for the lattice rules obtained for the weighted Korobov space.

We start by formalizing the SCS construction algorithm. We illustrate this by the
algorithm using the worst-case error in the weighted Korobov space as the error
criterion, but the basic principle could also be used for other error criteria.

Algorithm 4.6 (SCS construction for the weighted Korobov space) Let positive
integers 𝑁 and 𝑑, and an initial vector 𝒈 (0) = (𝑔 (0)1 , . . . , 𝑔

(0)
𝑑

) ∈ 𝐺𝜑
𝑑
(𝑁) be given.

Update 𝒈 (0) to a generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺𝜑𝑑 (𝑁) as follows.

4.3 The Successive Coordinate Search Construction 159

(1) For 𝑠 from 1 to 𝑑 − 1:
Assume that 𝑔1, . . . , 𝑔𝑠 ∈ 𝐺

𝜑

1 (𝑁) have already been found. Choose 𝑔𝑠+1 ∈
𝐺
𝜑

1 (𝑁) as

𝑔𝑠+1 := argmin
𝑔∈𝐺𝜑

1 (𝑁)
err𝑁,𝑑,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠 , 𝑔, 𝑔

(0)
𝑠+2, . . . , 𝑔

(0)
𝑑

)),

with the obvious adaptions if 𝑠 = 𝑑 − 1.
End for.

(2) Set 𝒈 = (𝑔1, . . . , 𝑔𝑑).

Note that Algorithm 4.6 is, as opposed to CBC construction algorithms, not
extensible in the dimension.

The following proposition is obvious from the formulation of the algorithm.

Proposition 4.7 Let 𝒈 (0) ∈ 𝐺𝜑
𝑑
(𝑁) be an arbitrary initial vector for Algorithm 4.6,

and let 𝒈 be the corresponding output vector. Then it is true that

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤ err𝑁,𝑑,𝛼,𝜸 (𝒈 (0)).

In the special case of product weights, the following theorem relates the SCS
construction, i.e., Algorithm 4.6, to the usual CBC construction for the Korobov
space, i.e., Algorithm 3.6. In order to guarantee a meaningful statement, we assume
that both algorithms select the same instance of 𝑔 if there are multiple minimizers in
the minimization step. To this end, we extend the domain of the starting vector 𝒈 (0)

of the SCS construction to allow zero components, i.e., 𝒈 (0) ∈ (𝐺𝜑1 (𝑁) ∪ {0})𝑑 .
This, however, is just a technical extension causing no problems.

The following result is due to [71].

Theorem 4.8 In the special case of positive product weights (𝛾 𝑗) 𝑗≥1, Algorithm 3.6
and Algorithm 4.6 both yield the same generating vector if Algorithm 4.6 is initialized
with the all-zero vector 𝒈 (0) = (0, . . . , 0).

Proof Let 𝑠 ∈ [𝑑 − 1], assume that 𝒈 = (𝑔1, . . . , 𝑔𝑠+1) ∈ (𝐺𝜑1 (𝑁) ∪ {0})𝑠+1, and
define �̃� = (�̃�1, . . . , �̃�𝑑) = (𝒈, 0𝑑−𝑠−1) := (𝑔1, . . . , 𝑔𝑠+1, 0, 0, . . . , 0). Then we have,
using the worst-case error formula (3.6),

[err𝑁,𝑑,𝛼,𝜸 (�̃�)]2 = −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

𝑑∏
𝑗=1

(
1 + 𝛾 𝑗𝜑𝛼

(
𝑘�̃� 𝑗

𝑁

))
= −1 + 1

𝑁

𝑁−1∑︁
𝑘=0

©«
𝑠+1∏
𝑗=1

(
1 + 𝛾 𝑗𝜑𝛼

(
𝑘�̃� 𝑗

𝑁

))ª®¬ ©«
𝑑∏

𝑗=𝑠+2

(
1 + 𝛾 𝑗𝜑𝛼 (0)

)ª®¬ .
By definition we have 𝜑𝛼 (0) = 2𝜁 (2𝛼). Using the notation

𝐶𝑠+2 :=
𝑑∏

𝑗=𝑠+2
(1 + 𝛾 𝑗2𝜁 (2𝛼))

160 4 Modified Construction Schemes

we can rewrite the previous formula as

[err𝑁,𝑑,𝛼,𝜸 (�̃�)]2 = −1 + 𝐶𝑠+2
𝑁

𝑁−1∑︁
𝑘=0

𝑠+1∏
𝑗=1

(
1 + 𝛾 𝑗𝜑𝛼

(
𝑘�̃� 𝑗

𝑁

))
= −1 + 𝐶𝑠+2 ([err𝑁,𝑠+1,𝛼,𝜸 (𝒈)]2 + 1).

Now suppose that, for 𝑠 ∈ [𝑑 − 1], the SCS Algorithm 4.6 has already se-
lected 𝑔1, . . . , 𝑔𝑠 as the first 𝑠 components of the generating vector. Then, ac-
cording to the argument above, the algorithm selects 𝑔𝑠+1 as the minimizer of
[err𝑁,𝑠+1,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠 , 𝑔))]2. By an inductive argument, this means that the SCS
algorithm with initial vector 𝒈 (0) = (0, . . . , 0) and the CBC algorithm coincide. □

Remark 4.9 Note that an analogue of Theorem 4.8 does, in general, not hold for
arbitrary weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] .

We now have the following theorem which gives an error bound for the lattice
rules constructed by the SCS algorithm. The result is taken from [67, Theorem 1].

Theorem 4.10 Let 𝑁 be a prime power and let 𝒈 ∈ 𝐺
𝜑

𝑑
(𝑁) be constructed by

Algorithm 4.6 with some initial vector 𝒈 (0) . Then, for 𝜏 ∈ [1/2, 𝛼), the worst-case
error of the lattice rule generated by 𝒈 satisfies

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤
1
𝑁 𝜏

©«
𝑑∑︁
𝑠=1

∑︁
𝔲⊆[𝑑]
𝑠∈𝔲

𝛾
1/(2𝜏)
𝔲 2

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®®¬
𝜏

.

Proof The result follows from setting 𝑤1 = 𝑤2 = · · · = 𝑤𝑑 = 0 in Theorem 4.12
below. □

In [71], the authors discuss a fast implementation of the SCS algorithm for product
weights and prime 𝑁 that takes O(𝑑 𝑁 log 𝑁) operations. We will outline how this
implementation works for the reduced fast SCS construction in Section 4.4 below for
more general choices than prime 𝑁 , and by allowing additional reduction indices.
Setting all reduction indices equal to zero then yields a fast implementation for the
nonreduced case outlined in the present section.

4.4 The Reduced Fast SCS Construction

Similar to the CBC construction, there also exists a reduced version of the SCS
construction, which, for sufficiently fast decaying weights, can help in lowering the
construction cost of the algorithm. This approach was studied in [67], and again the
underlying idea is to shrink the search spaces for the components 𝑔 𝑗 of the lattice
generating vector 𝒈 for which the corresponding weights are small. To this end, again

4.4 The Reduced Fast SCS Construction 161

assume in this section that 𝑁 = 𝑏𝑚 is a prime power, and let 𝑤1, 𝑤2, . . . , 𝑤𝑑 ∈ N0
with 𝑤1 ≤ 𝑤2 ≤ · · · ≤ 𝑤𝑑 be reduction indices. Similarly to the reduced CBC
construction, we are mostly interested in the case where 𝑤1 = 0, as for 𝑤1 > 0 the
construction results in each point being counted 𝑏𝑤1 times. We again use the sets
𝑍𝑤 𝑗

(𝑁) defined in (4.2) and the notation 𝑌 𝑗 = 𝑏𝑤 𝑗 for 𝑗 ∈ [𝑑] as in (4.3).

Algorithm 4.11 (Reduced SCS construction for the weighted Korobov space)
Let 𝑑 ∈ N and let 𝑏 be a prime number, let 𝑚 ∈ N0 and 𝑁 = 𝑏𝑚. Let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑]
be general weights, and let 𝑤1, 𝑤2, . . . , 𝑤𝑑 ∈ N0 with 𝑤1 ≤ 𝑤2 ≤ · · · ≤ 𝑤𝑑 .
Furthermore, let an initial vector 𝒈 (0) = (𝑔 (0)1 , . . . , 𝑔

(0)
𝑑

) ∈ 𝐺𝜑
𝑑
(𝑁) be given. Update

𝒈 (0) to a generating vector 𝒈 = (𝑌1𝑔1, . . . , 𝑌𝑑𝑔𝑑) with 𝑔 𝑗 ∈ 𝑍𝑤 𝑗
(𝑁) for 𝑗 ∈ [𝑑] as

follows.

(1) For 𝑠 from 1 to 𝑑 − 1:
Assume that 𝑔 𝑗 ∈ 𝑍𝑤 𝑗

(𝑁) for 𝑗 ∈ [𝑠] have already been found. Choose 𝑔𝑠+1 ∈
𝑍𝑤𝑠+1 (𝑁) as

𝑔𝑠+1 := argmin
𝑔∈Z𝑤𝑠+1 (𝑁)

err𝑁,𝑑,𝛼,𝜸 ((𝑌1𝑔1, . . . , 𝑌𝑠𝑔𝑠 , 𝑌𝑠+1𝑔, 𝑔
(0)
𝑠+2, . . . , 𝑔

(0)
𝑑

)),

with the obvious adaptions if 𝑠 = 𝑑 − 1.
End for.

(2) Set 𝒈 = (𝑌1𝑔1, . . . , 𝑌𝑑𝑔𝑑).

Error analysis

The following theorem provides an error bound for the lattice rules based on the
generating vectors found by Algorithm 4.11.

Theorem 4.12 Let 𝑑 ∈ N and let 𝑏 be a prime number, let 𝑚 ∈ N0 and 𝑁 = 𝑏𝑚. Let
𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be general weights, and let 𝑤1, 𝑤2, . . . , 𝑤𝑑 ∈ N0 with 𝑤1 ≤ 𝑤2 ≤
· · · ≤ 𝑤𝑑 . Assume that 𝒈 has been constructed by Algorithm 4.11 with some initial
vector 𝒈 (0) . Then, for 𝜏 ∈ [1/2, 𝛼), the worst-case error of the lattice rule generated
by 𝒈 satisfies

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤
©«
𝑑∑︁
𝑠=1

∑︁
𝔲⊆[𝑑]
𝑠∈𝔲

𝛾
1/(2𝜏)
𝔲

2(2𝜁 (𝛼/𝜏)) |𝔲 |

𝑏max(0,𝑚−𝑤𝑠)

ª®®¬
𝜏

.

Proof Let 𝒈 = (𝑌1𝑔1, . . . , 𝑌𝑑𝑔𝑑) be the vector found by Algorithm 4.11 with initial
vector 𝒈 (0) . In the following, we will again make use of the dual lattice for projections
of a lattice. In order to display the dependence of the dual of a lattice on the generating
vector, we write, for ∅ ≠ 𝔲 ⊆ [𝑑], L⊥

𝔲 (𝒈𝔲) = L⊥
𝔲 , where L⊥

𝔲 is defined in (4.5).

162 4 Modified Construction Schemes

By (2.23) in Theorem 2.19, we have for our 𝒈,

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 =
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲 (𝒈𝔲)

1
𝑟2𝛼 (𝒉𝔲)

=

𝑑∑︁
𝑠=1

∑︁
𝔲⊆[𝑠]
𝑠∈𝔲

𝛾𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲 (𝒈𝔲)

1
𝑟2𝛼 (𝒉𝔲)

.

For 𝑠 ∈ [𝑑] we write

𝒈 (𝑠) := (𝑌1𝑔1, . . . , 𝑌𝑠−1𝑔𝑠−1, 𝑌𝑠𝑔𝑠 , 𝑔
(0)
𝑠+1, . . . , 𝑔

(0)
𝑑

),

and

𝜃𝑠 (𝒈 (𝑠)) :=
∑︁

𝔲⊆[𝑑]
𝑠∈𝔲

𝛾𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲 (𝒈
(𝑠)
𝔲)

1
𝑟2𝛼 (𝒉𝔲)

.

Then we have

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 ≤
𝑑∑︁
𝑠=1

𝜃𝑠 (𝒈 (𝑠)).

Using Jensen’s inequality (Lemma 2.25) we obtain, for 𝜆 ∈ (1/(2𝛼), 1],

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2𝜆 ≤
(
𝑑∑︁
𝑠=1

𝜃𝑠 (𝒈 (𝑠))
)𝜆

≤
𝑑∑︁
𝑠=1

(𝜃𝑠 (𝒈 (𝑠)))𝜆.

By the standard averaging argument (see Remark 2.14) we obtain that

(𝜃𝑠 (𝒈 (𝑠)))𝜆 = (𝜃𝑠 ((𝑌1𝑔1, . . . , 𝑌𝑠𝑔𝑠 , 𝑔
(0)
𝑠+1, . . . , 𝑔

(0)
𝑑

)))𝜆

≤ 1
|𝑍𝑤𝑠

(𝑁) |
∑︁

𝑔∈𝑍𝑤𝑠 (𝑁)
(𝜃𝑠 ((𝑌1𝑔1, . . . , 𝑌𝑠−1𝑔𝑠−1, 𝑌𝑠𝑔, 𝑔

(0)
𝑠+1, . . . , 𝑔

(0)
𝑑

))𝜆.

We now use the notation

�̂� (𝑠)
= �̂� (𝑠) (𝑔) = (�̂�1, . . . , �̂�𝑑) := (𝑌1𝑔1, . . . , 𝑌𝑠−1𝑔𝑠−1, 𝑌𝑠𝑔, 𝑔

(0)
𝑠+1, . . . , 𝑔

(0)
𝑑

).

Next, we establish an upper bound on the quantity (𝜃𝑠 (�̂� (𝑠)))𝜆 for each 𝑠 ∈ [𝑑].
We have, by using Jensen’s inequality twice,

(𝜃𝑠 (�̂� (𝑠)))𝜆 ≤
∑︁

𝔲⊆[𝑑]
𝑠∈𝔲

𝛾𝜆𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲 (�̂�
(𝑠)
𝔲)

1
𝑟2𝛼𝜆 (𝒉𝔲)

4.4 The Reduced Fast SCS Construction 163

= 𝛾𝜆{𝑠}

∑︁
ℎ𝑠 ∈L⊥

{𝑠} (𝑌𝑠𝑔)

1
𝑟2𝛼𝜆 (ℎ𝑠)

+
∑︁

∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

∑︁
ℎ𝑠 ∈Z\{0}

1
𝑟2𝛼𝜆 (ℎ𝑠)

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑔 𝑗≡−ℎ𝑠𝑌𝑠𝑔 (mod 𝑁)

1
𝑟2𝛼𝜆 (𝒉𝔳)

.

This implies in turn that

(𝜃𝑠 (𝒈 (𝑠)))𝜆 ≤ 1
|𝑍𝑤𝑠

(𝑁) |
∑︁

𝑔∈𝑍𝑤𝑠 (𝑁)
(𝜃𝑠 (�̂� (𝑠)))𝜆 ≤ 𝑇1 + 𝑇2,

where

𝑇1 :=
1

|𝑍𝑤𝑠
(𝑁) |

∑︁
𝑔∈𝑍𝑤𝑠 (𝑁)

𝛾𝜆{𝑠}

∑︁
ℎ𝑠 ∈L⊥

{𝑠} (𝑌𝑠𝑔)

1
𝑟2𝛼𝜆 (ℎ𝑠)

and

𝑇2 :=
1

|𝑍𝑤𝑠
(𝑁) |

∑︁
𝑔∈𝑍𝑤𝑠 (𝑁)

∑︁
∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

∑︁
ℎ𝑠 ∈Z\{0}

1
𝑟2𝛼𝜆(ℎ𝑠)

×
∑︁

𝒉𝔳∈(Z\{0}) |𝔳|∑
𝑗∈𝔳 ℎ 𝑗𝑔 𝑗≡−ℎ𝑠𝑌𝑠𝑔 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

.

Regarding 𝑇1, we distinguish the cases 𝑤𝑠 ≥ 𝑚 and 𝑤𝑠 < 𝑚.
If 𝑤𝑠 ≥ 𝑚, then 𝑔 ∈ 𝑍𝑤𝑠

(𝑁) = {1} and 𝑁 = 𝑏𝑚 is a divisor of 𝑏𝑤𝑠 such that

𝑇1 = 𝛾𝜆{𝑠}

∑︁
ℎ𝑠 ∈Z\{0}

1
𝑟2𝛼𝜆 (ℎ𝑠)

= 𝛾𝜆{𝑠} 2𝜁 (2𝛼𝜆).

If 𝑤𝑠 < 𝑚, then ℎ𝑠𝑏𝑤𝑠𝑔 ≡ 0 (mod 𝑁) is equivalent to ℎ𝑠𝑔 ≡ 0 (mod 𝑏𝑚−𝑤𝑠).
Since 𝑔 ∈ 𝑍𝑤𝑠

(𝑁), and in particular gcd(𝑔, 𝑏) = 1,

ℎ𝑠𝑏
𝑤𝑠𝑔 ≡ 0 (mod 𝑁) if and only if ℎ𝑠 ≡ 0 (mod 𝑏𝑚−𝑤𝑠).

Hence we obtain

𝑇1 =
1

|𝑍𝑤𝑠
(𝑁) |

∑︁
𝑔∈𝑍𝑤𝑠 (𝑁)

𝛾𝜆{𝑠}

∑︁
ℎ𝑠 ∈Z\{0}

ℎ𝑠≡0 (mod 𝑏𝑚−𝑤𝑠)

1
𝑟2𝛼𝜆(ℎ𝑠)

= 𝛾𝜆{𝑠}

∑︁
ℎ∈Z\{0}

1
𝑟2𝛼𝜆(𝑏𝑚−𝑤𝑠 ℎ)

164 4 Modified Construction Schemes

= 𝛾𝜆{𝑠}
2𝜁 (2𝛼𝜆)
𝑏2𝛼𝜆(𝑚−𝑤𝑠)

≤ 𝛾𝜆{𝑠}
2𝜁 (2𝛼𝜆)
𝑏𝑚−𝑤𝑠

,

since 2𝛼𝜆 > 1.
Therefore, in both possible cases, it holds that

𝑇1 ≤ 𝛾𝜆{𝑠}
2𝜁 (2𝛼𝜆)

𝑏max(0,𝑚−𝑤𝑠)
.

Similarly, we study the term 𝑇2 for the cases 𝑤𝑠 ≥ 𝑚 and 𝑤𝑠 < 𝑚.
If 𝑤𝑠 ≥ 𝑚, then 𝑔 ∈ 𝑍𝑤𝑠

(𝑁) = {1} and so

𝑇2 =
∑︁

∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

∑︁
ℎ𝑠 ∈Z\{0}

1
𝑟2𝛼𝜆(ℎ𝑠)

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑔 𝑗≡−ℎ𝑠𝑌𝑠 (mod 𝑁)

1
𝑟𝛼𝜆(𝒉𝔳)

≤
∑︁

ℎ𝑠 ∈Z\{0}

1
𝑟2𝛼𝜆 (ℎ𝑠)

∑︁
∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|

1
𝑟2𝛼𝜆 (𝒉𝔳)

= 2𝜁 (2𝛼𝜆)
∑︁

∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠} (2𝜁 (2𝛼𝜆))

|𝔳 |

=
∑︁

∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠} (2𝜁 (2𝛼𝜆))

|𝔳 |+1

=
∑︁

{𝑠}≠𝔲⊆[𝑑]
𝑠∈𝔲

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 | .

If 𝑤𝑠 < 𝑚, we write

𝑇2 = 𝑇2,1 + 𝑇2,2,

where

𝑇2,1 :=
1

|𝑍𝑤𝑠
(𝑁) |

∑︁
𝑔∈𝑍𝑤𝑠 (𝑁)

∑︁
∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

∑︁
ℎ𝑠 ∈Z\{0}

ℎ𝑠≡0 (mod 𝑏𝑚−𝑤𝑠)

1
𝑟2𝛼𝜆(ℎ𝑠)

×
∑︁

𝒉𝔳∈(Z\{0}) |𝔳|∑
𝑗∈𝔳 ℎ 𝑗𝑔 𝑗≡−ℎ𝑠𝑌𝑠𝑔 (mod 𝑁)

1
𝑟2𝛼𝜆 (𝒉𝔳)

and

4.4 The Reduced Fast SCS Construction 165

𝑇2,2 :=
1

|𝑍𝑤𝑠
(𝑁) |

∑︁
𝑔∈𝑍𝑤𝑠 (𝑁)

∑︁
∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

∑︁
ℎ𝑠 ∈Z\{0}

ℎ𝑠.0 (mod 𝑏𝑚−𝑤𝑠)

1
𝑟2𝛼𝜆(ℎ𝑠)

×
∑︁

𝒉𝔳∈(Z\{0}) |𝔳|∑
𝑗∈𝔳 ℎ 𝑗𝑔 𝑗≡−ℎ𝑠𝑌𝑠𝑔 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

.

For 𝑇2,1 we see that if ℎ𝑠 ≡ 0 (𝑏𝑚−𝑤𝑠) then ℎ𝑠𝑌𝑠𝑔 ≡ 0 (mod 𝑁). Thus

𝑇2,1 =
1

|𝑍𝑤𝑠
(𝑁) |

∑︁
𝑔∈𝑍𝑤𝑠 (𝑁)

∑︁
∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

∑︁
ℎ𝑠 ∈Z\{0}

ℎ𝑠≡0 (mod 𝑏𝑚−𝑤𝑠)

1
𝑟2𝛼𝜆 (ℎ𝑠)

×
∑︁

𝒉𝔳∈(Z\{0}) |𝔳|∑
𝑗∈𝔳 ℎ 𝑗𝑔 𝑗≡0 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

=
∑︁

∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

∑︁
ℎ∈Z\{0}

1
𝑟2𝛼𝜆(𝑏𝑚−𝑤𝑠 ℎ)

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑔 𝑗≡0 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

=
2𝜁 (2𝛼𝜆)
𝑏 (𝑚−𝑤𝑠)2𝛼𝜆

∑︁
∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑔 𝑗≡0 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

≤ 2𝜁 (2𝛼𝜆)
𝑏𝑚−𝑤𝑠

∑︁
∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑔 𝑗≡0 (mod 𝑁)

1
𝑟2𝛼𝜆 (𝒉𝔳)

.

For 𝑇2,2 we obtain

𝑇2,2 =
1

|𝑍𝑤𝑠
(𝑁) |

∑︁
𝑔∈𝑍𝑤𝑠 (𝑁)

∑︁
∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

𝑏𝑚−𝑤𝑠−1∑︁
𝑐=1

∑︁
ℎ𝑠 ∈Z\{0}

ℎ𝑠≡−𝑐𝑔−1 (mod 𝑏𝑚−𝑤𝑠)

1
𝑟2𝛼𝜆(ℎ𝑠)

×
∑︁

𝒉𝔳∈(Z\{0}) |𝔳|∑
𝑗∈𝔳 ℎ 𝑗𝑔 𝑗≡𝑐𝑌𝑠 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

,

where 𝑔−1 denotes the multiplicative inverse of 𝑔 in 𝑍𝑤𝑠
(𝑁). As in (4.10) we have∑︁

𝑔∈𝑍𝑤𝑠 (𝑁)

∑︁
ℎ𝑠 ∈Z\{0}

ℎ𝑠≡−𝑐𝑔−1 (mod 𝑏𝑚−𝑤𝑠)

1
𝑟2𝛼𝜆(ℎ𝑠)

≤ 2𝜁 (2𝛼𝜆),

and so

166 4 Modified Construction Schemes

𝑇2,2 ≤ 2𝜁 (2𝛼𝜆)
|𝑍𝑤𝑠

(𝑁) |
∑︁

∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

𝑏𝑚−𝑤𝑠−1∑︁
𝑐=1

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑔 𝑗≡𝑐𝑌𝑠 (mod 𝑁)

1
𝑟2𝛼𝜆(𝒉𝔳)

≤ 2𝜁 (2𝛼𝜆)
|𝑍𝑤𝑠

(𝑁) |
∑︁

∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑔 𝑗.0 (mod 𝑁)

1
𝑟2𝛼𝜆 (𝒉𝔳)

.

Recall that |𝑍𝑤𝑠
(𝑁) | = 𝑏𝑚−𝑤𝑠−1 (𝑏 − 1) ≥ 𝑏𝑚−𝑤𝑠/2. Therefore we obtain

𝑇2,2 ≤ 4𝜁 (2𝛼𝜆)
𝑏𝑚−𝑤𝑠

∑︁
∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|∑

𝑗∈𝔳 ℎ 𝑗𝑔 𝑗.0 (mod 𝑁)

1
𝑟2𝛼𝜆 (𝒉𝔳)

=
4𝜁 (2𝛼𝜆)
𝑏𝑚−𝑤𝑠

∑︁
∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

×
©«

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|

1
𝑟2𝛼𝜆 (𝒉𝔳)

−
∑︁

𝒉𝔳∈(Z\{0}) |𝔳|∑
𝑗∈𝔳 ℎ 𝑗𝑔 𝑗≡ 0 (mod 𝑁)

1
𝑟2𝛼𝜆 (𝒉𝔳)

ª®®®®¬
.

Thus, we get for 𝑇2 = 𝑇2,1 + 𝑇2,2,

𝑇2 ≤ 4𝜁 (2𝛼𝜆)
𝑏𝑚−𝑤𝑠

∑︁
∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

∑︁
𝒉𝔳∈(Z\{0}) |𝔳|

1
𝑟2𝛼𝜆 (𝒉𝔳)

=
∑︁

∅≠𝔳⊆[𝑑]
𝑠∉𝔳

𝛾𝜆
𝔳∪{𝑠}

2(2𝜁 (2𝛼𝜆)) |𝔳 |+1

𝑏𝑚−𝑤𝑠

=
∑︁

{𝑠}≠𝔲⊆[𝑑]
𝑠∈𝔲

𝛾𝜆𝔲
2(2𝜁 (2𝛼𝜆)) |𝔲 |

𝑏𝑚−𝑤𝑠
.

Combining both cases, 𝑇2 is always bounded by

𝑇2 ≤
∑︁

{𝑠}≠𝔲⊆[𝑑]
𝑠∈𝔲

𝛾𝜆𝔲
2(2𝜁 (2𝛼𝜆)) |𝔲 |

𝑏max(0,𝑚−𝑤𝑠)
.

Hence we see that

(𝜃𝑠 (𝒈 (𝑠)))𝜆 ≤ 𝑇1 + 𝑇2

≤ 𝛾𝜆{𝑠}
2𝜁 (2𝛼𝜆)

𝑏max(0,𝑚−𝑤𝑠)
+

∑︁
{𝑠}≠𝔲⊆[𝑑]

𝑠∈𝔲

𝛾𝜆𝔲
2(2𝜁 (2𝛼𝜆)) |𝔲 |

𝑏max(0,𝑚−𝑤𝑠)

4.4 The Reduced Fast SCS Construction 167

≤
∑︁

𝔲⊆[𝑑]
𝑠∈𝔲

𝛾𝜆𝔲
2(2𝜁 (2𝛼𝜆)) |𝔲 |

𝑏max(0,𝑚−𝑤𝑠)
,

and so

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2𝜆 ≤
𝑑∑︁
𝑠=1

(𝜃𝑠 (𝒈 (𝑠)))𝜆 ≤
𝑑∑︁
𝑠=1

∑︁
𝔲⊆[𝑑]
𝑠∈𝔲

𝛾𝜆𝔲
2(2𝜁 (2𝛼𝜆)) |𝔲 |

𝑏max(0,𝑚−𝑤𝑠)
.

Taking the left-hand side and the right-hand side of the latter inequality to the power
1/(2𝜆) and setting 𝜏 = 1/(2𝜆), which implies 𝜏 ∈ [1/2, 𝛼), yields

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤
©«
𝑑∑︁
𝑠=1

∑︁
𝔲⊆[𝑑]
𝑠∈𝔲

𝛾
1/(2𝜏)
𝔲

2(2𝜁 (𝛼/𝜏)) |𝔲 |

𝑏max(0,𝑚−𝑤𝑠)

ª®®¬
𝜏

as claimed. □

Fast implementation of the reduced SCS algorithm

Let us now discuss the fast implementation of the reduced SCS algorithm for product
weights and certain types of initial vectors 𝒈 (0) . We require for a fast implementation
that the initial vector 𝒈 (0) is of the form

𝒈 (0) = (𝑔 (0)1 , . . . , 𝑔
(0)
𝑑

) = (𝑌1𝑔1, . . . , 𝑌𝑑𝑔𝑑) (4.17)

with 𝑔 𝑗 ∈ 𝑍𝑤 𝑗
(𝑁) for 𝑗 ∈ [𝑑]. Note that the components 𝑌 𝑗𝑔 𝑗 satisfy 𝑌 𝑗𝑔 𝑗 ≡

0 (mod 𝑁) for 𝑗 > 𝑑∗, where again 𝑑∗ := max{𝑠 ∈ N0 : 𝑤𝑠 < 𝑚}.
Our starting point is the worst-case error formula (3.6). Let 𝑁 = 𝑏𝑚, let 𝑠 ∈

{0, 1, . . . , 𝑑 − 1} be arbitrarily chosen, and assume that, for 𝑠 ≠ 0, 𝑔1, . . . , 𝑔𝑠 have
already been selected. According to Algorithm 4.11, we now need to find a minimizer
in 𝑍𝑤𝑠+1 (𝑁) such that the squared error

[err𝑁,𝑠+1,𝛼,𝜸 ((𝑌1𝑔1, . . . , 𝑌𝑠𝑔𝑠 , 𝑌𝑠+1𝑔, 𝑔
(0)
𝑠+2, . . . , 𝑔

(0)
𝑑

))]2 (4.18)

is minimized as a function of 𝑔, which means that we need to minimize

𝑁−1∑︁
𝑘=0

(
1 + 𝛾 𝑗𝜑𝛼

(
𝑘𝑌𝑠+1𝑔

𝑁

))
𝜂𝑠 (𝑘) =

𝑁−1∑︁
𝑘=0

𝜂𝑠 (𝑘) + 𝛾 𝑗
𝑁−1∑︁
𝑘=0

𝜑𝛼

(
𝑘𝑌𝑠+1𝑔

𝑁

)
𝜂𝑠 (𝑘) ,

where

𝜂𝑠 (𝑘) := ©«
𝑠∏
𝑗=1

(
1 + 𝛾 𝑗𝜑𝛼

(
𝑘𝑌 𝑗𝑔 𝑗

𝑁

))ª®¬
𝑑∏

𝑗=𝑠+2

©«1 + 𝛾 𝑗𝜑𝛼
©«
𝑘𝑔

(0)
𝑗

𝑁

ª®¬ª®¬ .

168 4 Modified Construction Schemes

The empty products occurring for 𝑠 = 0 or 𝑠 = 𝑑 − 1, respectively, are considered as
equal to one. Accordingly, minimizing the squared error (4.18) with respect to 𝑔 is
equivalent to minimizing

𝑇𝑠+1 (𝑔) :=
𝑁−1∑︁
𝑘=0

𝜑𝛼

(
𝑘𝑌𝑠+1𝑔

𝑁

)
𝜂𝑠 (𝑘).

Using this notation, we can now outline the idea of the fast implementation of
Algorithm 4.11 and derive its cost.

As outlined in Section 3.4, we can assume that the function values of 𝜑𝛼 for
arguments 𝑘/𝑏𝑚 with 𝑘 ∈ {0, 1, . . . , 𝑏𝑚−1}, can be precomputed using O(𝑁 log 𝑁)
operations, at the expense of O(𝑁) storage.

In the next step we initialize a vector �̃� = (𝜂(0), . . . , 𝜂(𝑁 − 1))⊤ by

𝜂(𝑘) :=
𝑑∏
𝑗=1

©«1 + 𝛾 𝑗𝜑𝛼 ©«
𝑘𝑔

(0)
𝑗

𝑁

ª®¬ª®¬ for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}.

This initialization of �̃� can be done using O(𝑁 min(𝑑, 𝑑∗)) operations, as (4.17)
actually implies

𝜂(𝑘) = ©«
𝑑∗∏
𝑗=1

©«1 + 𝛾 𝑗𝜑𝛼
©«
𝑘𝑔

(0)
𝑗

𝑁

ª®¬ª®¬ª®¬
𝑑∏

𝑗=𝑑∗+1
(1 + 𝛾 𝑗𝜑𝛼 (0)).

After the initialization, one can use a loop over increasing 𝑠 ∈ {2, 3, . . . ,
min(𝑑, 𝑑∗) − 1} as follows. Assume that 𝑔1, . . . , 𝑔𝑠 have already been chosen in
the previous steps (for 𝑠 = 0, no previous components have been chosen). Then
update the vector �̃�𝑠 = (𝜂𝑠 (0), . . . , 𝜂𝑠 (𝑁 − 1))⊤ using �̃�, by dividing out the term
corresponding to 𝑔 (0)

𝑠+1, i.e., put

𝜂𝑠 (𝑘) := ©«
𝑠∏
𝑗=1

(
1 + 𝛾 𝑗𝜑𝛼

(
𝑘𝑌 𝑗𝑔 𝑗

𝑁

))ª®¬
𝑑∏

𝑗=𝑠+2

©«1 + 𝛾 𝑗𝜑𝛼 ©«
𝑘𝑔

(0)
𝑗

𝑁

ª®¬ª®¬
for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. Like the initialization, this step can be done in
O(𝑁 min(𝑑, 𝑑∗)) operations in total for all steps in the loop over 𝑠.

Next, divide �̃�𝑠 into 𝑏𝑤𝑠+1 vectors �̃� (1)
𝑠 , . . . , �̃� (𝑏𝑤𝑠+1)

𝑠 of length 𝑏𝑚−𝑤𝑠+1 each, where

�̃� (ℓ)
𝑠 = (𝜂𝑠 (1 + (ℓ − 1)𝑏𝑚−𝑤𝑠+1), . . . , 𝜂𝑠 (ℓ 𝑏𝑚−𝑤𝑠+1))⊤ for ℓ ∈ [𝑏𝑤𝑠+1],

and put �̃�′
𝑠 := �̃� (1)

𝑠 + · · · + �̃� (𝑏𝑤𝑠+1)
𝑠 . These additions again require O(𝑁 min(𝑑, 𝑑∗))

operations in total for all steps in the loop.

4.5 Projection-Corrected Constructions 169

As in Section 4.2, let

𝑨𝑁 :=
(
𝜑𝛼

(
𝑘𝑌𝑠+1𝑔

𝑁

))
𝑔∈𝑍𝑤𝑠+1 (𝑁) ,𝑘∈𝐺1 (𝑁)

.

Then, we see again that 𝑨𝑁 is a block matrix,

𝑨𝑁 =

(
𝛀𝑏𝑚−𝑤𝑠+1 , . . . ,𝛀𝑏𝑚−𝑤𝑠+1︸ ︷︷ ︸

𝑏𝑤𝑠+1 times

)
,

and that multiplication of 𝑨𝑁 with �̃�𝑠 boils down to multiplication of 𝛀𝑏𝑚−𝑤𝑠+1

(defined as in Section 4.2) with �̃�′
𝑠 . Using FFT, this can again be done in

O((𝑚 − 𝑤𝑠+1)𝑏𝑚−𝑤𝑠+1) operations.
Finally, update �̃� using �̃�𝑠 , by

𝜂(𝑘) := ©«
𝑠+1∏
𝑗=1

(
1 + 𝛾 𝑗𝜑𝛼

(
𝑘𝑌 𝑗𝑔 𝑗

𝑁

))ª®¬
𝑑∏

𝑗=𝑠+2

©«1 + 𝛾 𝑗𝜑𝛼 ©«
𝑘𝑔

(0)
𝑗

𝑁

ª®¬ª®¬
for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, and this again requires O(𝑁 min(𝑑, 𝑑∗)) operations in
total for all steps in the loop.

Then, increase 𝑠 by one and repeat the loop until 𝑠 has reached min(𝑑, 𝑑∗). For
𝑠 ≥ 𝑑∗, all components 𝑔𝑠 are chosen as 1.

This shows that the total number of operations required for a fast implementation
of Algorithm 4.11 is, as for the reduced fast CBC construction outlined in Section 4.1,
of order

O
(
𝑚𝑏𝑚 + 𝑏𝑚 min(𝑑, 𝑑∗) +

min(𝑑,𝑑∗)∑︁
𝑠=1

(𝑚 − 𝑤𝑠)𝑏𝑚−𝑤𝑠

)
,

where 𝑑∗ := max{𝑠 ∈ N0 : 𝑤𝑠 < 𝑚}. Furthermore, if the reduction indices are cho-
sen such that they increase sufficiently fast, the computational cost of Algorithm 4.11
can be independent of 𝑑, and again one needs to carefully balance the choice of the
reduction indices with the coordinate weights.

4.5 Projection-Corrected Constructions

Let us now address another issue that may be of relevance in the context of CBC
constructions. Several authors (see, e.g., [77]) report that in running the CBC con-
struction or variants thereof it may happen that components of the generating vector
𝒈 = (𝑔1, . . . , 𝑔𝑑) repeat themselves, i.e., there are 𝑖, 𝑗 ∈ [𝑑], 𝑖 ≠ 𝑗 , such that 𝑔𝑖 = 𝑔 𝑗 .

To alleviate this problem, Gantner and Schwab [77] introduced the method of
“pruning”. Here, we outline the method for the worst-case error in weighted Korobov
spaces, but the general idea also works for other quality measures for lattice rules.

170 4 Modified Construction Schemes

Assume that one would like to construct a generating vector 𝒈 of a 𝑑-dimensional
rank-1 lattice rule with 𝑁 ∈ N points by the usual CBC construction, as given in
Algorithm 3.6, but that one would like to avoid repeated components. Suppose that
for 𝑠 ∈ [𝑑 − 1] the components 𝑔1, . . . , 𝑔𝑠 ∈ 𝐺𝜑1 (𝑁) of the generating vector 𝒈 have
already been chosen. Then, choose 𝑔𝑠+1 ∈ 𝐺𝜑1 (𝑁) \ {𝑔1, . . . , 𝑔𝑠}. Obeying this rule
naturally avoids repeated components in 𝒈. The only additional assumption to be
made in this procedure is that the cardinality of 𝐺𝜑1 (𝑁) needs to be (substantially)
larger than 𝑑, which, however, is no big restriction, as it is common that the number
of points significantly exceeds the dimension.

We now formulate the so-called projection-corrected CBC algorithm.

Algorithm 4.13 (Projection-corrected CBC construction) Let 𝑁 and 𝑑 be given.
Construct a generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺𝜑𝑑 (𝑁) as follows.

(1) Choose 𝑔1 = 1 and E1 = ∅.
(2) For 𝑠 from 1 to 𝑑 − 1:

Assume that 𝑔1, . . . , 𝑔𝑠 ∈ 𝐺𝜑1 (𝑁) have already been found, and choose E𝑠+1 ⊊
𝐺
𝜑

1 (𝑁). Choose 𝑔𝑠+1 ∈ 𝐺𝜑1 (𝑁) \ E𝑠+1 as

𝑔𝑠+1 := argmin
𝑔∈𝐺𝜑

1 (𝑁)\E𝑠+1

err𝑁,𝑠+1,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠)).

End for.
(3) Set 𝒈 = (𝑔1, . . . , 𝑔𝑑).

Remark 4.14 Note that Algorithm 4.13 generalizes the idea of pruning in the sense
that it allows arbitrary exclusion sets E𝑠 in step 𝑠. If no elements of 𝐺𝜑1 (𝑁) are
to be excluded in step 𝑠, choose E𝑠 = ∅. In particular, by choosing E𝑠 = ∅ for all
𝑠 ∈ {2, 3, . . . , 𝑑}, one obtains Algorithm 3.6. Note, furthermore, that for 𝑠 = 1 we
do not use any exclusions since in our setting all choices of 𝑔1 would yield the same
one-dimensional point set.

The following result, which is a generalization of Theorem 3.9, was shown in
[43], but only for product weights. Here we state it for general weights.

Theorem 4.15 Let 𝑁 ≥ 2 be an arbitrary integer and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be general
weights. Moreover, assume that 𝒈 = (𝑔1, . . . , 𝑔𝑑) and exclusion sets E1, . . . , E𝑑 ⊊
𝐺
𝜑

1 (𝑁) have been chosen in Algorithm 4.13. Then for arbitrary 𝜏 ∈ [1/2, 𝛼) and for
any 𝑠 ∈ [𝑑] we have

err𝑁,𝑠,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠)) ≤
©« 1
𝜑(𝑁)

∑︁
∅≠𝔲⊆[𝑠]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 | ∏
𝑗∈𝔲

𝜑(𝑁)
𝜑(𝑁) − |E 𝑗 |

ª®¬
𝜏

.

(4.19)

Proof The proof is a modification of the proof of Theorem 3.9 in Section 3.3, and
we also use the same notation as there. Again, the proof is based on induction on 𝑠.

For 𝑠 = 1 the argumentation is exactly the same as in the proof of Theorem 3.9.

4.5 Projection-Corrected Constructions 171

We now explain the changes in the induction step. Assume that the bound (4.19)
holds for 𝑠 and assume further that 𝑔𝑠+1 and E𝑠+1 are chosen according to Algo-
rithm 4.13. Let 𝒈 (𝑠) := (𝑔1, . . . , 𝑔𝑠) be the vector found in the first 𝑠 steps of Algo-
rithm 4.13, and, for 𝑔 ∈ 𝐺𝜑1 (𝑁), let (𝒈 (𝑠) , 𝑔) := (𝑔1, . . . , 𝑔𝑠 , 𝑔). For 𝜆 ∈ (1/(2𝛼), 1]
and 𝑐 ≥ 1 define

𝐺𝑐 := {𝑔 ∈ 𝐺𝜑1 (𝑁) : (𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔))𝜆 ≤ 𝑐Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠))}.

We employ Markov’s inequality, which states that for a nonnegative random variable
𝑋 and any real number 𝑐 ≥ 1 we have that P[𝑋 < 𝑐E[𝑋]] > 1 − 𝑐−1. We use the
normalized counting measure 𝜇 on 𝐺𝜑1 (𝑁) as the probability measure. Then

|𝐺𝑐 |
𝜑(𝑁) = 𝜇(𝐺𝑐) > 1 − 1

𝑐
.

In particular, for any 𝑐 ≥ 1 there is a subset 𝐺𝑐 ⊆ 𝐺
𝜑

1 (𝑁) of size bigger than
𝜑(𝑁) (1 − 𝑐−1) such that for all 𝑔 in this subset we have

(𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔))𝜆 ≤ 𝑐Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠)).

By choosing 𝑐 ≥ 1 such that

𝜑(𝑁)
(
1 − 1

𝑐

)
= |E𝑠+1 |,

it follows that the set 𝐺𝑐 \ E𝑠+1 is nonempty. This condition is satisfied for

𝑐 =
𝜑(𝑁)

𝜑(𝑁) − |E𝑠+1 |
.

In particular, if E𝑠+1 = ∅, then 𝑐 = 1. Since 𝑔𝑠+1 is a minimizer of the error we obtain
for 𝑔 ∈ 𝐺𝑐 \ E𝑠+1 that

(𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1))𝜆 ≤ (𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔))𝜆

≤ 𝑐Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠))

≤ 𝜑(𝑁)
𝜑(𝑁) − |E𝑠+1 |

1
𝜑(𝑁)

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 | ,

where we used (3.15) in the last estimate. Since 𝜑(𝑁)/(𝜑(𝑁) − |E 𝑗 |) ≥ 1 for every
𝑗 ∈ [𝑑], we get

(𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1))𝜆 ≤ 1
𝜑(𝑁)

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 |
∏
𝑗∈𝔲

𝜑(𝑁)
𝜑(𝑁) − |E 𝑗 |

. (4.20)

172 4 Modified Construction Schemes

Now we proceed as in the final part of the proof of Theorem 3.9. From (3.17) and
(4.20) we obtain

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1))]2𝜆

≤ [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2𝜆 + (𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1))𝜆

≤ [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2𝜆 + 1
𝜑(𝑁)

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 |
∏
𝑗∈𝔲

𝜑(𝑁)
𝜑(𝑁) − |E 𝑗 |

.

Setting again 𝜏 = 1/(2𝜆) we obtain

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1))]1/𝜏

≤ [err𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠))]1/𝜏 + 1
𝜑(𝑁)

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 | ∏
𝑗∈𝔲

𝜑(𝑁)
𝜑(𝑁) − |E 𝑗 |

.

Using the induction assumption yields

[err𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1))]1/𝜏

≤ 1
𝜑(𝑁)

∑︁
∅≠𝔲⊆[𝑠]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 | ∏
𝑗∈𝔲

𝜑(𝑁)
𝜑(𝑁) − |E 𝑗 |

+ 1
𝜑(𝑁)

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 | ∏
𝑗∈𝔲

𝜑(𝑁)
𝜑(𝑁) − |E 𝑗 |

=
1

𝜑(𝑁)
∑︁

∅≠𝔲⊆[𝑠+1]
𝛾

1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 | ∏
𝑗∈𝔲

𝜑(𝑁)
𝜑(𝑁) − |E 𝑗 |

,

which gives the final result. □

The following corollary, which is a straightforward consequence of Theorem 4.15,
deals with the case when the relative sizes of the exclusion sets are uniformly
bounded.

Corollary 4.16 Let sequences of positive integers (𝑁𝑘)𝑘∈N and (𝑑𝑘)𝑘∈N be given.
Assume that 𝒈𝑘 = (𝑔1,𝑘 , . . . , 𝑔𝑑𝑘 ,𝑘) have been constructed by Algorithm 4.13, using
𝑁𝑘 , 𝑑𝑘 and the exclusion sets E1,𝑘 , . . . , E𝑑𝑘 ,𝑘 for 𝑘 ∈ N. Assume that there is a
𝛿 ∈ (0, 1) such that

sup
𝑘∈N

max 𝑗∈[𝑑𝑘] |E 𝑗 ,𝑘 |
𝜑(𝑁𝑘)

≤ 𝛿. (4.21)

Then for any 𝜏 ∈ [1/2, 𝛼) and any 𝑘 ∈ N we have

err𝑁𝑘 ,𝑑𝑘 ,𝛼,𝜸 (𝒈𝑘) ≤
©« 1
𝜑(𝑁𝑘)

∑︁
∅≠𝔲⊆[𝑑𝑘]

𝛾
1/(2𝜏)
𝔲

(
2𝜁 (𝛼/𝜏)

1 − 𝛿

) |𝔲 |ª®¬
𝜏

.

4.5 Projection-Corrected Constructions 173

Corollary 4.16 implies that as long as the relative sizes of the exclusion sets are
uniformly bounded as in (4.21), tractability results are not affected. In other words,
if, e.g., we obtain strong polynomial tractability for the integration problem in the
weighted Korobov space using the standard CBC algorithm (Algorithm 3.6), then
the same is possible with the use of the modified CBC algorithm using uniformly
bounded exclusion sets.

Although Algorithm 4.13, Theorem 4.15, and Corollary 4.16 apply to arbitrary
exclusion sets, some choices are of particular interest. Let us discuss some of them
in the following.

Repeated components

If, as in the motivation for this section, the aim is simply to avoid repeated components
as observed in some numerical experiments, and as used in [77] for pruning, one can
choose the exclusion sets as

E𝑠+1 = {𝑔1, . . . , 𝑔𝑠} for 𝑠 ∈ [𝑑 − 1],

where the 𝑔1, . . . , 𝑔𝑠 are the components chosen in the first steps of Algorithm 4.13.
This guarantees that there are no two-dimensional projections of the lattice point set
whose points all lie on the main diagonal {(𝑥, 𝑥) : 0 ≤ 𝑥 ≤ 1}.

Avoiding diagonals

To also exclude having two-dimensional projections where all the points of the lattice
point set lie on an antidiagonal {(𝑥, 1−𝑥) : 0 ≤ 𝑥 ≤ 1}, one can additionally exclude
the components 𝑁 − 𝑔1, 𝑁 − 𝑔2, . . . , 𝑁 − 𝑔𝑠 in step 𝑠 + 1 of Algorithm 4.13. This
suggests using the exclusion sets

E𝑠+1 = {𝑔1, 𝑁 − 𝑔1, 𝑔2, 𝑁 − 𝑔2, . . . , 𝑔𝑠 , 𝑁 − 𝑔𝑠} for 𝑠 ∈ [𝑑 − 1] . (4.22)

Note that this is only possible as long as 2(𝑑 − 1) < 𝜑(𝑁). Even so, if, say,
|E 𝑗 | = 𝜑(𝑁)−ℓ for some small ℓ ∈ N, then the factor 𝜑(𝑁)/(𝜑(𝑁)− |E 𝑗 |) = 𝜑(𝑁)/ℓ
becomes large, in which case the bound in Theorem 4.15 becomes meaningless. So
one still wants to impose a restriction, e.g., of the form max 𝑗∈[𝑑] |E 𝑗 | ≤ 𝛿𝜑(𝑁) for
some “reasonable choice” (depending on the application) of 𝛿 < 1. This and (4.22)
imply 2(𝑑 − 1) ≤ 𝛿𝜑(𝑁).

Avoiding diagonals in smaller dimension

Under certain circumstances a condition of the form 2(𝑑 − 1) ≤ 𝛿𝜑(𝑁) cannot be
satisfied. For example, when considering tractability questions one wants to study
the dependence on the dimension as 𝑑 tends to infinity. Another case in which

174 4 Modified Construction Schemes

problems can arise is when 𝑁 and 𝑑 need to be increased simultaneously, as for
example in applications related to PDEs with random coefficients (see, e.g., [160],
and Appendix A). In this case one can, for instance, choose E𝑠+1 as in (4.22) for
𝑠 ∈ [𝑑∗ − 1] for some fixed 𝑑∗ (independent of 𝑁 and 𝑑) and set E𝑠+1 = ∅ for
𝑠 ∈ {𝑑∗, . . . , 𝑑 − 1}. As long as 2(𝑑∗ − 1) ≤ 𝛿𝜑(𝑁), Corollary 4.16 applies since
the relative sizes of the exclusion sets are uniformly bounded, and therefore strong
polynomial tractability results can still be obtained. The particular choice of 𝑑∗ will
depend on the problem under consideration.

Reduced fast CBC construction

Another instance where a particular type of exclusion sets has been considered is the
reduced (fast) CBC construction outlined in Section 4.1. There, however, the original
aim is slightly different, namely, to reduce the search space in each coordinate such
that one obtains a speedup of the fast CBC algorithm. In this case, instead of having
to do additional computational work, the computational work actually decreases. We
refer to the preceding sections for further details.

4.6 The Component-By-Component Digit-By-Digit Construction

In the final section of this chapter, we present a construction algorithm for generating
vectors of rank-1 lattice rules that is motivated by earlier work of Korobov from 1963
and 1982, more specifically [140] and [141]. To be more precise, we will consider
an algorithm that constructs the generating vector 𝒈 in a CBC fashion in which each
component 𝑔 𝑗 is assembled digit-by-digit (DBD), that is, for a total number 𝑁 = 2𝑚,
𝑚 ∈ N, of points we greedily construct the components 𝑔 𝑗 bit-by-bit starting from
the least significant bit. We call this the component-by-component digit-by-digit
(CBC-DBD) algorithm. This construction method was presented for the weighted
Korobov space setting in [69], and we follow this reference in what we outline below.

Throughout this section we restrict our considerations to product weights 𝜸 =

(𝛾 𝑗) 𝑗≥1. Our starting point is Proposition 3.13, which implies that

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 ≤ 𝑅𝑁,𝑑,2𝛼,𝜸 (𝒈) +
22𝛼

𝑁2𝛼
©«−1 +

𝑑∏
𝑗=1

(1 + 𝛾 𝑗4𝜁 (2𝛼))
ª®¬ ,

and also

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 ≤ (𝑅𝑁,𝑑,1,𝜸1/(2𝛼) (𝒈))2𝛼 + 22𝛼

𝑁2𝛼
©«−1 +

𝑑∏
𝑗=1

(1 + 𝛾 𝑗4𝜁 (2𝛼))
ª®¬

4.6 The Component-By-Component Digit-By-Digit Construction 175

for any 𝒈 ∈ 𝐺𝜑
𝑑
(𝑁), where the function 𝑅𝑁,𝑑,𝜏,𝜸 for 𝜏 ≥ 1 is as in Definition 3.12.

I.e.,
𝑅𝑁,𝑑,𝜏,𝜸 (𝒈) =

∑︁
𝒉∈𝐶∗

𝑑
(𝑁)

𝒉 ·𝒈≡0 (mod 𝑁)

1
𝑟𝜏,𝜸 (𝒉)

,

where 𝐶∗
𝑑
(𝑁) is defined as in Section 1.8 and 𝑟𝜏,𝜸 is given in (2.17). Note that, since

we assume that 𝑁 = 2𝑚 with 𝑚 ≥ 1, we have 𝑁/2 ∈ Z, so we obtain

𝐶1 =

(
−𝑁

2
,
𝑁

2

]
∩ Z = {−2𝑚−1 + 1,−2𝑚−1 + 2, . . . , 2𝑚−1}.

Similarly to Section 3.6 we use the fact that, for finding a rank-1 lattice rule with
a small worst-case error, it is essentially sufficient to make sure that the quantity
𝑅𝑁,𝑑,2𝛼,𝜸 (𝒈) is small for the generating vector 𝒈. In Section 3.6, this was achieved
by using a CBC construction (see Algorithm 3.14), where the target function is
𝑅𝑁,𝑠,1,𝜸 for 𝑠 ∈ [𝑑]. In this section, we will modify this approach by constructing
the components of 𝒈 digit-wise. This alternative construction is not only interesting
from a mathematical point of view, but it has the advantage that there is a fast
implementation without the need to employ the fast Fourier transform, as we will
see below.

A new bound on 𝑅𝑁,𝑑,1,𝜸

The approach presented below is based on a suitable general estimate of 𝑅𝑁,𝑑,1,𝜸
that relates it to another quantity, which is then used as a new figure of merit better
suited for the present purpose.

We first show the following bound on the quantity 𝑅𝑁,𝑑,1,𝜸, which already indi-
cates the target function to be minimized in the CBC-DBD algorithm below.

Proposition 4.17 Let 𝑁 = 2𝑚, 𝑚 ∈ N, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be positive product
weights. Furthermore, let 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺𝜑𝑑 (𝑁). Then,

𝑅𝑁,𝑑,1,𝜸 (𝒈) ≤
2 + 6 log 𝑁

𝑁

©«−1 +
𝑑∏
𝑗=1

(1 + 𝛾 𝑗2(6 + 4 log 𝑁))ª®¬
+ 1
𝑁
𝐻𝑑,𝑚,𝜸 (𝒈) − ©«−1 +

𝑑∏
𝑗=1

(1 + 𝛾 𝑗 log 4)ª®¬ ,
where

𝐻𝑑,𝑚,𝜸 = 𝐻𝑑,𝑚,𝜸 (𝒈) :=
2𝑚−1∑︁
𝑘=1

©«−1 +
𝑑∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑔 𝑗/2𝑚)

))ª®¬ .

176 4 Modified Construction Schemes

For the proof we need two auxiliary results.

Lemma 4.18 Let 𝑁 ∈ N. Then for any 𝑥 ∈ (0, 1) there exists a 𝜏(𝑥) ∈ R with
|𝜏(𝑥) | ≤ 3 such that

log
(

1
sin2 (𝜋𝑥)

)
= log 4 +

∑︁
ℎ∈𝐶∗

1 (𝑁)

e2𝜋iℎ𝑥

|ℎ| + 𝜏(𝑥)
𝑁 ∥𝑥∥ ,

where ∥𝑥∥ denotes the distance to the nearest integer of 𝑥.

Proof Let 𝑥 ∈ (0, 1). For 𝜎 ∈ {−1, 1}, Euler’s formula yields the identity

log(sin(𝜋𝑥)) = log
(
e𝜋i𝑥 − e−𝜋i𝑥

2i

)
= log

(
e𝜎𝜋i𝑥𝜎

(
1 − e−2𝜎𝜋i𝑥

2i

))
= 𝜎𝜋i𝑥 − log(2𝜎i) + log

(
1 − e−2𝜎𝜋i𝑥

)
= 𝜎𝜋i𝑥 − log 2 − 𝜎𝜋i

2
+ log

(
1 − e−2𝜎𝜋i𝑥

)
.

We recall that the Maclaurin series of log(1−𝑦) equals−∑∞
ℎ=1 𝑦

ℎ/ℎ, which converges
to log(1 − 𝑦) for 𝑦 = e2𝜋i𝑥 provided that 𝑥 ∉ Z. Then, averaging over both choices
of 𝜎 ∈ {−1, 1} yields

log(sin(𝜋𝑥)) = − log 2 − 1
2

∞∑︁
ℎ=1

(
e−2𝜋iℎ𝑥 + e2𝜋iℎ𝑥

ℎ

)
= − log 2 − 1

2

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑥

|ℎ| ,

and we note that the series is convergent for 𝑥 ∈ (0, 1). Now we have

log
(

1
sin2 (𝜋𝑥)

)
= −2 log(sin(𝜋𝑥))

= log 4 +
∑︁

ℎ∈Z\{0}

e2𝜋iℎ𝑥

|ℎ |

= log 4 +
∑︁

ℎ∈𝐶∗
1 (𝑁)

e2𝜋iℎ𝑥

|ℎ| + 𝑟 (𝑥), (4.23)

where the remainder 𝑟 (𝑥) satisfies

|𝑟 (𝑥) | =

������ ∞∑︁
ℎ=𝑁/2+1

e2𝜋iℎ𝑥

ℎ
+

∞∑︁
ℎ=𝑁/2

e−2𝜋iℎ𝑥

ℎ

������
≤ 2
𝑁

+ 2

������ ∞∑︁
ℎ=𝑁/2+1

e2𝜋iℎ𝑥

ℎ

������ .

4.6 The Component-By-Component Digit-By-Digit Construction 177

If we make use of the identity

e2𝜋iℎ𝑥

ℎ
=

1
e2𝜋i𝑥 − 1

(
e2𝜋i(ℎ+1)𝑥

ℎ + 1
− e2𝜋iℎ𝑥

ℎ
+ e2𝜋i(ℎ+1)𝑥

ℎ(ℎ + 1)

)
,

summing over the ℎ ≥ 𝑁/2 + 1 yields a telescoping sum such that������ ∞∑︁
ℎ=𝑁/2+1

e2𝜋iℎ𝑥

ℎ

������ = 1
|e2𝜋i𝑥 − 1|

������ ∞∑︁
ℎ=𝑁/2+1

(
e2𝜋i(ℎ+1)𝑥

ℎ + 1
− e2𝜋iℎ𝑥

ℎ
+ e2𝜋i(ℎ+1)𝑥

ℎ(ℎ + 1)

)������
=

1
|e2𝜋i𝑥 − 1|

������−e2𝜋i(𝑁/2+1)𝑥

𝑁/2 + 1
+

∞∑︁
ℎ=𝑁/2+1

e2𝜋i(ℎ+1)𝑥

ℎ(ℎ + 1)

������
≤ 1

2 sin(𝜋𝑥)
©« 1
𝑁/2 + 1

+
∞∑︁

ℎ=𝑁/2+1

1
ℎ(ℎ + 1)

ª®¬
=

1
(𝑁/2 + 1) sin(𝜋𝑥) ,

where we used that
∞∑︁

ℎ=𝑁/2+1

1
ℎ(ℎ + 1) =

∞∑︁
ℎ=𝑁/2+1

(
1
ℎ
− 1
ℎ + 1

)
=

1
𝑁/2 + 1

and that

|e2𝜋i𝑥 − 1| = |e𝜋i𝑥 | · |e𝜋i𝑥 − e−𝜋i𝑥 | = |2i sin(𝜋𝑥) | = 2| sin(𝜋𝑥) |,

where the latter absolute value can be ignored since 𝑥 ∈ (0, 1).
Since for 𝑥 ∈ [0, 1/2] we have that sin(𝜋𝑥) ≥ 2𝑥 = 2∥𝑥∥, the symmetry of

sin(𝜋𝑥) and ∥𝑥∥ about 1/2 implies that sin(𝜋𝑥) ≥ 2∥𝑥∥ for all 𝑥 ∈ [0, 1]. This then
yields that

|𝑟 (𝑥) | ≤ 2
𝑁

+ 2
(𝑁/2 + 1) sin(𝜋𝑥) ≤ 3

𝑁 ∥𝑥∥ and thus 𝑟 (𝑥) = 𝜏(𝑥)
𝑁 ∥𝑥∥

for some 𝜏(𝑥) ∈ Rwith |𝜏(𝑥) | ≤ 3. This together with the expression in (4.23) yields
the claim. □

The following lemma provides a result regarding the difference of two products.
Variants of such a result can be found in the literature (see also, e.g., Lemma 5.2),
but, as the lemma is crucial in showing the main result of this section, we provide a
proof for the sake of completeness.

178 4 Modified Construction Schemes

Lemma 4.19 For 𝑗 ∈ [𝑑], let 𝑢 𝑗 , �̄� 𝑗 , 𝑣 𝑗 , and 𝑡 𝑗 be real numbers satisfying

(𝑎) 𝑢 𝑗 = 𝑣 𝑗 + 𝑡 𝑗 , (𝑏) |𝑢 𝑗 | ≤ �̄� 𝑗 , (𝑐) �̄� 𝑗 ≥ 1.

Then, for any set 𝔲, ∅ ≠ 𝔲 ⊆ [𝑑], there exists a 𝜃𝔲 with |𝜃𝔲 | ≤ 1 such that∏
𝑗∈𝔲

𝑢 𝑗 =
∏
𝑗∈𝔲

𝑣 𝑗 + 𝜃𝔲

(∏
𝑗∈𝔲

(�̄� 𝑗 + |𝑡 𝑗 |)
) ∑︁
𝑗∈𝔲

|𝑡 𝑗 |. (4.24)

Proof We prove the statement by induction on |𝔲 |. For |𝔲 | = 1 we have that 𝔲 = { 𝑗}
for some 𝑗 ∈ [𝑑] and obtain, since �̄� 𝑗 ≥ 1, that

𝑢 𝑗 = 𝑣 𝑗 + 𝑡 𝑗 ≤ 𝑣 𝑗 + |𝑡 𝑗 | (�̄� 𝑗 + |𝑡 𝑗 |),

and thus 𝑢 𝑗 = 𝑣 𝑗 + 𝜃𝔲 |𝑡 𝑗 | (�̄� 𝑗 + |𝑡 𝑗 |) for some 𝜃𝔲 with |𝜃𝔲 | ≤ 1. Indeed, it is sufficient
to choose 𝜃𝔲 = 𝑡 𝑗/(|𝑡 𝑗 | (�̄� 𝑗 + |𝑡 𝑗 |)).

Consider then |𝔲 | ≥ 2 and assume that (4.24) holds for sets of cardinality |𝔲 | − 1.
Writing 𝔲 = { 𝑗1, . . . , 𝑗 |𝔲 |} ⊆ [𝑑] and using Properties (a) and (b), this yields�����∏

𝑗∈𝔲
𝑢 𝑗 −

∏
𝑗∈𝔲

𝑣 𝑗

����� =
�����
(|𝔲 |−1∏
𝑖=1

𝑢 𝑗𝑖 −
|𝔲 |−1∏
𝑖=1

𝑣 𝑗𝑖

)
𝑣 𝑗|𝔲 | + 𝑡 𝑗|𝔲 |

|𝔲 |−1∏
𝑖=1

𝑢 𝑗𝑖

�����
≤

����� |𝔲 |−1∏
𝑖=1

𝑢 𝑗𝑖 −
|𝔲 |−1∏
𝑖=1

𝑣 𝑗𝑖

����� |𝑢 𝑗|𝔲 | − 𝑡 𝑗|𝔲 | | + |𝑡 𝑗|𝔲 | |
|𝔲 |−1∏
𝑖=1

�̄� 𝑗𝑖

≤
��𝜃𝔲\{ 𝑗|𝔲 | }�� (�̄� 𝑗|𝔲 | + |𝑡 𝑗|𝔲 | |)

(|𝔲 |−1∏
𝑖=1

(�̄� 𝑗𝑖 + |𝑡 𝑗𝑖 |)
) |𝔲 |−1∑︁
𝑖=1

|𝑡 𝑗𝑖 |

+ |𝑡 𝑗|𝔲 | |
|𝔲 |−1∏
𝑖=1

�̄� 𝑗𝑖

= |𝜃𝔲\{ 𝑗|𝔲 | } |
(|𝔲 |∏
𝑖=1

(�̄� 𝑗𝑖 + |𝑡 𝑗𝑖 |)
) |𝔲 |−1∑︁
𝑖=1

|𝑡 𝑗𝑖 | + |𝑡 𝑗|𝔲 | |
|𝔲 |−1∏
𝑖=1

�̄� 𝑗𝑖

≤ �̃�𝔲

(∏
𝑗∈𝔲

(�̄� 𝑗 + |𝑡 𝑗 |)
) ∑︁
𝑗∈𝔲

|𝑡 𝑗 |,

where < 𝜃𝔲\{ 𝑗|𝔲 | } |, |�̃�𝔲 | ≤ 1. Indeed, the last inequality follows by noting that we can
write

|𝔲 |−1∏
𝑖=1

�̄� 𝑗𝑖 = �̃�

|𝔲 |∏
𝑖=1

(�̄� 𝑗𝑖 + |𝑡 𝑗𝑖 |)

for some �̃�with |�̃� | ≤ 1 because of Property (c) and then setting �̃�𝔲 = max(|𝜃𝔲\{ 𝑗|𝔲 | } |, �̃�).
This then implies the existence of a 𝜃𝔲 with |𝜃𝔲 | ≤ 1 such that (4.24) holds. □

We are now ready to state the proof of Proposition 4.17.

4.6 The Component-By-Component Digit-By-Digit Construction 179

Proof of Proposition 4.17 For 𝒈 ∈ 𝐺𝜑
𝑑
(𝑁) we have

𝑅𝑁,𝑑,1,𝜸 (𝒈) =
∑︁

𝒉∈𝐶∗
𝑑
(𝑁)

𝒉 ·𝒈≡0 (mod 𝑁)

1
𝑟1,𝜸 (𝒉)

=
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲

∑︁
𝒉𝔲 ∈(𝐶∗

1 (𝑁)) |𝔲 |
𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |

≤
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲

∑︁
𝒉𝔲 ∈𝐶∗

|𝔲 | (𝑁)
𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

∏
𝑗∈𝔲

1
𝑏(ℎ 𝑗)

,

where we use the abbreviation

𝑏(ℎ) :=

{
|ℎ| if ℎ ≠ 0,
1/(log 4) if ℎ = 0,

for ℎ ∈ Z. Now we write, employing Remark 1.10,

∑︁
𝒉𝔲 ∈𝐶∗

|𝔲 | (𝑁)
𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

∏
𝑗∈𝔲

1
𝑏(ℎ 𝑗)

=
1
𝑁

𝑁−1∑︁
𝑘=0

©«
∑︁

𝒉𝔲 ∈𝐶|𝔲 | (𝑁)

e2𝜋i𝑘 𝒉𝔲 ·𝒈𝔲/𝑁∏
𝑗∈𝔲 𝑏(ℎ 𝑗)

− (log 4) |𝔲 |ª®¬ .
Using this identity we continue estimating 𝑅𝑁,𝑑,1,𝜸 (𝒈). We have

𝑅𝑁,𝑑,1,𝜸 (𝒈)

≤
∑︁

∅≠𝔲⊆[𝑑]

𝛾𝔲

𝑁

𝑁−1∑︁
𝑘=0

©«
∑︁

𝒉𝔲 ∈𝐶|𝔲 | (𝑁)

e2𝜋i𝑘 𝒉𝔲 ·𝒈𝔲/𝑁∏
𝑗∈𝔲 𝑏(ℎ 𝑗)

− (log 4) |𝔲 |ª®¬
=

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲

𝑁

©«
∑︁

𝒉𝔲 ∈𝐶|𝔲 | (𝑁)

1∏
𝑗∈𝔲 𝑏(ℎ 𝑗)

+
𝑁−1∑︁
𝑘=1

∏
𝑗∈𝔲

©«log 4 +
∑︁

ℎ∈𝐶∗
1 (𝑁)

e2𝜋i𝑘 ℎ 𝑔 𝑗/𝑁

|ℎ|
ª®¬ª®¬

−
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲 (log 4) |𝔲 |

=
1
𝑁

©«−1 +
𝑑∏
𝑗=1

©«1 + 𝛾 𝑗
∑︁

ℎ∈𝐶1 (𝑁)

1
𝑏(ℎ)

ª®¬ª®¬ − ©«−1 +
𝑑∏
𝑗=1

(1 + 𝛾 𝑗 log 4)ª®¬
+

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲

𝑁

𝑁−1∑︁
𝑘=1

∏
𝑗∈𝔲

©«log 4 +
∑︁

ℎ∈𝐶∗
1 (𝑁)

e2𝜋i𝑘 ℎ 𝑔 𝑗/𝑁

|ℎ|
ª®¬ . (4.25)

Note that
∑
ℎ∈𝐶1 (𝑁) (𝑏(ℎ))−1 = log 4+ 𝑆𝑁 , where, as before, 𝑆𝑁 :=

∑
ℎ∈𝐶∗

1 (𝑁) |ℎ |−1.

180 4 Modified Construction Schemes

Hence it remains to estimate (4.25) to complete the proof. To this end we employ
Lemma 4.19 with

𝑢 𝑗 = 𝑢 𝑗 (𝑘) := log(sin−2 (𝜋𝑘𝑔 𝑗/𝑁)), �̄� 𝑗 = �̄� 𝑗 (𝑘) := 2 log 𝑁,

𝑣 𝑗 = 𝑣 𝑗 (𝑘) := log 4 +
∑︁

ℎ∈𝐶∗
1 (𝑁)

e2𝜋i𝑘 ℎ 𝑔 𝑗/𝑁

|ℎ| , 𝑡 𝑗 = 𝑡 𝑗 (𝑘) :=
𝜏𝑗 (𝑘)

𝑁 ∥𝑘𝑔 𝑗/𝑁 ∥ ,

where the numbers 𝜏𝑗 (𝑘) are a shorthand for 𝜏({𝑘𝑔 𝑗/𝑁}) with 𝜏 defined as in
Lemma 4.18. We then obtain∑︁

∅≠𝔲⊆[𝑑]

𝛾𝔲

𝑁

𝑁−1∑︁
𝑘=1

∏
𝑗∈𝔲

©«log 4 +
∑︁

ℎ∈𝐶∗
1 (𝑁)

e2𝜋i𝑘 ℎ 𝑔 𝑗/𝑁

|ℎ|
ª®¬

=
∑︁

∅≠𝔲⊆[𝑑]

𝛾𝔲

𝑁

𝑁−1∑︁
𝑘=1

((∏
𝑗∈𝔲

𝑣 𝑗 (𝑘) −
∏
𝑗∈𝔲

𝑢 𝑗 (𝑘)
)
+

∏
𝑗∈𝔲

𝑢 𝑗 (𝑘)
)

=
∑︁

∅≠𝔲⊆[𝑑]

𝛾𝔲

𝑁

𝑁−1∑︁
𝑘=1

(
𝜃𝔲 (𝑘)

(∏
𝑗∈𝔲

(
�̄� 𝑗 (𝑘) + |𝑡 𝑗 (𝑘) |

)) ∑︁
𝑗∈𝔲

|𝑡 𝑗 (𝑘) | +
∏
𝑗∈𝔲

𝑢 𝑗 (𝑘)
)
,

(4.26)

where all |𝜃𝔲 (𝑘) | are at most 1. Recall that we are considering product weights.
Therefore we have∑︁

∅≠𝔲⊆[𝑑]

𝛾𝔲

𝑁

𝑁−1∑︁
𝑘=1

∏
𝑗∈𝔲

𝑢 𝑗 (𝑘) =
1
𝑁

𝑁−1∑︁
𝑘=1

©«−1 +
𝑑∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑔 𝑗/𝑁)

))ª®¬
=

1
𝑁
𝐻𝑑,𝑚,𝜸 (𝒈). (4.27)

Due to Lemma 4.18, Condition (a) in Lemma 4.19 is fulfilled. Furthermore, we
have for 𝑘 ∈ [𝑁 − 1] and 𝑔 ∈ 𝐺𝜑1 (𝑁) that

sin2
(
𝜋𝑘𝑔

𝑁

)
≥ sin2

(𝜋
𝑁

)
≥

(
2
𝑁

)2
≥ 1
𝑁2 ,

where we used that for 𝑥 ∈ [0, 𝜋/2] the estimate sin 𝑥 ≥ (2/𝜋)𝑥 holds. This implies
that Conditions (b) and (c) in Lemma 4.19 are fulfilled since

|𝑢 𝑗 | = log

(
1

sin2 (
𝜋𝑘𝑔 𝑗/𝑁

)) ≤ log(𝑁2) = 2 log 𝑁 = �̄� 𝑗 ,

and the latter expression is not smaller than one as long as 𝑁 ≥ 2.

4.6 The Component-By-Component Digit-By-Digit Construction 181

We now show how to bound the sum∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲

𝑁

𝑁−1∑︁
𝑘=1

(
𝜃𝔲 (𝑘)

(∏
𝑗∈𝔲

(
�̄� 𝑗 (𝑘) + |𝑡 𝑗 (𝑘) |

)) ∑︁
𝑗∈𝔲

|𝑡 𝑗 (𝑘) |
)

independently of the choice of 𝒈. Inserting the definitions of �̄� 𝑗 (𝑘) and 𝑡 𝑗 (𝑘), and
using the estimates |𝜃𝔲 (𝑘) | ≤ 1, |𝜏𝑗 (𝑘) | ≤ 3, and 𝑁 ∥𝑘𝑔 𝑗/𝑁 ∥ ≥ 𝑁 ∥1/𝑁 ∥ = 1, we
obtain ∑︁

∅≠𝔲⊆[𝑑]

𝛾𝔲

𝑁

𝑁−1∑︁
𝑘=1

𝜃𝔲 (𝑘)
(∏
𝑗∈𝔲

(
�̄� 𝑗 (𝑘) + |𝑡 𝑗 (𝑘) |

)) ∑︁
𝑗∈𝔲

|𝑡 𝑗 (𝑘) |

≤
∑︁

∅≠𝔲⊆[𝑑]

𝛾𝔲

𝑁

𝑁−1∑︁
𝑘=1

(∏
𝑗∈𝔲

(
2 log 𝑁 +

|𝜏𝑗 (𝑘) |
𝑁 ∥𝑘𝑔 𝑗/𝑁 ∥

)) ∑︁
𝑗∈𝔲

|𝜏𝑗 (𝑘) |
𝑁 ∥𝑘𝑔 𝑗/𝑁 ∥

≤
∑︁

∅≠𝔲⊆[𝑑]

𝛾𝔲

𝑁

(∏
𝑗∈𝔲

(3 + 2 log 𝑁)
) ∑︁
𝑗∈𝔲

𝑁−1∑︁
𝑘=1

3
𝑁 ∥𝑘𝑔 𝑗/𝑁 ∥ .

Next we use a well-known estimate for the innermost sum in the latter expression,
which is a Diophantine sum. As gcd(𝑔 𝑗 , 𝑁) = 1, we have {𝑘𝑔 𝑗 (mod 𝑁) : 𝑘 ∈
{1, 2, . . . , 𝑁 − 1}} = {1, 2, . . . , 𝑁 − 1}, and consequently

𝑁−1∑︁
𝑘=1

1
𝑁 ∥𝑘𝑔 𝑗/𝑁 ∥ =

1
𝑁

𝑁−1∑︁
𝑘=1

1
∥𝑘/𝑁 ∥

=
1
𝑁

©«
𝑁/2∑︁
𝑘=1

1
𝑘/𝑁 +

𝑁−1∑︁
𝑘=𝑁/2+1

1
1 − 𝑘/𝑁

ª®¬
=

𝑁/2∑︁
𝑘=1

1
𝑘
+
𝑁−𝑁/2−1∑︁
𝑘=1

1
𝑘

= 𝑆𝑁 ,

where we recall that 𝑁 = 2𝑚. So we obtain∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲

𝑁

𝑁−1∑︁
𝑘=1

𝜃𝔲 (𝑘)
(∏
𝑗∈𝔲

(
�̄� 𝑗 (𝑘) + |𝑡 𝑗 (𝑘) |

)) ∑︁
𝑗∈𝔲

|𝑡 𝑗 (𝑘) |

≤
∑︁

∅≠𝔲⊆[𝑑]

𝛾𝔲

𝑁

(∏
𝑗∈𝔲

(3 + 2 log 𝑁)
)

3|𝔲 |𝑆𝑁

≤ 3𝑆𝑁
𝑁

©«−1 +
𝑑∏
𝑗=1

(
1 + 𝛾 𝑗2(3 + 2 log 𝑁)

)ª®¬ , (4.28)

182 4 Modified Construction Schemes

where we used that |𝔲 | ≤ 2 |𝔲 | for ∅ ≠ 𝔲 ⊆ [𝑑]. Employing (4.25)–(4.28) yields

𝑅𝑁,𝑑,1,𝜸 (𝒈) ≤
1
𝑁

©«−1 +
𝑑∏
𝑗=1

(1 + 𝛾 𝑗 (log 4 + 𝑆𝑁))ª®¬
+3𝑆𝑁
𝑁

©«−1 +
𝑑∏
𝑗=1

(1 + 𝛾 𝑗2(3 + 2 log 𝑁))ª®¬
+ 1
𝑁
𝐻𝑑,𝑚,𝜸 (𝒈) −

©«−1 +
𝑑∏
𝑗=1

(1 + 𝛾 𝑗 log 4)ª®¬ .
From (2.16) we know that 𝑆𝑁 ≤ 2(log 𝑁 + 1 − log 2) and hence log 4 + 𝑆𝑁 ≤
2(log 𝑁 + 1). This yields

𝑅𝑁,𝑑,1,𝜸 (𝒈) ≤
2 + 6 log 𝑁

𝑁

©«−1 +
𝑑∏
𝑗=1

(1 + 𝛾 𝑗 (6 + 4 log 𝑁))ª®¬
+ 1
𝑁
𝐻𝑑,𝑚,𝜸 (𝒈) −

©«−1 +
𝑑∏
𝑗=1

(1 + 𝛾 𝑗 log 4)ª®¬ ,
as desired. □

The CBC-DBD construction

Proposition 4.17 implies that if we can find a generating vector 𝒈 of a lattice rule
with 𝑁 = 2𝑚 points for which a good bound on

1
𝑁
𝐻𝑑,𝑚,𝜸 (𝒈) −

©«−1 +
𝑑∏
𝑗=1

(1 + 𝛾 𝑗 log 4)ª®¬ (4.29)

holds, then for this generating vector we also have a good bound on 𝑅𝑁,𝑑,1,𝜸 (𝒈).
Indeed, we will show next that we can find such a generating vector in a component-
by-component digit-by-digit construction. Note, however, that the CBC-DBD algo-
rithm introduced below does not directly optimize the function 𝐻𝑑,𝑚,𝜸 (𝒈) in terms
of 𝒈, but, digit-by-digit, a function that is closely related to 𝐻𝑑,𝑚,𝜸, in the sense that
it corresponds to the increment of a function like 𝐻𝑑,𝑚,𝜸 when the number 𝑚 of
digits of a single component of 𝒈 is increased. This relation is made precise in Item 3
of Lemma 4.22 below.

Next, we introduce a digit-wise quality function and state the construction algo-
rithm, which is based on a double loop, namely an outer loop for the components
and an inner loop for the digits of the single components of 𝒈.

4.6 The Component-By-Component Digit-By-Digit Construction 183

In the following, let 𝑥 ∈ N be an odd integer, let 𝑚, 𝑑 ∈ N, and let 𝜸 = (𝛾 𝑗) 𝑗≥1
be product weights. For 𝑣 ∈ [𝑚], 𝑠 ∈ [𝑑], and positive integers 𝑎1,𝑚, . . . , 𝑎𝑠−1,𝑚 we
define the quality function ℎ𝑠,𝑣,𝜸 : N→ R as

ℎ𝑠,𝑣,𝜸 (𝑥) :=
𝑚∑︁
𝑡=𝑣

1
2𝑡−𝑣

2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 +
(
1 + 𝛾𝑠 log

(
1

sin2 (𝜋𝑘𝑥/2𝑣)

))

×
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))ª®¬ . (4.30)

We are now ready to outline the CBC-DBD construction algorithm.

Algorithm 4.20 (CBC-DBD construction for the weighted Korobov space) Let
𝑁 = 2𝑚, product weights 𝜸 = (𝛾 𝑗) 𝑗≥1, and 𝑑 ∈ N be given. Construct a generating
vector 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺𝜑𝑑 (𝑁) as follows.

(1) Set 𝑎1,𝑚 = 1 and 𝑎2,1 = · · · = 𝑎𝑑,1 = 1.
(2) For 𝑠 from 1 to 𝑑 − 1:

Assume that 𝑎1,𝑚, . . . , 𝑎𝑠,𝑚 have already been found. Choose 𝑎𝑠+1,𝑚 as follows.

(2a) For 𝑣 from 1 to 𝑚 − 1:
Assume that 𝑎𝑠+1,1, . . . , 𝑎𝑠+1,𝑣 have already been found. Choose

𝑔∗ = argmin
𝑔∈{0,1}

ℎ𝑠+1,𝑣+1,𝜸 (𝑎𝑠+1,𝑣 + 2𝑣𝑔).

(2b) Set
𝑎𝑠+1,𝑣+1 = 𝑎𝑠+1,𝑣 + 2𝑣𝑔∗.

End for.

End for.
(3) Set 𝑔𝑠 := 𝑎𝑠,𝑚 for 𝑠 ∈ [𝑑] and 𝒈 := (𝑔1, . . . , 𝑔𝑑).

Note that the generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑) constructed by Algorithm 4.20
satisfies that 𝑔 𝑗 ∈ 𝐺𝜑1 (𝑁) = 𝐺

𝜑

1 (2
𝑚) for all 𝑗 ∈ [𝑑].

The quality of generating vectors constructed by the CBC-DBD algorithm

In the following, we assess the quality of generating vectors found by the CBC-DBD
algorithm. We show that Algorithm 4.20 yields low values of 𝑅𝑁,𝑑,1,𝜸 (𝒈) (and,
hence, also of the corresponding worst-case integration error in the Korobov space).
The next theorem gives an estimate on the quantity 𝐻𝑑,𝑚,𝜸 = 𝐻𝑑,𝑚,𝜸 (𝒈), which
shows that the term (4.29) is sufficiently small. This will be a key observation in
showing that a generating vector 𝒈 constructed by Algorithm 4.20 yields low values
of 𝑅𝑁,𝑑,1,𝜸 (𝒈).

184 4 Modified Construction Schemes

Theorem 4.21 Let 𝑚, 𝑑 ∈ N, let 𝑁 = 2𝑚, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights.
Furthermore, assume that the integers 𝑎𝑠,𝑣 with 𝑠 ∈ [𝑑] and 𝑣 ∈ [𝑚] and the
corresponding generating vector 𝒈 have been constructed by Algorithm 4.20. Then,

𝐻𝑑,𝑚,𝜸 = 𝐻𝑑,𝑚,𝜸 (𝒈) ≤ 𝑁
©«−1 +

𝑑∏
𝑗=1

(1 + 𝛾 𝑗 log 4)ª®¬ .
For the proof of this result we need to define some additional quantities and

auxiliary results for them.
Assume that the integers 𝑎𝑠,𝑣 with 𝑠 ∈ [𝑑] and 𝑣 ∈ [𝑚] have been constructed by

Algorithm 4.20. For 𝑠 ∈ [𝑑] and 𝑣 ∈ [𝑚] we define the additional quantities

𝐻𝑠,𝑣,𝜸 :=
2𝑣−1∑︁
𝑘=1

©«−1 +
𝑠∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑣/2𝑣)

))ª®¬ , (4.31)

ℎ∗𝑠,𝑣,𝜸 := ℎ𝑠,𝑣,𝜸 (𝑎𝑠,𝑣).

Note that, for 𝑠 = 𝑑 and 𝑣 = 𝑚, the definition of 𝐻𝑠,𝑣,𝜸 corresponds to the analogous
quantity 𝐻𝑑,𝑚,𝜸 defined in Proposition 4.17.

For the quantities ℎ∗𝑠,𝑣,𝜸 and 𝐻𝑠,𝑣,𝜸, the following identities hold.

Lemma 4.22 Let 𝑚, 𝑑 ∈ N, 𝑚 ≥ 2, let 𝜸 = (𝛾 𝑗) 𝑗≥1 be given product weights, and
assume that the integers 𝑎𝑠,𝑣 with 𝑠 ∈ [𝑑] and 𝑣 ∈ [𝑚] have been constructed by
Algorithm 4.20. Then,

1. ℎ∗1,𝑚,𝜸 = 𝛾1 (2𝑚−1 − 1) log 4,
2. 𝐻1,𝑣,𝜸 = 𝛾1 (2𝑣 − 𝑣 − 1) log 4, and
3. 𝐻𝑠,𝑚,𝜸 = ℎ∗𝑠,𝑚,𝜸 + 𝐻𝑠,𝑚−1,𝜸.

Proof We prove the claimed identities one by one.
Let us start with Item 1. For 𝑠 = 1 and 𝑣 = 𝑚 we obtain that

ℎ∗1,𝑚,𝜸 = ℎ1,𝑚,𝜸 (𝑎1,𝑚)

=

2𝑚∑︁
𝑘=1

𝑘≡1 (mod 2)

𝛾1 log
(

1
sin2 (𝜋𝑘/2𝑚)

)

=

2𝑚−1∑︁
𝑘=1

𝛾1 log
(

1
sin2 (𝜋𝑘/2𝑚)

)
−

2𝑚−1∑︁
𝑘=1

𝑘≡0 (mod 2)

𝛾1 log
(

1
sin2 (𝜋𝑘/2𝑚)

)

= −2𝛾1
©«

2𝑚−1∑︁
𝑘=1

log
(
sin

(
𝜋𝑘

2𝑚

))
−

2𝑚−1−1∑︁
𝑘=1

log
(
sin

(
𝜋𝑘

2𝑚−1

))ª®¬
= −2𝛾1

©«log

(2𝑚−1∏
𝑘=1

sin
(
𝜋𝑘

2𝑚

))
− log ©«

2𝑚−1−1∏
𝑘=1

sin
(
𝜋𝑘

2𝑚−1

)ª®¬ª®¬ .

4.6 The Component-By-Component Digit-By-Digit Construction 185

We now use the well-known identity

𝑛−1∏
𝑘=1

2 sin
(
𝜋𝑘

𝑛

)
= 𝑛 or, equivalently,

𝑛−1∏
𝑘=1

sin
(
𝜋𝑘

𝑛

)
=

𝑛

2𝑛−1 (4.32)

for any 𝑛 ∈ N (see, e.g., [3, Lemma 3], [140, p. 99], or [190]).
Applying (4.32) to the previous expression gives

ℎ∗1,𝑚,𝜸 = −2𝛾1

(
log

(
2𝑚

22𝑚−1

)
− log

(
2𝑚−1

22𝑚−1−1

))
= −2𝛾1 (𝑚 log 2 − (2𝑚 − 1) log 2 − (𝑚 − 1) log 2 + (2𝑚−1 − 1) log 2)
= −2𝛾1 (1 − 2𝑚 + 2𝑚−1) log 2
= 𝛾1 (2𝑚−1 − 1) log 4.

We proceed with showing Item 2. Again using (4.32), we obtain that

𝐻1,𝑣,𝜸 =

2𝑣−1∑︁
𝑘=1

𝛾1 log
(

1
sin2 (𝜋𝑘/2𝑣)

)
= −2𝛾1

2𝑣−1∑︁
𝑘=1

log
(
sin

(
𝜋𝑘

2𝑣

))
= −2𝛾1 log

(2𝑣−1∏
𝑘=1

sin
(
𝜋𝑘

2𝑣

))
= −2𝛾1 log

(
2𝑣

22𝑣−1

)
= −2𝛾1 (𝑣 log 2 − (2𝑣 − 1) log 2)
= 𝛾1 (2𝑣 − 𝑣 − 1) log 4,

so Item 2 is shown.
Regarding Item 3, from the definition of ℎ∗𝑠,𝑚,𝜸 and 𝐻𝑠,𝑚,𝜸 we see that 𝐻𝑠,𝑚,𝜸

can be rewritten as

𝐻𝑠,𝑚,𝜸 =

2𝑚∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 +
𝑠∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑚)

))ª®¬
+

2𝑚−2∑︁
𝑘=1

𝑘≡0 (mod 2)

©«−1 +
𝑠∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑚)

))ª®¬
= ℎ𝑠,𝑚,𝜸 (𝑎𝑠,𝑚) + 𝐻𝑠,𝑚−1,𝜸

= ℎ∗𝑠,𝑚,𝜸 + 𝐻𝑠,𝑚−1,𝜸 . □

186 4 Modified Construction Schemes

The next lemma will allow us to quantify and rewrite the average over the choices
𝑔 ∈ {0, 1} for the base 2 digits in Step (2a) of Algorithm 4.20.

Lemma 4.23 Let 𝑎 and 𝑘 be odd integers and let 𝑣 ≥ 2 be an integer. Then it holds
true that

1∑︁
𝑔=0

log
(

1
sin2 (𝜋𝑘 (𝑎 + 2𝑣−1𝑔)/2𝑣)

)
= log 4 + log

(
1

sin2 (𝜋𝑘𝑎/2𝑣−1)

)
.

Proof Since 𝑘 is odd, we have that

sin2
(
𝜋𝑘 (𝑎 + 2𝑣−1)

2𝑣

)
= sin2

(
𝜋𝑘𝑎

2𝑣
+ 𝜋(𝑘 − 1)

2
+ 𝜋

2

)
= cos2

(
𝜋𝑘𝑎

2𝑣

)
,

and therefore, using that sin(𝑥) cos(𝑥) = sin(2𝑥)/2, we obtain

1∑︁
𝑔=0

log
(

1
sin2 (𝜋𝑘 (𝑎 + 2𝑣−1𝑔)/2𝑣)

)
= log

(
1

sin2 (𝜋𝑘𝑎/2𝑣)

)
+ log

(
1

cos2 (𝜋𝑘𝑎/2𝑣)

)
= log

(
1

sin2 (𝜋𝑘𝑎/2𝑣) cos2 (𝜋𝑘𝑎/2𝑣)

)
= log

(
4

sin2 (𝜋𝑘𝑎/2𝑣−1)

)
= log 4 + log

(
1

sin2 (𝜋𝑘𝑎/2𝑣−1)

)
. □

Now we can state the proof of Theorem 4.21.

Proof of Theorem 4.21 By the standard averaging argument (see Remark 2.14), by
which the best choice for 𝑔 ∈ {0, 1} is at least as good as the average over all possible
choices, and by using Lemma 4.23, we obtain

ℎ∗𝑠,𝑣,𝜸

≤ 1
2

1∑︁
𝑔=0

ℎ𝑠,𝑣,𝜸 (𝑎𝑠,𝑣−1 + 2𝑣−1𝑔)

=
1
2

1∑︁
𝑔=0

𝑚∑︁
𝑡=𝑣

1
2𝑡−𝑣

2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 +
(
1 + 𝛾𝑠 log

(
1

sin2 (𝜋𝑘 (𝑎𝑠,𝑣−1 + 2𝑣−1𝑔)/2𝑣)

))

×
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))ª®¬

4.6 The Component-By-Component Digit-By-Digit Construction 187

=

𝑚∑︁
𝑡=𝑣

1
2𝑡−𝑣+1

2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−2 + ©«2 + 𝛾𝑠
1∑︁
𝑔=0

log

(
1

sin2 (𝜋𝑘 (𝑎𝑠,𝑣−1 + 2𝑣−1𝑔)/2𝑣)

)ª®¬
×
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))ª®¬
=

𝑚∑︁
𝑡=𝑣

1
2𝑡−𝑣+1

2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−2 +
(
2 + 𝛾𝑠

(
log 4 + log

(
1

sin2 (𝜋𝑘𝑎𝑠,𝑣−1/2𝑣−1

)))

×
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))ª®¬ .
Comparing the last expression to ℎ∗

𝑠,𝑣−1,𝜸 we see that

ℎ∗𝑠,𝑣,𝜸 ≤ ℎ∗𝑠,𝑣−1,𝜸

−
2𝑣−1∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 +
(
1 + 𝛾𝑠 log

1
sin2 (𝜋𝑘𝑎𝑠,𝑣−1/2𝑣−1)

)

×
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑣−1)

))ª®¬
+

𝑚∑︁
𝑡=𝑣

1
2𝑡−(𝑣−1)

2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 + (1 + 𝛾𝑠 log 4)

×
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))ª®¬ .
Repeatedly applying this inequality to ℎ∗

𝑠,ℓ,𝜸 for ℓ ∈ [𝑣 − 1], we further obtain

ℎ∗𝑠,𝑣,𝜸 ≤ ℎ∗𝑠,1,𝜸

−
𝑣−1∑︁
ℓ=1

2ℓ∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 +
(
1 + 𝛾𝑠 log

(
1

sin2 (𝜋𝑘𝑎𝑠,ℓ/2ℓ)

))

×
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2ℓ)

))ª®¬

188 4 Modified Construction Schemes

+
𝑣−1∑︁
ℓ=1

𝑚∑︁
𝑡=ℓ+1

1
2𝑡−ℓ

2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 + (1 + 𝛾𝑠 log 4)

×
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))ª®¬
≤ ℎ∗𝑠,1,𝜸 −

2𝑣−1−1∑︁
𝑘=1

©«−1 +
𝑠∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑣−1)

))ª®¬
+
𝑣−1∑︁
ℓ=1

𝑚∑︁
𝑡=ℓ+1

1
2𝑡−ℓ

2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 + (1 + 𝛾𝑠 log 4)

×
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))ª®¬ , (4.33)

where the last inequality follows since 𝑎𝑠,ℓ ≡ 𝑎𝑠,𝑚 (mod 2ℓ) for ℓ ∈ [𝑚] and 𝑠 ∈ [𝑑],
and thus

sin2
(
𝜋
𝑘𝑎𝑠,ℓ

2ℓ

)
= sin2

(
𝜋
𝑘𝑎𝑠,ℓ (mod 2ℓ)

2ℓ

)
= sin2

(
𝜋
𝑘𝑎𝑠,𝑚 (mod 2ℓ)

2ℓ

)
= sin2

(
𝜋
𝑘𝑎𝑠,𝑚

2ℓ

)
,

and the fact that in general, for 𝑝 ∈ N,

𝑝∑︁
ℓ=1

2ℓ∑︁
𝑘=1

𝑘≡1 (mod 2)

𝑓

(
𝑘

2ℓ

)
=

2𝑝−1∑︁
𝑘=1

𝑓

(
𝑘

2𝑝

)
. (4.34)

Note that we have

𝐻𝑠,𝑣−1,𝜸 =

2𝑣−1−1∑︁
𝑘=1

©«−1 +
𝑠∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑣−1/2𝑣−1)

))ª®¬
=

2𝑣−1−1∑︁
𝑘=1

©«−1 +
𝑠∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑣−1)

))ª®¬ .
Since by definition ℎ∗

𝑠,1,𝜸 contains terms of the form log(sin−2 (𝜋𝑘𝑎𝑠,1/2)) with
𝑎𝑠,1 = 1 and 𝑘 an odd integer, which equal zero, we obtain that

4.6 The Component-By-Component Digit-By-Digit Construction 189

ℎ∗𝑠,1,𝜸 =

𝑚∑︁
𝑡=1

1
2𝑡−1

2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 +
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))ª®¬ .
In order to derive an upper bound on ℎ∗𝑠,𝑚,𝜸, we restrict ourselves to the case where
𝑣 = 𝑚, and obtain, based on (4.33), that

ℎ∗𝑠,𝑚,𝜸 ≤
𝑚∑︁
𝑡=1

1
2𝑡−1

2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 +
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))ª®¬
+
𝑚−1∑︁
ℓ=1

𝑚∑︁
𝑡=ℓ+1

1
2𝑡−ℓ

2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 + (1 + 𝛾𝑠 log 4)

×
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))ª®¬
−𝐻𝑠,𝑚−1,𝜸

≤
𝑚∑︁
𝑡=1

1
2𝑡−1

2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 +
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))ª®¬
+

𝑚∑︁
𝑡=1

(
1 − 1

2𝑡−1

) 2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 + (1 + 𝛾𝑠 log 4)

×
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))ª®¬
−𝐻𝑠,𝑚−1,𝜸,

where we used the fact that for a mapping 𝑓 : N→ R+ we have the general relation

𝑚−1∑︁
ℓ=1

𝑚∑︁
𝑡=ℓ+1

1
2𝑡−ℓ

𝑓 (𝑡) =
𝑚∑︁
𝑡=2

(
1 − 1

2𝑡−1

)
𝑓 (𝑡) =

𝑚∑︁
𝑡=1

(
1 − 1

2𝑡−1

)
𝑓 (𝑡).

Based on this, we then estimate further, again using (4.34), that

ℎ∗𝑠,𝑚,𝜸 ≤
𝑚∑︁
𝑡=1

2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 + (1 + 𝛾𝑠 log 4)
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))ª®¬
−𝐻𝑠,𝑚−1,𝜸

190 4 Modified Construction Schemes

=

2𝑚−1∑︁
𝑘=1

©«−1 + (1 + 𝛾𝑠 log 4)
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑚)

))ª®¬
−𝐻𝑠,𝑚−1,𝜸

= 𝐻𝑠−1,𝑚,𝜸 + 𝛾𝑠 (2𝑚 − 1 + 𝐻𝑠−1,𝑚,𝜸) log 4 − 𝐻𝑠,𝑚−1,𝜸 . (4.35)

We then use Item 3 of Lemma 4.22 and (4.35) to see that 𝐻𝑠,𝑚,𝜸 satisfies the upper
bound

𝐻𝑠,𝑚,𝜸 = 𝐻𝑠,𝑚−1,𝜸 + ℎ∗𝑠,𝑚,𝜸
≤ 𝐻𝑠,𝑚−1,𝛾 + 𝐻𝑠−1,𝑚,𝜸 + 𝛾𝑠 (2𝑚 − 1 + 𝐻𝑠−1,𝑚,𝜸) log 4 − 𝐻𝑠,𝑚−1,𝜸

= 𝐻𝑠−1,𝑚,𝜸 + 𝛾𝑠 (2𝑚 − 1 + 𝐻𝑠−1,𝑚,𝜸) log 4
≤ (1 + 𝛾𝑠 log 4)𝐻𝑠−1,𝑚,𝜸 + 𝛾𝑠2𝑚 log 4. (4.36)

The inequality (4.36) holds for all 𝑠 ∈ {2, 3, . . . , 𝑑}, and applying it recursively we
obtain

𝐻𝑑,𝑚,𝜸 ≤ (1 + 𝛾𝑑 log 4)𝐻𝑑−1,𝑚,𝜸 + 𝛾𝑑2𝑚 log 4
≤ (1 + 𝛾𝑑 log 4)

(
(1 + 𝛾𝑑−1 log 4)𝐻𝑑−2,𝑚,𝜸 + 𝛾𝑑−12𝑚 log 4

)
+ 𝛾𝑑2𝑚 log 4

= 𝐻𝑑−2,𝑚,𝜸

𝑑∏
𝑗=𝑑−1

(1 + 𝛾 𝑗 log 4) + 2𝑚 ©«−1 +
𝑑∏

𝑗=𝑑−1
(1 + 𝛾 𝑗 log 4)ª®¬

≤ 𝐻1,𝑚,𝜸

𝑑∏
𝑗=2

(1 + 𝛾 𝑗 log 4) + 2𝑚 ©«−1 +
𝑑∏
𝑗=2

(1 + 𝛾 𝑗 log 4)ª®¬ . (4.37)

According to Algorithm 4.20 we have chosen 𝑎1,𝑚 = 1 and hence, using also (4.32),
𝐻1,𝑚,𝜸 equals

𝐻1,𝑚,𝜸 =

2𝑚−1∑︁
𝑘=1

𝛾1 log

(
1

sin2 (𝜋𝑘𝑎1,𝑚/2𝑚)

)
= −2𝛾1 log

(2𝑚−1∏
𝑘=1

sin
(
𝜋𝑘

2𝑚

))
= −2𝛾1 log

(
2𝑚

22𝑚−1

)
= 𝛾1 (2𝑚 − 𝑚 − 1) log 4.

Combining the obtained expression with (4.37) finally gives

𝐻𝑑,𝑚,𝜸 (𝒈) ≤ 2𝑚𝛾1 (log 4)
𝑑∏
𝑗=2

(1 + 𝛾 𝑗 log 4) + 2𝑚 ©«−1 +
𝑑∏
𝑗=2

(1 + 𝛾 𝑗 log 4)ª®¬

4.6 The Component-By-Component Digit-By-Digit Construction 191

= 2𝑚 ©«−1 +
𝑑∏
𝑗=1

(1 + 𝛾 𝑗 log 4)ª®¬ ,
as claimed. □

We are now able to show the main result regarding the CBC-DBD construction.
Theorem 4.24 Let 𝑁 = 2𝑚, with 𝑚 ∈ N, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be positive product
weights. Furthermore, let 𝒈 = (𝑔1, . . . , 𝑔𝑑) be a generating vector constructed by
Algorithm 4.20. Then we have

𝑅𝑁,𝑑,1,𝜸 (𝒈) ≤
2 + 6 log 𝑁

𝑁

©«−1 +
𝑑∏
𝑗=1

(1 + 𝛾 𝑗 (6 + 4 log 𝑁))ª®¬ . (4.38)

Moreover, if the weights satisfy

∞∑︁
𝑗=1
𝛾 𝑗 < ∞,

then 𝑅𝑁,𝑑,1,𝜸 (𝒈) can be bounded independently of the dimension. To be more precise,
for any 𝛿 > 0, there exists a positive quantity 𝐶 (𝜸, 𝛿) independent of 𝑑 such that

𝑅𝑁,𝑑,1,𝜸 (𝒈) ≤
𝐶 (𝜸, 𝛿)
𝑁1−𝛿 .

Proof Combining the bound on 𝑅𝑁,𝑑,1,𝜸 (𝒈) in Proposition 4.17 with 𝒈 being a
generating vector obtained from Algorithm 4.20, and then using the bound on𝐻𝑑,𝑚,𝜸
in Theorem 4.21 directly yields (4.38). The second part of the theorem follows in
exactly the same way as in the proof of Theorem 3.21, using Lemma 3.20. □

Finally, we can deduce the following result from Theorem 4.24, which implies a
similar result as Theorem 3.17.
Theorem 4.25 Let 𝑁 = 2𝑚, with 𝑚 ∈ N, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be positive product
weights. If 𝒈 = (𝑔1, . . . , 𝑔𝑑) is a generating vector constructed by Algorithm 4.20
for the weights 𝜸 = (𝛾 𝑗) 𝑗≥1, then

err𝑁,𝑑,𝛼,𝜸2𝛼 (𝒈) ≤ 1
𝑁𝛼

×
©«
©«(2 + 6 log 𝑁)

𝑑∏
𝑗=1

(1 + 𝛾 𝑗 (6 + 4 log 𝑁))ª®¬
2𝛼

+ 22𝛼
𝑑∏
𝑗=1

(1 + 𝛾 𝑗4𝜁 (2𝛼))
ª®®¬

1/2

.

Moreover, if the weights satisfy

∞∑︁
𝑗=1
𝛾 𝑗 < ∞,

192 4 Modified Construction Schemes

then err𝑁,𝑑,𝛼,𝜸2𝛼 (𝒈) can be bounded independently of the dimension, with an error
convergence rate arbitrarily close to O(𝑁−𝛼).

Furthermore, let 𝒈 = (𝑔1, . . . , 𝑔𝑑) be a generating vector constructed by Algo-
rithm 4.20 for the weights (𝛾1/(2𝛼)

𝑗
) 𝑗≥1. Then it is true that

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤
1
𝑁𝛼

×
©«
©«(2 + 6 log 𝑁)

𝑑∏
𝑗=1

(1 + 𝛾1/(2𝛼)
𝑗

(6 + 4 log 𝑁))ª®¬
2𝛼

+ 22𝛼
𝑑∏
𝑗=1

(1 + 𝛾 𝑗4𝜁 (2𝛼))
ª®®¬

1/2

.

Moreover, if the weights satisfy

∞∑︁
𝑗=1
𝛾

1/(2𝛼)
𝑗

< ∞,

then err𝑁,𝑑,𝛼,𝜸 (𝒈) can be bounded independently of the dimension, with an error
convergence rate arbitrarily close to O(𝑁−𝛼).

Proof The result follows by combining Theorem 4.24 with Proposition 3.13, and by
adjusting the weights accordingly. □

Notes and Remarks

The idea of the reduced CBC construction was first presented in the paper [45]. The
outline of the reduced CBC construction for POD weights in Section 4.2 follows the
paper [68]. It can be shown that this approach, in the special case of product weights
(note that product weights can be viewed as a special case of POD weights), yields
a construction cost of order

O
(min(𝑑,𝑑∗)∑︁

𝑠=1
(𝑚 − 𝑤𝑠)𝑏𝑚−𝑤𝑠

)
,

with a required memory of order O(𝑏𝑚−𝑤1), see [68]. Note that this result for
product weights is a slight improvement over the results outlined in the first part of
Section 4.2.

The presentation of the SCS construction in Section 4.3 follows [71]. Theo-
rem 4.10 is a generalization of an upper bound on the error occurring in [71, Proof
of Theorem 2]. The theoretical results presented show that the rules constructed
by means of the SCS construction are at least not worse than rules constructed

4.6 The Component-By-Component Digit-By-Digit Construction 193

component-by-component. This is also confirmed by the numerical results presented
in Appendix B. Whether the SCS construction really can significantly outperform
the CBC construction is not yet clear and may be questioned.

The idea of “pruning” was introduced in [77] and then analyzed from a theoretical
viewpoint in [43], where it was shown how the worst-case error of the rule constructed
in this fashion, in a slightly more general setting, can be bounded from above. The
projection-corrected CBC algorithm presented as Algorithm 4.13 is according to
[43].

It is possible to combine the ideas of Algorithms 4.1 and 4.13, which has been
outlined in [169], and even further combinations of algorithms presented in this
chapter could be considered.

In Section 4.6 we had to restrict the considerations to product weights. However,
the only passage in that section where this restriction is necessary are the very last
few steps in the proof of Theorem 4.21 after (4.36). It is open how to generalize the
result to a broader class of weights. See [69] for further information.

Chapter 5
Discrepancy of Lattice Point Sets

The discrepancy of the quadrature points is an important quality criterion for QMC
integration rules, as we have seen in Section 1.6, where we have studied discrepancy
and the Koksma–Hlawka inequality. This of course also applies to lattice rules and
the underlying lattice point sets. In this chapter we study the (extreme) discrepancy
of lattice point sets and show its relation to the figure of merit 𝑅. Based on the latter
we obtain efficient constructions of lattice point sets with the almost optimal order
of magnitude of discrepancy.

However, classical discrepancy bounds have a rather poor dependence on the
dimension 𝑑. To circumvent the this problem and to obtain better behavior in high
dimensions, we introduce a weighted discrepancy. Depending on the decay rate of
the weights in this weighted discrepancy, several notions of tractability can be shown
to hold by means of lattice point sets.

In the last part of this chapter we study the isotropic discrepancy of lattice point
sets. Low isotropic discrepancy is of advantage when one aims at transferring lattice
points onto the sphere.

5.1 Extreme Discrepancy

For a lattice point set P(L) = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} it follows from the fact that the
group L/Z𝑑 has order 𝑁 that 𝑁𝒙𝑘 ∈ Z𝑑 for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. Hence all
components of any point of P(L) are rational numbers with a denominator of at
most 𝑁 .

In [193] Niederreiter proved a discrepancy estimate for point sets with such a
property, which can be seen as a rational version of the inequality of Erdős, Turán,
and Koksma (for the original version of the inequality, we refer, e.g., to [66, 155]).
This estimate is the basis for most other discrepancy estimates for lattice point sets
presented in this book. In order to state Niederreiter’s result we first need to introduce
some notation.

195© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_5&domain=pdf

196 5 Discrepancy of Lattice Point Sets

For 𝑀 ∈ N, 𝑀 ≥ 2, we use the sets 𝐶 (𝑀), 𝐶𝑑 (𝑀), and 𝐶∗
𝑑
(𝑀) as defined in

Section 1.8. For ℎ ∈ 𝐶 (𝑀) put

𝑟 (ℎ, 𝑀) =
{
𝑀 sin(𝜋 |ℎ|/𝑀) if ℎ ≠ 0,
1 if ℎ = 0,

and for 𝒉 = (ℎ1, . . . , ℎ𝑑) ∈ 𝐶𝑑 (𝑀) put

𝑟 (𝒉, 𝑀) =
𝑑∏
𝑗=1
𝑟 (ℎ 𝑗 , 𝑀).

We now state Niederreiter’s discrepancy bound in terms of the extreme discrep-
ancy as given in Definition 1.31. Recall from Chapter 1 that the extreme discrepancy
always dominates the star-discrepancy.

Theorem 5.1 For 𝑀 ∈ N, 𝑀 ≥ 2, and 𝒚0, 𝒚1, . . . , 𝒚𝑁−1 ∈ Z𝑑 , let P =

{𝒙0, 𝒙1, . . . , 𝒙𝑁−1} be the point set consisting of the fractional parts 𝒙𝑘 = {𝒚𝑘/𝑀}
for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. Then we have

𝐷𝑁 (P) ≤ 1 −
(
1 − 1

𝑀

)𝑑
+

∑︁
𝒉∈𝐶∗

𝑑
(𝑀)

1
𝑟 (𝒉, 𝑀)

����� 1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒚𝑘/𝑀

����� .
For the proof of this result we need the following lemma, which actually is a

special, but more refined, case of Lemma 4.19.

Lemma 5.2 For 𝑗 ∈ [𝑑] let 𝑢 𝑗 , 𝑣 𝑗 ∈ [0, 1] with |𝑢 𝑗 − 𝑣 𝑗 | ≤ 𝛿. Then we have������ 𝑑∏𝑗=1
𝑢 𝑗 −

𝑑∏
𝑗=1

𝑣 𝑗

������ ≤ 1 − (1 − 𝛿)𝑑 ≤ 𝑑 𝛿.

Proof We prove the result using induction on 𝑑. Trivially, the assertion holds true for
𝑑 = 1. Assume that the result holds true for a fixed 𝑑 ∈ N. Without loss of generality
we may assume that 𝑢𝑑+1 ≥ 𝑣𝑑+1. Then we have, using the induction assumption,������𝑑+1∏

𝑗=1
𝑢 𝑗 −

𝑑+1∏
𝑗=1

𝑣 𝑗

������ =
������(𝑢𝑑+1 − 𝑣𝑑+1)

𝑑∏
𝑗=1
𝑢 𝑗 + 𝑣𝑑+1

©«
𝑑∏
𝑗=1
𝑢 𝑗 −

𝑑∏
𝑗=1

𝑣 𝑗
ª®¬
������

≤ |𝑢𝑑+1 − 𝑣𝑑+1 | + 𝑣𝑑+1 (1 − (1 − 𝛿)𝑑)
= 𝑢𝑑+1 − 𝑣𝑑+1 (1 − 𝛿)𝑑

= 𝑢𝑑+1 (1 − (1 − 𝛿)𝑑) + (𝑢𝑑+1 − 𝑣𝑑+1) (1 − 𝛿)𝑑

≤ 1 − (1 − 𝛿)𝑑 + 𝛿(1 − 𝛿)𝑑

= 1 − (1 − 𝛿)𝑑+1.

Hence the first inequality in the lemma is shown.

5.1 Extreme Discrepancy 197

According to the mean value theorem we have for all 𝑦, 𝑧 ∈ R with 𝑧 ≤ 𝑦 that
𝑦𝑑 − 𝑧𝑑 = 𝑑 𝜉𝑑−1 (𝑦 − 𝑧) for some 𝜉 ∈ (𝑧, 𝑦). Choosing 𝑦 = 1 and 𝑧 = 1 − 𝛿 yields
the second inequality in the lemma. □

We now give the proof of Theorem 5.1.

Proof of Theorem 5.1 For ℓ = (ℓ1, . . . , ℓ𝑑) ∈ Z𝑑 let

𝐴(ℓ) := |{𝑘 ∈ {0, 1, . . . , 𝑁 − 1} : 𝒚𝑘 ≡ ℓ (mod 𝑀)}|,

where a congruence of vectors is meant to be component-wise. Then we have

𝑁−1∑︁
𝑘=0

1
𝑀𝑑

∑︁
𝒉∈𝐶𝑑 (𝑀)

e2𝜋i𝒉 · (𝒚𝑘−ℓ)/𝑀

=

𝑁−1∑︁
𝑘=0

𝑑∏
𝑗=1

©« 1
𝑀

∑︁
ℎ 𝑗 ∈𝐶 (𝑀)

e2𝜋iℎ 𝑗 (𝑦𝑘, 𝑗−ℓ 𝑗)/𝑀ª®¬
= 𝐴(ℓ),

where we used that

1
𝑀

∑︁
ℎ 𝑗 ∈𝐶 (𝑀)

e2𝜋iℎ 𝑗 (𝑦𝑘, 𝑗−ℓ 𝑗)/𝑀 =

{
1 if 𝑦𝑘, 𝑗 ≡ ℓ 𝑗 (mod 𝑀),
0 otherwise.

Consequently,

𝐴(ℓ) − 𝑁

𝑀𝑑
=

1
𝑀𝑑

∑︁
𝒉∈𝐶∗

𝑑
(𝑀)

e−2𝜋i𝒉 ·ℓ/𝑀
𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒚𝑘/𝑀 .

Let now 𝐽 =
∏𝑑
𝑗=1 [𝑢 𝑗 , 𝑣 𝑗) be an arbitrary subinterval of [0, 1)𝑑 . For 𝑗 ∈ [𝑑]

let 𝑎 𝑗 ∈ Z be minimal such that 𝑢 𝑗 ≤ 𝑎 𝑗/𝑀 and let 𝑏 𝑗 ∈ Z be maximal such that
𝑏 𝑗/𝑀 < 𝑣 𝑗 . In particular, we have [𝑎 𝑗/𝑀, 𝑏 𝑗/𝑀] ⊆ [𝑢 𝑗 , 𝑣 𝑗). In the following, it is
convenient to write

𝐴(𝐽,P, 𝑁) := |{𝑘 ∈ {0, 1, . . . , 𝑁 − 1} : 𝒙𝑘 ∈ 𝐽}|.

If [𝑎 𝑗/𝑀, 𝑏 𝑗/𝑀] = ∅, i.e., 𝑎 𝑗 > 𝑏 𝑗 , for some 𝑗 ∈ [𝑑], then 𝐽 does not contain
any point of P and 𝑣 𝑗 − 𝑢 𝑗 < 1/𝑀 . Therefore we have���� 𝐴(𝐽,P, 𝑁)𝑁

− 𝜆𝑑 (𝐽)
���� = 𝜆𝑑 (𝐽) < 1

𝑀
≤ 1 −

(
1 − 1

𝑀

)𝑑
.

Now assume that [𝑎 𝑗/𝑀, 𝑏 𝑗/𝑀] ≠ ∅ for all 𝑗 ∈ [𝑑]. Then,

198 5 Discrepancy of Lattice Point Sets

𝐴(𝐽,P, 𝑁) =
∑︁

𝒂≤ℓ≤𝒃
𝐴(ℓ) and

∑︁
𝒂≤ℓ≤𝒃

1
𝑀𝑑

=
1
𝑀𝑑

𝑑∏
𝑗=1

(𝑏 𝑗 − 𝑎 𝑗 + 1),

where the summation range 𝒂 ≤ ℓ ≤ 𝒃 means summation over all ℓ ∈ Z𝑑 for which
𝑎 𝑗 ≤ ℓ 𝑗 ≤ 𝑏 𝑗 for all 𝑗 ∈ [𝑑], and hence

𝐴(𝐽,P, 𝑁)
𝑁

− 𝜆𝑑 (𝐽)

=
∑︁

𝒂≤ℓ≤𝒃

(
𝐴(ℓ)
𝑁

− 1
𝑀𝑑

)
+ 1
𝑀𝑑

𝑑∏
𝑗=1

(𝑏 𝑗 − 𝑎 𝑗 + 1) − 𝜆𝑑 (𝐽)

=
1
𝑀𝑑

∑︁
𝒉∈𝐶∗

𝑑
(𝑀)

(∑︁
𝒂≤ℓ≤𝒃

e−2𝜋i𝒉 ·ℓ/𝑀

)
1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒚𝑘/𝑀

+
𝑑∏
𝑗=1

𝑏 𝑗 − 𝑎 𝑗 + 1
𝑀

−
𝑑∏
𝑗=1

(𝑣 𝑗 − 𝑢 𝑗).

For all 𝑗 ∈ [𝑑] we have ����𝑏 𝑗 − 𝑎 𝑗 + 1
𝑀

− (𝑣 𝑗 − 𝑢 𝑗)
���� < 1

𝑀
,

and so it follows from Lemma 5.2 that������ 𝑑∏𝑗=1

𝑏 𝑗 − 𝑎 𝑗 + 1
𝑀

−
𝑑∏
𝑗=1

(𝑣 𝑗 − 𝑢 𝑗)

������ ≤ 1 −
(
1 − 1

𝑀

)𝑑
.

Therefore we obtain���� 𝐴(𝐽,P, 𝑁)𝑁
− 𝜆𝑑 (𝐽)

����
≤ 1 −

(
1 − 1

𝑀

)𝑑
+ 1
𝑀𝑑

∑︁
𝒉∈𝐶∗

𝑑
(𝑀)

����� ∑︁
𝒂≤ℓ≤𝒃

e−2𝜋i𝒉 ·ℓ/𝑀

����� ·
����� 1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒚𝑘/𝑀

����� .
For short, we write

𝑟∗ (𝒉, 𝑀) :=

����� ∑︁
𝒂≤ℓ≤𝒃

e−2𝜋i𝒉 ·ℓ/𝑀

����� .
Since for any complex number 𝑧 we have |𝑧 | = |𝑧 |, and since for any real number

𝑡 it holds that |e2𝜋i𝑡 | = 1, we obtain

𝑟∗ (𝒉, 𝑀) =
𝑑∏
𝑗=1

������
𝑏 𝑗∑︁

ℓ 𝑗=𝑎 𝑗

e2𝜋iℎ 𝑗ℓ 𝑗/𝑀

������

5.1 Extreme Discrepancy 199

=

𝑑∏
𝑗=1

������
𝑏 𝑗−𝑎 𝑗∑︁
ℓ 𝑗=0

e2𝜋iℎ 𝑗ℓ 𝑗/𝑀e2𝜋iℎ 𝑗𝑎 𝑗/𝑀

������
=

𝑑∏
𝑗=1

������
𝑏 𝑗−𝑎 𝑗∑︁
ℓ 𝑗=0

e2𝜋iℎ 𝑗ℓ 𝑗/𝑀

������ .
If ℎ 𝑗 = 0, we have������

𝑏 𝑗−𝑎 𝑗∑︁
ℓ 𝑗=0

e2𝜋iℎ 𝑗ℓ 𝑗/𝑀

������ = 𝑏 𝑗 − 𝑎 𝑗 + 1 ≤ 𝑀 =
𝑀

𝑟 (ℎ 𝑗 , 𝑀) .

If ℎ 𝑗 ∈ 𝐶∗ (𝑀), we have������
𝑏 𝑗−𝑎 𝑗∑︁
ℓ 𝑗=0

e2𝜋iℎ 𝑗ℓ 𝑗/𝑀

������ =
����e2𝜋iℎ 𝑗 (𝑏 𝑗−𝑎 𝑗+1)/𝑀 − 1

e2𝜋iℎ 𝑗/𝑀 − 1

����
=

���� sin(𝜋ℎ 𝑗 (𝑏 𝑗 − 𝑎 𝑗 + 1)/𝑀)
sin(𝜋ℎ 𝑗/𝑀)

����
≤ 1

sin(𝜋 |ℎ 𝑗 |/𝑀)

=
𝑀

𝑟 (ℎ 𝑗 , 𝑀) .

In either case we obtain

𝑟∗ (𝒉, 𝑀) ≤
𝑑∏
𝑗=1

𝑀

𝑟 (ℎ 𝑗 , 𝑀) =
𝑀𝑑

𝑟 (𝒉, 𝑀) ,

and therefore���� 𝐴(𝐽,P, 𝑁)𝑁
− 𝜆𝑑 (𝐽)

���� ≤ 1 −
(
1 − 1

𝑀

)𝑑
+

∑︁
𝒉∈𝐶∗

𝑑
(𝑀)

1
𝑟 (𝒉, 𝑀)

����� 1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒚𝑘/𝑀

����� .
The right-hand side of this inequality is independent of the specific choice of the
interval 𝐽 and thus the result follows. □

A general discrepancy bound for lattice point sets

Let P(L) = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} be an 𝑁-element lattice point set in [0, 1)𝑑 . As
already discussed, 𝑁𝒙𝑘 ∈ Z𝑑 for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, and hence we can apply
Theorem 5.1 in order to obtain

200 5 Discrepancy of Lattice Point Sets

𝐷 (P(L)) ≤ 1 −
(
1 − 1

𝑁

)𝑑
+

∑︁
𝒉∈𝐶∗

𝑑
(𝑁)

1
𝑟 (𝒉, 𝑁)

����� 1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘

����� .
Using the character property of lattice point sets stated in Lemma 1.9 we obtain

𝐷𝑁 (P(L)) ≤ 1 −
(
1 − 1

𝑁

)𝑑
+

∑︁
𝒉∈𝐶∗

𝑑
(𝑁)∩L⊥

1
𝑟 (𝒉, 𝑁) . (5.1)

Recalling the definition of 𝑟1 in (1.12) in Section 1.4, we see that we have
𝑟 (𝒉, 𝑁) ≥ 2𝑟1 (𝒉) for any 𝒉 ∈ 𝐶∗

𝑑
(𝑁). This inequality follows from the fact that

sin(𝜋𝑡) ≥ 2𝑡 for 𝑡 ∈ [0, 1/2]. Hence∑︁
𝒉∈𝐶∗

𝑑
(𝑁)∩L⊥

1
𝑟 (𝒉, 𝑁) ≤ 𝑅(L)

2
,

where 𝑅 is as in Definition 1.48. Summing up, we obtain the following estimate for
the discrepancy of a lattice point set, which yields the promised relation to 𝑅.

Proposition 5.3 For the extreme discrepancy of an 𝑁-element lattice point set P(L)
in [0, 1)𝑑 with 𝑁 ≥ 2 we have

𝐷𝑁 (P(L)) ≤ 1 −
(
1 − 1

𝑁

)𝑑
+ 𝑅(L)

2
≤ 𝑑

𝑁
+ 𝑅(L)

2
.

Proposition 5.3 gives a bound on the extreme discrepancy of lattice point sets
which is easier to handle than the estimate (5.1). Let us now restrict ourselves to rank-
1 lattice point sets. For given 𝑁 , we aim at finding a generating vector 𝒈 with a low
value of 𝑅(𝒈, 𝑁) as given in Definition 1.48, and hence, according to Proposition 5.3,
with a low value of the extreme discrepancy of the corresponding lattice point set.

If 𝑁 is a prime number, then we obtain from Lemma 2.13 that the average of
𝑅(𝒈, 𝑁) over all generating vectors in𝐺𝑑 (𝑁) = {0, 1, . . . , 𝑁 −1}𝑑 is not larger than

2𝑑

𝑁
(log 𝑁 + 1)𝑑 . (5.2)

As a consequence, there always exists a lattice point 𝒈 ∈ 𝐺𝑑 (𝑁) such that

𝐷𝑁 (P(𝒈, 𝑁)) ≤ 𝑑

𝑁
+ 2𝑑−1

𝑁
(log 𝑁 + 1)𝑑 = O

(
(log 𝑁)𝑑

𝑁

)
.

Remark 5.4 The previous averaging argument can be extended to arbitrary integers
𝑁 ≥ 2. Niederreiter proved in [194, Theorem 1] that

5.1 Extreme Discrepancy 201

1
|𝐶𝜑
𝑑
(𝑁) |

∑︁
𝒈∈𝐶𝜑

𝑑
(𝑁)

𝑅(𝒈, 𝑁) ≤ 1
𝑁

(
2 log 𝑁 + 7

5

)𝑑
for all 𝑑 ≥ 2 and all 𝑁 ≥ 2,

(5.3)
where

𝐶
𝜑

𝑑
(𝑁) := {𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐶𝑑 (𝑁) : gcd(𝑔 𝑗 , 𝑁) = 1 for all 𝑗 ∈ [𝑑]}.

An improved, but less explicit version of this result was provided by Niederreiter in
[199, Theorem 5.10]. For arbitrary integers 𝑑 ≥ 2 and 𝑁 ≥ 2 we have

1
|𝐶𝜑
𝑑
(𝑁) |

∑︁
𝒈∈𝐶𝜑

𝑑
(𝑁)

𝑅(𝒈, 𝑁) ≤ (2 log 𝑁 + 𝑐)𝑑 − 2𝑑 log 𝑁
𝑁

+ O
(
(log log 𝑁)2

𝑁

)
,

with 𝑐 = 2𝛾E−M − log 4 + 1 = 0.768 . . ., where 𝛾E−M is the Euler–Mascheroni
constant, and where the implied constant in the O-notation depends only on 𝑑. The
proof of this result is technically much more involved than that of the corresponding
result for prime 𝑁 .

Again, it is clear that there must exist at least one generating vector which is at
least as good as the average (see Remark 2.14). Hence, for any 𝑑, 𝑁 ≥ 2, there exists
a generating vector 𝒈 ∈ 𝐶𝜑

𝑑
(𝑁) such that

𝐷𝑁 (P(𝒈, 𝑁)) ≤ (2 log 𝑁 + 𝑐)𝑑 + 2𝑑 − 2𝑑 log 𝑁
2𝑁

+ O
(
(log log 𝑁)2

𝑁

)
= O

(
(log 𝑁)𝑑

𝑁

)
.

These existence results for generating vectors 𝒈 for which 𝑅(𝒈, 𝑁) is of order
O((log 𝑁)𝑑/𝑁) are best possible with respect to the order of magnitude in 𝑁 , which
was shown by Larcher [171] in the following result.

Theorem 5.5 For every 𝑑 ≥ 2 there exists a 𝑐𝑑 > 0, depending only on 𝑑, such that
for all 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ Z𝑑 and every 𝑁 ∈ N we have

𝑅(𝒈, 𝑁) > 𝑐𝑑
ℓ(log(𝑁/ℓ))𝑑

𝑁
,

with ℓ = gcd(𝑔1, . . . , 𝑔𝑑 , 𝑁).

The currently best existence result for lattice point sets with low extreme discrep-
ancy is a result by Bykovskii [22] who directly studied the discrepancy rather than
the upper bound in terms of 𝑅(·, 𝑁). The corresponding result for the special case
𝑑 = 2 was already obtained earlier by Larcher [170]. Bykovskii’s result reads as
follows.

202 5 Discrepancy of Lattice Point Sets

Theorem 5.6 For every choice of integers 𝑑 ≥ 2 and 𝑁 ≥ 3, there exists a generating
vector 𝒈 ∈ Z𝑑 for which

𝐷𝑁 (P(𝒈, 𝑁)) = O
(
(log 𝑁)𝑑−1 log log 𝑁

𝑁

)
, (5.4)

where the implied multiplicative factor may depend on 𝑑 but is independent of 𝑁 .

This result is close to the best known upper bounds on the discrepancy for point
sets with 𝑁 elements in [0, 1)𝑑 , however, there is a gap to the general lower bound
for the discrepancy of arbitrary 𝑁-element point sets in the 𝑑-dimensional unit cube
in (1.20).

Remark 5.7 A special instance of Theorem 5.6 is the two-dimensional case, because
here we can employ the theory of continued fractions. Let 𝑁 ≥ 2 and 𝑔 ∈ 𝐺𝜑1 (𝑁),
and let 𝑎1, 𝑎2, . . . , 𝑎ℓ be the partial quotients in the continued fraction expansion of
𝑔/𝑁 as in (1.38). Then it can be shown (see [199, Eq. (5.39)]) that

𝐷𝑁 (P((1, 𝑔), 𝑁)) ≤ 1
𝑁

©«
ℓ∑︁
𝑗=1
𝑎 𝑗 + 1ª®¬ .

It is known that ℓ ≤ 𝑐 log 𝑁 with an absolute constant 𝑐 > 0. Hence we have

ℓ∑︁
𝑗=1
𝑎 𝑗 ≤ ℓ𝐾

(𝑔
𝑁

)
≤ 𝑐𝐾

(𝑔
𝑁

)
log 𝑁,

where 𝐾 (𝑔/𝑁) is defined in (1.39). Therefore,

𝐷𝑁 (P((1, 𝑔), 𝑁)) ≤ 𝑐𝐾 (𝑔/𝑁) log 𝑁 + 1
𝑁

.

E.g., for the Fibonacci lattice P((1, 𝐹𝑛−1), 𝐹𝑛) for some integer 𝑛 ≥ 3 (see Exam-
ple 1.54) we have 𝐾 (𝐹𝑛−1/𝐹𝑛) = 1 and so

𝐷𝑁 (P((1, 𝐹𝑛−1), 𝐹𝑛)) ≤
𝑐 log 𝑁 + 1

𝑁
, where 𝑁 = 𝐹𝑛.

This order of magnitude is best possible for the discrepancy of 𝑁-element point sets
in the unit square (see (1.21)).

5.3 Weighted Star-Discrepancy 203

5.2 CBC Construction of Low Discrepancy Lattice Point Sets

We now aim at constructing generating vectors 𝒈 of rank-1 lattice point sets which
yield a low extreme discrepancy. The basic idea is to use the relation of the discrep-
ancy to the figure of merit 𝑅 in Proposition 5.3, and to construct generating vectors
𝒈 with small values of 𝑅(𝒈, 𝑁). Here we can again employ the CBC construction in
Algorithm 3.14 (see Section 3.6) for the unweighted case.

According to the unweighted case in Theorem 3.15, the resulting generating vector
𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺𝑑 (𝑁) satisfies, for prime 𝑁 ,

𝑅(𝒈 (𝑠) , 𝑁) ≤ 1
𝑁
(1 + 𝑆𝑁)𝑠

for all 𝑠 ∈ [𝑑], where, as before, 𝑆𝑁 =
∑
ℎ∈𝐶∗

1 (𝑁) |ℎ|−1, and where 𝒈 (𝑠) =

(𝑔1, . . . , 𝑔𝑠). This result was first shown by Joe [120] (see also [229] for the case of
composite 𝑁).

Using (2.16), which states that 𝑆𝑁 ≤ 2(log 𝑁 + 1 − log 2), we obtain

𝑅(𝒈 (𝑠) , 𝑁) ≤ 1
𝑁
(1 + 2(log 𝑁 + 1 − log 2))𝑠 ≤ 2𝑠

𝑁
(log 𝑁 + 1)𝑠 ,

which exactly matches the bound (5.2) according to the average type result. Thus we
obtain the following corollary.

Corollary 5.8 Let 𝑁 be a prime number. If the lattice point 𝒈 = (𝑔1, . . . , 𝑔𝑑) has
been constructed according to Algorithm 3.14 in Section 3.6, then, for all 𝑠 ∈ [𝑑],
we have

𝐷𝑁 (P(𝒈 (𝑠) , 𝑁)) ≤ 𝑠

𝑁
+ 2𝑠−1

𝑁
(log 𝑁 + 1)𝑠 ,

where 𝒈 (𝑠) = (𝑔1, . . . , 𝑔𝑠).

5.3 Weighted Star-Discrepancy

Similar to weighted function spaces (see Section 2.4), there is also the concept of
weighted discrepancy. Also in this case one tries to adapt to situations where different
dependencies on variables or groups of variables have to be taken into account.
Weighted discrepancy is a generalization of the classical notion of discrepancy, and
it should be seen in the context of weighted numerical integration and a weighted
version of the Koksma–Hlawka inequality (see Remark 5.11). The concept was first
introduced by Sloan and Woźniakowski [239] in connection with weighted function
spaces, and since then it has become a very useful figure of merit for sets of QMC
integration nodes and, in particular, for lattice point sets.

204 5 Discrepancy of Lattice Point Sets

We outline the idea of weighted discrepancy for the case of the star-discrepancy,
as this is most common in the literature. However, one could similarly define other
types of weighted discrepancy.

Definition 5.9 (Weighted star-discrepancy) Let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be given weights.
For an 𝑁-point set P in [0, 1)𝑑 the 𝜸-weighted star-discrepancy is defined as

𝐷∗
𝑁,𝜸 (P) := sup

𝒕∈[0,1]𝑑
max

∅≠𝔲⊆[𝑑]
𝛾𝔲 |ΔP (𝒕𝔲 , 1) |,

where for 𝒕 = (𝑡1, . . . , 𝑡𝑑) ∈ [0, 1]𝑑 and for 𝔲 ⊆ [𝑑] we put (𝒕𝔲 , 1) := (𝑦1, . . . , 𝑦𝑑)
with 𝑦 𝑗 = 𝑡 𝑗 if 𝑗 ∈ 𝔲 and 𝑦 𝑗 = 1 if 𝑗 ∉ 𝔲.

Remark 5.10 The 𝜸-weighted star-discrepancy is sometimes alternatively defined
as

𝐷∗
𝑁,𝜸 (P) = max

∅≠𝔲⊆[𝑑]
𝛾𝔲 𝐷

∗
𝑁 (P𝔲), (5.5)

where the sets P𝔲 consist of the points of P projected onto the components with
indices in 𝔲. As shown in [218] this definition is equivalent to Definition 5.9. Indeed,
we have on the one hand |ΔP (𝒕𝔲 , 1) | ≤ 𝐷∗

𝑁
(P𝔲) for any 𝔲 ⊆ [𝑑] and any 𝒕 ∈ [0, 1]𝑑 ,

and hence
𝐷∗
𝑁,𝜸 (P𝑑) ≤ max

∅≠𝔲⊆[𝑑]
𝛾𝔲 𝐷

∗
𝑁 (P𝔲).

On the other hand, for every ∅ ≠ 𝔲 ⊆ [𝑑] we have

𝐷∗
𝑁,𝜸 (P) ≥ sup

𝒕∈[0,1]𝑑
𝛾𝔲 |ΔP (𝒕𝔲 , 1) | = 𝛾𝔲 𝐷∗

𝑁 (P𝔲).

Remark 5.11 The 𝜸-weighted star-discrepancy of an 𝑁-element point set P =

{𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in [0, 1)𝑑 is intimately linked to the worst-case integration error
of QMC rules

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘)

for functions 𝑓 in the weighted function class F𝑑,1,𝜸, which is a weighted ver-
sion of F𝑑,𝑞 from (1.27) in Section 1.6 for 𝑞 = 1. It is defined as follows. Let
W (1,1,...,1)

1 ([0, 1]𝑑) be the Sobolev space of functions defined on [0, 1]𝑑 that are
once differentiable in each variable, and whose derivatives have finite 𝐿1-norm. Then

F𝑑,1,𝜸 = { 𝑓 ∈ W (1,1,...,1)
1 ([0, 1]𝑑) : ∥ 𝑓 ∥𝑑,1,𝜸 < ∞},

where

∥ 𝑓 ∥𝑑,1,𝜸 = | 𝑓 (1) | +
∑︁

∅≠𝔲⊆[𝑑]

1
𝛾𝔲

∫
[0,1] |𝔲 |

���� 𝜕 |𝔲 |

𝜕𝒙𝔲
𝑓 (𝒙𝔲 , 1)

���� d𝒙𝔲 .

A fundamental error estimate is a weighted version of the Koksma–Hlawka inequality
in Corollary 1.36. In fact, the worst-case error of a QMC rule in F𝑑,1,𝜸 is exactly the
𝜸-weighted star-discrepancy of the point set used in the QMC rule, i.e.,

5.3 Weighted Star-Discrepancy 205

err𝑁,𝑑 (F𝑑,1,𝜸,P) = 𝐷∗
𝑁,𝜸 (P𝑑).

In other words, for functions 𝑓 ∈ F𝑑,1,𝜸 we have

|err𝑁,𝑑 (𝑓 ,P)| ≤ ∥ 𝑓 ∥𝑑,1,𝜸 𝐷∗
𝑁,𝜸 (P𝑑).

This error estimate is often called the weighted version of the Koksma–Hlawka
inequality. We remark that one can also define a weighted 𝐿𝑝-discrepancy with
a corresponding relation to the worst-case error of QMC rules in weighted spaces
F𝑑,𝑞,𝜸 based on the 𝐿𝑞-norm, where 1/𝑝 + 1/𝑞 = 1. For further information see
[211, Chapter 9] or [239].

The weighted star-discrepancy of lattice point sets

Next, we consider the weighted star-discrepancy of rank-1 lattice point sets P(𝒈, 𝑁).
Note that the projection of the elements of P(𝒈, 𝑁) onto the components with
indices in 𝔲 ⊆ [𝑑], 𝔲 ≠ ∅, yields the rank-1 lattice point set P(𝒈𝔲 , 𝑁) with the |𝔲 |-
dimensional generating vector 𝒈𝔲 consisting of the components of 𝒈 whose indices
belong to 𝔲. Combining (5.5) with Proposition 5.3 gives

𝐷∗
𝑁,𝜸 (P(𝒈, 𝑁)) ≤ max

∅≠𝔲⊆[𝑑]
𝛾𝔲

(
1 −

(
1 − 1

𝑁

) |𝔲 |
+
𝑅(𝒈𝔲 , 𝑁)

2

)
. (5.6)

Regarding the first term in the parentheses in (5.6), the following auxiliary result
holds.

Lemma 5.12 Let 𝑑 ∈ N. For general weights {𝛾𝔲}𝔲⊆[𝑑] we have, for any 𝑁 ∈ N,

max
∅≠𝔲⊆[𝑑]

𝛾𝔲

(
1 −

(
1 − 1

𝑁

) |𝔲 |)
≤ 1
𝑁

max
∅≠𝔲⊆[𝑑]

|𝔲 | 𝛾𝔲 .

For product weights (𝛾 𝑗) 𝑗≥1 we have, for any 𝑁 ∈ N,

max
∅≠𝔲⊆[𝑑]

𝛾𝔲

(
1 −

(
1 − 1

𝑁

) |𝔲 |)
≤ 1
𝑁

𝑑∏
𝑗=1

(1 + 2𝛾 𝑗).

Proof For general weights the result follows from an application of Bernoulli’s
inequality which implies (

1 − 1
𝑁

) |𝔲 |
≥ 1 − |𝔲 |

𝑁
.

For product weights we use |𝔲 | ≤ 2 |𝔲 | . Then we obtain from the estimate for general
weights,

206 5 Discrepancy of Lattice Point Sets

max
∅≠𝔲⊆[𝑑]

𝛾𝔲

(
1 −

(
1 − 1

𝑁

) |𝔲 |)
≤ 1
𝑁

max
∅≠𝔲⊆[𝑑]

∏
𝑗∈𝔲

(2𝛾 𝑗)

≤ 1
𝑁

∑︁
𝔲⊆[𝑑]

∏
𝑗∈𝔲

(2𝛾 𝑗)

=
1
𝑁

𝑑∏
𝑗=1

(1 + 2𝛾 𝑗),

as desired. □

Let us now consider the term 𝑅(𝒈𝔲 , 𝑁) occurring in (5.6). From the form of 𝑅 in
Definition 1.48 we obtain

𝑅(𝒈𝔲 , 𝑁) =
∑︁

𝒉∈𝐶∗
|𝔲 | (𝑁)

𝒉 ·𝒈𝔲≡0 (mod 𝑁)

1
𝑟1 (𝒉)

=
∑︁

𝒉∈𝐶∗
|𝔲 | (𝑁)

1
𝑟1 (𝒉)

1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝑘𝒉 ·𝒈𝔲/𝑁

= −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

∏
𝑗∈𝔲

©«1 +
∑︁

ℎ∈𝐶∗
1 (𝑁)

e2𝜋i𝑘ℎ𝑔 𝑗/𝑁

|ℎ|
ª®¬

=
1
𝑁

𝑁−1∑︁
𝑘=0

(
−1 +

∏
𝑗∈𝔲

(
1 + 𝑆𝑘,𝑁 (𝑔 𝑗)

))
,

where 𝑆𝑘,𝑁 is defined as in (3.31). Expanding the above product we obtain

𝑅(𝒈𝔲 , 𝑁) =
1
𝑁

𝑁−1∑︁
𝑘=0

∑︁
∅≠𝔳⊆𝔲

∏
𝑗∈𝔳

𝑆𝑘,𝑁 (𝑔 𝑗)

=
∑︁

∅≠𝔳⊆𝔲

1
𝑁

𝑁−1∑︁
𝑘=0

∏
𝑗∈𝔳

𝑆𝑘,𝑁 (𝑔 𝑗)

=
∑︁

∅≠𝔳⊆𝔲
𝑅𝑁 (𝒈𝔳),

where 𝑅𝑁 is defined as in (3.30).
In the following we shall sometimes make the practically reasonable assumption

𝛾𝔲 ≤ 𝛾𝔳 for all 𝔳 ⊆ 𝔲 and all 𝔲 ⊆ [𝑑]. (5.7)

Note that this assumption is automatically satisfied for product weights 𝛾𝔲 =
∏
𝑗∈𝔲 𝛾 𝑗

for 𝔲 ⊆ [𝑑], with 𝛾 𝑗 ∈ (0, 1] for all 𝑗 ∈ N. Under this assumption we have

5.3 Weighted Star-Discrepancy 207

max
∅≠𝔲⊆[𝑑]

𝛾𝔲 𝑅(𝒈𝔲 , 𝑁) = max
∅≠𝔲⊆[𝑑]

𝛾𝔲

∑︁
∅≠𝔳⊆𝔲

𝑅𝑁 (𝒈𝔳)

≤
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲 𝑅𝑁 (𝒈𝔲)

= 𝑅𝑁,𝑑,1,𝜸 (𝒈),

where 𝑅𝑁,𝑑,1,𝜸 (𝒈) is given in Definition 3.12.
We can now formulate a theorem which follows from (5.6) and our observations

above.

Theorem 5.13 For general weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] satisfying (5.7) we have

𝐷∗
𝑁,𝜸 (P(𝒈, 𝑁)) ≤ 1

𝑁
max

∅≠𝔲⊆[𝑑]
|𝔲 | 𝛾𝔲 +

𝑅𝑁,𝑑,1,𝜸 (𝒈)
2

.

We have discussed in Section 3.6 how to construct generating vectors with a small
value of 𝑅𝑁,𝑑,1,𝜸. The lattice point sets constructed in this way have a low weighted
star-discrepancy due to Theorem 5.13. We summarize this in the following corollary.

Corollary 5.14 Let 𝑁 be a prime number, let 𝑑 ∈ N, and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be
general weights satisfying Condition (5.7). Assume that 𝒈 = (𝑔1, . . . , 𝑔𝑑) has been
constructed according to Algorithm 3.14. Then for any 𝑠 ∈ [𝑑] we have

𝐷∗
𝑁,𝜸 (P((𝑔1, . . . , 𝑔𝑠), 𝑁)) ≤

1
𝑁

©« max
∅≠𝔲⊆[𝑠]

|𝔲 | 𝛾𝔲 +
1
2

∑︁
∅≠𝔲⊆[𝑠]

𝛾𝔲 𝑆
|𝔲 |
𝑁

ª®¬ ,
where 𝑆𝑁 is defined as in (2.15). In particular, for product weights 𝛾𝔲 =

∏
𝑗∈𝔲 𝛾 𝑗 ,

for 𝔲 ⊆ [𝑑], we have

𝐷∗
𝑁,𝜸 (P((𝑔1, . . . , 𝑔𝑠), 𝑁)) ≤

1
𝑁

©«
𝑠∏
𝑗=1

(1 + 2𝛾 𝑗) +
1
2

𝑠∏
𝑗=1

(1 + 𝛾 𝑗𝑆𝑁)
ª®¬ .

Recall that 𝑆𝑁 = O(log 𝑁), which implies that the discrepancy bounds in Corol-
lary 5.14 are both of order

O
(
(log 𝑁)𝑠
𝑁

)
,

where the implied multiplicative factor depends only on 𝑠 and 𝜸. Under suitable
assumptions on the weights this implied factor is independent of the dimension. This
will be discussed in the subsequent section.

208 5 Discrepancy of Lattice Point Sets

5.4 Tractability of the Weighted Star-Discrepancy

In accordance with Definition 1.40 we define the 𝑁-th minimal weighted star-
discrepancy.

Definition 5.15 For 𝑑, 𝑁 ∈ N and weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] the 𝑁-th minimal weighted
star-discrepancy is defined as

disc∗𝜸 (𝑁, 𝑑) = inf
P
𝐷∗
𝑁,𝜸 (P),

where the infimum is extended over all 𝑁-element point sets P in [0, 1)𝑑 .

Definition 5.16 For 𝑑 ∈ N, 𝜀 ∈ (0, 1), and 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] the inverse of the weighted
star-discrepancy is defined as

𝑁∗
𝜸 (𝜀, 𝑑) = min{𝑁 ∈ N : disc∗𝜸 (𝑁, 𝑑) ≤ 𝜀}.

Note that the inverse of the weighted star-discrepancy is a special instance of the
information complexity as given in Definition 1.42.

A further analysis of the discrepancy bounds in Corollary 5.14, similar to what
was shown in Section 5.2, leads to the following estimates.

Corollary 5.17 Let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be positive weights satisfying Condition (5.7)
and the condition

∞∑︁
𝑗=1

max
𝔳⊆[𝑗−1]

𝛾𝔳∪{ 𝑗 }

𝛾𝔳
< ∞. (5.8)

Then for any 𝛿 > 0 there exists a positive real𝐶 (𝜸, 𝛿), that depends only on 𝛿 and on
the weights 𝜸, with the following property. For any 𝑑, 𝑁 ∈ N, and for a 𝒈 ∈ 𝐺𝑑 (𝑁)
that has been constructed according to Algorithm 3.14, we have

𝐷∗
𝑁,𝜸 (P(𝒈, 𝑁)) ≤ 𝐶 (𝜸, 𝛿)

𝑁1−𝛿 .

Assume that the weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] satisfy Conditions (5.7) and (5.8). Fix
𝛿 > 0, and let 𝑁 be the smallest prime number greater than or equal to

𝑀 :=
⌈
(𝐶 (𝜸, 𝛿)𝜀−1)1/(1−𝛿)

⌉
,

where 𝐶 (𝜸, 𝛿) is as in Corollary 5.17. Then for the generating vector 𝒈 in Corol-
lary 5.17 we have

disc∗𝜸 (𝑁, 𝑑) ≤ 𝐷∗
𝑁,𝜸 (P(𝒈, 𝑁)) ≤ 𝜀.

Hence it follows that

𝑁∗
𝜸 (𝜀, 𝑑) ≤ 𝑁 ≤ 2𝑀 = 2

⌈
(𝐶 (𝜸, 𝛿)𝜀−1)1/(1−𝛿)

⌉
≤ 𝐶 (𝜸, 𝛿)𝜀−1/(1−𝛿) ,

5.5 Korobov Type Lattice Point Sets With Low Weighted Star-Discrepancy 209

with a suitably chosen positive real 𝐶 (𝜸, 𝛿) that is independent of 𝜀, 𝑑, and 𝑁 . This
means that the weighted star-discrepancy is strongly polynomially tractable. Since
𝛿 > 0 can be chosen arbitrarily close to zero, the 𝜀-exponent of strong polynomial
tractability equals 1. We summarize this result in the following corollary.

Corollary 5.18 Assume that the weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] satisfy Conditions (5.7) and
(5.8). Then the weighted star-discrepancy is strongly polynomially tractable with an
𝜀-exponent equal to 1, which can be obtained using lattice point sets.

For product weights Condition (5.8) is equivalent to
∑∞
𝑗=1 𝛾 𝑗 < ∞. In this case it

is an easy task, using methods already introduced in this book, to also find conditions
on the weights for polynomial or weak tractability of the weighted star-discrepancy.

5.5 Korobov Type Lattice Point Sets With Low Weighted
Star-Discrepancy

For 𝑔 ∈ Z let 𝒈𝑑 (𝑔) = (1, 𝑔, 𝑔2, . . . , 𝑔𝑑−1) be a Korobov type generating vector in Z𝑑
(see also Section 3.2). The existence of good Korobov type generating vectors with
respect to the weighted star-discrepancy can be shown by averaging 𝑅𝑁,𝑑,1,𝜸 (𝒈𝑑 (𝑔))
over all 𝑔 ∈ 𝐺1 (𝑁).

Theorem 5.19 Let 𝑁 be a prime number. Then

1
𝑁

𝑁−1∑︁
𝑔=0

𝑅𝑁,𝑑,1,𝜸 (𝒈𝑑 (𝑔)) ≤
𝑑 − 1
𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 𝑆
|𝔲 |
𝑁
,

where 𝑆𝑁 is defined as in (2.15). Furthermore, for every 𝜃 ∈ [0, 1) there are more
than 𝜃𝑁 elements 𝑔 in 𝐺1 (𝑁) such that

𝑅𝑁,𝑑,1,𝜸 (𝒈𝑑 (𝑔)) ≤
1

1 − 𝜃
𝑑 − 1
𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 𝑆
|𝔲 |
𝑁
.

Proof We have

1
𝑁

𝑁−1∑︁
𝑔=0

𝑅𝑁,𝑑,1,𝜸 (𝒈𝑑 (𝑔)) =
1
𝑁

𝑁−1∑︁
𝑔=0

∑︁
𝒉∈𝐶∗

𝑑
(𝑁)

𝒉 ·𝒈𝑑 (𝑔)≡0 (mod 𝑁)

1
𝑟1,𝜸 (𝒉)

=
1
𝑁

∑︁
𝒉∈𝐶∗

𝑑
(𝑁)

1
𝑟1,𝜸 (𝒉)

𝑁−1∑︁
𝑔=0

𝒉 ·𝒈𝑑 (𝑔)≡0 (mod 𝑁)

1.

For given 𝒉 = (ℎ1, . . . , ℎ𝑑) ≠ 0 the innermost sum of the latter term counts the
number of solutions 𝑔 ∈ {0, 1, . . . , 𝑁 − 1} of the polynomial congruence

210 5 Discrepancy of Lattice Point Sets

ℎ1 + ℎ2𝑔 + · · · + ℎ𝑑𝑔𝑑−1 ≡ 0 (mod 𝑁).

This number is, however, at most 𝑑 − 1, since any polynomial of degree 𝑑 − 1 can
have at most 𝑑 − 1 distinct roots. Hence we obtain

1
𝑁

𝑁−1∑︁
𝑔=0

𝑅𝑁,𝑑,1,𝜸 (𝒈𝑑 (𝑔)) ≤
𝑑 − 1
𝑁

∑︁
𝒉∈𝐶∗

𝑑
(𝑁)

1
𝑟1,𝜸 (𝒉)

.

Now the first inequality in the theorem follows since∑︁
𝒉∈𝐶∗

𝑑
(𝑁)

1
𝑟1,𝜸 (𝒉)

=
∑︁

𝒉∈𝐶∗
𝑑
(𝑁)

𝜸𝔲 (𝒉)
∏
𝑗∈𝔲 (𝒉)

1
|ℎ 𝑗 |

=
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲

∑︁
𝒉∈(𝐶∗

1 (𝑁)) |𝔲 |

∏
𝑗∈𝔲

1
|ℎ 𝑗 |

=
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲 𝑆

|𝔲 |
𝑁
.

In order to prove the second inequality we use the abbreviation

𝑇 (𝑑, 𝑁, 𝜸) :=
𝑑 − 1
𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 𝑆
|𝔲 |
𝑁
.

We then have

𝑁 𝑇 (𝑑, 𝑁, 𝜸) ≥
𝑁−1∑︁
𝑔=0

𝑅𝑁,𝑑,1,𝜸 (𝒈𝑑 (𝑔))

>
𝑇 (𝑑, 𝑁, 𝜸)

1 − 𝜃

����{𝑔 ∈ 𝐺1 (𝑁) : 𝑅𝑁,𝑑,1,𝜸 (𝒈𝑑 (𝑔)) >
𝑇 (𝑑, 𝑁, 𝜸)

1 − 𝜃

}���� .
Thus, the number of 𝑔 ∈ 𝐺1 (𝑁) that satisfy 𝑅𝑁,𝑑,1,𝜸 (𝒈𝑑 (𝑔)) > (1− 𝜃)−1𝑇 (𝑑, 𝑁, 𝜸)
is less than (1 − 𝜃) 𝑁 . This implies that the number of 𝑔 ∈ 𝐺1 (𝑁) that satisfy

𝑅𝑁,𝑑,1,𝜸 (𝒈𝑑 (𝑔)) ≤
𝑇 (𝑑, 𝑁, 𝜸)

1 − 𝜃 =
1

1 − 𝜃
𝑑 − 1
𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 𝑆
|𝔲 |
𝑁

is greater than 𝜃𝑁 . □

Formally, we state the following search algorithm.

Algorithm 5.20 (Korobov type lattice rule with low 𝑅𝑁,𝑑,1,𝜸) Let 𝑁 be a prime
number and let 𝑑 ∈ N. The optimal Korobov type generating vector is found by
minimizing 𝑅𝑁,𝑑,1,𝜸 (𝒈𝑑 (𝑔)) with respect to 𝑔 ∈ 𝐺1 (𝑁).

From Theorems 5.13 and 5.19 we deduce the subsequent corollary.

5.6 Isotropic Discrepancy and Lattice Point Sets on the Sphere 211

Corollary 5.21 Let 𝑁 be a prime number and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be general weights
satisfying (5.7). For 𝑔 ∈ 𝐺1 (𝑁) found by Algorithm 5.20 we have

𝐷∗
𝑁,𝜸 (P(𝒈𝑑 (𝑔), 𝑁)) ≤

1
𝑁

©« max
∅≠𝔲⊆[𝑑]

|𝔲 | 𝜸𝔲 +
𝑑 − 1

2

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲 𝑆
|𝔲 |
𝑁

ª®¬ .
If in addition the weights satisfy Condition (5.8), then for every 𝛿 > 0 there exists a
positive 𝐶 (𝜸, 𝛿), which is independent of 𝑑 and 𝑁 , such that

𝐷∗
𝑁,𝜸 (P(𝒈𝑑 (𝑔), 𝑁)) ≤ 𝐶 (𝜸, 𝛿)

𝑑

𝑁1−𝛿 .

Observe that in the above estimate we have linear dependence on the dimension 𝑑.
This means that we cannot guarantee strong polynomial tractability. However, we
can obtain polynomial tractability by means of optimal Korobov type generating
vectors. In analogy to what we remarked at the end of Section 3.2, it is not clear
whether the linear dependence on 𝑑 can be avoided at all if we restrict ourselves to
Korobov type generating vectors.

5.6 Isotropic Discrepancy and Lattice Point Sets on the Sphere

The usual (star-) discrepancy uses axes-parallel boxes or anchored axes-parallel boxes
as test sets for the uniformity of point sets in the unit cube. This type of discrepancy
is important because of its occurrence in the original Koksma–Hlawka inequality for
the absolute integration error of QMC rules. However, there are several extensions
of discrepancies to various other classes of test sets. One prominent example is the
so-called isotropic discrepancy, which uses all convex subsets of the unit cube as test
sets.

Definition 5.22 For a finite point set P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in the 𝑑-dimensional
unit cube [0, 1)𝑑 the isotropic discrepancy is defined as

𝐽𝑁 (P) := sup
𝐶

���� |{𝑛 ∈ {0, 1, . . . , 𝑁 − 1} : 𝒙𝑛 ∈ 𝐶}|
𝑁

− 𝜆𝑑 (𝐶)
���� ,

where the supremum is extended over all convex subsets 𝐶 of [0, 1]𝑑 .

The isotropic discrepancy is an important quantitative measure for the irregularity
of distribution of P, see, e.g., [66, 155]. According to [2], point sets in [0, 1)2 with
a low isotropic discrepancy can be used to generate point sets on the sphere S2 in R3

with a small spherical cap discrepancy (see Definition 5.23 below) by means of the
Lambert cylindrical equal-area projection,

𝚽(𝛼, 𝜏) :=
(
2
√︁
𝜏 − 𝜏2 cos(2𝜋𝛼), 2

√︁
𝜏 − 𝜏2 sin(2𝜋𝛼), 1 − 2𝜏

)
for 𝛼, 𝜏 ∈ [0, 1].

212 5 Discrepancy of Lattice Point Sets

Figure 5.1 illustrates the image of a Fibonacci lattice point set P((1, 𝐹𝑚−1), 𝐹𝑚)
as defined in Example 1.54 with 𝑚 = 15, using 𝐹14 = 377 and 𝐹15 = 610, under
Lambert’s cylindrical equal-area projection on the sphere S2.

Fig. 5.1: The Fibonacci lattice point set P((1, 377), 610) and its image under Lam-
bert’s cylindrical equal-area projection on the sphere S2.

Definition 5.23 The spherical cap discrepancy of a point set Q = {𝒛0, 𝒛1, . . . , 𝒛𝑁−1}
on S2 uses spherical caps as test sets and is defined as

5.6 Isotropic Discrepancy and Lattice Point Sets on the Sphere 213

𝐷S
2

𝑁 (Q) := sup
𝒘,𝑡

���� |{𝑘 ∈ {0, 1, . . . , 𝑁 − 1} : 𝒛𝑘 ∈ 𝐶 (𝒘, 𝑡)}|
𝑁

− 𝜍 (𝐶 (𝒘, 𝑡))
���� ,

where the supremum is extended over all 𝒘 ∈ S2 and all 𝑡 ∈ [−1, 1], where the
𝐶 (𝒘, 𝑡) are spherical caps of the form

𝐶 (𝒘, 𝑡) := {𝒙 ∈ S2 : 𝒘 · 𝒙 > 𝑡},

and where 𝜍 is the Lebesgue surface area measure on S2 normalized to a probability
measure.

If P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} is a point set in [0, 1]2, then

Q = Φ(P) = {𝚽(𝒙0),𝚽(𝒙1), . . . ,𝚽(𝒙𝑁−1)}

is a point set on S2 whose spherical cap discrepancy satisfies

𝐷S
2

𝑁 (Q) ≤ 11 𝐽𝑁 (P). (5.9)

This estimate, shown in [2, Theorem 6], provides an avenue to construct point sets
on the sphere with low spherical cap discrepancy and is one motivation for finding
point sets with low isotropic discrepancy.

We summarize some well-known bounds on the isotropic discrepancy. A famous
result of Schmidt [225, Theorem 1] gives a general lower bound for arbitrary point
sets, which we state in the following theorem.

Theorem 5.24 For every 𝑑 ∈ N and every 𝑁 ∈ N there exists a positive quantity 𝑐𝑑
such that for all 𝑁-element point sets P in [0, 1)𝑑 we have

𝐽𝑁 (P) ≥ 𝑐𝑑

𝑁2/(𝑑+1) .

This result is essentially (up to log factors) best possible as shown by Beck [11] for
𝑑 = 2, and Stute [246] for 𝑑 ≥ 3 using probabilistic methods. However, this optimal
order cannot be attained by the means of lattice point sets as we will show in the
following.

Isotropic discrepancy of lattice point sets

The subsequent theorem shows that the isotropic discrepancy of a lattice point set is,
up to a factor depending only on 𝑑, the same as the spectral test of the corresponding
integration lattice that was introduced in Definition 1.64. Recall that for an integration
lattice L the spectral test is defined as

𝜎(L) :=
1

min{∥𝒉∥2 : 𝒉 ∈ L⊥ \ {0}} .

214 5 Discrepancy of Lattice Point Sets

Theorem 5.25 Let P(L) be an 𝑁-element lattice point set in [0, 1)𝑑 . Then we have

𝜎(L)
√
𝑑 + 𝜎(L)

≤ 𝐽𝑁 (P(L)) ≤ 𝑑 22(𝑑+1)𝜎(L).

If 𝜎(L) ≤ 1/2, then the lower bound can be replaced by 𝑐 𝜎(L), where 𝑐 > 0 is an
absolute constant.

Proof For the first part of the proof we follow [242]. Consider a family H ∗ of
parallel hyperplanes covering the lattice L, where the distance between adjacent
hyperplanes is maximal and equal to the spectral test. It follows from the geometric
interpretation of the spectral test that such a hyperplane covering of L exists (see
p. 51). Since the unit cube [0, 1)𝑑 has diameter

√
𝑑, it cannot be intersected by more

than
√
𝑑/𝜎(L) + 1 hyperplanes from this covering H ∗. Assume that any of these

intersections contains strictly less than 𝜎(L)𝑁/(
√
𝑑 + 𝜎(L)) lattice points. Since

every point of P(L) lies on exactly one hyperplane of H ∗ we then would have

𝑁 = |P(L)| =
∑︁
𝐻∈H∗

|P(L) ∩ 𝐻 | < 𝜎(L)𝑁
√
𝑑 + 𝜎(L)

(√
𝑑

𝜎(L) + 1

)
= 𝑁,

where the summation is extended over all parallel hyperplanes 𝐻 of the considered
covering H ∗ of P(L). This obviously is a contradiction. So, there exists at least
one hyperplane that contains at least 𝜎(L)𝑁/(

√
𝑑 + 𝜎(L)) lattice points. Since the

intersection of a hyperplane with the unit cube is convex and has measure zero, this
gives the desired lower bound.

Suppose now that additionally 𝜎(L) ≤ 1/2. Then we show the lower bound on
the isotropic discrepancy by finding an empty convex set 𝐶 ⊆ [0, 1)𝑑 of volume at
least 𝑐𝜎(L) for a suitably chosen absolute constant 𝑐 > 0. This convex set will be
constructed by intersecting the slab between two suitable hyperplanes with the unit
cube. To this end, consider again the covering H ∗ of P(L) from above and consider
the one-dimensional space orthogonal to all hyperplanes in H ∗ which is spanned by
some 𝒉 ∈ L⊥. The rays emanating from the center of the cube into the directions ±𝒉
hit a hyperplane of H ∗ at a distance of at most 𝜎(L) from the center of the cube. In
this way, we get a pair of adjacent hyperplanes 𝐻1, 𝐻2 ∈ H ∗ sandwiching the center
of the cube, with possibly one of them containing the center, and having distance
𝜎(L). Denote the collection of all hyperplanes parallel to the family H ∗ which lie
between 𝐻1 and 𝐻2 by H̃ and define the open convex set

𝐶 := int(conv(𝐻1 ∪ 𝐻2) ∩ [0, 1)𝑑)

(here, by “int” we mean the interior, and by “conv” the convex hull), which does not
contain any point of P(L). The volume of 𝐶 can be bounded from below by

𝜆𝑑 (𝐶) ≥ 𝜎(L) inf
𝐻∈H̃

𝜆𝑑−1 (𝐻 ∩ [0, 1)𝑑).

5.6 Isotropic Discrepancy and Lattice Point Sets on the Sphere 215

In order to bound the infimum on the right-hand side of this inequality from below,
we make use of [136, Theorem 1.1] due to König and Rudelson, which establishes
the existence of a 𝑐 > 0 such that for any 𝑑 ∈ N the (𝑑 − 1)-dimensional volume
of the intersection of the cube [0, 1)𝑑 with any hyperplane having distance at most
1/2 from its center is bounded from below by 𝑐. However, since in our case all
hyperplanes in H̃ have a distance of at most 𝜎(L) ≤ 1/2 from the center, this lower
bound of König and Rudelson yields that the infimum is bounded from below by
some 𝑐 > 0. Thus, we have found an empty convex set 𝐶 with 𝜆𝑑 (𝐶) ≥ 𝑐 𝜎(L) and
hence also

𝐽𝑁 (P(L)) ≥ 𝜆𝑑 (𝐶) ≥ 𝑐 𝜎(L).

Consequently, in any case the lower bound is proven.
We now prove the upper bound. By means of the LLL-algorithm, see, e.g., [76,

Chapter 17], we find a reduced basis {𝒃1, 𝒃2, . . . , 𝒃𝑑} of the lattice L containing
short near-orthogonal vectors. The definition of a reduced basis requires the Gram-
Schmidt orthogonalization {𝒃∗1, 𝒃

∗
2, . . . , 𝒃

∗
𝑑} which is obtained from the lattice basis

by setting 𝒃∗1 = 𝒃1 and

𝒃∗𝑖 = 𝒃𝑖 −
𝑖−1∑︁
𝑗=1

𝜇𝑖, 𝑗𝒃
∗
𝑗 for 𝑖 ∈ {2, 3, . . . , 𝑑},

where

𝜇𝑖, 𝑗 =
𝒃𝑖 · 𝒃∗𝑗
∥𝒃∗𝑗 ∥2

2
.

Then, from the properties of a reduced basis it can easily be deduced, see, e.g.,
[76, Lemma 17.2.8], that

(a) ∥𝒃∗𝑗 ∥2
2 ≤ 2𝑖− 𝑗 ∥𝒃∗𝑖 ∥2

2 for 𝑖, 𝑗 ∈ [𝑑], where 𝑗 ≤ 𝑖, and
(b) ∥𝒃 𝑗 ∥2

2 ≤ 2𝑑−1∥𝒃∗𝑗 ∥2
2 for 𝑗 ∈ [𝑑].

Together these properties imply

∥𝒃∗𝑑 ∥2 ≥ 1
2(𝑑−1)/2 max

𝑗∈[𝑑]
∥𝒃∗𝑗 ∥2 ≥ 1

2𝑑−1 max
𝑗∈[𝑑]

∥𝒃 𝑗 ∥2.

Consider now the unit cell associated with the lattice basis {𝒃1, 𝒃2, . . . , 𝒃𝑑}, i.e.,

U :=
{
𝑡1𝒃1 + 𝑡2𝒃2 + · · · + 𝑡𝑑𝒃𝑑 : 𝑡 𝑗 ∈ [0, 1) for all 𝑗 ∈ [𝑑]

}
, (5.10)

which induces a partition of R𝑑 into disjoint cells 𝒙+U, where 𝒙 ∈ L. Each of these
translated unit cells contains only the lattice point 𝒙 and has a diameter satisfying

diam(U) ≤
𝑑∑︁
𝑗=1

∥𝒃 𝑗 ∥2 ≤ 𝑑 max
𝑗∈[𝑑]

∥𝒃 𝑗 ∥2 ≤ 𝑑 2𝑑−1 ∥𝒃∗𝑑 ∥2.

216 5 Discrepancy of Lattice Point Sets

By construction we have

∥𝒃∗𝑑 ∥2 =

𝒃𝑑 − 𝑑−1∑︁
𝑗=1

𝜇𝑑, 𝑗𝒃
∗
𝑗

2

.

That is, the length of the last vector in the Gram-Schmidt orthogonalization is
the length of the projection of the vector 𝒃𝑑 onto the orthogonal complement of
the subspace span{𝒃∗1, . . . , 𝒃

∗
𝑑−1} = span{𝒃1, . . . , 𝒃𝑑−1} spanned by the other basis

vectors. However, this is exactly the distance between two adjacent hyperplanes of
the family of parallel hyperplanes

𝑘𝒃𝑑 + span{𝒃1, . . . , 𝒃𝑑−1}, where 𝑘 ∈ Z,

which covers the entire lattice L. Therefore, since this distance cannot be larger than
the spectral test, we have

𝑑 2𝑑−1 𝜎(L) ≥ 𝑑 2𝑑−1 ∥𝒃∗𝑑 ∥2 ≥ diam(U). (5.11)

Next, we bound the local discrepancy

ΔP(L) (𝐶) :=
|{𝑛 ∈ {0, 1, . . . , 𝑁 − 1} : 𝒙𝑛 ∈ 𝐶}|

𝑁
− 𝜆𝑑 (𝐶)

with respect to an arbitrary convex set 𝐶 ⊆ [0, 1]𝑑 in terms of the diameter of the
unit cell U given in (5.10). To this end, consider the collection of translated unit
cells 𝒙 + U with 𝒙 ∈ L that are fully contained in 𝐶, and denote their union by
𝑊◦. Likewise, denote the union of translated unit cells having nonempty intersection
with 𝐶 by𝑊 . Clearly,

𝑊◦ ⊆ 𝐶 ⊆ 𝑊.

Since L is an integration lattice, we have, according to what is outlined in
Section 1.2 and in particular in Theorem 1.4, that

𝜆𝑑 (U) = det(L) = 1
det(L⊥) =

1
𝑁
.

Furthermore, every translated unit cell 𝒙 + U with 𝒙 ∈ L contains only the lattice
point 𝒙. Hence we have

ΔP(L) (𝑊◦) = ΔP(L) (𝑊) = 0.

This implies

ΔP(L) (𝐶) ≤ ΔP(L) (𝑊) + 𝜆𝑑 (𝑊 \ 𝐶) = 𝜆𝑑 (𝑊 \ 𝐶)

and

5.6 Isotropic Discrepancy and Lattice Point Sets on the Sphere 217

ΔP(L) (𝐶) ≥ ΔP(L) (𝑊◦) − 𝜆𝑑 (𝐶 \𝑊◦) = −𝜆𝑑 (𝐶 \𝑊◦).

Therefore we get the fundamental insight that the local discrepancy for 𝐶 is only
influenced by cells intersecting the boundary of 𝐶 and satisfies

|ΔP(L) (𝐶) | ≤ max(𝜆𝑑 (𝑊 \ 𝐶), 𝜆𝑑 (𝐶 \𝑊◦)). (5.12)

It remains to estimate the maximum of 𝜆𝑑 (𝑊 \ 𝐶) and 𝜆𝑑 (𝐶 \𝑊◦). Let, for 𝜌 > 0,

𝐶+
𝜌 := {𝒙 ∈ 𝐶𝑐 : dist(𝒙, 𝐶) ≤ 𝜌}

and
𝐶−
𝜌 := {𝒙 ∈ 𝐶 : dist(𝒙, 𝐶𝑐) ≤ 𝜌}.

Here, dist(𝒙, 𝐴) := inf𝒚∈𝐴 ∥𝒙 − 𝒚∥2 for 𝒙 ∈ R𝑑 and 𝐴 ⊆ R𝑑 , and ∥ · ∥2 is the
Euclidean norm on R𝑑 . A helpful side note for better understanding is that

𝐶+
𝜌 ∪ 𝐶−

𝜌 = {𝒙 ∈ R𝑑 : disc(𝒙, 𝜕𝐶) ≤ 𝜌}.

We now use a result which states that for 𝐶 ⊆ [0, 1]𝑑 and 𝜌 ∈ [0, 1] we have

max(𝜆𝑑 (𝐶+
𝜌), 𝜆𝑑 (𝐶−

𝜌)) ≤ 2𝑑+3𝜌. (5.13)

A proof of this result uses machinery from convex geometry (for example, Steiner’s
formula for the volume of the Minkowski sum of convex sets) and is beyond the
scope of this book. For details we refer to [243].

With the choice 𝜌 = 𝜌L := diam(U) we obviously have

𝑊 \ 𝐶 ⊆ 𝐶+
𝜌L and 𝐶 \𝑊◦ ⊆ 𝐶−

𝜌L .

Hence we obtain from (5.12), (5.13), and (5.11) that

|ΔP(L) (𝐶) | ≤ 2𝑑+3diam(U) ≤ 𝑑 22(𝑑+1)𝜎(L).

Since the convex set 𝐶 has been chosen arbitrarily, the same inequality also holds
for the supremum over all convex sets 𝐶. □

Theorem 5.25 shows that in order to bound the isotropic discrepancy of a lattice
point set P(L) it suffices to bound the spectral test of the lattice L. In order to
deduce a general lower bound we use Theorem 1.65.

Theorem 5.26 Let P(L) be an 𝑁-element lattice point set in [0, 1)𝑑 . Then we have

𝐽𝑁 (P(L)) ≥ min
(

1
2
√
𝑑 + 1

,
𝑐𝑑

𝑁1/𝑑

)
,

where

𝑐𝑑 :=
√
𝜋

2
√
𝑑 + 1

(
Γ

(
𝑑

2
+ 1

))−1/𝑑
,

218 5 Discrepancy of Lattice Point Sets

and where Γ denotes the Gamma function.
If additionally 𝜎(L) ≤ 1/2, then 𝑐𝑑 may be replaced by �̃�𝑑 = (𝑐

√
𝜋/2) (Γ(𝑑/2+

1))−1/𝑑 , where 𝑐 > 0 is the absolute constant in Theorem 5.25.

Proof If 𝜎(L) > 1/2 we obtain from Theorem 5.25 together with the fact that
𝑥 ↦→ 𝑥/(

√
𝑑 + 𝑥) is increasing for 𝑥 ≥ 1/2, that

𝐽𝑁 (P(L)) ≥ 𝜎(L)
√
𝑑 + 𝜎(L)

≥ 1
2
√
𝑑 + 1

.

If 𝜎(L) ≤ 1/2, then it suffices to combine Theorems 5.25 and 1.65. □

We remark that it is easily seen by means of Stirling’s formula for the Gamma
function that

𝑐𝑑 ∼
√︂
𝜋 e
2

1
𝑑

as 𝑑 → ∞.

In view of Proposition 1.66 it is clear that the order of magnitude 𝑁−1/𝑑 is best
possible for the isotropic discrepancy of integration lattices in dimension 𝑑, and this
order can even be attained by rank-1 lattice point sets.

Corollary 5.27 For every dimension 𝑑 there exists a positive number𝐶𝑑 , depending
only on 𝑑, with the following property. For every prime number 𝑁 there exists a
lattice point 𝒈 ∈ 𝐺𝑑 (𝑁) such that

𝐽 (P(𝒈, 𝑁)) ≤ 𝐶𝑑

𝑁1/𝑑 .

Corollary 5.27 is a pure existence result, and explicit constructions are still miss-
ing. Only in dimension 𝑑 = 2 an explicit example of a lattice point set with isotropic
discrepancy of order O(𝑁−1/2) is known, which is once again the Fibonacci lattice
point set.

Theorem 5.28 For 𝑚 ∈ N let 𝐹𝑚 denote the 𝑚-th Fibonacci number. Then we have

𝐽𝐹𝑚 (P((1, 𝐹𝑚−1), 𝐹𝑚)) ≤
{

4
√︁

2/𝐹𝑚 if 𝑚 is odd,

4
√︁

8/𝐹𝑚 if 𝑚 is even.

For a proof of this result we refer to [2].

Notes and Remarks

The results on the discrepancy of lattice point sets presented in Section 5.1 are
classical. We mainly followed [199, Chapter 5] in our presentation. This material
is also discussed in the book [204] by Niederreiter and Winterhof. The relation of
two-dimensional lattice point sets to the theory of Diophantine approximation is

5.6 Isotropic Discrepancy and Lattice Point Sets on the Sphere 219

well known and studied in many papers, see again [199, pp. 121–124] for further
information. An extension of Theorem 5.5 to rank-2 lattice rules can be found in
[217].

The CBC construction of lattice point sets with a low figure of merit 𝑅 and
therefore with low star-discrepancy was first considered by Joe [120].

Weighted 𝐿𝑝-discrepancy was introduced by Sloan and Woźniakowski in [239],
and was first studied in greater detail in [179]; for general information, in particular
regarding the relation to QMC integration, we refer to [211, Chapter 9] and [52,
Section 3.6]. The study of CBC constructions of lattice point sets with low weighted
star-discrepancy was initiated by Joe [121] and continued by Sinescu and Joe [228,
229] and Sinescu [227].

Tractability of the weighted star-discrepancy is studied in greater detail in [1, 40,
55, 111]. See also [211, Chapter 9] and Section 10.2 of the present book.

The isotropic discrepancy is intimately related to numerical integration of func-
tions over convex subsets of the 𝑑-dimensional unit cube. The corresponding
Koksma–Hlawka type inequality is based on the isotropic discrepancy of the point
set used in an integration rule. A result of this flavor was shown by Zaremba in
[267, Proposition 2.2]. A general estimate of the isotropic discrepancy in terms of
the extreme discrepancy states that for any 𝑁-element point set P in [0, 1)𝑑 we have
𝐷𝑁 (P) ≤ 𝐽𝑁 (P) ≤ 4 𝑑 𝐷𝑁 (P)1/𝑑 . The second, nontrivial inequality follows from
a result of Niederreiter and Wills [202, 203]; see also [195, pp. 981–982] for a further
discussion. The results on isotropic discrepancy of lattice point sets in Section 5.6
are taken from the papers [220, 243]. In these papers appears a slight inaccuracy in
the presented lower bounds. The corrected lower bounds in Theorems 5.25 and 5.26
are due to Sonnleitner [242]. Theorem 5.28 is taken from [2]. We further remark
that for the special case of rank-1 lattice point sets (in particular for the Fibonacci
lattice) the lower bound for isotropic discrepancy of order of magnitude 𝑁−1/𝑑 (see
Theorem 5.26) can already be deduced from a result by Larcher [172] on initial
segments of Kronecker sequences, which, however, is proven with different methods
and shows that there are large empty rotated boxes.

The relation (5.9) between the spherical cap discrepancy and the isotropic dis-
crepancy was shown in [2]. We already have pointed out that this offers a way to
construct point sets on the sphere with low spherical cap discrepancy via point sets
in the unit square with low isotropic discrepancy. Note, though, that it is not possible
to obtain point sets with optimal spherical cap discrepancy on S2 via this inequality
in the sense that the optimal convergence rate of the spherical cap discrepancy on
S2 is, up to log 𝑁 factors, 𝑁−3/4 (see [10]), whereas the optimal rate of convergence
for the isotropic discrepancy in dimension 2 is, as already mentioned, 𝑁−2/3, also
up to log 𝑁 factors. Explicit constructions of point sets on the sphere with optimal
spherical discrepancy are not known. However, numerical evidence suggests that Fi-
bonacci lattice point sets projected onto the sphere via the Lambert transform yield
point sets with optimal spherical cap discrepancy (possibly up to log 𝑁 factors).

Chapter 6
Extensible Lattice Point Sets

Let us go back to the definition of a rank-1 lattice point set P(𝒈, 𝑁) with 𝑁 ∈ N and
𝒈 ∈ Z𝑑 , which is

P(𝒈, 𝑁) =
{{
𝑘

𝑁
𝒈

}
: 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}

}
. (6.1)

By using CBC constructions, as outlined in Chapters 3 and 4, we know that we can
extend the dimension of such a point set by concatenating the generating vector 𝒈
with suitable further components, and it is possible to still obtain point sets with
good quality. However, the situation is different if we ask for an extension with
respect to the number of points, 𝑁 . Extending the number of points may be of
practical relevance if one wants to improve the accuracy of approximation of an
integral by increasing the number of integration nodes without having to discard
previously computed function values. In the first place, it is visible from (6.1) that
the construction of P(𝒈, 𝑁) crucially depends on the choice of 𝑁 , so it is not obvious
how extensibility with respect to the number of points could be reached in a useful
fashion. Secondly, even if this issue is resolved, the question is whether one could
extend 𝑁 in a way such that one obtains larger point sets with good quality, e.g., with
respect to their performance in integration rules.

We shall address this issue in this chapter and outline how lattice point sets can
be extended in 𝑁 . Such rules are then usually referred to as extensible lattice point
sets or lattice sequences.

6.1 The Definition of Extensible Lattice Point Sets

The question of how to adapt the construction scheme (6.1) such that it can be used
for varying values of 𝑁 was addressed for the first time by Hickernell and Hong in
[102], where the following modification was suggested.

221© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_6&domain=pdf

222 6 Extensible Lattice Point Sets

Let 𝑏 ≥ 2 be an integer. For any nonnegative integer 𝑘 ∈ N0, we use the base 𝑏
representation of 𝑘 , i.e.

𝑘 = 𝜅0 + 𝜅1𝑏 + 𝜅2𝑏
2 + · · · ,

where 𝜅𝑖 ∈ {0, 1, . . . , 𝑏 − 1}, 𝑖 ∈ N0, are the base 𝑏 digits of 𝑘 . We then define the
well-known radical inverse function in base 𝑏, 𝜙𝑏, as 𝜙𝑏 : N0 → [0, 1),

𝜙𝑏 (𝑘) :=
∞∑︁
𝑖=0

𝜅𝑖

𝑏𝑖+1 .

The radical inverse function is prominent in the theory of uniform distribution and
numerical integration, as it forms the basis of two classes of infinite point sets, namely
van der Corput sequences and Halton sequences (we refer to, e.g., [52] or [74] for
further information). The radical inverse function has the convenient property that,
for any 𝑚 ∈ N0,

{𝜙𝑏 (𝑘) : 𝑘 ∈ {0, 1, . . . , 𝑏𝑚 − 1}} =
{
𝑘

𝑏𝑚
: 𝑘 ∈ {0, 1, . . . , 𝑏𝑚 − 1}

}
. (6.2)

In this way, we can construct an extensible lattice point set.

Definition 6.1 (Extensible lattice point set) For a lattice point 𝒈 ∈ Z𝑑 the corre-
sponding extensible lattice point set (also called (infinite) lattice sequence) is given
by

P(𝒈) := {{𝜙𝑏 (𝑘)𝒈} : 𝑘 ∈ N0} . (6.3)

If we consider 𝑁 = 𝑏𝑚 for 𝑚 ∈ N0 and fix 𝒈 ∈ Z𝑑 , by (6.2), the first 𝑁 points of
P(𝒈) in (6.3) and the point set P(𝒈, 𝑁) in (6.1) coincide. Furthermore, note that, if
we consider the base 𝑏 digits of the components of 𝒈, only the 𝑚 least significant
digits influence the first 𝑏𝑚 points of P(𝒈) since all other digits only contribute
integers to 𝜙𝑏 (𝑘)𝒈. Consequently, the first 𝑏𝑚 terms of P(𝒈) indeed form a rank-1
lattice point set, and succeeding runs of 𝑏𝑚 elements of P(𝒈) form shifted copies
of the 𝑏𝑚 initial elements (i.e., they are shifted by a constant modulo one). We refer
to Section 7.1 for further information on the concept of shifted lattice rules. We
summarize these easy observations in the following proposition (see also [103]).

Proposition 6.2 Let ℓ ∈ N0 and 𝑚 ∈ N, and let 𝒈 ∈ Z𝑑 . Moreover, let

Pℓ,𝑚 := {{𝜙𝑏 (ℓ𝑏𝑚 + 𝑘)𝒈} : 𝑘 ∈ {0, 1, . . . , 𝑏𝑚 − 1}}

be the (ℓ + 1)-st run of 𝑏𝑚 points of the extensible lattice point set P(𝒈) in (6.3).
Then it is true that

Pℓ,𝑚 =
{{
𝜙𝑏 (𝑘)𝒈 + 𝜙𝑏 (ℓ)𝑏−𝑚−1𝒈

}
: 𝑘 ∈ {0, 1, . . . , 𝑏𝑚 − 1}

}
,

i.e., Pℓ,𝑚 is P0,𝑚 shifted modulo one by 𝜙𝑏 (ℓ)𝑏−𝑚−1𝒈.

6.1 The Definition of Extensible Lattice Point Sets 223

Proof The result follows from the fact that, as can be checked easily, for the radical
inverse function 𝜙𝑏 and ℓ ∈ N0, 𝑚 ∈ N, and 𝑘 ∈ {0, 1, . . . , 𝑏𝑚 − 1} it holds that

𝜙𝑏 (ℓ𝑏𝑚 + 𝑘) = 𝜙𝑏 (𝑘) +
𝜙𝑏 (ℓ)
𝑏𝑚+1 . □

Remark 6.3 Theoretically, it is possible to modify the definition of rank-𝑟 lattice
point sets (see Section 1.3) in a way that they can be made extensible. For practical
purposes, however, this is not extremely useful, as we then would need to consider
𝑟 indices 𝑘1, . . . , 𝑘𝑟 , each of which could or could not tend to infinity, as pointed
out in [103]. Therefore, we will restrict ourselves to rank-1 lattice point sets in this
chapter.

Having defined extensible lattice point sets in Definition 6.1, the crucial question
remains how (and even if) one can find a generating vector 𝒈 such that at least certain
parts of this infinite sequence can be used as integration node sets in QMC rules
with reasonably low integration errors. A second question is how to estimate the
errors of integration rules using certain parts of consecutive points of an extensible
lattice point set. As it turns out, this question is far from trivial. In [102, 103], it
is shown how errors can be estimated in certain instances, and practical examples
of searching for generating vectors guaranteeing suitable performance of at least
some finite lattice point sets contained in extensible lattices are shown. A theoretical
breakthrough was made in [105], where it was shown that generating vectors 𝒈 of
extensible rank-1 lattices exist such that common figures of merit like 𝑅, 𝑃𝛼, or the
discrepancy are reasonably small for the first 𝑁 points with 𝑁 = 𝑏, 𝑏2, 𝑏3, . . . (for a
base 𝑏 ≥ 2) and dimensions 𝑑 = 1, 2, Due to the construction method in (6.3) it
is natural to suspect that a usual integer vector 𝒈, for which each component has a
finite base 𝑏 expansion, is not going to suffice for providing a good lattice sequence
if we consider portions of 𝑁 points with 𝑁 tending to infinity. This is why the authors
of [105] considered the problem of showing the existence of a good generating vector
𝒈 which lies in a superset of the integers, namely so-called 𝑏-adic numbers.

Definition 6.4 For an integer base 𝑏 ≥ 2, the set of 𝑏-adic numbers (sometimes also
referred to as 𝑏-adic integers) is defined as the set of formal sums

Z𝑏 :=

{
𝑧 =

∞∑︁
𝑟=0

𝑧𝑟𝑏
𝑟 : 𝑧𝑟 ∈ {0, 1, . . . , 𝑏 − 1} for 𝑟 ∈ N0

}
.

We call the 𝑧𝑟 ∈ {0, 1, . . . , 𝑏 − 1} the digits of 𝑧 ∈ Z𝑏.

Note thatN0 ⊊ Z𝑏, and elements ofN0 are characterized as numbers with at most
finitely many digits different from 0. For two nonnegative integers, 𝑧, 𝑦 ∈ Z𝑏, we
can define 𝑧 + 𝑦 in Z𝑏 like for normal integers, and the operation can be extended to
all 𝑏-adic numbers, with addition carried out in the usual way. E.g., the inverse of
1 ∈ Z𝑏 is given by the formal sum

224 6 Extensible Lattice Point Sets

∞∑︁
𝑟=0

(𝑏 − 1)𝑏𝑟

as

1 + ((𝑏 − 1) + (𝑏 − 1)𝑏 + (𝑏 − 1)𝑏2 + · · ·) = 0 + (1 + (𝑏 − 1))𝑏 + (𝑏 − 1)𝑏2 + · · ·
= 0 + 0 + (1 + (𝑏 − 1))𝑏2 + · · ·
= 0 + 0 + 0 + · · · .

Using this addition in Z𝑏, the set forms an abelian group, with 0 as the neutral
element, and we also have Z ⊊ Z𝑏.

Remark 6.5 (Measurable structure ofZ𝑏) For 𝑧 ∈ Z𝑏\{0} the 𝑏-adic order ord𝑏 (𝑧)
is the smallest index 𝑟 such that 𝑧𝑟 ≠ 0. The order of 0 is defined as ∞. Then, for
𝑧 ∈ Z𝑏 \ {0}, the 𝑏-adic absolute value is |𝑧 |𝑏 := 𝑏−ord𝑏 (𝑧) and |0|𝑏 := 0. This 𝑏-adic
absolute value induces a metric, which in turn induces a topology on Z𝑏. In this
way, Z𝑏 becomes a compact group. Then, let 𝜇𝑏 denote the uniquely determined
normalized Haar measure on Z𝑏. We remark that 𝜇𝑏 has the following rather simple
form. For fixed 𝑚 ∈ N0 and 𝑐0, . . . , 𝑐𝑚−1 ∈ {0, 1, . . . , 𝑏 − 1} the so-called cylinder
set 𝐶 (𝑐0, . . . , 𝑐𝑚−1) := {𝑧 ∈ Z𝑏 : 𝑧𝑟 = 𝑐𝑟 for 𝑟 ∈ {0, 1, . . . , 𝑚 − 1}} has measure
𝜇𝑏 (𝐶 (𝑐0, . . . , 𝑐𝑚−1)) = 𝑏−𝑚. See also [87, Section 2.4] and the references therein
for further information.

We now define
Z𝑏 := {𝑧 ∈ Z𝑏 : gcd(𝑧, 𝑏) = 1}

and will consider the∞-fold cartesian productZ∞
𝑏

:= Z𝑏×Z𝑏× . . . as the candidate
set for an ∞-dimensional generating vector 𝒈 of an ∞-dimensional extensible lattice
point set.

We then define another probability measure 𝜇𝑏 on Z𝑏 by

𝜇𝑏 (𝐴) := 𝜇𝑏 (𝐴|Z𝑏),

and the corresponding product measure 𝜇∞
𝑏

on Z∞
𝑏

. We will use the measure 𝜇∞
𝑏

in
order to show the existence of a generating vector 𝒈 ∈ Z∞

𝑏
of an ∞-dimensional

extensible lattice point set with good properties.

6.2 Existence of Extensible Lattice Point Sets With Good
Properties

We will now show that there exist extensible lattice point sets with desirable proper-
ties, where we first study the weighted quality measure 𝑅 given in Definition 3.12.
Throughout this section we restrict our considerations to product weights.

6.2 Existence of Extensible Lattice Point Sets With Good Properties 225

Remark 6.6 Before we go into the technical details, we describe a simplified version
of the underlying idea. In its simplest form the idea is the following. Let 𝑋 be a finite
set and let 𝐴, 𝐵 ⊆ 𝑋 be two subsets with |𝐴|, |𝐵 | > |𝑋 |/2. Then it is clear that
𝐴 ∩ 𝐵 ≠ ∅. Analogously, if |𝐴𝑐 |, |𝐵𝑐 | < |𝑋 |/2, where 𝐴𝑐 = 𝑋 \ 𝐴, 𝐵𝑐 = 𝑋 \ 𝐵 are
the complements of 𝐴 and 𝐵, respectively, then 𝐴 ∩ 𝐵 ≠ ∅. This can be extended
to more than two sets, even a sequence of sets. For instance, for 𝐴, 𝐵, 𝐶 ⊆ 𝑋 with
|𝐴|, |𝐵 |, |𝐶 | > 2|𝑋 |/3 (or analogously |𝐴𝑐 |, |𝐵𝑐 |, |𝐶𝑐 | < |𝑋 |/3), then 𝐴∩𝐵∩𝐶 ≠ ∅.

In our context, if 𝑋 is a set of generating vectors, 𝐴 is a subset of generating
vectors yielding a good error bound for a given number of points 𝑏𝑚1 and 𝐵 is the
subset of generating vectors satisfying a good error bound using 𝑏𝑚2 points, and
each subset contains more than half of all generating vectors in 𝑋 , then there is at
least one generating vector which works for both 𝑏𝑚1 and 𝑏𝑚2 points.

This idea can be extended to infinite sets 𝑋 where the number of elements in a
set is replaced by a probability measure, say 𝜇, on 𝑋 . For instance, for two subsets
𝐴, 𝐵 ⊆ 𝑋 with 𝜇(𝐴), 𝜇(𝐵) > 1/2 (or analogously 𝜇(𝐴𝑐), 𝜇(𝐵𝑐) < 1/2), we again
have 𝐴 ∩ 𝐵 ≠ ∅. More generally, if 𝐴1, 𝐴2, . . . ⊆ 𝑋 are a sequence of subsets such
that 𝜇(𝐴𝑐1) + 𝜇(𝐴

𝑐
2) + · · · < 1, then there is at least one element which lies in all sets

𝐴𝑟 , 𝑟 ∈ N.
We will use these ideas in the following to show the existence of extensible lattice

point sets with good properties.

For an∞-dimensional vector 𝒈 = (𝑔1, 𝑔2, . . .) ∈ Z∞
𝑏

and a finite, nonempty subset
𝔲 of N we denote by 𝒈𝔲 the |𝔲 |-dimensional projection onto those components of 𝒈
whose indices belong to 𝔲, i.e., 𝒈𝔲 = (𝑔 𝑗) 𝑗∈𝔲 .

The following basic result is due to Hickernell and Niederreiter [105, Lemma 1].

Lemma 6.7 Let 𝑏 ∈ N, 𝑏 ≥ 2, be fixed, let 𝑁 = 𝑏𝑚 with 𝑚 ∈ N, and let 𝜸 = 1 be
product weights which are all equal to 1, i.e., 𝛾 𝑗 = 1 for all 𝑗 ∈ N. For every finite,
nonempty subset 𝔲 of N we have∫

Z∞
𝑏

𝑅𝑁, |𝔲 |,1,1 (𝒈𝔲) d𝜇∞𝑏 (𝒈) ≤
1
𝑁
(𝛽1 + 𝛽2 log 𝑁) |𝔲 | ,

for absolute constants 𝛽1, 𝛽2 > 0, which are independent of 𝑁 , 𝔲, and |𝔲 |.

Proof Let 𝑁 = 𝑏𝑚. We have∫
Z∞

𝑏

𝑅𝑁, |𝔲 |,1,1 (𝒈𝔲) d𝜇∞𝑏 (𝒈) =
∫
Z |𝔲 |

𝑏

∑︁
𝒉𝔲 ∈𝐶∗

|𝔲 | (𝑁)
𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

1
𝑟1 (𝒉𝔲)

d𝜇 |𝔲 |
𝑏

(𝒈𝔲)

=
1

|𝐺𝜑|𝔲 | (𝑏𝑚) |

∑︁
𝒈𝔲 ∈𝐺

𝜑

|𝔲 | (𝑏𝑚)
𝑅(𝒈𝔲 , 𝑏𝑚),

226 6 Extensible Lattice Point Sets

where in the last step we used the simple form of the measure for cylinder sets as dis-
cussed in Remark 6.5. From here the claim follows from a classical result according
to Niederreiter which was already presented in Remark 5.4 (Equation (5.3)). Here,
however, we average over 𝐺𝜑|𝔲 | (𝑏

𝑚) and not over 𝐶𝜑|𝔲 | (𝑏
𝑚) as in Remark 5.4, which

only changes the values of the implied constants denoted by 𝛽1 and 𝛽2 here. □

Extensible lattice point sets with low 𝑅𝑁,𝑑,𝜏,𝜸

Lemma 6.7 implies that there must exist some generating vector(s) 𝒈 ∈ Z∞
𝑏

for which
the values of 𝑅𝑁, |𝔲 |,1,1 (𝒈𝔲) are in a certain sense low. The following result, which
is one of the main results in [105], implies an analogous existence result for larger
smoothness parameters 𝜏 ≥ 1 and more general product weights, i.e., for 𝑅𝑁,𝑑,𝜏,𝜸.

Theorem 6.8 Let 𝑏 ∈ N, 𝑏 ≥ 2, be fixed, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be a sequence of
product weights. Let 𝜏 ≥ 1 and 𝜀 > 0. Then there exists a 𝜇∞

𝑏
-measurable set

𝐵𝑏 ⊆ Z∞
𝑏

of measure strictly less than 1 such that for all 𝒈 ∈ Z∞
𝑏
\ 𝐵𝑏 we have

𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]) ≤ 𝐶𝜏,𝜸, 𝜀,𝑑,𝑏
(log 𝑁)𝜏 (𝑑+1) (log log(𝑁 + 1))𝜏 (1+𝜀)

𝑁 𝜏
(6.4)

for all 𝑑 ∈ N and all 𝑁 = 𝑏𝑚 with 𝑚 ∈ N, where 𝐶𝜏,𝜸, 𝜀,𝑑,𝑏 is a positive real
independent of 𝑚. The measure of 𝐵𝑏, 𝜇∞

𝑏
(𝐵𝑏), can be made arbitrarily small by

choosing 𝐶𝜏,𝜸, 𝜀,𝑑,𝑏 sufficiently large.

Proof We first define the auxiliary quantity

𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]) :=
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲 𝑅𝑁, |𝔲 |,𝜏,1 (𝒈𝔲),

and show that this quantity dominates 𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]). Indeed, we have

𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]) =
∑︁

𝒉∈𝐶∗
𝑑
(𝑁)

𝒉 ·𝒈 [𝑑]≡0 (mod 𝑁)

1
𝑟𝜏,𝜸 (𝒉)

=
∑︁

𝒉∈𝐶∗
𝑑
(𝑁)

𝒉 ·𝒈 [𝑑]≡0 (mod 𝑁)

𝛾𝔲 (𝒉)
∏
𝑗∈𝔲 (𝒉)

1
|ℎ 𝑗 |𝜏

,

where we remind the reader of the notation 𝔲(𝒉) := { 𝑗 ∈ [𝑑] : ℎ 𝑗 ≠ 0}, for 𝒉 ∈ Z𝑑 .
Consequently,

6.2 Existence of Extensible Lattice Point Sets With Good Properties 227

𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]) =
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲

∑︁
𝒉∈𝐶∗

𝑑
(𝑁)

𝒉 ·𝒈 [𝑑]≡0 (mod 𝑁)
𝔲 (𝒉)=𝔲

∏
𝑗∈𝔲

1
|ℎ 𝑗 |𝜏

=
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲

∑︁
𝒉𝔲 ∈(𝐶∗

1 (𝑁)) |𝔲 |
𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |𝜏

≤
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲 𝑅𝑁, |𝔲 |,𝜏,1 (𝒈𝔲)

= 𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]).

Hence it suffices to show the upper bound in (6.4) for 𝑅𝑁,𝑑,𝜏,𝜸 (𝒈).
Note that, for any finite, nonempty 𝔲 ⊆ N, and 𝜏 ≥ 1, we have

𝑅𝑁, |𝔲 |,𝜏,1 (𝒈𝔲) =
∑︁

𝒉𝔲 ∈𝐶∗
|𝔲 | (𝑁)

𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

(
1

𝑟1,1 (𝒉𝔲)

) 𝜏

≤
©«

∑︁
𝒉𝔲 ∈𝐶∗

|𝔲 | (𝑁)
𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

1
𝑟1,1 (𝒉𝔲)

ª®®®®¬
𝜏

=
(
𝑅𝑁, |𝔲 |,1,1 (𝒈𝔲)

) 𝜏
,

where we used the simple fact that
∑
𝑎𝜏
𝑗
≤

(∑
𝑎 𝑗

) 𝜏 for positive 𝑎 𝑗 and 𝜏 ≥ 1.
Applying this principle once more leads to

𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]) =
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲 𝑅𝑁, |𝔲 |,𝜏,1 (𝒈𝔲)

≤
∑︁

∅≠𝔲⊆[𝑑]
(𝛾1/𝜏

𝔲)𝜏
(
𝑅𝑁, |𝔲 |,1,1 (𝒈𝔲)

) 𝜏
≤ ©«

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/𝜏
𝔲 𝑅𝑁, |𝔲 |,1,1 (𝒈𝔲)

ª®¬
𝜏

=

(
𝑅𝑁,𝑑,1,𝜸1/𝜏 (𝒈 [𝑑])

) 𝜏
. (6.5)

In the next step of the proof, we introduce a further auxiliary quantity, namely

𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]) :=
∑︁

𝔲⊆[𝑑]
𝑑∈𝔲

𝛾𝔲 𝑅𝑁, |𝔲 |,𝜏,1 (𝒈𝔲).

228 6 Extensible Lattice Point Sets

Using Lemma 6.7 we obtain∫
Z∞

𝑏

𝑅𝑁,𝑑,1,𝜸1/𝜏 (𝒈 [𝑑]) d𝜇∞𝑏 (𝒈)

=
∑︁

𝔲⊆[𝑑]
𝑑∈𝔲

𝛾
1/𝜏
𝔲

∫
Z∞

𝑏

𝑅𝑁, |𝔲 |,1,1 (𝒈𝔲) d𝜇∞𝑏 (𝒈)

≤
∑︁

𝔲⊆[𝑑]
𝑑∈𝔲

𝛾
1/𝜏
𝔲

1
𝑁
(𝛽1 + 𝛽2 log 𝑁) |𝔲 |

=
𝛾

1/𝜏
𝑑

𝑁
(𝛽1 + 𝛽2 log 𝑁)

∑︁
𝔲⊆[𝑑−1]

𝛾
1/𝜏
𝔲 (𝛽1 + 𝛽2 log 𝑁) |𝔲 |

=
𝛾

1/𝜏
𝑑

𝑁
(𝛽1 + 𝛽2 log 𝑁)

𝑑−1∏
𝑗=1

(1 + 𝛾1/𝜏
𝑗

(𝛽1 + 𝛽2 log 𝑁)).

For short, we write

𝑀𝑁,𝜸1/𝜏 ,𝑑 :=
𝛾

1/𝜏
𝑑

𝑁
(𝛽1 + 𝛽2 log 𝑁)

𝑑−1∏
𝑗=1

(1 + 𝛾1/𝜏
𝑗

(𝛽1 + 𝛽2 log 𝑁)).

For a given 𝜀 > 0, let 𝑐0 (𝜀) be chosen sufficiently large such that

∞∑︁
𝑗=1

1
𝑗 (log(𝑗 + 1))1+𝜀 < 𝑐0 (𝜀),

and define, for 𝑗 ∈ N, 𝑐 𝑗 = 𝑐 𝑗 (𝜀) := 𝑐0 (𝜀) 𝑗 (log(𝑗 + 1))1+𝜀 . Note that we always
have 𝑐 𝑗 ≥ 1.

Now, for given 𝑁 of the form 𝑁 = 𝑏𝑚, 𝑚 ∈ N, and given 𝑑 ∈ N, we define a set
of “bad” generating vectors as

𝐵𝑏,𝑚,𝑑,𝜏,𝜸 :=
{
𝒈 ∈ Z∞

𝑏 : 𝑅𝑁,𝑑,1,𝜸1/𝜏 (𝒈 [𝑑]) > 𝑐𝑚𝑐𝑑𝑀𝑁,𝜸1/𝜏 ,𝑑

}
.

We can bound the measure of 𝐵𝑏,𝑚,𝑑,𝜏,𝜸 by observing that

𝜇∞𝑏 (𝐵𝑏,𝑚,𝑑,𝜏,𝜸1/𝜏)𝑐𝑚𝑐𝑑𝑀𝑁,𝜸,𝑑 ≤
∫
𝐵
𝑏,𝑚,𝑑,𝜏,𝜸1/𝜏

𝑅𝑁,𝑑,1,𝜸1/𝜏 ,𝑑 (𝒈 [𝑑]) d𝜇∞𝑏 (𝒈)

≤
∫
Z∞

𝑏

𝑅𝑁,𝑑,1,𝜸1/𝜏 (𝒈 [𝑑]) d𝜇∞𝑏 (𝒈)

≤ 𝑀𝑁,𝜸1/𝜏 ,𝑑 ,

6.2 Existence of Extensible Lattice Point Sets With Good Properties 229

which implies 𝜇∞
𝑏
(𝐵𝑏,𝑚,𝑑,𝜏,𝜸) ≤ 1/(𝑐𝑚𝑐𝑑). We now define 𝐵𝑏 as the union of all

“bad” sets, namely
𝐵𝑏 =

⋃
𝑚∈N

⋃
𝑑∈N

𝐵𝑏,𝑚,𝑑,𝜏,𝜸 .

For the measure of 𝐵𝑏 we obtain

𝜇∞𝑏 (𝐵𝑏) ≤
∑︁
𝑚∈N

∑︁
𝑑∈N

𝜇∞𝑏 (𝐵𝑏,𝑚,𝑑,𝜏,𝜸)

≤
∑︁
𝑚∈N

∑︁
𝑑∈N

1
𝑐𝑚𝑐𝑑

=
©« 1
𝑐0 (𝜀)

∞∑︁
𝑗=1

1
𝑗 (log(𝑗 + 1))1+𝜀

ª®¬
2

< 1.

This implies that 𝜇∞
𝑏
(Z∞

𝑏
\ 𝐵𝑏) > 0, and in particular the set Z∞

𝑏
\ 𝐵𝑏 is nonempty.

Note that Z∞
𝑏
\ 𝐵𝑏 contains those 𝒈 ∈ Z∞

𝑏
with 𝒈 ∉ 𝐵𝑏,𝑚,𝑑,𝜏,𝜸 for all 𝑚, 𝑑 ∈ N. By

increasing the value of 𝑐0 (𝜀) we can even shrink the measure of the “bad” set 𝐵𝑏 to
an arbitrarily small positive value.

Now, for 𝒈 ∈ Z∞
𝑏
\ 𝐵𝑏 and 𝑚, 𝑑 ∈ N, where 𝑁 = 𝑏𝑚, we obtain

𝑅𝑁,𝑑,1,𝜸1/𝜏 (𝒈 [𝑑]) =
𝑑∑︁
𝑠=1

𝑅𝑁,𝑠,1,𝜸1/𝜏 (𝒈 [𝑠])

≤ 𝑐𝑚

𝑑∑︁
𝑠=1

𝑐𝑠𝑀𝑏𝑚 ,𝜸1/𝜏 ,𝑠

= 𝑐0 (𝜀)𝑚(log(𝑚 + 1))1+𝜀
𝑑∑︁
𝑠=1

𝑐𝑠𝑀𝑏𝑚 ,𝜸1/𝜏 ,𝑠

≤ 𝑐0 (𝜀)𝑚(log(𝑚 + 1))1+𝜀

× 1
𝑁

𝑑∑︁
𝑠=1

©«𝑐0 (𝜀)𝑠(log(𝑠 + 1))1+𝜀𝛾1/𝜏
𝑠 (𝛽1 + 𝛽2 log 𝑁)

×
𝑠−1∏
𝑗=1

(1 + 𝛾1/𝜏
𝑗

(𝛽1 + 𝛽2 log 𝑁))ª®¬

230 6 Extensible Lattice Point Sets

≤ 𝑐0 (𝜀)𝑚(log(𝑚 + 1))1+𝜀

× 1
𝑁

𝑑∑︁
𝑠=1

©«𝑐0 (𝜀)𝑠(log(𝑠 + 1))1+𝜀𝛾1/𝜏
𝑠 (𝛽1 + 𝛽2 log 𝑁)

×
𝑠−1∏
𝑗=1

(1 + 𝛾1/𝜏
𝑗
𝑐0 (𝜀) 𝑗 (log(𝑗 + 1))1+𝜀 (𝛽1 + 𝛽2 log 𝑁))ª®¬

≤ 𝑐0 (𝜀)𝑚(log(𝑚 + 1))1+𝜀

× 1
𝑁

𝑑∏
𝑗=1

(1 + 𝛾1/𝜏
𝑗
𝑐0 (𝜀) 𝑗 (log(𝑗 + 1))1+𝜀 (𝛽1 + 𝛽2 log 𝑁)),

(6.6)

where we made use of the definitions of the sets 𝐵𝑏,𝑚, 𝑗 , the 𝑐 𝑗 , and the quantities
𝑀𝑏𝑚 ,𝜸1/𝜏 , 𝑗 . Recalling that𝑚 = log𝑏 𝑁 , this implies the existence of a suitable positive
real 𝐶𝜸1/𝜏 , 𝜀,𝑑,𝑏, which is independent of 𝑁 , such that

𝑅𝑁,𝑑,1,𝜸1/𝜏 (𝒈 [𝑑]) ≤ 𝐶𝜸1/𝜏 , 𝜀,𝑑,𝑏
(log 𝑁)𝑑+1 (log log(𝑁 + 1))1+𝜀

𝑁

for 𝑁 = 𝑏𝑚 and 𝑚, 𝑑 ∈ N. Using Inequality (6.5) yields

𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]) ≤
(
𝑅𝑁,𝑑,1,𝜸1/𝜏 (𝒈 [𝑑])

) 𝜏
≤

(
𝐶𝜸1/𝜏 , 𝜀,𝑑,𝑏

(log 𝑁)𝑑+1 (log log(𝑁 + 1))1+𝜀

𝑁

) 𝜏
,

and this proves the desired result with 𝐶𝜏,𝜸, 𝜀,𝑑,𝑏 := 𝐶𝜏
𝜸1/𝜏 , 𝜀,𝑑,𝑏

. □

In Theorem 6.8 we still have an unfavorable dependence of the bound on the
dimension 𝑑. Our next goal is to show that under suitable conditions on the weight
sequence 𝜸, there exist generating vectors of extensible lattice rules for which
𝑅𝑁,𝑑,𝜏,𝜸,𝑑 can be bounded independently of the dimension 𝑑, and for which the
upper bound converges to zero reasonably fast.

The following theorem is also due to [105].

Theorem 6.9 Let 𝑏 ∈ N, 𝑏 ≥ 2, be fixed, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be a sequence of
product weights. Let 𝜏 ≥ 1 and 𝜀 > 0. If

∞∑︁
𝑗=1
𝛾
𝜆/𝜏
𝑗

𝑗 (log(𝑗 + 1))1+𝜀 < ∞ for some 𝜆 ∈ [1, 𝜏], (6.7)

then for any fixed 𝛿 > 0 there exists a positive real 𝐶𝛿,𝜏,𝜆,𝜸, 𝜀 , which is independent
of 𝑑 and 𝑁 , and a set 𝐵𝑏,𝜆 ⊆ Z∞

𝑏
such that for all 𝒈 ∈ Z∞

𝑏
\ 𝐵𝑏,𝜆 we have

6.2 Existence of Extensible Lattice Point Sets With Good Properties 231

𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]) ≤
𝐶𝛿,𝜏,𝜆,𝜸, 𝜀

𝑁 𝜏/𝜆−𝛿
(6.8)

for all 𝑑 ∈ N and all 𝑁 = 𝑏𝑚 with 𝑚 ∈ N. The measure of 𝐵𝑏,𝜆, 𝜇∞𝑏 (𝐵𝑏,𝜆), can be
made arbitrarily small by choosing 𝐶𝛿,𝜏,𝜆,𝜸, 𝜀 sufficiently large.

Proof First of all it is easily checked that for 𝜆 ≥ 1 we have

𝑅𝑁,𝑑,𝜆,𝜸𝜆/𝜏 (𝒈 [𝑑]) ≤ 𝑅𝑁,𝑑,1,𝜸𝜆/𝜏 (𝒈 [𝑑]). (6.9)

Similar to the derivation of (6.6), we can identify a “bad set” 𝐵𝑏,𝜆 ⊆ Z∞
𝑏

such that
for every 𝒈 ∈ Z∞

𝑏
\ 𝐵𝑏,𝜆 and 𝜀 > 0 we have

𝑅𝑁,𝑑,1,𝜸𝜆/𝜏 (𝒈 [𝑑]) ≤ 𝑐0 (𝜀)𝑚(log(𝑚 + 1))1+𝜀

× 1
𝑁

𝑑∏
𝑗=1

(1 + 𝛾𝜆/𝜏
𝑗
𝑐0 (𝜀) 𝑗 (log(𝑗 + 1))1+𝜀 (𝛽1 + 𝛽2 log 𝑁))

(6.10)

for 𝑚, 𝑑 ∈ N and all 𝑁 of the form 𝑁 = 𝑏𝑚.
Next we use a slight generalization of (6.5). For 𝜆 ∈ [1, 𝜏] it is again easily

checked that
𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]) ≤

(
𝑅𝑁,𝑑,𝜆,𝜸𝜆/𝜏 (𝒈 [𝑑])

) 𝜏/𝜆
. (6.11)

Now, using (6.10) we obtain for all 𝒈 ∈ Z∞
𝑏
\ 𝐵𝑏,𝜆 that

𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]) ≤
©«𝑐0 (𝜀)𝑚(log(𝑚 + 1))1+𝜀

𝑁

×
𝑑∏
𝑗=1

(1 + 𝛾𝜆/𝜏
𝑗
𝑐0 (𝜀) 𝑗 (log(𝑗 + 1))1+𝜀 (𝛽1 + 𝛽2 log 𝑁))ª®¬

𝜏/𝜆

.

Let 𝛿 > 0 be chosen arbitrarily small but fixed. Then there exists a positive real
�̃�(𝜀, 𝛿) such that

𝑐0 (𝜀)𝑚(log(𝑚 + 1))1+𝜀 ≤ �̃�(𝜀, 𝛿)𝑁 𝛿𝜆/(2𝜏) for all 𝑚 ∈ N.

Furthermore, since (6.7) is assumed to hold, we obtain from Lemma 3.20 that

𝑑∏
𝑗=1

(
1 + 𝛾𝜆/𝜏

𝑗
𝑐0 (𝜀) 𝑗 (log(𝑗 + 1))1+𝜀 (𝛽1 + 𝛽2 log 𝑁)

)
≤ �̂�(𝜆, 𝜏, 𝜸, 𝜀, 𝛿)𝑁 𝛿𝜆/(2𝜏)

for all 𝑑 ∈ N and all 𝑁 = 𝑏𝑚 with 𝑚 ∈ N. Here the positive real �̂�(𝜆, 𝜏, 𝜸, 𝜀, 𝛿)
is again independent of 𝑚 (and also of 𝑑). Combining the latter two estimates now
yields

232 6 Extensible Lattice Point Sets

𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]) ≤
(
�̃�(𝜀, 𝛿)𝑁 𝛿𝜆/(2𝜏) �̂�(𝜆, 𝜏, 𝜸, 𝜀, 𝛿)𝑁 𝛿𝜆/(2𝜏)

𝑁

) 𝜏/𝜆
.

Since 𝑅𝑁,𝑑,𝜏,𝜸 dominates 𝑅𝑁,𝑑,𝜏,𝜸, as shown in the proof of Theorem 6.8, this yields
the desired result with 𝐶𝛿,𝜏,𝜆,𝜸, 𝜀 := (�̃�(𝜀, 𝛿) �̂�(𝜆, 𝜏, 𝜸, 𝜀, 𝛿))𝜏/𝜆. □

The summability condition (6.7) contains the term 𝑗 (log(𝑗 +1))1+𝜀 , which some-
what weakens the result. The following theorem, again taken from [105], shows how
we can get rid of this extra term in the summability condition on the weights.

Theorem 6.10 Let 𝑏 ∈ N, 𝑏 ≥ 2, be fixed, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be a sequence of
product weights. Let 𝜏 ≥ 1. Suppose that

∞∑︁
𝑗=1
𝛾
𝜆/𝜏
𝑗

< ∞ for some 𝜆 ∈ [1, 𝜏]. (6.12)

Then for any fixed 𝛿 > 0 there exists a 𝜇∞
𝑏

-measurable set 𝐵𝑏,𝜆, 𝛿 ⊆ Z∞
𝑏

of measure
strictly less than 1, such that for all 𝒈 ∈ Z∞

𝑏
\ 𝐵𝑏,𝜆, 𝛿 we have

𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]) ≤
𝐶𝛿,𝜏,𝜆,𝜸

𝑁 𝜏/𝜆−𝛿
(6.13)

for all 𝑑 ∈ N and all 𝑁 = 𝑏𝑚 with 𝑚 ∈ N.
Again, the measure of 𝐵𝑏,𝜆, 𝛿 , 𝜇∞𝑏 (𝐵𝑏,𝜆, 𝛿), can be made arbitrarily small.

Remark 6.11 As already indicated, in Theorem 6.10 we have a less demanding
condition on the weights as compared to Theorem 6.9 in order to get an error bound
that holds uniformly in 𝑑. The price that we have to pay for this improvement is that
now the “bad” set 𝐵𝑏,𝜆, 𝛿 , and therefore also the vectors 𝒈 ∈ Z∞

𝑏
\ 𝐵𝑏,𝜆, 𝛿 , depend on

the chosen value of 𝛿. This is in contrast to Theorem 6.9, where the corresponding
set does not depend on 𝛿 and where the respective bounds hold simultaneously for
all positive 𝛿.

Proof of Theorem 6.10 Let 𝑁 = 𝑏𝑚 for some 𝑚 ∈ N. Then, by Lemma 6.7, we have
for 𝑑 ∈ N, and any finite, nonempty 𝔲 ⊆ N that∫

Z∞
𝑏

𝑅𝑁, |𝔲 |,1,1 (𝒈𝔲) d𝜇∞𝑏 (𝒈) ≤
1
𝑁
(𝛽1 + 𝛽2 log 𝑁) |𝔲 | .

Consequently,∫
Z∞

𝑏

𝑅𝑁,𝑑,1,𝜸𝜆/𝜏 (𝒈 [𝑑]) d𝜇∞𝑏 (𝒈) =
∑︁

∅≠𝔲⊆[𝑑]
𝛾
𝜆/𝜏
𝔲

∫
Z∞

𝑏

𝑅𝑁, |𝔲 |,1,1 (𝒈𝔲) d𝜇∞𝑏 (𝒈)

≤
∑︁

∅≠𝔲⊆[𝑑]
𝛾
𝜆/𝜏
𝔲

1
𝑁
(𝛽1 + 𝛽2 log 𝑁) |𝔲 |

6.2 Existence of Extensible Lattice Point Sets With Good Properties 233

≤ 1
𝑁

𝑑∏
𝑗=1

(1 + 𝛾𝜆/𝜏
𝑗

(𝛽1 + 𝛽2 log 𝑁)).

Let 𝛿 > 0. Since (6.12) holds, and according to Lemma 3.20, there exists a positive
real �̂�𝛿,𝜸𝜆/𝜏 , which is independent of 𝑁 and 𝑑, such that

𝑑∏
𝑗=1

(
(1 + 𝛾𝜆/𝜏

𝑗
(𝛽1 + 𝛽2 log 𝑁)

)
< �̂�𝛿,𝜸𝜆/𝜏 𝑁

𝛿𝜆/(2𝜏)

for all 𝑑 ∈ N. For given and fixed 𝜀 > 0 let now 𝑐 𝑗 = 𝑐 𝑗 (𝜀), 𝑗 ∈ N, and 𝑐0 = 𝑐0 (𝜀)
be defined as in the proof of Theorem 6.8. We choose 𝜀 equal to 1 from here on. We
again define a set of “bad” generating vectors by

𝐵𝑏,𝑚,𝑑,𝜆, 𝛿 :=
{
𝒈 ∈ Z∞

𝑏 : 𝑅𝑁,𝑑,1,𝜸𝜆/𝜏 (𝒈 [𝑑]) > 𝑐𝑚𝑀𝑁,𝜸,𝜆, 𝛿

}
for 𝑚, 𝑑 ∈ N, where we write 𝑀𝑁,𝜸,𝜆, 𝛿 := �̂�𝛿,𝜸𝜆/𝜏𝑁 𝛿𝜆/(2𝜏)−1. Analogously to the
proof of Theorem 6.8 we have

𝜇∞𝑏 (𝐵𝑏,𝑚,𝑑,𝜆, 𝛿)𝑐𝑚𝑀𝑁,𝜸 ≤
∫
𝐵𝑏,𝑚,𝑑,𝜆, 𝛿

𝑅𝑁,𝑑,1,𝜸𝜆/𝜏 (𝒈 [𝑑]) d𝜇∞𝑏 (𝒈) ≤ 𝑀𝑁,𝜸,𝜆, 𝛿 ,

which then implies 𝜇∞
𝑏
(𝐵𝑏,𝑚,𝑑,𝜆, 𝛿) ≤ 1/𝑐𝑚 for all𝑚, 𝑑 ∈ N. Note that, by definition,

𝑅𝑁,𝑑,1,𝜸𝜆/𝜏 is nondecreasing in 𝑑. So it follows that 𝐵𝑏,𝑚,1,𝜆, 𝛿 ⊆ 𝐵𝑏,𝑚,2,𝜆, 𝛿 ⊆
Define

𝐵𝑏,𝑚,𝜆, 𝛿 :=
∞⋃
𝑑=1

𝐵𝑏,𝑚,𝑑,𝜆, 𝛿 .

Due to the monotonicity of the 𝐵𝑏,𝑚,𝑑,𝜆, 𝛿 and the fact that 𝜇∞
𝑏
(𝐵𝑏,𝑚,𝑑,𝜆, 𝛿) ≤ 1/𝑐𝑚

for all 𝑑 ∈ N, it follows that also 𝜇∞
𝑏
(𝐵𝑏,𝑚,𝜆, 𝛿) ≤ 1/𝑐𝑚. Now, let

𝐵𝑏,𝜆, 𝛿 :=
∞⋃
𝑚=1

𝐵𝑏,𝑚,𝜆, 𝛿 ,

then

𝜇∞𝑏 (𝐵𝑏,𝜆, 𝛿) ≤
∞∑︁
𝑚=1

𝜇∞𝑏 (𝐵𝑏,𝑚,𝜆, 𝛿) =
∞∑︁
𝑚=1

1
𝑐𝑚

=

∞∑︁
𝑚=1

1
𝑐0 𝑚(log(1 + 𝑚))2 < 1,

by the definition of the 𝑐 𝑗 for 𝑗 ∈ N and 𝑐0, respectively. This implies that 𝜇∞
𝑏
(Z∞

𝑏
\

𝐵𝑏,𝜆, 𝛿) > 0. In particular, Z∞
𝑏
\ 𝐵𝑏,𝜆, 𝛿 is nonempty.

For 𝒈 ∈ Z∞
𝑏
\ 𝐵𝑏,𝜆, 𝛿 we therefore have

𝑅𝑁,𝑑,1,𝜸𝜆/𝜏 (𝒈 [𝑑]) ≤
𝑐0𝑚(log(𝑚 + 1))2 �̂�𝛿,𝜸𝜆/𝜏

𝑁1−𝛿𝜆/(2𝜏)

234 6 Extensible Lattice Point Sets

for all 𝑑, 𝑚 ∈ N and 𝑁 = 𝑏𝑚. Again, there also exists a positive real �̃�𝛿 such that

𝑐0𝑚(log(𝑚 + 1))2 ≤ �̃�𝛿𝑁 𝛿𝜆/(2𝜏) for all 𝑚 ∈ N.

Hence, for 𝒈 ∈ Z∞
𝑏
\ 𝐵𝑏,𝜆, 𝛿 we have

𝑅𝑁,𝑑,1,𝜸𝜆/𝜏 (𝒈 [𝑑]) ≤
�̃�𝛿 �̂�𝛿,𝜸𝜆/𝜏

𝑁1−𝛿𝜆/𝜏

for all 𝑑, 𝑚 ∈ N and 𝑁 = 𝑏𝑚.
Now we finish the proof like the proof of Theorem 6.9. Using (6.9) and (6.11) we

obtain

𝑅𝑁,𝑑,𝜏,𝜸 (𝒈 [𝑑]) ≤
(
𝑅𝑁,𝑑,1,𝜸𝜆/𝜏 (𝒈 [𝑑])

) 𝜏/𝜆
≤

(�̃�𝛿 �̂�𝛿,𝜸𝜆/𝜏)𝜏/𝜆

𝑁 𝜏/𝜆−𝛿
.

This proves the desired result with 𝐶𝛿,𝜏,𝜆,𝜸 = (�̃�𝛿 �̂�𝛿,𝜸𝜆/𝜏)𝜏/𝜆. □

Extensible lattice point sets with low worst-case error in Korobov spaces

Theorems 6.8–6.10 show the existence of extensible lattice rules for which the
quantity 𝑅𝑁,𝑑,𝜏,𝜸 is small for all 𝑑 ∈ N and all 𝑁 of the form 𝑁 = 𝑏𝑚 with
𝑚 ∈ N. Under certain conditions on the weights these bounds hold uniformly in 𝑑.
A similar result can be obtained in terms of the worst-case error in Korobov spaces
of smoothness 𝛼 > 1/2. To this end, we use Proposition 3.13 in Chapter 3, which
implies, for product weights, that

[err𝑁,𝑑,𝛼,𝜸 (𝒈 [𝑑])]2 ≤ 𝑅𝑁,𝑑,2𝛼,𝜸 (𝒈 [𝑑]) +
22𝛼

𝑁2𝛼

𝑑∏
𝑗=1

(1 + 𝛾 𝑗4𝜁 (2𝛼))

for all 𝑑 ∈ N. This immediately yields the following result.

Corollary 6.12 By setting 𝜏 = 2𝛼, the results in Theorems 6.8–6.10 also hold true,
except for an adaption of the respective constants, if 𝑅𝑁,𝑑,2𝛼,𝜸, [𝑑] is replaced by
[err𝑁,𝑑,𝛼,𝜸 (𝒈 [𝑑])]2.

Extensible lattice point sets with low discrepancy

We can also relate 𝑅𝑁,𝑑,1,1 to the (unweighted) star-discrepancy of extensible lattice
points. Indeed, using Proposition 5.3 we have

𝐷∗
𝑁 (P(𝒈𝔲 , 𝑁)) ≤ 1 −

(
1 − 1

𝑁

) |𝔲 |
+
𝑅𝑁, |𝔲 |,1,1 (𝒈𝔲)

2
.

6.2 Existence of Extensible Lattice Point Sets With Good Properties 235

Using this estimate, we obtain the following result for the weighted star-discrepancy
(this should also be compared with the results outlined in Section 5.3).

Corollary 6.13 Let 𝑏 ∈ N, 𝑏 ≥ 2, be fixed, let 𝜸 = (𝛾 𝑗) 𝑗≥1 be a sequence of product
weights, and let 𝜀 > 0. Then the following assertions hold.

1. There exists a 𝜇∞
𝑏

-measurable set 𝐵𝑏 ⊆ Z∞
𝑏

of measure strictly less than 1 such
that for all 𝒈 ∈ Z∞

𝑏
\ 𝐵𝑏 it is true that

𝐷∗
𝑁,𝜸 (P(𝒈 [𝑑] , 𝑁)) ≤ 𝐶𝜸, 𝜀,𝑑

(log 𝑁)𝑑+1 (log log(𝑁 + 1))1+𝜀

𝑁
(6.14)

for all 𝑑 ∈ N and all 𝑁 = 𝑏𝑚 with 𝑚 ∈ N, where 𝐶𝜸, 𝜀,𝑑 is a positive real
independent of 𝑁 . The measure of 𝐵𝑏, 𝜇∞

𝑏
(𝐵𝑏), can be made arbitrarily small by

choosing 𝐶𝜸, 𝜀,𝑑 sufficiently large.
2. If

∑∞
𝑗=1 𝛾 𝑗 (log(𝑗 + 1))1+𝜀 < ∞, then for any 𝛿 > 0 there exists a positive real

𝐶𝛿,𝜸, 𝜀 , independent of 𝑁 and 𝑑, such that for all 𝒈 ∈ Z∞
𝑏
\ 𝐵𝑏 we have

𝐷∗
𝑁,𝜸 (P(𝒈 [𝑑] , 𝑁)) ≤

𝐶𝛿,𝜸, 𝜀

𝑁1−𝛿 (6.15)

for all 𝑑 ∈ N and all 𝑁 = 𝑏𝑚 with 𝑚 ∈ N. The measure of 𝐵𝑏, 𝜇∞
𝑏
(𝐵𝑏), can be

made arbitrarily small by choosing 𝐶𝛿,𝜸, 𝜀 sufficiently large.
3. If

∑∞
𝑗=1 𝛾 𝑗 < ∞, then for any fixed 𝛿 > 0 there exists a 𝜇∞

𝑏
-measurable set

𝐵𝑏, 𝛿 ⊆ Z∞
𝑏

such that for all 𝒈 ∈ Z∞
𝑏
\ 𝐵𝑏, 𝛿 the bound (6.15) holds. Again, the

measure of 𝐵𝑏, 𝛿 , 𝜇∞𝑏 (𝐵𝑏, 𝛿), can be made arbitrarily small by choosing 𝐶𝛿,𝜸, 𝜀
sufficiently large.

Why do we need 𝑁 of the form 𝑏𝑚?

As a final remark in this section, we briefly discuss the question why results like
Theorem 6.8–6.10 “only” hold for 𝑁 of the form 𝑁 = 𝑏𝑚, i.e., for a geometric
progression of 𝑁 , and not, e.g., for an arithmetic progression or even all sufficiently
large 𝑁? The answer to this question is surprisingly simple. As already pointed
out by Sobol’ in [241] (see also [216] for a more detailed discussion), a sequence
of equal-weight quadrature rules that are embedded into each other can—at least
in nontrivial settings—not have a better error convergence rate than 𝑁−1 for an
arithmetic sequence of 𝑁 .

To be more precise, following [104], suppose that we have a Hilbert space H
of 𝑑-variate functions defined on [0, 1]𝑑 with the following property. For any fixed
number 𝑀 , an 𝑀-point QMC rule using any point set P has a positive worst-case
error, and this error is bounded below away from zero no matter how well one
chooses the set P, i.e.,

236 6 Extensible Lattice Point Sets

inf
P⊆[0,1]𝑑
|P |=𝑀

err𝑀,𝑑 (H ,P) = inf
P⊆[0,1]𝑑
|P |=𝑀

sup
𝑓 ∈H

∥ 𝑓 ∥H ≤1

������
∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 − 1
𝑀

∑︁
𝒚∈P

𝑓 (𝒚)

������
≥ 𝑐H,𝑀

> 0, (6.16)

where 𝑐H,𝑀 may naturally depend on H and 𝑀 . This assumption is not very
restrictive, since if it is violated one can get an arbitrarily accurate approximation of
an integral by evaluating the integrand at a finite number of points.

Now the following proposition holds.

Proposition 6.14 Let S = (𝒙𝑘)𝑘≥0 be any sequence of points in [0, 1]𝑑 , and let S𝑁
denote the point set consisting of the first 𝑁 terms of S.

• If assumption (6.16) holds for 𝑀 = 1, then the sequence (err𝑁,𝑑 (H ,S𝑁))𝑁 ≥1
cannot converge to zero faster than O(𝑁−1).

• If assumption (6.16) holds for some 𝑀 > 1, then the subsequence of errors
(err𝑁0+𝑛𝑀,𝑑 (H ,S𝑁0+𝑛𝑀))𝑛≥0 cannot converge to zero faster than O(𝑁−1), with
𝑁 of the form 𝑁 = 𝑁0 + 𝑛𝑀 , for any fixed 𝑁0 ∈ N.

Proof The proof for 𝑀 = 1 and arbitrary 𝑀 ≥ 1 are the same. For any 𝑓 in the
unit ball of H and any 𝑁 ∈ N, the error of the QMC rule using the point set
S𝑁 = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} is

err𝑁,𝑑 (𝑓 ,S𝑁) =

∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 − 1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘).

Thus, for any 𝑁0, 𝑛 ∈ N, and 𝑁 = 𝑁0 + 𝑛𝑀 , we have

𝑀

�����∫[0,1]𝑑
𝑓 (𝒙) d𝒙 − 1

𝑀

𝑁+𝑀−1∑︁
𝑘=𝑁

𝑓 (𝒙𝑘)
�����

= | (𝑁 + 𝑀)err𝑁+𝑀,𝑑 (𝑓 ,S𝑁+𝑀) − 𝑁err𝑁,𝑑 (𝑓 ,S𝑁) |
≤ (𝑁 + 𝑀) |err𝑁+𝑀,𝑑 (𝑓 ,S𝑁+𝑀) | + 𝑁 |err𝑁,𝑑 (𝑓 ,S𝑁) |,

which leads to

𝑀 sup
𝑓 ∈H

∥ 𝑓 ∥H ≤1

�����∫[0,1]𝑑
𝑓 (𝒙) d𝒙 − 1

𝑀

𝑁+𝑀−1∑︁
𝑘=𝑁

𝑓 (𝒙𝑘)
�����

≤ (𝑁 + 𝑀) err𝑁+𝑀,𝑑 (H ,S𝑁+𝑀) + 𝑁 err𝑁,𝑑 (H ,S𝑁).

Suppose there exist constants 𝐶 > 0 and 𝛽 > 0 such that

err𝑁,𝑑 (H ,S𝑁) ≤ 𝐶

𝑁𝛽
for all 𝑁 = 𝑁0 + 𝑛𝑀 with 𝑛 ∈ N0.

6.3 Constructions of Extensible Lattice Rules—Embedded Lattice Rules 237

Then assumption (6.16) implies that

𝑀 𝑐H,𝑀 ≤ 𝑀 sup
𝑓 ∈H

∥ 𝑓 ∥H ≤1

�����∫[0,1]𝑑
𝑓 (𝒙) d𝒙 − 1

𝑀

𝑁+𝑀−1∑︁
𝑘=𝑁

𝑓 (𝒙𝑘)
�����

≤ 𝐶

(𝑁 + 𝑀)𝛽−1 + 𝐶

𝑁𝛽−1 .

Since the left-hand side of the above inequality cannot converge to 0 as 𝑁 increases,
it is necessary that 𝛽 ≤ 1. □

Due to Proposition 6.14, it is, for common spaces of interest, useless to hope to
find a sequence of embedded quadrature rules that yield a better convergence order
than O(𝑁−1) for an arithmetic progression of 𝑁 . One remedy to solve this issue is to
modify the integration rules by changing the integration weights, and to move away
from equal-weight rules. This procedure is outlined in detail in [104], but is beyond
the scope of this chapter.

6.3 Constructions of Extensible Lattice Rules—Embedded
Lattice Rules

The results in Theorems 6.8–6.10 and Corollaries 6.12–6.13 are of great significance
from a theoretical point of view. However, they do not imply any clue on how good
generating vectors for extensible lattice rules can practically be found. In particular,
it is a challenging problem that, as pointed out above, a generating vector with finite
base 𝑏 expansions of its components cannot be expected to yield extensible lattice
rules of good quality.

Therefore, various authors have resorted to constructing not extensible (rank-1)
lattice rules, but a suitable substitute which is referred to as embedded lattice rules.
The idea of an embedded rule is that one tries to find a finite sequence of integration
lattices with sizes 𝑏𝑚 where 𝑚 is in a certain range {𝑚, 𝑚 + 1, . . . , 𝑚}. Furthermore,
for practical constructions, one considers only a finite range of components, i.e., 𝑑 is
limited to the set [𝑑max] for some 𝑑max ∈ N. To be more precise, an embedded lattice
is not only a finite sequence of integration lattices, but—as the name suggests—a
sequence of integration lattices of different sizes, where smaller lattices are embedded
in larger ones. To this end, for 𝑚 ∈ N0 and 𝒈 ∈ Z𝑑 , and for a base 𝑏 ∈ N, 𝑏 ≥ 2, we
define

P𝑚 := P(𝒈, 𝑏𝑚) =
{{

𝑘

𝑏𝑚
𝒈

}
: 𝑘 ∈ {0, 1, . . . , 𝑏𝑚 − 1}

}
. (6.17)

Then, by definition, each P𝑚 is a rank-1 lattice point set of size 𝑏𝑚, and we have the
relation P𝑚 ⊆ P𝑚+1. However, there is even more structure, namely P𝑚 contains
exactly those points of P𝑚+1 whose indices 𝑘 ∈ {0, 1, . . . , 𝑏𝑚+1 − 1} in (6.17) are
multiples of 𝑏. Furthermore, if we restrict our consideration to one P𝑚 for a fixed

238 6 Extensible Lattice Point Sets

𝑚 ∈ N0, it is sufficient to consider instead of 𝒈 the vector 𝒈 (𝑚) , where all components
of 𝒈 are reduced modulo 𝑏𝑚. In general, one can of course not assume that, if P𝑚
is of high quality with respect to a certain figure of merit for a certain 𝑚 ∈ N0,
the P𝑘 contained in P𝑚 with 𝑘 < 𝑚 are of high quality as well. This is exactly
one of the crucial ideas of finding good embedded lattice rules, namely to find a
whole sequence of lattices (P𝑚,P𝑚+1, . . . ,P𝑚) of the form (6.17) such that there is
a certain high quality for all 𝑚 between 𝑚 and 𝑚.

A first attempt to find good embedded lattice rules was presented by Hickernell,
Hong, L’Ecuyer, and Lemieux [103], who restricted themselves to Korobov type
lattice points of the form 𝒈𝑑 (𝑔) = (1, 𝑔, 𝑔2, . . . , 𝑔𝑑−1) for 𝑑 ∈ [𝑑max] and a suitable
integer 𝑔. They designed a quality measure (based on a kind of 𝐿2-discrepancy)
whose minimizer over all integers 𝑔 in a finite range is guaranteed to be of excellent
quality for all 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚} and 𝑑 ∈ [𝑑max]. This exactly corresponds to
the idea of embedded lattice rules, as outlined above.

Later, Cools, Kuo, and Nuyens [27] extended this approach. They used the same
idea as in [103] in order to construct a quality measure—now based on the worst-
case error—but they used the CBC-construction for general rank-1 lattice point sets
instead of Korobov type lattice points only. For the sake of simplicity and to make
the results comparable to those in earlier chapters, we restrict ourselves to outlining
the theory only for the weighted Korobov space with smoothness parameter 𝛼 and
weights 𝜸, i.e., we consider embedded lattice rules that can particularly be used for
numerically integrating periodic functions. Similar results to the ones we will outline
below exist for nonperiodic functions in certain Sobolev spaces, where one adds a
random shift to the lattice rules under consideration (see Section 7.1).

CBC construction of embedded rules

For fixed 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚} let 𝒈 (𝑚)
0 be the generating vector found by the

usual CBC algorithm, Algorithm 3.6. The worst-case errors err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈 (𝑚)
0) for

𝑑 ∈ [𝑑max] can be stored in a look-up table. Based on the idea in [103], we can then
define, for a generating vector 𝒈 ∈ Z𝑑 , the quantity

𝐷𝑚,𝑚,𝑑 (𝒈) := max
𝑚≤𝑚≤𝑚

err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈)
err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈 (𝑚)

0)
. (6.18)

Based on this quantity, we can now formulate a CBC algorithm for the construction
of embedded lattice rules in the weighted Korobov space.

Algorithm 6.15 (CBC construction of embedded rules) Let 𝑏 and 𝑑max be given,
and let the values err𝑁,𝑑,𝛼,𝜸 (𝒈 (𝑚)

0) for 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚} and 𝑑 ∈ [𝑑max]
be stored in a look-up table. Construct a generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑max) ∈
𝐺
𝜑

𝑑max
(𝑏𝑚) as follows.

6.3 Constructions of Extensible Lattice Rules—Embedded Lattice Rules 239

(1) Choose 𝑔1 = 1.
(2) For 𝑠 from 1 to 𝑑max − 1:

Assume that 𝑔1, . . . , 𝑔𝑠 ∈ 𝐺
𝜑

1 (𝑏
𝑚) have already been found. Choose 𝑔𝑠+1 ∈

𝐺
𝜑

1 (𝑏
𝑚) as

𝑔𝑠+1 := argmin
𝑔∈𝐺𝜑

1 (𝑏𝑚)
𝐷𝑚,𝑚,𝑠+1 ((𝑔1, . . . , 𝑔𝑠 , 𝑔)).

End for.
(3) Set 𝒈 = (𝑔1, . . . , 𝑔𝑑max).

Remark 6.16 We remark that, as long as the precomputed data of err𝑁,𝑑,𝛼,𝜸 (𝒈 (𝑚)
0)

are available, Algorithm 6.15 can be extended in the dimension 𝑑max, i.e., the limi-
tation to 𝑑 ∈ [𝑑max] is of practical, but not of theoretical relevance.

Computational cost

We analyze the computational cost of Algorithm 6.15 for the most common form
of weights, namely product weights. As outlined in Section 3.4, the cost of running
Algorithm 3.6 once is of order O(𝑑 𝑁 log 𝑁) for given 𝑁 . For the precomputations
necessary to run Algorithm 6.15, we therefore need O(𝑑 𝑏𝑚𝑚) operations for each
instance of 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚}, so in total we require O(𝑑 𝑏𝑚𝑚2) operations
for the precomputations for Algorithm 6.15. Next, we analyze the cost of actually
running Algorithm 6.15.

To this end, it is necessary to consider the fast CBC construction of generating
vectors for a composite number 𝑁 of points in greater detail. We will outline some
crucial ideas for the special case where 𝑁 is the power of a prime 𝑏 here, as this is
the case relevant for the construction of embedded lattice rules. We closely study the
matrix

𝛀𝑁 :=
(
𝜑𝛼

({
𝑘𝑔

𝑁

}))
𝑔∈𝐺𝜑

1 (𝑁) ,𝑘∈𝐺1 (𝑁)
,

where 𝜑𝛼 is defined as in (3.7). While we assumed 𝑁 to be a prime in Section 3.4,
we are now in the situation that 𝑁 = 𝑏𝑚 is a prime power. We start our discussion
by giving an example, inspired by [27]. To this end, we use the same notation as in
Section 3.4.

Example 6.17 Let 𝑁 = 24 = 16, i.e., 𝑏 = 2, and 𝑚 = 4. Hence, in our example the
cardinality of𝐺𝜑1 (𝑁) = 𝐺

𝜑

1 (16) is 8, so 𝛀𝑁 is an 8×16 matrix (in the case where 𝑁
is a prime, 𝛀𝑁 is always an (𝑁 − 1) × 𝑁 matrix). Like in Section 3.4, we will use a
special circulant structure of 𝛀𝑁 which allows for fast matrix-vector multiplication.
Again, we will use the Rader transform, so we first require a primitive root of the
multiplicative group of integers modulo 𝑁 . In the case of 𝑏 = 2, it is known that we
can express this group in terms of the generator 5, to be more precise, the group can
be written by separating it into two subgroups,

240 6 Extensible Lattice Point Sets

𝐺
𝜑

1 (16) = {1, 3, 5, 7, 9, 11, 13, 15}
= {5𝑖 (mod 16) : 𝑖 ∈ {0, 1, 2, 3}} ∪ {−5𝑖 (mod 16) : 𝑖 ∈ {0, 1, 2, 3}}
= {1, 5, 9, 13} ∪ {15, 11, 7, 3}.

We can take the ordering of the elements of 𝐺𝜑1 (16) as in the last row of the latter
expression for reordering the columns and rows of 𝛀16. Obviously, the first column
of 𝛀16 consists only of the entries 𝜑𝛼 (0) and can therefore (trivially) be neglected.
As the second column, we obtain(

𝜑𝛼

(
1
16

)
, 𝜑𝛼

(
5
16

)
, 𝜑𝛼

(
9
16

)
, 𝜑𝛼

(
13
16

)
,

𝜑𝛼

(
15
16

)
, 𝜑𝛼

(
11
16

)
, 𝜑𝛼

(
7
16

)
, 𝜑𝛼

(
3
16

))⊤
.

Let us now consider the submatrix𝚵16 of𝛀16 that corresponds to the first 8 nontrivial
columns (Columns 2-9) of 𝛀16. This matrix can be arranged such that it has, though
no circulant structure, a “block-circulant-with-circulant-block” structure, namely𝚵16
can be written in the form

𝚵16 =

(
𝑋

(1)
16 | 𝑋 (2)

16
𝑋

(2)
16 | 𝑋 (1)

16

)
,

where

𝑋
(1)
16 =

©«
𝜑𝛼 (1/16) 𝜑𝛼 (13/16) 𝜑𝛼 (9/16) 𝜑𝛼 (5/16)
𝜑𝛼 (5/16) 𝜑𝛼 (1/16) 𝜑𝛼 (13/16) 𝜑𝛼 (9/16)
𝜑𝛼 (9/16) 𝜑𝛼 (5/16) 𝜑𝛼 (1/16) 𝜑𝛼 (13/16)
𝜑𝛼 (13/16) 𝜑𝛼 (9/16) 𝜑𝛼 (5/16) 𝜑𝛼 (1/16)

ª®®®¬
and

𝑋
(2)
16 =

©«
𝜑𝛼 (15/16) 𝜑𝛼 (3/16) 𝜑𝛼 (7/16) 𝜑𝛼 (11/16)
𝜑𝛼 (11/16) 𝜑𝛼 (15/16) 𝜑𝛼 (3/16) 𝜑𝛼 (7/16)
𝜑𝛼 (7/16) 𝜑𝛼 (11/16) 𝜑𝛼 (15/16) 𝜑𝛼 (3/16)
𝜑𝛼 (3/16) 𝜑𝛼 (7/16) 𝜑𝛼 (11/16) 𝜑𝛼 (15/16)

ª®®®¬ .
As we can see, both 𝑋

(1)
16 and 𝑋

(2)
16 are circulant matrices. Thus, 𝚵16 has much

structure that can be made use of in calculating the matrix product of 𝛀16 and the
vector 𝜼𝑠 in the 𝑠-th step of the CBC algorithm (see Section 3.4). However, there is
even more structure that can be exploited. A convenient property of the function 𝜑𝛼
defined in (3.7) is that it is symmetric in the sense that

𝜑𝛼 (𝑥) = 𝜑𝛼 (1 − 𝑥) for any 𝑥 ∈ [0, 1].

This implies that 𝜑𝛼 (𝑘/𝑁) = 𝜑𝛼 ((𝑁 − 𝑘)/𝑁) for 𝑘 ∈ {0, 1, . . . , 𝑁}, which in turn
implies 𝜑𝛼 (𝑘/𝑁) = 𝜑𝛼 (min(𝑘, 𝑁 − 𝑘)/𝑁). Hence, instead of studying 𝚵16, we can
restrict ourselves to considering

6.3 Constructions of Extensible Lattice Rules—Embedded Lattice Rules 241

�̂�16 =

(
𝑋16 | 𝑋16

𝑋16 | 𝑋16

)
,

where

𝑋16 =

©«
𝜑𝛼 (1/16) 𝜑𝛼 (3/16) 𝜑𝛼 (7/16) 𝜑𝛼 (5/16)
𝜑𝛼 (5/16) 𝜑𝛼 (1/16) 𝜑𝛼 (3/16) 𝜑𝛼 (7/16)
𝜑𝛼 (7/16) 𝜑𝛼 (5/16) 𝜑𝛼 (1/16) 𝜑𝛼 (3/16)
𝜑𝛼 (3/16) 𝜑𝛼 (7/16) 𝜑𝛼 (5/16) 𝜑𝛼 (1/16)

ª®®®¬ . (6.19)

Note that �̂�16 is a circulant matrix.
We have now described how the first 8 nontrivial columns (Columns 2-9) of 𝛀16

can be structured. The analogous question regarding the remaining columns will be
answered in Theorem 6.18 in a general result.

Structure analysis of 𝛀𝑁 if 𝑁 is a power of 2

Returning to the general case, we first consider the case where 𝑁 is a power of 2.
Note that it is well known from number theory that the group of primitive residue
classes modulo a power of 2, say 2𝑚 for 𝑚 ≥ 3, is not cyclic anymore. However, the
powers 5, 52, 53, . . . , 52𝑚−2 constitute half of a reduced residue system modulo 2𝑚,
namely all integers which are congruent to −1 (mod 4). The missing residue classes
are represented by −5,−52,−53, . . . ,−52𝑚−2 (see, e.g., [181, Theorem 4.6]).

The following theorem is due to Nuyens and Cools (see [215] and also [27]).

Theorem 6.18 Let 𝑁 = 2𝑚 with 𝑚 ∈ N, and let

𝛀2𝑚 =

(
𝜑𝛼

({
𝑘𝑔

𝑁

}))
𝑔∈𝐺𝜑

1 (𝑁) ,𝑘∈𝐺1 (𝑁)
.

Then the rows and columns of 𝛀2𝑚 can be reordered such that we obtain a matrix

�̂�2𝑚 =

(
120 ⊗ �̂�2𝑚 |121 ⊗ �̂�2𝑚−1 | · · · |12𝑚−1 ⊗ �̂�2 |12𝑚−1 ⊗ �̂�1

)
.

Here, the notation 1ℓ ⊗ 𝐴 means the stacking of ℓ instances of a matrix 𝐴. Further-
more, �̂�1 = (𝜑𝛼 (0)), �̂�2 = (𝜑𝛼 (1/2)), and

�̂�2ℓ :=
(
𝑋2ℓ | 𝑋2ℓ

𝑋2ℓ | 𝑋2ℓ

)
for ℓ ≥ 2, with

𝑋2ℓ =

(
𝜑𝛼

({
𝑘𝑔

𝑁

}))
𝑔∈⟨5⟩2ℓ ,𝑘∈⟨−5⟩2ℓ

,

where
⟨5⟩2ℓ =

{
5𝑖 (mod 2ℓ) : 0 ≤ 𝑖 ≤ 2ℓ−2 − 1

}

242 6 Extensible Lattice Point Sets

and
⟨−5⟩2ℓ =

{
−5𝑖 (mod 2ℓ) : 0 ≤ 𝑖 ≤ 2ℓ−2 − 1

}
.

In particular, each of the matrices �̂�2ℓ is circulant.

Remark 6.19 Note that what we considered as the first (trivial) column of 𝛀2𝑚 (the
column containing only 𝜑𝛼 (0)) is written as the last column of �̂�2𝑚 in Theorem 6.18
above. This is merely for technical reasons. Note furthermore that the number of
matrices �̂�2ℓ corresponds to the number of divisors of 2𝑚, which is 𝑚 + 1.

Using Theorem 6.18, we can return to our previous example of 𝛀16.

Example 6.20 (Example 6.17 revisited) The matrix 𝛀16 can be restructured to

�̂�16 =

©«
�̂�16

�̂�8
�̂�8

�̂�4
�̂�4
�̂�4
�̂�4

�̂�2
�̂�2
�̂�2
�̂�2
�̂�2
�̂�2
�̂�2
�̂�2

�̂�1
�̂�1
�̂�1
�̂�1
�̂�1
�̂�1
�̂�1
�̂�1

ª®®®®®®®®®®®®®¬
.

Here,

�̂�16 =

(
𝑋16 | 𝑋16

𝑋16 | 𝑋16

)
, with 𝑋16 as in (6.19),

�̂�8 =

(
𝑋8 | 𝑋8

𝑋8 | 𝑋8

)
, with 𝑋8 =

(
𝜑𝛼 (1/8) 𝜑𝛼 (5/8)
𝜑𝛼 (5/8) 𝜑𝛼 (1/8)

)
=

(
𝜑𝛼 (2/16) 𝜑𝛼 (6/16)
𝜑𝛼 (6/16) 𝜑𝛼 (2/16)

)
,

where we remind the reader that 𝜑𝛼 (10/16) = 𝜑𝛼 (6/16) due to the symmetry of
𝜑𝛼,

�̂�4 =

(
𝑋4 | 𝑋4

𝑋4 | 𝑋4

)
, with 𝑋4 =

(
𝜑𝛼 (1/4)

)
=

(
𝜑𝛼 (4/16)

)
,

�̂�2 =
(
𝜑𝛼 (1/2)

)
=

(
𝜑𝛼 (8/16)

)
,

and
�̂�1 =

(
𝜑𝛼 (0)

)
.

Theorem 6.18 shows how𝛀2𝑚 can be reordered such that it has the aforementioned
“block-circulant-with-circulant-block” structure. For 𝑁 = 𝑏𝑚 being a prime power
with 𝑏 ≠ 2 an analogous theorem holds (see Theorem 6.21 below). The case 𝑏 = 2
has a special role, since in this case the group 𝐺𝜑1 (2

𝑚) can be expressed in terms of
the union of two subgroups which are obtained by considering suitable powers of
the primitive root 5, as pointed out above.

6.3 Constructions of Extensible Lattice Rules—Embedded Lattice Rules 243

Structure analysis of 𝛀𝑁 if 𝑁 is an odd prime power

For 𝑏 ≠ 2, the following result holds, which is slightly different to Theorem 6.18.
For a proof of this result we refer to [215].

Theorem 6.21 Let 𝑏 be an odd prime number and let 𝑁 = 𝑏𝑚 with 𝑚 ∈ N. Let
furthermore

𝛀𝑏𝑚 =

(
𝜑𝛼

({
𝑘𝑔

𝑁

}))
𝑔∈𝐺𝜑

1 (𝑁) ,𝑘∈𝐺1 (𝑁)
.

Then the rows and columns of 𝛀𝑏𝑚 can be reordered such that we obtain a matrix

�̂�𝑏𝑚 =

(
1𝑏0 ⊗ �̂�𝑏𝑚 |1𝑏1 ⊗ �̂�𝑏𝑚−1 | · · · |1𝑏𝑚−1 ⊗ �̂�𝑏 |1𝑏𝑚−1 (𝑏−1) ⊗ �̂�1

)
.

Again, the notation 1ℓ ⊗ 𝐴 means the stacking of ℓ instances of a matrix 𝐴. Further-
more, �̂�1 = (𝜑𝛼 (0)), and

�̂�𝑏ℓ :=
(
𝑋𝑏ℓ | 𝑋𝑏ℓ
𝑋𝑏ℓ | 𝑋𝑏ℓ

)
for ℓ ∈ N, with

𝑋𝑏ℓ =

(
𝜑𝛼

({
𝑘𝑔

𝑁

}))
𝑔∈⟨𝑡 ⟩

𝑏ℓ
,𝑘∈⟨𝑡−1 ⟩

𝑏ℓ

,

where 𝑡 is a generator of the group 𝐺𝜑1 (𝑏
𝑚), and where

⟨𝑡⟩𝑏ℓ =
{
𝑡𝑖 (mod 𝑏ℓ) : 0 ≤ 𝑖 ≤ 𝜑(𝑏ℓ)/2 − 1

}
and

⟨𝑡−1⟩2ℓ =
{
𝑡−𝑖 (mod 𝑏ℓ) : 0 ≤ 𝑖 ≤ 𝜑(𝑏ℓ)/2 − 1

}
.

In particular, each of the matrices �̂�𝑏ℓ is circulant.

Remark 6.22 Similar to Theorem 6.18, the last column of �̂�𝑏𝑚 in Theorem 6.21 is
the column that contains only 𝜑𝛼 (0) as entries. Also, note again that the number of
matrices �̂�𝑏ℓ corresponds to the number of divisors of 𝑏𝑚, which is 𝑚 + 1.

Regarding the question of how to find generators of the groups𝐺𝜑1 (𝑏
𝑚) for general

prime 𝑏, we refer the interested reader to [27, Section 4.3]. Indeed, it is essential that
a generator 𝑔 of𝐺𝜑1 (𝑏

𝑚) is also a generator of𝐺𝜑1 (𝑏
ℓ) for all ℓ ∈ [𝑚]. Furthermore,

as discussed in [27], for each prime 𝑏 ∈ {3, 5, 7, . . . , 40487}, the smallest generator
𝑔 of𝐺𝜑1 (𝑏) is also a generator of𝐺𝜑1 (𝑏

ℓ) for any ℓ ∈ N. This is sufficient for practical
purposes.

Theorems 6.18 and 6.21, respectively, imply that we can reorder 𝛀𝑏𝑚 for prime
𝑏 in a way that the newly obtained matrix consists of circulant blocks, and itself has
a block-circulant structure. Moreover, the number of distinct blocks corresponds to
the number of divisors of 𝑏𝑚 and is ordered in terms of the size of the divisors. To be
more precise, this ordering even facilitates the extension of the reordered matrices

244 6 Extensible Lattice Point Sets

�̂�𝑏𝑚 to the “next step”, namely a matrix �̂�𝑏𝑚+1 , which is then just the analogously
reordered matrix corresponding to 𝛀𝑏𝑚+1 . This feature is particularly important for
embedded lattice rules, and the larger matrices can be obtained by means of the
smaller ones simply by noting that

�̂�𝑏𝑚+1 = (�̂�𝑏𝑚+1 |1𝑏 ⊗ �̂�𝑏𝑚).

Example 6.23 (Example 6.17 revisited) Let us return to our example of �̂�16. In
this case, �̂�32 is given by

�̂�32 =

(
�̂�32

�̂�16
�̂�16

)
,

where �̂�32 has a form as outlined in Theorem 6.18.

Theorems 6.18 and 6.21 imply that also for 𝑁 of the form 𝑁 = 𝑏𝑚 (with prime
𝑏) the matrix-vector product

�̂�𝑏𝑚𝜼

for a vector 𝜼 of length 𝑁 can be performed in O(𝑁 log 𝑁) operations. Indeed, also
the reordering of 𝛀𝑏𝑚 to �̂�𝑏𝑚 can be expressed in terms of permutation matrices.
Furthermore, multiplying �̂�𝑏𝑚 with 𝜼 can be done block-wise; this is done by starting
with the smallest block. The result of this computation is then replicated 𝑏 − 1 times
and added to the result corresponding to the next block (with one exception for the
case 𝑏 = 2, where we have two smallest blocks, which can be handled by making
the obvious adaptions). Then, the result of this addition is replicated 𝑏 − 1 times and
added to the result corresponding to the next block, etc. Since all blocks of �̂�𝑏𝑚 are
themselves circulant, and there are 𝑚 + 1 different block sizes, the cost of computing
the matrix-vector products for all blocks is

𝑚∑︁
ℓ=0

O
(
𝜑(𝑏𝑚−ℓ) log(𝜑(𝑏𝑚−ℓ))

)
= O(𝑁 log 𝑁).

Moreover, the cost for the summation of the results of the different blocks is of order
O(𝑁), and can be neglected, and the summation needs only additional memory of
order O(𝑚).

In total we therefore see that the matrix-vector multiplication that is needed for
efficiently implementing the CBC algorithm for prime power 𝑁 can be done in
O(𝑁 log 𝑁) operations, and, consequently, also for the case of prime power 𝑁 the
CBC algorithm can be implemented in a fast way.

Finally, we return to the computational cost of Algorithm 6.15 to find generating
vectors for embedded lattice rules. The answer to this question is surprisingly simple,
due to the embedded structure not only of the lattice rules to be constructed but also
of the matrices 𝛀𝑏𝑚 for 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚}. Since all of these matrices are
essentially embedded into each other, we can calculate and keep track of err𝑏𝑚 ,𝑑,𝛼,𝜸
for any 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚} “along the way” when calculating err𝑏𝑚 ,𝑑,𝛼,𝜸, and
this does not incur any extra cost.

6.4 A Sieve Principle for Constructing Embedded Lattice Rules 245

Hence, the total cost of Algorithm 6.15 is O(𝑑 𝑏𝑚 𝑚2), namely, as already dis-
cussed, O(𝑑 𝑏𝑚 𝑚2) operations for the precomputations and O(𝑑 𝑏𝑚 𝑚) operations
for actually running the algorithm.

So far, we have not presented theoretical error bounds for the embedded lattice
rules whose construction we have considered before. The reason is that it is actually
difficult to give good error bounds for these point sets in the sense that they would
hold for a whole range of 𝑚. There are some remarks on how to give an estimate
for the error in [27, 103], which are based on observations like in Proposition 6.2,
namely that an embedded lattice rule can be seen as the union of instances of a
lattice point set that has been shifted a (large) number of times. However, these
observations, though intuitively clear, do not yield a theoretical error bound, e.g., for
the rules constructed by Algorithm 6.15. We will present another way of constructing
embedded lattice rules, which also allows for error bounds, in the next section.

6.4 A Sieve Principle for Constructing Embedded Lattice Rules

As outlined in Remark 6.6, the idea behind the proof of the existence of good
extensible lattice rules in [105] is based on finding large subsets of generating vectors
such that the underlying lattice rules satisfy good error bounds for given parameters,
and then choosing a generating vector from the intersection of those subsets to
obtain a generating vector which satisfies all these error bounds simultaneously. In
the following we call this a sieve principle. In [58] this idea was turned into a fast
algorithm to find good embedded lattice rules.

In the following let 𝑏 ≥ 2 be a prime. The lattice rules under consideration will
again have 𝑁 = 𝑏𝑚 points for some positive exponent 𝑚. Additionally to the set
𝐺
𝜑

𝑑
(𝑁) that has been used before, we introduce the set

𝐺
𝜑

𝑑
(𝑏,∞) := {𝑔 ∈ N : gcd(𝑔, 𝑏) = 1}𝑑 . (6.20)

A few comments will be helpful for the following. We recall that |𝐺𝜑
𝑑
(𝑏𝑚) | =

(𝜑(𝑏𝑚))𝑑 , but 𝐺𝜑
𝑑
(𝑏,∞) has infinite cardinality. The difference between 𝐺𝜑1 (𝑏,∞)

andZ𝑏 in Section 6.1 is that the former set is a subset ofNwhereas the latter contains
elements of Z𝑏. Note, furthermore, that for each 𝒈 ∈ 𝐺𝜑

𝑑
(𝑏,∞) and 𝑚 ∈ N there

exists a 𝒈 ∈ 𝐺𝜑
𝑑
(𝑏𝑚) such that 𝒈 ≡ 𝒈 (mod 𝑏𝑚), where, as usual, the equivalence of

vectors is meant component-wise. It is important to note that

err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈) = err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈) if 𝒈 ≡ 𝒈 (mod 𝑏𝑚).

We now define a probability measure 𝜇𝑏,𝑑 on 𝐺𝜑
𝑑
(𝑏,∞) which will play a role

analogous to the probability measure 𝜇∞
𝑏

in Section 6.1. For 𝑚 ∈ N we denote the
uniform measure on 𝐺𝜑

𝑑
(𝑏𝑚) by 𝜇𝑏,𝑑,𝑚, i.e.,

𝜇𝑏,𝑑,𝑚 (𝐴) =
|𝐴|

(𝜑(𝑏𝑚))𝑑
for 𝐴 ⊆ 𝐺𝜑

𝑑
(𝑏𝑚).

246 6 Extensible Lattice Point Sets

Next, we aim at extending this measure to a measure on 𝐺𝜑
𝑑
(𝑏,∞). We say that

a set 𝐴 ⊆ 𝐺𝜑
𝑑
(𝑏,∞) is of finite type if there exists an integer 𝑚 = 𝑚(𝐴) ∈ N, and a

set 𝐴′ ⊆ 𝐺𝜑
𝑑
(𝑏𝑚) such that

𝐴 =
{
𝒈 ∈ 𝐺𝜑

𝑑
(𝑏,∞) : 𝒈 (mod 𝑏𝑚) ∈ 𝐴′} .

It should be noted that not every set 𝐴 ⊆ 𝐺𝜑
𝑑
(𝑏,∞) is of finite type. Indeed, suppose

that 𝐴0 contains a representative of each primitive residue class modulo 𝑏𝑚 except
zero for all 𝑚 ∈ N, but that 𝐴0 ≠ 𝐺

𝜑

𝑑
(𝑏,∞) (for instance, for 𝑑 = 1, 𝑏 = 2 consider

𝐴0 = {𝑘 ∈ N : 𝑘 odd } \ {5}). Then the corresponding 𝐴′
0 can only be constructed

such that {
𝒈 ∈ 𝐺𝜑

𝑑
(𝑏,∞) : 𝒈 (mod 𝑏𝑚) ∈ 𝐴′

0
}
= 𝐺

𝜑

𝑑
(𝑏,∞) ≠ 𝐴0,

hence 𝐴0 is not of finite type.
If, however, 𝐴 is of finite type, then we define the measure of 𝐴 as

𝜇𝑏,𝑑 (𝐴) := 𝜇𝑏,𝑑,𝑚(𝐴′) = |𝐴′ |
(𝜑(𝑏𝑚))𝑑

, where 𝑚 = 𝑚(𝐴).

Naturally, the number 𝑚 = 𝑚(𝐴) is not uniquely determined by 𝐴, since if 𝑚 works,
then also any number larger than 𝑚 works in the definition of a finite type subset. It
is easy to see, though, that the definition of the measure 𝜇𝑏,𝑑 does not depend on the
specific choice of 𝑚.

Sets of good generating vectors

We will now define sets of “good generating vectors”. As a benchmark for a fair
understanding of “good” we use our previous error bounds for lattice rules with a
fixed number of points from Chapters 2–4. For short, we write

𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (𝜏) :=
1
𝑏𝜏𝑚

©«
𝑑∏
𝑗=1

(
1 + 4𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))
− 1ª®¬

𝜏

for 𝜏 ∈ [1/2, 𝛼).

Now, for given 𝑁 = 𝑏𝑚 and a given constant 𝑐 ≥ 1, let

C𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐) :=
{
𝒈 ∈ 𝐺𝜑

𝑑
(𝑏,∞) : err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈) ≤ 𝑐1/2𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (1/2)

}
,

(6.21)
and, more generally,

C̃𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐)
:=

{
𝒈 ∈ 𝐺𝜑

𝑑
(𝑏,∞) : err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈) ≤ 𝑐𝜏𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (𝜏) ∀𝜏 ∈ [1/2, 𝛼)

}
.

6.4 A Sieve Principle for Constructing Embedded Lattice Rules 247

With respect to the definition in (6.21), note that, if we define

C′
𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐) :=

{
𝒈 ∈ 𝐺𝜑

𝑑
(𝑏𝑚) : err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈) ≤ 𝑐1/2𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (1/2)

}
,

then

C𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐) =
{
𝒈 ∈ 𝐺𝜑

𝑑
(𝑏,∞) : 𝒈 (mod 𝑏𝑚) ∈ C′

𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐)
}
,

and hence
𝜇𝑏,𝑑 (C𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐)) = 𝜇𝑏,𝑑,𝑚 (C′

𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐)). (6.22)

We can formulate the following result.

Lemma 6.24 Let 𝑏 be a prime number and let 𝑚 ∈ N. Then, for every 𝑐 ≥ 1, we
have

𝜇𝑏,𝑑 (C𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐)) > 1 − 1
𝑐

(6.23)

and
𝜇𝑏,𝑑 (C̃𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐)) > 1 − 1

𝑐
. (6.24)

Proof First we recall from Theorem 2.24 and its proof that, for prime 𝑁 ,

1
𝑁𝑑

∑︁
𝒈∈𝐺𝜑

𝑑
(𝑁)

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 ≤ 1
𝑁

©«
𝑑∏
𝑗=1

(
1 + 4𝛾 𝑗 𝜁 (2𝛼)

)
− 1ª®¬ .

This result can be extended to 𝑁 of the form 𝑁 = 𝑏𝑚, e.g., by methods outlined in
the proof of Theorem 4.3 or using [158], where it is shown that

1
(𝜑(𝑏𝑚))𝑑

∑︁
𝒈∈𝐺𝜑

𝑑
(𝑏𝑚)

[err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈)]2 ≤ 1
𝑁

©«
𝑑∏
𝑗=1

(
1 + 4𝛾 𝑗 𝜁 (2𝛼)

)
− 1ª®¬ . (6.25)

Next, we show (6.23). We know from (6.22) that

𝜇𝑏,𝑑 (C𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐))

= 𝜇𝑏,𝑑,𝑚

(
{𝒈 ∈ 𝐺𝜑

𝑑
(𝑏𝑚) : err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈) ≤ 𝑐1/2𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (1/2)}

)
.

However, by (6.25), 𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (1/2) is just an upper bound on the root mean square
value of err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈) for 𝒈 ∈ 𝐺𝜑

𝑑
(𝑏𝑚). Hence, an application of Markov’s inequal-

ity yields the result in (6.23).
Regarding (6.24), we first note that

lim
𝜏→𝛼

𝑐𝜏𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (𝜏) = ∞.

Thus, there exists 𝜏∗ ∈ [1/2, 𝛼) such that

248 6 Extensible Lattice Point Sets

𝑐𝜏
∗
𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (𝜏∗) ≤ 𝑐𝜏𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (𝜏) ∀𝜏 ∈ [1/2, 𝛼).

We fix such a 𝜏∗ and note that due to (6.23) we have

𝜇𝑏,𝑑 (C𝑏𝑚 ,𝑑,𝛼/(2𝜏∗) ,𝜸1/(2𝜏∗) (𝑐)) > 1 − 1
𝑐
. (6.26)

For 𝒈 ∈ C𝑏𝑚 ,𝑑,𝛼/(2𝜏∗) ,𝜸1/(2𝜏∗) (𝑐) we obviously have

err𝑏𝑚 ,𝑑,𝛼/(2𝜏∗) ,𝜸1/(2𝜏∗) (𝒈) ≤ 𝑐1/2𝐸𝑏𝑚 ,𝑑,𝛼/(2𝜏∗) ,𝜸1/(2𝜏∗) (1/2).

An application of Jensen’s inequality (cf. Lemma 2.25) then yields(
[err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈)]2

)1/(2𝜏∗)
≤ [err𝑏𝑚 ,𝑑,𝛼/(2𝜏∗) ,𝜸1/(2𝜏∗) (𝒈)]2

≤ 𝑐[𝐸𝑏𝑚 ,𝑑,𝛼/(2𝜏∗) ,𝜸1/(2𝜏∗) (1/2)]2.

Consequently,

err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈) ≤ 𝑐𝜏
∗ [𝐸𝑏𝑚 ,𝑑,𝛼/(2𝜏∗) ,𝜸1/(2𝜏∗) (1/2)]2𝜏∗ = 𝑐𝜏

∗
𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (𝜏∗),

and this yields 𝒈 ∈ C̃𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐). Consequently,

C𝑏𝑚 ,𝑑,𝛼/(2𝜏∗) ,𝜸1/(2𝜏∗) (𝑐) ⊆ C̃𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐),

which implies, due to (6.26),

𝜇𝑏,𝑑 (C̃𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐)) ≥ 𝜇𝑏,𝑑 (C𝑏𝑚 ,𝑑,𝛼/(2𝜏∗) ,𝜸1/(2𝜏∗) (𝑐)) > 1 − 1
𝑐
,

yielding (6.24). □

The existence of good embedded lattice rules

We now go on to consider embedded lattice rules, again with the goal to find lattice
rules of high quality, in the sense that we have good embedded lattice rules with 𝑏𝑚
points for𝑚 in a finite range {𝑚, 𝑚+1, . . . , 𝑚}. We first show the following existence
result, which is similar to Theorems 6.8–6.10, and Corollaries 6.12 and 6.13.

Theorem 6.25 Let 𝑏 be a prime number and let 𝑑, 𝑚, and𝑚 ∈ N be such that𝑚 ≤ 𝑚.
Choose positive 𝑐𝑚 for 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚} such that

∑𝑚
𝑚=𝑚 𝑐

−1
𝑚 ≤ 1. Then there

exists a 𝒈 ∈ 𝐺𝜑
𝑑
(𝑏,∞) such that

err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈) ≤
𝑐𝜏𝑚

𝑏𝜏𝑚
©«
𝑑∏
𝑗=1

(
1 + 4𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))
− 1ª®¬

𝜏

6.4 A Sieve Principle for Constructing Embedded Lattice Rules 249

for all 𝜏 ∈ [1/2, 𝛼) and all 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚}.
Proof The proof is done by showing that

𝜇𝑏,𝑑
©«
𝑚⋂
𝑚=𝑚

C̃𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐𝑚)
ª®¬ > 0.

Indeed, by denoting the complement of C̃𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐𝑚) by C̃𝑐
𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐𝑚), we obtain

𝜇𝑏,𝑑
©«
𝑚⋂
𝑚=𝑚

C̃𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐𝑚)ª®¬ = 1 − 𝜇𝑏,𝑑 ©«
𝑚⋃
𝑚=𝑚

C̃𝑐𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐𝑚)
ª®¬

≥ 1 −
𝑚∑︁
𝑚=𝑚

𝜇𝑏,𝑑

(
C̃𝑐𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐𝑚)

)
> 1 −

𝑚∑︁
𝑚=𝑚

1
𝑐𝑚

≥ 0,

as claimed. □

Remark 6.26 Note that in Theorem 6.25 we can replace the set {𝑚, 𝑚 + 1, . . . , 𝑚}
by some other subset of N, or indeed the entire set N. For the case of the entire set
of natural numbers, we can for instance choose 𝑐𝑚 = 𝑏𝑚𝛿/(1 − 𝑏−𝛿) for 𝑚 ∈ N and
for some 𝛿 > 0, in which case we obtain

∑∞
𝑚=1 𝑐

−1
𝑚 = 1. The error bound is then

err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈) ≤
1

𝑏𝜏𝑚(1−𝛿) (1 − 𝑏−𝛿)
©«
𝑑∏
𝑗=1

(
1 + 4𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))
− 1ª®¬

𝜏

for all 𝜏 ∈ [1/2, 𝛼) and all 𝑚 ∈ N.
By choosing for instance 𝑐𝑚 = 𝜅𝑏𝑚𝛿/(1 − 𝑏−𝛿) for some 𝜅 ∈ (0, 1) we obtain

that 1 − ∑∞
𝑚=1 𝑐

−1
𝑚 = 1 − 𝜅 > 0. In this way we can also increase the measure of the

set of extensible lattice rules satisfying certain error bounds.

A general search principle

Since we know by Theorem 6.25 that a good 𝒈 for all 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚} must
exist, we now go on to describe how such a 𝒈 can be found. The general search
principle, which will then be slightly modified and optimized, is a sieve algorithm
that works by starting from 𝑚 = 𝑚 and proceeding, step by step, to 𝑚 = 𝑚.

In the first step, for 𝑚 = 𝑚, we define

𝑇𝑚 :=
{
𝒈 ∈ 𝐺𝜑

𝑑
(𝑏𝑚) : err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈) ≤ 𝑐𝜏𝑚𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (𝜏) ∀𝜏 ∈ [1/2, 𝛼)

}
.

250 6 Extensible Lattice Point Sets

By Lemma 6.24 we know that

|𝑇𝑚 | ≥
⌊(

1 − 1
𝑐𝑚

)
(𝜑(𝑏𝑚))𝑑

⌋
+ 1.

In the next step, we consider 𝑚 = 𝑚 + 1, and define

𝑆𝑚+1 :=
{
𝒈 ∈ 𝐺𝜑

𝑑
(𝑏𝑚+1) : ∃ 𝒈 ∈ 𝑇𝑚 such that 𝒈 ≡ 𝒈 (mod 𝑏𝑚)

}
.

Furthermore, we set

𝑇𝑚+1 :=
{
𝒈 ∈ 𝑆𝑚+1 : err𝑏𝑚+1 ,𝑑,𝛼,𝜸 (𝒈) ≤ 𝑐𝜏𝑚+1𝐸𝑏𝑚+1 ,𝑑,𝛼,𝜸 (𝜏) ∀𝜏 ∈ [1/2, 𝛼)

}
.

We will now show that

|𝑇𝑚+1 | ≥
⌊(

1 − 1
𝑐𝑚

− 1
𝑐𝑚+1

)
(𝜑(𝑏𝑚+1))𝑑

⌋
+ 1.

Indeed, note first that |𝑆𝑚+1 | = |𝑇𝑚 |𝑏𝑑 , and define

𝑇𝑚+1

:=
{
𝒈 ∈ 𝐺𝜑

𝑑
(𝑏𝑚+1) : err𝑏𝑚+1 ,𝑑,𝛼,𝜸 (𝒈) ≤ 𝑐𝜏𝑚+1𝐸𝑏𝑚+1 ,𝑑,𝛼,𝜸 (𝜏) ∀𝜏 ∈ [1/2, 𝛼)

}
.

Then, again by Lemma 6.24,

|𝑇𝑚+1 | >
(
1 − 1

𝑐𝑚+1

)
(𝜑(𝑏𝑚+1))𝑑 .

As 𝑇𝑚+1 = 𝑆𝑚+1 ∩ 𝑇𝑚+1, we have, by again denoting the complement of a set 𝐴 by
𝐴𝑐,

|𝑇𝑚+1 | = |𝑆𝑚+1 ∩ 𝑇𝑚+1 |
= (𝜑(𝑏𝑚+1))𝑑 − |(𝑆𝑚+1 ∩ 𝑇𝑚+1)𝑐 |
= (𝜑(𝑏𝑚+1))𝑑 − |𝑆𝑐𝑚+1 ∪ 𝑇

𝑐
𝑚+1 |

≥ (𝜑(𝑏𝑚+1))𝑑 − |𝑆𝑐𝑚+1 | − |𝑇𝑐𝑚+1 |

= (𝜑(𝑏𝑚+1))𝑑 −
(
(𝜑(𝑏𝑚+1))𝑑 − |𝑆𝑚+1 |

)
−

(
(𝜑(𝑏𝑚+1))𝑑 − |𝑇𝑚+1 |

)
= |𝑆𝑚+1 | + |𝑇𝑚+1 | − (𝜑(𝑏𝑚+1))𝑑

>

(
1 − 1

𝑐𝑚

)
(𝜑(𝑏𝑚))𝑑𝑏𝑑 +

(
1 − 1

𝑐𝑚+1

)
(𝜑(𝑏𝑚+1))𝑑 − (𝜑(𝑏𝑚+1))𝑑

=

(
1 − 1

𝑐𝑚
− 1
𝑐𝑚+1

)
(𝜑(𝑏𝑚+1))𝑑 ,

6.5 The CBC Sieve Algorithm 251

where we used that

𝜑(𝑏𝑚) 𝑏 = 𝑏 𝑏𝑚
(
1 − 1

𝑏

)
= 𝑏𝑚+1

(
1 − 1

𝑏

)
= 𝜑(𝑏𝑚+1).

This implies that indeed

|𝑇𝑚+1 | ≥
⌊(

1 − 1
𝑐𝑚

− 1
𝑐𝑚+1

)
(𝜑(𝑏𝑚+1))𝑑

⌋
+ 1.

We can continue this procedure, and construct then, step by step, 𝑆𝑚+2, 𝑇𝑚+2, . . .
until we arrive at 𝑆𝑚 and 𝑇𝑚. Eventually, also 𝑇𝑚 contains at least one element.
Hence, any vector in this set has the desired property stated in Theorem 6.25.

In analogy to what we stated above, we again remark that, theoretically speaking,
the value of 𝑚 in this procedure is not restricted to being finite. In principle, as long
as

∑𝑚
𝑚=𝑚 𝑐

−1
𝑚 ≤ 1, we can also allow 𝑚 = ∞. Furthermore, it is not necessary to

consider only successive values of𝑚 ∈ {𝑚, 𝑚+1, . . . , 𝑚}, but we could allow “gaps”
in the set of indices 𝑚 considered. Even though the procedure just outlined yields
generating vectors of embedded (or, if we choose 𝑚 = ∞, even infinitely extensible)
lattice point sets, the algorithm of how to find such a good generating vector 𝒈 will
in general be rather slow. We shall address this issue in the next section.

6.5 The CBC Sieve Algorithm

In order to make the construction outlined in the previous section practically feasible,
it was shown in [58] how to find a good generating vector of lattice point sets with
𝑏𝑚 points, with𝑚 ∈ {𝑚, 𝑚 +1, . . . , 𝑚} by using a combination of the sieve principle
and a component-by-component algorithm. However, for the CBC sieve algorithm,
it will no longer be possible to choose 𝑚 = ∞ and thereby make the constructed
lattice rules infinitely extensible with respect to their numbers of points. In that sense,
the generating vectors found in the present section are “only” generating vectors of
embedded lattice rules for fixed numbers of 𝑏𝑚 points, with 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚},
where 𝑚 and 𝑚 with 𝑚 ≤ 𝑚 are both finite and fixed beforehand. The idea of the
CBC sieve algorithm is based on similar principles as the ordinary CBC algorithm.

We start by considering a quantity that has already been studied in Section 3.3
(though, there, for prime 𝑁). Suppose that we are given 𝑁 = 𝑏𝑚, with 𝑚 ∈ N
and prime 𝑏, 𝛼 > 1/2, product weights 𝜸 = (𝛾 𝑗) 𝑗≥1, and an index 𝑠 ∈ [𝑑 − 1].
Furthermore, assume that we are given an 𝑠-dimensional vector 𝒈 (𝑠) ∈ 𝐺𝜑𝑠 (𝑏𝑚) and
a 𝑔𝑠+1 ∈ 𝐺𝜑1 (𝑏

𝑚). Then we define

𝜃𝑏𝑚 ,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1) := [err𝑏𝑚 ,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1))]2 − [err𝑏𝑚 ,𝑠,𝛼,𝜸 (𝒈 (𝑠))]2.

252 6 Extensible Lattice Point Sets

As a special instance of (3.15) in Chapter 3 we have, for fixed 𝒈 (𝑠) ∈ 𝐺𝜑𝑠 (𝑏𝑚),
that

1
𝜑(𝑏𝑚)

∑︁
𝑔𝑠+1∈𝐺𝜑

1 (𝑏𝑚)
𝜃𝑏𝑚 ,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1) ≤

4
𝑏𝑚

𝛾𝑠+1𝜁 (2𝛼)
𝑠∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼)).

(6.27)
To simplify notation, we write

𝜃
avg−bound
𝑏𝑚 ,𝑠,𝛼,𝜸 :=

4
𝑏𝑚

𝛾𝑠+1𝜁 (2𝛼)
𝑠∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼))

in the following, and we define a set analogous to C𝑏𝑚 ,𝑑,𝛼,𝜸 (𝑐). For 𝑐 ≥ 1 and given
𝒈 (𝑠) ∈ 𝐺𝜑𝑠 (𝑏,∞), let

B𝑏𝑚 ,𝑠,𝛼,𝜸 (𝑐, 𝒈 (𝑠)) :=
{
𝑔𝑠+1 ∈ 𝐺𝜑1 (𝑏,∞) : 𝜃𝑏𝑚 ,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1) ≤ 𝑐 𝜃avg−bound

𝑏𝑚 ,𝑠,𝛼,𝜸

}
,

and, more specifically,

B̃𝑏𝑚 ,𝑠,𝛼,𝜸 (𝑐, 𝒈 (𝑠))

:=
{
𝑔𝑠+1 ∈ 𝐺𝜑1 (𝑏,∞) : 𝜃𝑏𝑚 ,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1) ≤ 𝑐2𝜏

(
𝜃

avg−bound
𝑏𝑚 ,𝑠,𝛼/(2𝜏) ,𝜸1/(2𝜏)

)2𝜏

∀𝜏 ∈ [1/2, 𝛼)
}
.

The following lemma is similar to Lemma 6.24.

Lemma 6.27 Let 𝑏 be a prime number and let 𝑠, 𝑚 ∈ N. Then, for every 𝑐 ≥ 1 and
every 𝒈 (𝑠) ∈ 𝐺𝜑𝑠 (𝑏,∞), we have

𝜇𝑏,1

(
B𝑏𝑚 ,𝑠,𝛼,𝜸 (𝑐, 𝒈 (𝑠))

)
> 1 − 1

𝑐
,

and
𝜇𝑏,1

(
B̃𝑏𝑚 ,𝑠,𝛼,𝜸 (𝑐, 𝒈 (𝑠))

)
> 1 − 1

𝑐
.

Proof The proof of the theorem is analogous to that of Lemma 6.24. We remark that
Markov’s inequality can be applied since the value of 𝜃𝑏𝑚 ,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1) is always
nonnegative (see (3.14)). For a full proof, see [58]. □

The following theorem can be shown using Lemma 6.27.

Theorem 6.28 Let 𝑏 be a prime number and let 𝑠, 𝑚, and𝑚 ∈ N be such that𝑚 ≤ 𝑚.
Choose positive 𝑐𝑚 for 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚} such that

∑𝑚
𝑚=𝑚 𝑐

−1
𝑚 ≤ 1. Then, for

any 𝒈 (𝑠) ∈ 𝐺𝜑𝑠 (𝑏,∞), there exists 𝑔𝑠+1 ∈ 𝐺𝜑1 (𝑏,∞) such that

𝜃𝑏𝑚 ,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1) ≤ 𝑐2𝜏
(
𝜃

avg−bound
𝑏𝑚 ,𝑠,𝛼/(2𝜏) ,𝜸1/(2𝜏)

)2𝜏

6.5 The CBC Sieve Algorithm 253

for all 𝜏 ∈ [1/2, 𝛼) and all 𝑚 ∈ {𝑚, . . . , 𝑚}.

Proof The proof of the theorem works in the same way as that of Theorem 6.25. For
a full proof, we refer to [58]. □

We need one more technical estimate before coming to one of the main results in
this section.

Proposition 6.29 Let 𝑏 be a prime, let 𝑠, 𝑚 ∈ N, and let 𝑐𝑚 ≥ 1. Let 𝒈 (𝑠) ∈ 𝐺𝜑𝑠 (𝑏,∞)
be such that

err𝑏𝑚 ,𝑠,𝛼,𝜸 (𝒈 (𝑠)) ≤ 𝑐𝜏𝑚𝐸𝑏𝑚 ,𝑠,𝛼,𝜸 (𝜏) for all 𝜏 ∈ [1/2, 𝛼),

and let 𝑔𝑠+1 ∈ 𝐺𝜑1 (𝑏,∞) be such that

𝜃𝑏𝑚 ,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1) ≤ 𝑐2𝜏
(
𝜃

avg−bound
𝑏𝑚 ,𝑠,𝛼/(2𝜏) ,𝜸1/(2𝜏)

)2𝜏
for all 𝜏 ∈ [1/2, 𝛼).

Then it is true that

err𝑏𝑚 ,𝑠+1,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1) ≤ 𝑐𝜏𝑚𝐸𝑏𝑚 ,𝑠+1,𝛼,𝜸 (𝜏) for all 𝜏 ∈ [1/2, 𝛼).

Proof The proof is done by standard methods, analogously to what we showed in
Chapter 3. For a full proof, see again [58]. □

Having collected all necessary estimates, we are now ready to formulate the CBC
sieve algorithm, which constructs, in a component-wise fashion, a good generating
vector of an embedded lattice rule which has a low worst-case error for all instances
of 𝑁 = 𝑏𝑚 with 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚}.

Algorithm 6.30 (CBC sieve construction) Let 𝑏 be a prime number and let 𝑑, 𝑚, and
𝑚 ∈ N be such that 𝑚 ≤ 𝑚. For 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚} let 𝑐𝑚 be positive reals such
that

∑𝑚
𝑚=𝑚 𝑐

−1
𝑚 ≤ 1. Construct a generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺𝜑𝑑 (𝑏,∞) as

follows.

(1) Set 𝑔1 = 1.
(2) For 𝑠 from 1 to 𝑑 − 1:

Assume that 𝒈 (𝑠) := (𝑔1, . . . , 𝑔𝑠) ∈ 𝐺𝜑𝑠 (𝑏,∞) has already been found. Consider
this vector as fixed and choose 𝑔𝑠+1 ∈ 𝐺𝜑1 (𝑏,∞) as follows.

(2a) Find ⌊(1 − 𝑐𝑚)𝜑(𝑏𝑚)⌋ + 1 elements 𝑔𝑠+1 ∈ 𝐺𝜑
𝑑
(𝑏𝑚) to populate the set

𝑇𝑚,𝑠+1 ⊆
{
𝑔 ∈ 𝐺𝜑1 (𝑏

𝑚) :

err𝑏𝑚 ,𝑠+1,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) ≤ 𝑐𝜏𝑚𝐸𝑏𝑚 ,𝑠+1,𝛼,𝜸 (𝜏) ∀𝜏 ∈ [1/2, 𝛼)
}
.

(2b) For 𝑚 from 𝑚 + 1 to 𝑚:
Define

𝑆𝑚,𝑠+1 :=
{
𝑔 ∈ 𝐺𝜑1 (𝑏

𝑚) : ∃ 𝑔 ∈ 𝑇𝑚−1,𝑠+1 such that 𝑔 ≡ 𝑔 (mod 𝑏𝑚−1)
}
.

254 6 Extensible Lattice Point Sets

Find ⌊(1 − ∑𝑚
𝑖=𝑚 𝑐

−1
𝑖
)𝜑(𝑏𝑚)⌋ + 1 elements to populate the set

𝑇𝑚,𝑠+1 ⊆
{
𝑔 ∈ 𝑆𝑚,𝑠+1 :

err𝑏𝑚 ,𝑠+1,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) ≤ 𝑐𝜏𝑚𝐸𝑏𝑚 ,𝑠+1,𝛼,𝜸 (𝜏) ∀𝜏 ∈ [1/2, 𝛼)
}
.

End for.
(2c) Choose 𝑔𝑠+1 ∈ 𝑇𝑚,𝑠+1.

End for.
(3) Set 𝒈 = (𝑔1, . . . , 𝑔𝑑).

The following theorem summarizes the properties of the generating vectors 𝒈
constructed by Algorithm 6.30.

Theorem 6.31 Let 𝑏 be a prime number and let 𝑑, 𝑚, and 𝑚 ∈ N be such that
𝑚 ≤ 𝑚. For 𝑚 ∈ {𝑚, 𝑚 +1, . . . , 𝑚} let 𝑐𝑚 be positive reals such that

∑𝑚
𝑚=𝑚 𝑐

−1
𝑚 ≤ 1.

Assume that 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺
𝜑

𝑑
(𝑏,∞) has been constructed according to

Algorithm 6.30. Then it holds that

err𝑏𝑚 ,𝑠,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠)) ≤
𝑐𝜏𝑚

𝑏𝜏𝑚
©«
𝑠∏
𝑗=1

(
1 + 4𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))
− 1ª®¬

𝜏

for all 𝑠 ∈ [𝑑], for all 𝜏 ∈ [1/2, 𝛼), and for all 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚}.

Proof Theorem 6.28 and Proposition 6.29 imply that the sets to be populated in
Algorithm 6.30 are nonempty and have the proper cardinalities, respectively. This
immediately yields the result. □

While Algorithm 6.30 is a theoretical algorithm yielding a generating vector that
is, by Theorem 6.31, guaranteed to satisfy an excellent error estimate, it cannot be
expected to be particularly fast if implemented on a computer. Obviously, one would
hope to find a CBC sieve construction that has a runtime comparable to that of the
fast CBC algorithm in Section 3.4 or that of Algorithm 6.15 outlined above. Indeed,
this is possible, but—to this end—one has to modify the search criterion.

6.6 The Fast CBC Sieve Algorithm

In order to make the CBC sieve algorithm accessible to a fast implementation in
the sense of the fast CBC construction (see Section 3.4), it needs to be slightly
modified, namely one has to compute the error for all elements of 𝐺𝜑

𝑑
(𝑏𝑚) for

𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚} and not only those which satisfy a certain criterion. This can
be achieved by modifying the search and simultaneously keeping track of the “good”
elements of 𝐺𝜑

𝑑
(𝑏𝑚) by storing and finally selecting one of them. We formulate the

algorithm as follows.

6.6 The Fast CBC Sieve Algorithm 255

Algorithm 6.32 (CBC sieve construction, fast version) Let 𝑏 be a prime number
and let 𝑑, 𝑚, and 𝑚 ∈ N be such that 𝑚 ≤ 𝑚. For 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚} let
𝑐𝑚 be positive reals such that

∑𝑚
𝑚=𝑚 𝑐

−1
𝑚 ≤ 1. Construct a generating vector 𝒈 =

(𝑔1, . . . , 𝑔𝑑) ∈ 𝐺𝜑𝑑 (𝑏,∞) as follows.

(1) Set 𝑔1 = 1.
(2) For 𝑠 from 1 to 𝑑 − 1:

Assume that 𝒈 (𝑠) := (𝑔1, . . . , 𝑔𝑠) ∈ 𝐺𝜑𝑠 (𝑏,∞) has already been found. Consider
this vector as fixed and choose 𝑔𝑠+1 ∈ 𝐺𝜑1 (𝑏,∞) as follows.

(2a) For 𝑚 from 𝑚 to 𝑚:
Compute 𝜏∗ ∈ [1/2, 𝛼) such that

𝜏∗ = argmin
𝜏∈[1/2,𝛼)

𝑐𝜏𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (𝜏).

The existence of such a 𝜏∗ follows as outlined in the proof of Lemma 6.24.
(2b) Compute, for each 𝑔 ∈ 𝐺𝜑1 (𝑏

𝑚),

err𝑏𝑚 ,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔))
𝑐𝜏𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (𝜏)

.

End for.

(3) Define

𝑇𝑠+1 :=

{
𝑔 ∈ 𝐺𝜑1 (𝑏

𝑚) : max
𝑚≤𝑚≤𝑚

err𝑏𝑚 ,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔))
𝑐𝜏𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (𝜏)

≤ 1

}
.

Select 𝑔𝑠+1 as

𝑔𝑠+1 = argmin
𝑔∈𝑇𝑠+1

𝑚∑︁
𝑚=𝑚

[err𝑏𝑚 ,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔))]2

𝑐2𝜏 [𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (𝜏)]2 . (6.28)

End for.
(4) Set 𝒈 = (𝑔1, . . . , 𝑔𝑑).

The following theorem is the analogue of Theorem 6.31 and states that the
generating vectors constructed by Algorithm 6.32 indeed have a low worst-case
error for all instances of 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚}.

Theorem 6.33 Let 𝑏 be a prime number and let 𝑑, 𝑚, and 𝑚 ∈ N be such that
𝑚 ≤ 𝑚. For 𝑚 ∈ {𝑚, 𝑚 +1, . . . , 𝑚} let 𝑐𝑚 be positive reals such that

∑𝑚
𝑚=𝑚 𝑐

−1
𝑚 ≤ 1.

Assume that 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺
𝜑

𝑑
(𝑏,∞) has been constructed according to

Algorithm 6.32. Then it holds that

256 6 Extensible Lattice Point Sets

err𝑏𝑚 ,𝑠,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠)) ≤
𝑐𝜏𝑚

𝑏𝜏𝑚
©«
𝑠∏
𝑗=1

(
1 + 4𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))
− 1ª®¬

𝜏

for all 𝑠 ∈ [𝑑], for all 𝜏 ∈ [1/2, 𝛼), and for all 𝑚 ∈ {𝑚, 𝑚 + 1, . . . , 𝑚}.

Proof Theorem 6.28 and Proposition 6.29 imply that the sets to be populated in
Algorithm 6.30 are nonempty and have the proper cardinalities, respectively. This
immediately yields the result. □

Remark 6.34 It should be noted that selecting 𝑔𝑠+1 as in (6.28) in Step (3) of
Algorithm 6.32 is not absolutely necessary. Indeed, Theorem 6.33 would also hold
if we would choose any 𝑔 ∈ 𝑇𝑠+1 as 𝑔𝑠+1. However, from the computational point of
view, choosing 𝑔𝑠+1 as in (6.28) does not cause significant additional cost, and yields
better results.

The construction cost of Algorithm 6.32

The core of the algorithm is computing, in Step (2b), the quantity

err𝑏𝑚 ,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔))
𝑐𝜏𝐸𝑏𝑚 ,𝑑,𝛼,𝜸 (𝜏)

,

but this can be done for each 𝑚 using O(𝑏𝑚 log 𝑏𝑚) operations, employing the fast
construction method outlined in Chapter 3. Hence, in total we need O(𝑏𝑚 (𝑚 −
𝑚) log 𝑏𝑚) operations. Computing the maximum and the minimum in Step (3) does
not cause computational cost of higher order than O(𝑏𝑚 (𝑚 − 𝑚) log 𝑏𝑚). Finding
the optimal 𝜏∗ in Step (2a) can be done using standard software packages, and
therefore can be neglected. In total, we see that Algorithm 6.32 can be run using
O(𝑏𝑚 (𝑚 − 𝑚) log 𝑏𝑚) = O(𝑚2𝑏𝑚) operations.

6.7 A Digit-By-Digit Construction

Another, maybe even more natural idea for constructing extensible lattice rules is
based on a digit-wise approach. In a nutshell, this construction works as follows.
Each component of a generating vector 𝒈 is considered in its 𝑏-adic expansion, where
𝑏 is a prime. If we have already constructed the first 𝑚 digits of each component
such that the generating vector yields good results for 𝑁 = 𝑏, 𝑏2, . . . , 𝑏𝑚, we search,
in each component, for the (𝑚 + 1)-st digit such that the generating vector yields
good results also for 𝑁 = 𝑏𝑚+1. In this way we find, digit-by-digit, a good generating
vector for all 𝑁 = 𝑏, 𝑏2, 𝑏3, In contrast to other algorithms, we do not have to
stop at some fixed 𝑏𝑚.

6.7 A Digit-By-Digit Construction 257

As the relevant quality measure we again choose the worst-case integration error
in the weighted Korobov space with smoothness 𝛼 and product weights. We present
an algorithm which constructs, digit-by-digit, a generating vector which is good with
respect to the worst-case error err𝑁,𝑑,𝛼,𝜸 for all 𝑁 = 𝑏, 𝑏2, 𝑏3,

Algorithm 6.35 (Digit-by-digit construction of extensible lattice point sets) Let
𝑏 be a prime number and let 𝐺𝑑 (𝑏) := {0, 1, . . . , 𝑏 − 1}𝑑 .

(1) Find 𝒈1 by minimizing [err𝑏,𝑑,𝛼,𝜸 (𝒈)]2 over all 𝒈 ∈ 𝐺𝑑 (𝑏), i.e.,

𝒈1 := argmin
𝒈∈𝐺𝑑 (𝑏)

[err𝑏,𝑑,𝛼,𝜸 (𝒈)]2.

For 𝑏 = 2 one may simply choose 𝒈1 = 1 ∈ Z𝑑 .
(2) For 𝑚 = 2, 3, . . .:

Find 𝒈𝑚 by minimizing [err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈𝑚−1 + 𝑏𝑚−1𝒈)]2 over all 𝒈 ∈ 𝐺𝑑 (𝑏), i.e.,

𝒈𝑚 := argmin
𝒈∈𝐺𝑑 (𝑏)

[err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈𝑚−1 + 𝑏𝑚−1𝒈)]2.

Error analysis

The lattice points 𝒈𝑚 constructed in Algorithm 6.35 satisfy the following error
bound.

Theorem 6.36 Let 𝑏 be a prime number and let 𝑚, 𝑑 ∈ N. Furthermore, let 𝛼 > 1/2
and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights. Assume that 𝒈𝑚 ∈ Z𝑑 has been constructed
according to Algorithm 6.35. Then we have

err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈𝑚) ≤
1

𝑏𝑚/2
©«2 ©«

𝑑∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼)) − 1ª®¬ min
(
𝑚,

𝑏2𝛼−1

𝑏2𝛼−1 − 1

)ª®¬
1/2

.

In the case where 𝑏 = 2 and 𝛾 𝑗 ∈ (0, 1] for all 𝑗 ∈ N the factor
√

2 in the upper
bound can be omitted.

Remark 6.37 The upper bound in Theorem 6.36 essentially matches the upper bound
in Theorem 6.25 obtained for the sieve algorithm, but only for 𝜏 = 1/2. This is a
theoretical disadvantage. With the proof method for the digit-by-digit construction
we cannot theoretically guarantee better convergence rates such asO(𝑁−𝛼), although
these can be observed in numerical experiments.

Remark 6.38 The search for 𝒈1 in the first step of Algorithm 6.35 takes—at least
for integer 𝛼—as many as O(𝑑 𝑏𝑑+1) operations, which can be reduced to O(𝑑2𝑏2)
operations by using a CBC construction. In this case one gets a slightly weaker
error bound in Theorem 6.36 (the term “−1” after the product must be dropped).

258 6 Extensible Lattice Point Sets

Alternatively, one can choose 𝒈1 = 1 in all cases, but then the upper bound in
Theorem 6.36 has to be replaced by

err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈𝑚) ≤
1

𝑏𝑚/2
©«𝑏 ©«

𝑑∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼)) − 1ª®¬ min
(
𝑚,

𝑏2𝛼−1

𝑏2𝛼−1 − 1

)ª®¬
1/2

,

except for the case 𝑏 = 2 and 𝛾 𝑗 ∈ (0, 1] for all 𝑗 ∈ N, where the bound in
Theorem 6.36 still holds and the factor

√
2 can again be omitted. This follows

immediately from the subsequent proof of Theorem 6.36.

Proof of Theorem 6.36 We first show the result for 𝑚 = 1. Employing again the
idea that the minimum is at least as good as the average (see the standard averaging
argument in Remark 2.14), we have

[err𝑏,𝑑,𝛼,𝜸 (𝒈1)]2 ≤ 1
𝑏𝑑

∑︁
𝒈∈𝐺𝑑 (𝑏)

[err𝑏,𝑑,𝛼,𝜸 (𝒈)]2

=
1
𝑏𝑑

∑︁
𝒉∈Z𝑑\{0}

1
𝑟2𝛼,𝜸 (𝒉)

∑︁
𝒈∈𝐺𝑑 (𝑏)

𝒉 ·𝒈≡0 (mod 𝑏)

1,

where in the second step we used the worst-case error formula in Corollary 2.21 and
changed the order of summation. Recall that 𝑏 is a prime number, so∑︁

𝒈∈𝐺𝑑 (𝑏)
𝒉 ·𝒈≡0 (mod 𝑏)

1 = |{𝒈 ∈ 𝐺𝑑 (𝑏) : 𝒉 · 𝒈 ≡ 0 (mod 𝑏)}| =
{
𝑏𝑑 if 𝒉 ≡ 0 (mod 𝑏),
𝑏𝑑−1 if 𝒉 . 0 (mod 𝑏).

Hence we obtain

[err𝑏,𝑑,𝛼,𝜸 (𝒈1)]2 ≤
∑︁

𝒉∈Z𝑑\{0}
𝒉≡0 (mod 𝑏)

1
𝑟2𝛼,𝜸 (𝒉)

+ 1
𝑏

∑︁
𝒉∈Z𝑑\{0}

𝒉.0 (mod 𝑏)

1
𝑟2𝛼,𝜸 (𝒉)

=

(
1 − 1

𝑏

) ∑︁
𝒉∈Z𝑑\{0}

1
𝑟2𝛼,𝜸 (𝑏𝒉)

+ 1
𝑏

∑︁
𝒉∈Z𝑑\{0}

1
𝑟2𝛼,𝜸 (𝒉)

≤ 2
𝑏

∑︁
𝒉∈Z𝑑\{0}

1
𝑟2𝛼,𝜸 (𝒉)

=
2
𝑏

©«
𝑑∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼)) − 1ª®¬ .
For 𝑏 = 2 and 𝛾 𝑗 ∈ (0, 1] for all 𝑗 ∈ N, and with the choice 𝒈1 = 1, we can bound

[err2,𝑑,𝛼,𝜸 (1)]2 directly. In this case we obtain with Corollary 2.21,

6.7 A Digit-By-Digit Construction 259

[err2,𝑑,𝛼,𝜸 (1)]2

= −1 +
∞∑︁

ℎ1 ,...,ℎ𝑑−1=−∞

𝑑−1∏
𝑗=1

1
𝑟2𝛼,𝛾 𝑗 (ℎ 𝑗)

∞∑︁
ℎ=−∞

ℎ≡ℎ1+···+ℎ𝑑−1 (mod 2)

1
𝑟2𝛼,𝛾𝑑 (ℎ)

.

We denote the innermost sum in the previous expression by Σ1. If ℎ1 + · · · + ℎ𝑑−1 ≡
0 (mod 2), then we have

Σ1 =

∞∑︁
ℎ=−∞

1
𝑟2𝛼,𝛾𝑑 (2ℎ)

= 1 + 2
22𝛼 𝛾𝑑𝜁 (2𝛼).

If ℎ1 + · · · + ℎ𝑠−1 ≡ 1 (mod 2), we get

Σ1 =

∞∑︁
ℎ=−∞

1
𝑟2𝛼,𝛾𝑑 (2ℎ + 1)

= 2
∞∑︁
ℎ=0

1
𝑟2𝛼,𝛾𝑑 (2ℎ + 1)

= 2𝛾𝑑

(∞∑︁
ℎ=1

1
ℎ2𝛼 −

∞∑︁
ℎ=1

1
(2ℎ)2𝛼

)
= 2𝛾𝑑𝜁 (2𝛼) −

2
22𝛼 𝛾𝑑𝜁 (2𝛼).

Altogether we obtain

Σ1 =
1
2
+ 𝛾𝑑𝜁 (2𝛼) + (−1)ℎ1+···+ℎ𝑑−1

(
1
2
− 𝛾𝑑𝜁 (2𝛼) +

2
22𝛼 𝛾𝑑𝜁 (2𝛼)

)
.

Therefore we get

[err2,𝑑,𝛼,𝜸 (1)]2 = −1 +
(
1
2
+ 𝛾𝑑𝜁 (2𝛼)

) 𝑑−1∏
𝑗=1

(∞∑︁
ℎ=−∞

1
𝑟2𝛼,𝛾 𝑗 (ℎ)

)
+

(
1
2
− 𝛾𝑑𝜁 (2𝛼) +

2
22𝛼 𝛾𝑑𝜁 (2𝛼)

) 𝑑−1∏
𝑗=1

(∞∑︁
ℎ=−∞

(−1)ℎ
𝑟2𝛼,𝛾 𝑗 (ℎ)

)
= −1 + 1

2

𝑑∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼))

+1
2

(
1 + 4

22𝛼 𝛾𝑑𝜁 (2𝛼) − 2𝛾𝑑𝜁 (2𝛼)
) 𝑑−1∏
𝑗=1

(∞∑︁
ℎ=−∞

(−1)ℎ
𝑟2𝛼,𝛾 𝑗 (ℎ)

)
.

260 6 Extensible Lattice Point Sets

Since
∞∑︁

ℎ=−∞

(−1)ℎ
𝑟2𝛼,𝛾 𝑗 (ℎ)

= 1 + 4
22𝛼 𝛾 𝑗 𝜁 (2𝛼) − 2𝛾 𝑗 𝜁 (2𝛼),

we obtain

[err2,𝑑,𝛼,𝜸 (1)]2 = −1 + 1
2

𝑑∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼)) +
1
2

𝑑∏
𝑗=1

(
1 −

(
2 − 4

22𝛼

)
𝛾 𝑗 𝜁 (2𝛼)

)
.

(6.29)
Next we claim that for any 𝛼 > 1/2 the assertion

1 <
(
2 − 4

22𝛼

)
𝜁 (2𝛼) < 2 (6.30)

holds, which is equivalent to

1
2
· 1

1 − 2/22𝛼 < 𝜁 (2𝛼) <
1

1 − 2/22𝛼 ,

which in turn is equivalent to

1
2

∞∑︁
𝑖=0

(
2

22𝛼

) 𝑖
<

∞∑︁
𝑖=1

1
𝑖2𝛼

<

∞∑︁
𝑖=0

(
2

22𝛼

) 𝑖
.

The latter chain of inequalities is shown by comparing the three series above by
suitably grouping the summands. For instance, to show the upper bound on 𝜁 (2𝛼),
we compare the first term of the series for 𝜁 (2𝛼) with the first term of the last series,
the sum of the second and third terms of the series for 𝜁 (2𝛼) with the second term
of the last series, the sum of the fourth, fifth, sixth, and seventh terms of the series
for 𝜁 (2𝛼) with the third term of the last series, and so on. In this way we find that
(6.30) is indeed correct.

As 𝛾 𝑗 ∈ (0, 1] for all 𝑗 ∈ N, (6.29) and (6.30) yield

[err2,𝑑,𝛼,𝜸 (1)]2 =
1
2

𝑑∏
𝑗=1

(1+2𝛾 𝑗 𝜁 (2𝛼)) −1+ 1
2

𝑑∏
𝑗=1

𝜃 𝑗 (𝛼) with −1 < 𝜃 𝑗 (𝛼) < 1,

from which we obtain

[err2,𝑑,𝛼,𝜸 (1)]2 ≤ 1
2

©«
𝑑∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼)) − 1ª®¬ .
Hence the result follows for 𝑚 = 1 and any prime number 𝑏.

6.7 A Digit-By-Digit Construction 261

Let now 𝑚 ≥ 2. Like for 𝑚 = 1 we get

[err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈𝑚)]2 ≤ 1
𝑏𝑑

∑︁
𝒈∈𝐺𝑑 (𝑏)

[err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈𝑚−1 + 𝑏𝑚−1𝒈)]2

=
1
𝑏𝑑

∑︁
𝒉∈Z𝑑\{0}

1
𝑟2𝛼,𝜸 (𝒉)

∑︁
𝒈∈𝐺𝑑 (𝑏)

𝒉 · (𝒈𝑚−1+𝑏𝑚−1𝒈)≡0 (mod 𝑏𝑚)

1.

The inner sum of the previous term is equal to the number of 𝒈 ∈ 𝐺𝑑 (𝑏) satisfying
𝑏𝑚−1𝒉 · 𝒈 ≡ −𝒉 · 𝒈𝑚−1 (mod 𝑏𝑚), which implies 𝒉 · 𝒈𝑚−1 ≡ 0 (mod 𝑏𝑚−1), and
then 𝒉 · 𝒈 ≡ −𝑏1−𝑚𝒉 · 𝒈𝑚−1 (mod 𝑏). Thus,

[err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈𝑚)]2 ≤ 1
𝑏𝑑

∑︁
𝒉∈Z𝑑\{0}

𝒉 ·𝒈𝑚−1≡0 (mod 𝑏𝑚−1)

1
𝑟2𝛼,𝜸 (𝒉)

∑︁
𝒈∈𝐺𝑑 (𝑏)

𝒉 ·𝒈≡−𝑏1−𝑚𝒉 ·𝒈𝑚−1 (mod 𝑏)

1.

Consider the inner sum of the latter expression. If 𝒉 . 0 (mod 𝑏), then the sum is
equal to 𝑏𝑑−1. If 𝒉 ≡ 0 (mod 𝑏), the sum equals 0 if 𝒉 · 𝒈𝑚−1 . 0 (mod 𝑏𝑚) and 𝑏𝑑
if 𝒉 · 𝒈𝑚−1 ≡ 0 (mod 𝑏𝑚). Consequently,

[err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈𝑚)]2

≤ 1
𝑏

∑︁
𝒉∈Z𝑑

𝒉.0 (mod 𝑏)
𝒉 ·𝒈𝑚−1≡0 (mod 𝑏𝑚−1)

1
𝑟2𝛼,𝜸 (𝒉)

+
∑︁

𝒉∈Z𝑑\{0}
𝒉≡0 (mod 𝑏)

𝒉 ·𝒈𝑚−1≡0 (mod 𝑏𝑚)

1
𝑟2𝛼,𝜸 (𝒉)

=
1
𝑏
[err𝑏𝑚−1 ,𝑑,𝛼,𝜸 (𝒈𝑚−1)]2 − 1

𝑏

∑︁
𝒉∈Z𝑑\{0}

𝒉≡0 (mod 𝑏)
𝒉 ·𝒈𝑚−1≡0 (mod 𝑏𝑚−1)

1
𝑟2𝛼,𝜸 (𝒉)

+
∑︁

𝒉∈Z𝑑\{0}
𝒉≡0 (mod 𝑏)

𝒉 ·𝒈𝑚−1≡0 (mod 𝑏𝑚)

1
𝑟2𝛼,𝜸 (𝒉)

.

We proceed inductively and insert the latter bound analogously for
[err𝑏𝑚−1 ,𝑑,𝛼,𝜸 (𝒈𝑚−1)]2. Then we get

[err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈𝑚)]2 ≤ 1
𝑏2 [err𝑏𝑚−2 ,𝑑,𝛼,𝜸 (𝒈𝑚−2)]2

− 1
𝑏2

∑︁
𝒉∈Z𝑑\{0}

𝒉≡0 (mod 𝑏)
𝒉 ·𝒈𝑚−2≡0 (mod 𝑏𝑚−2)

1
𝑟2𝛼,𝜸 (𝒉)

+ 1
𝑏

∑︁
𝒉∈Z𝑑\{0}

𝒉≡0 (mod 𝑏)
𝒉 ·𝒈𝑚−2≡0 (mod 𝑏𝑚−1)

1
𝑟2𝛼,𝜸 (𝒉)

262 6 Extensible Lattice Point Sets

− 1
𝑏

∑︁
𝒉∈Z𝑑\{0}

𝒉≡0 (mod 𝑏)
𝒉 ·𝒈𝑚−1≡0 (mod 𝑏𝑚−1)

1
𝑟2𝛼,𝜸 (𝒉)

+
∑︁

𝒉∈Z𝑑\{0}
𝒉≡0 (mod 𝑏)

𝒉 ·𝒈𝑚−1≡0 (mod 𝑏𝑚)

1
𝑟2𝛼,𝜸 (𝒉)

.

Assume that 𝒉 ∈ Z𝑑 with 𝒉 ≡ 0 (mod 𝑏), i.e., 𝒉 = 𝑏 �̃� for some �̃� ∈ Z𝑑 , and
𝒉 · 𝒈𝑚−2 ≡ 0 (mod 𝑏𝑚−1). Then we have

𝒉 · 𝒈𝑚−1 = 𝒉 · (𝒈𝑚−2 + 𝑏𝑚−2𝒈) = 𝒉 · 𝒈𝑚−2 + 𝑏𝑚−1 �̃� · 𝒈 ≡ 0 (mod 𝑏𝑚−1)

for some 𝒈 ∈ 𝐺𝑑 (𝑏). Therefore we obtain

[err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈𝑚)]2 ≤ 1
𝑏2 [err𝑏𝑚−2 ,𝑑,𝛼,𝜸 (𝒈𝑚−2)]2

− 1
𝑏2

∑︁
𝒉∈Z𝑑\{0}

𝒉≡0 (mod 𝑏)
𝒉 ·𝒈𝑚−2≡0 (mod 𝑏𝑚−2)

1
𝑟2𝛼,𝜸 (𝒉)

+
∑︁

𝒉∈Z𝑑\{0}
𝒉≡0 (mod 𝑏)

𝒉 ·𝒈𝑚−1≡0 (mod 𝑏𝑚)

1
𝑟2𝛼,𝜸 (𝒉)

.

Repeating this argument, we get

[err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈𝑚)]2 ≤ 1
𝑏𝑚−1 [err𝑏,𝑑,𝛼,𝜸 (𝒈1)]2

− 1
𝑏𝑚−1

∑︁
𝒉∈Z𝑑\{0}

𝒉≡0 (mod 𝑏)
𝒉 ·𝒈1≡0 (mod 𝑏)

1
𝑟2𝛼,𝜸 (𝒉)

+
∑︁

𝒉∈Z𝑑\{0}
𝒉≡0 (mod 𝑏)

𝒉 ·𝒈𝑚−1≡0 (mod 𝑏𝑚)

1
𝑟2𝛼,𝜸 (𝒉)

.

For the second sum in the previous expression we have∑︁
𝒉∈Z𝑑\{0}

𝒉≡0 (mod 𝑏)
𝒉 ·𝒈𝑚−1≡0 (mod 𝑏𝑚)

1
𝑟2𝛼,𝜸 (𝒉)

=
∑︁

𝒉∈Z𝑑\{0}
𝑏𝒉 ·𝒈𝑚−1≡0 (mod 𝑏𝑚)

1
𝑟2𝛼,𝜸 (𝑏𝒉)

=
∑︁

𝒉∈Z𝑑\{0}
𝒉 ·𝒈𝑚−1≡0 (mod 𝑏𝑚−1)

1
𝑟2𝛼,𝜸 (𝑏𝒉)

≤ 1
𝑏2𝛼

∑︁
𝒉∈Z𝑑\{0}

𝒉 ·𝒈𝑚−1≡0 (mod 𝑏𝑚−1)

1
𝑟2𝛼,𝜸 (𝒉)

=
1
𝑏2𝛼 [err𝑏𝑚−1 ,𝑑,𝛼,𝜸 (𝒈𝑚−1)]2.

With this upper bound, we obtain

[err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈𝑚)]2 ≤ 1
𝑏𝑚−1 [err𝑏,𝑑,𝛼,𝜸 (𝒈1)]2 + 1

𝑏2𝛼 [err𝑏𝑚−1 ,𝑑,𝛼,𝜸 (𝒈𝑚−1)]2.

6.7 A Digit-By-Digit Construction 263

With backward induction on 𝑚 and invoking the upper bound on [err𝑏,𝑑,𝛼,𝜸 (𝒈1)]2

we get

[err𝑏𝑚 ,𝑑,𝛼,𝜸 (𝒈𝑚)]2

≤ [err𝑏,𝑑,𝛼,𝜸 (𝒈1)]2
(

1
𝑏𝑚−1 + 1

𝑏𝑚−2+2𝛼

)
+ 1
𝑏4𝛼 [err𝑏𝑚−2 ,𝑑,𝛼,𝜸 (𝒈𝑚−2)]2

...

≤ [err𝑏,𝑑,𝛼,𝜸 (𝒈1)]2
𝑚−2∑︁
𝑘=0

1
𝑏𝑚−1−𝑘+𝑘2𝛼 + 1

𝑏 (𝑚−1)2𝛼 [err𝑏,𝑑,𝛼,𝜸 (𝒈1)]2

= [err𝑏,𝑑,𝛼,𝜸 (𝒈1)]2
𝑚−1∑︁
𝑘=0

1
𝑏𝑚−1−𝑘+𝑘2𝛼

≤ ©«
𝑑∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼)) − 1ª®¬ min
(
𝑚,

𝑏2𝛼−1

𝑏2𝛼−1 − 1

)
2
𝑏𝑚
,

and, for 𝑏 = 2 and 𝒈1 = 1,

[err2𝑚 ,𝑑,𝛼,𝜸 (𝒈𝑚)]2 ≤ ©«
𝑑∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼)) − 1ª®¬ min
(
𝑚,

22𝛼−1

22𝛼−1 − 1

)
1

2𝑚
,

as long as 𝛾 𝑗 ∈ (0, 1] for all 𝑗 ∈ N. Taking the square root yields the desired result.
□

Notes and Remarks

The existence results for extensible lattice rules in Section 6.2 are taken from [105].
Regarding the result in Proposition 6.14, we remark that Algorithm 6.15 was used
in [104] as a basis to construct sequences of embedded nonequal-weight quadrature
rules that may yield convergence rates better than 𝑁−1 for arithmetic sequences of 𝑁 .

The presentation in Section 6.3 concerning embedded lattice rules mainly follows
[27]. Theorems 6.18 and 6.21 are due to Nuyens and Cools; we have omitted their
proofs in the present outline and refer to the original paper [215].

The results presented in Section 6.4 are taken from [58]. For the presentation we
have restricted ourselves to the case of prime numbers 𝑏 but it should be remarked
that the results in [58] even hold for arbitrary choices of 𝑏 ≥ 2. We note that
there are some obvious similarities between Algorithm 6.32 presented in Section 6.6
and Algorithm 6.15 presented in Section 6.3. Indeed, with some modifications
Algorithm 6.32 can be reformulated such that it yields Algorithm 6.15, and one

264 6 Extensible Lattice Point Sets

can then also show efficient error bounds for the generating vectors constructed by
this algorithm, which was still missing in [27]. For further details we refer to [58,
Theorem 13].

The digit-wise construction in Section 6.7 is based on an idea of Korobov [141]
(see also Section 4.6) and was worked out for the present problem in [201]. Observe
that Algorithm 6.35 is designed for a fixed dimension 𝑑 and therefore is not extensible
in the dimension. On the other hand the number of points 𝑁 is allowed to be
extended in Algorithm 6.35, and the construction yields—to some extent—good
results for consecutive prime powers. Note that this is exactly the “opposite” as for
Algorithm 4.20 in Section 4.6, which is extensible in 𝑑 but not in the number of
points. Whether or not one can find a digit-by-digit algorithm that is extensible in
both the dimension and the number of points remains an open question.

Finally it should be also remarked that the idea of finding good extensible lattice
rules by means of a sieve method or a digit-by-digit approach can also be applied to
the setting where the figure of merit is given in terms of the quality measure 𝑅, which
is related to the discrepancy of the lattice point sets. For details, see [58, Section 6]
(for the sieve method) and [201, Section 2.2] (for the digit-wise approach).

Chapter 7
Lattice Rules for Nonperiodic Integrands

We have already seen that lattice rules perform well for the numerical integration
of functions belonging to Korobov spaces, which are spaces of periodic functions.
If we are given a not necessarily periodic, but still smooth integrand, then the
theory we have discussed so far does not apply. We have several options to resolve
this situation. A classical approach is to use periodization, which means that we
transform a sufficiently smooth nonperiodic integrand 𝑓 into a periodic integrand
𝑓 without changing the value of the integral. A problem with this method is that
the periodic extensions 𝑓 often do not behave nicely at the boundaries of [0, 1]𝑑 . In
particular, the norm of the transformed integrand can depend exponentially on the
dimension 𝑑, which implies that periodization is only feasible for small dimensions 𝑑.
We will not consider periodization methods here since this is classical knowledge
that is available in the existing literature (see the “Notes and Remarks” Section at
the end of this chapter).

In this chapter we present three methods allowing us to obtain a higher conver-
gence rate for smooth, nonperiodic functions using lattice rules (i.e., under suitable
smoothness assumptions we obtain a bound on the worst-case error tending to zero
faster than 𝑁−1/2), namely

1. shifted lattice rules,
2. folded or tent-transformed lattice rules,
3. symmetrized lattice rules.

As the underlying function spaces we consider Sobolev spaces of a given smoothness,
and cosine spaces. As we will see, all of these methods relate the nonperiodic
integrands back to periodic integrands in some way. However, in the function spaces
we consider, they avoid the problems associated with some classical periodization
techniques.

265© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_7&domain=pdf

266 7 Lattice Rules for Nonperiodic Integrands

7.1 Shifted Lattice Rules and Integration in Weighted Sobolev
Spaces

One way to treat nonperiodic integrands is to use shifted lattice rules, which are
based on a geometric shift modulo one of the underlying integration nodes.

Definition 7.1 For an 𝑁-element point set P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in [0, 1)𝑑 and a
point 𝚫 ∈ [0, 1]𝑑 the shifted point set P𝚫 is defined as

P𝚫 := {{𝒙𝑘 + 𝚫} : 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}},

where {𝒙𝑘 +𝚫} means component-wise addition modulo one (we remind the reader
that by {𝑥} we mean the fractional part of a real number 𝑥 ∈ R, i.e., {𝑥} = 𝑥 − ⌊𝑥⌋.
For vectors, the fractional part is defined component-wise). In this context, the point
𝚫 is called the shift. For a QMC rule 𝑄𝑁,𝑑 based on a point set P and for a shift 𝚫
the QMC rule

𝑄𝑁,𝑑 (𝑓 ,𝚫) :=
1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 ({𝒙𝑘 + 𝚫})

is called a shifted QMC rule.

We are particularly interested in the case where P = P(𝒈, 𝑁) is the node set
underlying a rank-1 lattice rule. In this case we write P𝚫 (𝒈, 𝑁) for the shifted point
set {{

𝑘

𝑁
𝒈 + 𝚫

}
: 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}

}
.

Figure 7.1 shows an example of a shifted lattice point set.
Furthermore, we call a shifted QMC rule that is based on P𝚫 (𝒈, 𝑁), i.e.,

𝑄𝑁,𝑑 (𝑓 ,𝚫) =
1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘

𝑁
𝒈 + 𝚫

})
,

a shifted lattice rule.
In the study of nonperiodic functions it is useful to choose the shift randomly,

where the random shift is a vector whose components are i.i.d. (independent and
identically distributed) and uniformly distributed in the unit cube. Since we then
have

E

[
1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 ({𝒙𝑘 + 𝚫})
]
=

1
𝑁

𝑁−1∑︁
𝑘=0
E[𝑓 ({𝒙𝑘 + 𝚫})]

=
1
𝑁

𝑁−1∑︁
𝑘=0

∫
[0,1]𝑑

𝑓 ({𝒙𝑘 + 𝚫}) d𝚫

=

∫
[0,1]𝑑

𝑓 (𝚫) d𝚫,

7.1 Shifted Lattice Rules and Integration in Weighted Sobolev Spaces 267

Fig. 7.1: The Fibonacci lattice point set P((1, 21), 34) (left) and the shifted version
thereof with shift 𝚫 = (0.3, 0.7) (right).

it follows that the estimator𝑄𝑁,𝑑 (𝑓 ,𝚫) is an unbiased estimator, which simply means
that the expected value of the random variable 𝑄𝑁,𝑑 (𝑓 ,𝚫) is the exact value of the
integral of 𝑓 . Since 𝑄𝑁,𝑑 (𝑓 ,𝚫) is unbiased, we study the variance (or equivalently,
the standard deviation) of the worst-case integration error. (Later, in Chapter 11, we
will consider a different criterion.)

Recall that the integration error using a QMC rule based on the point set P in
(reproducing kernel) Hilbert spaces (H , ∥ · ∥) of functions on [0, 1]𝑑 is, according
to Definition 1.26, given by

err𝑁,𝑑 (H ,P) = sup
𝑓 ∈H
∥ 𝑓 ∥≤1

|err𝑁,𝑑 (𝑓 ,P)|.

Definition 7.2 Let err𝑁,𝑑 (H ,P) be the worst-case error of a QMC rule based on the
point set P in [0, 1)𝑑 applied to functions from a Hilbert space (H , ∥ · ∥). Assume
that the components of the shift 𝚫 are i.i.d. uniformly distributed on [0, 1]. Then the
root mean square worst-case error of the shifted rule,

errsh
𝑁,𝑑 (H ,P) :=

√︃
E

[
[err𝑁,𝑑 (H ,P𝚫)]2

]
is referred to as the shift-averaged worst-case error. Here, the expectation is taken
with respect to the shift 𝚫.

Remark 7.3

1. Since the components of 𝚫 are i.i.d. uniformly distributed on [0, 1]𝑑 , we have

E
[
[err𝑁,𝑑 (H ,P𝚫)]2] = ∫

[0,1]𝑑
[err𝑁,𝑑 (H ,P𝚫)]2 d𝚫.

268 7 Lattice Rules for Nonperiodic Integrands

2. According to the averaging argument (see Remark 2.14), there exists at least one
shift 𝚫 ∈ [0, 1]𝑑 for every 𝑁-element point set P such that

err𝑁,𝑑 (H ,P𝚫) ≤ errsh
𝑁,𝑑 (H ,P).

The shift-averaged worst-case error will be used as a quality criterion for shifted
lattice rules. In the context of numerical integration in reproducing kernel Hilbert
spaces H(𝐾), Hickernell [100] introduced the notion of a shift-invariant kernel,
which is an important tool to represent the shift-averaged worst-case error.

Definition 7.4 For a reproducing kernel𝐾 : [0, 1]𝑑×[0, 1]𝑑 → C, the shift-invariant
kernel is defined as

𝐾sh (𝒙, 𝒚) :=
∫
[0,1]𝑑

𝐾 ({𝒙 + 𝚫}, {𝒚 + 𝚫}) d𝚫 for 𝒙, 𝒚 ∈ [0, 1]𝑑 .

We discuss some essential properties of the shift-invariant kernel. It can be
checked that the function 𝐾sh in Definition 7.4 is indeed a reproducing kernel.
Further, using the transformation of variables 𝒛 = 𝒚 + 𝚫, we obtain∫

[0,1]𝑑
𝐾 ({𝒙 + 𝚫}, {𝒚 + 𝚫}) d𝚫 =

∫
[0,1]𝑑

𝐾 ({𝒙 − 𝒚 + 𝒛}, 𝒛) d𝒛.

This implies that
𝐾sh (𝒙, 𝒚) = 𝐾sh ({𝒙 − 𝒚}, 0).

Thus 𝐾sh only depends on the component-wise fractional part of the difference 𝒙− 𝒚
in each coordinate. Define the function Θ : R𝑑 → R by

Θ(𝒛) = 𝐾sh ({𝒛}, 0).

Since we only use the fractional part of each component of 𝒛, it follows that Θ is
periodic in each variable with period 1.

We restrict ourselves to reproducing kernels 𝐾 for which the associated shift-
invariant kernel can be represented pointwise by a Fourier series, that is, the function
Θ can be written as

Θ(𝒛) =
∑︁
𝒌∈Z𝑑

Θ̂(𝒌) e2𝜋i𝒌 ·𝒛 .

Hence we can write

𝐾sh (𝒙, 𝒚) =
∑︁
𝒌∈Z𝑑

Θ̂(𝒌) e2𝜋i𝒌 · (𝒙−𝒚) .

7.1 Shifted Lattice Rules and Integration in Weighted Sobolev Spaces 269

Consequently, the reproducing kernel Hilbert space associated with the shift-
invariant kernel is a space of 1-periodic Fourier series, similar to a Korobov space,
with the only difference being the precise definition of the Fourier coefficients. As
we will see below, this relation will allow us to carry over results for Korobov spaces
to some reproducing kernel Hilbert spaces containing also nonperiodic functions.

The Fourier coefficients Θ̂(𝒌), 𝒌 ∈ Z𝑑 , of 𝐾sh are given by

Θ̂(𝒌) =
∫
[0,1]𝑑

𝐾sh (𝒛, 0) e−2𝜋i𝒌 ·𝒛 d𝒛

=

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾sh (𝒙, 𝒚) e−2𝜋i𝒌 · (𝒙−𝒚) d𝒙 d𝒚

=

∫
[0,1]𝑑

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 ({𝒙 + 𝚫}, {𝒚 + 𝚫}) e−2𝜋i𝒌 · (𝒙−𝒚) d𝚫 d𝒙 d𝒚

=

∫
[0,1]𝑑

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 ({𝒙 + 𝚫}, {𝒚 + 𝚫}) e−2𝜋i𝒌 · ({𝒙+𝚫}−{𝒚+𝚫}) d𝒙 d𝒚 d𝚫

=

∫
[0,1]𝑑

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) e−2𝜋i𝒌 · (𝒙−𝒚) d𝒙 d𝒚 d𝚫

=

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) e−2𝜋i𝒌 · (𝒙−𝒚) d𝒙 d𝒚.

This illustrates another property of the shift-invariant kernel. Assume that we can
represent the reproducing kernel 𝐾 pointwise by

𝐾 (𝒙, 𝒚) =
∑︁

𝒌 ,ℓ∈Z𝑑
𝐾 (𝒌, ℓ) e2𝜋i𝒌 ·𝒙e−2𝜋iℓ·𝒚 ,

where
𝐾 (𝒌, ℓ) =

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) e−2𝜋i𝒌 ·𝒙e2𝜋iℓ·𝒚 d𝒙 d𝒚.

Then the associated shift-invariant kernel just contains the diagonal elements of this
Fourier series representation, i.e.,

𝐾sh (𝒙, 𝒚) =
∑︁
𝒌∈Z𝑑

𝐾 (𝒌, 𝒌) e2𝜋i𝒌 · (𝒙−𝒚) . (7.1)

The following theorem shows that the worst-case error of a QMC rule in the
reproducing kernel Hilbert space H(𝐾sh) equals the shift-averaged worst-case error
of the corresponding shifted QMC rule in H(𝐾).

270 7 Lattice Rules for Nonperiodic Integrands

Theorem 7.5 The shift-averaged worst-case error of a QMC rule based on an 𝑁-
element point set P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in [0, 1)𝑑 in a reproducing kernel Hilbert
space H(𝐾) is given as

[errsh
𝑁,𝑑 (H (𝐾),P)]2 = −

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒙 d𝒚 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾sh (𝒙𝑘 , 𝒙ℓ)

=
∑︁

𝒌∈Z𝑑\{0}
𝐾 (𝒌, 𝒌)

����� 1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝒌 ·𝒙𝑘

�����2 ,
where

𝐾 (𝒌, 𝒌) =
∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) e−2𝜋i𝒌 · (𝒙−𝒚) d𝒙 d𝒚. (7.2)

In particular,
errsh

𝑁,𝑑 (H (𝐾),P) = err𝑁,𝑑 (H (𝐾sh),P). (7.3)

Proof We apply the worst-case error formula in Theorem 1.27 to P𝚫 and average
over all 𝚫 in [0, 1]𝑑 . In this way we obtain

[errsh
𝑁,𝑑 (H (𝐾),P)]2 =

∫
[0,1]𝑑

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒙 d𝒚 d𝚫

− 2
𝑁

𝑁−1∑︁
𝑘=0

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 ({𝒙𝑘 + 𝚫}, 𝒚) d𝒚 d𝚫

+ 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

∫
[0,1]𝑑

𝐾 ({𝒙𝑘 + 𝚫}, {𝒙ℓ + 𝚫}) d𝚫.

Using the change of variables 𝒙 = {𝒙𝑘 + 𝚫} yields

− 2
𝑁

𝑁−1∑︁
𝑘=0

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 ({𝒙𝑘 + 𝚫}, 𝒚) d𝒚 d𝚫

= − 2
𝑁

𝑁−1∑︁
𝑘=0

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 ({𝒙𝑘 + 𝚫}, 𝒚) d𝚫 d𝒚

= − 2
𝑁

𝑁−1∑︁
𝑘=0

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒙 d𝒚

= −2
∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒙 d𝒚,

which, together with the definition of 𝐾sh, implies

7.1 Shifted Lattice Rules and Integration in Weighted Sobolev Spaces 271

[errsh
𝑁,𝑑 (H (𝐾),P)]2 = −

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒙 d𝒚 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾sh (𝒙𝑘 , 𝒙ℓ),

(7.4)
as desired. From this, in combination with Theorem 1.27, where we use that∫

[0,1]𝑑

∫
[0,1]𝑑

𝐾sh (𝒙, 𝒚) d𝒙 d𝒚 − 2
𝑁

𝑁−1∑︁
𝑘=0

∫
[0,1]𝑑

𝐾sh (𝒙𝑘 , 𝒚) d𝒚

= −
∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒙 d𝒚,

we immediately obtain (7.3).
Plugging (7.2) with 𝒌 = 0, and (7.1) into (7.4) yields

[errsh
𝑁,𝑑 (H (𝐾),P)]2 = −

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒙 d𝒚 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾sh (𝒙𝑘 , 𝒙ℓ)

= −𝐾 (0, 0) + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

∑︁
𝒌∈Z𝑑

𝐾 (𝒌, 𝒌) e2𝜋i𝒌 · (𝒙𝑘−𝒙ℓ)

=
∑︁

𝒌∈Z𝑑\{0}
𝐾 (𝒌, 𝒌)

����� 1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝒌 ·𝒙𝑘

�����2 ,
which shows the remaining claim. □

We now apply these findings to two important reference spaces for QMC rules,
namely the weighted unanchored Sobolev space of smoothness one and the anchored
Sobolev space of smoothness one.

The weighted unanchored Sobolev space of smoothness one

For 𝑑 ∈ N, 𝔲 ⊆ [𝑑], and a function 𝑓 on [0, 1]𝑑 we write

𝑓 (𝔲) =
𝜕 |𝔲 |

𝜕𝒙𝔲
𝑓 =

∏
𝑗∈𝔲

𝜕

𝜕𝑥 𝑗
𝑓 with 𝑓 (∅) = 𝑓 .

We consider arbitrary weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] . Let 𝔘+ := {𝔲 ⊆ [𝑑] : 𝛾𝔲 > 0}.
We define a reproducing kernel 𝐾sob,𝑑,𝜸 : [0, 1]𝑑 × [0, 1]𝑑 → R by

𝐾sob,𝑑,𝜸 (𝒙, 𝒚) :=
∑︁

𝔲⊆[𝑑]
𝛾𝔲

∏
𝑗∈𝔲

𝜂(𝑥 𝑗 , 𝑦 𝑗), (7.5)

where 𝒙 = (𝑥1, . . . , 𝑥𝑑) and 𝒚 = (𝑦1, . . . , 𝑦𝑑) are in [0, 1]𝑑 , and where 𝜂 is given by

272 7 Lattice Rules for Nonperiodic Integrands

𝜂(𝑥, 𝑦) :=
(
𝑥 − 1

2

) (
𝑦 − 1

2

)
+ 𝐵2 (|𝑥 − 𝑦 |)

2
.

Here 𝐵2 is the second Bernoulli polynomial (see also Chapters 2, 3, and 6), which
is defined as 𝐵2 (𝑥) := 𝑥2 − 𝑥 + 1/6. Observe also that the first Bernoulli polynomial
𝐵1 is given by 𝐵1 (𝑥) = 𝑥 − 1/2.

Definition 7.6 The weighted unanchored Sobolev space Hsob,𝑑,𝜸 of smoothness
one is the reproducing kernel Hilbert space with kernel 𝐾sob,𝑑,𝜸, i.e., Hsob,𝑑,𝜸 =

H(𝐾sob,𝑑,𝜸), and the corresponding inner product

⟨ 𝑓 , 𝑔⟩sob,𝑑,𝜸

=
∑︁
𝔲∈𝔘+

1
𝛾𝔲

∫
[0,1] |𝔲 |

(∫
[0,1]𝑑−|𝔲 |

𝑓 (𝔲) (𝒙) d𝒙 [𝑑]\𝔲

) (∫
[0,1]𝑑−|𝔲 |

𝑔 (𝔲) (𝒙) d𝒙 [𝑑]\𝔲

)
d𝒙𝔲 .

The norm is therefore given by

∥ 𝑓 ∥sob,𝑑,𝜸 =

(∑︁
𝔲∈𝔘+

1
𝛾𝔲

∫
[0,1] |𝔲 |

(∫
[0,1]𝑑−|𝔲 |

𝑓 (𝔲) (𝒙) d𝒙 [𝑑]\𝔲

)2
d𝒙𝔲

)1/2

.

The space Hsob,𝑑,𝜸 is also referred to as the ANOVA Sobolev space.

Remark 7.7 The weighted unanchored Sobolev spaceHsob,𝑑,𝜸 contains all functions
on [0, 1]𝑑 whose mixed first partial derivatives are square integrable. In particular,
in the univariate case 𝑑 = 1, the norm reduces to

∥ 𝑓 ∥2
sob,1,𝛾 =

(∫ 1

0
𝑓 (𝑥) d𝑥

)2

+ 1
𝛾

∫ 1

0
(𝑓 ′(𝑥))2 d𝑥. (7.6)

This formula should also be compared with the norm in the univariate weighted
Korobov space with smoothness 𝛼 = 1 given in (2.20).

The following proposition shows that the integration problem in Hsob,𝑑,𝜸 is nor-
malized.

Proposition 7.8 The initial error of integration in Hsob,𝑑,𝜸 equals 1.

Proof According to Remark 1.41 we have

[𝑒(0, 𝑑)]2 =

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾sob,𝑑,𝜸 (𝒙, 𝒚) d𝒙 d𝒚

=
∑︁

𝔲⊆[𝑑]
𝛾𝔲

∏
𝑗∈𝔲

∫ 1

0

∫ 1

0
𝜂(𝑥 𝑗 , 𝑦 𝑗) d𝑥 𝑗 d𝑦 𝑗 . (7.7)

Note that ∫ 1

0
𝐵2 (|𝑥 − 𝑦 |) d𝑦 =

∫ 1

0
𝐵2 (𝑦) d𝑦 = 0,

7.1 Shifted Lattice Rules and Integration in Weighted Sobolev Spaces 273

and hence ∫ 1

0

∫ 1

0
𝜂(𝑥, 𝑦) d𝑥 d𝑦 =

(∫ 1

0

(
𝑥 − 1

2

)
d𝑥

)2

= 0.

This implies that the only nonzero summand in (7.7) is the one corresponding to
𝔲 = ∅. This yields

[𝑒(0, 𝑑)]2 = 𝛾∅ = 1,

according to our standing assumption that 𝛾∅ = 1. □

Remark 7.9 Proposition 7.8 implies that the squared shift-averaged worst-case error
in Hsob,𝑑,𝜸 with respect to a node set P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} equals

[errsh
𝑁,𝑑 (Hsob,𝑑,𝜸,P)]2 = −1 + 1

𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾sh
sob,𝑑,𝜸 (𝒙𝑘 , 𝒙ℓ).

In the following theorem we give the explicit form of the shift-invariant kernel
for Hsob,𝑑,𝜸.

Theorem 7.10 Let 𝐾sob,𝑑,𝜸 be given by (7.5). Then the corresponding shift-invariant
kernel is given by

𝐾sh
sob,𝑑,𝜸 (𝒙, 𝒚) =

∑︁
𝔲⊆[𝑑]

𝛾𝔲

∏
𝑗∈𝔲

𝐵2 (|𝑥 𝑗 − 𝑦 𝑗 |).

Proof Equation (7.5) and Definition 7.4 imply

𝐾sh
sob,𝑑,𝜸 (𝒙, 𝒚) =

∑︁
𝔲⊆[𝑑]

𝛾𝔲

∏
𝑗∈𝔲

∫ 1

0
𝜂({𝑥 𝑗 + Δ 𝑗 }, {𝑦 𝑗 + Δ 𝑗 }) dΔ 𝑗 .

From the definition of 𝜂 and from the symmetry 𝐵2 (𝑥) = 𝐵2 (1 − 𝑥) for 𝑥 ∈ [0, 1]
we obtain∫ 1

0
𝜂({𝑥 + Δ}, {𝑦 + Δ}) dΔ =

∫ 1

0

(
{𝑥 + Δ} − 1

2

) (
{𝑦 + Δ} − 1

2

)
dΔ + 𝐵2 (|𝑥 − 𝑦 |)

2
.

Therefore it remains to be shown that

𝐼 (𝑥, 𝑦) :=
∫ 1

0

(
{𝑥 + Δ} − 1

2

) (
{𝑦 + Δ} − 1

2

)
dΔ =

𝐵2 (|𝑥 − 𝑦 |)
2

.

Obviously, 𝐼 (𝑥, 𝑦) = 𝐼 (𝑦, 𝑥) and hence we may assume that 𝑥 ≤ 𝑦 from now on.
For 𝑥, 𝑦,Δ in [0, 1) we have either

• Δ < 1 − 𝑦, which implies 𝑥 + Δ ≤ 𝑦 + Δ < 1, or
• 1 − 𝑦 ≤ Δ < 1 − 𝑥, which implies 𝑥 + Δ < 1 ≤ 𝑦 + Δ, or
• 1 − 𝑥 ≤ Δ, which implies 1 ≤ 𝑥 + Δ ≤ 𝑦 + Δ and hence 1 − 𝑥 ≤ Δ.

274 7 Lattice Rules for Nonperiodic Integrands

Thus we have

𝐼 (𝑥, 𝑦) =
∫ 1−𝑦

0

(
𝑥 + Δ − 1

2

) (
𝑦 + Δ − 1

2

)
dΔ

+
∫ 1−𝑥

1−𝑦

(
𝑥 + Δ − 1

2

) (
𝑦 + Δ − 1 − 1

2

)
dΔ

+
∫ 1

1−𝑥

(
𝑥 + Δ − 1 − 1

2

) (
𝑦 + Δ − 1 − 1

2

)
dΔ

=
(𝑦 − 𝑥)2

2
− 𝑦 − 𝑥

2
+ 1

12

=
𝐵2 (|𝑥 − 𝑦 |)

2
.

This implies the desired result. □

We now have the following corollary.

Corollary 7.11 The squared shift-averaged worst-case error of a rank-1 lattice rule
with node set P(𝒈, 𝑁) in Hsob,𝑑,𝜸 equals

[errsh
𝑁,𝑑 (Hsob,𝑑,𝜸,P(𝒈, 𝑁))]2 =

∑︁
∅≠𝔲⊆[𝑑]

𝛾𝔲
1
𝑁

𝑁−1∑︁
𝑘=0

∏
𝑗∈𝔲

𝐵2

({
𝑘𝑔 𝑗

𝑁

})
.

Proof Using Remark 7.9 and Theorem 7.10 with 𝒙𝑘 = {(𝑘/𝑁)𝒈}, for 𝑘 ∈
{0, 1, . . . , 𝑁 − 1}, and again the symmetry 𝐵2 (𝑥) = 𝐵2 (1 − 𝑥) for 𝑥 ∈ [0, 1],
yields

[errsh
𝑁,𝑑 (Hsob,𝑑,𝜸,P(𝒈, 𝑁))]2 = −1 +

∑︁
𝔲⊆[𝑑]

𝛾𝔲
1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

∏
𝑗∈𝔲

𝐵2

(����{ 𝑘𝑔 𝑗𝑁 }
−

{
ℓ𝑔 𝑗

𝑁

}����)
= −1 +

∑︁
𝔲⊆[𝑑]

𝛾𝔲
1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

∏
𝑗∈𝔲

𝐵2

({ (𝑘 − ℓ)𝑔 𝑗
𝑁

})
.

As 𝑘 and ℓ range from 0 to 𝑁−1, (𝑘−ℓ) (mod 𝑁) takes on the values 0, 1, . . . , 𝑁−1
in some order, with each value occurring exactly 𝑁 times. With this observation we
can rewrite the double sum in the previous expression as a single sum, which yields

[errsh
𝑁,𝑑 (Hsob,𝑑,𝜸,P(𝒈, 𝑁))]2 = −1 +

∑︁
𝔲⊆[𝑑]

𝛾𝔲
1
𝑁

𝑁−1∑︁
𝑘=0

∏
𝑗∈𝔲

𝐵2

({
𝑘𝑔 𝑗

𝑁

})
,

and this gives the desired result, since, in the latter expression, the summand corre-
sponding to 𝔲 = ∅ equals 1. □

We remind the reader that, according to Remark 2.9, Equation (2.8), the Bernoulli
polynomial 𝐵2 has the Fourier expansion

7.1 Shifted Lattice Rules and Integration in Weighted Sobolev Spaces 275

𝐵2 (𝑥) =
1

2𝜋2

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑥

|ℎ|2
for all 𝑥 ∈ [0, 1).

This expansion implies

[errsh
𝑁,𝑑 (Hsob,𝑑,𝜸,P(𝒈, 𝑁))]2

=
∑︁

∅≠𝔲⊆[𝑑]

𝛾𝔲

(2𝜋2) |𝔲 |
1
𝑁

𝑁−1∑︁
𝑘=0

∏
𝑗∈𝔲

∑︁
ℎ 𝑗 ∈Z\{0}

e2𝜋iℎ 𝑗 𝑘𝑔 𝑗/𝑁

|ℎ 𝑗 |2

=
∑︁

∅≠𝔲⊆[𝑑]

𝛾𝔲

(2𝜋2) |𝔲 |
1
𝑁

𝑁−1∑︁
𝑘=0

∑︁
𝒉𝔲 ∈(Z\{0}) |𝔲 |

(∏
𝑗∈𝔲

1
|ℎ 𝑗 |2

)
e2𝜋i𝑘 (𝒉𝔲 ·𝒈𝔲)/𝑁

=
∑︁

𝒉∈Z𝑑\{0}

𝛾𝔲 (𝒉)

(2𝜋2) |𝔲 (𝒉) |
©«

∏
𝑗∈𝔲 (𝒉)

1
|ℎ 𝑗 |2

ª®¬ 1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝑘 (𝒉 ·𝒈)/𝑁

=
∑︁

𝒉∈Z𝑑\{0}
𝒉 ·𝒈≡0 (mod 𝑁)

1
𝑟2,�̃� (𝒉)

,

where �̃� = {�̃�𝔲}𝔲⊆[𝑑] with

�̃�𝔲 :=
𝛾𝔲

(2𝜋2) |𝔲 |
for 𝔲 ⊆ [𝑑]. (7.8)

Comparing this result to Corollary 2.21, we observe that the shift-averaged worst-
case error of a lattice rule in Hsob,𝑑,𝜸 equals the worst-case error of a lattice rule
in the Korobov space Hkor,𝑑,𝛼,�̃� with the modified weights �̃� and with smoothness
parameter 𝛼 = 1. Putting it differently,

errsh
𝑁,𝑑 (Hsob,𝑑,𝜸,P(𝒈, 𝑁)) = err𝑁,𝑑,1,�̃� (𝒈).

This allows us to rewrite all results previously shown for the worst-case error in
Korobov spaces such that they apply to the shift-averaged worst-case error in the
weighted unanchored Sobolev space (equipped with the corresponding weights).

In the vein of Theorems 2.24, 3.7, and 3.9 we obtain the following result, which
we formulate for prime 𝑁 for simplicity; note, though, that a similar result would
also hold true for arbitrary 𝑁 ∈ N.

Theorem 7.12 For 𝜏 ∈ [1/2, 1) set

𝑎𝜏 :=
21−1/(2𝜏)

𝜋1/𝜏 𝜁

(
1
𝜏

)
. (7.9)

Then, for any prime number 𝑁 and any dimension 𝑑, the following statements hold.

276 7 Lattice Rules for Nonperiodic Integrands

1. There exists a generating vector 𝒈 ∈ 𝐺𝑑 (𝑁) such that

errsh
𝑁,𝑑 (Hsob,𝑑,𝜸,P(𝒈, 𝑁)) ≤ 1

𝑁 𝜏
©«

∑︁
∅≠𝔲⊆[𝑑]

𝑎
|𝔲 |
𝜏 𝛾

1/(2𝜏)
𝔲

ª®¬
𝜏

for all 𝜏 ∈ [1/2, 1). This vector can be found using Algorithm 3.6 (by means of
the weights �̃� in (7.8)).

2. In the case of product weights the bound in Item 1 can be simplified to

errsh
𝑁,𝑑 (Hsob,𝑑,𝜸,P(𝒈, 𝑁)) ≤ 1

𝑁 𝜏
©«−1 +

𝑑∏
𝑗=1

(
1 + 𝑎𝜏𝛾1/(2𝜏)

𝑗

)ª®¬
𝜏

.

According to Remark 7.3, Theorem 7.12 can also be seen as an existence result
for shifted lattice rules for integration, which we formulate as follows.

Corollary 7.13 For any prime number 𝑁 and any dimension 𝑑 there exists a gener-
ating vector 𝒈 ∈ 𝐺𝑑 (𝑁) and a shift 𝚫 ∈ [0, 1]𝑑 such that

err𝑁,𝑑 (Hsob,𝑑,𝜸,P𝚫 (𝒈, 𝑁)) ≤
1
𝑁 𝜏

©«
∑︁

∅≠𝔲⊆[𝑑]
𝑎
|𝔲 |
𝜏 𝛾

1/(2𝜏)
𝔲

ª®¬
𝜏

for all 𝜏 ∈ [1/2, 1). The vector 𝒈 can be found using Algorithm 3.6 (by means of the
weights �̃� in (7.8)).

There have been some attempts to construct also a good shift 𝚫 in the sense of
Corollary 7.13 using a CBC algorithm, see [232]. The problem with this construction
is, however, that the required number of elementary operations is of order O(𝑑 𝑁3),
which is too high for most practical applications. Furthermore, the error bounds
can only be guaranteed to be of the suboptimal order O(𝑁−1/2). Nevertheless,
Corollary 7.13 implies that the results on tractability of the integration problem in
the weighted Korobov space, in particular Corollaries 2.27 and 2.28, can be carried
over to the weighted unanchored Sobolev space.

The weighted anchored Sobolev space of smoothness one

A variant of the unanchored Sobolev space is the anchored Sobolev space which we
briefly discuss here. We introduce a weighted generalization of the anchored Sobolev
space of smoothness one with anchor 1 from Section 1.6.

For a so-called anchor 𝒄 = (𝑐1, . . . , 𝑐𝑑) ∈ [0, 1]𝑑 , we define a reproducing kernel
𝐾⋔sob,𝑑,𝜸,𝒄 : [0, 1]𝑑 × [0, 1]𝑑 → R by

𝐾⋔sob,𝑑,𝜸,𝒄 (𝒙, 𝒚) :=
∑︁

𝔲⊆[𝑑]
𝛾𝔲

∏
𝑗∈𝔲

𝜂⋔𝑐 𝑗 (𝑥 𝑗 , 𝑦 𝑗), (7.10)

7.1 Shifted Lattice Rules and Integration in Weighted Sobolev Spaces 277

where, for 𝑐 ∈ [0, 1], 𝜂⋔𝑐 is given by

𝜂⋔𝑐 (𝑥, 𝑦) :=

min(𝑥, 𝑦) − 𝑐 if 𝑥, 𝑦 > 𝑐,
𝑐 − max(𝑥, 𝑦) if 𝑥, 𝑦 < 𝑐,
0 otherwise.

Definition 7.14 The weighted anchored Sobolev space H⋔sob,𝑑,𝜸,𝒄 of smoothness
one and with anchor 𝒄 ∈ [0, 1]𝑑 is the reproducing kernel Hilbert space with kernel
𝐾⋔sob,𝑑,𝜸,𝒄 , i.e.,H⋔sob,𝑑,𝜸,𝒄 = H(𝐾⋔sob,𝑑,𝜸,𝒄), and with the corresponding inner product

⟨ 𝑓 , 𝑔⟩sob,𝑑,𝜸,𝒄 =
∑︁
𝔲∈𝔘+

1
𝛾𝔲

∫
[0,1] |𝔲 |

𝑓 (𝔲) (𝒙𝔲 , 𝒄 [𝑑]\𝔲)𝑔 (𝔲) (𝒙𝔲 , 𝒄 [𝑑]\𝔲) d𝒙𝔲 ,

where we recall that 𝔘+ := {𝔲 ⊆ [𝑑] : 𝛾𝔲 > 0}. The norm is therefore given by

∥ 𝑓 ∥sob,𝑑,𝜸,𝒄 [𝑑]\𝔲 =

(∑︁
𝔲∈𝔘+

1
𝛾𝔲

∫
[0,1] |𝔲 |

(
𝑓 (𝔲) (𝒙𝔲 , 𝒄 [𝑑]\𝔲)

)2
d𝒙𝔲

)1/2

.

In the univariate case 𝑑 = 1 the norm reduces to

∥ 𝑓 ∥2
sob,1,𝛾,𝑐 = (𝑓 (𝑐))2 + 1

𝛾

∫ 1

0
(𝑓 ′(𝑥))2 d𝑥. (7.11)

This formula should be compared with the corresponding formula (7.6) for the
unanchored Sobolev space of smoothness one.

Remark 7.15 The role of the anchor 𝒄 in the anchored Sobolev space is that the
components in [𝑑] \ 𝔲 are fixed in the summands corresponding to 𝔲 ∈ 𝔘+ in the
definition of the inner product. In the unanchored Sobolev space, these components
are not fixed by the anchor, but are integrated out.

Remark 7.16 If all weights are chosen to be one, i.e., 𝛾𝔲 = 1 for all 𝔲 ⊆ [𝑑], and if
the anchor 𝒄 is chosen to be 1, we obtain the anchored Sobolev space of smoothness
one with anchor 1 in Section 1.6.

Similar to the unanchored case, it is easy to identify the initial error of QMC
integration.

Proposition 7.17 The squared initial error of integration in H⋔sob,𝑑,𝜸,𝒄 equals

[𝑒(0, 𝑑)]2 =
∑︁

𝔲⊆[𝑑]
𝛾𝔲

∏
𝑗∈𝔲

𝛽𝑐 𝑗 ,

where we put 𝛽𝑐 := 𝑐2 − 𝑐 + 1/3 for 𝑐 ∈ [0, 1].

278 7 Lattice Rules for Nonperiodic Integrands

Proof It is easily checked that∫ 1

0

∫ 1

0
𝜂⋔𝑐 (𝑥, 𝑦) d𝑥 d𝑦 = 𝑐2 − 𝑐 + 1

3
= 𝛽𝑐,

and hence, according to Remark 1.41,

[𝑒(0, 𝑑)]2 =
∑︁

𝔲⊆[𝑑]
𝛾𝔲

∏
𝑗∈𝔲

∫ 1

0

∫ 1

0
𝜂⋔𝑐 𝑗 (𝑥 𝑗 , 𝑦 𝑗) d𝑥 𝑗 d𝑦 𝑗 =

∑︁
𝔲⊆[𝑑]

𝛾𝔲

∏
𝑗∈𝔲

𝛽𝑐 𝑗 . □

The following theorem is analogous to Theorem 7.10.

Theorem 7.18 Let 𝐾⋔sob,𝑑,𝜸,𝒄 be given by (7.10). Then the corresponding shift-
invariant kernel is given by

𝐾
⋔,sh
sob,𝑑,𝜸,𝒄 (𝒙, 𝒚) =

∑︁
𝔲⊆[𝑑]

𝛾𝔲

∏
𝑗∈𝔲

(𝐵2 (|𝑥 𝑗 − 𝑦 𝑗 |) + 𝛽𝑐 𝑗).

Proof Definition 7.4 and Equation (7.10) imply

𝐾sh
sob,𝑑,𝜸 (𝒙, 𝒚) =

∑︁
𝔲⊆[𝑑]

𝛾𝔲

∏
𝑗∈𝔲

∫ 1

0
𝜂⋔𝑐 𝑗 ({𝑥 𝑗 + Δ 𝑗 }, {𝑦 𝑗 + Δ 𝑗 }) dΔ 𝑗 .

It is easily checked that 𝜂⋔𝑐 (𝑥, 𝑦) can be represented in the form

𝜂⋔𝑐 (𝑥, 𝑦) =
𝐵2 (|𝑥 − 𝑦 |)

2
+

(
𝑥 − 1

2

) (
𝑦 − 1

2

)
+ 𝛼𝑐 (𝑥) + 𝛼𝑐 (𝑦) + 𝛽𝑐

for 𝑥, 𝑦 ∈ [0, 1], where

𝛼𝑐 (𝑥) := max(𝑥, 𝑐) − 𝑥2

2
− 𝑐2

2
− 1

3
and 𝛽𝑐 := 𝑐2 − 𝑐 + 1

3
.

Thus,
𝜂⋔𝑐 (𝑥, 𝑦) = 𝜂(𝑥, 𝑦) + 𝛼𝑐 (𝑥) + 𝛼𝑐 (𝑦) + 𝛽𝑐 .

Therefore we obtain, similarly to the proof of Theorem 7.10,∫ 1

0
𝜂⋔𝑐 ({𝑥 + Δ}, {𝑦 + Δ}) dΔ =

∫ 1

0
𝜂({𝑥 + Δ}, {𝑦 + Δ}) dΔ

+
∫ 1

0
𝛼𝑐 ({𝑥 + Δ}) dΔ +

∫ 1

0
𝛼𝑐 ({𝑦 + Δ}) dΔ + 𝛽𝑐

= 𝐵2 (|𝑥 − 𝑦 |) + 𝛽𝑐,

since
∫ 1
0 𝛼𝑐 (𝑥) d𝑥 = 0. This implies the desired result. □

Theorem 7.18 yields the following corollary.

7.1 Shifted Lattice Rules and Integration in Weighted Sobolev Spaces 279

Corollary 7.19 The squared shift-averaged worst-case error of a rank-1 lattice rule
with node set P(𝒈, 𝑁) in H⋔sob,𝑑,𝜸,𝒄 equals

[errsh
𝑁,𝑑 (H

⋔
sob,𝑑,𝜸,𝒄 ,P(𝒈, 𝑁))]2 =

∑︁
∅≠𝔲⊆[𝑑]

𝛾′𝔲
1
𝑁

𝑁−1∑︁
𝑘=0

∏
𝑗∈𝔲

𝐵2

({
𝑘𝑔 𝑗

𝑁

})
,

where

𝛾′𝔲 :=

(∏
𝑗∈𝔲

1
𝛽𝑐 𝑗

) ∑︁
𝔲⊆𝔳⊆[𝑑]

𝛾𝔳

∏
𝑗∈𝔳

𝛽𝑐 𝑗 ,

and where we note that 𝛽𝑐 𝑗 ≠ 0 independently of 𝑐 𝑗 .

Proof Using Theorem 7.18 with 𝒙𝑘 = {(𝑘/𝑁)𝒈} for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, and the
symmetry 𝐵2 (𝑥) = 𝐵2 (1 − 𝑥) for 𝑥 ∈ [0, 1], yields

[errsh
𝑁,𝑑 (H

⋔
sob,𝑑,𝜸,𝒄 ,P(𝒈, 𝑁))]2

= −
∑︁

𝔳⊆[𝑑]
𝛾𝔳

∏
𝑗∈𝔳

𝛽𝑐 𝑗 +
∑︁

𝔳⊆[𝑑]
𝛾𝔳

1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

∏
𝑗∈𝔳

(
𝐵2

(����{ 𝑘𝑔 𝑗𝑁 }
−

{
ℓ𝑔 𝑗

𝑁

}����) + 𝛽𝑐 𝑗)
= −

∑︁
𝔳⊆[𝑑]

𝛾𝔳

∏
𝑗∈𝔳

𝛽𝑐 𝑗 +
∑︁

𝔳⊆[𝑑]
𝛾𝔳

1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

∏
𝑗∈𝔳

(
𝐵2

({ (𝑘 − ℓ)𝑔 𝑗
𝑁

})
+ 𝛽𝑐 𝑗

)
.

As 𝑘 and ℓ range from 0 to 𝑁−1, (𝑘−ℓ) (mod 𝑁) takes on the values 0, 1, . . . , 𝑁−1
in some order, with each value occurring exactly 𝑁 times. With this observation we
can rewrite the double sum in the latter expression as a single sum, which yields

[errsh
𝑁,𝑑 (H

⋔
sob,𝑑,𝜸,𝒄 ,P(𝒈, 𝑁))]2

= −
∑︁

𝔳⊆[𝑑]
𝛾𝔳

∏
𝑗∈𝔳

𝛽𝑐 𝑗 +
∑︁

𝔳⊆[𝑑]
𝛾𝔳

1
𝑁

𝑁−1∑︁
𝑘=0

∏
𝑗∈𝔳

(
𝐵2

({
𝑘𝑔 𝑗

𝑁

})
+ 𝛽𝑐 𝑗

)
=

∑︁
∅≠𝔳⊆[𝑑]

𝛾𝔳

(
1
𝑁

𝑁−1∑︁
𝑘=0

∏
𝑗∈𝔳

(
𝐵2

({
𝑘𝑔 𝑗

𝑁

})
+ 𝛽𝑐 𝑗

)
−

∏
𝑗∈𝔳

𝛽𝑐 𝑗

)
.

We now rewrite the product over all 𝑗 ∈ 𝔳 as a sum and obtain in this way that

[errsh
𝑁,𝑑 (H

⋔
sob,𝑑,𝜸,𝒄 ,P(𝒈, 𝑁))]2

=
∑︁

∅≠𝔳⊆[𝑑]
𝛾𝔳

1
𝑁

𝑁−1∑︁
𝑘=0

∑︁
∅≠𝔲⊆𝔳

∏
𝑗∈𝔳\𝔲

𝛽𝑐 𝑗

∏
𝑗∈𝔲

𝐵2

({
𝑘𝑔 𝑗

𝑁

})
=

∑︁
∅≠𝔲⊆[𝑑]

∑︁
𝔲⊆𝔳⊆[𝑑]

𝛾𝔳
©«
∏
𝑗∈𝔳\𝔲

𝛽𝑐 𝑗
ª®¬ 1
𝑁

𝑁−1∑︁
𝑘=0

∏
𝑗∈𝔲

𝐵2

({
𝑘𝑔 𝑗

𝑁

})
.

280 7 Lattice Rules for Nonperiodic Integrands

Since ∑︁
𝔲⊆𝔳⊆[𝑑]

𝛾𝔳

∏
𝑗∈𝔳\𝔲

𝛽𝑐 𝑗 =

(∏
𝑗∈𝔲

1
𝛽𝑐 𝑗

) ∑︁
𝔲⊆𝔳⊆[𝑑]

𝛾𝔳

∏
𝑗∈𝔳

𝛽𝑐 𝑗 = 𝛾
′
𝔲 ,

we obtain the result as claimed. □

The shift-invariant kernel of the anchored Sobolev space is of the same form as
that of the unanchored Sobolev space with the only difference that the weights have
to be modified to 𝜸′ = {𝛾′𝔲}𝔲⊆[𝑑] , where

𝛾′𝔲 =

(∏
𝑗∈𝔲

1
𝛽𝑐 𝑗

) ∑︁
𝔲⊆𝔳⊆[𝑑]

𝛾𝔳

∏
𝑗∈𝔳

𝛽𝑐 𝑗 for 𝔲 ⊆ [𝑑] .

This means that, starting from Corollary 7.19, we can proceed as before and apply
the Fourier series expansion of the Bernoulli polynomial 𝐵2 in (2.8). This finally
implies

[errsh
𝑁,𝑑 (H

⋔
sob,𝑑,𝜸,𝒄 ,P(𝒈, 𝑁))]2 =

∑︁
𝒉∈Z𝑑\{0}

𝒉 ·𝒈≡0 (mod 𝑁)

1
𝑟2,�̂� (𝒉)

, (7.12)

where now �̂� = {�̂�𝔲}𝔲⊆[𝑑] with

�̂�𝔲 :=
𝛾′𝔲

(2𝜋2) |𝔲 |
=

(∏
𝑗∈𝔲

1
2𝜋2𝛽𝑐 𝑗

) ∑︁
𝔲⊆𝔳⊆[𝑑]

𝛾𝔳

∏
𝑗∈𝔳

𝛽𝑐 𝑗 for 𝔲 ⊆ [𝑑] . (7.13)

Example 7.20 For product weights 𝛾𝔲 =
∏
𝑗∈𝔲 𝛾 𝑗 for 𝔲 ⊆ [𝑑], we have

�̂�𝔲 =

(∏
𝑗∈𝔲

1
2𝜋2𝛽𝑐 𝑗

) ∑︁
𝔲⊆𝔳⊆[𝑑]

∏
𝑗∈𝔳

𝛾 𝑗 𝛽𝑐 𝑗

=

(∏
𝑗∈𝔲

1
2𝜋2𝛽𝑐 𝑗

) (∏
𝑗∈𝔲

𝛾 𝑗 𝛽𝑐 𝑗

) ∑︁
𝔲⊆𝔳⊆[𝑑]

∏
𝑗∈𝔳\𝔲

𝛾 𝑗 𝛽𝑐 𝑗

=

(∏
𝑗∈𝔲

𝛾 𝑗

2𝜋2

) ∑︁
𝔴⊆[𝑑]\𝔲

∏
𝑗∈𝔴

𝛾 𝑗 𝛽𝑐 𝑗

=

(∏
𝑗∈𝔲

𝛾 𝑗

2𝜋2

) ∏
𝑗∈[𝑑]\𝔲

(1 + 𝛾 𝑗 𝛽𝑐 𝑗).

Comparing the formula (7.12) with Corollary 2.21, we observe that the shift-
averaged worst-case error of a lattice rule in H⋔sob,𝑑,𝜸,𝒄 equals the worst-case error of
a lattice rule in the Korobov space Hkor,𝑑,𝛼,�̂� with the modified weights �̂� in (7.13)
and with smoothness parameter 𝛼 = 1. I.e., we have

7.1 Shifted Lattice Rules and Integration in Weighted Sobolev Spaces 281

errsh
𝑁,𝑑 (H

⋔
sob,𝑑,𝜸,𝒄 ,P(𝒈, 𝑁)) = err𝑁,𝑑,1,�̂� (𝒈).

This allows us to also rewrite all previously shown results for the worst-case error
in Korobov spaces such that they apply to the shift-averaged worst-case error in the
weighted anchored Sobolev space (equipped with the corresponding weights).

Similarly to Theorems 2.24, 3.7, and 3.9 we obtain the following result, which
we again state only for prime 𝑁 for the sake of simplicity.

Theorem 7.21 For any prime number 𝑁 and any dimension 𝑑 the following state-
ments hold.

1. There exists a generating vector 𝒈 ∈ 𝐺𝑑 (𝑁) such that

errsh
𝑁,𝑑 (H

⋔
sob,𝑑,𝜸,𝒄 ,P(𝒈, 𝑁)) ≤ 1

𝑁 𝜏
©«

∑︁
∅≠𝔲⊆[𝑑]

�̃�
1/(2𝜏)
𝔲

(
2𝜁

(
1
𝜏

)) |𝔲 |ª®¬
𝜏

for all 𝜏 ∈ [1/2, 1). This vector can be found using Algorithm 3.6 (by means of
the weights �̂� in (7.13)).

2. In the case of product weights the bound in Item 1 can be simplified to

errsh
𝑁,𝑑 (H

⋔
sob,𝑑,𝜸,𝒄 ,P(𝒈, 𝑁))

≤ 1
𝑁 𝜏

©«−1 +
𝑑∏
𝑗=1

©«1 + 𝛾1/(2𝜏)
𝑗

𝑎𝜏

𝑑∏
𝑖=1
𝑖≠ 𝑗

(1 + 𝛾𝑖𝛽𝑐𝑖)1/(2𝜏)
ª®®®¬
ª®®®¬
𝜏

,

where 𝑎𝜏 is as in (7.9).

Remark 7.22 Assume that 𝒄 = (𝑐, 𝑐, . . . , 𝑐) and that we are concerned with product
weights. Assume furthermore that 𝜏 ∈ [1/2, 1) is such that Γ𝜏 :=

∑∞
𝑗=1 𝛾

1/(2𝜏)
𝑗

< ∞.
Then we have, using standard methods,

𝑑∏
𝑖=1
𝑖≠ 𝑗

(1 + 𝛾𝑖𝛽𝑐𝑖)1/(2𝜏) ≤ e(𝛽𝑐/(2𝜏))
∑𝑑

𝑖=1,𝑖≠ 𝑗
𝛾𝑖 ≤ e(𝛽𝑐/(2𝜏))Γ1/2 ,

and so

𝑑∏
𝑗=1

©«1 + 𝛾1/(2𝜏)
𝑗

𝑎𝜏

𝑑∏
𝑖=1
𝑖≠ 𝑗

(1 + 𝛾𝑖𝛽𝑐𝑖)1/(2𝜏)
ª®®®¬ ≤

𝑑∏
𝑗=1

(
1 + 𝛾1/(2𝜏)

𝑗
𝑎𝜏e(𝛽𝑐/(2𝜏))Γ1/2

)
≤ e𝑎𝜏e(𝛽𝑐/(2𝜏))Γ1/2Γ𝜏 ,

where the latter bound is independent of the dimension 𝑑. Consequently, we obtain

282 7 Lattice Rules for Nonperiodic Integrands

errsh
𝑁,𝑑 (H

⋔
sob,𝑑,𝜸,𝒄 ,P(𝒈, 𝑁)) ≤ 1

𝑁 𝜏
e𝜏𝑎𝜏e(𝛽𝑐/(2𝜏))Γ1/2Γ𝜏 .

The upper bound is independent of the dimension 𝑑. This implies that
∑∞
𝑗=1 𝛾 𝑗 < ∞

is a sufficient condition for strong polynomial tractability of the integration problem
in H⋔sob,𝑑,𝜸,𝒄 .

According to Remark 7.3, Theorem 7.21 can also be interpreted as an existence
result for good shifted lattice rules for integration.

Corollary 7.23 For any prime number 𝑁 and any dimension 𝑑 there exists a gener-
ating vector 𝒈 ∈ 𝐺𝑑 (𝑁) and a shift 𝚫 ∈ [0, 1]𝑑 such that

err𝑁,𝑑 (H⋔sob,𝑑,𝜸,𝒄 ,P𝚫 (𝒈, 𝑁)) ≤
1
𝑁 𝜏

©«
∑︁

∅≠𝔲⊆[𝑑]
�̃�

1/(2𝜏)
𝔲

(
2𝜁

(
1
𝜏

)) |𝔲 |ª®¬
𝜏

for all 𝜏 ∈ [1/2, 1). The vector 𝒈 can be found using Algorithm 3.6 (by means of the
weights �̂� in (7.13)).

Remark 7.24 We will briefly discuss embeddings between the unanchored and the
anchored Sobolev spaces of smoothness one, which allow us to transfer results on
the worst-case error in one space to the other and vice versa, at the end of Section 7.2.

A relation to geometric discrepancy

We briefly discuss an important relation to the theory of geometric discrepancy. If
we choose the anchor 𝒄 to be 1, we have 𝜂⋔1 (𝑥, 𝑦) = 1 − max(𝑥, 𝑦) for 𝑥, 𝑦 ∈ [0, 1),
and hence∫ 1

0

∫ 1

0
𝜂⋔1 (𝑥, 𝑦) d𝑥 d𝑦 =

1
3

and
∫ 1

0
𝜂⋔1 (𝑥, 𝑦) d𝑦 =

1 − 𝑥2

2
.

According to Theorem 1.27, we therefore obtain

[err𝑁,𝑑 (H⋔sob,𝑑,𝜸,1,P)]2

=

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾⋔sob,𝑑,𝜸,1 (𝒙, 𝒚) d𝒙 d𝒚

− 2
𝑁

𝑁−1∑︁
𝑘=0

∫
[0,1]𝑑

𝐾⋔sob,𝑑,𝜸,1 (𝒙𝑘 , 𝒚) d𝒚 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾⋔sob,𝑑,𝜸,1 (𝒙𝑘 , 𝒙ℓ)

=
∑︁

𝔲⊆[𝑑]
𝛾𝔲

(
1

3 |𝔲 | −
2
𝑁

𝑁−1∑︁
𝑘=0

∏
𝑗∈𝔲

(
1 − 𝑥2

𝑘, 𝑗

2

)
+ 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

∏
𝑗∈𝔲

(1 − max(𝑥𝑘, 𝑗 , 𝑥ℓ, 𝑗))
)
.

The term in the outer parentheses in the latter expression is exactly the squared
𝐿2-discrepancy of the projected point set P𝔲 , i.e.,

7.1 Shifted Lattice Rules and Integration in Weighted Sobolev Spaces 283

1
3 |𝔲 | −

2
𝑁

𝑁−1∑︁
𝑘=0

∏
𝑗∈𝔲

(
1 − 𝑥2

𝑘, 𝑗

2

)
+ 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

∏
𝑗∈𝔲

(1 − max(𝑥𝑘, 𝑗 , 𝑥ℓ, 𝑗)) =
(
𝐿2,𝑁 (P𝔲)

)2
.

(7.14)

Formula (7.14) is well known (see, e.g., [52, Proposition 2.15]) and can be ob-
tained easily through a direct evaluation of the integral in the definition of the
𝐿2-discrepancy. Obviously, the squared 𝐿2-discrepancy of P𝔲 can be rewritten in
the form (

𝐿2,𝑁 (P𝔲)
)2

=

∫
[0,1] |𝔲 |

|ΔP (𝒕𝔲 , 1) |2 d𝒕𝔲 ,

whereΔP is the local discrepancy function from Definition 1.29. Therefore we obtain

[err𝑁,𝑑 (H⋔sob,𝑑,𝜸,1,P)]2 =
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲

(∫
[0,1] |𝔲 |

|ΔP (𝒕𝔲 , 1) |2 d𝒕𝔲
)
.

Hence, the worst-case error of a QMC rule based on a point set P in the weighted
anchored Sobolev space with smoothness one and anchor 1 is the weighted version
of the combined 𝐿2-discrepancy of P that we know from Definition 1.34.

Definition 7.25 For an 𝑁-element point set P in [0, 1)𝑑 and for general weights
𝜸 = {𝛾𝔲}𝔲⊆[𝑑] the weighted 𝐿2-discrepancy of P is given by

𝐿2,𝑁 ,𝜸 (P) = ©«
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲

∫
[0,1] |𝔲 |

|ΔP (𝒕𝔲 , 1) |2 d𝒕𝔲
ª®¬

1/2

.

The weighted 𝐿2-discrepancy is an 𝐿2-version of the weighted star-discrepancy
from Section 5.3. It is obvious how to generalize this notion of discrepancy to the
notion of a weighted 𝐿𝑝-discrepancy for arbitrary 𝑝 ∈ [1,∞), see also [179, 211,
239].

We summarize our findings in the following theorem.

Theorem 7.26 Let P be an 𝑁-element point set in [0, 1)𝑑 . Then we have

err𝑁,𝑑 (H⋔sob,𝑑,𝜸,1,P) = 𝐿2,𝑁 ,𝜸 (P).

Above, we have considered the restriction of the anchor to the choice 𝒄 = 1 since
this is the most important case. For a general anchor 𝒄 one can obtain an analogous
relation to the so-called weighted anchored 𝐿2-discrepancy. We refer to the book of
Novak and Woźniakowski [211, Section 9.5] for further information.

284 7 Lattice Rules for Nonperiodic Integrands

7.2 Sobolev Spaces of Higher Smoothness and Cosine Spaces

In this section we introduce further spaces of not necessarily periodic but smooth
functions, and we discuss how they are related to the Korobov space of smooth
periodic functions.

The weighted unanchored Sobolev space of smoothness 𝛼

The weighted unanchored Sobolev space Hsob,𝑑,𝜸 of smoothness one from the pre-
vious section can be generalized to higher order smoothness. For 𝛼 ∈ N, consider
the reproducing kernel 𝐾sob,𝑑,𝛼,𝜸 : [0, 1]𝑑 × [0, 1]𝑑 → R given by

𝐾sob,𝑑,𝛼,𝜸 (𝒙, 𝒚) :=
∑︁

𝔲⊆[𝑑]
𝛾𝔲

∏
𝑗∈𝔲

(
𝛼∑︁
𝜏=1

𝐵𝜏 (𝑥 𝑗)𝐵𝜏 (𝑦 𝑗)
(𝜏!)2 + (−1)𝛼+1 𝐵2𝛼 (|𝑥 𝑗 − 𝑦 𝑗 |)

(2𝛼)!

)
,

where 𝐵𝜏 is the Bernoulli polynomial of order 𝜏. For 𝛼 = 1 this definition matches
the definition of 𝐾sob,𝑑,𝜸 in (7.5).

Definition 7.27 The weighted unanchored Sobolev space Hsob,𝑑,𝛼,𝜸 of smoothness
𝛼 is the reproducing kernel Hilbert space with kernel 𝐾sob,𝑑,𝛼,𝜸, i.e., Hsob,𝑑,𝛼,𝜸 =

H(𝐾sob,𝑑,𝛼,𝜸), and the corresponding inner product

⟨ 𝑓 , 𝑔⟩sob,𝑑,𝛼,𝜸 =
∑︁
𝔲∈𝔘+

1
𝛾𝔲

∑︁
𝔳⊆𝔲

∑︁
𝝉𝔲\𝔳∈[𝛼−1] |𝔲\𝔳|

∫
[0,1] |𝔳|

(∫
[0,1]𝑑−|𝔳|

𝑓 (𝝉𝔲\𝔳 ,𝜶𝔳 ,0) (𝒙) d𝒙 [𝑑]\𝔳

)
×

(∫
[0,1]𝑑−|𝔳|

𝑔 (𝝉𝔲\𝔳 ,𝜶𝔳 ,0) (𝒙) d𝒙 [𝑑]\𝔳

)
d𝒙𝔳, (7.15)

where (𝝉𝔲\𝔳,𝜶𝔳, 0) denotes the 𝑑-dimensional vector whose 𝑗-th component is 𝜏𝑗 if
𝑗 ∈ 𝔲\𝔳, 𝛼 if 𝑗 ∈ 𝔳, and 0 otherwise, and where 𝑓 (𝝉𝔲\𝔳 ,𝜶𝔳 ,0) denotes the (𝝉𝔲\𝔳,𝜶𝔳, 0)-
th partial mixed derivative of 𝑓 , i.e.,

𝑓 (𝝉𝔲\𝔳 ,𝜶𝔳 ,0) =
𝜕

∑
𝑖∈𝔲\𝔳 𝜏𝑖+|𝔳 |𝛼∏

𝑖∈𝔲\𝔳 𝜕𝑥
𝜏𝑖
𝑖

∏
𝑖∈𝔳 𝜕𝑥

𝛼
𝑖

𝑓 .

If 𝛼 = 1, we interpret the definition of the inner product such that [𝛼 − 1] is the
empty set, and hence all summands of the second sum for 𝔳 ⊊ 𝔲 disappear. For the
case 𝔳 = 𝔲, 𝜏𝔲\𝔳 in (7.15) is the “empty” vector with no components such that the
corresponding summand in the second sum in (7.15) remains. Hence the definition
indeed matches Definition 7.6 for the space with smoothness one.

7.2 Sobolev Spaces of Higher Smoothness and Cosine Spaces 285

The corresponding norm is therefore given by

∥ 𝑓 ∥sob,𝑑,𝛼,𝜸

=
©«
∑︁
𝔲∈𝔘+

1
𝛾𝔲

∑︁
𝔳⊆𝔲

∑︁
𝝉𝔲\𝔳∈[𝛼−1] |𝔲\𝔳|

∫
[0,1] |𝔳|

(∫
[0,1]𝑑−|𝔳|

𝑓 (𝝉𝔲\𝔳 ,𝜶𝔳 ,0) (𝒙) d𝒙 [𝑑]\𝔳

)2
d𝒙𝔳

ª®¬
1/2

,

with the analogous modifications for 𝛼 = 1 as for the inner product.

Remark 7.28 The weighted unanchored Sobolev space Hsob,𝑑,𝛼,𝜸 contains all func-
tions on [0, 1]𝑑 whose mixed partial derivatives up to order 𝛼 in each coordinate are
square integrable. In particular, in the univariate case 𝑑 = 1, the norm reduces to

∥ 𝑓 ∥2
sob,1,𝛼,𝛾 =

(∫ 1

0
𝑓 (𝑥) d𝑥

)2

+ 1
𝛾

[
𝛼−1∑︁
𝜏=1

(∫ 1

0
𝑓 (𝜏) (𝑥) d𝑥

)2

+
∫ 1

0
(𝑓 (𝛼) (𝑥))2 d𝑥

]
.

The space Hsob,1,𝛼,𝜸 is equivalent to the set of all functions 𝑓 : [0, 1] → R such that
𝑓 (𝜏) is absolutely continuous for 0 ≤ 𝜏 < 𝛼 and 𝑓 (𝛼) ∈ 𝐿2 ([0, 1]).

For the initial error we have the following result.

Proposition 7.29 The initial error of integration in Hsob,𝑑,𝛼,𝜸 equals 1.

Proof The result follows in the same way as for the special instance 𝛼 = 1 (see
Proposition 7.8) bearing in mind that

∫ 1
0 𝐵𝜏 (𝑥) d𝑥 = 0 for all 𝜏 ∈ N. □

The half-period cosine space

We begin the introduction of this space by recalling the well-known fact that the
functions

1,
√

2 cos(𝜋𝑥),
√

2 cos(2𝜋𝑥),
√

2 cos(3𝜋𝑥), . . .

on [0, 1] are an orthonormal basis of 𝐿2 ([0, 1]). In particular, for 𝑚, 𝑛 ∈ N we have∫ 1

0

√
2 cos(𝜋𝑚𝑥)

√
2 cos(𝜋𝑛𝑥) d𝑥 =

{
1 if 𝑚 = 𝑛,
0 if 𝑚 ≠ 𝑛,

and, for 𝑛 ∈ N, ∫ 1

0

√
2 cos(𝜋𝑛𝑥) d𝑥 = 0.

Any function 𝑓 ∈ 𝐿2 ([0, 1]) has the cosine series expansion

�̃� (0) +
∞∑︁
𝑘=1

�̃� (𝑘)
√

2 cos(𝜋𝑘𝑥),

with cosine coefficients

286 7 Lattice Rules for Nonperiodic Integrands

�̃� (𝑘) :=

∫ 1

0
𝑓 (𝑥) d𝑥 for 𝑘 = 0,∫ 1

0
𝑓 (𝑥)

√
2 cos(𝜋𝑘𝑥) d𝑥 for 𝑘 ∈ N.

The advantage of cosine series over Fourier series when expanding nonperiodic
functions is that they overcome the well-known Gibbs phenomenon.

Next, we consider the multivariate case. For a function 𝑓 : [0, 1]𝑑 → R and for
a vector 𝒌 ∈ N𝑑0 the 𝒌-th cosine coefficient of 𝑓 is defined as

�̃� (𝒌) :=
∫
[0,1]𝑑

𝑓 (𝒙)
𝑑∏
𝑗=1

(2 − 𝛿0,𝑘 𝑗)1/2 cos(𝜋𝑘 𝑗𝑥 𝑗) d𝒙,

where 𝛿 denotes the Kronecker delta function, i.e., 𝛿0,𝑘 𝑗 equals one if 𝑘 𝑗 = 0 and
zero otherwise.

Definition 7.30 Let 𝛼 > 1/2. The half-period cosine space of smoothness 𝛼 is
the reproducing kernel Hilbert space Hcos,𝑑,𝛼,𝜸 := H(𝐾cos,𝑑,𝛼,𝜸) with reproducing
kernel 𝐾cos,𝑑,𝛼,𝜸 : [0, 1]𝑑 × [0, 1]𝑑 → R given by

𝐾cos,𝑑,𝛼,𝜸 (𝒙, 𝒚) :=
∑︁

𝔲⊆[𝑑]
𝛾𝔲

∑︁
𝒌𝔲 ∈N|𝔲 |

∏
𝑗∈𝔲

2 cos(𝜋𝑘 𝑗𝑥 𝑗) cos(𝜋𝑘 𝑗 𝑦 𝑗)
𝑘2𝛼
𝑗

,

and with inner product

⟨ 𝑓 , 𝑔⟩cos,𝑑,𝛼,𝜸 :=
∑︁
𝒌∈N𝑑

0

𝑟2𝛼,𝜸 (𝒌) �̃� (𝒌)�̃�(𝒌).

The corresponding norm is then given by

∥ 𝑓 ∥cos,𝑑,𝛼,𝜸 :=
©«
∑︁
𝒌∈N𝑑

0

𝑟2𝛼,𝜸 (𝒌) | �̃� (𝒌) |2
ª®®¬

1/2

.

The reproducing kernel can also be written in the form

𝐾cos,𝑑,𝛼,𝜸 (𝒙, 𝒚) =
∑︁
𝒌∈N𝑑

0

𝛾𝔲 (𝒌)
∏
𝑗∈𝔲 (𝒌)

2 cos(𝜋𝑘 𝑗𝑥 𝑗) cos(𝜋𝑘 𝑗 𝑦 𝑗)
𝑘2𝛼
𝑗

=
∑︁
𝒌∈N𝑑

0

1
𝑟2𝛼,𝜸 (𝒌)

∏
𝑗∈𝔲 (𝒌)

(
2 cos(𝜋𝑘 𝑗𝑥 𝑗) cos(𝜋𝑘 𝑗 𝑦 𝑗)

)
,

and the norm can be rewritten in the form

7.2 Sobolev Spaces of Higher Smoothness and Cosine Spaces 287

∥ 𝑓 ∥cos,𝑑,𝛼,𝜸 =
©«
∑︁
𝒉∈Z𝑑

𝑟2𝛼,𝜸 (𝒉) ©«
𝑑∏
𝑗=1

1
2 − 𝛿0,ℎ 𝑗

ª®¬ | �̃� (|𝒉 |) |2ª®¬
1/2

,

where |𝒉 | = (|ℎ1 |, . . . , |ℎ𝑑 |).
Usually, cosine series are considered over the whole period [−1, 1). Here we only

consider functions on [0, 1], i.e., the “half” of the period and the term “half-period”
we use refers to this fact.

The following result is analogous to Propositions 7.8, 7.17, and 7.29.
Proposition 7.31 The initial error of integration in Hcos,𝑑,𝛼,𝜸 equals 1.

Proof The result follows easily from the fact that
∫ 1
0 cos(𝜋𝑘𝑥) d𝑥 equals one if 𝑘 = 0

and zero if 𝑘 ∈ N. Hence, according to Remark 1.41,

[𝑒(0, 𝑑)]2 =

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾cos,𝑑,𝛼,𝜸 (𝒙, 𝒚) d𝒙 d𝒚 = 1. □

Embeddings

With the Korobov space Hkor,𝑑,𝛼,𝜸, the unanchored Sobolev space Hsob,𝑑,𝛼,𝜸, and
the half-period cosine space Hcos,𝑑,𝛼,𝜸 we have introduced three reference spaces
of higher smoothness for QMC integration and, in particular, for integration using
lattice rules. We now discuss how these spaces are related to each other.

For two normed spaces (H1, ∥ · ∥1) and (H2, ∥ · ∥2) we say that H1 is continuously
embedded in H2 if

H1 ⊆ H2,

and if
∥ 𝑓 ∥2 ≤ 𝐶∥ 𝑓 ∥1 for all 𝑓 ∈ H1

for some constant 𝐶 > 0 that is independent of 𝑓 . We write

H1 ↩→ H2

in this case. If H1 ↩→ H2 and H2 ↩→ H1 we write

H1 ⇋ H2.

On the other hand, it is possible that H1 is not even a subset of H2, i.e., there is a
function in H1 which is not in H2. In this case we write H1 ⊄ H2.

The following proposition illustrates the effect of embeddings between function
spaces on the relation between the respective worst-case integration errors.

Proposition 7.32 Let (H1, ∥·∥1) and (H2, ∥·∥2) be two normed spaces of continuous,
integrable functions on [0, 1]𝑑 such that H1 ↩→ H2 and let 𝜄H1 ,H2 : H1 → H2,
𝜄H1 ,H2 (𝑓) = 𝑓 be the inclusion map with finite norm ∥𝜄H1 ,H2 ∥. Then for any QMC
rule (or linear integration rule) based on a point set P we have

288 7 Lattice Rules for Nonperiodic Integrands

err𝑁,𝑑 (H1,P) ≤ ∥𝜄H1 ,H2 ∥ err𝑁,𝑑 (H2,P).

Proof We have
𝐶 := ∥𝜄H1 ,H2 ∥ = sup

𝑓 ∈H1
∥ 𝑓 ∥1≤1

∥ 𝑓 ∥2.

Hence ∥ 𝑓 ∥1 ≤ 1/𝐶 implies ∥ 𝑓 ∥2 ≤ 1. We therefore have

err𝑁,𝑑 (H1,P) = sup
𝑓 ∈H1
∥ 𝑓 ∥1≤1

|err𝑁,𝑑 (𝑓 ,P)|

= sup
𝑓 ∈H1

∥𝐶 𝑓 ∥1≤1

|err𝑁,𝑑 (𝐶 𝑓 ,P)|

= 𝐶 sup
𝑓 ∈H1

∥ 𝑓 ∥1≤1/𝐶

|err𝑁,𝑑 (𝑓 ,P)|

≤ 𝐶 sup
𝑓 ∈H2
∥ 𝑓 ∥2≤1

|err𝑁,𝑑 (𝑓 ,P)|

= 𝐶 err𝑁,𝑑 (H2,P),

as claimed. □

We now consider the relations between the Korobov space, the unanchored
Sobolev space, and the half-period cosine space.

Theorem 7.33 The following relations hold.

1. For all 𝛼 ∈ N we have

Hkor,𝑑,𝛼,𝜸 ↩→ Hsob,𝑑,𝛼,𝜸 but Hsob,𝑑,𝛼,𝜸 ⊄ Hkor,𝑑,𝛼,𝜸 .

2. For 𝛼 = 1 we have
Hsob,𝑑,1,𝜸 ⇋ Hcos,𝑑,1,𝜸 .

3. For 𝛼 ∈ N with 𝛼 ≥ 2 we have

Hcos,𝑑,𝛼,𝜸 ↩→ Hsob,𝑑,𝛼,𝜸 but Hsob,𝑑,𝛼,𝜸 ⊄ Hcos,𝑑,𝛼,𝜸 .

4. For real 𝛼 > 1/2 we have

Hcos,𝑑,𝛼,𝜸 ⊄ Hkor,𝑑,𝛼,𝜸,

and Hkor,𝑑,𝛼,𝜸 ⊄ Hcos,𝑑,𝛼,𝜸 for 𝛼 ≥ 3
2
.

Proof Since all spaces involved are tensor products of the corresponding univariate
spaces, it suffices to show the result for 𝑑 = 1 and a generic weight 𝛾 > 0.

Regarding Item 1 in the theorem, let 𝛼 ∈ N. We first show that Hkor,1,𝛼,𝛾 ↩→
Hsob,1,𝛼,𝛾 . To this end let H̃sob,1,𝛼,𝛾 be the subspace of Hsob,1,𝛼,𝛾 consisting of
periodic functions,

7.2 Sobolev Spaces of Higher Smoothness and Cosine Spaces 289

H̃sob,1,𝛼,𝛾 = { 𝑓 ∈ Hsob,1,𝛼,𝛾 : 𝑓 (𝜏) (0) = 𝑓 (𝜏) (1) for all 𝜏 ∈ {0, 1, . . . , 𝛼 − 1}}.

We show that H̃sob,1,𝛼,𝛾 is a reproducing kernel Hilbert space with the same inner
product as Hsob,1,𝛼,𝛾 and with the reproducing kernel

𝐾sob,1,𝛼,𝛾 (𝑥, 𝑦) = 1 + 𝛾(−1)𝛼+1 𝐵2𝛼 (|𝑥 − 𝑦 |)
(2𝛼)! .

Since the kernel 𝐾sob,1,𝛼,𝛾 differs from 𝐾sob,1,𝛼,𝛾 only by an additive term, which is
a polynomial, and polynomials and 𝐾sob,1,𝛼,𝛾 (·, 𝑦) for 𝑦 ∈ [0, 1] are in Hsob,1,𝛼,𝛾 ,
it follows that 𝐾sob,1,𝛼,𝛾 (·, 𝑦) ∈ Hsob,1,𝛼,𝛾 for 𝑦 ∈ [0, 1]. To show that also the
periodicity condition in H̃sob,1,𝛼,𝛾 is satisfied, we use the well-known formula
𝐵′
𝜏 (𝑥) = 𝜏𝐵𝜏−1 (𝑥) for 𝜏 ∈ N for Bernoulli polynomials. Then we obtain, for any

𝑦 ∈ [0, 1], that

𝜕𝜏

𝜕𝑥𝜏
𝐾sob,1,𝛼,𝛾 (1, 𝑦) −

𝜕𝜏

𝜕𝑥𝜏
𝐾sob,1,𝛼,𝛾 (0, 𝑦)

=
𝛾(−1)𝛼+1

(2𝛼)!

(
𝜕𝜏

𝜕𝑥𝜏
𝐵2𝛼 (𝑥 − 𝑦)

���
𝑥=1

− 𝜕𝜏

𝜕𝑥𝜏
𝐵2𝛼 (𝑦 − 𝑥)

���
𝑥=0

)
=
𝛾(−1)𝛼+1

(2𝛼)!
(2𝛼)!

(2𝛼 − 𝜏)! (𝐵2𝛼−𝜏 (1 − 𝑦) − (−1)𝜏𝐵2𝛼−𝜏 (𝑦))

=
𝛾(−1)𝛼+1

(2𝛼 − 𝜏)! ((−1)𝜏𝐵2𝛼−𝜏 (𝑦) − (−1)𝜏𝐵2𝛼−𝜏 (𝑦))

= 0,

as 𝐵2𝛼−𝜏 (1 − 𝑦) = (−1)2𝛼−𝜏𝐵2𝛼−𝜏 (𝑦) = (−1)𝜏𝐵2𝛼−𝜏 (𝑦) according to the sym-
metry 𝐵𝜏 (1 − 𝑥) = (−1)𝜏𝐵𝜏 (𝑥) for 𝜏 ∈ N0 for Bernoulli polynomials. Hence
(𝜕𝜏/𝜕𝑥𝜏)𝐾sob,1,𝛼,𝛾 (𝑥, 𝑦) is periodic in 𝑥 and therefore 𝐾sob,1,𝛼,𝛾 (·, 𝑦) belongs to
H̃sob,1,𝛼,𝛾 for all 𝑦 ∈ [0, 1].

Next, we prove the reproducing property of 𝐾sob,1,𝛼,𝛾 . For 𝑓 ∈ H̃sob,1,𝛼,𝛾 and for
𝑦 ∈ [0, 1] we have

⟨ 𝑓 , 𝐾sob,1,𝛼,𝛾 (·, 𝑦)⟩sob,1,𝛼,𝛾 =

∫ 1

0
𝑓 (𝑥) d𝑥

∫ 1

0
𝐾sob,1,𝛼,𝛾 (𝑥, 𝑦) d𝑥

+ 1
𝛾

𝛼−1∑︁
𝜏=1

∫ 1

0
𝑓 (𝜏) (𝑥) d𝑥

∫ 1

0

𝜕𝜏

𝜕𝑥𝜏
𝐾sob,1,𝛼,𝛾 (𝑥, 𝑦) d𝑥

+ 1
𝛾

∫ 1

0
𝑓 (𝛼) (𝑥) 𝜕

𝛼

𝜕𝑥𝛼
𝐾sob,1,𝛼,𝛾 (𝑥, 𝑦) d𝑥.

We treat the integrals in the above formula separately. First we have∫ 1

0
𝐾sob,1,𝛼,𝛾 (𝑥, 𝑦) d𝑥 = 1 + 𝛾(−1)𝛼+1

(2𝛼)!

∫ 1

0
𝐵2𝛼 (|𝑥 − 𝑦 |) d𝑥 = 1,

290 7 Lattice Rules for Nonperiodic Integrands

because∫ 1

0
𝐵2𝛼 (|𝑥 − 𝑦 |) d𝑥 =

∫ 𝑦

0
𝐵2𝛼 (𝑦 − 𝑥) d𝑥 +

∫ 1

𝑦

𝐵2𝛼 (𝑥 − 𝑦) d𝑥

=

∫ 𝑦

0
(−1)2𝛼𝐵2𝛼 (1 − 𝑦 + 𝑥) d𝑥 +

∫ 1

𝑦

𝐵2𝛼 (𝑥 − 𝑦) d𝑥

=

∫ 1

1−𝑦
𝐵2𝛼 (𝑡) d𝑡 +

∫ 1−𝑦

0
𝐵2𝛼 (𝑡) d𝑡

=

∫ 1

0
𝐵2𝛼 (𝑡) d𝑡

= 0.

In the next step, we have∫ 1

0

𝜕𝜏

𝜕𝑥𝜏
𝐾sob,1,𝛼,𝛾 (𝑥, 𝑦) d𝑥 =

𝛾(−1)𝛼+1

(2𝛼)!

∫ 1

0

𝜕𝜏

𝜕𝑥𝜏
𝐵2𝛼 (|𝑥 − 𝑦 |) d𝑥 = 0,

since ∫ 1

0

𝜕𝜏

𝜕𝑥𝜏
𝐵2𝛼 (|𝑥 − 𝑦 |) d𝑥

=

∫ 𝑦

0

𝜕𝜏

𝜕𝑥𝜏
𝐵2𝛼 (𝑦 − 𝑥) d𝑥 +

∫ 1

𝑦

𝜕𝜏

𝜕𝑥𝜏
𝐵2𝛼 (𝑥 − 𝑦) d𝑥

=
(2𝛼)!

(2𝛼 − 𝜏)!

(∫ 𝑦

0
(−1)𝜏𝐵2𝛼−𝜏 (𝑦 − 𝑥) d𝑥 +

∫ 1

𝑦

𝐵2𝛼−𝜏 (𝑥 − 𝑦) d𝑥
)

=
(2𝛼)!

(2𝛼 − 𝜏)!

(∫ 𝑦

0
𝐵2𝛼−𝜏 (1 − 𝑦 + 𝑥) d𝑥 +

∫ 1

𝑦

𝐵2𝛼−𝜏 (𝑥 − 𝑦) d𝑥
)

=
(2𝛼)!

(2𝛼 − 𝜏)!

∫ 1

0
𝐵2𝛼−𝜏 (𝑡) d𝑡

= 0.

It remains to consider∫ 1

0
𝑓 (𝛼) (𝑥) 𝜕

𝛼

𝜕𝑥𝛼
𝐾sob,1,𝛼,𝛾 (𝑥, 𝑦) d𝑥

=
𝛾(−1)𝛼+1

(2𝛼)!

(∫ 𝑦

0
𝑓 (𝛼) (𝑥) 𝜕

𝛼

𝜕𝑥𝛼
𝐵2𝛼 (𝑦 − 𝑥) d𝑥 +

∫ 1

𝑦

𝑓 (𝛼) (𝑥) 𝜕
𝛼

𝜕𝑥𝛼
𝐵2𝛼 (𝑥 − 𝑦) d𝑥

)
.

The partial derivatives of the Bernoulli polynomials involved can be computed as

𝜕𝛼

𝜕𝑥𝛼
𝐵2𝛼 (𝑦 − 𝑥) = (−1)𝛼 (2𝛼)!

𝛼!
𝐵𝛼 (𝑦 − 𝑥) =

(2𝛼)!
𝛼!

𝐵𝛼 (1 − 𝑦 + 𝑥),

7.2 Sobolev Spaces of Higher Smoothness and Cosine Spaces 291

and likewise
𝜕𝛼

𝜕𝑥𝛼
𝐵2𝛼 (𝑥 − 𝑦) =

(2𝛼)!
𝛼!

𝐵𝛼 (𝑥 − 𝑦).

Hence∫ 1

0
𝑓 (𝛼) (𝑥) 𝜕

𝛼

𝜕𝑥𝛼
𝐾sob,1,𝛼,𝛾 (𝑥, 𝑦) d𝑥

=
𝛾(−1)𝛼+1

𝛼!

(∫ 𝑦

0
𝑓 (𝛼) (𝑥)𝐵𝛼 (1 − 𝑦 + 𝑥) d𝑥 +

∫ 1

𝑦

𝑓 (𝛼) (𝑥)𝐵𝛼 (𝑥 − 𝑦) d𝑥
)
.

We now use integration by parts. We have∫ 𝑦

0
𝑓 (𝛼) (𝑥)𝐵𝛼 (1 − 𝑦 + 𝑥) d𝑥 +

∫ 1

𝑦

𝑓 (𝛼) (𝑥)𝐵𝛼 (𝑥 − 𝑦) d𝑥

= 𝑓 (𝛼−1) (𝑥)𝐵𝛼 (1 − 𝑦 + 𝑥)
���𝑦
0
− 𝛼

∫ 𝑦

0
𝑓 (𝛼−1) (𝑥)𝐵𝛼−1 (1 − 𝑦 + 𝑥) d𝑥

+ 𝑓 (𝛼−1) (𝑥)𝐵𝛼 (𝑥 − 𝑦)
���1
𝑦
− 𝛼

∫ 1

𝑦

𝑓 (𝛼−1) (𝑥)𝐵𝛼−1 (𝑥 − 𝑦) d𝑥

= −𝛼
(∫ 𝑦

0
𝑓 (𝛼−1) (𝑥)𝐵𝛼−1 (1 − 𝑦 + 𝑥) d𝑥 +

∫ 1

𝑦

𝑓 (𝛼−1) (𝑥)𝐵𝛼−1 (𝑥 − 𝑦) d𝑥
)
,

where we used that 𝑓 (𝛼−1) (0) = 𝑓 (𝛼−1) (1) and 𝐵𝛼 (0) = 𝐵𝛼 (1) for 𝛼 ≥ 2. Repeating
this argument inductively we arrive at∫ 𝑦

0
𝑓 (𝛼) (𝑥)𝐵𝛼 (1 − 𝑦 + 𝑥) d𝑥 +

∫ 1

𝑦

𝑓 (𝛼) (𝑥)𝐵𝛼 (𝑥 − 𝑦) d𝑥

= (−1)𝛼−1𝛼!
(∫ 𝑦

0
𝑓 ′(𝑥)𝐵1 (1 − 𝑦 + 𝑥) d𝑥 +

∫ 1

𝑦

𝑓 ′(𝑥)𝐵1 (𝑥 − 𝑦) d𝑥
)
.

Applying integration by parts one more time yields∫ 𝑦

0
𝑓 (𝛼) (𝑥)𝐵𝛼 (1 − 𝑦 + 𝑥) d𝑥 +

∫ 1

𝑦

𝑓 (𝛼) (𝑥)𝐵𝛼 (𝑥 − 𝑦) d𝑥

= (−1)𝛼−1𝛼!
(
𝑓 (𝑦) −

∫ 1

0
𝑓 (𝑥) d𝑥

)
.

Putting everything together we finally obtain

⟨ 𝑓 , 𝐾sob,1,𝛼,𝛾 (·, 𝑦)⟩sob,1,𝛼,𝛾

=

∫ 1

0
𝑓 (𝑥) d𝑥 + 1

𝛾

𝛾(−1)𝛼+1

𝛼!
(−1)𝛼−1𝛼!

(
𝑓 (𝑦) −

∫ 1

0
𝑓 (𝑥) d𝑥

)
= 𝑓 (𝑦).

292 7 Lattice Rules for Nonperiodic Integrands

This proves the reproducing property of 𝐾sob,1,𝛼,𝛾 and therefore 𝐾sob,1,𝛼,𝛾 is the
reproducing kernel of H̃sob,1,𝛼,𝛾 .

From the Fourier series expansion of the Bernoulli polynomials (see (2.8)), we
obtain

𝐵2𝛼 (|𝑥 − 𝑦 |) = 𝐵2𝛼 ({𝑥 − 𝑦}) =
(−1)𝛼+1 (2𝛼)!

(2𝜋)2𝛼

∑︁
ℎ∈Z\{0}

e2𝜋iℎ (𝑥−𝑦)

|ℎ|2𝛼
, (7.16)

and hence

𝐾sob,1,𝛼,𝛾 (𝑥, 𝑦) = 1 + 𝛾

(2𝜋)2𝛼

∑︁
ℎ∈Z\{0}

e2𝜋iℎ (𝑥−𝑦)

|ℎ|2𝛼
= 𝐾kor,1,𝛼,𝛾 (2𝜋)−2𝛼 (𝑥, 𝑦),

where the latter term is the reproducing kernel of the Korobov space with smoothness
𝛼 and weight 𝛾(2𝜋)−2𝛼. This implies that

H̃sob,1,𝛼,𝛾 = Hkor,1,𝛼,𝛾 (2𝜋)−2𝛼

and
∥ 𝑓 ∥sob,1,𝛼,𝛾 = ∥ 𝑓 ∥kor,1,𝛼,𝛾 (2𝜋)−2𝛼 for 𝑓 ∈ H̃sob,1,𝛼,𝛾 ,

and thus also
Hkor,1,𝛼,𝛾 ↩→ Hsob,1,𝛼,𝛾 .

To show the second claim in Item 1, we assume general 𝑑 ∈ N for a moment. For
instance, the function 𝑔 : [0, 1]𝑑 → R, 𝑔(𝒙) = 𝑥1 is in Hsob,𝑑,𝛼,𝜸 for all 𝛼 ∈ N, but
not in Hkor,𝑑,𝛼,𝜸, since 𝑔 is not periodic. Thus

Hsob,𝑑,𝛼,𝜸 ⊄ Hkor,𝑑,𝛼,𝜸 .

In order to show the second item of the theorem, it is again sufficient to consider
𝑑 = 1 only. We consider the case 𝛼 = 1 and show in a first step that

𝐾sob,1,1,𝛾 (𝑥, 𝑦) = 1 + 𝛾

𝜋2

∞∑︁
𝑚=1

2
𝑚2 cos(𝜋𝑚𝑥) cos(𝜋𝑚𝑦) = 𝐾cos,1,1,𝛾 𝜋−2 (𝑥, 𝑦). (7.17)

To this end we compute the cosine coefficients of 𝐾sob,1,1,𝛾 . It is easy to check that∫ 1

0

∫ 1

0
𝐾sob,1,1,𝛾 (𝑥, 𝑦) cos(𝜋𝑛𝑥) cos(𝜋𝑚𝑦) d𝑥 d𝑦 = 0

if 𝑛 = 0 and 𝑚 ≥ 1 or vice versa. Furthermore, if 𝑛 = 𝑚 = 0 we have∫ 1

0

∫ 1

0
𝐾sob,1,1,𝛾 (𝑥, 𝑦) d𝑥 d𝑦 = 1

according to Proposition 7.8.

7.2 Sobolev Spaces of Higher Smoothness and Cosine Spaces 293

It remains to consider the case where both 𝑛 and 𝑚 are nonzero. From (7.16) we
get

𝐵2 (|𝑥 − 𝑦 |) =
1

2𝜋2

∑︁
𝑘∈Z\{0}

e2𝜋i𝑘 (𝑥−𝑦)

𝑘2

=

∞∑︁
𝑘=1

cos(2𝜋𝑘𝑥) cos(2𝜋𝑘𝑦)
𝜋2𝑘2 +

∞∑︁
𝑘=1

sin(2𝜋𝑘𝑥) sin(2𝜋𝑘𝑦)
𝜋2𝑘2 .

Now we use that the cosine series expansion of the map 𝑥 ↦→ 𝑥 − 1/2 is given by

− 4
𝜋2

∞∑︁
𝑘=1
𝑘 odd

1
𝑘2 cos(𝜋𝑘𝑥) (7.18)

in order to obtain(
𝑥 − 1

2

) (
𝑦 − 1

2

)
+ 𝐵2 (|𝑥 − 𝑦 |)

2

=

∞∑︁
𝑘,ℓ=1

16
𝜋4 (2𝑘 − 1)2 (2ℓ − 1)2 cos(𝜋(2𝑘 − 1)𝑥) cos(𝜋(2ℓ − 1)𝑦)

+
∞∑︁
𝑘=1

cos(2𝜋𝑘𝑥) cos(2𝜋𝑘𝑦)
2𝜋2𝑘2 +

∞∑︁
𝑘=1

sin(2𝜋𝑘𝑥) sin(2𝜋𝑘𝑦)
2𝜋2𝑘2 .

This immediately implies that∫ 1

0

∫ 1

0
𝐾sob,1,1,𝛾 (𝑥, 𝑦)

√
2 cos(𝜋𝑚𝑥)

√
2 cos(𝜋𝑛𝑦) d𝑥 d𝑦 = 0

if 𝑚 is even and 𝑛 is odd or vice versa, or if 𝑚, 𝑛 are even with 𝑚 ≠ 𝑛. If 𝑚 = 𝑛 = 𝑘

for even 𝑘 ≥ 2, we obtain∫ 1

0

∫ 1

0
𝐾sob,1,1,𝛾 (𝑥, 𝑦)

√
2 cos(𝜋𝑘𝑥)

√
2 cos(𝜋𝑘𝑦) d𝑥 d𝑦 =

𝛾

𝜋2𝑘2 .

In the next step, let 𝑚, 𝑛 ≥ 1 be odd. We have∫ 1

0
sin(2𝜋𝑘𝑥) cos(𝜋ℓ𝑥) d𝑥 =

2𝑘 (1 − (−1)ℓ)
𝜋(4𝑘2 − ℓ2)

for 𝑘, ℓ ∈ Z,

and therefore

294 7 Lattice Rules for Nonperiodic Integrands

∫ 1

0

∫ 1

0
𝐾sob,1,1,𝛾 (𝑥, 𝑦)

√
2 cos(𝜋𝑚𝑥)

√
2 cos(𝜋𝑛𝑦) d𝑥 d𝑦

= 𝛾

(
8

𝜋4𝑚2𝑛2 + 16
𝜋4

∞∑︁
𝑘=1

1
(4𝑘2 − 𝑚2) (4𝑘2 − 𝑛2)

)
.

For 𝑚 ≠ 𝑛 we have
∞∑︁
𝑘=1

1
(4𝑘2 − 𝑚2) (4𝑘2 − 𝑛2)

= − 1
2𝑚2𝑛2 ,

and we further observe that
∞∑︁
𝑘=1

1
(4𝑘2 − 𝑚2)2 =

𝜋2𝑚2 − 8
16𝑚4 .

Thus we obtain∫ 1

0

∫ 1

0
𝐾sob,1,1,𝛾 (𝑥, 𝑦)

√
2 cos(𝜋𝑚𝑥)

√
2 cos(𝜋𝑛𝑦) d𝑥 d𝑦 =

{
0 if 𝑚 ≠ 𝑛,

𝛾/(𝜋𝑚)2 if 𝑚 = 𝑛.

In summary, we have, for 𝑚, 𝑛 ∈ N0,

𝐾sob,1,1,𝛾 (𝑚, 𝑛) =

1 if 𝑚 = 𝑛 = 0,
𝛾/(𝜋𝑚)2 if 𝑚 = 𝑛 ≥ 1,
0 if 𝑚 ≠ 𝑛.

Thus, the cosine series expansion of 𝐾sob,1,1,𝛾 is given by

𝐾sob,1,1,𝛾 (𝑥, 𝑦) = 1 + 𝛾

𝜋2

∞∑︁
𝑚=1

2
𝑚2 cos(𝜋𝑚𝑥) cos(𝜋𝑚𝑦).

Note that the cosine series of 𝐾sob,1,1,𝛾 converges absolutely. Since the function
𝐾sob,1,1,𝛾 is continuous, the cosine series converges to the function pointwise. This
completes the proof of the identity (7.17).

From (7.17) we find

Hsob,1,1,𝛾 = Hcos,1,1,𝛾 𝜋−2 , and ∥ 𝑓 ∥sob,1,1,𝛾 = ∥ 𝑓 ∥cos,1,1,𝛾 𝜋−2 for 𝑓 ∈ Hsob,1,1,𝛾 .
(7.19)

This in turn implies that
Hsob,1,1,𝜸 ⇋ Hcos,1,1,𝜸 .

Next, we show Item 3. Let 𝛼 ∈ N, 𝛼 ≥ 2. The function 𝑥 ↦→ 𝑥 belongs to
Hsob,1,𝛼,𝛾 for all 𝛼 ∈ N. On the other hand we have the expansion

7.2 Sobolev Spaces of Higher Smoothness and Cosine Spaces 295

𝑥 =
1
2
− 4
𝜋2

∞∑︁
𝑘=1
𝑘 odd

cos(𝜋𝑘𝑥)
𝑘2 . (7.20)

Hence the function 𝑥 ↦→ 𝑥 is not in Hcos,1,𝛼,𝛾 for 𝛼 ≥ 3/2 and therefore

Hsob,1,𝛼,𝛾 ⊄ Hcos,1,𝛼,𝛾 for 𝛼 ∈ N, 𝛼 ≥ 2.

Conversely, let 𝑓 ∈ Hcos,1,𝛼,𝛾 be given by the cosine expansion

𝑓 (𝑥) = �̃� (0) +
∞∑︁
𝑘=1

�̃� (𝑘)
√

2 cos(𝜋𝑘𝑥)

with

∥ 𝑓 ∥2
cos,1,𝛼,𝛾 = | �̃� (0) |2 + 1

𝛾

∞∑︁
𝑘=1

| �̃� (𝑘) |2 |𝑘 |2𝛼 < ∞.

Then for 𝜏 ∈ [𝛼] we have

𝑓 (𝜏) (𝑥) =
∞∑︁
𝑘=1

�̃� (𝑘) (−1) ⌈𝜏/2⌉ (𝑘𝜋)𝜏
√

2 𝜙𝜏 (𝜋𝑘𝑥),

where 𝜙𝜏 (𝑧) = cos(𝑧) for even 𝜏 and 𝜙𝜏 (𝑧) = sin(𝑧) for odd 𝜏, and where, for a real
number 𝑥, ⌈𝑥⌉ denotes the smallest integer greater than or equal to 𝑥. This yields

1
𝛾

����∫ 1

0
𝑓 (𝜏) (𝑥) d𝑥

����2 ≤ 1
𝛾

∫ 1

0
| 𝑓 (𝜏) (𝑥) |2 d𝑥

=
𝜋2𝜏

𝛾

∞∑︁
𝑘=1

| �̃� (𝑘) |2𝑘2𝜏

≤ 𝜋2𝜏 ∥ 𝑓 ∥2
cos,1,𝛼,𝛾 .

Thus we have

∥ 𝑓 ∥sob,1,𝛼,𝛾 ≤
(
𝛼∑︁
𝜏=0

𝜋2𝜏

)1/2

∥ 𝑓 ∥cos,1,𝛼,𝛾 =

(
𝜋2(𝛼+1) − 1
𝜋2 − 1

)1/2
∥ 𝑓 ∥cos,1,𝛼,𝛾 ,

and hence
Hcos,1,𝛼,𝛾 ↩→ Hsob,1,𝛼,𝛾 .

Finally, we come to the proof of Item 4. Let 𝛼 > 1/2. The function 𝑓 with

𝑓 (𝑥) = sin(2𝜋𝑥) for 𝑥 ∈ [0, 1]

belongs to Hkor,1,𝛼,𝛾 for all 𝛼 > 1/2. On the other hand we have, for 𝑘 ∈ N,

296 7 Lattice Rules for Nonperiodic Integrands

�̃� (𝑘) =
∫ 1

0
sin(2𝜋𝑥)

√
2 cos(𝜋𝑘𝑥) d𝑥 =

{
4
√

2/(𝜋(4 − 𝑘2)) if 𝑘 is odd,
0 otherwise.

Consequently,

∥ 𝑓 ∥2
cos,1,𝛼,𝛾 =

1
𝛾

∞∑︁
𝑘=1
𝑘 odd

| �̃� (𝑘) |2𝑘2𝛼 =
1
𝛾

32
𝜋2

∞∑︁
𝑘=1

(2𝑘 − 1)2𝛼

((2𝑘 − 1)2 − 4)2 .

This implies that ∥ 𝑓 ∥cos,1,𝛼,𝛾 = ∞ for 𝛼 ≥ 3/2, and hence

Hkor,1,𝛼,𝛾 ⊄ Hcos,1,𝛼,𝛾 for 𝛼 ≥ 3/2.

Conversely, let now

𝑓 (𝑥) = cos(𝜋𝑥) for 𝑥 ∈ [0, 1] .

Then 𝑓 ∈ Hcos,1,𝛼,𝛾 for all 𝛼 > 1/2. However, for ℎ ∈ Z the Fourier coefficients of
𝑓 are given by

�̂� (ℎ) =
∫ 1

0
cos(𝜋𝑥) e−2𝜋iℎ𝑥 d𝑥 =

4iℎ
𝜋(1 − 4ℎ2)

and hence
∥ 𝑓 ∥2

kor,1,𝛼,𝛾 =
1
𝛾

16
𝜋2

∑︁
ℎ∈Z\{0}

|ℎ|2𝛼 ℎ2

(4ℎ2 − 1)2 = ∞,

since 𝛼 > 1/2. This implies that 𝑓 ∉ Hkor,1,𝛼,𝛾 and therefore we have

Hcos,1,𝛼,𝛾 ⊄ Hkor,1,𝛼,𝛾 .

This concludes the proof. □

Relations between the unanchored Sobolev space of smoothness one and the
anchored Sobolev space of smoothness one

We close this section with a brief discussion of the relation between the unanchored
Sobolev space of smoothness one and the anchored Sobolev space of smoothness
one as introduced in Section 7.1. The following result, which we state without a
proof here, is the special 𝐿2-case of [95, Proposition 13].

Proposition 7.34 For general weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] the following holds. The 𝜸-
weighted unanchored Sobolev space Hsob,𝑑,𝜸 and the 𝜸-weighted anchored Sobolev
space H⋔sob,𝑑,𝜸,0 are equal (as sets of functions) if and only if

𝛾𝔲 > 0 implies 𝛾𝔳 > 0 for all 𝔳 ⊆ 𝔲 ⊆ [𝑑] . (7.21)

7.2 Sobolev Spaces of Higher Smoothness and Cosine Spaces 297

Moreover, if (7.21) does not hold, then

H⋔sob,𝑑,𝜸,0 ⊄ Hsob,𝑑,𝜸 and Hsob,𝑑,𝜸 ⊄ H⋔sob,𝑑,𝜸,0.

Condition (7.21) is certainly satisfied for product weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with
𝛾 𝑗 ∈ (0, 1] for all 𝑗 ∈ [𝑑]. We will restrict ourselves to this case now. According to
Proposition 7.32 it is desirable to have information on the norm of the embedding
operator 𝚤𝑑,𝜸 : H⋔sob,𝑑,𝜸,0 → Hsob,𝑑,𝜸 and its inverse 𝚤−1

𝑑,𝜸 : Hsob,𝑑,𝜸 → H⋔sob,𝑑,𝜸,0
since these norms equal the factors involved when the worst-case errors for the
respective Sobolev spaces are estimated against each other. The following result is
taken from [145].

Theorem 7.35 Consider product weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 ∈ (0, 1] for all
𝑗 ∈ [𝑑]. Then we have

∥𝚤𝑑,𝜸 ∥ = ∥𝚤−1
𝑑,𝜸 ∥ =

𝑑∏
𝑗=1

(
1 +

√︂
𝛾 𝑗

3

(√︂
1 +

𝛾 𝑗

12
+

√︂
𝛾 𝑗

12

))1/2

. (7.22)

Moreover, for any 𝑗 ∈ [𝑑]

1 +
√︂
𝛾 𝑗

3
+
𝛾 𝑗

6
≤ 1 +

√︂
𝛾 𝑗

3

(√︂
1 +

𝛾 𝑗

12
+

√︂
𝛾 𝑗

12

)
≤ 1 +

√︂
𝛾 𝑗

3
+
𝛾 𝑗

6
+
𝛾

3/2
𝑗

24
√

3
.

(7.23)

Proof Since the spaces Hsob,𝑑,𝜸 and H⋔sob,𝑑,𝜸,0 with product weights are tensor
products of the corresponding spaces of univariate functions, it is enough to prove
(7.22) for 𝑑 = 1 and a generic weight 𝛾 ∈ (0, 1]. Moreover we will only consider
∥ 𝑓 ∥sob,1,𝛾,0/∥ 𝑓 ∥sob,1,𝛾 since the proof for ∥ 𝑓 ∥sob,1,𝛾/∥ 𝑓 ∥sob,1,𝛾,0 is very similar.
The formulas for the respective univariate norms are to be found in Remark 7.7 and
in Equation (7.11) (with the choice 𝑐 = 0).

Note that for constant 𝑓 ≡ 𝑐, ∥ 𝑓 ∥sob,1,𝛾,0/∥ 𝑓 ∥sob,1,𝛾 = 1. Hence it is enough to
consider 𝑓 with

𝑓 (𝑥) =
𝑐
√
𝛾
+

∫ 1

0
ℎ(𝑡) 1[0,𝑥) (𝑡) d𝑡

for some 𝑐 ≥ 0 and ℎ such that ∥ℎ∥𝐿2 = 1. Then

∥ 𝑓 ∥2
sob,1,𝛾 =

1 + 𝑐2

𝛾
.

Furthermore, ∫ 1

0
𝑓 (𝑥) d𝑥 =

𝑐
√
𝛾
+

∫ 1

0
ℎ(𝑡) (1 − 𝑡) d𝑡

≤ 1
√
𝛾

(
𝑐 +

√
𝛾 ∥ℎ∥𝐿2√

3

)
(7.24)

298 7 Lattice Rules for Nonperiodic Integrands

=
1
√
𝛾

(
𝑐 +

√︂
𝛾

3

)
and, therefore,

∥ 𝑓 ∥2
sob,1,𝛾,0 ≤ 1

𝛾

((
𝑐 +

√︂
𝛾

3

)2

+ 1

)
.

So,

∥ 𝑓 ∥2
sob,1,𝛾,0

∥ 𝑓 ∥2
sob,1,𝛾

≤
(𝑐 +

√︁
𝛾/3)2 + 1
𝑐2 + 1

=
𝑐2 + 1 + 2𝑐

√︁
𝛾/3 + 𝛾/3

𝑐2 + 1
= 1 +

√︂
𝛾

3
𝜌(𝑐, 𝛾),

where

𝜌(𝑐, 𝛾) =
2𝑐 +

√︁
𝛾/3

𝑐2 + 1
.

It is easy to verify that

max
𝑐≥0

𝜌(𝑐, 𝛾) = 𝜌(𝑐∗𝛾 , 𝛾), where 𝑐∗𝛾 =

√︂
1 + 𝛾

12
−

√︂
𝛾

12
,

which yields
∥ 𝑓 ∥2

sob,1,𝛾,0

∥ 𝑓 ∥2
sob,1,𝛾

≤ 1 +
√︂
𝛾

3
𝜌(𝑐∗𝛾 , 𝛾).

This shows that ∥𝚤1,𝛾 ∥ ≤ 1 +
√︁
𝛾/3 𝜌(𝑐∗𝛾 , 𝛾). To prove equality it is enough to note

that for ℎ(𝑡) =
√

3 (1 − 𝑡) we have equality in (7.24), i.e.,∫ 1

0
ℎ(𝑡) (1 − 𝑡) d𝑡 =

1
√

3
.

This proves that

∥𝚤1,𝛾 ∥2 = 1 +
√︂
𝛾

3
𝜌(𝑐∗𝛾 , 𝛾). (7.25)

It is easy to verify that

𝜌(𝑐∗𝛾 , 𝛾) =

√︁
1 + 𝛾/12

1 + 𝛾/12 −
√︁
𝛾/12 + (𝛾/12)2

=
1√︁

1 + 𝛾/12 −
√︁
𝛾/12

.

Therefore, applying the conjugate to the last fraction we get

𝜌(𝑐∗𝛾 , 𝛾) =

√︂
1 + 𝛾

12
+

√︂
𝛾

12
.

This proves (7.22).

7.2 Sobolev Spaces of Higher Smoothness and Cosine Spaces 299

It remains to show (7.23). The first inequality is trivial. Clearly,√︂
𝛾

3

(√︂
1 + 𝛾

12
+

√︂
𝛾

12

)
=

√︂
𝛾

3
+

√︂
𝛾

3

(√︂
𝛾

12
+

√︂
1 + 𝛾

12
− 1

)
=

√︂
𝛾

3
+ 𝛾

6
+ 𝐸 (𝛾),

where

𝐸 (𝛾) :=
√︂
𝛾

3

(√︂
1 + 𝛾

12
− 1

)
.

Obviously, the term 𝐸 (𝛾) is nonnegative, and can be upper-bounded as

𝐸 (𝛾) =

√︂
𝛾

3
𝛾/12√︁

1 + 𝛾/12 + 1
=

𝛾3/2

24
√

3
2√︁

1 + 𝛾/12 + 1
≤ 𝛾3/2

24
√

3
.

Consequently,

1 +
√︂
𝛾

3

(√︂
1 + 𝛾

12
+

√︂
𝛾

12

)
≤ 1 +

√︂
𝛾

3
+ 𝛾

6
+ 𝛾3/2

24
√

3
,

which completes the proof. □

Theorem 7.35 implies that the embedding norms can be bounded independently
of the dimension 𝑑 if (√𝛾 𝑗) 𝑗≥1 decays to zero fast enough that

∑∞
𝑗=1

√
𝛾 𝑗 < ∞.

Hence, even tractability results can be transferred from the unanchored Sobolev
space to the anchored Sobolev space and vice versa, when this weight condition is
satisfied.

Remark 7.36 Proposition 7.32 together with Condition (7.21) make it possible to
bound the worst-case errors in the spaces Hsob,𝑑,𝜸 and H⋔sob,𝑑,𝜸,0 in terms of each
other. What, however, if Condition (7.21) is not met? In this case, one can use
methods as in [147] to show that we can bound the worst-case error of a QMC
rule directly in terms of the weighted 𝐿2-discrepancy of the point set underlying the
integration rule. To be more precise, we have the estimate

err𝑁,𝑑 (Hsob,𝑑,𝜸,P) ≤ 𝐿2,𝑁 ,�̃� (P)

for any 𝑁-point set P in [0, 1)𝑑 , where the weights �̃� are given by �̃� = (�̃�𝔲)𝔲⊆[𝑑]
with

�̃�𝔲 :=
©«3 |𝔲 |

∑︁
𝔲⊆𝔳⊆[𝑑]
𝛾𝔳≠0

𝛾4
𝔳

(
2
3

) |𝔳 | ª®®®¬
1/2

for 𝔲 ⊆ [𝑑] .

300 7 Lattice Rules for Nonperiodic Integrands

7.3 Folded Lattice Rules

A further method to obtain higher order convergence for smooth functions is an
application of the tent transformation.

The tent transformation 𝜙 : [0, 1] → [0, 1],

𝜙(𝑥) := 1 − |2𝑥 − 1|,

is a Lebesgue measure preserving function (see Figure 7.2). We apply the tent
transformation coordinate-wise to points 𝒙 = (𝑥1, . . . , 𝑥𝑑) in the 𝑑-dimensional unit
cube [0, 1]𝑑 , i.e.,

𝜙(𝒙) := (𝜙(𝑥1), . . . , 𝜙(𝑥𝑑)).

Fig. 7.2: The tent transformation 𝜙 : [0, 1] → [0, 1].

Definition 7.37 Let P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} be a point set in the unit cube [0, 1]𝑑 .
Then we call

P𝜙 := {𝜙(𝒙0), 𝜙(𝒙1), . . . , 𝜙(𝒙𝑁−1)}

the corresponding folded point set or the tent-transformed point set. If P = P(𝒈, 𝑁)
is the node set of a rank-1 lattice rule, then we write P𝜙 (𝒈, 𝑁) for the corresponding
folded version.

A QMC rule that is based on the folded version of a rank-1 lattice point set is
called a folded lattice rule or a tent-transformed lattice rule.

Examples of tent-transformed lattice point sets are shown in Figure 7.3.

7.3 Folded Lattice Rules 301

Fig. 7.3: The Fibonacci lattice point sets P((1, 21), 34) (top left) and
P((1, 377), 610) (bottom left), and the folded versions thereof (right).

The first author who applied the tent transformation to QMC rules was Hick-
ernell [101], motivated by the following observation in the one-dimensional case.
Consider the left-rectangle rule

R𝑁 (𝑓) =
1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

(
𝑘

𝑁

)
for 𝑓 : [0, 1] → R,

where we assume that 𝑁 is even. Applying the tent transformation to the 𝑁 nodes
0, 1/𝑁, 2/𝑁, . . . , (𝑁 − 1)/𝑁 of this rule leads to the sequence

0,
2
𝑁
,

4
𝑁
, . . . , 1,

𝑁 − 2
𝑁

,
𝑁 − 4
𝑁

, . . . ,
2
𝑁
,

i.e., to the quadrature rule

302 7 Lattice Rules for Nonperiodic Integrands

T𝑁 (𝑓) =
1
𝑁
𝑓 (0) + 2

𝑁

(𝑁−2)/2∑︁
𝑘=1

𝑓

(
2𝑘
𝑁

)
+ 1
𝑁
𝑓 (1).

The latter, however, is a trapezoidal rule. While the rectangle rule is known to have
an error rate of order O(𝑁−1), the trapezoidal rule has a quadrature error of order
O(𝑁−2) if applied to sufficiently smooth integrands.

Randomized folded lattice rules

Hickernell [101] studied integration using folded QMC rules in the (unweighted)
unanchored Sobolev space of smoothness 𝛼 = 2. However, this study still requires a
random shift in addition to folding. In particular, starting from a rank-1 lattice rule,
a quadrature rule is a so-called shifted and folded lattice rule if it is of the form

𝑄
𝜙

𝑁,𝑑
(𝑓 ,𝚫) :=

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

(
𝜙

({
𝑘

𝑁
𝒈 + 𝚫

}))
.

An example of a shifted and folded lattice point set is shown in Figure 7.4.

Fig. 7.4: The Fibonacci lattice point set P((1, 21), 34) (left), its shifted version with
shift 𝚫 = (0.4, 0.7) (middle), and its shifted and folded version (right).

Assume that the components of the shift 𝚫 are i.i.d. uniformly distributed on
[0, 1]. As for randomly shifted lattice rules, randomly shifted and folded lattice rules
are also unbiased, that is, the expected value equals the integral. To see this, first
note that, for any integrable function 𝑔 : [0, 1] → R and any 𝑎 ∈ [0, 1/2], we have∫ 1

0
𝑔(𝜙({𝑎 + 𝑥})) d𝑥 =

∫ 1/2−𝑎

0
𝑔(2(𝑎 + 𝑥)) d𝑥 +

∫ 1−𝑎

1/2−𝑎
𝑔(2 − 2(𝑎 + 𝑥)) d𝑥

+
∫ 1

1−𝑎
𝑔(2(𝑎 + 𝑥 − 1)) d𝑥

7.3 Folded Lattice Rules 303

=

∫ 1/2

𝑎

𝑔(2𝑥) d𝑥 +
∫ 1

1/2
𝑔(2 − 2𝑥) d𝑥 +

∫ 𝑎

0
𝑔(2𝑥) d𝑥

=

∫ 1/2

0
𝑔(2𝑥) d𝑥 +

∫ 1

1/2
𝑔(2 − 2𝑥) d𝑥

=

∫ 1

0
𝑔(𝑥) d𝑥.

The same property holds for 1/2 < 𝑎 ≤ 1. Using this property component-wise, we
obtain

E
[
𝑄
𝜙

𝑁,𝑑
(𝑓 ,𝚫)

]
=

∫
[0,1]𝑑

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

(
𝜙

({
𝑘

𝑁
𝒈 + 𝚫

}))
d𝚫

=
1
𝑁

𝑁−1∑︁
𝑘=0

∫
[0,1]𝑑

𝑓

(
𝜙

({
𝑘

𝑁
𝒈 + 𝚫

}))
d𝚫

=

∫
[0,1]𝑑

𝑓 (𝒙) d𝒙.

Hence the expected value of our estimator equals the integral which we want to
approximate. Therefore, in order to get an estimate of the deviation of the random
variable 𝑄𝜙

𝑁,𝑑
(𝑓 ,𝚫) from its expected value, we consider the root mean square

worst-case error in the following. (A different kind of variance measure will be
considered in Chapter 11.)

Definition 7.38 Assume that the components of the shift 𝚫 are i.i.d. uniformly dis-
tributed on [0, 1]. Then the root mean square worst-case error of a shifted and folded
QMC rule based on the point set P applied to functions in a Hilbert space H ,

errsh,𝜙
𝑁 ,𝑑

(H ,P) :=
√︃
E

[
(err𝑁,𝑑 (H ,P𝚫,𝜙))2

]
,

is referred to as the shift-averaged and folded worst-case error. Here, expectation is
considered with respect to the choice of 𝚫.

Theorem 7.5 can now easily be adapted to the following.

Theorem 7.39 The shift-averaged and folded worst-case error of a QMC rule based
on an 𝑁-element point set P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in [0, 1)𝑑 in a reproducing kernel
Hilbert space H(𝐾) is given as

[errsh,𝜙
𝑁 ,𝑑

(H (𝐾),P)]2 = −
∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾 (𝒙, 𝒚) d𝒙 d𝒚 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾sh,𝜙 (𝒙𝑘 , 𝒙ℓ),

where
𝐾sh,𝜙 (𝒙𝑘 , 𝒙ℓ) :=

∫
[0,1]𝑑

𝐾 (𝜙({𝒙 + 𝚫}), 𝜙({𝒚 + 𝚫})) d𝚫.

304 7 Lattice Rules for Nonperiodic Integrands

The effect of shifting and folding has been successfully used for integration
in Hsob,𝑑,2,1, which is the unweighted version of the unanchored Sobolev space of
smoothness 𝛼 = 2, by means of lattice rules. Based on the Fourier series expansion of
Bernoulli polynomials one can compute 𝐾sh,𝜙

sob,𝑑,2,𝜸, which reveals a direct relation to
the Korobov kernel𝐾kor,𝑑,2,𝜸 of smoothness𝛼 = 2. Using the known results for lattice
rule integration in Korobov spaces, this implies that errsh,𝜙

𝑁 ,𝑑
(Hsob,𝑑,2,𝜸,P(𝒈, 𝑁)) is

of order O(𝑁−2+𝜀) for every 𝜀 > 0. For details we refer to [101]. Below (see
Corollary 7.46) we will more precisely explain a deterministic version of these
findings.

Shifted and folded lattice rules for integration in half-period cosine spaces have
been studied by Cools, Kuo, Nuyens, and Suryanarayana [30]. Also for this case,
one can obtain almost optimal convergence rates, and also for this case we will give
a deterministic version of these findings in the following.

Deterministic folded lattice rules

In the above considerations we require a random shift in addition to the tent transfor-
mation in order to obtain higher order convergence rates. There are cases where this
random element is not needed. Indeed, in [50] folded lattice rules are applied to in-
tegrands in the half-period cosine space. The main observation is that the worst-case
integration error of a folded lattice rule in Hcos,𝑑,𝛼,𝜸 is bounded by the worst-case
error of the nonfolded version of the same lattice rule in the Korobov spaceHkor,𝑑,𝛼,𝜸
with the same smoothness parameter 𝛼 and the same weights 𝜸. The following result
was first shown in [50].

Theorem 7.40 The worst-case error of a folded lattice rule in the half-period cosine
space Hcos,𝑑,𝛼,𝜸 satisfies

err𝑁,𝑑 (Hcos,𝑑,𝛼,𝜸,P𝜙 (𝒈, 𝑁)) ≤ err𝑁,𝑑 (Hkor,𝑑,𝛼,𝜸,P(𝒈, 𝑁)).

Proof Using the worst-case error formula for QMC rules in reproducing kernel
Hilbert spaces in Theorem 1.27 we obtain

[err𝑁,𝑑 (Hcos,𝑑,𝛼,𝜸,P𝜙 (𝒈, 𝑁))]2 =

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾cos,𝑑,𝛼,𝜸 (𝒙, 𝒚) d𝒙 d𝒚

− 2
𝑁

𝑁−1∑︁
𝑘=0

∫
[0,1]𝑑

𝐾cos,𝑑,𝛼,𝜸 (𝜙(𝒙𝑘), 𝒚) d𝒚 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾cos,𝑑,𝛼,𝜸 (𝜙(𝒙𝑘), 𝜙(𝒙ℓ)),

where P(𝒈, 𝑁) = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1}. From Proposition 7.31 we know that∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾cos,𝑑,𝛼,𝜸 (𝒙, 𝒚) d𝒙 d𝒚 = 1,

7.3 Folded Lattice Rules 305

and by the same argument as used in the proof of Proposition 7.31 we also obtain∫
[0,1]𝑑

𝐾cos,𝑑,𝛼,𝜸 (𝜙(𝒙𝑘), 𝒚) d𝒚 = 1 for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}.

This yields

[err𝑁,𝑑 (Hcos,𝑑,𝛼,𝜸,P𝜙 (𝒈, 𝑁))]2 = −1 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾cos,𝑑,𝛼,𝜸 (𝜙(𝒙𝑘), 𝜙(𝒙ℓ)).

We now consider the kernel function 𝐾cos,𝑑,𝛼,𝜸. For 𝑘, ℓ ∈ {0, 1, . . . , 𝑁 −1} we have

𝐾cos,𝑑,𝛼,𝜸 (𝜙(𝒙𝑘), 𝜙(𝒙ℓ)) =
∑︁

𝔲⊆[𝑑]
𝛾𝔲

∑︁
𝒉𝔲 ∈N|𝔲 |

∏
𝑗∈𝔲

2 cos(𝜋ℎ 𝑗𝜙(𝑥𝑘, 𝑗)) cos(𝜋ℎ 𝑗𝜙(𝑥ℓ, 𝑗))
ℎ2𝛼
𝑗

.

Furthermore, for any ℎ ∈ N0 and 𝑥 ∈ [0, 1], it is true that

cos(𝜋ℎ𝜙(𝑥)) = cos(2𝜋ℎ𝑥) = e2𝜋iℎ𝑥 + e−2𝜋iℎ𝑥

2
.

Therefore, for a vector 𝒉𝔲 ∈ N |𝔲 | and for 𝒙𝔲 ∈ [0, 1] |𝔲 | , we have∏
𝑗∈𝔲

cos(𝜋ℎ 𝑗𝜙(𝑥 𝑗)) =
∏
𝑗∈𝔲

e2𝜋iℎ 𝑗 𝑥 𝑗 + e−2𝜋iℎ 𝑗 𝑥 𝑗

2

=
1

2 |𝔲 |

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

e2𝜋i(𝝈𝔲∗𝒉𝔲) ·𝒙𝔲 , (7.26)

where 𝝈𝔲 ∗ 𝒉𝔲 := (𝜎𝑗ℎ 𝑗) 𝑗∈𝔲 means component-wise multiplication. Inserting into
the formula for the kernel yields

𝐾cos,𝑑,𝛼,𝜸 (𝜙(𝒙𝑘), 𝜙(𝒙ℓ)) =
∑︁

𝔲⊆[𝑑]
𝛾𝔲2 |𝔲 |

∑︁
𝒉𝔲 ∈N|𝔲 |

∏
𝑗∈𝔲

1
ℎ2𝛼
𝑗

× ©« 1
2 |𝔲 |

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

e2𝜋i(𝝈𝔲∗𝒉𝔲) ·𝒙𝑘,𝔲ª®¬ ©« 1
2 |𝔲 |

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

e2𝜋i(𝝈𝔲∗𝒉𝔲) ·𝒙ℓ,𝔲ª®¬ .
Averaging over all 𝑘, ℓ ∈ {0, 1, . . . , 𝑁 − 1} gives

1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾cos,𝑑,𝛼,𝜸 (𝜙(𝒙𝑘), 𝜙(𝒙ℓ)) =
∑︁

𝔲⊆[𝑑]
𝛾𝔲2 |𝔲 |

∑︁
𝒉𝔲 ∈N|𝔲 |

∏
𝑗∈𝔲

1
ℎ2𝛼
𝑗

× ©« 1
2 |𝔲 |

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i(𝝈𝔲∗𝒉𝔲) ·𝒙𝑘,𝔲ª®¬

306 7 Lattice Rules for Nonperiodic Integrands

× ©« 1
2 |𝔲 |

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

1
𝑁

𝑁−1∑︁
ℓ=0

e2𝜋i(𝝈𝔲∗𝒉𝔲) ·𝒙ℓ,𝔲ª®¬
=

∑︁
𝔲⊆[𝑑]

𝛾𝔲2 |𝔲 |
∑︁

𝒉𝔲 ∈N|𝔲 |

∏
𝑗∈𝔲

1
ℎ2𝛼
𝑗

×
©«

1
2 |𝔲 |

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

(𝝈𝔲∗𝒉𝔲) ·𝒈𝔲≡0 (mod 𝑁)

1
ª®®®®¬
©«

1
2 |𝔲 |

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

(𝝈𝔲∗𝒉𝔲) ·𝒈𝔲≡0 (mod 𝑁)

1
ª®®®®¬
.

We trivially estimate
1

2 |𝔲 |

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

(𝝈𝔲∗𝒉𝔲) ·𝒈𝔲≡0 (mod 𝑁)

1 ≤ 1,

and hence

1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾cos,𝑑,𝛼,𝜸 (𝜙(𝒙𝑘), 𝜙(𝒙ℓ)) ≤
∑︁

𝔲⊆[𝑑]
𝛾𝔲

∑︁
𝒉𝔲 ∈N|𝔲 |

∏
𝑗∈𝔲

1
ℎ2𝛼
𝑗

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

(𝝈𝔲∗𝒉𝔲) ·𝒈𝔲≡0 (mod 𝑁)

1

=
∑︁

𝔲⊆[𝑑]
𝛾𝔲

∑︁
𝒉𝔲 ∈(Z\{0}) |𝔲 |

𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |2𝛼

.

This implies that

[err𝑁,𝑑 (Hcos,𝑑,𝛼,𝜸,P𝜙 (𝒈, 𝑁))]2 ≤
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲

∑︁
𝒉𝔲 ∈(Z\{0}) |𝔲 |

𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |2𝛼

.

From Remark 2.22 we find that the latter expression is exactly the formula for the
squared worst-case integration error of the lattice rule with node set P(𝒈, 𝑁) in
Hkor,𝑑,𝛼,𝜸. This completes the proof. □

Theorem 7.40 implies that all upper bounds from Chapters 2, 3, and 4 on the
worst-case error in the weighted Korobov space using lattice rules also hold for
the worst-case error in the half-period cosine space using folded lattice rules. For
example, we can use Theorem 3.9 to obtain the following result.

Corollary 7.41 Let 𝑁 ≥ 2 be an arbitrary integer, let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be general
weights, and assume that 𝒈 has been found by Algorithm 3.6. Then for arbitrary
𝜏 ∈ [1/2, 𝛼) and for any 𝑠 ∈ [𝑑] it is true that

err𝑁,𝑠 (Hcos,𝑠,𝛼,𝜸,P𝜙 ((𝑔1, . . . , 𝑔𝑠), 𝑁)) ≤
©« 1
𝜑(𝑁)

∑︁
∅≠𝔲⊆[𝑠]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏

.

7.3 Folded Lattice Rules 307

Remark 7.42 The convergence rate obtained in Corollary 7.41 is essentially best
possible for general linear rules (see Remark 1.28) employed in cosine spaces of
smoothness 𝛼. It was shown in [50, Theorem 4] that for arbitrary 𝑁-element point
sets P in [0, 1]𝑑 and integration weights 𝒘 ∈ R𝑁 we have

err𝑁,𝑑 (Hcos,𝑑,𝛼,𝜸,P, 𝒘) ≥ 𝐶 (𝛼, 𝜸, 𝑑)
(log 𝑁) (𝑑−1)/2

𝑁𝛼
,

where we use notation as in Remark 1.28, and where 𝐶 (𝛼, 𝜸, 𝑑) > 0 depends only
on 𝛼, 𝜸, and 𝑑, but not on 𝑁 and 𝒘. The proof is based on the same method as the
proof of Theorem 2.10. We refer to the appendix of [50] for details.

For the case of smoothness 𝛼 = 1 we can apply the above findings also to
the weighted unanchored Sobolev space of smoothness one. From (7.19) we know
that the unanchored Sobolev space Hsob,𝑑,1,𝜸 and the cosine space Hcos,𝑑,1,�̃� with
�̃�𝔲 = 𝛾𝔲 𝜋

−2 |𝔲 | for 𝔲 ⊆ [𝑑] coincide. Therefore we also get the following result.

Corollary 7.43 Let 𝑁 ≥ 2 be an arbitrary integer, let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be general
weights, and assume that 𝒈 has been found by Algorithm 3.6. Then for arbitrary
𝜏 ∈ [1/2, 1) and for any 𝑠 ∈ [𝑑] we have

err𝑁,𝑠 (Hsob,𝑠,1,𝜸,P𝜙 ((𝑔1, . . . , 𝑔𝑠), 𝑁))

≤ ©« 1
𝜑(𝑁)

∑︁
∅≠𝔲⊆[𝑠]

(
𝛾𝔲

𝜋2 |𝔲 |

)1/(2𝜏) (
2𝜁

(
1
𝜏

)) |𝔲 |ª®¬
𝜏

.

Corollary 7.43 is a deterministic version of Theorem 7.12, where a random shift
was required for an analogous bound to hold.

The results above can also be extended to the case of smoothness 𝛼 = 2, as shown
by Goda, Suzuki, and Yoshiki [86]. The following theorem relates the error of a
folded lattice rule in Hsob,𝑑,2,𝜸 to the error of the same but nonfolded lattice rule in
the Korobov space Hkor,𝑑,1,𝜸 of smoothness 𝛼 = 1.

Theorem 7.44 The worst-case error of folded lattice rules in the unanchored Sobolev
space Hsob,𝑑,2,𝜸 of smoothness two satisfies

err𝑁,𝑑 (Hsob,𝑑,2,𝜸,P𝜙 (𝒈, 𝑁)) ≤ [err𝑁,𝑑 (Hkor,𝑑,1,�̃�1/2 ,P(𝒈, 𝑁))]2,

where the weights �̃�1/2
= {�̃�1/2

𝔲 }𝔲⊆[𝑑] are defined as �̃�∅ := 1 and

�̃�𝔲 := 𝛾𝔲
(

29
6𝜋4

) |𝔲 |
for ∅ ≠ 𝔲 ⊆ [𝑑]. (7.27)

For the proof of Theorem 7.44 we require the following lemma.

308 7 Lattice Rules for Nonperiodic Integrands

Lemma 7.45 For any 𝑥, 𝑦 ∈ [0, 1] we have

2∑︁
𝜏=1

𝐵𝜏 (𝜙(𝑥))𝐵𝜏 (𝜙(𝑦))
(𝜏!)2 − 𝐵4 (|𝜙(𝑥) − 𝜙(𝑦) |)

24

=
1
𝜋4

∞∑︁
ℎ,𝑚=1

𝑐(ℎ, 𝑚) cos(2𝜋ℎ𝑥) cos(2𝜋𝑚𝑦),

where

𝑐(ℎ, 𝑚) =

1
ℎ4

(
58
3

− 32
𝜋2ℎ2

)
if ℎ and 𝑚 are odd and ℎ = 𝑚,

1
ℎ2𝑚2

(
52
3

− 16
𝜋2ℎ2 − 16

𝜋2𝑚2

)
if ℎ and 𝑚 are odd and ℎ ≠ 𝑚,

6
ℎ4 if ℎ and 𝑚 are even and ℎ = 𝑚,

4
ℎ2𝑚2 if ℎ and 𝑚 are even and ℎ ≠ 𝑚,

0 otherwise.

In particular, we have for all ℎ, 𝑚 ∈ N,

0 ≤ 𝑐(ℎ, 𝑚) ≤ 58
3

1
ℎ2𝑚2 .

Proof Let 𝑘 ∈ N and ℓ ∈ N0. Using the definition of the tent transformation 𝜙 it is
easily checked that ∫ 1

0
sin(2𝜋𝑘𝜙(𝑥)) sin(2𝜋ℓ𝑥) d𝑥 = 0,

and ∫ 1

0
sin(2𝜋𝑘𝜙(𝑥)) cos(2𝜋ℓ𝑥) d𝑥 =

∫ 1

0
sin(2𝜋𝑘𝑥) cos(𝜋ℓ𝑥) d𝑥

=

4
𝜋

𝑘

4𝑘2 − ℓ2 if ℓ is odd,

0 if ℓ is even.

Therefore, the Fourier series expansion of sin(2𝜋𝑘𝜙(·)) is given by

sin(2𝜋𝑘𝜙(𝑥)) = 2
∞∑︁
ℓ=1

cos(2𝜋ℓ𝑥)
∫ 1

0
sin(2𝜋𝑘𝜙(𝑦)) cos(2𝜋ℓ𝑦) d𝑦

7.3 Folded Lattice Rules 309

=
8
𝜋

∞∑︁
ℓ=1
ℓ odd

𝑘

4𝑘2 − ℓ2 cos(2𝜋ℓ𝑥). (7.28)

This preliminary result will be used below in the proof.
Let us write 𝑏𝜏 := 𝐵𝜏/𝜏! for 𝜏 ∈ N. Furthermore, let 𝐵𝜏 be the periodic extension

of 𝐵𝜏
��
[0,1) to R and let �̃�𝜏 = 𝐵𝜏/𝜏!. We now need to consider

𝑏1 (𝜙(𝑥))𝑏1 (𝜙(𝑦)) + 𝑏2 (𝜙(𝑥))𝑏2 (𝜙(𝑦)) − �̃�4 (𝜙(𝑥) − 𝜙(𝑦)). (7.29)

From the expansion (7.20) we obtain

𝑏1 (𝜙(𝑥)) = 𝜙(𝑥) −
1
2
= − 4

𝜋2

∞∑︁
𝑘=1
𝑘 odd

cos(2𝜋𝑘𝑥)
𝑘2 .

Therefore the Fourier series expansion of the first term in (7.29) is given by

𝑏1 (𝜙(𝑥))𝑏1 (𝜙(𝑦)) =
16
𝜋4

∞∑︁
𝑘,ℓ=1
𝑘, ℓ odd

1
𝑘2ℓ2 cos(2𝜋𝑘𝑥) cos(2𝜋ℓ𝑦). (7.30)

From (2.8) it follows that

𝑏2 (𝑥) =
1

4𝜋2

∑︁
𝑘∈Z\{0}

e2𝜋i𝑘𝑥

𝑘2 .

Since, for 𝑘 ∈ N0 and 𝑥 ∈ [0, 1], we have cos(2𝜋𝑘𝜙(𝑥)) = cos(4𝜋𝑘𝑥), we obtain

𝑏2 (𝜙(𝑥)) =
1

2𝜋2

∞∑︁
𝑘=1

cos(2𝜋𝑘𝜙(𝑥))
𝑘2 =

2
𝜋2

∞∑︁
𝑘=1
𝑘 even

cos(2𝜋𝑘𝑥)
𝑘2 .

This implies that the Fourier series expansion of the second term in (7.29) is given
by

𝑏2 (𝜙(𝑥))𝑏2 (𝜙(𝑦)) =
4
𝜋4

∞∑︁
𝑘,ℓ=1
𝑘, ℓ even

1
𝑘2ℓ2 cos(2𝜋𝑘𝑥) cos(2𝜋ℓ𝑥). (7.31)

It remains to consider the third term in (7.29). From (2.8) we obtain the Fourier
series expansion of �̃�4, which is

�̃�4 (𝑥) = − 1
(2𝜋)4

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑥

|ℎ|4
.

Therefore, and since cos(2𝜋𝑘𝜙(𝑥)) = cos(4𝜋𝑘𝑥) for 𝑘 ∈ N0, we obtain

310 7 Lattice Rules for Nonperiodic Integrands

�̃�4 (𝜙(𝑥) − 𝜙(𝑦))

= − 2
(2𝜋)4

∞∑︁
𝑘=1

cos(2𝜋𝑘 (𝜙(𝑥) − 𝜙(𝑦)))
𝑘4

= − 2
𝜋4

∞∑︁
𝑘=1
𝑘 even

cos(2𝜋𝑘𝑥) cos(2𝜋𝑘𝑦)
𝑘4 − 1

8𝜋4

∞∑︁
𝑘=1

sin(2𝜋𝑘𝜙(𝑥)) sin(2𝜋𝑘𝜙(𝑦))
𝑘4 .

Now we use the preliminary result in (7.28) and obtain, for the second term in the
latter expression,

− 1
8𝜋4

∞∑︁
𝑘=1

sin(2𝜋𝑘𝜙(𝑥)) sin(2𝜋𝑘𝜙(𝑦))
𝑘4

= − 8
𝜋6

∞∑︁
𝑘=1

1
𝑘2

∞∑︁
ℓ,𝑚=1
ℓ, 𝑚 odd

1
(4𝑘2 − ℓ2) (4𝑘2 − 𝑚2)

cos(2𝜋ℓ𝑥) cos(2𝜋𝑚𝑦)

= − 8
𝜋6

∞∑︁
ℓ,𝑚=1
ℓ, 𝑚 odd

cos(2𝜋ℓ𝑥) cos(2𝜋𝑚𝑦)
∞∑︁
𝑘=1

1
𝑘2

1
(4𝑘2 − ℓ2) (4𝑘2 − 𝑚2)

. (7.32)

Next, we use the identities

∞∑︁
𝑘=1

1
4𝑘2 − ℓ2 =

1
2ℓ2 and

∞∑︁
𝑘=1

1
(4𝑘2 − ℓ2)2 =

1
4ℓ2

(
𝜋2

4
− 2
ℓ2

)
,

which hold for any positive odd integer ℓ. Thus, if ℓ = 𝑚 in (7.32), we have

∞∑︁
𝑘=1

1
𝑘2

1
(4𝑘2 − ℓ2) (4𝑘2 − 𝑚2)

=

∞∑︁
𝑘=1

1
𝑘2

1
(4𝑘2 − ℓ2)2

=
1
ℓ2

∞∑︁
𝑘=1

(
1
ℓ2

(
1
𝑘2 − 4

4𝑘2 − ℓ2

)
+ 4
(4𝑘2 − ℓ2)2

)
=

1
ℓ2

(
1
ℓ2

(
𝜋2

6
− 2
ℓ2

)
+ 1
ℓ2

(
𝜋2

4
− 2
ℓ2

))
=

1
ℓ4

(
5𝜋2

12
− 4
ℓ2

)
.

7.3 Folded Lattice Rules 311

If ℓ ≠ 𝑚 in (7.32), we have

∞∑︁
𝑘=1

1
𝑘2

1
(4𝑘2 − ℓ2) (4𝑘2 − 𝑚2)

=
1

ℓ2𝑚2

∞∑︁
𝑘=1

(
1
𝑘2 + 4

ℓ2 − 𝑚2

(
𝑚2

4𝑘2 − ℓ2 − ℓ2

4𝑘2 − 𝑚2

))
=

1
ℓ2𝑚2

(
𝜋2

6
+ 4
ℓ2 − 𝑚2

(
𝑚2

2ℓ2 − ℓ2

2𝑚2

))
=

1
ℓ2𝑚2

(
𝜋2

6
− 2
ℓ2 − 2

𝑚2

)
.

This implies that

− 1
8𝜋4

∞∑︁
𝑘=1

sin(2𝜋𝑘𝜙(𝑥)) sin(2𝜋𝑘𝜙(𝑦))
𝑘4

= − 8
𝜋6

∞∑︁
ℓ,𝑚=1
ℓ, 𝑚 odd
ℓ≠𝑚

cos(2𝜋ℓ𝑥) cos(2𝜋𝑚𝑦) 1
ℓ2𝑚2

(
𝜋2

6
− 2
ℓ2 − 2

𝑚2

)

− 8
𝜋6

∞∑︁
ℓ=1
ℓ odd

cos(2𝜋ℓ𝑥) cos(2𝜋ℓ𝑦) 1
ℓ4

(
5𝜋2

12
− 4
ℓ2

)
.

Hence

�̃�4 (𝜙(𝑥) − 𝜙(𝑦)) = − 2
𝜋4

∞∑︁
𝑘=1
𝑘 even

cos(2𝜋𝑘𝑥) cos(2𝜋𝑘𝑦)
𝑘4

− 8
𝜋6

∞∑︁
ℓ,𝑚=1
ℓ, 𝑚 odd
ℓ≠𝑚

cos(2𝜋ℓ𝑥) cos(2𝜋𝑚𝑦) 1
ℓ2𝑚2

(
𝜋2

6
− 2
ℓ2 − 2

𝑚2

)

− 8
𝜋6

∞∑︁
ℓ=1
ℓ odd

cos(2𝜋ℓ𝑥) cos(2𝜋ℓ𝑦) 1
ℓ4

(
5𝜋2

12
− 4
ℓ2

)
. (7.33)

Now, inserting (7.30), (7.31), and (7.33) into (7.29) we obtain the desired result. □
We are ready to present the proof of Theorem 7.44.

Proof of Theorem 7.44 It again follows from the worst-case error formula in Theo-
rem 1.27 that

[err𝑁,𝑑 (Hsob,𝑑,2,𝜸,P𝜙 (𝒈, 𝑁))]2 = −1 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾sob,𝑑,2,𝜸 (𝜙(𝒙𝑘), 𝜙(𝒙ℓ)).

312 7 Lattice Rules for Nonperiodic Integrands

Next, we consider the kernel function. For 𝑘, ℓ ∈ {0, 1, . . . , 𝑁 − 1} we have

𝐾sob,𝑑,2,𝜸 (𝜙(𝒙𝑘), 𝜙(𝒙ℓ))

=
∑︁

𝔲⊆[𝑑]
𝛾𝔲

∏
𝑗∈𝔲

(2∑︁
𝜏=1

𝐵𝜏 (𝜙(𝑥𝑘, 𝑗))𝐵𝜏 (𝜙(𝑥ℓ, 𝑗))
(𝜏!)2 −

𝐵4 (|𝜙(𝑥𝑘, 𝑗) − 𝜙(𝑥ℓ, 𝑗) |)
24

)
.

Using the expansion in Lemma 7.45 we obtain

𝐾sob,𝑑,2,𝜸 (𝜙(𝒙𝑘), 𝜙(𝒙ℓ))

=
∑︁

𝔲⊆[𝑑]
𝛾𝔲

∏
𝑗∈𝔲

(
1
𝜋4

∞∑︁
ℎ,𝑚=1

𝑐(ℎ, 𝑚) cos(2𝜋ℎ𝑥𝑘, 𝑗) cos(2𝜋𝑚𝑥ℓ, 𝑗)
)

=
∑︁

𝔲⊆[𝑑]

𝛾𝔲

𝜋4 |𝔲 |

∑︁
𝒉𝔲 ,𝒎𝔲 ∈N|𝔲 |

∏
𝑗∈𝔲

𝑐(ℎ 𝑗 , 𝑚 𝑗) cos(2𝜋ℎ𝑥𝑘, 𝑗) cos(2𝜋𝑚𝑥ℓ, 𝑗).

Employing (7.26) we obtain

𝐾sob,𝑑,2,𝜸 (𝜙(𝒙𝑘), 𝜙(𝒙ℓ)) =
∑︁

𝔲⊆[𝑑]

𝛾𝔲

𝜋4 |𝔲 |

∑︁
𝒉𝔲 ,𝒎𝔲 ∈N|𝔲 |

∏
𝑗∈𝔲

𝑐(ℎ 𝑗 , 𝑚 𝑗)

× ©« 1
2 |𝔲 |

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

e2𝜋i(𝝈𝔲∗𝒉𝔲) ·𝒙𝑘,𝔲ª®¬ ©« 1
2 |𝔲 |

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

e2𝜋i(𝝈𝔲∗𝒎𝔲) ·𝒙ℓ,𝔲ª®¬ .
Averaging over 𝑘, ℓ ∈ {0, 1, . . . , 𝑁 − 1} yields

1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾sob,𝑑,2,𝜸 (𝜙(𝒙𝑘), 𝜙(𝒙ℓ))

=
∑︁

𝔲⊆[𝑑]

𝛾𝔲

𝜋4 |𝔲 |

∑︁
𝒉𝔲 ,𝒎𝔲 ∈N|𝔲 |

∏
𝑗∈𝔲

𝑐(ℎ 𝑗 , 𝑚 𝑗)

× ©« 1
2 |𝔲 |

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i(𝝈𝔲∗𝒉𝔲) ·𝒙𝑘,𝔲ª®¬
× ©« 1

2 |𝔲 |

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

1
𝑁

𝑁−1∑︁
ℓ=0

e2𝜋i(𝝈𝔲∗𝒎𝔲) ·𝒙ℓ,𝔲ª®¬
=

∑︁
𝔲⊆[𝑑]

𝛾𝔲

𝜋4 |𝔲 |

∑︁
𝒉𝔲 ,𝒎𝔲 ∈N|𝔲 |

∏
𝑗∈𝔲

𝑐(ℎ 𝑗 , 𝑚 𝑗)

×
©«

1
2 |𝔲 |

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

(𝝈𝔲∗𝒉𝔲) ·𝒈𝔲≡0 (mod 𝑁)

1
ª®®®®¬
©«

1
2 |𝔲 |

∑︁
𝝈𝔲 ∈{−1,1} |𝔲 |

(𝝈𝔲∗𝒎𝔲) ·𝒈𝔲≡0 (mod 𝑁)

1
ª®®®®¬

7.3 Folded Lattice Rules 313

=
∑︁

𝔲⊆[𝑑]

𝛾𝔲

(4𝜋4) |𝔲 |
∑︁

𝒉𝔲 ∈(Z\{0}) |𝔲 |
𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

∑︁
𝒎𝔲 ∈(Z\{0}) |𝔲 |

𝒎𝔲 ·𝒈𝔲≡0 (mod 𝑁)

∏
𝑗∈𝔲

𝑐(|ℎ 𝑗 |, |𝑚 𝑗 |).

Using the upper bound on the coefficients 𝑐(ℎ, 𝑚) in Lemma 7.45 we obtain

1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾sob,𝑑,2,𝜸 (𝜙(𝒙𝑘), 𝜙(𝒙ℓ))

≤
∑︁

𝔲⊆[𝑑]
𝛾𝔲

(
58

12𝜋4

) |𝔲 | ∑︁
𝒉𝔲 ∈(Z\{0}) |𝔲 |

𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

∑︁
𝒎𝔲 ∈(Z\{0}) |𝔲 |

𝒎𝔲 ·𝒈𝔲≡0 (mod 𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |2 |𝑚 𝑗 |2

=
∑︁

𝔲⊆[𝑑]
𝛾𝔲

(
29
6𝜋4

) |𝔲 | ©«
∑︁

𝒉𝔲 ∈(Z\{0}) |𝔲 |
𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

1
|ℎ 𝑗 |2

ª®®®®¬
2

.

Therefore, and using Jensen’s inequality (Lemma 2.25), we get

[err𝑁,𝑑 (Hsob,𝑑,2,𝜸,P𝜙 (𝒈, 𝑁))]2 ≤
∑︁

∅≠𝔲⊆[𝑑]
�̃�𝔲

©«
∑︁

𝒉𝔲 ∈(Z\{0}) |𝔲 |
𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

1
|ℎ 𝑗 |2

ª®®®®¬
2

≤
©«

∑︁
∅≠𝔲⊆[𝑑]

�̃�
1/2
𝔲

∑︁
𝒉𝔲 ∈(Z\{0}) |𝔲 |

𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

1
|ℎ 𝑗 |2

ª®®®®¬
2

= [err𝑁,𝑑 (Hkor,𝑑,1,�̃�1/2 ,P(𝒈, 𝑁))]4,

where the final identity is due to Remark 2.22. □

Again, all upper bounds from Chapters 2, 3, and 4 on the worst-case error in
the weighted Korobov space of smoothness 𝛼 = 1 using lattice rules also hold for
the worst-case error in the unanchored Sobolev space of smoothness 𝛼 = 2 using
folded lattice rules. For example, we can use Theorem 3.9 with 𝛼 = 1 to obtain the
following.
Corollary 7.46 Let 𝑁 ≥ 2 be an arbitrary integer, let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be general
weights, and assume that 𝒈 has been found by Algorithm 3.6 (by means of weights
�̃�1/2, where the �̃�𝔲 are given by (7.27), and smoothness parameter 𝛼 = 1). Then for
arbitrary 𝜏 ∈ [1, 2) and for any 𝑠 ∈ [𝑑] we have

err𝑁,𝑠 (Hsob,𝑠,2,𝜸,P𝜙 ((𝑔1, . . . , 𝑔𝑠), 𝑁)) ≤
©« 1
𝜑(𝑁)

∑︁
∅≠𝔲⊆[𝑠]

𝛾
1/(2𝜏)
𝔲 𝑐

|𝔲 |
𝜏

ª®¬
𝜏

, (7.34)

314 7 Lattice Rules for Nonperiodic Integrands

where 𝑐𝜏 :=
(
29/(6𝜋4)

)1/(2𝜏) 2𝜁 (2/𝜏).

Proof Combining Theorem 7.44, and Theorem 3.9 with 𝛼 = 1, we obtain for every
�̃� ∈ [1/2, 1) and any 𝑠 ∈ [𝑑] that

err𝑁,𝑠 (Hsob,𝑠,2,𝜸,P𝜙 ((𝑔1, . . . , 𝑔𝑠), 𝑁)) ≤ ©« 1
𝜑(𝑁)

∑︁
∅≠𝔲⊆[𝑠]

�̃�
1/(4�̃�)
𝔲

(
2𝜁

(
1
�̃�

)) |𝔲 |ª®¬
2�̃�

.

Writing 𝜏 := 2�̃�, i.e., 𝜏 ∈ [1, 2), and using �̃�𝔲 = 𝛾𝔲
(
29/(6𝜋4)

) |𝔲 | gives the desired
result. □

We remark that Corollary 7.46 is a deterministic version of the findings of Hick-
ernell [101], which we outlined on p. 304.

7.4 Symmetrized Lattice Rules

We close this chapter with a brief discussion of a further method that allows us to
obtain higher order convergence rates for certain subspaces of Sobolev spaces. The
underlying idea is to apply the transformation 𝑥 ↦→ 1 − 𝑥 to each possible set of
coordinates separately in order to obtain a “symmetrization” of a given point set. To
be more precise, let 𝒙 = (𝑥1, . . . , 𝑥𝑑) ∈ [0, 1]𝑑 and let 𝔲 ⊆ [𝑑]. Then let sym𝔲 (𝒙)
denote the vector whose 𝑗-th coordinate is 1 − 𝑥 𝑗 if 𝑗 ∈ 𝔲 and 𝑥 𝑗 if 𝑗 ∉ 𝔲, i.e.,
sym𝔲 (𝒙) = (𝑦1, . . . , 𝑦𝑑) with

𝑦 𝑗 =

{
1 − 𝑥 𝑗 if 𝑗 ∈ 𝔲,
𝑥 𝑗 if 𝑗 ∉ 𝔲.

Definition 7.47 For 𝑁 ∈ N, 𝑁 ≥ 2, and for 𝒈 ∈ Z𝑑 define

Psym (𝒈, 𝑁) :=
{
sym𝔲

({
𝑘

𝑁
𝒈

})
: 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, 𝔲 ⊆ [𝑑]

}
to be a symmetrized (rank-1) lattice point set. A QMC rule that is based on the nodes
Psym (𝒈, 𝑁) is called a symmetrized (rank-1) lattice rule.

Examples of symmetrized lattice point sets are shown in Figure 7.5.

A consequence of the symmetrization procedure is that all functions of the form∑︁
𝑘1 ,...,𝑘𝑑 ∈N
𝑘1 ,...,𝑘𝑑 odd

𝑏𝑘1 ,...,𝑘𝑑

𝑑∏
𝑗=1

cos(𝜋𝑘 𝑗𝑥 𝑗) with coefficients 𝑏𝑘1 ,...,𝑘𝑑 ∈ R

are integrated exactly. Likewise, all polynomials of the form

7.4 Symmetrized Lattice Rules 315

Fig. 7.5: The Fibonacci lattice point sets P((1, 21), 34) (top left) and
P((1, 377), 610) (bottom left), and their symmetrized versions (right).

∑︁
𝑘1 ,...,𝑘𝑑 ∈N
𝑘1 ,...,𝑘𝑑 odd

𝑎𝑘1 ,...,𝑘𝑑

𝑑∏
𝑗=1

(
𝑥 𝑗 −

1
2

) 𝑘 𝑗
with coefficients 𝑎𝑘1 ,...,𝑘𝑑 ∈ R

are integrated exactly. This is because all the odd frequencies in a cosine series are
integrated exactly. Specifically, for the half-period cosine space, we can state the
following result which is [50, Corollary 4].

Theorem 7.48 The squared worst-case error of a symmetrized rank-1 lattice rule in
the half-period cosine space Hcos,𝑑,𝛼,𝜸 is given by

[err𝑁,𝑑 (Hcos,𝑑,𝛼,𝜸,Psym (𝒈, 𝑁))]2 =
∑︁

𝒉∈Z𝑑\{0}
𝒉 ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (2𝒉)

.

316 7 Lattice Rules for Nonperiodic Integrands

Theorem 7.48 implies that symmetrized lattice rules applied to elements of cosine
spaces of smoothness 𝛼 can yield a convergence rate of order O(𝑁−𝛼+𝜀) for every
𝜀 > 0. Here 𝑁 ≍𝑑 |Psym (𝒈, 𝑁) | but the implied factors highly depend on the
dimension 𝑑 (see Lemma 7.49 below), where, for two number theoretic functions
𝑓 , 𝑔 : 𝐷 ⊆ N → R+, we write 𝑓 (𝑁) ≍ 𝑔(𝑁) if there exist positive reals 𝑐 and 𝐶
such that 𝑐 𝑔(𝑁) ≤ 𝑓 (𝑁) ≤ 𝐶 𝑔(𝑁) for all 𝑁 ∈ 𝐷. The notation ≍𝑑 indicates that
the implied factors 𝑐 or𝐶 may depend on 𝑑. Indeed, the following lemma shows how
the number of function evaluations used in symmetrized lattice rules grows with the
dimension.

Lemma 7.49 Let 𝑑 ∈ N. The number of function evaluations employed in the sym-
metrized lattice rule based on Psym (𝒈, 𝑁) is 2𝑑−1 (𝑁 + 1) if 𝑁 is odd and 2𝑑−1𝑁 + 1
if 𝑁 is even.

Proof We have the symmetry

𝑘𝑔 𝑗 ≡ 𝑁 − (𝑁 − 𝑘)𝑔 𝑗 (mod 𝑁), for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1} and for 𝑗 ∈ [𝑑],

which exactly corresponds to the symmetry 𝑥𝑘, 𝑗 = 1 − 𝑥𝑁−𝑘, 𝑗 . This means that we
only have to compute and symmetrize the points for 0 ≤ 𝑘 ≤ 𝑁/2. We make the
following observations.

• For 0 < 𝑘 < 𝑁/2 we have 2𝑑 (𝑁 − 1)/2 points if 𝑁 is odd and 2𝑑 (𝑁/2 − 1) if 𝑁
is even.

• For 𝑘 = 0 symmetrization returns all 2𝑑 corners of [0, 1]𝑑 .
• If 2 < 𝑁 and 𝑁 is even, then for 𝑘 = 𝑁/2 we have 𝒙𝑁/2 = (1/2, . . . , 1/2) and

thus no symmetrization is needed.

Counting the number of function evaluations yields the desired result. □

This shows that symmetrized lattice rules may work well for very small dimen-
sion 𝑑, but show unfavorable dependence on the dimension when 𝑑 is large.

Notes and Remarks

For more thorough descriptions of classical periodization methods we refer to the
monographs of Hua and Wang [115, Chapter 6], Niederreiter [199, p. 107], and
Sloan and Joe [230], or to the survey articles of Niederreiter [195, pp. 983–984] and
[48, Section 5.10] and the references therein.

A detailed discussion of weighted anchored and unanchored Sobolev spaces can
also be found in [210, Appendix A]. Results on tractability of integration in weighted
Sobolev spaces can be found in [211, Section 16.9].

The formula (7.14) for the 𝐿2-discrepancy is sometimes credited to Warnock
[260], which is historically not entirely correct, since it was already provided by
Koksma [135] in 1942 but only for 𝑑 = 1. Later, Warnock used the same proof

7.4 Symmetrized Lattice Rules 317

method for arbitrary dimension (see also [192]). An extension of the formula (7.14)
to the weighted 𝐿2-discrepancy was given in [239] (see also [52, Proposition 3.60]
or [53, Chapter 1]) and to weighted 𝐿𝑝-discrepancy for even 𝑝 in [179].

The half-period cosine space was introduced and studied as a reference space for
numerical integration in [50]. Further subspaces of Sobolev spaces and the relations
between them have been presented in [50] and by Goda, Suzuki, and Yoshiki in [86].

Embedding results for various function spaces are an important tool in the theory
of numerical integration. In Section 7.2 we have discussed embeddings between the
anchored Sobolev space of smoothness one and the unanchored Sobolev space of
smoothness one. For further embedding results in this context we refer to [80, 81,
82, 94, 95, 109, 145, 146].

The proof of Theorem 7.40 follows the outline in [30].
The same result as in Theorem 7.48 holds true for subspaces of the unanchored

Sobolev space comprising a greater class of functions, see [50, 86] for further
information.

Symmetrization is a well-known concept from discrepancy theory in order to
construct point sets and sequences with optimal order of discrepancy. For example,
the first explicit construction of a point set in dimension two with 𝐿2-discrepancy of
order O(

√︁
log 𝑁/𝑁), which is optimal with respect to Roth’s general lower bound

(1.20), according to Davenport [34] uses the symmetrization technique. Since then
many authors have used this method (see, e.g., [15, 84, 151, 152, 153, 175, 176]).
From this point of view, and because of the close relation of discrepancy to numerical
integration, it is not a big surprise that symmetrization can also yield improvements
for integration errors of QMC rules.

Chapter 8
Integration With Respect to Probability
Measures

In many applications (see for instance Appendix A) one needs integration rules over
domains 𝐷𝑑 , 𝐷 ⊆ R, other than the unit cube [0, 1]𝑑 . Of particular importance is
integration over the Euclidean space R𝑑 with respect to a normal distribution. In
this chapter we consider numerical integration of functions with respect to some
probability density 𝜙, ∫

𝐷𝑑

𝑓 (𝒙)𝜙(𝒙) d𝒙. (8.1)

In general, one can apply a transformation to obtain an integral over the unit cube.
However, this changes the integrand, and often certain smoothness assumptions are
not satisfied anymore by the transformed integrand. The approach which we pursue
in this chapter is to transform the points to 𝐷𝑑 , where the transformation depends
on the probability density 𝜙. Using this approach one can obtain bounds on the
integration error for a number of important choices of probability densities.

8.1 Transforming the Points Versus Transforming the Integrand

Consider a domain 𝐷 = (𝑎, 𝑏), the closure of the interval (𝑎, 𝑏), where 𝑎, 𝑏 ∈ R ∪
{−∞,∞}, i.e., we also allow cases such as (−∞, 𝑏], [𝑎, 𝑏], [𝑎,∞), andR = (−∞,∞).
Consider a probability density function 𝜙 of product form defined on 𝐷𝑑 ,

𝜙(𝒙) =
𝑑∏
𝑗=1

𝜙 𝑗 (𝑥 𝑗) for 𝒙 = (𝑥1, . . . , 𝑥𝑑) ∈ 𝐷𝑑

for Lebesgue measurable univariate probability densities 𝜙 𝑗 defined on 𝐷. The
cumulative distribution function Φ 𝑗 is given by

Φ 𝑗 (𝑦) =
∫ 𝑦

−∞
𝜙 𝑗 (𝑥) d𝑥 for 𝑗 ∈ [𝑑] .

319© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_8&domain=pdf

320 8 Integration With Respect to Probability Measures

In this chapter we assume that its inverse always exists and is well-defined, and
denote it by Φ−1

𝑗
, and for vectors by Φ−1 = (Φ−1

1 , . . . ,Φ
−1
𝑑
), where Φ−1 (𝒙) =

(Φ−1
1 (𝑥1), . . . ,Φ−1

𝑑
(𝑥𝑑)) for 𝒙 = (𝑥1, . . . , 𝑥𝑑) in [0, 1]𝑑 . (Technically, 𝒙 may be in

[0, 1]𝑑 , (0, 1]𝑑 , [0, 1)𝑑 , or (0, 1)𝑑 , depending on whether 𝐷 is a closed interval, half
line or the whole real line. To simplify the notation, we will ignore this technicality
in the following.) The integral (8.1) can then be mapped to the unit cube [0, 1]𝑑 ,∫

𝐷𝑑

𝑓 (𝒙)𝜙(𝒙) d𝒙 =

∫
[0,1]𝑑

𝑓 (Φ−1 (𝒙)) d𝒙.

In the case of a standard Gaussian density

𝜙(𝒙) =
𝑑∏
𝑗=1

1
√

2𝜋
e−𝑥

2
𝑗
/2

=
1

(2𝜋)𝑑/2
e−∥𝒙 ∥

2
2/2,

the integrand becomes∫
R𝑑
𝑓 (𝒙)

𝑑∏
𝑗=1

1
√

2𝜋
e−𝑥

2
𝑗
/2 d𝒙 =

∫
[0,1]𝑑

𝑓 (Φ−1 (𝒙)) d𝒙,

where, in this instance, Φ−1 is the inverse of the standard normal cumulative distri-
bution function.

Hence to approximate such integrals one can use a quadrature rule over the unit
cube ∫

𝐷𝑑

𝑓 (𝒙)𝜙(𝒙) d𝒙 ≈ 1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (Φ−1 (𝒙𝑘)).

The right-hand side can be interpreted in at least two ways. One is to consider it
as a quadrature rule with quadrature points Φ−1 (𝒙𝑘), 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, where
the 𝒙𝑘 , 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, are i.i.d. points uniformly distributed on [0, 1]𝑑 . The
transformed points 𝒛𝑘 = Φ−1 (𝒙𝑘), 𝑘 ∈ {0, 1, . . . , 𝑁 − 1} are then i.i.d. random
variables with law 𝜙. In this interpretation, the idea is to generate points 𝒛𝑘 with the
correct distribution and then approximate the expectation E[𝑓] =

∫
𝐷𝑑 𝑓 (𝒙)𝜙(𝒙) d𝒙

with the Monte Carlo estimator (1/𝑁)∑𝑁−1
𝑘=0 𝑓 (𝒛𝑘). This is often the standard way

of thinking in Monte Carlo methods. A similar approach also works for probability
density functions not of product form, using for instance the Rosenblatt transform to
map the points from the unit cube to the target domain.

The second interpretation is where we consider (8.1) as an integration prob-
lem over the unit cube [0, 1]𝑑 . In this case the quadrature points are 𝒙𝑘 , 𝑘 ∈
{0, 1, . . . , 𝑁 − 1}, and the integrand is given by the composition 𝑓 (Φ−1) := 𝑓 ◦Φ−1.
This interpretation is usually adopted in QMC, as the quadrature rules are naturally
defined over [0, 1]𝑑 . The difficulty is now that, due to the transformation, the inte-
grand 𝑓 (Φ−1) often has particular features and the standard function space setting
(as, e.g., in the Korobov or the Sobolev space) usually does not apply. This is in par-

8.2 Function Space Setting 321

ticular true when the probability density is a standard multivariate normal density.
It is therefore necessary to consider a new function space setting. We describe such
an approach in the following.

8.2 Function Space Setting

Let again 𝐷 = (𝑎, 𝑏), and let 𝜙 : 𝐷 → R be a probability density function with 𝜙 ≥ 0
and

∫
𝐷
𝜙(𝑥) d𝑥 = 1. The cumulative distribution function is Φ(𝑥) =

∫ 𝑥
𝑎
𝜙(𝑦) d𝑦 for

𝑥 ∈ 𝐷 and its inverse is denoted by Φ−1 : [0, 1] → 𝐷.
Let 𝑓 : 𝐷𝑑 → R denote the integrand function. We are interested in approximat-

ing the integral

𝐼𝑑,𝜙 (𝑓) =
∫
𝐷𝑑

𝑓 (𝒙)
𝑑∏
𝑗=1

𝜙(𝑥 𝑗) d𝒙.

We assume that 𝑓 belongs to a reproducing kernel Hilbert space F with reproducing
kernel 𝐾F : 𝐷𝑑 × 𝐷𝑑 → R, inner product ⟨·, ·⟩F , and corresponding norm ∥ · ∥F
(see Definition 1.17 and Proposition 1.18). The analysis of the worst-case error of
numerical integration of functions in F is in many ways analogous to the integration
problem over [0, 1]𝑑 .

We assume that ∫
𝐷𝑑

√︁
𝐾F (𝒙, 𝒙)

𝑑∏
𝑗=1

𝜙(𝑥 𝑗) d𝒙 < ∞,

which implies that the integration functional is bounded, since for any 𝑓 ∈ F with
∥ 𝑓 ∥F < ∞ we have

|𝐼𝑑,𝜙 (𝑓) | ≤
∫
𝐷𝑑

∥ 𝑓 ∥F ∥𝐾F (·, 𝒙)∥F
𝑑∏
𝑗=1

𝜙(𝑥 𝑗) d𝒙

= ∥ 𝑓 ∥F
∫
𝐷𝑑

√︁
𝐾F (𝒙, 𝒙)

𝑑∏
𝑗=1

𝜙(𝑥 𝑗) d𝒙

< ∞.

For 𝑓 ∈ F we can use the reproducing property 𝑓 (𝒙) = ⟨ 𝑓 , 𝐾F (·, 𝒙)⟩F for
𝒙 ∈ 𝐷𝑑 to obtain

𝐼𝑑,𝜙 (𝑓) =
∫
𝐷𝑑

⟨ 𝑓 , 𝐾F (·, 𝒙)⟩F
𝑑∏
𝑗=1

𝜙(𝑥 𝑗) d𝒙

=

〈
𝑓 ,

∫
𝐷𝑑

𝐾F (·, 𝒙)
𝑑∏
𝑗=1

𝜙(𝑥 𝑗) d𝒙

〉
F

= ⟨ 𝑓 , ℎ⟩F ,

322 8 Integration With Respect to Probability Measures

where

ℎ(𝒚) :=
∫
𝐷𝑑

𝐾F (𝒚, 𝒙)
𝑑∏
𝑗=1

𝜙(𝑥 𝑗) d𝒙 ∈ F

is the representer of the integration functional (the existence of such a function
is guaranteed by the Fréchet–Riesz representation theorem since integration is a
bounded linear functional; see Section 1.5).

The initial error of integration is

err0,𝑑 (F) := sup
𝑓 ∈F

∥ 𝑓 ∥F ≤1

|𝐼𝑑,𝜙 (𝑓) |

=
√︁
⟨ℎ, ℎ⟩F

=
©«
∫
𝐷𝑑

∫
𝐷𝑑

𝐾F (𝒙, 𝒚)
𝑑∏
𝑗=1

(𝜙(𝑥 𝑗)𝜙(𝑦 𝑗)) d𝒙 d𝒚ª®¬
1/2

< ∞,

where the boundedness follows from the fact that ℎ ∈ F . The worst-case error can
be written as (see Theorem 1.27)

[err𝑁,𝑑 (F ,P)]2 =

∫
𝐷𝑑

∫
𝐷𝑑

𝐾F (𝒙, 𝒚)
𝑑∏
𝑗=1

(𝜙(𝑥 𝑗)𝜙(𝑦 𝑗)) d𝒙 d𝒚

− 2
𝑁

𝑁−1∑︁
𝑘=0

∫
𝐷𝑑

𝐾F (𝒛𝑘 , 𝒙)
𝑑∏
𝑗=1

𝜙(𝑥 𝑗) d𝒙 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾F (𝒛𝑘 , 𝒛ℓ),

using the quadrature points P = {𝒛0, 𝒛1, . . . , 𝒛𝑁−1} in 𝐷𝑑 .
As before, we use the inverse cumulative distribution function Φ−1 to transform

points from the unit cube to 𝐷𝑑 (we will consider concrete examples below; for
now we just assume that the inverse cumulative distribution function exists and is
well-defined). We define the space of functions G given by

G = {𝑔 : [0, 1]𝑑 → R : 𝑔 = 𝑓 (Φ−1), 𝑓 ∈ F },

and an inner product on G in the following way: for 𝑔1, 𝑔2 ∈ G let

⟨𝑔1, 𝑔2⟩G = ⟨𝑔1 (Φ), 𝑔2 (Φ)⟩F .

Then for any function 𝑔 ∈ G we have

𝑔(𝒙) = 𝑓 (Φ−1 (𝒙))
= ⟨ 𝑓 , 𝐾F (·,Φ−1 (𝒙))⟩F
= ⟨ 𝑓 (Φ−1), 𝐾F (Φ−1 (·),Φ−1 (𝒙))⟩G
= ⟨𝑔, 𝐾G (·, 𝒙)⟩G ,

8.2 Function Space Setting 323

where
𝐾G (𝒙, 𝒚) := 𝐾F (Φ−1 (𝒙),Φ−1 (𝒚)) for 𝒙, 𝒚 ∈ [0, 1]𝑑 .

The transformed kernel 𝐾G is a reproducing kernel and is in fact the reproducing
kernel for the space G. The initial error in G is

err0,𝑑 (G) = sup
𝑔∈G

∥𝑔 ∥G ≤1

|𝐼 (𝑔) | = sup
𝑓 ∈F

∥ 𝑓 ∥F ≤1

|𝐼𝑑,𝜙 (𝑓) | = err0,𝑑 (F),

where the norm ∥·∥G is the norm induced by ⟨·, ·⟩G , and where 𝐼 (𝑔) =
∫
[0,1]𝑑 𝑔(𝒙) d𝒙.

For PG = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in [0, 1]𝑑 let 𝒛𝑘 = Φ−1 (𝒙𝑘) for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1},
and let PF = {𝒛0, 𝒛1, . . . , 𝒛𝑁−1} in 𝐷𝑑 . Then the squared worst-case error of the
QMC rule using PG in G is

[err𝑁,𝑑 (G,PG)]2 =

∫
[0,1]𝑑

∫
[0,1]𝑑

𝐾G (𝒙, 𝒚) d𝒙 d𝒚

− 2
𝑁

𝑁−1∑︁
𝑘=0

∫
[0,1]𝑑

𝐾G (𝒙𝑘 , 𝒙) d𝒙 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾G (𝒙𝑘 , 𝒙ℓ)

=

∫
𝐷𝑑

∫
𝐷𝑑

𝐾F (𝒙, 𝒚)
𝑑∏
𝑗=1

(𝜙(𝑥 𝑗)𝜙(𝑦 𝑗)) d𝒙 d𝒚

− 2
𝑁

𝑁−1∑︁
𝑘=0

∫
𝐷𝑑

𝐾F (𝒛𝑘 , 𝒙)
𝑑∏
𝑗=1

𝜙(𝑥 𝑗) d𝒙 + 1
𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾F (𝒛𝑘 , 𝒛ℓ)

= [err𝑁,𝑑 (F ,PF)]2.

The transformation therefore allows us to switch between numerical integration in
F and G. In particular, we have, for any 𝑓 ∈ F ,������

∫
𝐷𝑑

𝑓 (𝒙)
𝑑∏
𝑗=1

𝜙(𝑥 𝑗) d𝒙 − 1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒛𝑘)

������
=

�����∫[0,1]𝑑
𝑓 (Φ−1 (𝒙)) d𝒙 − 1

𝑁

𝑁−1∑︁
𝑘=0

𝑓 (Φ−1 (𝒙𝑘))
�����

≤ ∥ 𝑓 ∥F err𝑁,𝑑 (F ,PF)
= ∥ 𝑓 ∥F err𝑁,𝑑 (G,PG).

The latter expression is convenient in the sense that it suffices to study the integration
error err𝑁,𝑑 (G,PG), while the overall error is then still bounded in terms of the norm
∥ · ∥F of the original space F .

We now have developed the integration theory for generic reproducing kernel
Hilbert spaces. In the next section we introduce a particular class of reproducing
kernel Hilbert spaces.

324 8 Integration With Respect to Probability Measures

8.3 Unanchored Spaces

Since we will consider tensor product spaces later, we first develop the theory for
the univariate case only, to simplify the notation. The following result was shown
in [191].

Lemma 8.1 Let the domain 𝐷 = (𝑎, 𝑏) be fixed. Let 𝜙 be a probability density
function, let Φ be the corresponding cumulative distribution function, and let 𝜓 :
𝐷 → (0,∞) be a given weight function defined on 𝐷. Assume that Φ−1 exists and is
well-defined and that ∫ 𝑏

𝑎

Φ(𝑡) (1 −Φ(𝑡))
(𝜓(𝑡))2 d𝑡 < ∞. (8.2)

Let F be the space of absolutely continuous functions 𝑓 : 𝐷 → R such that∫ 𝑏

𝑎

𝑓 (𝑥)𝜙(𝑥) d𝑥 < ∞ and
∫ 𝑏

𝑎

(𝑓 ′(𝑥)𝜓(𝑥))2 d𝑥 < ∞.

For functions 𝑓1, 𝑓2 ∈ F we define the inner product

⟨ 𝑓1, 𝑓2⟩F :=
∫ 𝑏

𝑎

𝑓1 (𝑥)𝜙(𝑥) d𝑥
∫ 𝑏

𝑎

𝑓2 (𝑥)𝜙(𝑥) d𝑥 + 1
𝛾

∫ 𝑏

𝑎

𝑓 ′1 (𝑥) 𝑓
′
2 (𝑥)𝜓

2 (𝑥) d𝑥

for some generic weight 𝛾 > 0.
Then F is a reproducing kernel Hilbert space with reproducing kernel

𝐾F,𝛾 (𝑥, 𝑦)

= 1+𝛾
(∫ min(𝑥,𝑦)

𝑎

Φ(𝑡)
(𝜓(𝑡))2 d𝑡 +

∫ 𝑏

max(𝑥,𝑦)

1 −Φ(𝑡)
(𝜓(𝑡))2 d𝑡 −

∫ 𝑏

𝑎

Φ(𝑡) (1 −Φ(𝑡))
(𝜓(𝑡))2 d𝑡

)
for 𝑥, 𝑦 ∈ 𝐷.

Proof Assumption (8.2) ensures that 𝐾F,𝛾 is well-defined.
We check that the reproducing property is satisfied. Indeed we have, for any

𝑥, 𝑦 ∈ 𝐷,∫ 𝑏

𝑎

∫ min(𝑥,𝑦)

𝑎

Φ(𝑡)
(𝜓(𝑡))2 d𝑡𝜙(𝑥) d𝑥 =

∫ 𝑏

𝑎

Φ(𝑡)
(𝜓(𝑡))2

∫ 𝑏

𝑎

𝜒[𝑎,min(𝑥,𝑦)) (𝑡)𝜙(𝑥) d𝑥 d𝑡

=

∫ 𝑦

𝑎

Φ(𝑡)
(𝜓(𝑡))2 (1 −Φ(𝑡)) d𝑡, (8.3)∫ 𝑏

𝑎

∫ 𝑏

max(𝑥,𝑦)

1 −Φ(𝑡)
(𝜓(𝑡))2 d𝑡𝜙(𝑥) d𝑥 =

∫ 𝑏

𝑎

1 −Φ(𝑡)
(𝜓(𝑡))2

∫ 𝑏

𝑎

𝜒(max(𝑥,𝑦) ,𝑏] (𝑡)𝜙(𝑥) d𝑥 d𝑡

=

∫ 𝑏

𝑦

1 −Φ(𝑡)
(𝜓(𝑡))2 Φ(𝑡) d𝑡, (8.4)

8.3 Unanchored Spaces 325

where we remind the reader that 𝜒𝐴 denotes the indicator function of a set 𝐴, which
implies that ∫ 𝑏

𝑎

𝐾F,𝛾 (𝑥, 𝑦)𝜙(𝑥) d𝑥 = 1.

Hence the representer of the integration functional is 1.
Further, for 𝑥, 𝑦 ∈ 𝐷 satisfying 𝑥 < 𝑦 we have

𝜕

𝜕𝑥
𝐾F,𝛾 (𝑥, 𝑦) = 𝛾

Φ(𝑥)
(𝜓(𝑥))2 ,

and for 𝑥, 𝑦 ∈ 𝐷 satisfying 𝑥 > 𝑦 we have

𝜕

𝜕𝑥
𝐾F,𝛾 (𝑥, 𝑦) = −𝛾 1 −Φ(𝑥)

(𝜓(𝑥))2 .

Thus, for any 𝑓 ∈ F and any 𝑦 ∈ 𝐷,

1
𝛾

∫ 𝑏

𝑎

𝑓 ′(𝑥) 𝜕
𝜕𝑥
𝐾F,𝛾 (𝑥, 𝑦) (𝜓(𝑥))2 d𝑥

=

∫ 𝑦

𝑎

𝑓 ′(𝑥)Φ(𝑥) d𝑥 −
∫ 𝑏

𝑦

𝑓 ′(𝑥) (1 −Φ(𝑥)) d𝑥

=

∫ 𝑏

𝑎

𝑓 ′(𝑥)Φ(𝑥) d𝑥 −
∫ 𝑏

𝑦

𝑓 ′(𝑥) d𝑥

= 𝑓 (𝑏) −
∫ 𝑏

𝑎

𝑓 (𝑥)𝜙(𝑥) d𝑥 − 𝑓 (𝑏) + 𝑓 (𝑦)

= 𝑓 (𝑦) −
∫ 𝑏

𝑎

𝑓 (𝑥)𝜙(𝑥) d𝑥.

Combining these results we obtain the reproducing property

⟨ 𝑓 , 𝐾F,𝛾 (·, 𝑦)⟩F = 𝑓 (𝑦).

In particular, we have for 𝑦, 𝑧 ∈ 𝐷 with 𝑦 < 𝑧, that

⟨𝐾F,𝛾 (·, 𝑧), 𝐾F,𝛾 (·, 𝑦)⟩F

= 1 + 𝛾
(∫ 𝑦

𝑎

(Φ(𝑡))2

(𝜓(𝑡))2 d𝑡 −
∫ 𝑧

𝑦

Φ(𝑡) (1 −Φ(𝑡))
(𝜓(𝑡))2 d𝑡 +

∫ 𝑏

𝑧

(1 −Φ(𝑡))2

(𝜓(𝑡))2 d𝑡
)

= 1 + 𝛾
(∫ 𝑦

𝑎

(Φ(𝑡))2 +Φ(𝑡) (1 −Φ(𝑡))
(𝜓(𝑡))2 d𝑡 +

∫ 𝑏

𝑧

(1 −Φ(𝑡))2 +Φ(𝑡) (1 −Φ(𝑡))
(𝜓(𝑡))2 d𝑡

−
∫ 𝑏

𝑎

Φ(𝑡) (1 −Φ(𝑡))
(𝜓(𝑡))2 d𝑡

)
= 𝐾F,𝛾 (𝑧, 𝑦).

326 8 Integration With Respect to Probability Measures

The same result follows if 𝑧 < 𝑦. Hence 𝐾F,𝛾 (·, 𝑦) ∈ F . □

Some important properties

We now derive some important properties of the unanchored space discussed previ-
ously. The representer of integration is given by∫ 𝑏

𝑎

𝐾F,𝛾 (𝑥, 𝑦)𝜙(𝑥) d𝑥 = 1 for any 𝑦 ∈ 𝐷,

and thus we also have∫ 𝑏

𝑎

∫ 𝑏

𝑎

𝐾F,𝛾 (𝑥, 𝑦)𝜙(𝑥)𝜙(𝑦) d𝑥 d𝑦 = 1. (8.5)

This implies that, according to Remark 1.41, the initial error is err0,𝑑 (F) = 1.
Further, we require that

∫ 𝑏
𝑎

√︁
𝐾F,𝛾 (𝑥, 𝑥) 𝜙(𝑥) d𝑥 < ∞ to ensure that 𝐼1,𝜙 is a

bounded linear functional (see Condition (1.17) in Section 1.5). Note that for every
𝑓 ∈ F we have ∥ 𝑓 ∥F < ∞, which implies |𝐼1,𝜙 (𝑓) | < ∞. We can also show this
property directly. Using (8.3) with 𝑦 = 𝑏 and (8.4) with 𝑦 = 𝑎, we obtain∫ 𝑏

𝑎

√︃
𝐾F,𝛾 (𝑥, 𝑥) 𝜙(𝑥) d𝑥 ≤

(∫ 𝑏

𝑎

𝐾F,𝛾 (𝑥, 𝑥) 𝜙(𝑥) d𝑥
)1/2

=

(
1 + 𝛾

∫ 𝑏

𝑎

Φ(𝑡) (1 −Φ(𝑡))
(𝜓(𝑡))2 d𝑡

)1/2
< ∞. (8.6)

This implies that numerical integration is a bounded linear functional.
We can express the transformed kernel 𝐾G,𝛾 as defined in Section 8.2, as

𝐾G,𝛾 (𝑥, 𝑦) = 𝐾F,𝛾 (Φ−1 (𝑥),Φ−1 (𝑦))

= 1 + 𝛾
(∫ min(Φ−1 (𝑥) ,Φ−1 (𝑦))

𝑎

Φ(𝑡)
(𝜓(𝑡))2 d𝑡

+
∫ 𝑏

max(Φ−1 (𝑥) ,Φ−1 (𝑦))

1 −Φ(𝑡)
(𝜓(𝑡))2 d𝑡 −

∫ 𝑏

𝑎

Φ(𝑡) (1 −Φ(𝑡))
(𝜓(𝑡))2 d𝑡

)
for 𝑥, 𝑦 ∈ [0, 1].

The kernel 𝐾G,𝛾 is in general difficult to handle, since, depending on the choices
of 𝜙 and 𝜓, it may have singularities. One way to proceed is to consider the shift-
invariant kernel associated with 𝐾G,𝛾 to obtain a space based on Fourier series (see
Definition 7.4).

8.4 The Shift-Invariant Kernel 327

8.4 The Shift-Invariant Kernel

The shift-invariant kernel (see Section 7.1) associated with 𝐾G,𝛾 is given by

𝐾sh
G,𝛾 (𝑥, 𝑦) =

∫ 1

0
𝐾G,𝛾 ({𝑥 + Δ}, {𝑦 + Δ}) dΔ = 1 + 𝛾Θ({𝑥 − 𝑦}),

for 𝑥, 𝑦 ∈ [0, 1], where, for 𝑧 ∈ [0, 1),

Θ(𝑧) =
∫ 1

0

∫ min(Φ−1 ({𝑧+Δ}) ,Φ−1 (Δ))

𝑎

Φ(𝑡)
(𝜓(𝑡))2 d𝑡 dΔ

+
∫ 1

0

∫ 𝑏

max(Φ−1 ({𝑧+Δ}) ,Φ−1 (Δ))

1 −Φ(𝑡)
(𝜓(𝑡))2 d𝑡 dΔ

−
∫ 𝑏

𝑎

Φ(𝑡) (1 −Φ(𝑡))
(𝜓(𝑡))2 d𝑡. (8.7)

We treat each of the terms in (8.7) separately. For the first term in (8.7) we have∫ 1

0

∫ min(Φ−1 ({𝑧+Δ}) ,Φ−1 (Δ))

𝑎

Φ(𝑡)
(𝜓(𝑡))2 d𝑡 dΔ

=

∫ 𝑏

𝑎

Φ(𝑡)
(𝜓(𝑡))2

∫ 1

0
𝜒[𝑎,min(Φ−1 ({𝑧+Δ}) ,Φ−1 (Δ))) (𝑡) dΔ d𝑡.

Since Φ−1 is monotonically nondecreasing, we have

min(Φ−1 ({𝑧 + Δ}),Φ−1 (Δ)) = Φ−1 (min({𝑧 + Δ},Δ)),

and therefore 𝑡 ∈ [𝑎,min(Φ−1 ({𝑧 + Δ}),Φ−1 (Δ))) is equivalent to Φ(𝑡) ∈
[0,min({𝑧 + Δ},Δ)). Consequently,∫ 1

0
𝜒[𝑎,min(Φ−1 ({𝑧+Δ}) ,Φ−1 (Δ))) (𝑡) dΔ =

∫ 1

0
𝜒[0,min({𝑧+Δ},Δ)) (Φ(𝑡)) dΔ

= 𝜆({Δ ∈ [0, 1] : Φ(𝑡) < min({𝑧 + Δ},Δ)}),

and this expression is the length (i.e., the Lebesgue measure 𝜆) of the set {Δ ∈ [0, 1] :
Φ(𝑡) < min({𝑧 +Δ},Δ)}, which is a union of disjoint intervals. When Δ ∈ [0,Φ(𝑡)]
the inequality Φ(𝑡) < min({𝑧 + Δ},Δ) cannot be satisfied. When Δ ∈ (Φ(𝑡), 1 − 𝑧],
the inequality is satisfied (provided thatΦ(𝑡) < 1−𝑧). WhenΔ ∈ (1−𝑧, 1−𝑧+Φ(𝑡)],
the inequality is not satisfied. When Δ ∈ (1 − 𝑧 + Φ(𝑡), 1], the inequality is again
satisfied (provided that 1 − 𝑧 +Φ(𝑡) < 1). Thus,∫ 1

0
𝜒[𝑎,min(Φ−1 ({𝑧+Δ}) ,Φ−1 (Δ))) (𝑡) dΔ

= max(0, 1 − 𝑧 −Φ(𝑡)) + max(0, 1 − 1 + 𝑧 −Φ(𝑡))

328 8 Integration With Respect to Probability Measures

= max(0, 1 − 𝑧 −Φ(𝑡)) + max(0, 𝑧 −Φ(𝑡)).

Therefore ∫ 1

0

∫ min(Φ−1 ({𝑧+Δ}) ,Φ−1 (Δ))

𝑎

Φ(𝑡)
(𝜓(𝑡))2 d𝑡 dΔ

=

∫ 𝑏

𝑎

Φ(𝑡)
(𝜓(𝑡))2 (max(0, 1 − 𝑧 −Φ(𝑡)) + max(0, 𝑧 −Φ(𝑡))) d𝑡. (8.8)

We can proceed in a similar manner for the second term in (8.7),∫ 1

0

∫ 𝑏

max(Φ−1 ({𝑧+Δ}) ,Φ−1 (Δ))

1 −Φ(𝑡)
(𝜓(𝑡))2 d𝑡 dΔ

=

∫ 𝑏

𝑎

1 −Φ(𝑡)
(𝜓(𝑡))2

∫ 1

0
𝜒(max(Φ−1 ({𝑧+Δ},Δ)) ,𝑏] (𝑡) dΔ d𝑡

=

∫ 𝑏

𝑎

1 −Φ(𝑡)
(𝜓(𝑡))2

∫ 1

0
𝜒(max({𝑧+Δ},Δ) ,1] (Φ(𝑡)) dΔ d𝑡

=

∫ 𝑏

𝑎

1 −Φ(𝑡)
(𝜓(𝑡))2 (max(0,Φ(𝑡) − 𝑧) + max(0, 𝑧 − (1 −Φ(𝑡)))) d𝑡. (8.9)

Therefore, combining (8.8) and (8.9),

Θ(𝑧) =
∫ 𝑏

𝑎

Φ(𝑡)
(𝜓(𝑡))2 (max(0, 1 − 𝑧 −Φ(𝑡)) + max(0, 𝑧 −Φ(𝑡))) d𝑡

+
∫ 𝑏

𝑎

1 −Φ(𝑡)
(𝜓(𝑡))2 (max(0,Φ(𝑡) − 𝑧) + max(0, 𝑧 − (1 −Φ(𝑡)))) d𝑡

−
∫ 𝑏

𝑎

Φ(𝑡) (1 −Φ(𝑡))
(𝜓(𝑡))2 d𝑡. (8.10)

Fourier coefficients

In the next step, we investigate under which assumptions the function Θ can be
expressed as a Fourier series

Θ(𝑧) =
∑︁
ℎ∈Z

Θ̂(ℎ) e2𝜋iℎ𝑧 ,

with Fourier coefficients

Θ̂(ℎ) =
∫ 1

0
Θ(𝑧) e−2𝜋iℎ𝑧 d𝑧.

8.4 The Shift-Invariant Kernel 329

In this case then, since the kernel 𝐾sh
G,𝛾 with 𝐾sh

G,𝛾 (𝑥, 𝑦) = 1 + 𝛾Θ({𝑥 − 𝑦}) for
𝑥, 𝑦 ∈ [0, 1] is a reproducing kernel with a similar structure as that of a Korobov
space, the convergence rate of numerical integration then comes down solely to the
decay rate of the Fourier coefficients Θ̂(ℎ).

Lemma 8.2 Let the domain 𝐷 = (𝑎, 𝑏) be fixed. Let 𝜙 : 𝐷 → R be a probability
density function and let Φ : 𝐷 → R be the associated cumulative probability density
function. Assume that the inverse Φ−1 : [0, 1] → 𝐷 exists and is well-defined. Let
𝜓 : 𝐷 → (0,∞). Assume that∫ 𝑏

𝑎

Φ(𝑡) (1 −Φ(𝑡))
(𝜓(𝑡))2 d𝑡 < ∞. (8.11)

Then the Fourier coefficients of Θ, the function given by (8.10), are well-defined and
given by

Θ̂(0) = 0,

and, for ℎ ∈ N,

Θ̂(ℎ) = Θ̂(−ℎ) = 1
𝜋2ℎ2

∫ 𝑏

𝑎

sin2 (𝜋ℎΦ(𝑡))
(𝜓(𝑡))2 d𝑡

=
1

𝜋2ℎ2

∫ 1

0

sin2 (𝜋ℎ𝑢)
𝜙(Φ−1 (𝑢)) (𝜓(Φ−1 (𝑢)))2 d𝑢. (8.12)

Proof If condition (8.11) is satisfied, then (8.10) implies that Θ is well-defined. For
Θ̂(0) we have

Θ̂(0) =
∫ 1

0
Θ(𝑧) d𝑧

=

∫ 𝑏

𝑎

Φ(𝑡)
(𝜓(𝑡))2

∫ 1

0
(max(0, 1 − 𝑧 −Φ(𝑡)) + max(0, 𝑧 −Φ(𝑡))) d𝑧 d𝑡

+
∫ 𝑏

𝑎

1 −Φ(𝑡)
(𝜓(𝑡))2

∫ 1

0
(max(0,Φ(𝑡) − 𝑧) + max(0, 𝑧 − (1 −Φ(𝑡)))) d𝑧 d𝑡

−
∫ 𝑏

𝑎

Φ(𝑡) (1 −Φ(𝑡))
(𝜓(𝑡))2 d𝑡

=

∫ 𝑏

𝑎

Φ(𝑡) (1 −Φ(𝑡))2

(𝜓(𝑡))2 d𝑡 +
∫ 𝑏

𝑎

(1 −Φ(𝑡)) (Φ(𝑡))2

(𝜓(𝑡))2 d𝑡

−
∫ 𝑏

𝑎

Φ(𝑡) (1 −Φ(𝑡))
(𝜓(𝑡))2 d𝑡

= 0.

330 8 Integration With Respect to Probability Measures

We now consider ℎ ∈ Z \ {0}. The Fourier coefficients Θ̂(ℎ) are given by

Θ̂(ℎ)

=

∫ 𝑏

𝑎

Φ(𝑡)
(𝜓(𝑡))2

∫ 1

0
e−2𝜋iℎ𝑧 (max(0, 1 − 𝑧 −Φ(𝑡)) + max(0, 𝑧 −Φ(𝑡))) d𝑧 d𝑡

+
∫ 𝑏

𝑎

1 −Φ(𝑡)
(𝜓(𝑡))2

∫ 1

0
e−2𝜋iℎ𝑧 (max(0,Φ(𝑡) − 𝑧) + max(0,Φ(𝑡) − (1 − 𝑧))) d𝑧 d𝑡

−
∫ 1

0
e−2𝜋iℎ𝑧 d𝑧

∫ 𝑏

𝑎

Φ(𝑡) (1 −Φ(𝑡))
(𝜓(𝑡))2 d𝑡. (8.13)

Since ℎ ∈ Z \ {0} we have
∫ 1
0 e−2𝜋iℎ𝑧 d𝑧 = 0, so the third term in (8.13) vanishes.

We consider the remaining terms appearing in (8.13) separately. The inner integral
in the first term can be simplified using integration by parts,∫ 1

0
e−2𝜋iℎ𝑧 (max(0, 1 − 𝑧 −Φ(𝑡)) + max(0, 𝑧 −Φ(𝑡))) d𝑧

=

∫ 1−Φ(𝑡)

0
e−2𝜋iℎ𝑧 (1 − 𝑧 −Φ(𝑡)) d𝑧 +

∫ 1

Φ(𝑡)
e−2𝜋iℎ𝑧 (𝑧 −Φ(𝑡)) d𝑧

=
1 −Φ(𝑡)

2𝜋iℎ
− e2𝜋iℎΦ(𝑡) − 1

(2𝜋ℎ)2 − 1 −Φ(𝑡)
2𝜋iℎ

− e−2𝜋iℎΦ(𝑡) − 1
(2𝜋ℎ)2

=
sin2 (𝜋ℎΦ(𝑡))

(𝜋ℎ)2 .

The inner integral of the second term can be simplified in a similar manner using
integration by parts,∫ 1

0
e−2𝜋iℎ𝑧 (max(0,Φ(𝑡) − 𝑧) + max(0, 𝑧 − (1 −Φ(𝑡)))) d𝑧

=

∫ Φ(𝑡)

0
e−2𝜋iℎ𝑧 (Φ(𝑡) − 𝑧) d𝑧 +

∫ 1

1−Φ(𝑡)
e−2𝜋iℎ𝑧 (𝑧 − 1 +Φ(𝑡)) d𝑧

=
Φ(𝑡)
2𝜋iℎ

− e−2𝜋iℎΦ(𝑡) − 1
(2𝜋ℎ)2 − Φ(𝑡)

2𝜋iℎ
− e2𝜋iℎΦ(𝑡) − 1

(2𝜋ℎ)2

=
sin2 (𝜋ℎΦ(𝑡))

(𝜋ℎ)2 .

Substituting these results into (8.13), and using the transformation 𝑢 = Φ(𝑡) yields
the result for ℎ ∈ Z \ {0}. □

8.4 The Shift-Invariant Kernel 331

The decay rate of the Fourier coefficients

We have seen that (8.11) implies that the Fourier coefficients of the function Θ are
well-defined. In order for Θ to be represented pointwise by a Fourier series, we
need to ensure that the Fourier coefficients Θ̂(ℎ) decay fast enough. This depends
on the particular choices of Φ and 𝜓. We discuss several combinations of Φ and
𝜓 for which Θ can indeed be represented pointwise by a Fourier series. This is the
case for instance if the function Θ is continuous and the Fourier coefficients satisfy
|Θ̂(ℎ) | < 𝐶𝛿 |ℎ|−1−𝛿 for some constant 𝐶𝛿 > 0 independent of ℎ and 𝛿 > 0.

When Θ can be represented pointwise by a Fourier series, we obtain that G is a
space of Fourier series, similar to a Korobov space.

The following lemma will be useful to obtain bounds on the decay rate of the
Fourier coefficients Θ̂.

Lemma 8.3 For ℎ ∈ N and 𝑎 ∈ (0, 1), we have∫ 1/2

0

sin2 (𝜋ℎ𝑢)
𝑢1+𝑎 d𝑢 ≤ ℎ𝑎

2𝜋𝑎

(2 − 𝑎)𝑎 .

Proof Using the substitution 𝑡 = ℎ𝑢, replacing the upper limit ℎ/2 by ∞, and
employing the estimates sin2 (𝜋𝑡) ≤ (𝜋𝑡)2 for 0 ≤ 𝑡 ≤ 1/𝜋 and sin2 (𝜋𝑡) ≤ 1 for
𝑡 ≥ 1/𝜋, we obtain∫ 1/2

0

sin2 (𝜋ℎ𝑢)
𝑢1+𝑎 d𝑢 = ℎ𝑎

∫ ℎ/2

0

sin2 (𝜋𝑡)
𝑡1+𝑎

d𝑡

≤ ℎ𝑎
(
𝜋2

∫ 1/𝜋

0
𝑡1−𝑎 d𝑡 +

∫ ∞

1/𝜋
𝑡−1−𝑎 d𝑡

)
= ℎ𝑎

2𝜋𝑎

(2 − 𝑎)𝑎 . □

As we will consider some examples involving the normal distribution, we will
collect some useful inequalities regarding this distribution first.

Useful inequalities regarding the normal distribution

The probability density function of a normal distribution with mean 0 and variance
𝜎2 is given by

𝜙𝜎 (𝑡) =
1

𝜎
√

2𝜋
e−𝑡

2/(2𝜎2) for 𝑡 ∈ R, (8.14)

and the cumulative distribution function is given by

Φ𝜎 (𝑡) =
∫ 𝑡

−∞
𝜙𝜎 (𝑥) d𝑥 for 𝑡 ∈ R.

332 8 Integration With Respect to Probability Measures

The main difficulty in estimating the Fourier coefficients Θ̂(ℎ) in (8.12) arises
from the term 1/𝜙(Φ−1 (𝑢)). This term tends to infinity as 𝑢 → 0+.

For the cumulative normal distribution function, for 𝑡 < 0, we have the tail
estimate

Φ𝜎 (𝑡) =
1

𝜎
√

2𝜋

∫ 𝑡

−∞
e−𝑥

2/(2𝜎2) d𝑥

<
1

𝜎
√

2𝜋

∫ 𝑡

−∞

𝑥

𝑡
e−𝑥

2/(2𝜎2) d𝑥

= − 𝜎

𝑡
√

2𝜋
e−𝑡

2/(2𝜎2) . (8.15)

Similarly, for 𝑡 > 0, we also have

1 −Φ𝜎 (𝑡) <
𝜎

𝑡
√

2𝜋
e−𝑡

2/(2𝜎2) . (8.16)

We claim that for all 𝑢 ∈ (0, 1/2),

e(Φ
−1
𝜎 (𝑢))2/(2𝜎2) ≤ 1

𝑢
.

This claim is equivalent to

−Φ−1
𝜎 (𝑢) ≤

√︃
−2𝜎2 log 𝑢 , (8.17)

which in turn is equivalent to

𝑢 ≥ Φ𝜎

(
−
√︃
−2𝜎2 log 𝑢

)
,

where we used that Φ−1
𝜎 (𝑢) < 0 for 𝑢 ∈ (0, 1/2). This inequality, however, holds

true since

Φ𝜎

(
−
√︃
−2𝜎2 log 𝑢

)
≤ 𝜎 elog𝑢√︁

−4𝜋𝜎2 log 𝑢
≤ 𝑢√︁

4𝜋 log(1/𝑢)
≤ 𝑢,

for all 𝑢 ∈ (0, 1/2), where we used (8.15).
In particular, (8.17) implies that for 𝑢 ∈ (0, 1/2) we have

e−Φ
−1
𝜎 (𝑢) ≤ e

√
−2𝜎2 log𝑢.

For 𝛿 > 0 we have e
√
−2𝜎2 log𝑢 ≤ 𝐶𝛿𝑢−𝛿 for 𝑢 ∈ (0, 1/2), where

𝐶𝛿 = sup
𝑢∈(0,1/2)

e𝛿 log𝑢+
√
−2𝜎2 log𝑢

8.4 The Shift-Invariant Kernel 333

= esup𝑢∈(0,1/2)
(
𝛿 log𝑢+

√
−2𝜎2 log𝑢

)
≤ e𝜎

2/(2𝛿) .

Therefore, for any 𝛿 > 0 and 𝑢 ∈ (0, 1/2), we have

e−Φ
−1
𝜎 (𝑢) ≤ e𝜎

2/(2𝛿)𝑢−𝛿 .

Normal distribution and exponential decay

We consider the case where 𝜙 = 𝜙𝜎 is the density function of a normal distribution
as in (8.14) and 𝜓 is given by

𝜓𝛽 (𝑡) = e−|𝑡 |/(2𝛽) for 𝑡 ∈ R,

where 𝛽 is a positive real. Using (8.15), we obtain that the condition (8.11) is satisfied
for any 𝛽, 𝜎 > 0, as ∫ ∞

−∞
Φ𝜎 (𝑡) (1 −Φ𝜎 (𝑡)) e |𝑡 |/𝛽 d𝑡 < ∞.

Using Lemmas 8.2 and 8.3 we obtain for ℎ ∈ Z \ {0} and 𝛿 ∈ (0, 1) that

𝜋2ℎ2 Θ̂(ℎ) = 2
∫ 1/2

0

sin2 (𝜋ℎ𝑢)
eΦ−1

𝜎 (𝑢)/𝛽𝜙𝜎 (Φ−1
𝜎 (𝑢))

d𝑢

= 2𝜎
√

2𝜋
∫ 1/2

0
sin2 (𝜋ℎ𝑢) e(Φ

−1
𝜎 (𝑢))2/(2𝜎2)−Φ−1

𝜎 (𝑢)/𝛽 d𝑢

≤ 2𝜎
√

2𝜋 e𝜎
2/(2𝛿𝛽)

∫ 1/2

0

sin2 (𝜋ℎ𝑢)
𝑢1+𝛿/𝛽 d𝑢

≤ 2𝜎
√

2𝜋 e𝜎
2/(2𝛿𝛽) |ℎ| 𝛿/𝛽 2𝛽𝜋𝛿/𝛽

(2 − 𝛿/𝛽)𝛿 .

Hence we obtain that for any ℎ ∈ Z \ {0} and any 𝛿 ∈ (0, 1) we have

|Θ̂(ℎ) | ≤
𝐶𝛽, 𝛿,𝜎

|ℎ|2−𝛿/𝛽
,

where 𝐶𝛽, 𝛿,𝜎 := (2/𝜋)3/2𝜎e𝜎2/(2𝛿𝛽)2𝛽𝜋𝛿/𝛽/((2 − 𝛿/𝛽)𝛿).
Thus, for instance, for 𝛽 ∈ (0, 2) and 𝛿 = 𝛽/2 we obtain that |Θ̂(ℎ) | ≤

𝐶𝛽,𝛽/2,𝜎 |ℎ|−3/2, which shows that for this combination of 𝜙 and 𝜓, Θ can be repre-
sented pointwise by a Fourier series.

334 8 Integration With Respect to Probability Measures

Two normal distributions

Consider now the case where 𝜙 = 𝜙𝜎 is a normal distribution as in (8.14) and where

𝜓(𝑡) = e−𝑡
2/(2𝛽2) for 𝑡 ∈ R,

where we assume that 0 < 𝜎 < 𝛽/
√

2. Then the inequalities (8.15) and (8.16) imply
that the condition (8.11) is satisfied.

Using Lemmas 8.2 and 8.3 we obtain for ℎ ∈ Z \ {0} and 𝛿 ∈ (0, 1) that

𝜋2ℎ2 Θ̂(ℎ) = 2
∫ 1/2

0

sin2 (𝜋ℎ𝑢)
e−(Φ−1

𝜎 (𝑢))2/𝛽2
𝜙𝜎 (Φ−1

𝜎 (𝑢))
d𝑢

= 2𝜎
√

2𝜋
∫ 1/2

0
sin2 (𝜋ℎ𝑢) e(Φ

−1
𝜎 (𝑢))2/(2𝜎2)+(Φ−1

𝜎 (𝑢))2/𝛽2
d𝑢

= 2𝜎
√

2𝜋
∫ 1/2

0
sin2 (𝜋ℎ𝑢) e((Φ−1

𝜎 (𝑢))2/(2𝜎2)) (1+(2𝜎2)/𝛽2) d𝑢

≤ 2𝜎
√

2𝜋
∫ 1/2

0

sin2 (𝜋ℎ𝑢)
𝑢1+2𝜎2/𝛽2 d𝑢

≤ 2𝜎
√

2𝜋 |ℎ|2𝜎2/𝛽2 𝜋2𝜎2/𝛽2

2(1 − 𝜎2/𝛽2)𝜎2/𝛽2 .

Hence we obtain that for any ℎ ∈ Z \ {0}

|Θ̂(ℎ) | ≤
𝐶𝛽,𝜎

|ℎ|2(1−𝜎2/𝛽2)
,

where 𝐶𝛽,𝜎 := (2/𝜋)3/2𝜋2𝜎2/𝛽2
𝛽2/(2(1 − 𝜎2/𝛽2)𝜎).

Since 𝜎 < 𝛽/
√

2 ensures that 2(1 − 𝜎2/𝛽2) > 1, we obtain that Θ can be
represented pointwise by a Fourier series.

Logistic distribution and exponential function

We now consider the logistic distribution with density

𝜙𝜈 (𝑡) =
e𝑡/𝜈

𝜈(1 + e𝑡/𝜈)2 for 𝑡 ∈ R

with parameter 𝜈 > 0, and put 𝜙 = 𝜙𝜈 , and the exponential function

𝜓(𝑡) = e−|𝑡 |/𝛽 for 𝑡 ∈ R,

with parameter 𝛽 > 0. We assume that 𝛽 > 2𝜈.

8.5 Integration Error 335

The cumulative distribution function of the logistic distribution is given by

Φ𝜈 (𝑡) =
e𝑡/𝜈

1 + e𝑡/𝜈
,

and its inverse is given by

Φ−1
𝜈 (𝑡) = 𝜈 log

(𝑡

1 − 𝑡

)
.

Combining these, we obtain for 𝑢 ∈ (0, 1/2) that

𝜙𝜈 (Φ−1
𝜈 (𝑢)) = 𝑢(1 − 𝑢)

𝜈
and 𝜓(Φ−1

𝜈 (𝑢)) =
(𝑢

1 − 𝑢

)𝜈/𝛽
.

Using Lemma 8.2, we obtain for ℎ ∈ Z \ {0} that

𝜋2ℎ2 Θ̂(ℎ) = 2
∫ 1/2

0

sin2 (𝜋ℎ𝑢)
(𝜓(Φ−1

𝜈 (𝑢)))2𝜙𝜈 (Φ−1
𝜈 (𝑢))

d𝑢

= 2𝜈
∫ 1/2

0
𝑢−1−2𝜈/𝛽 (1 − 𝑢)−1+2𝜈/𝛽 sin2 (𝜋ℎ𝑢) d𝑢.

Using the fact that 1 − 𝑢 ≥ 1/2 for 𝑢 ∈ (0, 1/2) and Lemma 8.3, we obtain for
ℎ ∈ Z \ {0},

|Θ̂(ℎ) | ≤ 22−2𝜈/𝛽

𝜋2ℎ2

∫ 1/2

0

sin2 (𝜋ℎ𝑢)
𝑢1+2𝜈/𝛽 d𝑢 ≤

𝐶𝜈,𝛽

|ℎ|2(1−𝜈/𝛽)
,

where 𝐶𝜈,𝛽 := (2/𝜋)2(1−𝜈/𝛽)/((1 − 𝜈/𝛽)𝜈/𝛽).
Again, 𝛽 > 2𝜈 implies that 2(1 − 𝜈/𝛽) > 1 and hence for this combination of 𝜙

and 𝜈, Θ can be represented pointwise by a Fourier series.

8.5 Integration Error

Next, we consider weighted tensor product spaces based on the univariate unanchored
Sobolev space introduced in Section 8.3. Let 𝜸 = (𝛾 𝑗) 𝑗≥1 be a sequence of product
weights. Let 𝐷 = (𝑎, 𝑏), as above. The kernel of the weighted tensor product space
F𝑑 is of the form

𝐾F𝑑 ,𝜸 (𝒙, 𝒚) =
𝑑∏
𝑗=1

𝐾F,𝛾 𝑗 (𝑥 𝑗 , 𝑦 𝑗) for 𝒙, 𝒚 ∈ 𝐷𝑑 .

As for the univariate case, using (8.5), we obtain that the initial error is given by

err0,𝑑 (F𝑑) = 1.

336 8 Integration With Respect to Probability Measures

To approximate 𝐼𝑑,𝜙 (𝑓) for 𝑓 ∈ F𝑑 we use the quadrature rule

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (Φ−1 ({𝒙𝑘 + 𝚫})),

where 𝚫 is a random shift whose components are i.i.d. uniformly distributed on
[0, 1], and where P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} is an 𝑁-element point set in [0, 1]𝑑 . The
root mean square worst-case error of the randomly shifted point set P is given by

[errsh
𝑁,𝑑 (F𝑑 ,Φ

−1 (P))]2 = [errsh
𝑁,𝑑 (G𝑑 ,P)]2 = −1 + 1

𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾sh
G𝑑 ,𝜸

(𝒙𝑘 , 𝒙ℓ).

If P = P(𝒈, 𝑁) is a lattice point set, then the latter formula simplifies to

[errsh
𝑁,𝑑 (F𝑑 ,P)]2 = −1 + 1

𝑁

𝑁−1∑︁
𝑘=0

𝐾sh
G𝑑 ,𝜸

(𝒙𝑘 , 0).

Using the character property of lattice point sets (see Lemma 1.9) we obtain

[errsh
𝑁,𝑑 (F𝑑 ,P)]2 =

∑︁
𝒉∈L⊥ (𝒈,𝑁)\{0}

∏
𝑗∈𝔲 (𝒉)

𝛾 𝑗Θ̂(ℎ 𝑗),

where Θ is the univariate function defined as in (8.10), and where, as in Section 2.4,
𝔲(𝒉) := { 𝑗 ∈ [𝑑] : ℎ 𝑗 ≠ 0}.

As we have seen before, the value of Θ̂(ℎ 𝑗), 𝑗 ∈ [𝑑], depends on the func-
tions 𝜙 and 𝜓. In most instances we do not easily obtain explicit values of the
Fourier coefficients. However, they can be estimated numerically (using a one-
dimensional integration rule). Using such estimates, one can numerically estimate
the values of Θ(𝑘/𝑁) for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1} and use those to get approximations
of 𝐾sh

F𝑑 ,𝜸
(𝒙𝑘 , 0), for a lattice point set {𝒙0, 𝒙1, . . . , 𝒙𝑁−1}. These can then be used

in a component-by-component algorithm (see, Sections 3.3 and the following) to
obtain good generating vectors for lattice rules.

A bound on the convergence rate can be obtained as in Theorem 7.21. The
convergence rate will depend on the decay rate of the coefficients Θ̂(ℎ) as |ℎ| → ∞.
The proof of the following theorem follows along the same lines as the proof of
Theorem 3.7, where the values |ℎ|−2𝛼 are replaced by |Θ̂(ℎ) | (or an upper bound on
|Θ̂(ℎ) |).

Theorem 8.4 Let 𝑑 ∈ N, and let 𝐷 = (𝑎, 𝑏) for some 𝑎, 𝑏 ∈ R ∪ {−∞,∞}. Let
𝜙 : 𝐷 → R be a probability density function and let 𝜓 : 𝐷 → (0,∞). Assume that
(8.11) is satisfied for 𝜙 and 𝜓.

Let 𝛼 > 1/2 be such that

|Θ̂(ℎ) | ≤ 𝐶

|ℎ|2𝛼
for all ℎ ∈ Z \ {0}.

8.5 Integration Error 337

Let 𝑁 be a prime number and assume that the generating vector 𝒈 ∈ 𝐺𝑑 (𝑁) has
been constructed using Algorithm 3.6 based on errsh

𝑁,𝑑
(F𝑑 ,P). Then the root mean

square error satisfies, for any 𝜏 ∈ [1/2, 𝛼),

errsh
𝑁,𝑑 (F𝑑 ,P(𝒈, 𝑁)) ≤ 2𝜏

𝑁 𝜏

𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝑐

) 𝜏
,

where 𝑐 > 0 is a constant chosen in a way such that
∑
ℎ∈Z\{0} |Θ̂(ℎ) |1/(2𝜏) < 𝑐.

Notes and Remarks

Integration over domains other than the unit cube comes up naturally in applications
as for instance in PDEs with random coefficients (see Appendix A and the references
there), in option pricing in financial mathematics (see, e.g., [78, 173, 257, 258]), or
in applications in statistics (see [157]).

Regarding the inner product and norm in the space G as introduced in Section 8.2,
note that the norm in G is in general given by ∥𝑔∥G = inf{∥ 𝑓 ∥F : 𝑓 = 𝑔(Φ)}. Since
we assume Φ to be invertible and Φ−1 to be well-defined, it holds that there is only
one function 𝑓 ∈ F for which 𝑓 = 𝑔(Φ), which implies ∥𝑔∥G = ∥ 𝑓 ∥F for that 𝑓 .
This property can then also be transferred to the inner product.

The theory of transformed randomly shifted lattice rules was first introduced in
[164] and further developed in [161] and [191]. The main part of the theory presented
in this chapter stems from those three papers.

In Lemma 8.1 we verified that the function 𝐾F,𝛾 is the reproducing kernel of the
given space F . The approach in [191] is different, as the authors there show how
one may derive this kernel from scratch.

As we have seen in Section 8.4, the decay rate of the Fourier coefficients of the
shift-invariant kernel depends on Φ and 𝜓. We have obtained bounds on the decay
rate for some common examples. Further examples are given in [191].

Note that it would be no problem to assume in Theorem 8.4 and the other
observations in Section 8.5 that there are potentially different functions 𝜙 𝑗 and
𝜓 𝑗 for each 𝑗 ∈ [𝑑], instead of assuming the same 𝜙 and 𝜓 in each component.
This would then lead to potentially different Θ 𝑗 for 𝑗 ∈ [𝑑] instead of Θ for every
component. Since all considerations in this chapter have been outlined for tensor
product spaces, such an assumption would cause no difficulties. For the sake of
simplicity, we have outlined the results for the simpler case, where all components
are based on the same 𝜙 and 𝜓.

We also refer to [144] regarding QMC for weighted integration over unbounded
domains. Other quasi-Monte Carlo methods for integration over other domains have
been discussed in [42, 56, 116, 118, 119].

Chapter 9
Integration of Analytic Functions

In Chapter 2 we introduced the Korobov spaces Hkor,𝑑,𝛼,𝜸 and studied numerical
integration using lattice rules for these spaces. The parameter 𝛼 is related to the
smoothness of the elements of Hkor,𝑑,𝛼,𝜸 (see Propositions 2.2 and 2.4) and is
called the smoothness parameter of these spaces. For an optimal integration rule
the rate of convergence of the worst-case error is essentially of order O(𝑁−𝛼) and
therefore reflects the smoothness of the reference space. In the cases considered so
far, the smoothness parameter 𝛼 has always been finite and hence we have observed
convergence rates of polynomial order.

In this section we consider numerical integration of functions with infinite
smoothness and introduce a Korobov space of periodic functions that are analytic.
In this case we can obtain exponential convergence rates, which are optimal. We are
also interested in the dependence of the error bounds on the dimension 𝑑. In order
to investigate this question systematically, we will reinterpret the classical notions of
tractability which have been designed for polynomial error convergence rates, and
introduce several so-called exponential tractability notions.

9.1 General Korobov Spaces and Korobov Spaces of Analytic
Functions

We introduce a general Korobov space as a reproducing kernel Hilbert space with
kernel function

𝐾kor,𝜌 (𝒙, 𝒚) =
∑︁
𝒉∈Z𝑑

𝜌(𝒉) e2𝜋i𝒉 · (𝒙−𝒚) for 𝒙, 𝒚 ∈ [0, 1]𝑑 . (9.1)

The nonnegative 𝜌(𝒉) for 𝒉 ∈ Z𝑑 , which may also depend on 𝑑 and on other
parameters, are assumed to satisfy the condition

339© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_9&domain=pdf

340 9 Integration of Analytic Functions∑︁
𝒉∈Z𝑑

𝜌(𝒉) < ∞.

This assumption implies

|𝐾kor,𝜌 (𝒙, 𝒚) | ≤ 𝐾kor,𝜌 (𝒙, 𝒙) =
∑︁
𝒉∈Z𝑑

𝜌(𝒉) < ∞.

Obviously, 𝐾kor,𝜌 is conjugate symmetric and positive semi-definite, since for any
choice of 𝑛 ∈ N, 𝑎1, 𝑎2, . . . , 𝑎𝑛 ∈ C, and 𝒙1, 𝒙2, . . . , 𝒙𝑛 ∈ [0, 1]𝑑 we have

𝑛∑︁
𝑖, 𝑗=1

𝑎𝑖𝑎 𝑗𝐾kor,𝜌 (𝒙𝑖 , 𝒙 𝑗) =
𝑛∑︁

𝑖, 𝑗=1
𝑎𝑖𝑎 𝑗

∑︁
𝒉∈Z𝑑

𝜌(𝒉) e2𝜋i𝒉 · (𝒙𝑖−𝒙 𝑗)

=
∑︁
𝒉∈Z𝑑

𝜌(𝒉)
(
𝑛∑︁
𝑖=1

𝑎𝑖 e2𝜋i𝒉 ·𝒙𝑖

) ©«
𝑛∑︁
𝑗=1
𝑎 𝑗 e−2𝜋i𝒉 ·𝒙 𝑗

ª®¬
=

∑︁
𝒉∈Z𝑑

𝜌(𝒉)

������ 𝑛∑︁𝑗=1
𝑎 𝑗 e−2𝜋i𝒉 ·𝒙 𝑗

������
2

≥ 0.

Therefore, 𝐾kor,𝜌 is indeed a reproducing kernel.
Definition 9.1 The reproducing kernel Hilbert space Hkor,𝜌 = H(𝐾kor,𝜌) is called a
general Korobov space. The corresponding inner product is given by

⟨ 𝑓 , 𝑔⟩kor,𝜌 :=
∑︁
𝒉∈Z𝑑

1
𝜌(𝒉) �̂� (𝒉)�̂�(𝒉),

and the norm is

∥ 𝑓 ∥kor,𝜌 :=

(∑︁
𝒉∈Z𝑑

1
𝜌(𝒉) | �̂� (𝒉) |

2

)1/2

.

The smoothness of the functions in Hkor,𝜌 is determined by the decay of 𝜌(𝒉) as
∥𝒉∥∞ := max 𝑗∈[𝑑] |ℎ 𝑗 | grows. In the classical case introduced in Chapter 2 we had
(see Equation (2.4))

𝜌(𝒉) = 1
𝑟2𝛼 (𝒉)

,

or, in the weighted case (see Equation (2.19)),

𝜌(𝒉) = 1
𝑟2𝛼,𝜸 (𝒉)

.

In these cases 𝜌(𝒉) decays like
∏𝑑
𝑗=1 max(1, |ℎ 𝑗 |)−2𝛼, and this rate implies that the

functions in the corresponding Korobov space have finite smoothness of order 𝛼 (see
Section 2.1).

9.1 General Korobov Spaces and Korobov Spaces of Analytic Functions 341

Infinite smoothness

If we would like to study functions of infinite smoothness we need to demand
that 𝜌(𝒉) decays exponentially as ∥𝒉∥∞ grows. Also then, we are interested in the
possibly different degrees of influence of different components and use, to model
this, two weight sequences

𝒂 = (𝑎 𝑗) 𝑗≥1 and 𝒃 = (𝑏 𝑗) 𝑗≥1.

In order to guarantee that the kernel that we are going to study is well-defined, we
demand that 𝑎 𝑗 > 0 and 𝑏 𝑗 > 0 for all 𝑗 ∈ N. In fact, we assume a little more
throughout this chapter, namely that with a proper ordering of variables we have

0 < 𝑎1 ≤ 𝑎2 ≤ · · · and 𝑏∗ := inf 𝑏 𝑗 > 0. (9.2)

We also write 𝑎∗ := inf 𝑎 𝑗 = 𝑎1.
We now fix 𝜔 ∈ (0, 1) and put

𝜌(𝒉) = 𝜌𝒂,𝒃 (𝒉) := 𝜔
∑𝑑

𝑗=1 𝑎 𝑗 |ℎ 𝑗 |𝑏𝑗

for 𝒉 = (ℎ1, . . . , ℎ𝑑) ∈ Z𝑑 .

With this choice we denote the kernel in (9.1) by 𝐾kor,𝑑,𝒂,𝒃 . We suppress the depen-
dence on 𝜔 in the notation since 𝜔 is assumed to be fixed, but 𝒂, 𝒃 can be varied. It
is easily seen that 𝐾kor,𝑑,𝒂,𝒃 is well-defined, since

∑︁
𝒉∈Z𝑑

𝜌𝒂,𝒃 (𝒉) =
𝑑∏
𝑗=1

(
1 + 2

∞∑︁
ℎ=1

𝜔𝑎 𝑗ℎ
𝑏𝑗

)
≤

(
1 + 2

∞∑︁
ℎ=1

𝜔𝑎∗ℎ
𝑏∗

)𝑑
< ∞,

due to the fact that 𝑎∗ > 0 and 𝑏∗ > 0.
We denote the corresponding reproducing kernel Hilbert space by Hkor,𝑑,𝒂,𝒃 =

H(𝐾kor,𝑑,𝒂,𝒃). For functions 𝑓 ∈ Hkor,𝑑,𝒂,𝒃 we have

𝑓 (𝒙) =
∑︁
𝒉∈Z𝑑

�̂� (𝒉) e2𝜋i𝒉 ·𝒙 for all 𝒙 ∈ [0, 1]𝑑 ,

where again �̂� (𝒉) is the 𝒉-th Fourier coefficient of 𝑓 and the norm of 𝑓 ∈ Hkor,𝑑,𝒂,𝒃
is

∥ 𝑓 ∥kor,𝑑,𝒂,𝒃 =

(∑︁
𝒉∈Z𝑑

𝜔
−∑𝑑

𝑗=1 𝑎 𝑗 |ℎ 𝑗 |𝑏𝑗 | �̂� (𝒉) |2
)1/2

< ∞.

We now show that the functions in Hkor,𝑑,𝒂,𝒃 are infinitely many times differen-
tiable, and even more, they are analytic.

Theorem 9.2 The elements of Hkor,𝑑,𝒂,𝒃 are analytic.

Proof Let 𝒂∗ and 𝒃∗ denote the constant sequences (𝑎∗) 𝑗≥1 and (𝑏∗) 𝑗≥1, respectively.
Since Hkor,𝑑,𝒂,𝒃 ⊆ Hkor,𝑑,𝒂∗ ,𝒃∗ , it suffices to show the assertion for 𝑓 ∈ Hkor,𝑑,𝒂∗ ,𝒃∗ .

342 9 Integration of Analytic Functions

Let 𝜼 = (𝜂1, 𝜂2, . . . , 𝜂𝑑) ∈ N𝑑0 and recall that ∥𝜼∥1 = 𝜂1 + · · · + 𝜂𝑑 . For 𝑓 ∈
Hkor,𝑑,𝒂∗ ,𝒃∗ , consider the operator of partial differentiation,

𝐷𝜼 𝑓 =
𝜕𝜂1+···+𝜂𝑑

𝜕𝑥
𝜂1
1 𝜕𝑥

𝜂2
2 . . . 𝜕𝑥

𝜂𝑑
𝑑

𝑓 .

Then

𝐷𝜼 𝑓 (𝒙) =
∑︁
𝒉∈Z𝑑

©« �̂� (𝒉) (2𝜋i) ∥𝜼 ∥1

𝑑∏
𝑗=1

ℎ
𝜂 𝑗

𝑗

ª®¬ e2𝜋i𝒉 ·𝒙,

where, by convention, we take 00 := 1.
Fix 𝜔1 ∈ (𝜔, 1) and 𝑞 = 𝜔/𝜔1 < 1. For any 𝜂 ∈ N consider 𝑔(𝑥) = 𝑥2𝜂𝑞𝑥 for

𝑥 ≥ 0. Then 𝑔′(𝑥) = 0 if 𝑥 = 2𝜂/(log 𝑞−1) and

𝑔′′
(

2𝜂
log 𝑞−1

)
=

1
2

(
2
e

)2𝜂 (
𝜂

log 𝑞−1

)2𝜂−1
log 𝑞 < 0.

Hence,

𝑔(𝑥) ≤ 𝑔
(

2𝜂
log 𝑞−1

)
=

(
2𝜂

e log 𝑞−1

)2𝜂
.

Since

𝜂2𝜂 =

(
𝜂!
𝜂𝜂

𝜂!

)2
≤ e2𝜂 (𝜂!)2,

we obtain

𝑔(𝑥) ≤
(

2
log 𝑞−1

)2𝜂
(𝜂!)2.

Therefore, we have

𝑥2𝜂𝜔𝑥 ≤
(

2
log𝜔1 − log𝜔

)2𝜂
(𝜂!)2𝜔𝑥1 = 𝐶2𝜂 (𝜂!)2𝜔𝑥1 ,

where 𝐶 := 2/(log𝜔1 − log𝜔) = 2/log(𝜔1/𝜔) > 0 depends only on 𝜔 and 𝜔1.
Now consider the absolute value of the partial derivative 𝐷𝜼 𝑓 in 𝒙 ∈ [0, 1]𝑑 .

Recall that 𝜌𝒂∗ ,𝒃∗ (𝒉) = 𝜔𝑎∗ |ℎ1 |𝑏∗+···+𝑎∗ |ℎ𝑑 |𝑏∗ . Dividing and multiplying each term of
the series by the corresponding value of

√︁
𝜌𝒂∗ ,𝒃∗ (𝒉), and using the Cauchy–Schwarz

inequality yields

|𝐷𝜼 𝑓 (𝒙) | =

������ ∑︁𝒉∈Z𝑑
(

�̂� (𝒉)√︁
𝜌𝒂∗ ,𝒃∗ (𝒉)

) ©«
√︁
𝜌𝒂∗ ,𝒃∗ (𝒉) (2𝜋i) ∥𝜼 ∥1

𝑑∏
𝑗=1

ℎ
𝜂 𝑗

𝑗

ª®¬ e2𝜋i𝒉 ·𝒙

������
≤ ∥ 𝑓 ∥kor,𝑑,𝒂∗ ,𝒃∗

©«
∑︁
𝒉∈Z𝑑

(2𝜋)2∥𝜼 ∥1

𝑑∏
𝑗=1

|ℎ 𝑗 |2𝜂 𝑗𝜔𝑎∗ |ℎ 𝑗 |𝑏∗ ª®¬
1/2

9.1 General Korobov Spaces and Korobov Spaces of Analytic Functions 343

≤ ∥ 𝑓 ∥kor,𝑑,𝒂∗ ,𝒃∗
©«
∑︁
𝒉∈Z𝑑

(2𝜋)2∥𝜼 ∥1

𝑑∏
𝑗=1

(
𝐶2𝜂 𝑗 (𝜂 𝑗 !)2

)
𝜔
𝑎∗ |ℎ 𝑗 |𝑏∗
1

ª®¬
1/2

= ∥ 𝑓 ∥kor,𝑑,𝒂∗ ,𝒃∗ (2𝜋𝐶) ∥𝜼 ∥1

𝑑∏
𝑗=1

(
𝜂 𝑗 !

) ©«
∑︁
𝒉∈Z𝑑

𝑑∏
𝑗=1
𝜔
𝑎∗ |ℎ 𝑗 |𝑏∗
1

ª®¬
1/2

= ∥ 𝑓 ∥kor,𝑑,𝒂∗ ,𝒃∗ (2𝜋𝐶) ∥𝜼 ∥1

𝑑∏
𝑗=1

(
𝜂 𝑗 !

) (
1 + 2

∞∑︁
ℎ=1

𝜔
𝑎∗ℎ𝑏∗

1

)𝑑/2
= 𝐶1 · 𝐶 ∥𝜼 ∥1

2

𝑑∏
𝑗=1

(
𝜂 𝑗 !

)
,

where 𝐶1 := ∥ 𝑓 ∥kor,𝑑,𝒂∗ ,𝒃∗ (1 + 2
∑∞
ℎ=1 𝜔

𝑎∗ℎ𝑏∗

1)𝑑/2 ≥ 0 and 𝐶2 := 2𝜋𝐶 > 0.
Then for any 𝜻 = (𝜁1, . . . , 𝜁𝑑) and 𝒙 = (𝑥1, . . . , 𝑥𝑑) with ∥𝒙 − 𝜻 ∥∞ < 𝐶−1

2 we
have ������ ∑︁𝜼∈N𝑑

0

𝐷𝜼 𝑓 (𝜻)
(𝜂1!) · · · (𝜂𝑑!)

𝑑∏
𝑗=1

(𝑥 𝑗 − 𝜁 𝑗)𝜂 𝑗

������ ≤ 𝐶1
∑︁
𝜼∈N𝑑

0

𝑑∏
𝑗=1

(𝐶2 |𝑥 𝑗 − 𝜁 𝑗 |)𝜂 𝑗

≤ 𝐶1
©«

∞∑︁
𝜂=0

(𝐶2∥𝒙 − 𝜻 ∥∞)𝜂ª®¬
𝑑

= 𝐶1

(
1

1 − 𝐶2∥𝒙 − 𝜻 ∥∞

)𝑑
< ∞.

It remains to show that the remainder 𝑅𝑛 of the Taylor polynomial, given by

𝑅𝑛 :=
∑︁

∥𝜼 ∥1=𝑛+1

𝑛 + 1
(𝜂1!) · · · (𝜂𝑑!)

©«
𝑑∏
𝑗=1

(𝑥 𝑗 − 𝜁 𝑗)𝜂 𝑗
ª®¬
∫ 1

0
(1 − 𝑡)𝑛𝐷𝜼 𝑓 (𝜻 + 𝑡 (𝒙 − 𝜻)) d𝑡

for 𝑛 ∈ N0, vanishes if 𝑛 goes to infinity, whenever 𝒙 and 𝜻 are close enough to each
other. Let again ∥𝒙 − 𝜻 ∥∞ < 𝐶−1

2 . Then we have

|𝑅𝑛 | ≤
∑︁

∥𝜼 ∥1=𝑛+1

𝑛 + 1
(𝜂1!) · · · (𝜂𝑑!)

©«
𝑑∏
𝑗=1

|𝑥 𝑗 − 𝜁 𝑗 |𝜂 𝑗
ª®¬
∫ 1

0
|1 − 𝑡 |𝑛 |𝐷𝜼 𝑓 (𝜻 + 𝑡 (𝒙 − 𝜻)) | d𝑡

≤ 𝐶1 · 𝐶𝑛+1
2

∑︁
∥𝜼 ∥1=𝑛+1

(𝑛 + 1) ©«
𝑑∏
𝑗=1

∥𝒙 − 𝜻 ∥𝜂 𝑗

∞
ª®¬
∫ 1

0
|1 − 𝑡 |𝑛 d𝑡

= 𝐶1 · (𝐶2∥𝒙 − 𝜻 ∥∞)𝑛+1
(
𝑛 + 𝑑
𝑑 + 1

)
,

344 9 Integration of Analytic Functions

because
∫ 1
0 |1 − 𝑡 |𝑛 d𝑡 = 1/(𝑛 + 1) and

∑
∥𝜼 ∥1=𝑛+1 1 =

(𝑛+𝑑
𝑑+1

)
. Since 𝐶2∥𝒙 − 𝜻 ∥∞ < 1

and
(𝑛+𝑑
𝑑+1

)
= O(𝑛𝑑−1), we get that lim𝑛→∞ 𝑅𝑛 = 0. Thus, 𝑓 is analytic. □

9.2 Integration in Korobov Spaces of Analytic Functions

In this section we study numerical integration of functions from the Korobov space
Hkor,𝑑,𝒂,𝒃 . We consider the worst-case error of QMC rules or linear rules. From
Remark 1.28 and Theorem 1.27, respectively, we find that the worst-case error of a
linear rule based on the 𝑁-element point set P = {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in [0, 1)𝑑 and
integration weights 𝒘 = (𝑤0, 𝑤1, . . . , 𝑤𝑁−1) ∈ C𝑁 is equal to

err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,P, 𝒘) =
(
1 − 2

𝑁−1∑︁
𝑘=0

Re(𝑤𝑘) +
𝑁−1∑︁
𝑘,ℓ=0

𝑤𝑘𝑤ℓ𝐾kor,𝑑,𝒂,𝒃 (𝒙𝑘 , 𝒙ℓ)
)1/2

.

For QMC rules this reduces to

err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,P) =
(
−1 + 1

𝑁2

𝑁−1∑︁
𝑘,ℓ=0

𝐾kor,𝑑,𝒂,𝒃 (𝒙𝑘 , 𝒙ℓ)
)1/2

. (9.3)

Let again
𝑒(𝑁, 𝑑) = inf

P,𝒘
err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,P, 𝒘)

be the 𝑁-th minimal worst-case error of the integration problem in Hkor,𝑑,𝒂,𝒃 . In the
same manner as for the classical Korobov space of finite smoothness we see that
the initial error of integration in Hkor,𝑑,𝒂,𝒃 equals one, i.e., 𝑒(0, 𝑑) = 1. Hence, the
integration problem is normalized for all 𝑑.

Since with Hkor,𝑑,𝒂,𝒃 we are concerned with analytic functions it is natural to
expect even exponential convergence rates for optimal integration rules.

Definition 9.3 We say that we have exponential convergence of 𝑒(𝑁, 𝑑) if there exist
a number 𝑞 ∈ (0, 1) and functions 𝑝, 𝐶, 𝑀 : N→ (0,∞) such that

𝑒(𝑁, 𝑑) ≤ 𝐶 (𝑑) 𝑞 (𝑁/𝑀 (𝑑)) 𝑝 (𝑑)
for all 𝑑, 𝑁 ∈ N. (9.4)

If (9.4) holds, then it is favorable to find 𝑝(𝑑) as large as possible. We call the largest
possible rate

𝑝∗ (𝑑) = sup{𝑝(𝑑) : 𝑝(𝑑) satisfies (9.4)}

the exponent of exponential convergence.
Uniform exponential convergence of 𝑒(𝑁, 𝑑) holds if we can take 𝑝(𝑑) = 𝑝 > 0

for all 𝑑 ∈ N in (9.4). The supremum of such 𝑝 is called the exponent of uniform
exponential convergence and is denoted by 𝑝∗.

9.2 Integration in Korobov Spaces of Analytic Functions 345

Note that if (9.4) holds, then the information complexity (see Definition 1.42) is
bounded according to

𝑁 (𝜀, 𝑑) ≤
⌈
𝑀 (𝑑)

(
log𝐶 (𝑑) + log 𝜀−1

log 𝑞−1

)1/𝑝 (𝑑)⌉
for all 𝑑 ∈ N and all 𝜀 ∈ (0, 1).

(9.5)
Furthermore, if (9.5) holds then

𝑒(𝑁 + 1, 𝑑) ≤ 𝐶 (𝑑) 𝑞 (𝑁/𝑀 (𝑑)) 𝑝 (𝑑)
for all 𝑑, 𝑁 ∈ N.

Indeed, let 𝑑, 𝑁 ∈ N and let 𝜀 := 𝑒(𝑁 + 1, 𝑑). Then (9.5) implies

𝑁 + 1 = min{𝐿 : 𝑒(𝐿, 𝑑) ≤ 𝜀} ≤
⌈
𝑀 (𝑑)

(
log𝐶 (𝑑) + log 𝜀−1

log 𝑞−1

)1/𝑝 (𝑑)⌉
,

and hence

𝑁 ≤ 𝑀 (𝑑)
(
log𝐶 (𝑑) + log 𝜀−1

log 𝑞−1

)1/𝑝 (𝑑)
.

This yields, after some elementary algebra,

𝑒(𝑁 + 1, 𝑑) = 𝜀 ≤ 𝐶 (𝑑) 𝑞 (𝑁/𝑀 (𝑑)) 𝑝 (𝑑)
.

This observation means that (9.4) and (9.5) are practically equivalent.

In the following we study lower and upper bounds on the 𝑁-th minimal error of
integration in Hkor,𝑑,𝒂,𝒃 . These results lead to necessary and sufficient conditions
for (uniform) exponential convergence rates. We follow [148] in our outline.

Lower bounds

We present a lower bound on the 𝑁-th minimal worst-case error of integration based
on [49, Theorem 1], whose proof is adopted from [238].

Lemma 9.4 For any choice of nonnegative integers 𝑡1, 𝑡2, . . . , 𝑡𝑑 we have

𝑒(𝑁, 𝑑) ≥ 𝜔2−1 ∑𝑑
𝑗=1 𝑎 𝑗 𝑡

𝑏𝑗

𝑗

𝑑∏
𝑗=1

(1 + 𝑡 𝑗)−1/2 for all 𝑁 <
∏𝑑
𝑗=1 (1 + 𝑡 𝑗).

Proof We first show that for any finite subset A𝑑 of Z𝑑 we have

𝑒(𝑁, 𝑑) ≥
(

max
𝒉∗∈A𝑑

∑︁
𝒉∈A𝑑

1
𝜌𝒂,𝒃 (𝒉 − 𝒉∗)

)−1/2

for all 𝑁 < |A𝑑 |. (9.6)

346 9 Integration of Analytic Functions

Consider an arbitrary linear algorithm 𝐴𝑁,𝑑 (𝑓) =
∑𝑁−1
𝑘=0 𝑤𝑘 𝑓 (𝒙𝑘), and define

𝑔(𝒙) =
∑︁

𝒉∈A𝑑

𝑏𝒉 e2𝜋i𝒉 ·𝒙 for all 𝒙 ∈ [0, 1]𝑑

such that 𝑔(𝒙𝑘) = 0 for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. Since we have 𝑁 homogeneous
linear equations and |A𝑑 | > 𝑁 unknowns 𝑏𝒉 , we can choose the 𝑏𝒉 , 𝒉 ∈ A𝑑 , such
that at least one 𝑏𝒉 is nonzero, and we can normalize the 𝑏𝒉 by assuming that

max
𝒉∈A𝑑

|𝑏𝒉 | = 𝑏𝒉∗ = 1 for some 𝒉∗ ∈ A𝑑 .

Define the function 𝑓 by

𝑓 (𝒙) = 𝑐 e−2𝜋i𝒉∗ ·𝒙 𝑔(𝒙) = 𝑐
∑︁

𝒉∈A𝑑

𝑏𝒉 e2𝜋i(𝒉−𝒉∗) ·𝒙 for 𝒙 ∈ [0, 1]𝑑 ,

where the positive constant 𝑐 is chosen such that ∥ 𝑓 ∥kor,𝑑,𝒂,𝒃 ≤ 1. More precisely,
we have

∥ 𝑓 ∥2
kor,𝑑,𝒂,𝒃 = 𝑐2

∑︁
𝒉∈A𝑑

|𝑏𝒉 |2
1

𝜌𝒂,𝒃 (𝒉 − 𝒉∗)
≤ 𝑐2 max

𝒉∗∈A𝑑

∑︁
𝒉∈A𝑑

1
𝜌𝒂,𝒃 (𝒉 − 𝒉∗)

.

Hence we can take

𝑐 =

(
max
𝒉∗∈A𝑑

∑︁
𝒉∈A𝑑

1
𝜌𝒂,𝒃 (𝒉 − 𝒉∗)

)−1/2

.

Note that 𝑓 (𝒙𝑘) = 0 for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, which implies that 𝐴𝑁,𝑑 (𝑓) = 0.
Furthermore, ∫

[0,1]𝑑
𝑓 (𝒙) d𝒙 = 𝑐 𝑏𝒉∗ = 𝑐.

As a consequence,

err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,P, 𝒘) ≥
����∫

[0,1]𝑑
𝑓 (𝒙) d𝒙 − 𝐴𝑁,𝑑 (𝑓)

���� = ∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 = 𝑐.

Since this holds for all P and 𝒘, we conclude that 𝑒(𝑁, 𝑑) ≥ 𝑐 and this proves (9.6).
Now, for 𝒕 = (𝑡1, . . . , 𝑡𝑑) with nonnegative integers 𝑡 𝑗 for 𝑗 ∈ [𝑑], we consider

the set

A𝑑 = A𝑑,𝒕 = {𝒉 ∈ Z𝑑 : ℎ 𝑗 ∈ {0, 1, . . . , 𝑡 𝑗 } for all 𝑗 ∈ [𝑑]}.

Clearly, |A𝑑,𝒕 | =
∏𝑑
𝑗=1 (1 + 𝑡 𝑗). For 𝒉, 𝒉∗ ∈ A𝑑,𝒕 we have

1
𝜌𝒂,𝒃 (𝒉 − 𝒉∗)

= 𝜔
−∑𝑑

𝑗=1 𝑎 𝑗 |ℎ 𝑗−ℎ∗𝑗 |
𝑏𝑗 ≤ 𝜔−∑𝑑

𝑗=1 𝑎 𝑗 𝑡
𝑏𝑗

𝑗 .

9.2 Integration in Korobov Spaces of Analytic Functions 347

Therefore
max

𝒉∗∈A𝑑,𝒕

∑︁
𝒉∈A𝑑,𝒕

1
𝜌𝒂,𝒃 (𝒉 − 𝒉∗)

≤ 𝜔−∑𝑑
𝑗=1 𝑎 𝑗 𝑡

𝑏𝑗

𝑗 |A𝑑,𝒕 |.

Inserting this estimate into (9.6) gives the desired result. □

We are ready to prove necessary conditions for uniform exponential convergence.

Theorem 9.5 Assume that we have uniform exponential convergence, i.e., (9.4) holds
with 𝑝(𝑑) = 𝑝. Then we have

𝐵 :=
∞∑︁
𝑗=1

1
𝑏 𝑗

< ∞ and 𝑝 ≤ 1
𝐵
,

independently of the choice of the positive 𝒂 and the choice of 𝜔.

Proof First we show that uniform exponential convergence with 𝑝(𝑑) = 𝑝 implies,
for any fixed 𝑑 ∈ N,

lim inf
∥𝒕 ∥∞→∞

∑𝑑
𝑗=1 𝑎 𝑗 𝑡

𝑏 𝑗

𝑗∏𝑑
𝑗=1 (1 + 𝑡 𝑗) 𝑝

≥ 2
(𝑀 (𝑑)) 𝑝

log 𝑞−1

log𝜔−1 > 0, (9.7)

where for the limit inferior we consider the vectors 𝒕 = (𝑡1, . . . , 𝑡𝑑) ∈ N𝑑0 with
∥ 𝒕∥∞ := max 𝑗∈[𝑑] 𝑡 𝑗 tending to infinity.

From (9.4) with 𝑝(𝑑) = 𝑝 and Lemma 9.4 with 𝑁 = −1 + ∏𝑑
𝑗=1 (1 + 𝑡 𝑗) we have

log𝐶 (𝑑) ≥ −1
2

𝑑∑︁
𝑗=1
𝑎 𝑗 𝑡

𝑏 𝑗

𝑗
log

1
𝜔

− 1
2

𝑑∑︁
𝑗=1

log(1 + 𝑡 𝑗) +
(
𝑁

𝑀 (𝑑)

) 𝑝
log

1
𝑞
.

This implies that ∑𝑑
𝑗=1 𝑎 𝑗 𝑡

𝑏 𝑗

𝑗∏𝑑
𝑗=1 (1 + 𝑡 𝑗) 𝑝

+
2 log𝐶 (𝑑) + ∑𝑑

𝑗=1 log(1 + 𝑡 𝑗)
(log𝜔−1)∏𝑑

𝑗=1 (1 + 𝑡 𝑗) 𝑝

≥
(
1 − 1∏𝑑

𝑗=1 (1 + 𝑡 𝑗)

) 𝑝
2

(𝑀 (𝑑)) 𝑝
log 𝑞−1

log𝜔−1 . (9.8)

For fixed 𝑑, when ∥ 𝒕∥∞ goes to infinity, the second term on the left-hand side of
(9.8) tends to zero, and the term on the right-hand side tends to

2
(𝑀 (𝑑)) 𝑝

log 𝑞−1

log𝜔−1 ,

which is strictly positive. Thus, the necessary condition (9.7) holds.

348 9 Integration of Analytic Functions

For a positive 𝑡 take now

𝑡 𝑗 = ⌈𝑡1/𝑏 𝑗 ⌉ for all 𝑗 ∈ [𝑑].

Clearly, lim𝑡→∞⌈𝑡1/𝑏 𝑗 ⌉/𝑡1/𝑏 𝑗 = 1. Then for 𝑡 tending to infinity we have∑𝑑
𝑗=1 𝑎 𝑗 𝑡

𝑏 𝑗

𝑗∏𝑑
𝑗=1 (1 + 𝑡 𝑗) 𝑝

= 𝑡
1−𝑝∑𝑑

𝑗=1 𝑏
−1
𝑗

∑𝑑
𝑗=1 𝑎 𝑗 (⌈𝑡1/𝑏 𝑗 ⌉/𝑡1/𝑏 𝑗)𝑏 𝑗∏𝑑

𝑗=1
(
⌈𝑡1/𝑏 𝑗 ⌉/𝑡1/𝑏 𝑗 + 𝑡−1/𝑏 𝑗

) 𝑝
= 𝑡

1−𝑝∑𝑑
𝑗=1 𝑏

−1
𝑗 (1 + 𝑜(1))

𝑑∑︁
𝑗=1
𝑎 𝑗 .

Since this expression is positive when 𝑡 tends to infinity, we must have 𝑝
∑𝑑
𝑗=1

1
𝑏 𝑗

≤ 1.
This holds for all 𝑑. Hence for 𝑑 tending to infinity we conclude that

𝑝

∞∑︁
𝑗=1

1
𝑏 𝑗

= 𝑝𝐵 ≤ 1,

which completes the proof. □

Remark 9.6 It follows from the same arguments as used in the proof of Theorem 9.5
that if we have exponential convergence, then the exponent 𝑝∗ (𝑑) of exponential
convergence can be at most 1/𝐵(𝑑), where 𝐵(𝑑) :=

∑𝑑
𝑗=1 𝑏

−1
𝑗

.

Upper bounds

Upper bounds on the 𝑁-th minimal error in Hkor,𝑑,𝒂,𝒃 can be obtained using regular
grids with different mesh sizes. This may be surprising, since for numerical integra-
tion of functions with partial derivatives up to order 𝛼 in each variable regular grids
are known to yield very poor integration rules even for moderate values of 𝑑.

Definition 9.7 For 𝑑 ∈ N, a regular grid with mesh sizes 𝑚1, 𝑚2, . . . , 𝑚𝑑 ∈ N is
defined as the point set G𝑁,𝑑 with points(

𝑘1
𝑚1
,
𝑘2
𝑚2
, . . . ,

𝑘𝑑

𝑚𝑑

)
for 𝑘 𝑗 ∈ {0, 1, . . . , 𝑚 𝑗 − 1} and 𝑗 ∈ [𝑑], where 𝑁 :=

∏𝑑
𝑗=1 𝑚 𝑗 is the cardinality of

G𝑁,𝑑 .

A regular grid with mesh sizes𝑚1, 𝑚2, . . . , 𝑚𝑑 obviously is a lattice point set that
corresponds to the lattice

L =

𝑑∑︁
𝑗=1

𝑘 𝑗

𝑚 𝑗

𝒆 𝑗 : 𝑘 𝑗 ∈ Z for 𝑗 ∈ [𝑑]
 ,

9.2 Integration in Korobov Spaces of Analytic Functions 349

where 𝒆1, 𝒆2, . . . , 𝒆𝑑 are the canonical basis vectors in R𝑑 . To be more precise,

G𝑁,𝑑 = L ∩ [0, 1)𝑑 = P(L).

The dual lattice is, in this case, accordingly given by

L⊥ = {𝒉 ∈ Z𝑑 : ℎ 𝑗 ≡ 0 (mod 𝑚 𝑗) for all 𝑗 ∈ [𝑑]}. (9.9)

The QMC rule based on G𝑁,𝑑 then is a lattice rule of the form

𝑄𝑁,𝑑 (𝑓) =
1
𝑁

∑︁
𝒙∈G𝑁,𝑑

𝑓 (𝒙)

=
1

𝑚1 · · ·𝑚𝑑

𝑚1−1∑︁
𝑘1=0

· · ·
𝑚𝑑−1∑︁
𝑘𝑑=0

𝑓
©«
𝑑∑︁
𝑗=1

𝑘 𝑗

𝑚 𝑗

𝒆 𝑗
ª®¬

=
1

𝑚1 · · ·𝑚𝑑

𝑚1−1∑︁
𝑘1=0

· · ·
𝑚𝑑−1∑︁
𝑘𝑑=0

𝑓

(
𝑘1
𝑚1
,
𝑘2
𝑚2
, . . . ,

𝑘𝑑

𝑚𝑑

)
. (9.10)

Note that for dimension 𝑑 = 1 this is the trapezoidal rule applied to a one-periodic
function 𝑓 . For the trapezoidal rule it is well known that exponential convergence
rates can be obtained for periodic integrands; see, for example, [18, Chapter 8] or
[255]. Obviously, (9.10) may be interpreted as the 𝑑-fold product of trapezoidal
rules of different mesh sizes 𝑚1, 𝑚2, . . . , 𝑚𝑑 , and we will see that this again leads to
exponential convergence in Hkor,𝑑,𝒂,𝒃 , and even to uniform exponential convergence
for suitably chosen parameters 𝒃.

We first present an explicit formula for the worst-case error of the lattice rule that
uses a regular grid G𝑁,𝑑 with arbitrary mesh sizes 𝑚 𝑗 ∈ N, 𝑗 ∈ [𝑑].

Lemma 9.8 Let 𝑚1, 𝑚2, . . . , 𝑚𝑑 ∈ N and let 𝑁 = 𝑚1𝑚2 · · ·𝑚𝑑 . Then

err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,G𝑁,𝑑) =
©«−1 +

𝑑∏
𝑗=1

(
1 + 2

∞∑︁
ℎ=1

𝜔𝑎 𝑗 (𝑚 𝑗ℎ)𝑏𝑗

)ª®¬
1/2

.

Proof From (9.3) and the definition of the kernel 𝐾kor,𝑑,𝒂,𝒃 we obtain

[err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,G𝑁,𝑑)]2 = −1 + 1
𝑁2

∑︁
𝒙,𝒚∈G𝑁,𝑑

𝐾kor,𝑑,𝒂,𝒃 (𝒙, 𝒚)

=
1
𝑁2

∑︁
𝒙,𝒚∈G𝑁,𝑑

∑︁
𝒉∈Z𝑑\{0}

𝜔
∑𝑑

𝑗=1 𝑎 𝑗 |ℎ 𝑗 |𝑏𝑗

e2𝜋i𝒉 · (𝒙−𝒚)

=
∑︁

𝒉∈Z𝑑\{0}
𝜔

∑𝑑
𝑗=1 𝑎 𝑗 |ℎ 𝑗 |𝑏𝑗

������ 1
𝑁

∑︁
𝒙∈G𝑁,𝑑

e2𝜋i𝒉 ·𝒙

������
2

350 9 Integration of Analytic Functions

=
∑︁

𝒉∈L⊥\{0}
𝜔

∑𝑑
𝑗=1 𝑎 𝑗 |ℎ 𝑗 |𝑏𝑗

.

Recalling that the dual lattice L⊥ is given by (9.9) we obtain

[err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,G𝑁,𝑑)]2 =
∑︁

𝒉∈Z𝑑\{0}
𝜔

∑𝑑
𝑗=1 𝑎 𝑗 (𝑚 𝑗 |ℎ 𝑗 |)𝑏𝑗

= −1 +
𝑑∏
𝑗=1

(
1 + 2

∞∑︁
ℎ=1

𝜔𝑎 𝑗 (𝑚 𝑗ℎ)𝑏𝑗

)
.

Taking the square root gives the desired result. □

We now show that with an appropriate choice of the 𝑚 𝑗 the corresponding QMC
algorithm has a worst-case error of at most 𝜀 and yields exponential convergence.

Theorem 9.9 For 𝑑 ∈ N and 𝜀 ∈ (0, 1) define

𝑚 := max
𝑗∈[𝑑]

(
2𝑏 𝑗

𝑎 𝑗

log
(
1 + (2 𝑑 𝐹)/log(1 + 𝜀2)

)
log 𝜔−1

)𝐵(𝑑) ,
where

𝐵(𝑑) :=
𝑑∑︁
𝑗=1

1
𝑏 𝑗
,

and

𝐹 := max
𝑗∈[𝑑]

∞∑︁
ℎ=1

𝜔𝑚
1/𝐵(𝑑) 𝑎 𝑗2−𝑏𝑗 (ℎ𝑏𝑗−1) < ∞.

Let G𝑁,𝑑 be a regular grid with mesh sizes 𝑚1, 𝑚2, . . . , 𝑚𝑑 given by

𝑚 𝑗 :=
⌊
𝑚1/(𝐵(𝑑) ·𝑏 𝑗)

⌋
for 𝑗 ∈ [𝑑] and 𝑁 =

𝑑∏
𝑗=1
𝑚 𝑗 .

Then

err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,G𝑁,𝑑) ≤ 𝜀 and 𝑁 (𝜀, 𝑑) ≤ 𝑁 = O
((

log
(
1 + 1

𝜀

))𝐵(𝑑))
,

with the factor in the O-notation independent of 𝜀 but dependent on 𝑑. This means
that we have exponential convergence.

Proof Note first that

𝑁 =

𝑑∏
𝑗=1
𝑚 𝑗 =

𝑑∏
𝑗=1

⌊
𝑚1/(𝐵(𝑑) ·𝑏 𝑗)

⌋

9.2 Integration in Korobov Spaces of Analytic Functions 351

≤ 𝑚 (1/𝐵(𝑑)) ∑𝑑
𝑗=1 1/𝑏 𝑗 = 𝑚 = O

((
log

(
1 + 1

𝜀

))𝐵(𝑑))
.

Since ⌊𝑥⌋ ≥ 𝑥/2 for all 𝑥 ≥ 1, we have

𝑎 𝑗 |𝑚 𝑗ℎ 𝑗 |𝑏 𝑗 ≥ 𝑎 𝑗 (|ℎ 𝑗 |/2)𝑏 𝑗 𝑚1/𝐵(𝑑)

for every 𝑗 ∈ [𝑑]. From Lemma 9.8 we obtain

[err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,G𝑁,𝑑)]2 ≤ −1 +
𝑑∏
𝑗=1

(
1 + 2

∞∑︁
ℎ=1

𝜔𝑚
1/𝐵(𝑑) 𝑎 𝑗2−𝑏𝑗 ℎ

𝑏𝑗

)
.

We further estimate
∞∑︁
ℎ=1

𝜔𝑚
1/𝐵(𝑑) 𝑎 𝑗2−𝑏𝑗 ℎ

𝑏𝑗

= 𝜔𝑚
1/𝐵(𝑑) 𝑎 𝑗2−𝑏𝑗

∞∑︁
ℎ=1

𝜔𝑚
1/𝐵(𝑑) 𝑎 𝑗2−𝑏𝑗 (ℎ𝑏𝑗−1)

≤ 𝜔𝑚1/𝐵(𝑑) 𝑎 𝑗2−𝑏𝑗

𝐹.

From the definition of 𝑚, we have for all 𝑗 ∈ [𝑑],

𝜔𝑚
1/𝐵(𝑑) 𝑎 𝑗2−𝑏𝑗

𝐹 ≤ log(1 + 𝜀2)
2𝑑

.

This proves

err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,G𝑁,𝑑) ≤
(
−1 +

(
1 + log(1 + 𝜀2)

𝑑

)𝑑)1/2

≤
(
−1 + elog(1+𝜀2)

)1/2

= 𝜀,

and completes the proof. □

An exact characterization of exponential convergence

We now combine the previously shown lower and upper bounds in order to obtain an
exact characterization of weight sequences 𝒂 and 𝒃 for which (uniform) exponential
convergence can be obtained, and we present the exact values of the respective
exponents 𝑝∗ (𝑑) and 𝑝∗.

Corollary 9.10 Consider integration in the Korobov space Hkor,𝑑,𝒂,𝒃 with weight
sequences 𝒂 and 𝒃 satisfying (9.2). The following results hold.

1. Exponential convergence can be obtained for all 𝒂 and 𝒃 considered, with the
exponent of exponential convergence satisfying 𝑝∗ (𝑑) = 1/𝐵(𝑑).

352 9 Integration of Analytic Functions

2. Uniform exponential convergence can be obtained if and only if 𝒃 is such that

𝐵 :=
∞∑︁
𝑗=1

1
𝑏 𝑗

< ∞.

If so, then 𝑝∗ = 1/𝐵.

Proof Regarding Item 1, we know from Theorem 9.9 that for all 𝒂 and 𝒃 we have

𝑁 (𝜀, 𝑑) = O
((

log
(
1 + 1

𝜀

))𝐵(𝑑))
.

This implies that we have exponential convergence and, furthermore, 𝑝∗ (𝑑) ≥
1/𝐵(𝑑). On the other hand, Remark 9.6 implies 𝑝∗ (𝑑) ≤ 1/𝐵(𝑑) and hence the
first result is proven.

Regarding Item 2, suppose first that 𝒂 is an arbitrary sequence and that 𝒃 is such
that

𝐵 =

∞∑︁
𝑗=1

1
𝑏 𝑗

< ∞.

Then we can replace 𝐵(𝑑) by 𝐵 in Theorem 9.9, and we obtain

𝑁 (𝜀, 𝑑) = O
(
log𝐵

(
1 + 1

𝜀

))
.

This means that we have uniform exponential convergence with exponent 𝑝∗ ≥ 1/𝐵.
On the other hand, if we have uniform exponential convergence, then Theorem 9.5

implies that 𝐵 < ∞ and 𝑝∗ ≤ 1/𝐵. This completes the proof. □

Corollary 9.10 demonstrates that exponential convergence can always be reached
with a suitable choice of a regular grid with different mesh sizes 𝑚1, 𝑚2, . . . , 𝑚𝑑
(see also Theorem 9.9). However, a necessary and sufficient condition for uniform
exponential convergence is that the weight sequence 𝒃 = (𝑏 𝑗) 𝑗≥1 tends to infinity so
fast that 𝐵 =

∑∞
𝑗=1 𝑏

−1
𝑗
< ∞, with no extra condition on 𝒂 and 𝜔. If 𝐵 is small, then

the exponent 𝑝∗ is large. For instance, for 𝑏 𝑗 = 𝑗2 for all 𝑗 ∈ N we have 𝐵 = 𝜋2/6
and 𝑝∗ = 6/𝜋2 = 0.6079

Note that the factors hidden in the O-notation in the above results still depend
on the dimension 𝑑. Making assertions also about tractability properties requires a
more detailed analysis, which will be discussed in the next section.

9.3 Exponential Tractability 353

9.3 Exponential Tractability

Exponential error convergence implies that asymptotically, with respect to 𝜀 tending
to zero, we require only O((log 𝜀−1)1/𝑝 (𝑑)) function evaluations to compute an 𝜀-
approximation to the exact value of the integral. However, the implied factors in the
O-notation can depend on the dimension 𝑑, and therefore it is not clear how long
one has to wait to actually see this excellent asymptotic behavior, especially for large
dimension 𝑑. This is again the subject of tractability theory.

In the context of exponential convergence it is natural to adapt the concepts of
tractability in Definition 1.44 by replacing 𝜀−1 by log 𝜀−1, or, to avoid technical issues
if log 𝜀−1 ≤ 1, by 1 + log 𝜀−1. This adaption yields new versions of weak, polyno-
mial, and strong polynomial tractability, with the prefix “EXP”, which indicates
“exponential-convergence”. In the following definition we use the same notation as
introduced in Section 1.7.

Definition 9.11 The sequence of integration problems (𝐼 : F𝑑 → R)𝑑≥1 is called

• EXP-weakly tractable if

lim
𝑑+log 𝜀−1→∞

log 𝑁 (𝜀, 𝑑)
𝑑 + log 𝜀−1 = 0;

We remark that if 𝑁 (𝜀, 𝑑) = 0, which can only happen in trivial cases, we interpret
log 𝑁 (𝜀, 𝑑) as 0 in this context;

• EXP-polynomially tractable if there exist constants 𝐶, 𝜎 > 0 and 𝜏 ≥ 0 such that

𝑁 (𝜀, 𝑑) ≤ 𝐶 𝑑𝜏 (1 + log 𝜀−1)𝜎 for all 𝜀 ∈ (0, 1) and all 𝑑 ∈ N;

• EXP-strongly polynomially tractable if there exist constants𝐶 > 0 and 𝜎 > 0 such
that

𝑁 (𝜀, 𝑑) ≤ 𝐶 (1 + log 𝜀−1)𝜎 for all 𝜀 ∈ (0, 1) and all 𝑑 ∈ N. (9.11)

The infimum of all 𝜎 > 0 such that a bound of the form (9.11) holds is called the
𝜀-exponent of EXP-strong polynomial tractability.

Further, and more refined, notions of EXP-tractability have been introduced and
studied in [119]. The use of the prefix “EXP” to indicate “exponential convergence"
in the notation is motivated by the following result.

Proposition 9.12 The following assertions hold true.

1. EXP-polynomial tractability (and therefore also EXP-strong polynomial tractabil-
ity) implies uniform exponential convergence.

2. EXP-weak tractability implies that 𝑒(𝑁, 𝑑) converges to zero faster than any power
of 𝑁−1 as 𝑁 tends to infinity, i.e., for any 𝛼 > 0 we have

lim
𝑁→∞

𝑁𝛼𝑒(𝑁, 𝑑) = 0. (9.12)

354 9 Integration of Analytic Functions

Proof For the proof of Item 1, EXP-polynomial tractability means that 𝑁 (𝜀, 𝑑) ≤
𝐶 𝑑𝜏 (1 + log 𝜀−1)𝜎 for all 𝜀 ∈ (0, 1) and all 𝑑 ∈ N, with constants 𝐶, 𝜎 > 0 and
𝜏 ≥ 0. For (sufficiently large) 𝑁 , we choose 𝜀 ∈ (0, 1) such that

𝑁 =
⌊
𝐶𝑑𝜏 (1 + log 𝜀−1)𝜎

⌋
.

As 𝑁 (𝜀, 𝑑) ≤ 𝐶 𝑑𝜏 (1 + log 𝜀−1)𝜎 and 𝑁 (𝜀, 𝑑) ∈ N, we obtain 𝑁 (𝜀, 𝑑) ≤ 𝑁 , and
hence 𝑒(𝑁, 𝑑) ≤ 𝜀. On the other hand, we have

𝑁 ≤ 𝐶𝑑𝜏 (1 + log 𝜀−1)𝜎 ,

and therefore
𝜀 ≤ e1−(𝑁/(𝐶𝑑𝜏))1/𝜎

,

and this implies that
𝑒(𝑁, 𝑑) ≤ e1−(𝑁/(𝐶𝑑𝜏))1/𝜎

. (9.13)

So, uniform exponential convergence holds with 𝑝 = 1/𝜎.
With respect to Item 2, choose 𝛿 ∈ (0, 1/𝛼) for given 𝛼 > 0. For a fixed dimension

𝑑, EXP-weak tractability implies the existence of a number 𝐾 = 𝐾 (𝛿) > 0 such that
for all 𝜀 ∈ (0, 1) with log 𝜀−1 > 𝐾 we have

log 𝑁 (𝜀, 𝑑)
log 𝜀−1 < 𝛿.

This, however, is equivalent to 𝑁 (𝜀, 𝑑) < 𝜀−𝛿 . The latter implies that for sufficiently
large 𝑁 ∈ N we have 𝑒(𝑁, 𝑑) < 𝑁−1/𝛿 and hence we have

𝑁𝛼𝑒(𝑁, 𝑑) < 𝑁𝛼−1/𝛿 → 0 as 𝑁 → ∞. □

Next, we characterize EXP-tractability of the integration problem in Hkor,𝑑,𝒂,𝒃
by means of the weight sequences 𝒂 and 𝒃.

Theorem 9.13 Consider integration in the Korobov space Hkor,𝑑,𝒂,𝒃 with weight
sequences 𝒂 and 𝒃 satisfying (9.2). The following results hold.

1. EXP-weak tractability holds if and only if

lim
𝑗→∞

𝑎 𝑗 = ∞.

2. EXP-polynomial and EXP-strong polynomial tractability are equivalent.
3. EXP-strong polynomial tractability holds if and only if

𝐵 :=
∞∑︁
𝑗=1

1
𝑏 𝑗

< ∞ and 𝛼∗ := lim inf
𝑗→∞

log 𝑎 𝑗
𝑗

> 0.

9.3 Exponential Tractability 355

Then the exponent 𝜎∗ of EXP-strong polynomial tractability satisfies

𝜎∗ ∈
[
𝐵, 𝐵 + log 2

𝛼∗

]
.

In particular, if 𝛼∗ = ∞, then 𝜎∗ = 𝐵.

Before giving the proof of Theorem 9.13, we would like to make some remarks.

Remark 9.14 EXP-weak tractability holds if and only if the weight sequence 𝒂 =

(𝑎 𝑗) 𝑗≥1 tends to infinity. This holds independently of the weights 𝒃 and independently
of the rate of convergence of 𝒂 to infinity. Proposition 9.12 then implies that (9.12)
holds. If we additionally have 𝐵 < ∞, then we have uniform exponential convergence
and EXP-weak tractability. On the other hand, if lim 𝑗→∞ 𝑎 𝑗 = ∞ and 𝐵 = ∞, then
EXP-weak tractability holds without uniform exponential convergence.

EXP-strong polynomial tractability holds if and only if 𝐵 < ∞ and the elements
𝑎 𝑗 of the weight sequence 𝒂 are exponentially large in 𝑗 for large 𝑗 ∈ N.

We now give the proof of the theorem.

Proof of Theorem 9.13. Regarding Item 1, assume first that the sequence of the 𝑎 𝑗
is bounded, say 𝑎 𝑗 ≤ 𝐴 < ∞ for all 𝑗 ∈ N. From Lemma 9.4 with 𝑡 𝑗 = 1 for all
𝑗 ∈ [𝑑] it follows that for all 𝑁 < 2𝑑 we have

𝑒(𝑁, 𝑑) ≥ 2−𝑑/2𝜔2−1 ∑𝑑
𝑗=1 𝑎 𝑗 ≥ 2−𝑑/2𝜔𝑑𝐴/2 = 𝜂𝑑 ,

where 𝜂 :=
√︁
𝜔𝐴/2 ∈ (0, 1). As a consequence, for 𝜀 = 𝜂𝑑/2 we have 𝑒(𝑁, 𝑑) > 𝜀

for all 𝑁 < 2𝑑 . This implies that 𝑁 (𝜀, 𝑑) ≥ 2𝑑 and

log 𝑁 (𝜀, 𝑑)
𝑑 + log 𝜀−1 ≥ 𝑑 log 2

𝑑 + log 2 + 𝑑 log 𝜂−1 ,

with the right-hand side of the latter inequality tending to

log 2
1 + log 𝜂−1 > 0

as 𝑑 → ∞. Thus we do not have EXP-weak tractability. This reasoning shows that
EXP-weak tractability implies lim 𝑗→∞ 𝑎 𝑗 = ∞.

Assume now that lim 𝑗→∞ 𝑎 𝑗 = ∞. For the next part of the proof we use rank-1
lattice rules. It follows from (9.3) that the squared worst-case error of a rank-1 lattice
rule in Hkor,𝑑,𝒂,𝒃 is given by

[err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,P(𝒈, 𝑁))]2 =
∑︁

𝒉∈Z𝑑\{0}
𝜌𝒂,𝒃 (𝒉)

����� 1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒈/𝑁

�����2
=

∑︁
𝒉∈Z𝑑\{0}

𝒉 ·𝒈≡0 (mod 𝑁)

𝜔
∑𝑑

𝑗=1 𝑎 𝑗 |ℎ 𝑗 |𝑏𝑗

.

356 9 Integration of Analytic Functions

By Jensen’s inequality (Lemma 2.25) we obtain for arbitrary 𝜆 ∈ (0, 1],

[err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,P(𝒈, 𝑁))]2𝜆 ≤
∑︁

𝒉∈Z𝑑\{0}
𝒉 ·𝒈≡0 (mod 𝑁)

𝜔
∑𝑑

𝑗=1 𝜆𝑎 𝑗 |ℎ 𝑗 |𝑏𝑗

.

Let now 𝑁 be a prime number and average [err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,P(𝒈, 𝑁))]2𝜆 over all
possible values 𝒈 ∈ 𝐺𝑑 (𝑁). In the same way as in the proof of (2.25) we find that
there exists a 𝒈 ∈ 𝐺𝑑 (𝑁) such that

[err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,P(𝒈, 𝑁))]2𝜆 ≤ 1
𝑁

∑︁
𝒉∈Z𝑑\{0}

𝜔
∑𝑑

𝑗=1 𝜆𝑎 𝑗 |ℎ 𝑗 |𝑏𝑗

≤ 1
𝑁

𝑑∏
𝑗=1

(∑︁
ℎ∈Z

𝜔𝜆𝑎 𝑗 |ℎ |𝑏𝑗

)
.

We have ∑︁
ℎ∈Z

𝜔𝜆𝑎 𝑗 |ℎ |𝑏𝑗 ≤ 1 + 2𝜔𝜆𝑎 𝑗

∞∑︁
ℎ=1

𝜔𝜆𝑎 𝑗 (ℎ𝑏𝑗−1) ≤ 1 + 2𝐴𝜆𝜔𝜆𝑎 𝑗 ,

where 𝐴𝜆 :=
∑∞
ℎ=1 𝜔

𝜆𝑎∗ (ℎ𝑏∗−1) < ∞. Hence,

err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,P(𝒈, 𝑁)) ≤ 1
𝑁1/(2𝜆)

𝑑∏
𝑗=1

(1 + 2𝐴𝜆𝜔𝜆𝑎 𝑗)1/(2𝜆) . (9.14)

Note that, since𝐺𝑑 (𝑁) is a finite set, there even must exist a 𝒈 ∈ 𝐺𝑑 (𝑁) that satisfies
(9.14) for all 𝜆 ∈ (0, 1] simultaneously. Indeed, we can deduce from (9.14) that

min
𝒈∈𝐺𝑑 (𝑁)

err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,P(𝒈, 𝑁)) ≤ 1
𝑁1/(2𝜆)

𝑑∏
𝑗=1

(1 + 2𝐴𝜆𝜔𝜆𝑎 𝑗)1/(2𝜆) ,

and this holds for any choice of 𝜆 ∈ (0, 1]. However, the minimum over all 𝒈 ∈
𝐺𝑑 (𝑁) is independent of 𝜆, so the corresponding minimizer yields an error that
satisfies (9.14) for all 𝜆 ∈ (0, 1] simultaneously.

Let 𝜀 > 0, let 𝜆 ∈ (0, 1], and let 𝑁 be the smallest prime number greater than or
equal to ⌈𝜀−2𝜆∏𝑑

𝑗=1 (1 + 2𝐴𝜆𝜔𝜆𝑎 𝑗)⌉ =: 𝑀 . Then there exists 𝒈 ∈ 𝐺𝑑 (𝑁) such that

err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,P(𝒈, 𝑁)) ≤ 𝜀

and hence

𝑁 (𝜀, 𝑑) ≤ 𝑁 ≤ 2𝑀 ≤ 4𝜀−2𝜆
𝑑∏
𝑗=1

(1 + 2𝐴𝜆𝜔𝜆𝑎 𝑗).

9.3 Exponential Tractability 357

Consequently,

log 𝑁 (𝜀, 𝑑)
𝑑 + log 𝜀−1 ≤

log 4 + 2𝜆 log 𝜀−1 + ∑𝑑
𝑗=1 log(1 + 2𝐴𝜆𝜔𝜆𝑎 𝑗)

𝑑 + log 𝜀−1

≤ log 4
𝑑 + log 𝜀−1 + 2𝜆 log 𝜀−1

𝑑 + log 𝜀−1 +
2𝐴𝜆

∑𝑑
𝑗=1 𝜔

𝜆𝑎 𝑗

𝑑 + log 𝜀−1 .

Note that lim 𝑗→∞ 𝑎 𝑗 = ∞ implies lim 𝑗→∞ 𝜔𝜆𝑎 𝑗 = 0, and so

lim
𝑑→∞

1
𝑑

𝑑∑︁
𝑗=1
𝜔𝜆𝑎 𝑗 = 0.

This implies that

lim sup
𝑑+𝜀−1→∞

log 𝑁 (𝜀, 𝑑)
𝑑 + log 𝜀−1 ≤ 2𝜆.

Since 𝜆 ∈ (0, 1] can be arbitrarily close to zero we obtain

lim
𝑑+𝜀−1→∞

log 𝑁 (𝜀, 𝑑)
𝑑 + log 𝜀−1 = 0,

and this proves EXP-weak tractability.
With respect to Item 2 of the theorem, in order to prove the equivalence of

EXP-polynomial and EXP-strong polynomial tractability, it suffices to show that
EXP-polynomial tractability implies EXP-strong polynomial tractability.

We already know from Proposition 9.12 that EXP-polynomial tractability implies
uniform exponential convergence, which in turn implies, by Corollary 9.10, 𝐵 < ∞.

Furthermore, EXP-polynomial tractability implies (9.13). From Lemma 9.4 with
𝑡 𝑗 = 1 for all 𝑗 ∈ [𝑑] and 𝑁 = 2𝑑 − 1 we therefore obtain

e1−(𝑁/(𝐶𝑑𝜏))1/𝜎 ≥ 𝜔2−1 ∑𝑑
𝑗=1 𝑎 𝑗 2−𝑑/2.

Taking the logarithm and reordering we get

𝑑𝜏/𝜎
∑𝑑
𝑗=1 𝑎 𝑗

2𝑑/𝜎
+ 2𝑑𝜏/𝜎 + 𝑑𝜏/𝜎+1 log 2

2𝑑/𝜎 log𝜔−1 ≥ 2
𝐶1/𝜎

(
1 − 1

2𝑑

)1/𝜎 1
log𝜔−1 .

This implies that

lim inf
𝑑→∞

𝑑𝜏/𝜎
∑𝑑
𝑗=1 𝑎 𝑗

2𝑑/𝜎
≥ 2
𝐶1/𝜎 log𝜔−1 > 0.

Consequently, there exists a positive number 𝛽 such that we have, for all sufficiently
large 𝑑,

358 9 Integration of Analytic Functions

𝑑∑︁
𝑗=1
𝑎 𝑗 ≥ 𝛽

2𝑑/𝜎

𝑑𝜏/𝜎
.

Since the 𝑎 𝑗 are ordered we obtain 𝑑𝑎𝑑 ≥ ∑𝑑
𝑗=1 𝑎 𝑗 , and so it holds for all sufficiently

large 𝑑 that

𝑎𝑑 ≥ 𝛽
2𝑑/𝜎

𝑑1+𝜏/𝜎 .

Taking the logarithm and dividing by 𝑑 implies

log 𝑎𝑑
𝑑

≥ log 2
𝜎

+ log 𝛽 − (1 + 𝜏/𝜎) log 𝑑
𝑑

for 𝑑 large enough. Thus,

𝛼∗ = lim inf
𝑑→∞

log 𝑎𝑑
𝑑

≥ log 2
𝜎

> 0.

We have now shown that EXP-polynomial tractability implies 𝐵 < ∞ and 𝛼∗ >
0. In the following step we will prove that these assumptions imply EXP-strong
polynomial tractability.

For Item 3, it remains to prove that 𝐵 < ∞ and 𝛼∗ > 0 imply EXP-strong polyno-
mial tractability. We will show even more and explain how EXP-strong polynomial
tractability and uniform exponential convergence can be obtained. To this end we
again use a regular grid G𝑁,𝑑 of different mesh sizes 𝑚1, 𝑚2, . . . , 𝑚𝑑 with

𝑚 𝑗 =

(

log𝑀
𝑎
𝛽

𝑗
log𝜔−1

)1/𝑏 𝑗 for 𝑗 ∈ [𝑑],

where 𝑀 ≥ 2 and 𝛽 ∈ (0, 1). Note that 𝑚 𝑗 ≥ 1 for all 𝑗 ∈ [𝑑] and 𝑚 𝑗 = 1 if
𝑎 𝑗 ≥ ((log𝑀)/(log𝜔−1))1/𝛽 . By the assumption 𝛼∗ > 0 we obtain that for all
𝛿 ∈ (0, 𝛼∗) there exists a positive integer 𝑗∗

𝛿
such that

𝑎 𝑗 ≥ e𝛿 𝑗 for all 𝑗 ≥ 𝑗∗
𝛿
.

We conclude that

𝑗 ≥ 𝑗∗𝛽, 𝛿 := max
(
𝑗∗𝛿 ,

log(((log𝑀)/(log𝜔−1))1/𝛽)
𝛿

)
implies 𝑚 𝑗 = 1.

From Lemma 9.8 we have

[err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,G𝑁,𝑑)]2 = −1 +
𝑑∏
𝑗=1

(
1 + 2

∞∑︁
ℎ=1

𝜔𝑎 𝑗 (𝑚 𝑗ℎ)𝑏𝑗

)
.

The sum in the latter expression can be estimated in the form

9.3 Exponential Tractability 359

∞∑︁
ℎ=1

𝜔𝑎 𝑗 (𝑚 𝑗ℎ)𝑏𝑗 ≤ 𝜔𝑎 𝑗𝑚
𝑏𝑗

𝑗

∞∑︁
ℎ=1

𝜔𝑎 𝑗 (ℎ𝑏𝑗−1) ≤ 𝐴𝜔
𝑎 𝑗𝑚

𝑏𝑗

𝑗 ,

for 𝑗 ∈ [𝑑], where 𝐴 := 𝐴1 =
∑∞
ℎ=1 𝜔

𝑎∗ (ℎ𝑏∗−1) < ∞. Hence

[err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,G𝑁,𝑑)]2 ≤ −1 +
𝑑∏
𝑗=1

(
1 + 2𝐴𝜔𝑎 𝑗𝑚

𝑏𝑗

𝑗

)
.

From the definition of 𝑚 𝑗 we obtain 𝑎 𝑗𝑚
𝑏 𝑗

𝑗
≥ 𝑎1−𝛽

𝑗
(log𝑀)/(log𝜔−1) and so

𝜔
𝑎 𝑗𝑚

𝑏𝑗

𝑗 ≤ 𝜔𝑎
1−𝛽
𝑗

(log𝑀)/(log 𝜔−1)
=

(
1
𝑀

)𝑎1−𝛽
𝑗

.

Therefore,

log ©«
𝑑∏
𝑗=1

(
1 + 2𝐴𝜔𝑎 𝑗𝑚

𝑏𝑗

𝑗

)ª®¬ =

𝑑∑︁
𝑗=1

log
(
1 + 2𝐴𝜔𝑎 𝑗𝑚

𝑏𝑗

𝑗

)
≤ 2𝐴

𝑑∑︁
𝑗=1
𝜔
𝑎 𝑗𝑚

𝑏𝑗

𝑗

≤ 2𝐴
𝑑∑︁
𝑗=1

(
1
𝑀

)𝑎1−𝛽
𝑗

.

Using 𝑎 𝑗 ≥ 𝑎∗ for all 𝑗 ≤ 𝑗∗
𝛽, 𝛿

− 1 and 𝑎 𝑗 ≥ e𝛿 𝑗 for all 𝑗 ≥ 𝑗∗
𝛽, 𝛿

we further obtain

log ©«
𝑑∏
𝑗=1

(
1 + 2𝐴𝜔𝑎 𝑗𝑚

𝑏𝑗

𝑗

)ª®¬ ≤ 2𝐴 ©«
𝑗∗
𝛽, 𝛿

− 1

𝑀𝑎
1−𝛽
∗

+
𝑑∑︁

𝑗= 𝑗∗
𝛽,𝛿

(
1
𝑀

)e(1−𝛽) 𝛿 𝑗 ª®¬
≤

𝐶𝛽, 𝛿

𝑀min(𝑎1−𝛽
∗ ,1)

,

with

𝐶𝛽, 𝛿 := 2𝐴 ©« 𝑗∗𝛽, 𝛿 − 1 +
∞∑︁

𝑗= 𝑗∗
𝛽,𝛿

(
1
2

)e(1−𝛽) 𝛿 𝑗−1ª®¬ < ∞,

where we used the assumption 𝑀 ≥ 2. In particular, this shows that 𝑀 ≥
𝐶

1/min(𝑎1−𝛽
∗ ,1)

𝛽, 𝛿
implies

log ©«
𝑑∏
𝑗=1

(
1 + 2𝐴𝜔𝑎 𝑗𝑚

𝑏𝑗

𝑗

)ª®¬ ≤ 1.

360 9 Integration of Analytic Functions

Using convexity it can be checked that −1 + e𝑥 ≤ (e − 1)𝑥 for all 𝑥 ∈ [0, 1]. We
choose

𝑀 = max

((
𝜀−2𝐶𝛽, 𝛿 (e − 1)

)1/min(𝑎1−𝛽
∗ ,1)

, 𝜔−𝑎𝛽∗ , 𝜔−e𝛽𝛿 𝑗∗
𝛿
, 2

)
.

As 𝑀 ≥
(
𝜀−2𝐶𝛽, 𝛿 (e − 1)

)1/min(𝑎1−𝛽
∗ ,1) , we obtain

[
err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,G𝑁,𝑑)

]2 ≤ −1 + exp ©«log ©«
𝑑∏
𝑗=1

(
1 + 2𝐴𝜔𝑎 𝑗𝑚

𝑏𝑗

𝑗

)ª®¬ª®¬
≤ −1 + e𝐶𝛽,𝛿/𝑀min(𝑎1−𝛽

∗ ,1)

≤
(e − 1) 𝐶𝛽, 𝛿
𝑀min(𝑎1−𝛽

∗ ,1)

≤ 𝜀2.

This shows that err𝑁,𝑑 (Hkor,𝑑,𝒂,𝒃 ,G𝑁,𝑑) ≤ 𝜀. Hence, as 𝑚 𝑗 = 1 for 𝑗 ≥ 𝑗∗
𝛽, 𝛿

and

𝑀 ≥ 𝜔−𝑎𝛽∗ , which implies (log𝑀)/(𝑎𝛽∗ log𝜔−1) ≥ 1,

𝑁 (𝜀, 𝑑) ≤ 𝑁 =

min(𝑑, 𝑗∗
𝛽,𝛿

)∏
𝑗=1

𝑚 𝑗

≤
min(𝑑, 𝑗∗

𝛽,𝛿
)∏

𝑗=1

(

log𝑀
𝑎
𝛽
∗ log𝜔−1

)1/𝑏 𝑗
≤ 2min(𝑑, 𝑗∗

𝛽,𝛿
)
𝑎
−𝛽 𝐵
∗

(
log𝑀

log𝜔−1

)𝐵
,

where we also used 𝐵 < ∞. By definition of 𝑗∗
𝛽, 𝛿

and since 𝑀 ≥ 𝜔−e𝛽𝛿 𝑗∗
𝛿 we have

2 𝑗
∗
𝛽,𝛿 =

(
log𝑀

log𝜔−1

) (log 2)/(𝛽𝛿)
.

Therefore,

𝑁 (𝜀, 𝑑) ≤ 𝑎−𝛽 𝐵∗

(
log𝑀

log𝜔−1

)𝐵+(log 2)/(𝛽𝛿)
= O

((
1 + log 𝜀−1

)𝐵+(log 2)/(𝛽𝛿)
)
,

with the factor in the O-notation depending only on 𝛽, 𝛿, 𝐵, 𝑎∗, 𝑏∗, and 𝜔, but not on
𝜀 and 𝑑. This implies EXP-strong polynomial tractability with

𝜎 = 𝐵 + log 2
𝛽𝛿

.

9.3 Exponential Tractability 361

Since 𝛽 can be arbitrarily close to one, and 𝛿 can be arbitrarily close to 𝛼∗, the
exponent 𝜎∗ of EXP-strong polynomial tractability is at most

𝐵 + log 2
𝛼∗

.

Furthermore, from Theorem 9.5, combined with the proof of the first point of
Proposition 9.12, it follows that 𝜎∗ ≥ 𝐵. For 𝛼∗ = ∞ we have (log 2)/𝛼∗ = 0.

This completes the proof of Theorem 9.13. □

Notes and Remarks

In this chapter we have discussed numerical integration in Korobov spaces of analytic
functions. The study of this problem was initiated in the paper [49], however in
a slightly different setting. The function space setting considered here was first
considered in [148]. The present outline follows this paper. The notions of EXP-
tractability were introduced in [149] (see also [46, 49, 148]). Theorem 9.13 on EXP-
tractability of the integration problem in the Korobov space of analytic functions
summarizes results from [46, 148, 219].

Methods similar to those used in this chapter can be applied to and also work
for numerical integration in cosine spaces of analytic functions (see [117]) and in
Hermite spaces of analytic functions over the whole R𝑑 (see [116]).

Furthermore, also 𝐿𝑝-approximation has been studied in the context of analytic
functions. We refer to [46, 117, 118, 119, 149, 150, 184, 256, 265] for information
on this subject. For 𝐿𝑝-approximation for 𝑝 ∈ {2,∞} in Korobov spaces of finite
smoothness we refer to Chapters 13–15.

Chapter 10
Korobov’s 𝒑-Sets

The so-called 𝑝-sets go back to definitions due to Korobov in the 1950s and Hua
and Wang in the 1970s. Since then, these sets have been largely ignored because a
number of other constructions have been discovered which yield a better convergence
rate in terms of the cardinality of the point sets in integration rules. However, it was
discovered later in [37] that 𝑝-sets perform very well with respect to the dependence
on the dimension 𝑑. In this chapter we study the weighted star-discrepancy of 𝑝-
sets and numerical integration of a sub-class of the Wiener algebra that consists
of absolutely convergent Fourier series satisfying a Hölder condition. In the latter
example no weights are necessary in order to get polynomial tractability of the
integration problem.

10.1 The Construction of Korobov’s 𝒑-Sets

In this section we introduce three types of point sets which are often collectively
called Korobov’s 𝑝-sets. Throughout this chapter let 𝑝 be a prime number.

Definition 10.1 Let 𝑝 be a prime number. We consider the following point sets in
[0, 1)𝑑 .

• Define P𝑝,𝑑 = {𝒙0, 𝒙1, . . . , 𝒙𝑝−1} with

𝒙𝑘 =

({
𝑘

𝑝

}
,

{
𝑘2

𝑝

}
, . . . ,

{
𝑘𝑑

𝑝

})
for 𝑘 ∈ {0, 1, . . . , 𝑝 − 1}.

• Define Q𝑝2 ,𝑑 = {𝒙0, 𝒙1, . . . , 𝒙𝑝2−1} with

𝒙𝑘 =

({
𝑘

𝑝2

}
,

{
𝑘2

𝑝2

}
, . . . ,

{
𝑘𝑑

𝑝2

})
for 𝑘 ∈ {0, 1, . . . , 𝑝2 − 1}.

363© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_10&domain=pdf

364 10 Korobov’s 𝑝-Sets

• Define R𝑝2 ,𝑑 = {𝒙𝑔,𝑘 : 𝑔, 𝑘 ∈ {0, 1, . . . , 𝑝 − 1}} with

𝒙𝑔,𝑘 =

({
𝑘

𝑝

}
,

{
𝑔𝑘

𝑝

}
, . . . ,

{
𝑔𝑑−1𝑘

𝑝

})
for 𝑔, 𝑘 ∈ {0, 1, . . . , 𝑝 − 1}.

Note that we have

|P𝑝,𝑑 | = 𝑝 and |Q𝑝2 ,𝑑 | = |R𝑝2 ,𝑑 | = 𝑝2.

The point set P𝑝,𝑑 was introduced by Korobov in [140], the set Q𝑝2 ,𝑑 also by
Korobov in [137], and the set R𝑝2 ,𝑑 by Hua and Wang in [115]. The term “𝑝-
sets” for the point sets P𝑝,𝑑 , Q𝑝2 ,𝑑 , and R𝑝2 ,𝑑 was introduced by Hua and Wang,
see [115, Section 4.3]. Obviously, Korobov’s 𝑝-sets are not lattice point sets as
defined in Chapter 1 and as studied in this book so far. However, in some sense
their construction is very similar to that of rank-1 lattice point sets and they can be
analyzed using similar tools, in particular by means of exponential sums.

Remark 10.2 A particular relation to lattice point sets can be observed for the 𝑝-set
R𝑝2 ,𝑑 , which is the multi-set union of all Korobov lattice point sets P(𝒈𝑑 (𝑔), 𝑝)
with modulus 𝑝 as given in Definition 3.1, i.e.,

R𝑝2 ,𝑑 =

𝑝−1⋃
𝑔=0

P(𝒈𝑑 (𝑔), 𝑝).

Fig. 10.1: The two-dimensional 𝑝-sets P359,2, Q361,2, and R361,2 (left to right).
We remark that the regular grid structure of the set R361,2 is a phenomenon that
usually only applies to the two-dimensional case. For higher dimensions, this regular
structure does not occur anymore, see also Figure 10.2.

10.2 The Weighted Star-Discrepancy of the 𝑝-Sets 365

Fig. 10.2: The three-dimensional 𝑝-sets P359,3, Q361,3, and R361,3 (left to right).

10.2 The Weighted Star-Discrepancy of the 𝒑-Sets

The classical, unweighted star-discrepancy of the 𝑝-sets was studied in [115, The-
orems 4.7–4.9]. There it was shown that for P ∈ {P𝑝,𝑑 ,Q𝑝2 ,𝑑 ,R𝑝2 ,𝑑} the star-
discrepancy satisfies

𝐷∗
𝑁 (P) = O

(
(log 𝑁)𝑑
√
𝑁

)
, where 𝑁 = |P |.

Here we consider the weighted star-discrepancy. The following result is due to [55].

Theorem 10.3 Let 𝑝 be a prime number. For arbitrary weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] we
have

𝐷∗
𝑝,𝜸 (P𝑝,𝑑) ≤

2
√
𝑝

max
∅≠𝔲⊆[𝑑]

𝛾𝔲 (max 𝔲) (4 log 𝑝) |𝔲 | ,

𝐷∗
𝑝2 ,𝜸

(Q𝑝2 ,𝑑) ≤
3
𝑝

max
∅≠𝔲⊆[𝑑]

𝛾𝔲 (max 𝔲) (6 log 𝑝) |𝔲 | , and

𝐷∗
𝑝2 ,𝜸

(R𝑝2 ,𝑑) ≤
2
𝑝

max
∅≠𝔲⊆[𝑑]

𝛾𝔲 (max 𝔲) (4 log 𝑝) |𝔲 | .

Remark 10.4 Note that the point sets P𝑝,𝑑 ,Q𝑝2 ,𝑑 , and R𝑝2 ,𝑑 in Theorem 10.3
are independent of the choice of the weights. In this sense Korobov’s 𝑝-sets are
universal. This is an advantage over the common CBC construction, where the
resulting lattice point set depends on the given weights 𝜸. Note, however, that there
has been recent progress on CBC constructions which work for different choices of
weights simultaneously. We outline these results in Chapter 12 of this book.

For the proof of Theorem 10.3 we need a weighted version of Theorem 5.1, which
we state in the following proposition.

366 10 Korobov’s 𝑝-Sets

Proposition 10.5 For 𝑀 ∈ N, 𝑀 ≥ 2, and for 𝒚0, 𝒚1, . . . , 𝒚𝑁−1 ∈ Z𝑑 , let P =

{𝒙0, 𝒙1, . . . , 𝒙𝑁−1} be the point set consisting of the fractional parts 𝒙𝑘 = {𝒚𝑘/𝑀}
for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. Then we have

𝐷∗
𝑁,𝜸 (P) ≤ max

∅≠𝔲⊆[𝑑]
𝛾𝔲

|𝔲 |
𝑀

+ max
∅≠𝔲⊆[𝑑]

𝛾𝔲

∑︁
𝒉∈𝐶∗

|𝔲 | (𝑀)

1
𝑟1 (𝒉)

����� 1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒚𝑘,𝔲/𝑀

����� ,
where 𝒚𝑘,𝔲 ∈ [0, 1) |𝔲 | is the projection of 𝒚𝑘 onto the coordinates given by 𝔲.

Proof The result follows from a combination of Formula (5.5), Theorem 5.1, and
Lemma 5.12. □

We shall also use the following estimates for exponential sums, which were
already stated in the book of Hua and Wang [115].

Lemma 10.6 Let 𝑝 be a prime number and let 𝑑 ∈ N. Then for all ℎ1, ℎ2, . . . , ℎ𝑑 ∈ Z
such that 𝑝 ∤ ℎ 𝑗 for at least one 𝑗 ∈ [𝑑] we have�����𝑝−1∑︁

𝑘=0
e2𝜋i(ℎ1𝑘+ℎ2𝑘

2+···+ℎ𝑑𝑘𝑑)/𝑝

����� ≤ (𝑑 − 1)√𝑝, (10.1)������
𝑝2−1∑︁
𝑘=0

e2𝜋i(ℎ1𝑘+ℎ2𝑘
2+···+ℎ𝑑𝑘𝑑)/𝑝2

������ ≤ (𝑑 − 1)𝑝, and (10.2)������
𝑝−1∑︁
𝑔=0

𝑝−1∑︁
𝑘=0

e2𝜋i𝑘 (ℎ1+ℎ2𝑔+···+ℎ𝑑𝑔𝑑−1)/𝑝

������ ≤ (𝑑 − 1)𝑝. (10.3)

Proof Equation (10.1) follows from a bound due to Weil [262] on exponential sums,
which is widely known as the Weil bound (see also [183]). For details we refer to
[37]. For a proof of Equation (10.2) we refer to [115, Lemma 4.6]. It remains to show
Equation (10.3). Under the assumption that 𝑝 ∤ gcd(ℎ1, ℎ2, . . . , ℎ𝑑), the number of
solutions of the congruence ℎ1 + ℎ2𝑥 + · · · + ℎ𝑑𝑥𝑑−1 ≡ 0 (mod 𝑝) in {0, 1, . . . , 𝑝−1}
is at most 𝑑 − 1. Thus,������

𝑝−1∑︁
𝑔=0

𝑝−1∑︁
𝑘=0

e2𝜋i𝑘 (ℎ1+ℎ2𝑔+···+ℎ𝑑𝑔𝑑−1)/𝑝

������ =
��������

𝑝−1∑︁
𝑔=0

ℎ1+ℎ2𝑔+···+ℎ𝑑𝑔𝑑−1≡0 (mod 𝑝)

𝑝

�������� ≤ (𝑑 − 1)𝑝,

as claimed. □

We can now give the proof of Theorem 10.3.

Proof of Theorem 10.3 We estimate the exponential sum that appears in the upper
bound in Proposition 10.5 with the help of Lemma 10.6. We do this separately for
each of the three 𝑝-sets.

10.2 The Weighted Star-Discrepancy of the 𝑝-Sets 367

First, we consider P𝑝,𝑑 . Here 𝒙𝑘 is of the form 𝒙𝑘 = {𝒚𝑘/𝑀}, where 𝒚𝑘 =

(𝑘, 𝑘2, . . . , 𝑘𝑑) ∈ Z𝑑 , for 𝑘 ∈ {0, 1, . . . , 𝑝 − 1}, and 𝑀 = 𝑝.
For ∅ ≠ 𝔲 ⊆ [𝑑] we obtain from (10.1) in Lemma 10.6,∑︁

𝒉∈𝐶∗
|𝔲 | (𝑝)

1
𝑟1 (𝒉)

����� 1𝑝 𝑝−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒚𝑘,𝔲/𝑝

����� ≤ 1
𝑝

∑︁
𝒉∈𝐶∗

|𝔲 | (𝑝)

(max 𝔲)√𝑝
𝑟1 (𝒉)

≤ max 𝔲
√
𝑝

(
1 + 𝑆𝑝

) |𝔲 |
,

where 𝑆𝑝 =
∑
ℎ∈𝐶∗

1 (𝑝) |ℎ|
−1. From (2.16) we obtain

𝑆𝑝 ≤ 2
(
1 + log

(𝑝
2

))
. (10.4)

Therefore we get∑︁
𝒉∈𝐶∗

|𝔲 | (𝑝)

1
𝑟1 (𝒉)

����� 1𝑝 𝑝−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒚𝑘,𝔲/𝑝

����� ≤ max 𝔲
√
𝑝

(
2 + 2 log

(𝑝
2

)) |𝔲 |
.

Inserting this estimate into Proposition 10.5 gives

𝐷∗
𝑝,𝜸 (P𝑝,𝑑) ≤ max

∅≠𝔲⊆[𝑑]
𝛾𝔲

|𝔲 |
𝑝

+ max
∅≠𝔲⊆[𝑑]

𝛾𝔲
max 𝔲
√
𝑝

(
2 + 2 log

(𝑝
2

)) |𝔲 |
≤ 2

√
𝑝

max
∅≠𝔲⊆[𝑑]

𝛾𝔲 (max 𝔲) (4 log 𝑝) |𝔲 | .

Next, we consider Q𝑝2 ,𝑑 . Here 𝒙𝑘 is of the form 𝒙𝑘 = {𝒚𝑘/𝑀}, where 𝒚𝑘 =

(𝑘, 𝑘2, . . . , 𝑘𝑑) ∈ Z𝑑 , for 𝑘 ∈ {0, 1, . . . , 𝑝−1}, and 𝑀 = 𝑝2. For 𝒉 = (ℎ 𝑗) 𝑗∈𝔲 ∈ Z |𝔲 |
we write 𝑝 |𝒉 if 𝑝 |ℎ 𝑗 for all 𝑗 ∈ 𝔲 and 𝑝 ∤ 𝒉 if this is not the case.

For ∅ ≠ 𝔲 ⊆ [𝑑] we obtain from (10.2) in Lemma 10.6,

∑︁
𝒉∈𝐶∗

|𝔲 | (𝑝2)

1
𝑟1 (𝒉)

������ 1
𝑝2

𝑝2−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒚𝑘,𝔲/𝑝2

������
≤

∑︁
𝒉∈𝐶∗

|𝔲 | (𝑝
2)

𝑝 |𝒉

1
𝑟1 (𝒉)

������ 1
𝑝2

𝑝2−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒚𝑘,𝔲/𝑝2

������ + 1
𝑝2

∑︁
𝒉∈𝐶∗

|𝔲 | (𝑝
2)

𝑝∤𝒉

(max 𝔲)𝑝
𝑟1 (𝒉)

.

We consider the first sum in the latter expression, where 𝑝 |𝒉. Let 𝒎 = 𝒉/𝑝 ∈ Z𝔲 .
Since 𝒚𝑘,𝔲 = (𝑘 𝑗) 𝑗∈𝔲 , we have from (10.1) in Lemma 10.6 that

368 10 Korobov’s 𝑝-Sets������ 1
𝑝2

𝑝2−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒚𝑘,𝔲/𝑝2

������ =
������ 1
𝑝2

𝑝−1∑︁
ℓ=0

ℓ 𝑝+𝑝−1∑︁
𝑘=ℓ 𝑝

e2𝜋i𝒎·𝒚𝑘,𝔲/𝑝

������
=

����� 1𝑝 𝑝−1∑︁
𝑘=0

e2𝜋i𝒎·𝒚𝑘,𝔲/𝑝

�����
≤ max 𝔲

√
𝑝
.

Furthermore, ∑︁
𝒉∈𝐶∗

|𝔲 | (𝑝
2)

𝑝 |𝒉

1
𝑟1 (𝒉)

≤ 1
𝑝

∑︁
𝒉∈𝐶∗

|𝔲 | (𝑝2)

1
𝑟1 (𝒉)

≤ 1
𝑝
(1 + 𝑆𝑝2) |𝔲 | ,

where 𝑆𝑝2 =
∑
ℎ∈𝐶∗

1 (𝑝2) |ℎ|−1. From (10.4) we get

𝑆𝑝2 ≤ 2
(
1 + log

(
𝑝2

2

))
.

Thus we have∑︁
𝒉∈𝐶∗

|𝔲 | (𝑝2)

1
𝑟1 (𝒉)

������ 1
𝑝2

𝑝2−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒚𝑘,𝔲/𝑝2

������ ≤ 2 max 𝔲
𝑝

(
2 + 2 log

(
𝑝2

2

)) |𝔲 |
.

Inserting this into Proposition 10.5 gives

𝐷∗
𝑝2 ,𝜸

(Q𝑝2 ,𝑑) ≤ max
∅≠𝔲⊆[𝑑]

𝛾𝔲
|𝔲 |
𝑝2 + max

∅≠𝔲⊆[𝑑]
𝛾𝔲

2(max 𝔲)
𝑝

(
2 + 2 log

(
𝑝2

2

)) |𝔲 |
≤ 3
𝑝

max
∅≠𝔲⊆[𝑑]

𝛾𝔲 (max 𝔲) (6 log 𝑝) |𝔲 | .

Finally, let us consider R𝑝2 ,𝑑 . Here 𝒙𝑔,𝑘 is of the form 𝒙𝑔,𝑘 = {𝒚𝑔,𝑘/𝑀}, where
𝒚𝑔,𝑘 = (𝑔𝑘, 𝑔2𝑘, . . . , 𝑔𝑑−1𝑘) ∈ Z𝑑 , for 𝑔, 𝑘 ∈ {0, 1, . . . , 𝑝 − 1}, and 𝑀 = 𝑝.

For ∅ ≠ 𝔲 ⊆ [𝑑] we obtain from (10.3) in Lemma 10.6,

∑︁
𝒉∈𝐶∗

|𝔲 | (𝑝)

1
𝑟1 (𝒉)

������ 1
𝑝2

𝑝−1∑︁
𝑔=0

𝑝−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒚𝑔,𝑘,𝔲/𝑝

������ ≤ 1
𝑝2

∑︁
𝒉∈𝐶∗

|𝔲 | (𝑝)

(max 𝔲)𝑝
𝑟1 (𝒉)

≤max 𝔲
𝑝

(
2 + 2 log

(𝑝
2

)) |𝔲 |
,

where we used (10.4). Inserting this into Proposition 10.5 gives

10.2 The Weighted Star-Discrepancy of the 𝑝-Sets 369

𝐷∗
𝑝2 ,𝜸

(R𝑝2 ,𝑑) ≤ max
∅≠𝔲⊆[𝑑]

𝛾𝔲
|𝔲 |
𝑝

+ max
∅≠𝔲⊆[𝑑]

𝛾𝔲
(max 𝔲)

𝑝

(
2 + 2 log

(𝑝
2

)) |𝔲 |
≤ 2
𝑝

max
∅≠𝔲⊆[𝑑]

𝛾𝔲 (max 𝔲) (4 log 𝑝) |𝔲 | .

This concludes the proof of all three discrepancy estimates. □

The weighted star-discrepancy of the 𝑝-sets for product weights

We now consider product weights 𝜸 = (𝛾 𝑗) 𝑗≥1 and study tractability properties. We
again use the reasonable assumption that the sequence (𝛾 𝑗) 𝑗≥1 is nonincreasing, i.e.,
𝛾1 ≥ 𝛾2 ≥ 𝛾3 · · · > 0. The following result gives upper bounds on the discrepancies
of the 𝑝-sets for this case.

Theorem 10.7 Assume that the weights 𝜸 = (𝛾 𝑗) 𝑗≥1 are nonincreasing such that

𝐴 := lim sup
𝑗→∞

𝑗𝛾 𝑗 < ∞. (10.5)

Then for every 𝛿 > 0 there exist positive reals 𝐶1 (𝜸, 𝛿), 𝐶2 (𝜸, 𝛿), and 𝐶3 (𝜸, 𝛿),
which are independent of 𝑑 and 𝑝, such that

𝐷∗
𝑝,𝜸 (P𝑝,𝑑) ≤

𝐶1 (𝜸, 𝛿)
𝑝1/2−4𝐴−𝛿 ,

𝐷∗
𝑝2 ,𝜸

(Q𝑝2 ,𝑑) ≤
𝐶2 (𝜸, 𝛿)
𝑝1−6𝐴−𝛿 , and

𝐷∗
𝑝2 ,𝜸

(R𝑝2 ,𝑑) ≤
𝐶3 (𝜸, 𝛿)
𝑝1−4𝐴−𝛿 .

Proof We show the result for P𝑝,𝑑 only. The remaining results follow by the same
arguments with possibly different constants. First we find from Condition (10.5) that
there exists a Γ0 > 0 such that 𝑗𝛾 𝑗 ≤ Γ0 for all 𝑗 ∈ N. Thus for any finite set 𝔲 ⊆ N
we have

𝛾max 𝔲 (max 𝔲) ≤ Γ0 < ∞.

Therefore,

𝐷∗
𝑝,𝜸 (P𝑝,𝑑) ≤

2
√
𝑝

max
∅≠𝔲⊆[𝑑]

(max 𝔲)
∏
𝑗∈𝔲

(
4𝛾 𝑗 log 𝑝

)
≤ 8 Γ0 log 𝑝

√
𝑝

max
∅≠𝔲⊆[𝑑]

∏
𝑗∈𝔲\{max 𝔲}

(4𝛾 𝑗 log 𝑝)

≤ 8 Γ0 log 𝑝
√
𝑝

max
1≤𝑟≤𝑑−1

𝑟∏
𝑗=1

(4𝛾 𝑗 log 𝑝),

where in the third inequality we used that the weights 𝜸 are nonincreasing.

370 10 Korobov’s 𝑝-Sets

Let ℓ = ℓ(𝜸, 𝑝) be the largest integer such that 4𝛾ℓ log 𝑝 > 1. Then we have

𝐷∗
𝑝,𝜸 (P𝑝,𝑑) ≤

8 Γ0 log 𝑝
√
𝑝

ℓ∏
𝑗=1

(4𝛾 𝑗 log 𝑝).

Condition (10.5) implies that for any 𝛿 > 0 there exists an 𝐿 = 𝐿 (𝜸, 𝛿) > 0 such
that 𝑗𝛾 𝑗 < 𝐴 + 𝛿 for all 𝑗 ≥ 𝐿. We consider two cases.

If ℓ ≥ 𝐿, by the definition of ℓ we have

1 < 4𝛾ℓ log 𝑝 <
4(𝐴 + 𝛿) log 𝑝

ℓ
,

and hence ℓ < 4(𝐴+𝛿) log 𝑝, or ℓ ≤ ⌊4(𝐴+𝛿) log 𝑝⌋, since ℓ is an integer. Therefore
we obtain

ℓ∏
𝑗=1

(4𝛾 𝑗 log 𝑝) =
𝐿−1∏
𝑗=1

(4𝛾 𝑗 log 𝑝)
ℓ∏
𝑗=𝐿

(4𝛾 𝑗 log 𝑝)

≤ (4Γ0 log 𝑝)𝐿−1

(𝐿 − 1)!

⌊4(𝐴+𝛿) log 𝑝⌋∏
𝑗=𝐿

4(𝐴 + 𝛿) log 𝑝
𝑗

.

Let 𝑥 := 4(𝐴 + 𝛿) log 𝑝. Then

ℓ∏
𝑗=1

(4𝛾 𝑗 log 𝑝) ≤
(
4 Γ0 log 𝑝

𝑥

)𝐿−1
𝑥 ⌊𝑥⌋

⌊𝑥⌋!

≤
(

Γ0
𝐴 + 𝛿

)𝐿−1
e𝑥

=

(
Γ0
𝐴 + 𝛿

)𝐿−1
𝑝4(𝐴+𝛿) .

Note that 𝐿 only depends on 𝜸 and 𝛿.
If ℓ < 𝐿, we have

ℓ∏
𝑗=1

(4𝛾 𝑗 log 𝑝) ≤ (4Γ0 log 𝑝)ℓ
ℓ!

=

(
4 Γ0 log 𝑝

𝑥

)ℓ
𝑥ℓ

ℓ!

=

(
Γ0
𝐴 + 𝛿

)ℓ
e𝑥

=

(
Γ0
𝐴 + 𝛿

)ℓ
𝑝4(𝐴+𝛿)

10.2 The Weighted Star-Discrepancy of the 𝑝-Sets 371

≤ max

(
1,

(
Γ0
𝐴 + 𝛿

)𝐿−1
)
𝑝4(𝐴+𝛿) .

This gives, in any of the two cases,

𝐷∗
𝑝,𝜸 (P𝑝,𝑑) ≤

8 Γ0 log 𝑝
√
𝑝

𝑝4(𝐴+𝛿) max

(
1,

(
Γ0
𝐴 + 𝛿

)𝐿−1
)

≤ 𝐶 (𝜸, 𝛿)
𝑝1/2−4𝐴−5𝛿 ,

with a suitably chosen positive real 𝐶 (𝜸, 𝛿). This observation then immediately
yields the desired result. □

Strong polynomial tractability

If lim sup 𝑗→∞ 𝑗𝛾 𝑗 is small enough we can deduce results on strong polynomial
tractability for the weighted star-discrepancy from Theorem 10.7. For example,
consider the 𝑝-set P𝑝,𝑑 . Assume that 𝐴 := lim sup 𝑗→∞ 𝑗𝛾 𝑗 < 1/8. Fix 𝛿 > 0 such
that

𝑡 :=
1
2
− 4𝐴 − 𝛿 > 0,

and choose 𝐶1 (𝜸, 𝛿) accordingly. Let 𝜀 > 0 and let 𝑝 be the smallest prime number
that is greater than or equal to ⌈(𝐶1 (𝜸, 𝛿)𝜀−1)1/𝑡⌉ =: 𝑀 . Then we have

𝐷∗
𝑝,𝜸 (P𝑝,𝑑) ≤ 𝜀

and hence
𝑁∗
𝜸 (𝜀, 𝑑) ≤ 𝑝 < 2𝑀 = 2

⌈
(𝐶1 (𝜸, 𝛿)𝜀−1)1/𝑡

⌉
,

where we used Bertrand’s postulate which implies that 𝑀 ≤ 𝑝 < 2𝑀 . Consequently,
the weighted star-discrepancy is strongly polynomially tractable with an 𝜀-exponent
of at most 2/(1 − 8𝐴) > 0. If, in particular, 𝐴 = 0, then the 𝜀-exponent is at most 2.

Remark 10.8 Note that Γ :=
∑∞
𝑗=1 𝛾 𝑗 < ∞ and the monotonicity of the weights 𝜸

imply
𝐴 = lim

𝑗→∞
𝑗𝛾 𝑗 = 0. (10.6)

Indeed, from
∑∞
𝑗=1 𝛾 𝑗 < ∞ it follows by the Cauchy condensation test that also∑∞

𝑘=0 2𝑘𝛾2𝑘 < ∞. In particular, lim𝑘→∞ 2𝑘𝛾2𝑘 = 0. This means that for any 𝜀 > 0
we have 𝛾2𝑘 ≤ 𝜀/2𝑘+1 for sufficiently large 𝑘 . Thus, for large enough 𝑗 with 2𝑘 ≤
𝑗 < 2𝑘+1 we obtain, using the monotonicity of 𝜸, that

𝛾 𝑗 ≤ 𝛾2𝑘 ≤ 𝜀

2𝑘+1 <
𝜀

𝑗
.

372 10 Korobov’s 𝑝-Sets

In particular, for sufficiently large 𝑗 , we have 𝑗𝛾 𝑗 < 𝜀. Since 𝜀 > 0 can be chosen
arbitrarily close to zero this implies (10.6).

Obviously, the converse is not true in general. As a counterexample serves the
sequence (𝛾 𝑗) 𝑗≥1 with 𝛾1 = 𝛾2 = 1 and 𝛾 𝑗 = 1/(𝑗 log 𝑗) for 𝑗 ≥ 3.

10.3 Integration of Hölder Continuous Fourier Series

In the previous section we have seen that for suitably chosen weights strong poly-
nomial tractability can be obtained for the weighted star-discrepancy by means of
𝑝-sets. It was surprising when it was discovered in [37] that 𝑝-sets may even yield
some notion of tractability for unweighted problems. In this context we study in-
tegration of one-periodic functions with absolutely convergent Fourier series that
satisfy a Hölder condition.

For 𝑓 ∈ 𝐿2 ([0, 1]𝑑) we can associate with 𝑓 its Fourier series,

𝑓 (𝒙) ∼
∑︁
𝒉∈Z𝑑

�̂� (𝒉) e2𝜋i𝒉 ·𝒙, (10.7)

where the 𝒉-th Fourier coefficient is given by

�̂� (𝒉) =
∫
[0,1]𝑑

𝑓 (𝒙) e−2𝜋i𝒉 ·𝒙 d𝒙 for 𝒉 ∈ Z𝑑 .

For 𝛼 ∈ (0, 1] and 𝑡 ∈ [1,∞] consider the norm

∥ 𝑓 ∥𝐾𝛼,𝑡
:= ∥ 𝑓 ∥𝐻𝛼,𝑡

+
∑︁
𝒉∈Z𝑑

| �̂� (𝒉) |,

where
∥ 𝑓 ∥𝐻𝛼,𝑡

:= sup
𝒙,𝒉∈[0,1]𝑑
𝒙+𝒉∈[0,1]𝑑

| 𝑓 (𝒙 + 𝒉) − 𝑓 (𝒙) |
∥𝒉∥𝛼𝑡

is the Hölder seminorm, with ∥ · ∥𝑡 denoting the ℓ𝑡 -norm.
We consider the following subclass of the Wiener algebra.

Definition 10.9 For 𝛼 ∈ (0, 1] and 𝑡 ∈ [1,∞] define the subclass 𝐾𝛼,𝑡 of the Wiener
algebra as

𝐾𝛼,𝑡 := { 𝑓 ∈ 𝐿2 ([0, 1]𝑑) : 𝑓 is one-periodic and ∥ 𝑓 ∥𝐾𝛼,𝑡
< ∞}.

Remark 10.10 Some brief remarks on the class 𝐾𝛼,𝑡 are in order.

1. For 𝑓 ∈ 𝐾𝛼,𝑡 we also have ∥ 𝑓 ∥𝐻𝛼,𝑡
< ∞. This means that 𝑓 satisfies a Hölder

condition and therefore is also continuous.

10.3 Integration of Hölder Continuous Fourier Series 373

2. For 𝑓 ∈ 𝐾𝛼,𝑡 the Fourier series (10.7) of 𝑓 converges to 𝑓 at every point 𝒙 ∈
[0, 1]𝑑 . This follows directly from [244, Corollary 1.8, p. 249], using that 𝑓 is
continuous.

Further information on 𝐾𝛼,𝑡 can be found in [37].

We study QMC integration in 𝐾𝛼,𝑡 by means of QMC rules based on the 𝑝-set
P𝑝,𝑑 . As the error criterion we consider the worst-case error as in Definition 1.26
extended over the unit ball of the class 𝐾𝛼,𝑡 . The choice of 𝑡 in the definition of
the function class 𝐾𝛼,𝑡 influences the dependence on the dimension 𝑑 of the upper
bound on the worst-case error. The following theorem is according to [37].

Theorem 10.11 Let P𝑝,𝑑 be as in Definition 10.1. Then, for 𝛼 ∈ (0, 1] and 𝑡 ∈
[1,∞], we have

err𝑝,𝑑 (𝐾𝛼,𝑡 ,P𝑝,𝑑) ≤ max
(
𝑑 − 1
√
𝑝
,
𝑑𝛼/𝑡

𝑝𝛼

)
.

For the proof of Theorem 10.11 we require the following lemma.

Lemma 10.12 For any 𝛼 ∈ (0, 1], 𝑡 ∈ [1,∞], 𝑓 ∈ 𝐾𝛼,𝑡 , and 𝐿 ∈ N we have������ ∑︁
𝒉∈Z𝑑\{0}

�̂� (𝐿𝒉)

������ ≤ 𝑑𝛼/𝑡

𝐿𝛼
∥ 𝑓 ∥𝐻𝛼,𝑡

.

Proof Using the Fourier series expansion of 𝑓 we obtain

1
𝐿𝑑

∑︁
𝒌∈{0,1,...,𝐿−1}𝑑

𝑓

(
𝒌

𝐿

)
=

∑︁
𝒉∈Z𝑑

�̂� (𝒉) 1
𝐿𝑑

∑︁
𝒌∈{0,1,...,𝐿−1}𝑑

e2𝜋i𝒉 ·𝒌/𝐿

=
∑︁
𝒉∈Z𝑑

�̂� (𝐿𝒉),

where the latter equality follows since

1
𝐿𝑑

∑︁
𝒌∈{0,1,...,𝐿−1}𝑑

e2𝜋i𝒉 ·𝒌/𝐿 =

𝑑∏
𝑗=1

1
𝐿

𝐿−1∑︁
𝑘=0

e2𝜋iℎ 𝑗 𝑘/𝐿 =

{
1 if 𝐿 |𝒉,
0 otherwise,

and where we write 𝐿 |𝒉 if all coordinates of 𝒉 are divisible by 𝐿 (and 𝐿 ∤ 𝒉
otherwise). Therefore we get������ ∑︁

𝒉∈Z𝑑\{0}
�̂� (𝐿𝒉)

������ =
������ 1
𝐿𝑑

∑︁
𝒌∈{0,1,...,𝐿−1}𝑑

𝑓

(
𝒌

𝐿

)
−

∫
[0,1]𝑑

𝑓 (𝒙) d𝒙

������
=

������ 1
𝐿𝑑

∑︁
𝒌∈{0,1,...,𝐿−1}𝑑

(
𝑓

(
𝒌

𝐿

)
− 𝐿𝑑

∫
I𝐿 (𝒌)

𝑓 (𝒙) d𝒙
)������ ,

374 10 Korobov’s 𝑝-Sets

where

I𝐿 (𝒌) :=
[
𝒌

𝐿
,
𝒌 + 1
𝐿

)
=

𝑑⊗
𝑗=1

[
𝑘 𝑗

𝐿
,
𝑘 𝑗 + 1
𝐿

)
for 𝒌 = (𝑘1, . . . , 𝑘𝑑).

Since 𝑓 is continuous, as it satisfies a Hölder condition, for every 𝒌 ∈
{0, 1, . . . , 𝐿 − 1}𝑑 there is a 𝒚𝒌 ∈ I𝐿 (𝒌) such that

𝐿𝑑
∫
I𝐿 (𝒌)

𝑓 (𝒙) d𝒙 = 𝑓 (𝒚𝒌).

Obviously, the distance ∥𝒚𝒌 − 𝒌/𝐿∥𝑡 is not larger than the diameter of the box I𝐿 (𝒌)
measured in the ℓ𝑡 -norm, which is 𝑑1/𝑡/𝐿. Therefore������ ∑︁

𝒉∈Z𝑑\{0}
�̂� (𝐿𝒉)

������ =
������ 1
𝐿𝑑

∑︁
𝒌∈{0,1,...,𝐿−1}𝑑

(
𝑓

(
𝒌

𝐿

)
− 𝑓 (𝒚𝒌)

)������
≤ 1
𝐿𝑑

∑︁
𝒌∈{0,1,...,𝐿−1}𝑑

���� 𝑓 (
𝒌

𝐿

)
− 𝑓 (𝒚𝒌)

����
≤ 1
𝐿𝑑

∑︁
𝒌∈{0,1,...,𝐿−1}𝑑

∥𝒚𝒌 − 𝒌/𝐿∥𝛼𝑡 ∥ 𝑓 ∥𝐻𝛼,𝑡

≤ 𝑑𝛼/𝑡

𝐿𝛼
∥ 𝑓 ∥𝐻𝛼,𝑡

,

as desired. □

We now present the proof of Theorem 10.11.
Proof of Theorem 10.11 Let P𝑝,𝑑 = {𝒙0, 𝒙1, . . . , 𝒙𝑝−1}. For 𝑓 ∈ 𝐾𝛼,𝑡 we have����� 1𝑝 𝑝−1∑︁

𝑘=0
𝑓 (𝒙𝑘) −

∫
[0,1]𝑑

𝑓 (𝒙) d𝒙

�����
=

������ ∑︁
𝒉∈Z𝑑\{0}

�̂� (𝒉) 1
𝑝

𝑝−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘

������
≤ 1
𝑝

∑︁
𝒉∈Z𝑑
𝑝∤𝒉

| �̂� (𝒉) |
�����𝑝−1∑︁
𝑘=0

e(2𝜋i/𝑝) 𝒉 · (𝑘,𝑘2 ,...,𝑘𝑑)

����� + ∑︁
𝒉∈Z𝑑\{0}

𝑝 |𝒉

| �̂� (𝒉) |.

Next, we apply (10.1) in Lemma 10.6 to the first sum and Lemma 10.12 to the second
sum in the latter term and obtain����� 1𝑝 𝑝−1∑︁

𝑘=0
𝑓 (𝒙𝑘) −

∫
[0,1]𝑑

𝑓 (𝒙) d𝒙

����� ≤ 𝑑 − 1
√
𝑝

∑︁
𝒉∈Z𝑑

| �̂� (𝒉) | + 𝑑
𝛼/𝑡

𝑝𝛼
∥ 𝑓 ∥𝐻𝛼,𝑡

10.3 Integration of Hölder Continuous Fourier Series 375

≤ max
(
𝑑 − 1
√
𝑝
,
𝑑𝛼/𝑡

𝑝𝛼

)
∥ 𝑓 ∥𝐾𝛼,𝑡

.

From here the desired result follows immediately. □

Theorem 10.11 yields the following corollary.

Corollary 10.13 Integration in 𝐾𝛼,𝑡 is polynomially tractable and polynomial
tractability can be obtained by means of QMC rules based on the 𝑝-set P𝑝,𝑑 .

Proof Let 𝜀 > 0, and let 𝑝 be the smallest prime number that is greater than or equal
to ⌈

max
(
𝑑2𝜀−2, 𝑑1/𝑡𝜀−1/𝛼

)⌉
=: 𝑀.

Then Theorem 10.11 implies

err𝑝,𝑑 (𝐾𝛼,𝑡 ,P𝑝,𝑑) ≤ 𝜀,

and hence the information complexity of the integration problem in 𝐾𝛼,𝑡 satisfies

𝑁 (𝜀, 𝑑) ≤ 𝑝 < 2𝑀 = 2
⌈
max

(
𝑑2𝜀−2, 𝑑1/𝑡𝜀−1/𝛼

)⌉
≤ 2(𝑑max(2,1/𝑡)𝜀−max(2,1/𝛼) + 1),

where we again used Bertrand’s postulate. Therefore, integration in 𝐾𝛼,𝑡 is polyno-
mially tractable. □

Notes and Remarks

Korobov’s 𝑝-sets were introduced by Korobov in [137, 140] and by Hua and Wang
in their book [115]. This book also provides a detailed analysis of the (unweighted)
star-discrepancy of all three types of 𝑝-sets.

A construction of point sets with very similar properties as those of 𝑝-sets, and
which is analyzed in the same vein as in the present chapter, is given in [40]. This
construction is based on pseudo-random vectors, in particular, digital inverse vectors.

The 𝑝-sets, as well as the point sets based on digital inverse vectors, can also be
efficiently employed for the numerical integration of Hölder-continuous, absolutely
convergent cosine and Walsh series. See [37] and [40] for further information. A
discussion of Korobov’s 𝑝-sets in the context of the inverse of the star-discrepancy
(see Example 1.45) can be found in [54].

Chapter 11
Lattice Rules in the Randomized Setting

In this chapter, we discuss a randomization method for rank-1 lattice rules that is
an adaption of a technique introduced by Bakhvalov in [7] in 1961. We present a
randomized algorithm 𝐴ran

𝑁,𝑑
for numerical integration of elements of the weighted

Korobov space Hkor,𝑑,𝛼,𝜸 that uses at most 𝑁 integration nodes and that is based on
rank-1 lattice rules as building blocks.

We have already discussed randomized lattice rules above, as for example in
Section 7.1, where we considered the situation where one fixed rank-1 lattice rule
is transformed by adding a random shift. However, the route taken in this chapter
is different, in the sense that the randomization considered here is due to a random
selection of one rank-1 lattice rule out of several with varying sizes. Indeed, the
random algorithm 𝐴ran

𝑁,𝑑
, for given 𝑁 ∈ N, will be defined as a rank-1 lattice rule

with randomly chosen prime modulus 𝑝 ∈ {⌈𝑁/2⌉ + 1, . . . , 𝑁} and then randomly
chosen generating vector 𝒈 from a certain set Z𝑝 ⊆ 𝐺𝑑 (𝑝) of “good” generating
vectors (see Algorithm 11.2 below).

Choosing the number of points 𝑝 randomly is a necessary step in this setting.
Indeed, consider the integration error in dimension one. Let us fix a prime number
𝑝, then the integration error of integrating an absolutely convergent Fourier series 𝑓
by a rank-1 lattice rule is∫ 1

0
𝑓 (𝑥) d𝑥 − 1

𝑝

𝑝−1∑︁
𝑘=0

𝑓

({
𝑘𝑔

𝑝

})
=

∑︁
𝑘∈Z\{0}

�̂� (𝑘 𝑝),

which follows by Proposition 1.12. Thus the integration error on the right-hand side
does not depend on 𝑔, and randomly choosing 𝑔 does not provide any randomization.
Furthermore, for fixed 𝑝, the Fourier coefficients whose frequencies are multiples
of 𝑝 always appear in the error term. As in Monte Carlo, we want to introduce
a randomization which, at least with some nonzero probability, can integrate any
Fourier coefficient. One way to achieve this is by choosing the number of points 𝑝,
as well as the generating vector 𝒈, randomly.

377© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_11&domain=pdf

378 11 Lattice Rules in the Randomized Setting

An algorithm of such a form was first analyzed by Bakhvalov in [7] for generating
vectors of Korobov type (see Section 3.2), i.e., for 𝒈 = (1, 𝑔, . . . , 𝑔𝑑−1) for some
𝑔 ∈ Z \ {0}. Bakhvalov proved that this algorithm has almost the optimal order
of convergence in a Sobolev space with dominating mixed smoothness, but the
error bound depends on the dimension 𝑑. In [143], Bakhvalov’s original idea was
adapted such that the generating vectors under consideration are no longer restricted
to the Korobov type. This has the significant advantage that the randomized lattice
algorithm 𝐴ran

𝑁,𝑑
can yield almost the optimal order of convergence in the Korobov

space, with the error bound independent of 𝑑 under the usual conditions on the
weights 𝜸. However, we need to give some explanation of what we mean by “optimal
order of convergence in the Korobov space” in this context. This is because we do
not study the worst-case error of integration as in the previous chapters, but the
randomized (worst-case) error of the algorithm 𝐴ran

𝑁,𝑑
in the unit ball of Hkor,𝑑,𝛼,𝜸,

defined by

errran
𝑑,𝛼,𝜸 (𝐴

ran
𝑁,𝑑) := sup

𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

E
[
|𝐴ran
𝑁,𝑑 (𝑓) − 𝐼𝑑 (𝑓) |

]
. (11.1)

The details of the expectation in (11.1) will be made clear when we formally specify
the randomized lattice algorithm in the following section.

The randomized lattice algorithm achieving an upper bound independent of the
dimension was first discussed in [143]. However, this algorithm is difficult to im-
plement in practice. In [39], a variation of this method was studied which can be
implemented, but requires knowledge of the smoothness parameter 𝛼 in advance.
We follow the presentation in the latter paper in this chapter.

11.1 The Randomized Algorithm for Korobov Spaces

In this section, we present the algorithm 𝐴ran
𝑁,𝑑

and show how it can be applied to
elements of the weighted Korobov space Hkor,𝑑,𝛼,𝜸 (see Definition 2.16). To this end
we introduce a weighted version of the quality criterion 𝑃𝛼 from Definition 1.14.

Definition 11.1 For a given 𝑑 ∈ N, a prime number 𝑝, a generating vector 𝒈 ∈
𝐺𝑑 (𝑝), and given 𝜏 > 1, define the quantity

𝑃𝜏,𝜸 (𝒈, 𝑝) :=
∑︁

𝒉∈L⊥ (𝒈, 𝑝)\{0}

1
𝑟𝜏,𝜸 (𝒉)

,

where L⊥ (𝒈, 𝑝) is the dual lattice corresponding to P(𝒈, 𝑝) as introduced in Equa-
tion (1.7).

11.1 The Randomized Algorithm for Korobov Spaces 379

The randomized algorithm

Now, we will outline how the randomized algorithm works in detail. Let 𝑁 ∈ N,
𝑁 ≥ 2, and define the set

𝑃𝑁 := {𝑝 : 𝑝 is prime and ⌈𝑁/2⌉ + 1 ≤ 𝑝 ≤ 𝑁} ,

which is nonempty due to Bertrand’s postulate.
We are ready to formally define the randomized algorithm 𝐴ran

𝑁,𝑑
.

Algorithm 11.2 (Randomized algorithm 𝐴ran
𝑁,𝑑

) Let 𝑁 ∈ N, 𝑁 ≥ 2, and let 𝑑 ∈ N,
𝛼 > 1/2, and weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be given. Choose 𝜂 ∈ (0, 1).
(1) Choose an element 𝑝 ∈ 𝑃𝑁 randomly and uniformly.
(2) Set 𝑔1 = 1.
(3) For 𝑠 from 1 to 𝑑 − 1:

Assume that 𝑔1, . . . , 𝑔𝑠 have already been found, and consider them as fixed.

(3a) Compute
𝑃2𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠 , 𝑔), 𝑝)

for all values of 𝑔 ∈ {1, 2, . . . , 𝑝 − 1}.
(3b) Construct a ⌈𝜂(𝑝 − 1)⌉-element set 𝑍𝑠+1 ⊆ {1, 2, . . . , 𝑝 − 1} such that

𝑃2𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠 , 𝑔), 𝑝) ≤ 𝑃2𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠 , 𝑎), 𝑝)

for all 𝑔 ∈ 𝑍𝑠+1 and 𝑎 ∈ {1, 2, . . . , 𝑝 − 1} \ 𝑍𝑠+1. Randomly and uniformly
pick 𝑔𝑠+1 from 𝑍𝑠+1.

End for.
(4) Set 𝐴ran

𝑁,𝑑
to be the 𝑝-element lattice rule with generating vector 𝒈 := (𝑔1, . . . , 𝑔𝑑).

It should be noted that the output of Algorithm 11.2 is a random generating vector
chosen from a set of possible generating vectors. Based on the choice 𝑔1 = 1, several
choices are possible for 𝑔2. Based on the choice of 𝑔1 and 𝑔2, several choices are
possible for 𝑔3, etc. The structure of the algorithm is such that one possible choice
(𝑔1, . . . , 𝑔𝑑) is selected at random among several choices. Indeed, for a given 𝑝,
we denote the set of possible generating vectors 𝒈 generated by Algorithm 11.2 in
Steps (2) and (3) by Z𝑝,𝑑,𝛼,𝜸,𝜂 . The size of this set is

|Z𝑝,𝑑,𝛼,𝜸,𝜂 | = 1 × (⌈𝜂(𝑝 − 1)⌉)𝑑−1 ≥ 𝜂𝑑−1 (𝑝 − 1)𝑑−1.

The worst-case error

In the first step of our analysis of Algorithm 11.2, we prove a bound on the worst-case
error, which is needed later to prove a bound on the randomized error. Algorithm 11.2
is a variation of the classical CBC construction principle in Algorithm 3.5, where
in Step (3b) we do not choose the component which yields the smallest worst-case

380 11 Lattice Rules in the Randomized Setting

error, but we randomly select an element from the set of the “best” ⌈𝜂(𝑝−1)⌉ choices
(with respect to 𝑃2𝛼,𝜸). Markov’s inequality states that

P[𝑋 ≥ 𝑐] ≤ E[𝑋]
𝑐

for any nonnegative random variable 𝑋 and any positive real 𝑐. This inequality can
then be used to show that any choice 𝑔𝑠+1 ∈ 𝑍𝑠+1 in Step (3) of Algorithm 11.2
yields a generating vector which gives almost the optimal rate of convergence (the
parameter 𝜂 ∈ (0, 1) only affects the constant).

The following result, which applies to Algorithm 11.2, is an extension of Theo-
rem 2.24 in Section 2.6.

Theorem 11.3 Let 𝑑, 𝑁 ∈ N, let 𝛼 > 1/2, let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be general weights and
let 𝜂 ∈ (0, 1) be given. For any 𝑝 ∈ 𝑃𝑁 and any generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑)
found by Algorithm 11.2 we have, for every 𝑠 ∈ [𝑑] and every 𝜏 ∈ [1/2, 𝛼),

err𝑝,𝑠,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠)) ≤
©« 2
(1 − 𝜂)𝑝

∑︁
∅≠𝔲⊆[𝑠]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏

.

Proof According to Theorem 2.19 we have

err𝑝,𝑠,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠)) = (𝑃2𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠), 𝑝))1/2.

Hence it suffices to show that (𝑃2𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠), 𝑝))1/2 satisfies the desired bound.
First we prove by induction on 𝑠 that, for any 𝜆 ∈ (1/(2𝛼), 1],

𝑃2𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠), 𝑝) ≤ ©« 2
(1 − 𝜂)𝑝

∑︁
∅≠𝔲⊆[𝑠]

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 |
ª®¬

1/𝜆

. (11.2)

For 𝑠 = 1 we have 𝑔1 = 1, and so

𝑃2𝛼,𝜸 (𝑔1, 𝑝) =
∑︁

ℎ∈Z\{0}

1
𝑟2𝛼,𝜸 (𝑝ℎ)

= 2𝛾{1}
∞∑︁
ℎ=1

1
(𝑝ℎ)2𝛼

=
2𝛾{1}𝜁 (2𝛼)

𝑝2𝛼

≤
(

2
(1 − 𝜂)𝑝 𝛾

𝜆
{1}2𝜁 (2𝛼𝜆)

)1/𝜆

for every 𝜆 ∈ (1/(2𝛼), 1], where we used Jensen’s inequality (see Lemma 2.25).

11.1 The Randomized Algorithm for Korobov Spaces 381

Assume that the result holds for dimension 𝑠 for some fixed 𝑠 ∈ [𝑑 − 1], i.e.,

𝑃2𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠), 𝑝) ≤ ©« 2
(1 − 𝜂)𝑝

∑︁
∅≠𝔲⊆[𝑠]

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 |
ª®¬

1/𝜆

,

for any 𝜆 ∈ (1/(2𝛼), 1].
We write, again with some abuse of notation, 𝒈 (𝑠) := (𝑔1, . . . , 𝑔𝑠) and

(𝒈 (𝑠) , 𝑔𝑠+1) := (𝑔1, . . . , , 𝑔𝑠 , 𝑔𝑠+1). Recall from (4.5) the definition of L⊥
𝔲 which

is given by

L⊥
𝔲 (𝒈, 𝑝) := {𝒉𝔲 ∈ (Z \ {0}) |𝔲 | : 𝒉𝔲 · 𝒈𝔲 ≡ 0 (mod 𝑝)}.

From the definition of 𝑃2𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1), 𝑝) we have

𝑃2𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1), 𝑝) =
∑︁

𝒉∈L⊥ ((𝒈 (𝑠) ,𝑔𝑠+1) , 𝑝)\{0}

1
𝑟2𝛼,𝜸 (𝒉)

=
∑︁

∅≠𝔲⊆[𝑠+1]

∑︁
𝒉𝔲 ∈L⊥

𝔲 ((𝒈 (𝑠) ,𝑔𝑠+1) , 𝑝)

1
𝑟2𝛼,𝜸 (𝒉𝔲)

=
∑︁

∅≠𝔲⊆[𝑠]

∑︁
𝒉𝔲 ∈L⊥

𝔲 (𝒈 (𝑠) , 𝑝)

1
𝑟2𝛼,𝜸 (𝒉𝔲)

+
∑︁

𝔲⊆[𝑠+1]
𝑠+1∈𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲 ((𝒈 (𝑠) ,𝑔𝑠+1) , 𝑝)

1
𝑟2𝛼,𝜸 (𝒉𝔲)

= 𝑃2𝛼,𝜸 (𝒈 (𝑠) , 𝑝) + Θ𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1),

where
Θ𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1) :=

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲 ((𝒈 (𝑠) ,𝑔𝑠+1) , 𝑝)

1
𝑟2𝛼,𝜸 (𝒉𝔲)

.

Next we need a bound on the average of Θ𝛼,𝜸 (𝒈 (𝑠) , 𝑔) over all possible choices
of 𝑔. Such a bound was shown in the proof of Theorem 3.9, which gives

1
𝑝 − 1

𝑝−1∑︁
𝑔=1

(Θ𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1))𝜆 ≤ 1
𝑝 − 1

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 | .

Markov’s inequality implies that there are at least ⌈𝜂(𝑝−1)⌉ possible choices for the
(𝑠 + 1)-st component 𝑔𝑠+1 ∈ {1, 2, . . . , 𝑝 − 1} of the generating vector 𝒈 such that

(Θ𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1))𝜆 ≤ 1
(1 − 𝜂) (𝑝 − 1)

𝑝−1∑︁
𝑔=1

Θ𝛼,𝜸 (𝒈 (𝑠) , 𝑔)𝜆

382 11 Lattice Rules in the Randomized Setting

≤ 1
(1 − 𝜂) (𝑝 − 1)

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 | ,

or equivalently

Θ𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1) ≤
©«

1
(1 − 𝜂) (𝑝 − 1)

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 |
ª®®®¬

1/𝜆

. (11.3)

This means that the ⌈𝜂(𝑝 − 1)⌉ choices of 𝑔𝑠+1 ∈ {1, 2, . . . , 𝑝 − 1} with the smallest
values of Θ𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1) satisfy the bound (11.3). The induction assumption and
Jensen’s inequality now lead to

(𝑃2𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1), 𝑝))𝜆 ≤ (𝑃2𝛼,𝜸 (𝒈 (𝑠) , 𝑝))𝜆 + (Θ𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1))𝜆

≤ 2
(1 − 𝜂)𝑝

∑︁
∅≠𝔲⊆[𝑠]

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 |

+ 1
(1 − 𝜂) (𝑝 − 1)

∑︁
𝔲⊆[𝑠+1]
𝑠+1∈𝔲

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 |

≤ 2
(1 − 𝜂)𝑝

∑︁
∅≠𝔲⊆[𝑠+1]

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 | .

This concludes the proof of (11.2). Putting 𝜏 := 1/(2𝜆), which implies that 𝜏 ∈
[1/2, 𝛼), gives the result in the theorem. □

The randomized error

The randomized (worst-case) error of 𝐴ran
𝑁,𝑑

is given by

errran
𝑑,𝛼,𝜸 (𝐴

ran
𝑁,𝑑) := sup

𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

E
[
|𝐴ran
𝑁,𝑑 (𝑓) − 𝐼𝑑 (𝑓) |

]

= sup
𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

©« 1
|𝑃𝑁 |

∑︁
𝑝∈𝑃𝑁

1
|Z𝑝,𝜂 |

∑︁
𝒈∈Z𝑝,𝜂

��𝑄 (𝒈, 𝑝) ,𝑑 (𝑓) − 𝐼𝑑 (𝑓)
��ª®¬ ,

(11.4)

where 𝑄 (𝒈, 𝑝) ,𝑑 denotes the 𝑝-element lattice rule with generating vector 𝒈 obtained
by Algorithm 11.2, and where we writeZ𝑝,𝜂 = Z𝑝,𝑑,𝛼,𝜸,𝜂 for short. It is essential to
stress here that the randomized error defined in (11.4) is not the same as the average

11.1 The Randomized Algorithm for Korobov Spaces 383

of the worst-case errors of a set of deterministic rank-1 lattice rules, because the
averaging occurs inside the supremum rather than outside. This is in contrast to the
shift-averaged worst-case error as given in Definition 7.2.

The following theorem, which is the first main result in [39], shows that for
sufficiently large 𝑁 the convergence order of the randomized error of 𝐴ran

𝑁,𝑑
can be

arbitrarily close to the optimal order of magnitude.

Theorem 11.4 Let 𝑑 ∈ N, let 𝛼 > 1/2, let 𝜂 ∈ (0, 1), and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be
weights with 𝛾𝔲 ∈ [0, 1] for 𝔲 ⊆ [𝑑]. For 𝑁 ∈ N such that

𝑁 ≥ inf
1/2<𝜏<𝛼

4
1 − 𝜂

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |
(11.5)

it is true that the randomized error (11.4) of 𝐴ran
𝑁,𝑑

as in Algorithm 11.2 satisfies

errran
𝑑,𝛼,𝜸 (𝐴

ran
𝑁,𝑑) ≤

𝐶𝛼,𝜏, 𝛿,𝜂

𝑁 𝜏+1/2−𝛿
©«

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏−𝛿

for any 𝜏 ∈ (1/2, 𝛼) and 𝛿 ∈ (0,min(𝜏 − 1/2, 2𝜏/𝛼)), where the positive factor
𝐶𝛼,𝜏, 𝛿,𝜂 depends only on 𝛼, 𝜏, 𝛿, and 𝜂.

Proof Considering the Fourier series of an individual function 𝑓 in the unit ball of
Hkor,𝑑,𝛼,𝜸 and applying the character property of lattice rules (see Lemma 1.9 and
Remark 1.10) and the triangle inequality we obtain

errran
𝑑,𝛼,𝜸 (𝐴

ran
𝑁,𝑑)

= sup
𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

1
|𝑃𝑁 |

∑︁
𝑝∈𝑃𝑁

1
|Z𝑝,𝜂 |

∑︁
𝒈∈Z𝑝,𝜂

������ ∑︁
𝒉∈Z𝑑\{0}

�̂� (𝒉) 1
𝑝

𝑝−1∑︁
𝑘=0

e2𝜋i𝑘𝒉 ·𝒈/𝑝

������
≤ sup

𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

1
|𝑃𝑁 |

∑︁
𝑝∈𝑃𝑁

1
|Z𝑝,𝜂 |

∑︁
𝒈∈Z𝑝,𝜂

∑︁
𝒉∈L⊥ (𝒈, 𝑝)\{0}

| �̂� (𝒉) |

= sup
𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

∑︁
𝒉∈Z𝑑\{0}

√︃
𝑟2𝛼,𝜸 (𝒉) | �̂� (𝒉) | 𝜔(𝒉)√︁

𝑟2𝛼,𝜸 (𝒉)
,

where for 𝒉 ∈ Z𝑑 \ {0} we write

𝜔(𝒉) :=
1

|𝑃𝑁 |
∑︁
𝑝∈𝑃𝑁

1
|Z𝑝,𝜂 |

∑︁
𝒈∈Z𝑝,𝜂

𝒉∈L⊥ (𝒈, 𝑝)

1.

If for a given 𝒉 ∈ Z𝑑 \ {0} there is no 𝑝 and 𝒈 such that 𝒉 ∈ L⊥ (𝒈, 𝑝), then we set
𝜔(𝒉) := 0. Now, applying the Cauchy–Schwarz inequality, we get

384 11 Lattice Rules in the Randomized Setting

errran
𝑑,𝛼,𝜸 (𝐴

ran
𝑁,𝑑)

≤ sup
𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

©«
∑︁

𝒉∈Z𝑑\{0}
𝑟2𝛼,𝜸 (𝒉) | �̂� (𝒉) |2

ª®¬
1/2 ©«

∑︁
𝒉∈Z𝑑\{0}

(𝜔(𝒉))2

𝑟2𝛼,𝜸 (𝒉)
ª®¬

1/2

= sup
𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

∥ 𝑓 ∥kor,𝑑,𝛼,𝜸
©«

∑︁
𝒉∈Z𝑑\{0}

(𝜔(𝒉))2

𝑟2𝛼,𝜸 (𝒉)
ª®¬

1/2

=
©«

∑︁
𝒉∈Z𝑑\{0}

(𝜔(𝒉))2

𝑟2𝛼,𝜸 (𝒉)
ª®¬

1/2

.

Thus it suffices to give an upper bound on

𝐵𝑁 := ©«
∑︁

𝒉∈Z𝑑\{0}

(𝜔(𝒉))2

𝑟2𝛼,𝜸 (𝒉)
ª®¬

1/2

.

Let us define

𝐻𝑁 := inf
1/2<𝜏<𝛼

©« 4
(1 − 𝜂)𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
2𝜏

. (11.6)

We note here that 𝐻𝑁 ≤ 1 by the assumption (11.5). It follows from (11.2) that we
have ∑︁

𝒉∈L⊥ (𝒈, 𝑝)\{0}

1
𝑟2𝛼,𝜸 (𝒉)

= 𝑃2𝛼,𝜸 (𝒈, 𝑝) ≤ 𝐻𝑁

for any 𝑝 ∈ 𝑃𝑁 and any 𝒈 ∈ Z𝑝,𝜂 . This means that for 𝒉 ∈ Z𝑑 \ {0} with

1
𝑟2𝛼,𝜸 (𝒉)

> 𝐻𝑁

it holds that 𝒉 ∉ L⊥ (𝒈, 𝑝) for all 𝑝 ∈ 𝑃𝑁 and all 𝒈 ∈ Z𝑝,𝜂 , such that

𝜔(𝒉) = 0.

If 1/𝑟2𝛼,𝜸 (𝒉) ≤ 𝐻𝑁 , the following observation holds. If 𝑝 |𝒉, i.e., every compo-
nent of 𝒉 is divisible by 𝑝, then such 𝒉 is always included in the dual lattice L⊥ (𝒈, 𝑝)
for any choice of 𝒈, since 𝒉 · 𝒈 ≡ 0 (mod 𝑝) holds.

Now we focus on the case 𝑝 ∤ 𝒉. Let 𝔲 be the nonempty set consisting of
all 𝑗 ∈ [𝑑] such that 𝑝 ∤ ℎ 𝑗 . Then the condition 𝒉 ∈ L⊥ (𝒈, 𝑝) is equivalent to
𝒉𝔲 · 𝒈𝔲 ≡ 0 (mod 𝑝). Note that we can first exclude the case 𝔲 = {1}, since it cannot
occur due to the fact that 𝑔1 = 1. For the remaining sets 𝔲, defining ℓ := max 𝔲, such
that ℓ ≥ 2, the condition can be further rewritten as

11.1 The Randomized Algorithm for Korobov Spaces 385

ℎℓ𝑔ℓ ≡ −𝒉𝔲\{ℓ } · 𝒈𝔲\{ℓ } ≡ −𝒉 [ℓ−1] · 𝒈 [ℓ−1] (mod 𝑝). (11.7)

If 𝑝 |𝒉 [ℓ−1] · 𝒈 [ℓ−1] , no 𝑔ℓ ∈ {1, 2, . . . , 𝑝−1} satisfies (11.7). If this is not the case, as
𝑝 is a prime, there is exactly one 𝑔ℓ which satisfies (11.7), although such a solution
may not be in the set Z𝑝,𝜂 . It follows from the structure of Z𝑝,𝜂 that we need to
consider at most 1 × (⌈𝜂(𝑝 − 1)⌉)ℓ−2 patterns of 𝒈 [ℓ−1] occurring in elements of
Z𝑝,𝜂 , for each of which there is at most one possible choice of 𝑔ℓ . Furthermore,
the number of possible patterns for the remaining components 𝒈 {ℓ+1,...,𝑑 } for each
𝒈 [ℓ] is exactly (⌈𝜂(𝑝 − 1)⌉)𝑑−ℓ , so that the total number of 𝒈 ∈ Z𝑝,𝜂 such that
𝒉 ∈ L⊥ (𝒈, 𝑝) is at most (⌈𝜂(𝑝 − 1)⌉)ℓ−2 × (⌈𝜂(𝑝 − 1)⌉)𝑑−ℓ = (⌈𝜂(𝑝 − 1)⌉)𝑑−2.

It follows from the above argument that

1
|Z𝑝,𝜂 |

∑︁
𝒈∈Z𝑝,𝜂

𝒉∈L⊥ (𝒈, 𝑝)

1 ≤

1 if 𝑝 |𝒉,
(⌈𝜂(𝑝 − 1)⌉)𝑑−2

|Z𝑝,𝜂 |
=

1
⌈𝜂(𝑝 − 1)⌉ ≤ 2

𝜂𝑁
if 𝑝 ∤ 𝒉.

Therefore we have

𝜔(𝒉) ≤ 1
|𝑃𝑁 |

∑︁
𝑝∈𝑃𝑁

𝑝 |𝒉

1 + 2
𝜂𝑁

∑︁
𝑝∈𝑃𝑁

𝑝∤𝒉

1

 ≤ 1
|𝑃𝑁 |

∑︁
𝑝∈𝑃𝑁

𝑝 |𝒉

1 + 2
𝜂𝑁

.

Note that for given 𝑀 ∈ N any number ℎ ∈ N has at most log𝑀 ℎ prime divisors
greater than 𝑀 . So, for 𝒉 ≠ 0, the number of primes 𝑝 ≥ ⌈𝑁/2⌉ + 1 for which
𝒉 ≡ 0 (mod 𝑝) is at most log ⌈𝑁/2⌉+1 (∥𝒉∥∞), i.e.,∑︁

𝑝∈𝑃𝑁

𝑝 |𝒉

1 ≤ log ⌈𝑁/2⌉+1 (∥𝒉∥∞) =
log(∥𝒉∥∞)

log(⌈𝑁/2⌉ + 1) ≤ 2 log(∥𝒉∥∞)
log 𝑁

for all 𝑁 ≥ 2. It is well known from number theory that |𝑃𝑁 | > 𝑐′𝑁/log 𝑁 for some
absolute constant 𝑐′ > 0, which can be deduced from the prime number theorem.
Using explicit lower and upper bounds on the prime-counting function, see, for
example, [221, Corollary 3], the constant 𝑐′ can be made concrete.) We conclude
that

𝜔(𝒉) ≤ 2 log(∥𝒉∥∞)
𝑐′ 𝑁

+ 2
𝜂𝑁

≤ 𝑐
log(1 + ∥𝒉∥∞)

𝜂𝑁
(11.8)

for some real 𝑐 > 0 that is independent of 𝑑, 𝑁 , and 𝜂.
For what follows, recall that 𝔲(𝒉) := { 𝑗 ∈ [𝑑] : ℎ 𝑗 ≠ 0} for 𝒉 = (ℎ1, . . . , ℎ𝑑) ∈

Z𝑑 . Substituting the bound (11.8) on 𝜔(𝒉) into 𝐵𝑁 first, and then using the elemen-
tary inequality log(1 + 𝑥) ≤ 𝑥𝛽/𝛽, which holds for any 𝛽 ∈ (0, 1) and 𝑥 > 0, we
obtain

386 11 Lattice Rules in the Randomized Setting

𝐵𝑁 =
©«

∑︁
𝒉∈Z𝑑\{0}

(𝜔(𝒌))2

𝑟2𝛼,𝜸 (𝒉)
ª®¬

1/2

≤ 𝑐

𝜂𝑁

©«
∑︁

𝒉∈Z𝑑\{0}
1/𝑟2𝛼,𝜸 (𝒉) ≤𝐻𝑁

(log(1 + ∥𝒉∥∞))2 𝛾𝔲 (𝒉)
∏
𝑗∈𝔲 (𝒉)

1
|ℎ 𝑗 |2𝛼

ª®®®®¬
1/2

≤ 𝑐

𝛽𝜂𝑁

©«
∑︁

𝒉∈Z𝑑\{0}
1/𝑟2𝛼,𝜸 (𝒉) ≤𝐻𝑁

∥𝒉∥2𝛽
∞ 𝛾𝔲 (𝒉)

∏
𝑗∈𝔲 (𝒉)

1
|ℎ 𝑗 |2𝛼

ª®®®®¬
1/2

≤ 𝑐

𝛽𝜂𝑁

©«
∑︁

𝒉∈Z𝑑\{0}
1/𝑟2𝛼,𝜸 (𝒉) ≤𝐻𝑁

𝛾𝔲 (𝒉)
∏
𝑗∈𝔲 (𝒉)

1
|ℎ 𝑗 |2(𝛼−𝛽)

ª®®®®¬
1/2

≤ 𝑐

𝛽𝜂𝑁

©«
∑︁

𝒉∈Z𝑑\{0}
1/𝑟2𝛼,𝜸 (𝒉) ≤𝐻𝑁

©«𝛾𝔲 (𝒉)
∏
𝑗∈𝔲 (𝒉)

1
|ℎ 𝑗 |2𝛼

ª®¬
1−𝛽/𝛼ª®®®®¬

1/2

=
𝑐

𝛽𝜂𝑁

©«
∑︁

𝒉∈Z𝑑\{0}
1/𝑟2𝛼,𝜸 (𝒉) ≤𝐻𝑁

1
(𝑟2𝛼,𝜸 (𝒉))1−𝛽/𝛼

ª®®®®¬
1/2

,

for any 𝛽 ∈ (0,min(𝛼 − 1/2, 1)). We shall restrict the range of 𝛽 slightly further
below in order to obtain a suitable upper bound on the latter expression.

For ℓ ∈ N, let us define

𝐴𝛼,𝜸 (ℓ) :=
∑︁

𝒉∈Z𝑑\{0}
𝑟2𝛼,𝜸 (𝒉)<ℓ

1.

As it holds that 𝐻𝑁 ≤ 1 by the assumption (11.5), we have ⌊1/𝐻𝑁 ⌋ ≥ 1. With this
notation, we obtain∑︁

𝒉∈Z𝑑\{0}
1/𝑟2𝛼,𝜸 (𝒉) ≤𝐻𝑁

1
(𝑟2𝛼,𝜸 (𝒉))1−𝛽/𝛼 ≤

∞∑︁
ℓ= ⌊1/𝐻𝑁 ⌋

∑︁
𝒉∈Z𝑑\{0}

ℓ≤𝑟2𝛼,𝜸 (𝒉)<ℓ+1

1
(𝑟2𝛼,𝜸 (𝒉))1−𝛽/𝛼

11.1 The Randomized Algorithm for Korobov Spaces 387

≤
∞∑︁

ℓ= ⌊1/𝐻𝑁 ⌋

1
ℓ1−𝛽/𝛼

∑︁
𝒉∈Z𝑑\{0}

ℓ≤𝑟2𝛼,𝜸 (𝒉)<ℓ+1

1

=

∞∑︁
ℓ= ⌊1/𝐻𝑁 ⌋

1
ℓ1−𝛽/𝛼

(
𝐴𝛼,𝜸 (ℓ + 1) − 𝐴𝛼,𝜸 (ℓ)

)
≤

∞∑︁
ℓ= ⌊1/𝐻𝑁 ⌋

𝐴𝛼,𝜸 (ℓ + 1)
(

1
ℓ1−𝛽/𝛼 − 1

(ℓ + 1)1−𝛽/𝛼

)
≤

∞∑︁
ℓ= ⌊1/𝐻𝑁 ⌋

𝐴𝛼,𝜸 (ℓ + 1)
ℓ1−𝛽/𝛼 (ℓ + 1)1−𝛽/𝛼 .

For any 𝜏 ∈ (1/2, 𝛼) it follows from the definition of 𝐴𝛼,𝜸 that

𝐴𝛼,𝜸 (ℓ + 1)
(ℓ + 1)1/(2𝜏) =

∑︁
𝒉∈Z𝑑\{0}

𝑟2𝛼,𝜸 (𝒉)<ℓ+1

1
(ℓ + 1)1/(2𝜏)

≤
∑︁

𝒉∈Z𝑑\{0}

1
(𝑟2𝛼,𝜸 (𝒉))1/(2𝜏)

=
∑︁

∅≠𝔲⊆[𝑑]
𝛾

1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |
,

which leads to∑︁
𝒉∈Z𝑑\{0}

1/𝑟2𝛼,𝜸 (𝒉) ≤𝐻𝑁

1
(𝑟2𝛼,𝜸 (𝒉))1−𝛽/𝛼

≤
∞∑︁

ℓ= ⌊1/𝐻𝑁 ⌋

𝐴𝛼,𝜸 (ℓ + 1)
ℓ1−𝛽/𝛼 (ℓ + 1)1−𝛽/𝛼

≤
∑︁

∅≠𝔲⊆[𝑑]
𝛾

1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 | ∞∑︁
ℓ= ⌊1/𝐻𝑁 ⌋

1
ℓ1−𝛽/𝛼 (ℓ + 1)1−𝛽/𝛼−1/(2𝜏)

≤
∑︁

∅≠𝔲⊆[𝑑]
𝛾

1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 | ∞∑︁
ℓ= ⌊1/𝐻𝑁 ⌋

1
ℓ2(1−𝛽/𝛼)−1/(2𝜏) ,

for 𝛽 ∈ (0,min(𝛼(1 − 1/(2𝜏))/2, 1)) (note that for every 𝜏 ∈ (1/2, 𝛼) it holds that
𝛼(1 − 1/(2𝜏))/2 < 𝛼 − 1/2). The innermost sum over ℓ in the latter expression is
bounded by

388 11 Lattice Rules in the Randomized Setting

∞∑︁
ℓ= ⌊1/𝐻𝑁 ⌋

1
ℓ2(1−𝛽/𝛼)−1/(2𝜏)

≤ 1
(⌊1/𝐻𝑁 ⌋)2(1−𝛽/𝛼)−1/(2𝜏) +

∫ ∞

⌊1/𝐻𝑁 ⌋

1
𝑥2(1−𝛽/𝛼)−1/(2𝜏) d𝑥

=
1

(⌊1/𝐻𝑁 ⌋)2(1−𝛽/𝛼)−1/(2𝜏) +
1

2(1 − 𝛽/𝛼) − 1/(2𝜏) − 1
1

(⌊1/𝐻𝑁 ⌋)2(1−𝛽/𝛼)−1/(2𝜏)−1

≤
(
1 + 1

1 − 1/(2𝜏) − 2𝛽/𝛼

)
(2𝐻𝑁)1−1/(2𝜏)−2𝛽/𝛼 .

Therefore, for any 𝜏 ∈ (1/2, 𝛼) and 𝛽 ∈ (0,min(𝛼(1 − 1/(2𝜏))/2, 1)), we get

𝐵𝑁 ≤ 𝑐

𝛽𝜂𝑁

©«
∑︁

𝒉∈Z𝑑\{0}
1/𝑟2𝛼,𝜸 (𝒉) ≤𝐻𝑁

1
(𝑟2𝛼,𝜸 (𝒉))1−𝛽/𝛼

ª®®®®¬
1/2

≤ 𝑐

𝛽𝜂𝑁

(
1 + 1

1 − 1/(2𝜏) − 2𝛽/𝛼

)1/2
(2𝐻𝑁) (1−1/(2𝜏))/2−𝛽/𝛼

× ©«
∑︁

∅≠𝔲⊆[𝑑]
𝛾

1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
1/2

≤
𝐶𝛼,𝜏,𝛽,𝜂

𝑁 𝜏+1/2−2𝜏𝛽/𝛼
©«

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏−2𝜏𝛽/𝛼

,

where the last inequality follows from the fact that

𝐻𝑁 ≤ ©« 4
(1 − 𝜂)𝑁

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
2𝜏

,

which holds for 𝜏 ∈ (1/2, 𝛼), according to (11.6).
Finally, putting 𝛿 := 2𝜏𝛽/𝛼 leads to the desired result. This completes the proof

of Theorem 11.4. □

Observe that the upper bound in Theorem 11.4 can be bounded uniformly in 𝑑
if the weights 𝛾𝔲 satisfy certain summability conditions. For example, for product
weights this is true if

∑∞
𝑗=1 𝛾

1/(2𝜏)
𝑗

< ∞ is satisfied. This observation is important in
the discussion of tractability results, which we return to in Section 11.3.

11.1 The Randomized Algorithm for Korobov Spaces 389

We have proven in Theorem 11.4 that the algorithm 𝐴ran
𝑁,𝑑

can yield an order of
convergence that is arbitrarily close to 𝑁−𝛼−1/2, which is exactly the optimal rate
according to [253]. However, we will show in Theorem 11.5 below that with the
present method we cannot match the optimal rate exactly, since one cannot get rid
of logarithmic terms by means of Algorithm 11.2.

Theorem 11.5 Let 𝑑 ∈ N, let 𝛼 > 1/2, and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be positive weights.
Then the randomized error of the algorithm 𝐴ran

𝑁,𝑑
for any 𝑁 ∈ N, 𝑁 ≥ 2, is bounded

from below,

errran
𝑑,𝛼,𝜸 (𝐴

ran
𝑁,𝑑) ≥

√︁
𝛾{1} log 𝑁
2 𝑁𝛼+1/2 .

Proof To prove the lower bound on errran
𝑑,𝛼,𝜸 (𝐴

ran
𝑁,𝑑

) it is enough to construct, for
each 𝑁 ∈ N, 𝑁 ≥ 2, a function, say 𝑓𝑁 , for which the absolute integration error
satisfies the lower bound. To this end, we define 𝑓𝑁 via its Fourier coefficients,

�̂�𝑁 (𝒉) =

{
(𝑟2𝛼,𝜸 (𝒉) |𝑃𝑁 |)−1/2 if ℎ1 ∈ 𝑃𝑁 and ℎ2 = · · · = ℎ𝑑 = 0,
0 otherwise.

Clearly, ∥ 𝑓𝑁 ∥kor,𝑑,𝛼,𝜸 = 1 and 𝑓𝑁 integrates to 0 over [0, 1]𝑑 because 𝐼𝑑 (𝑓𝑁) =

�̂�𝑁 (0) = 0. Moreover, for 𝑝 ∈ 𝑃𝑁 , we have

|𝑄 (𝒈, 𝑝) ,𝑑 (𝑓𝑁) − 𝐼 (𝑓𝑁) | =

��������
∑︁

𝒉∈Z𝑑\{0}
𝒉 ·𝒈≡0 (mod 𝑝)

�̂�𝑁 (𝒉)

��������
= (𝑟2𝛼,𝜸 ((𝑝, 0, . . . , 0)) |𝑃𝑁 |)−1/2

=

√
𝛾{1}

𝑝𝛼
√︁
|𝑃𝑁 |

≥
√︁
𝛾{1} log 𝑁
2 𝑁𝛼+1/2 ,

where we used |𝑃𝑁 | ≤ 2𝑁
log 𝑁 from [221]. This proves

errran
𝑑,𝛼,𝜸 (𝐴

ran
𝑁,𝑑) ≥

1
|𝑃𝑁 |

∑︁
𝑝∈𝑃𝑁

1
|Z𝑝,𝜂 |

∑︁
𝒈∈Z𝑝,𝜂

|𝑄 (𝒈, 𝑝) ,𝑑 (𝑓𝑁) − 𝐼𝑑 (𝑓𝑁) |

≥
√︁
𝛾{1} log 𝑁
2 𝑁𝛼+1/2 ,

as claimed. □

390 11 Lattice Rules in the Randomized Setting

11.2 Randomized Folded Lattice Rules

Using folded rank-1 lattice rules (see Section 7.3), the result from the previous section
can be extended to the weighted half-period cosine space, as defined in Section 7.2.

From Theorem 7.40 it follows that Theorem 11.3 also applies to the half-period
cosine space. Therefore any generating vector 𝒈 and any 𝑝 ∈ 𝑃𝑁 selected by
Algorithm 11.2 (without any modification) satisfy the worst-case error bound

err𝑝,𝑑 (Hcos,𝑑,𝛼,𝜸,P𝜙 (𝒈, 𝑝)) ≤ ©« 2
(1 − 𝜂)𝑝

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏

,

for any 𝜏 ∈ [1/2, 𝛼), where P𝜙 (𝒈, 𝑝) is as in Chapter 7.
We now consider the randomized error for the weighted half-period cosine space.

Let 𝐴ran,𝜙
𝑁 ,𝑑

be the folded 𝑝-element lattice rule with generating vector 𝒈 obtained by
Algorithm 11.2. We apply this randomized algorithm to functions from Hcos,𝑑,𝛼,𝜸
and study the randomized error

errran
𝑑,𝛼,𝜸 (𝐴

ran,𝜙
𝑁 ,𝑑

) (11.9)

:= sup
𝑓 ∈Hcos,𝑑,𝛼,𝜸
∥ 𝑓 ∥cos,𝑑,𝛼,𝜸≤1

1
|𝑃𝑁 |

∑︁
𝑝∈𝑃𝑁

1
|Z𝑝,𝜂 |

∑︁
𝒈∈Z𝑝,𝜂

|𝑄𝜙(𝒈, 𝑝) ,𝑑 (𝑓) − 𝐼𝑑 (𝑓) |,

where 𝑄𝜙(𝒈, 𝑝) ,𝑑 denotes the folded 𝑝-element lattice rule with generating vector 𝒈.

Theorem 11.6 Let 𝑑, 𝑁 ∈ N, let 𝛼 > 1/2, let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be general weights
with 𝛾𝔲 ∈ [0, 1] for 𝔲 ⊆ [𝑑], and let 𝜂 ∈ (0, 1) be given. Assume that (11.5) holds.
For the randomized and folded algorithm 𝐴

ran,𝜙
𝑁 ,𝑑

obtained by Algorithm 11.2, the
randomized error (11.9) is bounded from above by

errran
𝑑,𝛼,𝜸 (𝐴

ran,𝜙
𝑁 ,𝑑

) ≤
𝐶𝛼,𝜏, 𝛿,𝜂

𝑁 𝜏+1/2−𝛿
©«

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏−𝛿

,

for any 𝜏 ∈ (1/2, 𝛼) and 𝛿 ∈ (0,min(𝜏 − 1/2, 2𝜏/𝛼)), where the positive factor
𝐶𝛼,𝜏, 𝛿,𝜂 depends only on 𝛼, 𝜏, 𝛿, and 𝜂.

Proof For 𝑓 ∈ Hcos,𝑑,𝛼,𝜸 we have

𝑓 (𝜙(𝒙)) =
∑︁

𝔲⊆[𝑑]
2 |𝔲 |/2

∑︁
𝒌𝔲 ∈N|𝔲 |

0

�̃� ((𝒌𝔲 , 0))
∏
𝑗∈𝔲

cos(𝜋𝑘 𝑗𝜙(𝑥 𝑗))

=
∑︁

𝔲⊆[𝑑]
2−|𝔲 |/2

∑︁
𝒌𝔲 ∈N|𝔲 |

0

�̃� ((𝒌𝔲 , 0))
∑︁

𝝈𝔲 ∈{−1,1} |𝔲 |
e2𝜋i(𝝈𝔲∗𝒌𝔲) ·𝒙𝔲

=
∑︁

𝔲⊆[𝑑]
2−|𝔲 |/2

∑︁
𝒌𝔲 ∈Z|𝔲 |

�̃� ((|𝒌𝔲 |, 0)) e2𝜋i𝒌𝔲 ·𝒙𝔲 ,

11.3 A Brief Discussion of Tractability 391

where we used (7.26) to obtain the second equality, which implies that

∥ 𝑓 ∥2
cos,𝑑,𝛼,𝜸 =

∑︁
𝔲⊆[𝑑]

∑︁
𝒌𝔲 ∈N|𝔲 |

𝑟2𝛼,𝜸 (𝒌𝔲) | �̃� ((𝒌𝔲 , 0)) |2

=
∑︁

𝔲⊆[𝑑]

∑︁
𝒌𝔲 ∈(Z\{0}) |𝔲 |

𝑟2𝛼,𝜸 (𝒌𝔲) 2−|𝔲 | | �̃� ((|𝒌𝔲 |, 0)) |2

= ∥ 𝑓 ◦ 𝜙∥2
kor,𝑑,𝛼,𝜸 .

Thus, for any function 𝑓 ∈ Hcos,𝑑,𝛼,𝜸, we have

𝑓 ◦ 𝜙 ∈ Hkor,𝑑,𝛼,𝜸 and ∥ 𝑓 ◦ 𝜙∥kor,𝑑,𝛼,𝜸 = ∥ 𝑓 ∥cos,𝑑,𝛼,𝜸 .

Since
∫
[0,1]𝑑 𝑓 (𝒙) d𝒙 =

∫
[0,1]𝑑 𝑓 (𝜙(𝒙)) d𝒙, we obtain that

errran
𝑑,𝛼,𝜸 (𝐴

ran,𝜙
𝑁 ,𝑑

)

= sup
𝑓 ∈Hcos,𝑑,𝛼,𝜸
∥ 𝑓 ∥cos,𝑑,𝛼,𝜸≤1

1
|𝑃𝑁 |

∑︁
𝑝∈𝑃𝑁

1
|Z𝑝,𝜂 |

∑︁
𝒈∈Z𝑝,𝜂

|𝑄𝜙(𝒈, 𝑝) ,𝑑 (𝑓) − 𝐼𝑑 (𝑓) |

= sup
𝑓 ∈Hcos,𝑑,𝛼,𝜸
∥ 𝑓 ∥cos,𝑑,𝛼,𝜸≤1

1
|𝑃𝑁 |

∑︁
𝑝∈𝑃𝑁

1
|Z𝑝,𝜂 |

∑︁
𝒈∈Z𝑝,𝜂

��𝑄 (𝑝,𝒈) ,𝑑 (𝑓 ◦ 𝜙) − 𝐼𝑑 (𝑓 ◦ 𝜙)
��

≤ sup
𝑔∈Hkor,𝑑,𝛼,𝜸
∥𝑔 ∥kor,𝑑,𝛼,𝜸≤1

1
|𝑃𝑁 |

∑︁
𝑝∈𝑃𝑁

1
|Z𝑝,𝜂 |

∑︁
𝒈∈Z𝑝,𝜂

��𝑄 (𝑝,𝒈) ,𝑑 (𝑔) − 𝐼𝑑 (𝑔)
��

= errran
𝑑,𝛼,𝜸 (𝐴

ran
𝑁,𝑑).

Thus the bound on errran
𝑑,𝛼,𝜸 (𝐴

ran
𝑁,𝑑

) shown in Theorem 11.4 directly applies. □

11.3 A Brief Discussion of Tractability

We would like to give a few comments on tractability in this section. Suppose that
for fixed 𝑑 ∈ N and 𝜀 ∈ (0, 1), we would like to achieve errran

𝑑,𝛼,𝜸 (𝐴
ran
𝑁,𝑑

) ≤ 𝜀. From
Theorem 11.4 we conclude that forHkor,𝑑,𝛼,𝜸 with 𝛼 > 1/2, provided that 𝑁 satisfies
(11.5), it is sufficient to choose 𝑁 such that

𝑁 ≥
𝐶𝛼,𝜏, 𝛿,𝜂,𝜸,𝑑

𝜀1/(𝜏+1/2−𝛿) ,

where

392 11 Lattice Rules in the Randomized Setting

𝐶𝛼,𝜏, 𝛿,𝜂,𝜸,𝑑 = 𝐶
1/(𝜏+1/2−𝛿)
𝛼,𝜏, 𝛿,𝜂

©«
∑︁

∅≠𝔲⊆[𝑑]
𝛾

1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
(𝜏−𝛿)/(𝜏+1/2−𝛿)

,

and where 𝐶𝛼,𝜏, 𝛿,𝜂 is defined as in Theorem 11.4.
Thus, the information complexity 𝑁 ran (𝜀, 𝑑) in the randomized setting, i.e., the

minimal number of function evaluations that are required by any kind of random
algorithm to obtain a randomized error not exceeding the threshold 𝜀, satisfies

𝑁 ran (𝜀, 𝑑) ≤ max ©«
𝐶𝛼,𝜏, 𝛿,𝜂,𝜸,𝑑

𝜀1/(𝜏+1/2−𝛿) , inf
1/2<𝜏<𝛼

4
1 − 𝜂

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝑢 |ª®¬ ,
where the second term in the maximum is due to Condition (11.5).

For the sake of simplicity, we consider product weights 𝛾𝔲 =
∏
𝑗∈𝔲 𝛾 𝑗 for 𝔲 ⊆ [𝑑]

in the following. Then∑︁
𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |
=

𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))
and the latter expression is uniformly bounded in 𝑑 if

∑∞
𝑗=1 𝛾

1/(2𝜏)
𝑗

< ∞. This implies
the following result.

Theorem 11.7 Let 𝛼 > 1/2, let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights with 𝛾 𝑗 ∈ (0, 1] for
𝑗 ∈ N. Let 𝜏0 ≥ 0 be the supremum of the numbers 𝜏 such that

∞∑︁
𝑗=1
𝛾

1/(2𝜏)
𝑗

< ∞.

Then the integration problems in the space Hkor,𝑑,𝛼,𝜸 and in the space Hcos,𝑑,𝛼,𝜸,
respectively, are strongly polynomially tractable in the randomized setting, with the
respective exponents of strong polynomial tractability lying in the interval[

1
𝛼 + 1/2 ,

1
min(𝜏0, 𝛼) + 1/2

]
.

In particular, if 𝜏0 ≥ 𝛼, then the exponent of strong polynomial tractability is
1/(𝛼 + 1/2).

Proof The upper bound on the exponent of strong polynomial tractability follows
from Theorem 11.4, Theorem 11.6, and the discussion preceding Theorem 11.7,
noting that we have 𝜏 < min(𝜏0, 𝛼).

For the lower bound we use a result stating that 𝑁 ran (𝜀, 𝑑) ≥ 𝑁 ran (𝜀, 1) ≥
𝑐 · 𝜀−1/(𝛼+1/2) for some 𝑐 > 0, see, e.g., [205].

The same arguments can also be used for the half-period cosine space and hence
the same result applies. □

11.3 A Brief Discussion of Tractability 393

Notes and Remarks

In this section we have studied the randomized setting instead of the worst-case set-
ting like in the remaining parts of this book. In the randomized setting one considers
randomized algorithms, and, correspondingly, their randomized errors. General in-
formation on the randomized setting can be found in [210, Sections 3.2.7–3.2.8 and
Chapter 7] and in [211, Chapter 17]. The most prominent kind of randomized algo-
rithms are Monte Carlo methods (see Section 1.1), which is sometimes even used as
a synonym for any kind of randomization. The randomized error of Monte Carlo in-
tegration for the weighted Korobov space is studied in [240, Section 5]. In particular,
in [240, Theorem 8] matching necessary and sufficient conditions on product weights
for (strong) polynomial tractability of MC integration in the weighted Korobov space
are provided.

Rather than the MC method, we presented here a kind of randomization that
is especially suited for lattice rules. This randomization technique has first been
introduced and analyzed by Bakhvalov in [7]. We also refer to Bakhvalov’s papers
[6, 9] for general results on randomized algorithms. However, the presentation in
this chapter follows the papers [39, 143].

As in all other parts of this book, the results presented in Section 11.1 are valid
for weighted Korobov spaces with smoothness parameter 𝛼 > 1/2. In [143] also the
more general case of 𝛼 ∈ (0, 1/2] is considered. This case corresponds to spaces
of one-periodic functions whose Fourier series converge almost everywhere but not
necessarily pointwise. The algorithms considered require an additional random shift,
uniformly distributed on [0, 1]𝑑 , like in Chapter 7. For 𝑑, 𝑁 ∈ N with 𝑁 ≥ 2, and
𝑓 ∈ Hkor,𝑑,𝛼,𝜸 with 𝛼 > 0, and product weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 ∈ (0, 1] for
𝑗 ∈ N, define

𝐴ran
𝑁,𝑑 (𝑓) := 𝐴ran

𝑁,𝑑 (𝑓 ({· + 𝚫})).

Then [143, Theorem 11] guarantees the existence of a prime number 𝑝 and a
generating vector 𝒈 such that the root mean square randomized error, where the
“mean” in “root mean square” is considered with respect to all random shifts 𝚫 ∈
[0, 1]𝑑 , satisfies for any 𝜏 ∈ (0, 𝛼) and any 𝑁 ∈ N, 𝑁 ≥ 2, the upper bound

errrms
𝑑,𝛼,𝜸 (𝐴

ran
𝑁,𝑑) ≤

𝐶𝛼,𝛿,𝜏

𝑁 𝜏+1/2−𝛿

𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

)) 𝜏
for arbitrary 𝛿 ∈ (0, 𝜏min(1/(2𝛼), 1)), where the factor 𝐶𝛼,𝛿,𝜏 only depends on
𝛼, 𝛿, and 𝜏. For details see [143, Section 3.2].

In the same context, but using randomly shifted and dilated lattice point sets,
Ullrich [253] was able to prove optimal convergence rates. The algorithm employed
was introduced by Krieg and Novak in [142] and is based on the deterministic
cubature rule of Frolov [75] (see also [252]).

394 11 Lattice Rules in the Randomized Setting

In Theorem 11.7 we have presented a characterization of strong polynomial
tractability of integration in the Korobov space in the randomized setting. With the
usual methods, it is possible to also analyze other tractability notions, under modified
summability assumptions on the weights.

The paper [85] by Goda and L’Ecuyer uses a new approach based on the median
of the estimator of several lattice rules to approximate the integral of a function in a
Korobov space or Sobolev space.

Chapter 12
Stability of Lattice Rules

We have seen in Chapters 3 and 4 that the component-by-component construction
can identify generating vectors of lattice rules which yield almost the optimal rate of
convergence of the worst-case error for a given weighted function space with given
weights. One drawback of this approach is that the constructed generating vector is
specific to the given function space parameters like smoothness and weights. Hence
one question which arises naturally is: What happens if we construct a generating
vector with respect to a given set of parameters, but then use it for a space with
different parameters? Do we still get a fast rate of convergence? In other words, we
ask whether lattice rules are stable with respect to a change of parameters. In the
following we provide some results in this direction.

12.1 A Stability Result

Theorem 3.9 implies that one can use a CBC construction, for 𝑑, 𝑁 ∈ N, to find a
generating vector 𝒈 ∈ 𝐺𝜑

𝑑
(𝑁) such that we have

err𝑁,𝑑,𝛼,𝜸 (𝒈) ≤ ©« 1
𝜑(𝑁)

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏

for any 𝜏 ∈ [1/2, 𝛼).
Since the CBC construction uses a quality criterion which depends on the param-

eters 𝛼 and 𝜸, it follows that this bound holds only for these specific 𝛼 and 𝜸. But
what if we change 𝛼 and/or 𝜸 but keep the same generating vector? Does a similar
result still hold?

One way to obtain a result in this direction is by using Jensen’s inequality, stated
in Lemma 2.25, which implies that, for any 𝛿 ∈ (0, 1], we have

395© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_12&domain=pdf

396 12 Stability of Lattice Rules

[err𝑁,𝑑,𝛼/𝛿,𝜸1/𝛿 (𝒈)]2𝛿 =
©«

∑︁
𝒉∈L⊥ (𝒈,𝑁)\{0}

1
𝑟2𝛼/𝛿,𝜸1/𝛿 (𝒉)

ª®¬
𝛿

≤
∑︁

𝒉∈L⊥ (𝒈,𝑁)\{0}

1
(𝑟2𝛼/𝛿,𝜸1/𝛿 (𝒉)) 𝛿

=
∑︁

𝒉∈L⊥ (𝒈,𝑁)\{0}

1
𝑟2𝛼,𝜸 (𝒉)

= [err𝑁,𝑑,𝛼,𝜸 (𝒈)]2.

Thus a generating vector 𝒈 that is constructed based on the criterion err𝑁,𝑑,𝛼,𝜸,
i.e., the worst-case error in the weighted Korobov space Hkor,𝑑,𝛼,𝜸, satisfies, for any
𝛿 ∈ (0, 1], the following bound on the worst-case error in Hkor,𝑑,𝛼/𝛿,𝜸1/𝛿 ,

err𝑁,𝑑,𝛼/𝛿,𝜸1/𝛿 (𝒈) ≤ ©« 1
𝜑(𝑁)

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏/𝛿

for 𝜏 ∈ [1/2, 𝛼). From this result it follows that if we construct a generating vector
𝒈 for a given smoothness 𝛼, then we can obtain the almost optimal convergence rate
of the integration error for numerical integration using a lattice rule with the same
generating vector 𝒈 in a Korobov space for any smoothness 𝛽 ≥ 𝛼. This approach
does not yield any result for Korobov spaces with smoothness 𝛽 < 𝛼. Also the set
of weights is restricted to the case 𝜸1/𝛿 . It is, however, possible to achieve a much
more general result, stated in the following theorem.

Theorem 12.1 Let 𝑑, 𝑁 ∈ N and 𝒈 ∈ 𝐺
𝜑

𝑑
(𝑁). For any 𝛼, 𝛼′ > 1/2 and sets of

positive weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] , 𝜸′ = {𝛾′𝔲}𝔲⊆[𝑑] such that 𝛾𝔳 ≥ 𝛾𝔲 > 0 whenever
𝔳 ⊆ 𝔲, we have

err𝑁,𝑑,𝛼′,𝜸′ (𝒈)

≤ [err𝑁,𝑑,𝛼,𝜸 (𝒈)]𝛼
′/𝛼 ©«𝑐𝛼′

∑︁
∅≠𝔲⊆[𝑑]

𝛾′𝔲

𝛾
𝛼′/𝛼
𝔲

(
22𝛼′+1

22𝛼′−1 − 1

) |𝔲 |
(log2 𝑁) |𝔲 |−1ª®¬

1/2

,

where log2 denotes the logarithm in base 2, and where

𝑐𝛼′ := 1 + 𝜁 (2𝛼′) + (22𝛼′ + 𝜁 (2𝛼′)) 22𝛼′−1 − 1
24𝛼′ . (12.1)

Before we give the proof of Theorem 12.1, we outline some of its consequences.

Let 𝒈 be the generating vector constructed by the CBC algorithm based on the
criterion err𝑁,𝑑,𝛼,𝜸 for given 𝛼 > 1/2 and given 𝜸 such that 𝛾𝔳 ≥ 𝛾𝔲 > 0 whenever
𝔳 ⊆ 𝔲. Applying Theorems 3.9 and 12.1 shows that, for any 𝛼′ > 1/2 and any
positive weights 𝜸′, we have

12.1 A Stability Result 397

[err𝑁,𝑑,𝛼′,𝜸′ (𝒈)]2 ≤ 𝑐𝛼′
©« 1
𝜑(𝑁)

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏𝛼′/𝛼

×
∑︁

∅≠𝔲⊆[𝑑]

𝛾′𝔲

𝛾
𝛼′/𝛼
𝔲

(
22𝛼′+1

22𝛼′−1 − 1

) |𝔲 |
(log2 𝑁) |𝔲 |−1 (12.2)

for any 𝜏 ∈ [1/2, 𝛼). As 𝜏 can be arbitrarily close to 𝛼, the exponent 𝜏𝛼′/𝛼 can
be arbitrarily close to 𝛼′. Furthermore, for arbitrarily small but positive 𝛿, the term
(log2 𝑁) |𝔲 | can be bounded by 𝐶𝛿𝑁 𝛿 , for some factor 𝐶𝛿 > 0 depending only on
𝛿 and |𝔲 |. Consequently, the overall convergence rate can be arbitrarily close to 𝛼′,
which is almost best possible.

Under suitable conditions on the weights 𝜸 and 𝜸′ we can show that the worst-case
error err𝑁,𝑑,𝛼′,𝜸′ (𝒈) depends only polynomially on the dimension 𝑑, or even that the
bound is completely independent of the dimension.
Corollary 12.2 Let 𝑑, 𝑁 ∈ N, let 𝛼, 𝛼′ > 1/2, and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] , 𝜸′ =

{𝛾′𝔲}𝔲⊆[𝑑] be positive weights such that 𝛾𝔳 ≥ 𝛾𝔲 > 0 whenever 𝔳 ⊆ 𝔲. Assume
that 𝒈 ∈ 𝐺

𝜑

𝑑
(𝑁) has been constructed by Algorithm 3.6 based on the criterion

err𝑁,𝑑,𝛼,𝜸. Then the following assertions hold true.
1. For general weights 𝜸 and 𝜸′ satisfying the above condition, assume that there

exist 𝜏, 𝛿, 𝑞, 𝑞′ ≥ 0 such that for 𝜏 ∈ [1/2, 𝛼) and 𝛿 ∈ (0, 𝜏𝛼′/(2𝛼)),

sup
𝑑∈N

1
𝑑2𝑞

∑︁
∅≠𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |
< ∞,

and

sup
𝑑,𝑁 ∈N

1
𝑑2𝑞′𝑁2𝛿

∑︁
∅≠𝔲⊆[𝑑]

𝛾′𝔲

𝛾
𝛼′/𝛼
𝔲

(
22𝛼′+1

22𝛼′−1 − 1

) |𝔲 |
(log2 𝑁) |𝔲 |−1 < ∞.

Then the worst-case error err𝑁,𝑑,𝛼′,𝜸′ (𝒈) depends at most polynomially on 𝑑 and
is bounded by

err𝑁,𝑑,𝛼′,𝜸′ (𝒈) ≤ 𝐶𝜸,𝜸′,𝛼,𝛼′,𝑞,𝑞′,𝜏, 𝛿 𝑑
𝜏𝑞𝛼′/𝛼+𝑞′ 𝑁 𝛿

𝜑(𝑁)𝜏𝛼′/(2𝛼) ,

for some quantity 𝐶𝜸,𝜸′,𝛼,𝛼′,𝑞,𝑞′,𝜏, 𝛿 > 0, which depends on the parameters
𝜸, 𝜸′, 𝛼, 𝛼′, 𝑞, 𝑞′, 𝜏, and 𝛿, but is independent of 𝑑 and 𝑁 . If the above con-
ditions hold for 𝑞 = 𝑞′ = 0, the worst-case error err𝑁,𝑑,𝛼′,𝜸′ (𝒈) is bounded
independently of 𝑑.

2. In particular, in the case of product weights 𝜸 and 𝜸′, assume the existence of
𝜏 ∈ [1/2, 𝛼) such that

∞∑︁
𝑗=1
𝛾

1/(2𝜏)
𝑗

< ∞ and
∞∑︁
𝑗=1

𝛾′
𝑗

𝛾
𝛼′/𝛼
𝑗

< ∞. (12.3)

398 12 Stability of Lattice Rules

Then the worst-case error err𝑁,𝑑,𝛼′,𝜸′ (𝒈) can be bounded independently of 𝑑 by

err𝑁,𝑑,𝛼′,𝜸′ (𝒈) ≤ 𝐶𝜸,𝜸′,𝛼,𝛼′,𝜏, 𝛿
𝑁 𝛿

(𝜑(𝑁))𝜏𝛼′/(2𝛼) ,

for arbitrarily small 𝛿 > 0, where the factor 𝐶𝜸,𝜸′,𝛼,𝛼′,𝜏, 𝛿 > 0 depends on
𝜸, 𝜸′, 𝛼, 𝛼′, 𝜏, and 𝛿, but is independent of 𝑑 and 𝑁 .

Proof The first item immediately follows from the bound (12.2). The second item
can be shown using the bound (12.2) and Lemma 3.20. □

One of the most important consequences of the first item of Corollary 12.2 is that
by choosing 𝜸 of product form such that the required conditions are satisfied, the fast
implementation of the CBC algorithm (see Algorithm 3.6 and Section 3.4) returns a
lattice rule in O(𝑑𝑁 log 𝑁) arithmetic operations with O(𝑁) memory, which yields
the almost optimal rate of convergence inHkor,𝑑,𝛼′,𝜸′ with good tractability properties
even for general weights 𝜸′.

We illustrate the conditions for tractability for product weights in the following
example.

Example 12.3 Assume that both 𝜸 and 𝜸′ are product weights, and that 𝛾 𝑗 = 𝑗−𝑟

for some 𝑟 > 1, for 𝑗 ∈ N. Then

∞∑︁
𝑗=1
𝛾

1/(2𝜏)
𝑗

=

∞∑︁
𝑗=1

1
𝑗𝑟/(2𝜏)

< ∞

holds for any 𝜏 ∈ [1/2, 𝑟/2). Hence we can choose 𝜏 ∈ [1/2,min(𝛼, 𝑟/2)) to obtain
a bound on err𝑁,𝑑,𝛼,𝜸 (𝒈) which is independent of the dimension. Considering the
special case 𝑟 = 2𝛼 the second necessary condition on the weights in the second
item of Corollary 12.2 reads

∞∑︁
𝑗=1

𝛾′
𝑗

𝛾
𝛼′/𝛼
𝑗

=

∞∑︁
𝑗=1

𝑗𝑟 𝛼
′/𝛼𝛾′𝑗 =

∞∑︁
𝑗=1

𝑗2𝛼
′
𝛾′𝑗 < ∞.

This is guaranteed, e.g., with 𝛾′
𝑗
= 𝑗−2𝛼′−1−𝜀 for some 𝜀 > 0 for 𝑗 ∈ N. In these

instances we obtain an error bound for err𝑁,𝑑,𝛼,𝜸′ (𝒈) that is independent of the
dimension. On the other hand, if we were to directly construct a lattice rule using
err𝑁,𝑑,𝛼,𝜸′ (𝒈), then

∑∞
𝑗=1 𝛾

′1/(2𝛼′)
𝑗

< ∞would be sufficient. This condition is weaker
as, for instance, 𝛾′

𝑗
= 𝑗−2𝛼′−𝜀 for some 𝜀 > 0, for 𝑗 ∈ N, is sufficient to guarantee a

bound independent of the dimension.

The proof of Theorem 12.1

In the proof of Theorem 12.1, we shall use the following elementary inequality.

12.1 A Stability Result 399

Lemma 12.4 For any real 𝑏 > 1 and any 𝑘, 𝑡0 ∈ N, we have

∞∑︁
𝑡=𝑡0

𝑏−𝑡
(
𝑡 + 𝑘 − 1
𝑘 − 1

)
≤ 𝑏−𝑡0

(
𝑡0 + 𝑘 − 1
𝑘 − 1

) (
1 − 1

𝑏

)−𝑘
.

Proof By the binomial theorem we have

∞∑︁
𝑡=𝑡0

𝑏−𝑡
(
𝑡 − 𝑡0 + 𝑘 − 1

𝑘 − 1

)
= 𝑏−𝑡0

(
1 − 1

𝑏

)−𝑘
.

The result then follows from the inequality(
𝑡 + 𝑘 − 1
𝑘 − 1

)/(
𝑡 − 𝑡0 + 𝑘 − 1

𝑘 − 1

)
=

(𝑡 + 𝑘 − 1) (𝑡 + 𝑘 − 2) · · · (𝑡 − 𝑡0 + 𝑘)
𝑡 (𝑡 − 1) · · · (𝑡 − 𝑡0 + 1)

≤
(
𝑡0 + 𝑘 − 1
𝑘 − 1

)
. □

We are now ready to give the proof of Theorem 12.1.

Proof of Theorem 12.1 We prove the stability result using a weighted higher order
version of the Zaremba index that was in its original form introduced in Defini-
tion 1.51. Set

𝜌𝛼,𝜸 (𝒈, 𝑁) := min
𝒉∈L⊥ (𝒈,𝑁)\{0}

𝑟2𝛼,𝜸 (𝒉).

Note that 1/𝜌𝛼,𝜸 (𝒈, 𝑁) is the largest term in the worst-case error expression

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 =
∑︁

𝒉∈L⊥ (𝒈,𝑁)\{0}

1
𝑟2𝛼,𝜸 (𝒉)

,

which implies
1

𝜌𝛼,𝜸 (𝒈, 𝑁)
≤ [err𝑁,𝑑,𝛼,𝜸 (𝒈)]2. (12.4)

Moreover, we define

�̃�𝔲 (𝒈, 𝑁) := min
𝒉𝔲 ∈L⊥

𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

|ℎ 𝑗 |,

where we recall the notation

L⊥
𝔲 (𝒈, 𝑁) := {𝒉𝔲 ∈ (Z \ {0}) |𝔲 | : 𝒉𝔲 · 𝒈𝔲 ≡ 0 (mod 𝑁)}

from (4.5). Then we can represent 𝜌𝛼,𝜸 (𝒈, 𝑁) in terms of �̃�𝔲 (𝒈, 𝑁) in the following
way,

400 12 Stability of Lattice Rules

𝜌𝛼,𝜸 (𝒈, 𝑁) = min
∅≠𝔲⊆[𝑑]

1
𝛾𝔲

min
𝒉𝔲 ∈L⊥

𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

|ℎ 𝑗 |2𝛼 = min
∅≠𝔲⊆[𝑑]

1
𝛾𝔲

(�̃�𝔲 (𝒈, 𝑁))2𝛼 .

Therefore, it holds for any nonempty subset 𝔲 of [𝑑] that

�̃�𝔲 (𝒈, 𝑁) ≥
(
𝛾𝔲 𝜌𝛼,𝜸 (𝒈, 𝑁)

)1/(2𝛼)
.

Now, recall the definition of the unweighted Zaremba index from Definition 1.51,
which is, for 𝒈𝔲 , given by

𝜌(𝒈𝔲 , 𝑁) = min
𝒉𝔲 ∈Z|𝔲 |\{0}

𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

∏
𝑗∈𝔲

max(1, |ℎ 𝑗 |).

As mentioned in Section 1.8 it is a classical result that 𝜌(𝒈𝔲 , 𝑁) ≤ 𝑁/2 (see [199,
Lemma 5.8]). Then, by assuming 𝛾𝔳 ≥ 𝛾𝔲 whenever 𝔳 ⊆ 𝔲, we obtain a lower bound,

𝜌(𝒈𝔲 , 𝑁) = min
∅≠𝔳⊆𝔲

�̃�𝔳 (𝒈, 𝑁)

≥ min
∅≠𝔳⊆𝔲

(
𝛾𝔳 𝜌𝛼,𝜸 (𝒈, 𝑁)

)1/(2𝛼)

=
(
𝛾𝔲 𝜌𝛼,𝜸 (𝒈, 𝑁)

)1/(2𝛼)
. (12.5)

Next, we consider the worst-case error in Hkor,𝑑,𝛼′,𝜸′ . According to Theorem 2.19
we have

[err𝑁,𝑑,𝛼′,𝜸′ (𝒈)]2 =
∑︁

∅≠𝔲⊆[𝑑]
𝛾′𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |2𝛼′ . (12.6)

For a nonempty subset 𝔲 of [𝑑], we denote by 𝜇𝔲 the largest nonnegative integer
such that 2𝜇𝔲 < 𝜌(𝒈𝔲 , 𝑁) holds. It follows from the proof of [199, Theorem 5.34]
(see the bound on 𝑆1 (d) in Equation (5.46) on p. 134 and the bound on 𝑆2 (d) on
p. 135 in that reference) that the inner sum in (12.6) for a given 𝔲 with |𝔲 | ≥ 2 is
bounded from above by∑︁

𝒉𝔲 ∈L⊥
𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |2𝛼′ ≤

∑︁
𝒉𝔲 ∈Z|𝔲 |\{0}

𝒉𝔲 ·𝒈𝔲≡0 (mod 𝑁)

∏
𝑗∈𝔲

1
max(1, |ℎ 𝑗 |)2𝛼′

≤ 2 |𝔲 |

(𝜌(𝒈𝔲 , 𝑁))2𝛼′

(
(1 + 𝜁 (2𝛼′))

(
𝜇𝔲 + |𝔲 | − 1

|𝔲 | − 1

)
+(22𝛼′ + 𝜁 (2𝛼′))

∞∑︁
𝑘=1

2(1−2𝛼′)𝑘
(
𝑘 + 𝜇𝔲 + |𝔲 | − 2

|𝔲 | − 2

))
.

(12.7)

12.1 A Stability Result 401

For the first term in the parentheses on the right-hand side of (12.7), we have(
𝜇𝔲 + |𝔲 | − 1

|𝔲 | − 1

)
=

|𝔲 |−1∏
𝑖=1

𝜇𝔲 + 𝑖
𝑖

≤ (𝜇𝔲 + 1) |𝔲 |−1.

For the second term in the parentheses on the right-hand side of (12.7), Lemma 12.4
with 𝑡0 = 𝜇𝔲 + 1, 𝑘 = |𝔲 | − 1, and 𝑏 = 22𝛼′−1 gives

∞∑︁
𝑘=1

2(1−2𝛼′)𝑘
(
𝑘 + 𝜇𝔲 + |𝔲 | − 2

|𝔲 | − 2

)
= 2(2𝛼′−1)𝜇𝔲

∞∑︁
𝑘=𝜇𝔲+1

2−(2𝛼
′−1)𝑘

(
𝑘 + |𝔲 | − 2
|𝔲 | − 2

)
≤ 2−(2𝛼

′−1)
(
𝜇𝔲 + |𝔲 | − 1

|𝔲 | − 2

) (
22𝛼′−1

22𝛼′−1 − 1

) |𝔲 |−1

=
22𝛼′−1 − 1

24𝛼′−2

(
22𝛼′−1

22𝛼′−1 − 1

) |𝔲 | |𝔲 |−2∏
𝑖=1

𝜇𝔲 + 𝑖 + 1
𝑖

≤ 22𝛼′−1 − 1
24𝛼′−2

(
22𝛼′−1

22𝛼′−1 − 1

) |𝔲 |
(𝜇𝔲 + 2) |𝔲 |−2

≤ 22𝛼′−1 − 1
24𝛼′

(
22𝛼′

22𝛼′−1 − 1

) |𝔲 |
(𝜇𝔲 + 1) |𝔲 |−2.

Using these bounds, we obtain∑︁
𝒉𝔲 ∈L⊥

𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |2𝛼′

≤ 2 |𝔲 |

(𝜌(𝒈𝔲 , 𝑁))2𝛼′

(
(1 + 𝜁 (2𝛼′)) (𝜇𝔲 + 1) |𝔲 |−1

+ (22𝛼′ + 𝜁 (2𝛼′)) 22𝛼′−1 − 1
24𝛼′

(
22𝛼′

22𝛼′−1 − 1

) |𝔲 |
(𝜇𝔲 + 1) |𝔲 |−2

)
≤ 𝑐𝛼′

(
22𝛼′+1

22𝛼′−1 − 1

) |𝔲 | (𝜇𝔲 + 1) |𝔲 |−1

(𝜌(𝒈𝔲 , 𝑁))2𝛼′ ,

with 𝑐𝛼′ given in (12.1). Note that this bound on the inner sum in the formula (12.6)
for err𝑁,𝑑,𝛼′,𝜸′ (𝒈) also applies to the case |𝔲 | = 1.

From 2𝜇𝔲 < 𝜌(𝒈𝔲 , 𝑁) ≤ 𝑁/2 we directly obtain 𝜇𝔲 ≤ log2 𝑁 − 1. Using this fact
and the lower bound (12.5) we can bound the square of err𝑁,𝑑,𝛼′,𝜸′ (𝒈) as

[err𝑁,𝑑,𝛼′,𝜸′ (𝒈)]2

≤ 𝑐𝛼′

(𝜌𝛼,𝜸 (𝒈, 𝑁))𝛼′/𝛼

∑︁
∅≠𝔲⊆[𝑑]

𝛾′𝔲

𝛾
𝛼′/𝛼
𝔲

(
22𝛼′+1

22𝛼′−1 − 1

) |𝔲 |
(log2 𝑁) |𝔲 |−1.

402 12 Stability of Lattice Rules

Applying (12.4) and taking the square root gives the desired result. □

An approach for fixed smoothness but different product weight sequences

We present some further considerations for product weights. Assume we have sets of
product weights 𝜸 (𝑖) = (𝛾 (𝑖)

𝑗
) 𝑗≥1 for 𝑖 ∈ I, where I is a given index set, satisfying

the usual condition 𝛾 (𝑖)1 ≥ 𝛾
(𝑖)
2 ≥ · · · > 0 for every 𝑖 ∈ I. Consider numerical

integration in the weighted Korobov spaces Hkor,𝑑,𝛼,𝜸 (𝑖) for 𝑖 ∈ I. This means that
we consider various Korobov spaces with the same smoothness parameter 𝛼 but
with different weight sequences. If we aim at finding a universal rank-1 lattice rule
which guarantees for each of these spaces an error bound that is independent of the
dimension, it is obviously necessary to claim that

∞∑︁
𝑗=1
𝛾
(𝑖)
𝑗
< ∞ for all 𝑖 ∈ I.

Let now, for 𝑗 ∈ N,
𝜈 𝑗 := sup

𝑖∈I
𝛾
(𝑖)
𝑗

and 𝝂 = (𝜈 𝑗) 𝑗≥1. Now we assume that also the weights 𝜈 𝑗 are summable, i.e.,∑∞
𝑗=1 𝜈 𝑗 < ∞. Then construct, e.g., by means of Algorithm 3.6 with a prime 𝑁 , a

lattice point 𝒈 with respect to the quality measure err𝑁,𝑑,𝛼,𝝂 , i.e., the worst-case
error in Hkor,𝑑,𝛼,𝝂 . As a result we obtain from Theorem 3.7 that

err𝑁,𝑑,𝛼,𝜸 (𝑖) (𝒈) ≤ err𝑁,𝑑,𝛼,𝝂 (𝒈) ≤
2𝜏

𝑁 𝜏

𝑑∏
𝑗=1

(
1 + 2𝜈1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

)) 𝜏
for any 𝜏 ∈ [1/2, 𝛼) and any 𝑖 ∈ I. If

∑∞
𝑗=1 𝜈

1/(2𝜏)
𝑗

< ∞ for some 𝜏 ∈ [1/2, 𝛼), then
the above product with this 𝜏 can be bounded uniformly in 𝑑, i.e.,

𝑑∏
𝑗=1

(
1 + 2𝜈1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

)) 𝜏
≤

∞∏
𝑗=1

(
1 + 2𝜈1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

)) 𝜏
=: 𝐶𝝂,𝜏,𝛼 < ∞

and therefore
err𝑁,𝑑,𝛼,𝜸 (𝑖) (𝒈) ≤

2𝜏𝐶𝝂,𝜏,𝛼

𝑁 𝜏
for all 𝑖 ∈ I.

As simple as this method is, it is applicable for specific weights that are not
covered by Corollary 12.2.

Example 12.5 Assume we are given the two weight sequences 𝜸 = (𝑗−2) 𝑗≥1 and
𝜸′ = (𝑗−3) 𝑗≥1. Then it is clear that

12.2 The CBC Algorithm With Respect to More Than One Criterion 403

𝜈 𝑗 = sup{ 𝑗−2, 𝑗−3} = 𝑗−2 and
∞∑︁
𝑗=1
𝜈 𝑗 < ∞

and, according to the above considerations we can find a generating vector 𝒈 that
yields a bound on the worst-case error in both weighted Korobov spaces with weights
𝜸 and 𝜸′, respectively, that is uniformly bounded in the dimension 𝑑. However, it is
not possible to deduce this result from Corollary 12.2 since there the condition

∞∑︁
𝑗=1

𝛾′
𝑗

𝛾 𝑗
< ∞

in (12.3) is violated, as
∞∑︁
𝑗=1

𝛾′
𝑗

𝛾 𝑗
=

∞∑︁
𝑗=1

1
𝑗
= ∞.

(Interchanging the role of 𝛾 𝑗 and 𝛾′
𝑗

would make the situation even worse.)

12.2 The CBC Algorithm With Respect to More Than One
Criterion

In this section, we would like to outline the principle ideas behind a CBC construction
with more than one criterion, which are based on the following two observations,
the second of which we already encountered in Remark 6.6.

(a) Consider Step (2) of the CBC algorithm (Algorithm 3.5). There we choose
𝑔𝑠+1 which minimizes the error criterion. However, we will explain below that
actually most choices of 𝑔𝑠+1 are not too far off the best possible choice and give
a reasonably good result.

(b) Let 𝑋 be a finite set and let 𝐴, 𝐵 ⊆ 𝑋 . If |𝐴|, |𝐵 | > |𝑋 |/2, then 𝐴 ∩ 𝐵 ≠ ∅,
i.e., if we have two subsets of a finite set, each of which has more than |𝑋 |/2
elements, then the intersection of 𝐴 and 𝐵 is nonempty. This principle can of
course be generalized, for instance, if 𝐴, 𝐵, 𝐶 ⊆ 𝑋 with |𝐴|, |𝐵 |, |𝐶 | > 2|𝑋 |/3,
then 𝐴 ∩ 𝐵 ∩ 𝐶 ≠ ∅.

Compare (a) and (b) with the underlying idea for constructing extensible lattice rules
as outlined in Remark 6.6. The main difference here is that we apply this idea to
different sets of weights, rather than different numbers of points.

Using these considerations, we can, e.g., employ a CBC algorithm to find a
generating vector 𝒈 such that both err𝑁,𝑑,𝛼,𝜸 (𝒈) and err𝑁,𝑑,𝛼,𝜸′ (𝒈) are small for
two sets of weights 𝜸 and 𝜸′, respectively. Thus, this generating vector works well
with respect to 𝜸 and 𝜸′ simultaneously. In fact, we can say even a bit more. If there
are, for 𝜏 ∈ [1/2, 𝛼), 𝐵𝜏 and 𝐵′

𝜏 , such that

404 12 Stability of Lattice Rules

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]1/𝜏 ≤
∑︁

∅≠𝔲⊆[𝑑]
𝛾

1/(2𝜏)
𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |𝛼/𝜏

≤ 𝐵𝜏 ,

[err𝑁,𝑑,𝛼,𝜸′ (𝒈)]1/𝜏 ≤
∑︁

∅≠𝔲⊆[𝑑]
(𝛾′𝔲)1/(2𝜏)

∑︁
𝒉𝔲 ∈L⊥

𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |𝛼/𝜏

≤ 𝐵′
𝜏 ,

where the first inequalities in both of the previous lines follow from an application of
Jensen’s inequality (Lemma 2.25) to the respective error formulas in Remark 2.22,
then for any 𝜅, 𝜅′ ≥ 0, not both of them zero, we have

[err𝑁,𝑑,𝛼,𝜅𝜸+𝜅′𝜸′ (𝒈)]1/𝜏

≤
∑︁

∅≠𝔲⊆[𝑑]
(𝜅𝛾𝔲 + 𝜅′𝛾′𝔲)1/(2𝜏)

∑︁
𝒉𝔲 ∈L⊥

𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |𝛼/𝜏

≤
∑︁

∅≠𝔲⊆[𝑑]
((𝜅𝛾𝔲)1/(2𝜏) + (𝜅′𝛾′𝔲)1/(2𝜏))

∑︁
𝒉𝔲 ∈L⊥

𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |𝛼/𝜏

≤ 𝜅1/(2𝜏)𝐵𝜏 + (𝜅′)1/(2𝜏)𝐵′
𝜏 . (12.8)

I.e., if we have a small worst-case error with respect to two sets of weights 𝜸 and 𝜸′,
then the worst-case error with respect to certain linear combinations of those sets of
weights is also small.

Item (a) of our preliminary observations above actually follows from the proof
of Theorem 11.3. There it is shown that for an arbitrary prime number 𝑁 and
any 𝜂 ∈ (0, 1), in each step corresponding to 𝑠 ∈ [𝑑] of Algorithm 11.2, at least
⌈𝜂(𝑁 − 1)⌉ choices of 𝑔 ∈ [𝑁 − 1] satisfy the bound

err𝑁,𝑠+1,𝛼,𝜸 ((𝑔1, 𝑔2, . . . , 𝑔𝑠 , 𝑔)) ≤ ©« 2
(1 − 𝜂)𝑁

∑︁
∅≠𝔲⊆[𝑠+1]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏

,

for any 𝜏 ∈ [1/2, 𝛼), where each 𝑔 𝑗 , 𝑗 ∈ [𝑠], has been chosen as one of the “best”
⌈𝜂(𝑁 − 1)⌉ components in one of the previous steps. Actually, using the notation
of Algorithm 11.2, we obtain this result by making the fixed choice 𝑝 = 𝑁 in that
algorithm, and not selecting 𝑝 ∈ 𝑃𝑁 at random. In fact, we can set 𝑔1 = 1, as we
have also done in Algorithm 11.2. So, we can use the following CBC algorithm. For
simplicity we again assume that 𝑁 is a prime number, but a similar result could also
be derived for composite 𝑁 .

Algorithm 12.6 (CBC construction principle with two quality criteria) Let prime
𝑁 , 𝑑 ∈ N, two sets of weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] and 𝜸′ = {𝛾′𝔲}𝔲⊆[𝑑] , and 𝜂 ∈ (1/2, 1)
be given. Construct a generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺𝜑𝑑 (𝑁) as follows.

(1) Set 𝑔1 = 1.
(2) For 𝑠 from 1 to 𝑑 − 1:

Assume that 𝑔1, . . . , 𝑔𝑠 ∈ [𝑁 − 1] have already been found. Consider them as
fixed and choose 𝑔𝑠+1 from the set G𝜸 ∩ G𝜸′ , where, for 𝝂 ∈ {𝜸, 𝜸′},

12.2 The CBC Algorithm With Respect to More Than One Criterion 405

G𝝂 = {𝔤 (𝝂)1 , 𝔤
(𝝂)
2 , . . . , 𝔤

(𝝂)
⌈𝜂 (𝑁−1) ⌉} ⊆ [𝑁 − 1],

such that

err𝑁,𝑠+1,𝛼,𝝂 (𝑔1, . . . , 𝑔𝑠 , 𝔤
(𝝂)
1)

≤ err𝑁,𝑠+1,𝛼,𝝂 (𝑔1, . . . , 𝑔𝑠 , 𝔤
(𝝂)
2)

...

≤ err𝑁,𝑠+1,𝛼,𝝂 (𝑔1, . . . , 𝑔𝑠 , 𝔤
(𝝂)
⌈𝜂 (𝑁−1) ⌉)

≤ err𝑁,𝑠+1,𝛼,𝝂 (𝑔1, . . . , 𝑔𝑠 , 𝑔) for all 𝑔 ∈ [𝑁 − 1] \ {𝔤 (𝝂)1 , . . . , 𝔤
(𝝂)
⌈𝜂 (𝑁−1) ⌉}.

If the error criterion has the same minimal value for several distinct elements in
one step of the algorithm, it is allowed to choose any of them.
End for.

(3) Set 𝒈 = (𝑔1, . . . , 𝑔𝑑).

We have the following theorem.

Theorem 12.7 Let 𝑁 be a prime number, let 𝑑 ∈ N, and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] and
𝜸′ = {𝛾′𝔲}𝔲⊆[𝑑] be weights. Assume that 𝒈 = (𝑔1, 𝑔2, . . . , 𝑔𝑑) has been found by
Algorithm 12.6 for some 𝜂 ∈ (1/2, 1). Then, for any 𝑠 ∈ [𝑑] and any 𝜏 ∈ [1/2, 𝛼),
we have

err𝑁,𝑠,𝛼,𝜸 ((𝑔1, 𝑔2, . . . , 𝑔𝑠)) ≤
©« 2
(1 − 𝜂)𝑁

∑︁
∅≠𝔲⊆[𝑠]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏

and

err𝑁,𝑠,𝛼,𝜸′ ((𝑔1, 𝑔2, . . . , 𝑔𝑠)) ≤ ©« 2
(1 − 𝜂)𝑁

∑︁
∅≠𝔲⊆[𝑠]

(𝛾′𝔲)1/(2𝜏)
(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏

.

Algorithm 12.6 and Theorem 12.7 can be generalized to 𝑘 ≥ 2 criteria. In this
case we need to ensure that 𝑘 (1 − 𝜂) < 1, that is, 1 − 1/𝑘 < 𝜂 < 1. More generally,
we can choose a different value 𝜂𝑖 instead of 𝜂 for each criterion 𝑖 ∈ [𝑘]. In this case
the condition

∑𝑘
𝑖=1 (1 − 𝜂𝑖) < 1 ensures that there is a generating vector satisfying

all 𝑘 conditions simultaneously.

406 12 Stability of Lattice Rules

12.3 Random Weights

Another approach to obtaining results for sets of weights different from the set of
weights used in the common CBC algorithm (Algorithm 3.5), is to assume that
the weights {𝛾𝔲}𝔲⊆[𝑑] are random variables. Assume that the random variables 𝛾𝔲
for 𝔲 ⊆ [𝑑] (on some underlying probability space (Ω, F , P)) have the following
properties.
• 𝛾∅ = 1, and 𝛾𝔲 ≥ 0 for 𝔲 ≠ ∅;
• 𝛾𝔲 := E[𝛾𝔲] > 0;
• E[𝛾𝔲𝛾𝔳] = E[𝛾𝔲] E[𝛾𝔳] for 𝔲 ≠ 𝔳;
• 𝜎2

𝔲 := Var[𝛾𝔲] < ∞ for 𝔲 ≠ ∅.
In this setup, the squared worst-case error is now a random variable,

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 =
∑︁

𝒉∈L⊥ (𝒈,𝑁)\{0}

1
𝑟2𝛼,𝜸 (𝒉)

=
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |2𝛼

,

(see Remark 2.22 for the second identity), and the expected value of the squared
worst-case error is

E
[
[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2] =

∑︁
∅≠𝔲⊆[𝑑]

E[𝛾𝔲]
∑︁

𝒉𝔲 ∈L⊥
𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |2𝛼

=
∑︁

∅≠𝔲⊆[𝑑]
𝛾𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |2𝛼

= [err𝑁,𝑑,𝛼,𝜸 (𝒈)]2,

where 𝜸 := {𝛾𝔲}𝔲⊆[𝑑] . One can use [err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 as a quality criterion in a CBC
algorithm. Doing so only gives us information on the mean of the squared worst-case
error with respect to the weights but not on how much the squared worst-case error
changes as we move away from the mean. To incorporate such information in the
CBC algorithm, one may look at the variance of the squared worst-case error,

Var
[
[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2] = E

[
[err𝑁,𝑑,𝛼,𝜸 (𝒈)]4] − (

E
[
[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2])2

=
∑︁

∅≠𝔲⊆[𝑑]

©«𝜎𝔲
∑︁

𝒉𝔲 ∈L⊥
𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |2𝛼

ª®¬
2

.

The standard deviation is given by

𝜎
[
[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2] =

©«
∑︁

∅≠𝔲⊆[𝑑]

©«𝜎𝔲
∑︁

𝒉𝔲 ∈L⊥
𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |2𝛼

ª®¬
2ª®®¬

1/2

≤
∑︁

∅≠𝔲⊆[𝑑]
𝜎𝔲

∑︁
𝒉𝔲 ∈L⊥

𝔲 (𝒈,𝑁)

∏
𝑗∈𝔲

1
|ℎ 𝑗 |2𝛼

12.3 Random Weights 407

= [err𝑁,𝑑,𝛼,𝝈 (𝒈)]2,

where 𝝈 := {𝜎𝔲}𝔲⊆[𝑑] , and where we formally set 𝜎∅ := 1. Using the standard
deviation directly is difficult to do numerically, but we can use the upper bound
given by [err𝑁,𝑑,𝛼,𝝈 (𝒈)]2 instead.

Hence we can now use Algorithm 12.6 with the two criteria [err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 and
[err𝑁,𝑑,𝛼,𝝈 (𝒈)]2 to find a generating vector for which the expected value and the
variance of [err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 are both small. This allows us to obtain a more precise
probabilistic statement on the squared worst-case error of the obtained lattice rule
by using the Chebyshev inequality.

Indeed, we can use the one-sided Chebyshev inequality, which states that for a
random variable 𝑋 with standard deviation 𝜎[𝑋] we have

P[𝑋 − E[𝑋]] ≥ 𝑐 𝜎[𝑋] ≥ 1
1 + 𝑐2 for any 𝑐 > 0.

This implies the following result.

Theorem 12.8 Let 𝑁 be a prime number and let 𝑑 ∈ N. Let (Ω, F , P) be a probability
space and let 𝜸 = (𝛾𝔲)𝔲⊆[𝑑] be a random vector on (Ω, F , P) which satisfies

• 𝛾∅ = 1, and 𝛾𝔲 ≥ 0 for 𝔲 ≠ ∅;
• 𝛾𝔲 := E[𝛾𝔲] > 0;
• E[𝛾𝔲𝛾𝔳] = E[𝛾𝔲] E[𝛾𝔳] for 𝔲 ≠ 𝔳;
• 𝜎2

𝔲 := Var[𝛾𝔲] < ∞ for 𝔲 ≠ ∅ (formally also set 𝜎∅ := 1).

Put 𝜸 := {𝛾𝔲}𝔲⊆[𝑑] and 𝝈 := {𝜎𝔲}𝔲⊆[𝑑] . If 𝒈 is constructed by Algorithm 12.6
based on the criteria [err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 and [err𝑁,𝑑,𝛼,𝝈 (𝒈)]2, then for any 𝑐 > 0 we
have

P
[
[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 ≤ [err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 + 𝑐[err𝑁,𝑑,𝛼,𝝈 (𝒈)]2] ≥ 𝑐2

1 + 𝑐2 .

For instance, if 𝑐 = 10, then 𝑐2/(1 + 𝑐2) = 0.99009 . . ., and hence

P
[
[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 ≤ [err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 + 10[err𝑁,𝑑,𝛼,𝝈 (𝒈)]2] ≥ 0.99.

Notes and Remarks

The results in Section 12.1 were first shown in [38]. This paper also discusses further
examples, in particular the combinations of product weights with general weights and
POD weights with POD weights. The method can also be applied to other criteria,
for instance, [38] also includes results for the weighted discrepancy.

The approach for fixed smoothness but different product weight sequences on
p. 402 was suggested by Larcher (personal communication).

408 12 Stability of Lattice Rules

Random weights and the CBC algorithm with more than one quality criterion
were discussed in [36]. This paper studies the general case of 𝑟 criteria in the CBC
algorithm and considers geometric aspects related to (12.8).

Chapter 13
𝑳2-Approximation Using Lattice Rules

In the preceding chapters, we have seen how (rank-1) lattice rules can be used for
numerical integration, in particular in Korobov and Sobolev spaces. Moreover, we
have outlined how we can efficiently construct the generating vectors of such (good)
lattice rules, e.g., by the CBC algorithm.

However, this is not the end of the story of lattice rules. As it has been outlined
repeatedly in the literature, we can also employ lattice rules in suitably designed
algorithms for approximating functions. In this chapter, we will outline what role
lattice rules can play in function approximation with respect to the 𝐿2-norm. We
shall start by describing a quite natural approach to this question.

13.1 𝑳2-Approximation of Functions in Korobov Spaces

Let us again consider the weighted Korobov space Hkor,𝑑,𝛼,𝜸 of smoothness 𝛼 with
weights 𝜸, as defined in Section 2.4. For the sake of simplicity, we assume product
weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 ∈ (0, 1] for 𝑗 ∈ N throughout this section. The
cases of general weights and of POD weights will be discussed in Section 13.4. As
usual, we assume without loss of generality that the product weights are ordered
in a nonincreasing fashion. For 𝑓 ∈ Hkor,𝑑,𝛼,𝜸 we know that we can represent 𝑓
pointwise by its Fourier series,

𝑓 (𝒙) =
∑︁
𝒉∈Z𝑑

�̂� (𝒉) e2𝜋i𝒉 ·𝒙 for 𝒙 ∈ [0, 1)𝑑 .

We now study the problem of approximating the function 𝑓 itself in the 𝐿2-norm
instead of approximating the integral of 𝑓 . To formalize this problem, we define
the embedding operator EMB𝑑 : Hkor,𝑑,𝛼,𝜸 → 𝐿2 ([0, 1]𝑑) by EMB𝑑 (𝑓) = 𝑓 . We
would like to approximate EMB𝑑 (𝑓) for 𝑓 ∈ Hkor,𝑑,𝛼,𝜸 instead of approximating
the integral

∫
[0,1]𝑑 𝑓 (𝒙) d𝒙.

409© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_13&domain=pdf

410 13 𝐿2-Approximation Using Lattice Rules

Naturally, this problem has been very well studied in the literature, and a common
approach in the classical literature on approximation theory is to approximate the
function 𝑓 ∈ Hkor,𝑑,𝛼,𝜸 by a truncated Fourier series,∑︁

𝒉∈A𝑑

�̂� (𝒉) e2𝜋i𝒉 ·𝒙,

where A𝑑 is some suitably chosen finite subset of Z𝑑 .
In many practical problems one will not have direct access to the Fourier coef-

ficients �̂� (𝒉) for 𝒉 ∈ A𝑑 , so it makes sense to consider approximating also these.
This is the point where we can make use of lattice rules; to be more precise, we can
approximate the integral

�̂� (𝒉) =
∫
[0,1]𝑑

𝑓 (𝒙) e−2𝜋i𝒉 ·𝒙 d𝒙 for 𝒉 ∈ A𝑑 ,

by a QMC rule using a rank-1 lattice point set.
First of all, it is necessary to state precisely what choice of A𝑑 should be made.

Naturally, we want to choose the size of the set as small as possible to keep the
computational cost low, but also such that it contains as many indices that correspond
to “large” Fourier coefficients as possible. To this end, define, for a real 𝑀 ≥ 0,
A𝑑 = A𝑑,𝑀 as

A𝑑,𝑀 :=
{
𝒉 ∈ Z𝑑 : 𝑟2𝛼,𝜸 (𝒉) ≤ 𝑀

}
. (13.1)

Then, we will approximate 𝑓 ∈ Hkor,𝑑,𝛼,𝜸 by an algorithm of the form

𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈) (𝑓) (𝒙) :=
∑︁

𝒉∈A𝑑,𝑀

(
1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
e−2𝜋i𝑘𝒉 ·𝒈/𝑁

)
e2𝜋i𝒉 ·𝒙 (13.2)

for 𝒙 ∈ [0, 1)𝑑 , where 𝒈 is the generating vector of a rank-1 lattice point set P(𝒈, 𝑁).
Similarly to the worst-case error of integration, we can then define the worst-case

error of the approximation algorithm 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈) in Hkor,𝑑,𝛼,𝜸 by

err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈)) := sup
𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

∥ 𝑓 − 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈) (𝑓)∥𝐿2 .

(13.3)
In order to analyze this worst-case error of approximation, we first need to collect

some properties of the set A𝑑,𝑀 , which we show in the following lemma, reminding
the reader that we restrict ourselves to considering product weights not exceeding 1
in this section.

Lemma 13.1 For 𝛼 > 1/2, 𝑑 ∈ N, a weight sequence 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 ∈ (0, 1]
for 𝑗 ∈ N, and 𝑀 ≥ 0, let A𝑑,𝑀 :=

{
𝒉 ∈ Z𝑑 : 𝑟2𝛼,𝜸 (𝒉) ≤ 𝑀

}
. Then the following

assertions hold.

13.1 𝐿2-Approximation of Functions in Korobov Spaces 411

1. For 𝒉 = (ℎ1, . . . , ℎ𝑑) ∈ A𝑑,𝑀 it is true that |ℎ 𝑗 | ≤ (𝛾 𝑗𝑀)1/(2𝛼) for 𝑗 ∈ [𝑑].
2. For any 𝑑 ∈ N we have

A𝑑+1,𝑀 = {(𝒉, 0) : 𝒉 ∈ A𝑑,𝑀 } ∪
⋃

ℎ𝑑+1∈Z\{0}
{(𝒉, ℎ𝑑+1) : 𝒉 ∈ A

𝑑,𝑀 (ℎ𝑑+1) },

where 𝑀 (ℎ𝑑+1) := (𝛾𝑑+1𝑀)/|ℎ𝑑+1 |2𝛼. We remind the reader that for 𝒉 =

(ℎ1, . . . , ℎ𝑑) in Z𝑑 and ℎ𝑑+1 ∈ Z we write, with some abuse of notation, (𝒉, ℎ𝑑+1)
for the vector (ℎ1, . . . , ℎ𝑑 , ℎ𝑑+1) in Z𝑑+1, and in particular (𝒉, 0) if ℎ𝑑+1 = 0.

3. For any 𝑑 ∈ N it is true that

|A𝑑+1,𝑀 | = |A𝑑,𝑀 | + 2
∞∑︁

ℎ𝑑+1=1
|A

𝑑,𝑀 (ℎ𝑑+1) |,

with 𝑀 (ℎ𝑑+1) defined as in Item 2.
4. For any 𝜆 > 1/(2𝛼) we have

|A𝑑,𝑀 | ≤ 𝑀𝜆

𝑑∏
𝑗=1

(1 + 2𝛾𝜆𝑗 𝜁 (2𝛼𝜆)).

Proof Regarding Item 1, note that A𝑑,𝑀 is empty as long as 𝑀 < 1. For 𝑀 ≥ 1,
suppose that an index 𝒉 ∈ Z𝑑 is contained in A𝑑,𝑀 . For such an 𝒉 we have

𝑟2𝛼,𝜸 (𝒉) =
𝑑∏
𝑗=1
𝑟2𝛼,𝛾 𝑗 (ℎ 𝑗) ≤ 𝑀.

Due to our assumption that no weight 𝛾 𝑗 exceeds 1, we have 𝑟2𝛼,𝛾 𝑗 (ℎ 𝑗) ≥ 1 for
each 𝑗 ∈ [𝑑], and hence we must have 𝑟2𝛼,𝛾 𝑗 (ℎ 𝑗) ≤ 𝑀 for each 𝑗 . If ℎ 𝑗 = 0, this
condition and also the statement in Item 1 is trivially fulfilled. On the other hand, if
ℎ 𝑗 ≠ 0, the inequality in Item 1 follows immediately by the definition of 𝑟2𝛼,𝛾 𝑗 (ℎ 𝑗)
and the fact that 𝛾 𝑗 ≤ 1.

For the proof of Item 2, note that again the case𝑀 < 1 is trivial, as all sets involved
are then empty. So, let us assume 𝑀 ≥ 1. Suppose that (𝒉, ℎ𝑑+1) with 𝒉 ∈ Z𝑑 and
ℎ𝑑+1 ∈ Z is an element ofA𝑑+1,𝑀 . If ℎ𝑑+1 = 0, we have 𝑟2𝛼,𝜸 ((𝒉, ℎ𝑑+1)) = 𝑟2𝛼,𝜸 (𝒉).
Then, we must have 𝑟2𝛼,𝜸 (𝒉) ≤ 𝑀 , which is the same as 𝒉 ∈ A𝑑,𝑀 . If, however,
ℎ𝑑+1 ≠ 0, we must have 𝑟2𝛼,𝜸 ((𝒉, ℎ𝑑+1)) = 𝑟2𝛼,𝜸 (𝒉)𝑟2𝛼,𝛾𝑑+1 (ℎ𝑑+1) ≤ 𝑀 , which
means

𝑟2𝛼,𝜸 (𝒉) ≤
𝛾𝑑+1𝑀

|ℎ𝑑+1 |2𝛼
= 𝑀 (ℎ𝑑+1),

and this is equivalent to 𝒉 ∈ A
𝑑,𝑀 (ℎ𝑑+1) .

Item 3 immediately follows from Item 2.

412 13 𝐿2-Approximation Using Lattice Rules

The result in Item 4 can be proven by induction on 𝑑. We can again assume
𝑀 ≥ 1, as otherwise the set A𝑑,𝑀 is empty. For 𝑑 = 1, it follows from the definition
of A1,𝑀 that

|A1,𝑀 | = 1 + 2⌊(𝛾1𝑀)1/(2𝛼)⌋ .

If 𝛾1𝑀 < 1, then obviously 0 = ⌊(𝛾1𝑀)1/(2𝛼)⌋ ≤ 𝛾𝜆1𝑀
𝜆. If 𝛾1𝑀 ≥ 1, then we have

⌊(𝛾1𝑀)1/(2𝛼)⌋ ≤ (𝛾1𝑀)1/(2𝛼) ≤ (𝛾1𝑀)𝜆.

Combining these two cases with the fact that 𝜁 (2𝛼𝜆) ≥ 1 immediately yields that

|A1,𝑀 | ≤ 𝑀𝜆 (1 + 2𝜁 (2𝛼𝜆)𝛾𝜆1),

which is the desired result for 𝑑 = 1. Suppose now that the estimate in Item 4 holds
for fixed 𝑑 ∈ N. Then we can use Item 3 and the induction assumption to see that

|A𝑑+1,𝑀 | ≤ 𝑀𝜆

𝑑∏
𝑗=1

(1 + 2𝛾𝜆𝑗 𝜁 (2𝛼𝜆)) + 2
∞∑︁

ℎ𝑑+1=1
(𝑀 (ℎ𝑑+1))𝜆

𝑑∏
𝑗=1

(1 + 2𝜁 (2𝛼𝜆)𝛾𝜆𝑗)

= (1 + 2𝜁 (2𝛼𝜆)𝛾𝜆𝑑+1)𝑀
𝜆

𝑑∏
𝑗=1

(1 + 2𝜁 (2𝛼𝜆)𝛾𝜆𝑗)

= 𝑀𝜆

𝑑+1∏
𝑗=1

(1 + 2𝜁 (2𝛼𝜆)𝛾𝜆𝑗),

as claimed. □

In the next step, let us study the square of the error of 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈) (𝑓) for a
given generating vector 𝒈 and a given function 𝑓 in Hkor,𝑑,𝛼,𝜸. Using Parseval’s
identity, we obtain(

∥ 𝑓 − 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈) (𝑓)∥𝐿2

)2
=

∑︁
𝒉∉A𝑑,𝑀

| �̂� (𝒉) |2

+
∑︁

𝒉∈A𝑑,𝑀

�����∫[0,1]𝑑
𝑓 (𝒙) e2𝜋i𝒉 ·𝒙 d𝒙 − 1

𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
e−2𝜋i𝑘𝒉 ·𝒈/𝑁

�����2 .
(13.4)

Obviously, we have∑︁
𝒉∉A𝑑,𝑀

| �̂� (𝒉) |2 =
∑︁

𝒉∉A𝑑,𝑀

| �̂� (𝒉) |2 𝑟2𝛼,𝜸 (𝒉)
1

𝑟2𝛼,𝜸 (𝒉)
≤ 1
𝑀

∥ 𝑓 ∥2
kor,𝑑,𝛼,𝜸 .

The next, and more involved, step is to analyze the second term in (13.4). To this
end, let 𝒉 ∈ A𝑑,𝑀 be fixed, and consider

13.1 𝐿2-Approximation of Functions in Korobov Spaces 413�����∫[0,1]𝑑
𝑓 (𝒙) e−2𝜋i𝒉 ·𝒙 d𝒙 − 1

𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
e−2𝜋i𝑘𝒉 ·𝒈/𝑁

�����2 . (13.5)

We now discuss two possibilities to deal with the term in (13.5).

A direct approach

The first way to deal with (13.5) is to view it as the squared integration error of the
involved lattice rule applied to the function 𝑓𝒉 with

𝑓𝒉 (𝒙) := 𝑓 (𝒙) e−2𝜋i𝒉 ·𝒙 for 𝒙 ∈ [0, 1]𝑑 .

It is easy to see that 𝑓𝒉 is also contained in Hkor,𝑑,𝛼,𝜸 (this is a property that could
be called an “algebra property” of Hkor,𝑑,𝛼,𝜸, and we remark that an analogous
property need not be satisfied by other function spaces with norms based on series
expansions), and that �̂�𝒉 (ℓ) = �̂� (𝒉 + ℓ) for ℓ ∈ Z𝑑 . It follows that�����∫[0,1]𝑑

𝑓 (𝒙) e−2𝜋i𝒉 ·𝒙 d𝒙 − 1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
e−2𝜋i𝑘𝒉 ·𝒈/𝑁

�����2
≤ [err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 ∥ 𝑓𝒉 ∥2

kor,𝑑,𝛼,𝜸 ,

where, as usual, err𝑁,𝑑,𝛼,𝜸 (𝒈) denotes the worst-case integration error of the lattice
rule generated by 𝒈. It remains to treat the (squared) norm of 𝑓𝒉 , which can be done
as follows. By definition, we have

∥ 𝑓𝒉 ∥2
kor,𝑑,𝛼,𝜸 =

∑︁
ℓ∈Z𝑑

| �̂�𝒉 (ℓ) |2𝑟2𝛼,𝜸 (ℓ) =
∑︁
ℓ∈Z𝑑

| �̂� (𝒉 + ℓ) |2𝑟2𝛼,𝜸 (𝒉 + ℓ)
𝑟2𝛼,𝜸 (ℓ)

𝑟2𝛼,𝜸 (𝒉 + ℓ) .

(13.6)
For any choice of the indices 𝒉, ℓ ∈ Z𝑑 , it is true that

𝑟2𝛼,𝜸 (ℓ)
𝑟2𝛼,𝜸 (𝒉 + ℓ) ≤ 𝑟2𝛼,𝜸 (𝒉)

𝑑∏
𝑗=1

max(1, 22𝛼𝛾 𝑗). (13.7)

It suffices to prove this estimate for the univariate case by simply checking the four
cases in which (ℓ, ℎ+ℓ) in {(0, 0)}, in {0}×Z∗, inZ∗×{0}, or inZ∗×Z∗, respectively,
where in the latter case one has to consider the two sub-cases ℎ = 0 and ℎ ≠ 0, and
where, as usual, Z∗ := Z \ {0}; going through these cases separately, it is then easy
to see that (13.7) holds. Consequently, it follows from (13.6) that

∥ 𝑓𝒉 ∥2
kor,𝑑,𝛼,𝜸 ≤ ∥ 𝑓 ∥2

kor,𝑑,𝛼,𝜸 𝑟2𝛼,𝜸 (𝒉)
𝑑∏
𝑗=1

max(1, 22𝛼𝛾 𝑗).

414 13 𝐿2-Approximation Using Lattice Rules

This enables us to make use of the usual construction methods of a rank-1 lattice
generating vector 𝒈 that makes the worst-case integration error small, in order to
obtain an effective bound on the approximation error. Indeed, let us assume that 𝒈
has been constructed according to, say, the usual (fast) CBC construction outlined
in Algorithm 3.6. Then, for prime 𝑁 , Theorem 3.7 implies for any 𝜏 ∈ [1/2, 𝛼) that

∑︁
𝒉∈A𝑑,𝑀

�����∫[0,1]𝑑
𝑓 (𝒙) e−2𝜋i𝒉 ·𝒙 d𝒙 − 1

𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
e−2𝜋i𝑘𝒉 ·𝒈/𝑁

�����2
≤ ∥ 𝑓 ∥2

kor,𝑑,𝛼,𝜸
22𝜏

𝑁2𝜏
©«
𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏ª®¬ ©«
𝑑∏
𝑗=1

max(1, 22𝛼𝛾 𝑗)
ª®¬

×
∑︁

𝒉∈A𝑑,𝑀

𝑟2𝛼,𝜸 (𝒉)

≤ ∥ 𝑓 ∥2
kor,𝑑,𝛼,𝜸

22𝜏

𝑁2𝜏
©«
𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏ª®¬ ©«
𝑑∏
𝑗=1

max(1, 22𝛼𝛾 𝑗)
ª®¬

∑︁
𝒉∈A𝑑,𝑀

𝑀

= ∥ 𝑓 ∥2
kor,𝑑,𝛼,𝜸

22𝜏𝑀 |A𝑑,𝑀 |
𝑁2𝜏

©«
𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏ª®¬
𝑑∏
𝑗=1

max(1, 22𝛼𝛾 𝑗).

Consequently,

[err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2

≤ 1
𝑀

+
22𝜏𝑀 |A𝑑,𝑀 |

𝑁2𝜏
©«
𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏ª®¬
𝑑∏
𝑗=1

max(1, 22𝛼𝛾 𝑗).

Finally we employ Lemma 13.1, Item 4, with 𝜆 = 1/(2𝜏) and 𝜏 ∈ [1/2, 𝛼) in order
to obtain

[err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2 (13.8)

≤ 1
𝑀

+ 22𝜏𝑀1+1/(2𝜏)

𝑁2𝜏
©«
𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏+1ª®¬
𝑑∏
𝑗=1

max(1, 22𝛼𝛾 𝑗).

For fixed 𝛼 > 1/2 and a fixed nonincreasing weight sequence 𝜸, we define
𝑑0 (𝛼, 𝜸) = 𝑑0 ∈ N0 to be the minimal index 𝑗 for which it is true that 𝛾 𝑗+1 ≤ 2−2𝛼 <
𝛾 𝑗 . If 𝛾1 ≤ 2−2𝛼, we set 𝑑0 := 0. If no such index exists, we set 𝑑0 := ∞. Using this
notation, we can easily formulate the following result.

Proposition 13.2 Let 𝛼 > 1/2, let 𝑁 be a prime number, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be
positive and nonincreasing product weights with 𝛾 𝑗 ∈ (0, 1] for 𝑗 ∈ N. Assume that
𝒈 has been found by Algorithm 3.6. Then, for any 𝜏 ∈ [1/2, 𝛼) it is true that

13.1 𝐿2-Approximation of Functions in Korobov Spaces 415

err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈)) ≤
𝐶𝑑,𝜏,𝛼,𝜸

𝑁2𝜏2/(4𝜏+1)
,

where 𝑀 = 𝑁4𝜏2/(4𝜏+1) and where

𝐶𝑑,𝜏,𝛼,𝜸 =
©«1 + 22𝜏22𝛼min(𝑑0 ,𝑑) ©«

min(𝑑0 ,𝑑)∏
𝑗=1

𝛾 𝑗
ª®¬
𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏+1ª®¬
1/2

.

Proof From (13.8) together with

𝑑∏
𝑗=1

max(1, 22𝛼𝛾 𝑗) = 22𝛼min(𝑑0 ,𝑑)
min(𝑑0 ,𝑑)∏

𝑗=1
𝛾 𝑗

we immediately obtain

[err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2 ≤ 1
𝑀

+
𝐶𝑑,𝜏,𝛼,𝜸𝑀

1+1/(2𝜏)

𝑁2𝜏 , (13.9)

where

𝐶𝑑,𝜏,𝛼,𝜸 = 22𝜏22𝛼min(𝑑0 ,𝑑) ©«
min(𝑑0 ,𝑑)∏

𝑗=1
𝛾 𝑗

ª®¬
𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏+1
.

In order to balance the two summands in (13.9) choose 𝑀 , depending on 𝑁 , in such
a way that

1
𝑀

=
𝑀1+1/(2𝜏)

𝑁2𝜏 .

This is achieved by the choice 𝑀 = 𝑁4𝜏2/(4𝜏+1) , and so we obtain

[err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2 ≤
1 + 𝐶𝑑,𝜏,𝛼,𝜸
𝑁4𝜏2/(4𝜏+1)

.

Now the result follows by taking the square root and the fact that 𝐶𝑑,𝜏,𝛼,𝜸 = (1 +
𝐶𝑑,𝜏,𝛼,𝜸)1/2. □

Note that Proposition 13.2 provides an error convergence rate that is arbitrarily
close to O(𝑁−(𝛼/2) (1−1/(4𝛼+1))). This is slightly weaker than O(𝑁−𝛼/2).

Obviously, it is also possible to derive tractability results for the approximation
problem, using Proposition 13.2, as outlined in [162]. However, we will not include
this discussion at this point, but first outline an alternative approach to obtaining an
upper bound on the worst-case integration error, yielding a slightly different result
and, more importantly, an improved convergence rate.

416 13 𝐿2-Approximation Using Lattice Rules

Improving the convergence rate

Let us once more go back to Equation (13.5), which is the squared integration
error of a lattice rule with generating vector 𝒈 when integrating the function 𝑓𝒉 for
𝒉 ∈ A𝑑,𝑀 . However, due to Proposition 1.12, this error can be expressed as

�����∫[0,1]𝑑
𝑓 (𝒙)e−2𝜋i𝒉 ·𝒙 d𝒙 − 1

𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
e−2𝜋i𝑘𝒉 ·𝒈/𝑁

����� =
��������

∑︁
ℓ∈Z𝑑\{0}

ℓ·𝒈≡0 (mod 𝑁)

�̂�𝒉 (ℓ)

�������� .
On the other hand, ∑︁

ℓ∈Z𝑑\{0}
ℓ·𝒈≡0 (mod 𝑁)

�̂�𝒉 (ℓ) =
∑︁

ℓ∈Z𝑑\{0}
ℓ·𝒈≡0 (mod 𝑁)

�̂� (𝒉 + ℓ).

Hence we obtain from (13.4) that(
∥ 𝑓 − 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈) (𝑓)∥𝐿2

)2

=
∑︁

𝒉∉A𝑑,𝑀

| �̂� (𝒉) |2 +
∑︁

𝒉∈A𝑑,𝑀

��������
∑︁

ℓ∈Z𝑑\{0}
ℓ·𝒈≡0 (mod 𝑁)

�̂� (𝒉 + ℓ)

��������
2

≤ 1
𝑀

∥ 𝑓 ∥2
kor,𝑑,𝛼,𝜸 +

∑︁
𝒉∈A𝑑,𝑀

��������
∑︁

ℓ∈Z𝑑\{0}
ℓ·𝒈≡0 (mod 𝑁)

�̂� (𝒉 + ℓ)

��������
2

.

Dividing and multiplying the terms in the latter sum by the square roots of the
corresponding values of 𝑟2𝛼,𝜸, we obtain, using the Cauchy–Schwarz inequality,��������

∑︁
ℓ∈Z𝑑\{0}

ℓ·𝒈≡0 (mod 𝑁)

�̂� (𝒉 + ℓ)

��������
2

≤
©«

∑︁
ℓ∈Z𝑑\{0}

ℓ·𝒈≡0 (mod 𝑁)

| �̂� (𝒉 + ℓ) |2𝑟2𝛼,𝜸 (𝒉 + ℓ)
ª®®®®¬

×
∑︁

ℓ∈Z𝑑\{0}
ℓ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ)

≤ ∥ 𝑓 ∥2
kor,𝑑,𝛼,𝜸

∑︁
ℓ∈Z𝑑\{0}

ℓ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ) .

This implies, for the squared worst-case error of 𝐿2-approximation,

13.1 𝐿2-Approximation of Functions in Korobov Spaces 417

[err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2

≤ 1
𝑀

+
∑︁

𝒉∈A𝑑,𝑀

∑︁
ℓ∈Z𝑑\{0}

ℓ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ) . (13.10)

Let us now study the second term in the right-hand side of (13.10). For analyzing
this term, we follow what is outlined in [44]. Using that 𝑟2𝛼,𝜸 (𝒉) ≤ 𝑀 for 𝒉 ∈ A𝑑,𝑀 ,
we obtain ∑︁

𝒉∈A𝑑,𝑀

∑︁
ℓ∈Z𝑑\{0}

ℓ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ)

≤
∑︁

𝒉∈A𝑑,𝑀

𝑀

𝑟2𝛼,𝜸 (𝒉)
∑︁

ℓ∈Z𝑑\{0}
ℓ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ)

≤ 𝑀
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

∑︁
ℓ∈Z𝑑\{0}

ℓ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ) .

For short, we write

𝑆𝑁,𝑑,𝛼,𝜸 (𝒈) :=
©«
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

∑︁
ℓ∈Z𝑑\{0}

ℓ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ)

ª®®®®¬
1/2

=

©«
∑︁

ℓ∈Z𝑑\{0}
ℓ·𝒈≡0 (mod 𝑁)

∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉) 𝑟2𝛼,𝜸 (𝒉 + ℓ)

ª®®®®¬
1/2

, (13.11)

and therefore obtain

[err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2 ≤ 1
𝑀

+ 𝑀 [𝑆𝑁,𝑑,𝛼,𝜸 (𝒈)]2. (13.12)

This suggests using the quantity 𝑆𝑁,𝑑,𝛼,𝜸 as a new figure of merit for lattice rules
for approximation. In order to obtain a small bound on the worst-case approximation
error, it is sufficient to find a generating vector 𝒈 such that 𝑆𝑁,𝑑,𝛼,𝜸 (𝒈) is small. This
again can be achieved by a component-wise approach, which we outline now. First,
we formulate the following algorithm. For the sake of simplicity, let us assume that
𝑁 is a prime number.

418 13 𝐿2-Approximation Using Lattice Rules

Algorithm 13.3 (CBC construction for 𝐿2-approximation in the weighted Ko-
robov space) Let prime 𝑁 and 𝑑 ∈ N be given. Let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights
with 𝛾 𝑗 ∈ (0, 1] for 𝑗 ∈ N. Construct a generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺𝜑𝑑 (𝑁)
as follows.

(1) Choose 𝑔1 = 1.
(2) For 𝑠 from 1 to 𝑑 − 1:

Assume that 𝑔1, . . . , 𝑔𝑠 ∈ 𝐺
𝜑

1 (𝑁) have already been found. Choose 𝑔𝑠+1 ∈
𝐺
𝜑

1 (𝑁) as
𝑔𝑠+1 := argmin

𝑔∈𝐺𝜑

1 (𝑁)
𝑆𝑁,𝑠+1,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠 , 𝑔)).

End for.
(3) Set 𝒈 = (𝑔1, . . . , 𝑔𝑑).

Remark 13.4 As pointed out in [44], Algorithm 13.3 can be practically implemented
easily, as we have, for a given generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑),

[𝑆𝑁,𝑑,𝛼,𝜸 (𝒈)]2 = −
∑︁
𝒉∈Z𝑑

1
(𝑟2𝛼,𝜸 (𝒉))2 +

∑︁
ℓ∈Z𝑑

ℓ·𝒈≡0 (mod 𝑁)

∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉) 𝑟2𝛼,𝜸 (𝒉 + ℓ)

= −
𝑑∏
𝑗=1

(1 + 2𝜁 (4𝛼)𝛾2
𝑗) +

∑︁
ℓ∈Z𝑑

ℓ·𝒈≡0 (mod 𝑁)

∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉) 𝑟2𝛼,𝜸 (𝒉 + ℓ) .

However, ∑︁
ℓ∈Z𝑑

ℓ·𝒈≡0 (mod 𝑁)

∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉) 𝑟2𝛼,𝜸 (𝒉 + ℓ)

=
∑︁
ℓ∈Z𝑑

∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉) 𝑟2𝛼,𝜸 (𝒉 + ℓ)

1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝑘𝒈 ·ℓ/𝑁

=
1
𝑁

𝑁−1∑︁
𝑘=0

∑︁
ℓ∈Z𝑑

∑︁
𝒉∈Z𝑑

e2𝜋i𝑘𝒈 ·ℓ/𝑁

𝑟2𝛼,𝜸 (𝒉) 𝑟2𝛼,𝜸 (𝒉 + ℓ)

=
1
𝑁

𝑁−1∑︁
𝑘=0

∑︁
ℓ∈Z𝑑

∑︁
𝒉∈Z𝑑

e−2𝜋i𝑘𝒈·𝒉/𝑁 e2𝜋i𝑘𝒈· (𝒉+ℓ)/𝑁

𝑟2𝛼,𝜸 (𝒉) 𝑟2𝛼,𝜸 (𝒉 + ℓ)

=
1
𝑁

𝑁−1∑︁
𝑘=0

∑︁
𝒉∈Z𝑑

e−2𝜋i𝑘𝒈·𝒉/𝑁

𝑟2𝛼,𝜸 (𝒉)
∑︁
ℓ∈Z𝑑

e2𝜋i𝑘𝒈 ·ℓ/𝑁

𝑟2𝛼,𝜸 (ℓ)

=
1
𝑁

𝑁−1∑︁
𝑘=0

(∑︁
𝒉∈Z𝑑

e2𝜋i𝑘𝒈·𝒉/𝑁

𝑟2𝛼,𝜸 (𝒉)

)2

13.1 𝐿2-Approximation of Functions in Korobov Spaces 419

=
1
𝑁

𝑁−1∑︁
𝑘=0

𝑑∏
𝑗=1

©«1 + 𝛾 𝑗
∑︁

ℎ∈Z𝑑\{0}

e2𝜋i𝑘𝑔 𝑗ℎ/𝑁

|ℎ|2𝛼
ª®¬

2

.

This shows that 𝑆𝑁,𝑑,𝛼,𝜸 (𝒈) is very similar to the worst-case integration error of the
rank-1 lattice rule generated by 𝒈. Hence, one can practically use the same machinery
as in Section 3.4 and obtain a construction cost of O(𝑑 𝑁 log 𝑁) operations.

We then have the following theorem, which shows that the generating vectors
constructed by Algorithm 13.3 indeed yield a low value of 𝑆𝑁,𝑑,𝛼,𝜸.

Theorem 13.5 Let 𝑁 ≥ 3 be a prime number, let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights
with 𝛾 𝑗 ∈ (0, 1] for 𝑗 ∈ N, and assume that 𝒈 has been found by Algorithm 13.3.
Then for arbitrary 𝜏 ∈ [1/2, 𝛼) and for any 𝑠 ∈ [𝑑] we have

𝑆𝑁,𝑠,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠)) ≤
1
𝑁 𝜏

𝑠∏
𝑗=1

(
1 + 24𝛼+1𝜁

(𝛼
𝜏

)
𝛾

1/(2𝜏)
𝑗

)2𝜏
.

The proof of Theorem 13.5 uses standard ideas that have been employed for
similar results in the context of CBC constructions already earlier in this book.
However, the details are rather technical and tedious. Busy readers may proceed
directly to the statement of Theorem 13.6.

Proof of Theorem 13.5 We prove the result by induction on 𝑠. For 𝑠 = 1, we have,
as 𝑔1 = 1,

[𝑆𝑁,1,𝛼,𝛾1 (1)]2 =
∑︁
ℎ∈Z

∑︁
ℓ∈Z\{0}

ℓ≡0 (mod 𝑁)

1
𝑟2𝛼,𝛾1 (ℎ)

1
𝑟2𝛼,𝛾1 (ℎ + ℓ)

and, using Jensen’s inequality (see Lemma 2.25), for 𝜆 ∈ (1/(2𝛼), 1],

[𝑆𝑁,1,𝛼,𝛾1 (1)]2𝜆 ≤
∑︁
ℎ∈Z

∑︁
ℓ∈Z\{0}

ℓ≡0 (mod 𝑁)

(
1

𝑟2𝛼,𝛾1 (ℎ)
1

𝑟2𝛼,𝛾1 (ℎ + ℓ)

)𝜆
=

∑︁
ℎ∈Z

ℎ≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ)
∑︁

ℓ∈Z\{0}
ℓ≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ + ℓ)

+
∑︁
ℎ∈Z

ℎ.0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ)
∑︁

ℓ∈Z\{0}
ℓ≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ + ℓ) .

420 13 𝐿2-Approximation Using Lattice Rules

We have ∑︁
ℎ∈Z

ℎ≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ)
∑︁

ℓ∈Z\{0}
ℓ≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ + ℓ)

=
∑︁
ℎ∈Z

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ𝑁)
∑︁

ℓ∈Z\{0}

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ𝑁 + ℓ𝑁)

=
∑︁
ℎ∈Z

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ𝑁)
∑︁
ℓ∈Z

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ𝑁 + ℓ𝑁) −
∑︁
ℎ∈Z

1
(𝑟2𝛼𝜆,𝛾𝜆1

(ℎ𝑁))2

≤
(
1 +

2𝜁 (2𝛼𝜆)𝛾𝜆1
𝑁2𝛼𝜆

)2

− 1

≤
4𝜁 (2𝛼𝜆)𝛾𝜆1

𝑁
+

4(𝜁 (2𝛼𝜆))2𝛾2𝜆
1

𝑁
.

Furthermore, using that 𝑁 ≥ 3 is prime and therefore odd,∑︁
ℎ∈Z

ℎ.0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ)
∑︁

ℓ∈Z\{0}
ℓ≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ + ℓ)

=
∑︁
ℎ∈Z

ℎ.0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ)
∑︁

ℓ∈Z\{0}

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ + ℓ𝑁)

=
∑︁
ℎ∈Z

ℎ.0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ)
∑︁
ℓ∈Z

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ + ℓ𝑁) −
∑︁
ℎ∈Z

ℎ.0 (mod 𝑁)

(
1

𝑟2𝛼𝜆,𝛾𝜆1
(ℎ)

)2

=

(𝑁−1)/2∑︁
𝑘=−(𝑁−1)/2

𝑘≠0

∑︁
ℎ∈Z

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ𝑁 + 𝑘)
∑︁
ℓ∈Z

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℎ𝑁 + 𝑘 + ℓ𝑁)

−
(𝑁−1)/2∑︁

𝑘=−(𝑁−1)/2
𝑘≠0

∑︁
ℎ∈Z

(
1

𝑟2𝛼𝜆,𝛾𝜆1
(ℎ𝑁 + 𝑘)

)2

=

(𝑁−1)/2∑︁
𝑘=−(𝑁−1)/2

𝑘≠0

(∑︁
ℓ∈Z

1
𝑟2𝛼𝜆,𝛾𝜆1

(ℓ𝑁 + 𝑘)

)2

−
(𝑁−1)/2∑︁

𝑘=−(𝑁−1)/2
𝑘≠0

∑︁
ℎ∈Z

(
1

𝑟2𝛼𝜆,𝛾𝜆1
(ℎ𝑁 + 𝑘)

)2

= 𝛾2𝜆
1

(𝑁−1)/2∑︁
𝑘=−(𝑁−1)/2

𝑘≠0

©«
(∑︁
ℓ∈Z

1
|ℓ𝑁 + 𝑘 |2𝛼𝜆

)2

−
∑︁
ℎ∈Z

1
|ℎ𝑁 + 𝑘 |4𝛼𝜆

ª®¬

13.1 𝐿2-Approximation of Functions in Korobov Spaces 421

≤ 𝛾2𝜆
1

(𝑁−1)/2∑︁
𝑘=−(𝑁−1)/2

𝑘≠0

©«
©« 1
𝑘2𝛼𝜆 +

∑︁
ℓ∈Z\{0}

1
|ℓ𝑁 |2𝛼𝜆 |1 + 𝑘/(ℓ𝑁) |2𝛼𝜆

ª®¬
2

− 1
𝑘4𝛼𝜆

ª®®¬
≤ 𝛾2𝜆

1

(𝑁−1)/2∑︁
𝑘=−(𝑁−1)/2

𝑘≠0

©«
©« 1
𝑘2𝛼𝜆 +

∑︁
ℓ∈Z\{0}

1
|ℓ𝑁 |2𝛼𝜆 (1/2)2𝛼𝜆

ª®¬
2

− 1
𝑘4𝛼𝜆

ª®®¬
≤ 𝛾2𝜆

1

(𝑁−1)/2∑︁
𝑘=−(𝑁−1)/2

𝑘≠0

(
1

𝑘2𝛼𝜆
22𝛼𝜆+2𝜁 (2𝛼𝜆)

𝑁2𝛼𝜆 + 24𝛼𝜆+2 (𝜁 (2𝛼𝜆))2

𝑁4𝛼𝜆

)

≤
24𝛼𝜆+3 (𝜁 (2𝛼𝜆))2𝛾2𝜆

1
𝑁

.

In summary, we get

[𝑆𝑁,1,𝛼,𝛾1 (1)]2𝜆 ≤
4𝜁 (2𝛼𝜆)𝛾𝜆1

𝑁
+

4(𝜁 (2𝛼𝜆))2𝛾2𝜆
1

𝑁
+

24𝛼𝜆+3 (𝜁 (2𝛼𝜆))2𝛾2𝜆
1

𝑁

=
1
𝑁

(
22𝜁 (2𝛼𝜆)𝛾𝜆1 + 22 (1 + 24𝛼𝜆+1) (𝜁 (2𝛼𝜆))2𝛾2𝜆

1

)
≤ 1
𝑁

(
2 (2𝜁 (2𝛼𝜆)𝛾𝜆1) + (1 + 26𝛼𝜆) (2𝜁 (2𝛼𝜆)𝛾𝜆1)

2
)

≤ 1
𝑁

(
1 + 2

√︁
1 + 26𝛼𝜆𝜁 (2𝛼𝜆)𝛾𝜆1

)2

≤ 1
𝑁

(
1 + 24𝛼+1𝜁 (2𝛼𝜆)𝛾𝜆1

)2
,

where we used that 2
√

1 + 26𝛼𝜆 ≤ 24𝛼+1. We therefore obtain

𝑆𝑁,1,𝛼,𝛾1 (1) ≤
1

𝑁1/(2𝜆)

(
1 + 24𝛼+1𝜁 (2𝛼𝜆)𝛾𝜆1

)1/𝜆
.

By setting 𝜏 = 1/(2𝜆), we get the result for 𝑠 = 1.

For the induction step, let 𝒈 (𝑠) = (𝑔1, . . . , 𝑔𝑠) ∈ 𝐺𝜑𝑠 (𝑁) denote the 𝑠-dimensional
generating vector that has been found in the first 𝑠 steps of the algorithm, and suppose
that the claimed error bound holds for the lattice rule generated by 𝒈 (𝑠) . Again, we
write (𝒈 (𝑠) , 𝑔) for the vector (𝑔1, . . . , 𝑔𝑠 , 𝑔) ∈ 𝐺𝜑𝑠+1 (𝑁).

By definition,

[𝑆𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔))]2

=
∑︁

ℓ∈Z𝑠+1\{0}
ℓ· (𝒈 (𝑠) ,𝑔)≡0 (mod 𝑁)

∑︁
𝒉∈Z𝑠+1

1
𝑟2𝛼,𝜸 (𝒉) 𝑟2𝛼,𝜸 (𝒉 + ℓ)

422 13 𝐿2-Approximation Using Lattice Rules

=
∑︁
ℎ∈Z

1
(𝑟2𝛼,𝛾𝑠+1 (ℎ))2

∑︁
ℓ∈Z𝑠\{0}

ℓ·𝒈 (𝑠)≡0 (mod 𝑁)

∑︁
𝒉∈Z𝑠

1
𝑟2𝛼,𝜸 (𝒉) 𝑟2𝛼,𝜸 (𝒉 + ℓ)

+
∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

1
𝑟2𝛼,𝛾𝑠+1 (ℎ) 𝑟2𝛼,𝛾𝑠+1 (ℎ + ℓ𝑠+1)

×
∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠

ℓ·𝒈 (𝑠)≡−ℓ𝑠+1𝑔 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉) 𝑟2𝛼,𝜸 (𝒉 + ℓ)

= (1 + 2𝜁 (4𝛼)𝛾2
𝑠+1) [𝑆𝑁,𝑠,𝛼,𝜸 (𝒈

(𝑠))]2 + 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔),
(13.13)

where

𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) :=
∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

1
𝑟2𝛼,𝛾𝑠+1 (ℎ) 𝑟2𝛼,𝛾𝑠+1 (ℎ + ℓ𝑠+1)

×
∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠

ℓ·𝒈 (𝑠)≡−ℓ𝑠+1𝑔 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉) 𝑟2𝛼,𝜸 (𝒉 + ℓ) .

We now use the standard averaging argument (see Remark 2.14) and consider the
average of 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔) over all possible values of 𝑔 ∈ 𝐺𝜑1 (𝑁) = {1, 2, . . . , 𝑁 −
1}. For the optimal choice of 𝑔𝑠+1 we have, for every 𝜆 ∈ (1/(2𝛼), 1],

(𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1))𝜆 ≤ 1
𝑁 − 1

𝑁−1∑︁
𝑔=1

(𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔))𝜆.

By Jensen’s inequality, and by the properties of 𝑟2𝛼,𝜸,

1
𝑁 − 1

𝑁−1∑︁
𝑔=1

(𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔))𝜆

≤ 1
𝑁 − 1

𝑁−1∑︁
𝑔=1

∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

×
∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠

ℓ·𝒈 (𝑠)≡−ℓ𝑠+1𝑔 (mod 𝑁)

1
𝑟2𝛼𝜆,𝜸𝜆 (𝒉) 𝑟2𝛼𝜆,𝜸𝜆 (𝒉 + ℓ)

=: Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠)).

By separating the cases where ℓ𝑠+1 ≡ 0 (mod 𝑁) and where ℓ𝑠+1 . 0 (mod 𝑁), we
obtain

13.1 𝐿2-Approximation of Functions in Korobov Spaces 423

Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠))

=
∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

ℓ𝑠+1≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

×
∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠

ℓ·𝒈 (𝑠)≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝜸𝜆 (𝒉) 𝑟2𝛼𝜆,𝜸𝜆 (𝒉 + ℓ)

+ 1
𝑁 − 1

𝑁−1∑︁
𝑔=1

∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

ℓ𝑠+1.0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

×
∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠

ℓ·𝒈 (𝑠)≡−ℓ𝑠+1𝑔 (mod 𝑁)

1
𝑟2𝛼𝜆,𝜸𝜆 (𝒉) 𝑟2𝛼𝜆,𝜸𝜆 (𝒉 + ℓ)

=
∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

ℓ𝑠+1≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

×
∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠

ℓ·𝒈 (𝑠)≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝜸𝜆 (𝒉) 𝑟2𝛼𝜆,𝜸𝜆 (𝒉 + ℓ)

+ 1
𝑁 − 1

∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

ℓ𝑠+1.0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

×
∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠

ℓ·𝒈 (𝑠).0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝜸𝜆 (𝒉) 𝑟2𝛼𝜆,𝜸𝜆 (𝒉 + ℓ) ,

where we used

𝑁−1∑︁
𝑔=1

∑︁
ℓ∈Z𝑠

ℓ·𝒈 (𝑠)≡−ℓ𝑠+1𝑔 (mod 𝑁)

1
𝑟2𝛼𝜆,𝜸𝜆 (𝒉) 𝑟2𝛼𝜆,𝜸𝜆 (𝒉 + ℓ)

=
∑︁
ℓ∈Z𝑠

ℓ·𝒈 (𝑠).0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝜸𝜆 (𝒉) 𝑟2𝛼𝜆,𝜸𝜆 (𝒉 + ℓ)

for ℓ𝑠+1 ∈ Z \ {0}, ℓ𝑠+1 . 0 (mod 𝑁). We now write

Ξ(𝒈 (𝑠)) :=
∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠

ℓ·𝒈 (𝑠)≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝜸𝜆 (𝒉) 𝑟2𝛼𝜆,𝜸𝜆 (𝒉 + ℓ) ,

and

424 13 𝐿2-Approximation Using Lattice Rules

Ξ̃ :=
∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠

1
𝑟2𝛼𝜆,𝜸𝜆 (𝒉) 𝑟2𝛼𝜆,𝜸𝜆 (𝒉 + ℓ) =

𝑠∏
𝑗=1

(1 + 2𝜁 (2𝛼𝜆)𝛾𝜆𝑗)2.

Then we obviously have Ξ(𝒈 (𝑠)) ≤ Ξ̃, and∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠

ℓ·𝒈 (𝑠).0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝜸𝜆 (𝒉) 𝑟2𝛼𝜆,𝜸𝜆 (𝒉 + ℓ) = Ξ̃ − Ξ(𝒈 (𝑠)).

This yields

Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠)) = Ξ(𝒈 (𝑠))
∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

ℓ𝑠+1≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

+ Ξ̃ − Ξ(𝒈 (𝑠))
𝑁 − 1

∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

ℓ𝑠+1.0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

= Ξ(𝒈 (𝑠))
∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

ℓ𝑠+1≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

+ Ξ̃ − Ξ(𝒈 (𝑠))
𝑁 − 1

∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

− Ξ̃ − Ξ(𝒈 (𝑠))
𝑁 − 1

∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

ℓ𝑠+1≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

=
Ξ̃ − Ξ(𝒈 (𝑠))
𝑁 − 1

∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

+𝑁Ξ(𝒈
(𝑠)) − Ξ̃

𝑁 − 1

∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

ℓ𝑠+1≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

.

(13.14)

Regarding the first term in (13.14), we have∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

=
∑︁
ℎ∈Z

∑︁
ℓ𝑠+1∈Z

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

−
∑︁
ℎ∈Z

1
(𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ))2

= (1 + 2𝜁 (2𝛼𝜆)𝛾𝜆𝑠+1)
2 − (1 + 2𝜁 (4𝛼𝜆)𝛾2𝜆

𝑠+1)
≤ 22𝜁 (2𝛼𝜆)𝛾𝜆𝑠+1 + 22𝜁 (2𝛼𝜆)2𝛾2𝜆

𝑠+1.

13.1 𝐿2-Approximation of Functions in Korobov Spaces 425

Regarding the second term in (13.14), we see in exactly the same way as in the case
𝑠 = 1 that∑︁

ℎ∈Z

∑︁
ℓ𝑠+1∈Z\{0}

ℓ𝑠+1≡0 (mod 𝑁)

1
𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ) 𝑟2𝛼𝜆,𝛾𝜆

𝑠+1
(ℎ + ℓ𝑠+1)

≤
22𝜁 (2𝛼𝜆)𝛾𝜆

𝑠+1 + 22 (1 + 24𝛼𝜆+1) (𝜁 (2𝛼𝜆))2𝛾2𝜆
𝑠+1

𝑁
.

This gives

Θ𝑁,𝑠,𝛼,𝜸,𝜆 (𝒈 (𝑠)) ≤ Ξ̃ − Ξ(𝒈 (𝑠))
𝑁 − 1

(
22𝜁 (2𝛼𝜆)𝛾𝜆𝑠+1 + 22 (𝜁 (2𝛼𝜆))2𝛾2𝜆

𝑠+1

)
+𝑁Ξ(𝒈

(𝑠)) − Ξ̃

𝑁 − 1
22𝜁 (2𝛼𝜆)𝛾𝜆

𝑠+1 + 22 (1 + 24𝛼𝜆+1) (𝜁 (2𝛼𝜆))2𝛾2𝜆
𝑠+1

𝑁

=
Ξ̃

𝑁

(
22𝜁 (2𝛼𝜆)𝛾𝜆𝑠+1 + 22 (𝜁 (2𝛼𝜆))2𝛾2𝜆

𝑠+1

)
+ 𝑁Ξ(𝒈

(𝑠)) − Ξ̃

𝑁 − 1
24𝛼𝜆+3 (𝜁 (2𝛼𝜆))2𝛾2𝜆

𝑠+1
𝑁

≤ Ξ̃

𝑁

(
22𝜁 (2𝛼𝜆)𝛾𝜆𝑠+1 + 22 (𝜁 (2𝛼𝜆))2𝛾2𝜆

𝑠+1

)
+ Ξ̃

24𝛼𝜆+3 (𝜁 (2𝛼𝜆))2𝛾2𝜆
𝑠+1

𝑁

=
22𝜁 (2𝛼𝜆)𝛾𝜆

𝑠+1 + 22 (1 + 24𝛼𝜆+1) (𝜁 (2𝛼𝜆))2𝛾2𝜆
𝑠+1

𝑁

𝑠∏
𝑗=1

(1 + 2𝜁 (2𝛼𝜆)𝛾𝜆𝑗)2.

Using (13.13) and the induction assumption, we obtain

[𝑆𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1))]2

≤ (1 + 2𝜁 (4𝛼)𝛾2
𝑠+1)

1
𝑁2𝜏

𝑠∏
𝑗=1

(
1 + 24𝛼+1𝜁

(𝛼
𝜏

)
𝛾

1/(2𝜏)
𝑗

)4𝜏

+ 1
𝑁1/𝜆

(
22𝜁 (2𝛼𝜆)𝛾𝜆𝑠+1 + 22 (1 + 24𝛼𝜆+1) (𝜁 (2𝛼𝜆))2𝛾2𝜆

𝑠+1

)1/𝜆

×
𝑠∏
𝑗=1

(1 + 2𝜁 (2𝛼𝜆)𝛾𝜆𝑗)2/𝜆.

We partly replace 𝜏 by 1/(2𝜆) in the previous inequality, which yields

[𝑆𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1))]2

≤ (1 + 2𝜁 (4𝛼)𝛾2
𝑠+1)

1
𝑁2𝜏

𝑠∏
𝑗=1

(
1 + 24𝛼+1𝜁

(𝛼
𝜏

)
𝛾

1/(2𝜏)
𝑗

)4𝜏

+ 1
𝑁2𝜏

(
22𝜁 (2𝛼𝜆)𝛾𝜆𝑠+1 + 22 (1 + 24𝛼𝜆+1) (𝜁 (2𝛼𝜆))2𝛾2𝜆

𝑠+1

)1/𝜆

×
𝑠∏
𝑗=1

(
1 + 2𝜁

(𝛼
𝜏

)
𝛾

1/(2𝜏)
𝑗

)4𝜏

426 13 𝐿2-Approximation Using Lattice Rules

≤ 1
𝑁2𝜏

𝑠∏
𝑗=1

(
1 + 24𝛼+1𝜁

(𝛼
𝜏

)
𝛾

1/(2𝜏)
𝑗

)4𝜏

×
(
(1 + 2𝜁 (4𝛼)𝛾2

𝑠+1) +
(
22𝜁 (2𝛼𝜆)𝛾𝜆𝑠+1 + 22 (1 + 24𝛼𝜆+1) (𝜁 (2𝛼𝜆))2𝛾2𝜆

𝑠+1

)1/𝜆
)
.

However, using Jensen’s inequality,

(1 + 2𝜁 (4𝛼)𝛾2
𝑠+1) +

(
22𝜁 (2𝛼𝜆)𝛾𝜆𝑠+1 + 22 (1 + 24𝛼𝜆+1) (𝜁 (2𝛼𝜆))2𝛾2𝜆

𝑠+1

)1/𝜆

≤
(
1 + 2𝜆 (𝜁 (4𝛼))𝜆𝛾2𝜆

𝑠+1 + 22𝜁 (2𝛼𝜆)𝛾𝜆𝑠+1 + 22 (1 + 24𝛼𝜆+1) (𝜁 (2𝛼𝜆))2𝛾2𝜆
𝑠+1

)1/𝜆

≤
(
1 + 6𝜁 (2𝛼𝜆)𝛾𝜆𝑠+1 +

(
2
√︁

1 + 24𝛼+1𝜁 (2𝛼𝜆)𝛾𝜆𝑠+1

)2
)1/𝜆

≤
(
1 + 24𝛼+1𝜁 (2𝛼𝜆)𝛾𝜆𝑠+1

)2/𝜆
,

where we used 3 ≤ 2
√

1 + 24𝛼+1 ≤ 24𝛼+1 for 𝛼 > 1/2. Replacing the remaining
instances of 𝜆 by 1/(2𝜏) yields

[𝑆𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1))]2 ≤ 1
𝑁2𝜏

𝑠+1∏
𝑗=1

(
1 + 24𝛼+1𝜁

(𝛼
𝜏

)
𝛾

1/(2𝜏)
𝑗

)4𝜏
.

Now the result is obtained by taking the square root. □

The following theorem should be compared with Proposition 13.2.

Theorem 13.6 Let 𝑁 ≥ 3 be a prime number and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights
with 𝛾 𝑗 ∈ (0, 1] for 𝑗 ∈ N. Assume that 𝒈 has been found by Algorithm 13.3. Then,
for arbitrary 𝜏 ∈ [1/2, 𝛼), we have

err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈)) ≤
𝐶𝑑,𝛼,𝜸,𝜏

𝑁 𝜏/2
,

where 𝑀 = 𝑁 𝜏 , and where

𝐶𝑑,𝛼,𝜸,𝜏 =
©«1 +

𝑑∏
𝑗=1

(
1 + 24𝛼+1𝜁

(𝛼
𝜏

)
𝛾

1/(2𝜏)
𝑗

)4𝜏ª®¬
1/2

.

Proof Plugging the result in Theorem 13.5 into Equation (13.12), we obtain

[err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2 ≤ 1
𝑀

+
𝐶𝑑,𝛼,𝜸,𝜏 𝑀

𝑁2𝜏 ,

where

13.2 Lower Error Bounds for 𝐿2-Approximation in Korobov Spaces 427

𝐶𝑑,𝛼,𝜸,𝜏 :=
𝑑∏
𝑗=1

(
1 + 24𝛼+1𝜁

(𝛼
𝜏

)
𝛾

1/(2𝜏)
𝑗

)4𝜏
.

In order to balance the two summands in the latter error bound choose 𝑀 = 𝑁 𝜏 .
Then we have

[err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2 ≤
1 + 𝐶𝑑,𝛼,𝜸,𝜏

𝑁 𝜏
.

The result now follows by taking the square root. □

Note that Theorem 13.6 provides an error convergence rate that is arbitrarily close
to O(𝑁−𝛼/2). This is an improvement over the initial, more direct approach, with
the error bound in Proposition 13.2.

13.2 Lower Error Bounds for 𝑳2-Approximation in Korobov
Spaces Using Lattice-Based Algorithms

The results in Section 13.1 (in particular, Theorem 13.6) show that by using an
algorithm based on a suitable rank-1 lattice rule we can obtain a convergence order
arbitrarily close to O(𝑁−𝛼/2). The question is to which extent this upper bound on
the error is sharp. As it turns out, whenever one uses an algorithm based on function
values along a rank-1 lattice point set, this convergence order cannot be improved.
This result was shown, in a slightly more general fashion, in [24].

Before we proceed with the lower bound, we explain the idea of aliasing. For
𝒉 ∈ Z𝑑 , recall the approximation of the 𝒉-th Fourier coefficient by

�̂� (𝒉) =
∫
[0,1]𝑑

𝑓 (𝒙) e−2𝜋i𝒉 ·𝒙 d𝒙 ≈ 1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
e−2𝜋i𝑘𝒉 ·𝒈/𝑁 . (13.15)

Consider now an ℓ ∈ Z𝑑 in the dual lattice L⊥ (𝒈, 𝑁) of the lattice rule with
generating vector 𝒈, i.e., ℓ · 𝒈 ≡ 0 (mod 𝑁). If ℓ · 𝒈 = 𝑣𝑁 for some 𝑣 ∈ Z, then

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
e−2𝜋i𝑘 (𝒉+ℓ) ·𝒈/𝑁 =

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
e−2𝜋i𝑘𝒉 ·𝒈/𝑁e−2𝜋i𝑘𝑣

=
1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
e−2𝜋i𝑘𝒉 ·𝒈/𝑁 .

428 13 𝐿2-Approximation Using Lattice Rules

Thus the approximation of the Fourier coefficient �̂� (𝒉) is the same as the approxi-
mation of the Fourier coefficient �̂� (𝒉 + ℓ). We say that these two Fourier coefficient
approximations are aliased. For a rank-1 lattice rule, the dual lattice can be defined
via the character property of the lattice point set, and hence the aliasing can be
viewed as a consequence of the character property.

Aliasing has already come up in the approximation error of integrals. Using
Proposition 1.12 for a rank-1 lattice rule shows

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
−

∫
[0,1]𝑑

𝑓 (𝒙) d𝒙 =
∑︁

𝒉∈Z\{0}
𝒉 ·𝒈≡0 (mod 𝑁)

�̂� (𝒉), (13.16)

i.e., the integration error is just the sum over all Fourier coefficients which are
aliased with �̂� (0). Roughly speaking, to make the error of numerical integration in a
Korobov space small, we sought generating vectors 𝒈 such that the closest frequency
in the dual lattice is “far” from the origin 0.

We can use (13.16) for expressing the error of approximating the Fourier coeffi-
cient �̂� (𝒉),

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
e−2𝜋i𝑘𝒉 ·𝒈/𝑁 −

∫
[0,1]𝑑

𝑓 (𝒙) e−2𝜋i𝒉 ·𝒙 d𝒙 =
∑︁

ℓ∈Z𝑑\{0}
ℓ·𝒈≡0 (mod 𝑁)

�̂� (𝒉 + ℓ).

Now the error is the sum over all Fourier coefficients which are aliased with �̂� (𝒉).
Geometrically this means that we shift the dual lattice by 𝒉 (the dual lattice is now an
affine space), and hence the dual lattice contains now points much closer to the origin
than the points in the “original” dual lattice (see Figure 13.1). For approximation
in Korobov spaces in which the Fourier coefficients decay as one moves away from
the origin (where we measure “distance” by 𝑟1 (𝒉) =

∏𝑑
𝑗=1 max(1, |ℎ 𝑗 |)), this means

that it is natural to expect the approximation error to be larger than the integration
error.

One can use these ideas to obtain a lower bound on the approximation error. It
turns out that it is sufficient to consider the two-dimensional case. Say we are given
a generating vector 𝒈 = (1, 𝑔) and number of points 𝑁 . In Lemma 13.8 below we
show that there is a vector (ℎ1, ℎ2) ∈ L⊥ (𝒈, 𝑁) \ {(0, 0)} with |ℎ1 |, |ℎ2 | ≤

√
𝑁 .

If we use (13.16) to approximate the Fourier coefficients of a function 𝑓 , then the
Fourier coefficients �̂� (0, 0) and �̂� (ℎ1, ℎ2) are aliased. This is not sufficient to obtain
a good lower bound on the approximation error however, since the aliasing between
the Fourier coefficient �̂� (0, 0) =

∫ 1
0

∫ 1
0 𝑓 (𝒙) d𝒙 and other Fourier coefficient only

yields a lower bound on the integration error.
However, consider now the case of approximating the Fourier coefficient �̂� (ℎ1, 0)

using (13.15). Due to aliasing, the approximation of �̂� (ℎ1, 0) is the same as the
approximation of �̂� (0,−ℎ2). The approximation is given by the sum over all aliased
Fourier coefficients

13.2 Lower Error Bounds for 𝐿2-Approximation in Korobov Spaces 429

Fig. 13.1: We illustrate the approximation of the Fourier coefficients �̂� (0, 0) (left)
and �̂� (−1, 0) (right) using a hyperbolic cross, see p. 16. The left-hand side shows
the dual lattice of a lattice rule with generating vector 𝒈 = (1, 5) and 𝑁 = 8
points. The blue-shaded region shows the hyperbolic cross {(ℎ1, ℎ2) ∈ R2 :
max(1, |ℎ1 |) max(1, |ℎ2 |) ≤ 3}. The only point in the interior of the hyperbolic cross
is the point (0, 0) (indicated by the red dot), which is exactly the frequency we want to
approximate. If we measure “distance” from the origin by max(1, |ℎ1 |) max(1, |ℎ2 |),
then the points (1, 3), (3, 1), (−1,−3) and (−3,−1) are “closest” to the origin (i.e.,
they minimize 𝑟1 over L⊥ (𝒈, 𝑁) \ {0}). The figure on the right shows the dual lattice
shifted by (−1, 0) (now indicated by the red dot), which corresponds to the case
where we want to approximate �̂� (−1, 0). Here the blue-shaded region shows the
hyperbolic cross {(ℎ1, ℎ2) ∈ R2 : max(1, |ℎ1 |) max(1, |ℎ2 |) ≤ 2}. In this case the
“closest” points are (2, 1) and (1,−2). The hyperbolic cross on the right is smaller
than the hyperbolic cross on the left, which illustrates that in general the error of
approximating �̂� (−1, 0) is larger than the error of approximating �̂� (0, 0).

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
e−2𝜋i𝑘𝒉 ·𝒈/𝑁 =

∑︁
ℓ∈Z2

ℓ·𝒈≡0 (mod 𝑁)

�̂� ((ℎ1, 0) + ℓ). (13.17)

We can now construct a Fourier polynomial with only two terms which are
aliased and which is difficult to approximate. It is convenient to set �̂� (ℎ1, 0) = 1 and
�̂� (0,−ℎ2) = −1, since then (13.17) becomes 0, which means that (13.2) approximates
the Fourier polynomial

e2𝜋i(ℎ1 ,0) ·𝒙 − e2𝜋i(0,−ℎ2) ·𝒙 (13.18)

by 0. This is convenient, because now we do not need to distinguish between the
cases whether (ℎ1, 0), (0,−ℎ2) are in the set A2,𝑀 or not. The lower bound then
comes from estimating the norm of the Fourier polynomial (13.18) (the details are
given in the proof of Theorem 13.7 below).

430 13 𝐿2-Approximation Using Lattice Rules

The above approach can be generalised—the lower bound proof does not rely
on the specific form of the approximation algorithm (it applies to (13.2) but also
any other method which uses the same function values). The details are given in
Theorem 13.7 and its proof.

Theorem 13.7 Let 𝑑, 𝑁 ∈ N, let 𝛼 > 1/2, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights.
Furthermore, let 𝐴𝑁,𝑑 (𝒈) be an arbitrary linear 𝐿2-approximation algorithm using
function evaluations at the points of a rank-1 lattice point set with generating vector
𝒈 for 𝑓 ∈ Hkor,𝑑,𝛼,𝜸, i.e.,

𝐴𝑁,𝑑 (𝒈) (𝑓) =
𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
𝑎𝑘 , (13.19)

with some 𝑎𝑘 ∈ 𝐿2 ([0, 1]𝑑). Then it is true that

err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑑 (𝒈)) ≥
𝐶𝑑,𝛼,𝜸

𝑁𝛼/2
,

where 𝐶𝑑,𝛼,𝜸 is a positive real that is independent of 𝑁 .

For the proof of this result we require some preparation. For given 𝑑, 𝑁 ∈ N, let

𝑋
𝑑,
√
𝑁

:= {−⌊
√
𝑁⌋, . . . , ⌊

√
𝑁⌋} × {−⌊

√
𝑁⌋, . . . , ⌊

√
𝑁⌋} × {0} × · · · × {0}︸ ︷︷ ︸

𝑑 − 2 times

,

and 𝑋+
𝑑,
√
𝑁

:= 𝑋
𝑑,
√
𝑁
∩ N𝑑0 . Furthermore, again for 𝑑, 𝑁 ∈ N, define

𝑋
𝑑,
√
𝑁

:= {𝒉 ∈ 𝑋
𝑑,
√
𝑁

: ∥𝒉∥1 = ∥𝒉∥∞}.

Next, we show the following lemma.

Lemma 13.8 Let 𝑑, 𝑁 ∈ N, and let {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} be an arbitrary 𝑁-point set
in [0, 1)𝑑 , such that

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘 ∈ {0, 𝑁}

for all 𝒉 ∈ 𝑋
𝑑,
√
𝑁

. Then, there exist at least two distinct indices 𝒉 (1) , 𝒉 (2) ∈ 𝑋
𝑑,
√
𝑁

such that
e2𝜋i𝒉 (1) ·𝒙𝑘 = e2𝜋i𝒉 (2) ·𝒙𝑘 for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}.

Proof If 𝒉 = 0 ∈ 𝑋
𝑑,
√
𝑁

, then we obviously have

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘 = 𝑁.

13.2 Lower Error Bounds for 𝐿2-Approximation in Korobov Spaces 431

Now assume that

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘 = 0 for all 𝒉 ∈ 𝑋
𝑑,
√
𝑁
\ {0}.

For any two 𝒉 (1) , 𝒉 (2) ∈ 𝑋+
𝑑,
√
𝑁

, we have 𝒉 (1) − 𝒉 (2) ∈ 𝑋
𝑑,
√
𝑁

, and furthermore

𝑁−1∑︁
𝑘=0

e2𝜋i(𝒉 (2)−𝒉 (1)) ·𝒙𝑘 =

{
𝑁 if 𝒉 (2) − 𝒉 (1) = 0,
0 otherwise.

We can write this relation in matrix-vector form as

𝐴∗𝐴 = 𝑁𝑈(⌊
√
𝑁 ⌋+1)2 ,

where we remind the reader that𝑈𝑘 denotes the 𝑘 × 𝑘 identity matrix, and where

𝐴 =

(
e2𝜋i𝒉 ·𝒙𝑘

)
𝑘∈{0,1,...,𝑁−1},𝒉∈𝑋+

𝑑,
√
𝑁

,

and where 𝐴∗ = 𝐴
⊤

is the adjoint matrix of 𝐴. However, the relation 𝐴∗𝐴 =

𝑁𝑈(⌊
√
𝑁 ⌋+1)2 means that 𝐴 must have full column rank, which is impossible as

𝑁 < (⌊
√
𝑁⌋ +1)2. Accordingly, this case cannot occur and therefore there must exist

at least one 𝒉 (0) = (ℎ (0)1 , ℎ
(0)
2 , 0, . . . , 0) ∈ 𝑋

𝑑
√
𝑁
\ {0} such that

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 (0) ·𝒙𝑘 = 𝑁.

This implies that e2𝜋i𝒉 (0) ·𝒙𝑘 = 1 for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. In this case, we can
choose 𝒉 (1) , 𝒉 (2) ∈ 𝑋

𝑑,
√
𝑁

as

𝒉 (1) = (ℎ (0)1 , 0, 0, . . . , 0) and 𝒉 (2) = (0,−ℎ (0)2 , 0, . . . , 0).

Then, we obviously have

e2𝜋i𝒉 (1) ·𝒙𝑘e−2𝜋i𝒉 (2) ·𝒙𝑘 = 1 or, equivalently, e2𝜋i𝒉 (1) ·𝒙𝑘 = e2𝜋i𝒉 (2) ·𝒙𝑘

for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. This yields the result in the lemma. □

Using Lemma 13.8, we can proceed to show Theorem 13.7.

Proof of Theorem 13.7 Due to Lemma 13.8, we know that there exist distinct ele-
ments 𝒉 (1) , 𝒉 (2) of 𝑋

𝑑,
√
𝑁

such that

e2𝜋i𝑘𝒉 (1) ·𝒈/𝑁 = e2𝜋i𝑘𝒉 (2) ·𝒈/𝑁 for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, (13.20)

432 13 𝐿2-Approximation Using Lattice Rules

which implies 𝒉 (1) · 𝒈 ≡ 𝒉 (2) · 𝒈 (mod 𝑁).
We now define a special function �̃� ∈ Hkor,𝑑,𝛼,𝜸 by

�̃� (𝒙) := e2𝜋i𝒉 (1) ·𝒙 − e2𝜋i𝒉 (2) ·𝒙 for 𝒙 ∈ [0, 1]𝑑 ,

such that ∥ �̃� ∥kor,𝑑,𝛼,𝜸 = (𝑟2𝛼,𝜸 (𝒉 (1)) + 𝑟2𝛼,𝜸 (𝒉 (2)))1/2. We then define 𝑓0 ∈
Hkor,𝑑,𝛼,𝜸 by

𝑓0 (𝒙) :=
�̃� (𝒙)

(𝑟2𝛼,𝜸 (𝒉 (1)) + 𝑟2𝛼,𝜸 (𝒉 (2)))1/2

such that ∥ 𝑓0∥kor,𝑑,𝛼,𝜸 = 1. Since (13.20) holds, we obtain that 𝑓0 ({𝑘𝒈/𝑁}) = 0 for
all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. Furthermore, by Parseval’s identity,

∥ 𝑓0∥𝐿2 =

(∑︁
𝒉∈Z𝑑

| �̂�0 (𝒉) |2
)1/2

=

√
2

(𝑟2𝛼,𝜸 (𝒉 (1)) + 𝑟2𝛼,𝜸 (𝒉 (2)))1/2
.

Since 𝒉 (1) , 𝒉 (2) ∈ 𝑋
𝑑,
√
𝑁

, we have ∥𝒉 (1) ∥∞ = ∥𝒉 (1) ∥1 and ∥𝒉 (2) ∥∞ = ∥𝒉 (2) ∥1.
Without loss of generality, we assume ∥𝒉 (1) ∥1 = ∥𝒉 (1) ∥∞ ≥ ∥𝒉 (2) ∥∞ = ∥𝒉 (2) ∥1,
which implies

𝑟2𝛼,𝜸 (𝒉 (1)) ≥ 𝑟2𝛼,𝜸 (𝒉 (2)).

Consequently,

∥ 𝑓0∥𝐿2 ≥ 1
(𝑟2𝛼,𝜸 (𝒉 (1)))1/2

.

On the other hand, since 𝒉 (1) ∈ 𝑋
𝑑,
√
𝑁

, we get

𝑟2𝛼,𝜸 (𝒉 (1)) ≤ 𝑁𝛼

𝛾 𝑗0
,

where either 𝑗0 = 1 or 𝑗0 = 2. This yields

∥ 𝑓0∥𝐿2 ≥
√
𝛾 𝑗0

𝑁𝛼/2
.

Let now 𝐴𝑁,𝑑 (𝒈) be an arbitrary linear 𝐿2-approximation algorithm using function
evaluations at the lattice points {𝑘𝒈/𝑁}, 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, for 𝑓 ∈ Hkor,𝑑,𝛼,𝜸,
as given in (13.19). We then obviously have 𝐴𝑁,𝑑 (𝒈) (𝑓0) = 0 and therefore
√
𝛾 𝑗0

𝑁𝛼/2
≤ ∥ 𝑓0∥𝐿2 = ∥ 𝑓0 − 𝐴𝑁,𝑑 (𝒈) (𝑓0)∥𝐿2 ≤ sup

𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

∥ 𝑓 − 𝐴𝑁,𝑑 (𝒈) (𝑓)∥𝐿2 .

This yields the result. □

13.3 Tractability of 𝐿2-Approximation Using Lattice Rules 433

13.3 Tractability of 𝑳2-Approximation Using Lattice Rules

In Section 1.7, we introduced the notions of information complexity and tractability
for the problem of numerical integration. Analogously, we can proceed for the
problem of 𝐿2-approximation in the Korobov space Hkor,𝑑,𝛼,𝜸. However, in the
case of function approximation, we have to distinguish regarding which class of
information we have access to. To be more precise, we could consider general linear
algorithms of the form

𝐴𝑁,𝑑 (𝑓) :=
𝑁−1∑︁
𝑘=0

𝑎𝑘L𝑘 (𝑓),

where the coefficients 𝑎𝑘 are elements of 𝐿2 ([0, 1]𝑑), and the L𝑘 are continuous
linear functionals defined on Hkor,𝑑,𝛼,𝜸 (in fact, it can be shown that it is no essential
restriction to consider only linear algorithms like 𝐴𝑁,𝑑 for this problem, see, e.g.,
[207] or [210, Chapter 4], and the references therein). If we allow arbitrary continuous
linear functionals for the L𝑘 , we say that we use information from the class Λall. If,
on the other hand, we only allow function evaluations for L𝑘 , i.e., L𝑘 (𝑓) = 𝑓 (𝒙𝑘)
for some 𝒙𝑘 ∈ [0, 1]𝑑 , 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, we speak of standard information or
information from the classΛstd. With some abuse of notation we also write 𝐴𝑁,𝑑 ∈ Λ

for Λ ∈ {Λall,Λstd} when the algorithm 𝐴𝑁,𝑑 uses information exclusively from the
class Λ.

We can then define the worst-case error of a linear algorithm 𝐴𝑁,𝑑 for the problem
of 𝐿2-approximation in the Korobov space Hkor,𝑑,𝛼,𝜸 as

err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑑) := sup
𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

∥ 𝑓 − 𝐴𝑁,𝑑 (𝑓)∥𝐿2 . (13.21)

The initial error, corresponding to using no information about the functions to be
approximated, is in this case given by

err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 0) := sup
𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

∥ 𝑓 ∥𝐿2 .

As we have ∥ 𝑓 ∥𝐿2 ≤ ∥ 𝑓 ∥kor,𝑑,𝛼,𝜸 for all 𝑓 ∈ Hkor,𝑑,𝛼,𝜸, and since for 𝑓 ≡ 1 we
have ∥ 𝑓 ∥𝐿2 = ∥ 𝑓 ∥kor,𝑑,𝛼,𝜸 = 1, we know that the initial error in this problem is
actually equal to one, which means that the specific problem of 𝐿2-approximation in
the Korobov space is already normalized.

Adapting the definition of the information complexity that was previously given
in Definition 1.42 to the approximation problem, and to the different classes of
information, we call, for given 𝜀 ∈ (0, 1) and 𝑑 ∈ N, and given Λ ∈ {Λstd,Λall},

𝑁𝐿2−app (𝜀, 𝑑,Λ)
:= min{𝑁 ∈ N : ∃𝐴𝑁,𝑑 ∈ Λ such that err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑑) ≤ 𝜀}

434 13 𝐿2-Approximation Using Lattice Rules

the information complexity of 𝐿2-approximation in Hkor,𝑑,𝛼,𝜸 using information
from Λ.

We can then define the various notions of tractability, depending on the infor-
mation class Λ under consideration, in analogy to Definition 1.44. In particular, we
speak of polynomial tractability for the class Λ ∈ {Λstd,Λall}, if there are constants
𝐶, 𝜎 > 0 and 𝜂 ≥ 0 such that

𝑁𝐿2−app (𝜀, 𝑑,Λ) ≤ 𝐶𝑑𝜂𝜀−𝜎 for all 𝜀 ∈ (0, 1) and all 𝑑 ∈ N. (13.22)

If (13.22) holds with 𝜂 = 0, we speak of strong polynomial tractability. If strong
polynomial tractability holds, we call the infimum of those 𝜎 for which (13.22) holds
with 𝜂 = 0 the 𝜀-exponent of strong polynomial tractability for the class Λ, denoted
by 𝜎∗ (Λ).

Next, we discuss tractability properties of the 𝐿2-approximation problem for the
weighted Korobov space Hkor,𝑑,𝛼,𝜸.

𝐿2-approximation based on Λall

Conveniently, for the information class Λall, it is known how the optimal algorithm
for approximation in the Korobov space is defined. Indeed, in Λall, we have access
to Fourier coefficients, and the optimal algorithm 𝐴𝑁,𝑑 to obtain an error of at most
𝜀 is given by choosing 𝑁 = |A𝑑,𝜀−2 |, and

𝐴𝑁,𝑑 (𝑓) (𝒙) :=
∑︁

𝒉∈A
𝑑,𝜀−2

�̂� (𝒉) e2𝜋i𝒉 ·𝒙 for 𝑓 ∈ Hkor,𝑑,𝛼,𝜸,

where we recall the definition of A𝑑,𝑀 for 𝑀 ≥ 0 from (13.1). This is a special case
of a well-known general result for Hilbert spaces (see, e.g., [210] for further details).
From this, one can deduce precise conditions on the weights 𝜸 in order to achieve
(strong) polynomial tractability. These conditions are stated in terms of the so-called
sum-exponent of the weights 𝜸 = (𝛾 𝑗) 𝑗≥1, which is given by

𝑆𝜸 := inf
𝑠 > 0 :

∞∑︁
𝑗=1
𝛾𝑠𝑗 < ∞

 .
We now state a characterization of (strong) polynomial tractability in terms of the
sum-exponent of the weight sequence 𝜸.

Theorem 13.9 For Λall, it is true that polynomial tractability and strong polynomial
tractability of 𝐿2-approximation for the weighted Korobov space are equivalent and
they are equivalent to the condition 𝑆𝜸 < ∞. If this is the case, the 𝜀-exponent of
strong polynomial tractability is given by

𝜎∗ (Λall) = 2 max(1/(2𝛼), 𝑆𝜸).

13.3 Tractability of 𝐿2-Approximation Using Lattice Rules 435

This result follows from very general findings due to Wasilkowski and Woźnia-
kowski [261]. A direct proof for the present special instance of 𝐿2-approximation
for Korobov spaces can also be found in [72]. Since the proof is beyond the scope
of this book, we omit it and refer to the existing literature instead. A complete
overview of the weight conditions for all current standard tractability notions of this
approximation problem can be found in [72, Theorem 1].

𝐿2-approximation based on Λstd

For Λstd, the situation is more involved than for Λall. The following result is due to
Novak, Sloan, and Woźniakowski [209].
Theorem 13.10 ForΛstd, strong polynomial tractability of 𝐿2-approximation for the
weighted Korobov space holds if and only if

∞∑︁
𝑗=1
𝛾 𝑗 < ∞,

which implies 𝑆𝜸 ≤ 1 and 𝜎∗ (Λall) ≤ 2. For the 𝜀-exponent of strong polynomial
tractability for standard information, it is then true that

𝜎∗ (Λstd) ∈ [𝜎∗ (Λall), 𝜎∗ (Λall) + 2] .

In particular, we have 𝜎∗ (Λstd) ≤ 4.
Furthermore, polynomial tractability holds for Λstd if and only if

lim sup
𝑑→∞

1
log 𝑑

𝑑∑︁
𝑗=1
𝛾 𝑗 < ∞.

Again, we omit the proof of these results and refer to [209] or to [162].
We now demonstrate how the error bound presented in Theorem 13.6 can be

used to meet the results stated in Theorem 13.10. In this way we show how (strong)
polynomial tractability can be achieved by means of algorithms that are based on
lattice rules.

Theorem 13.11 The 𝐿2-approximation problem for the weighted Korobov space
with respect to information from the class Λstd, using function evaluations at the
points of a rank-1 lattice point set, is strongly polynomially tractable if

∞∑︁
𝑗=1
𝛾 𝑗 < ∞.

If
∞∑︁
𝑗=1
𝛾

1/(2𝜏)
𝑗

< ∞ (13.23)

436 13 𝐿2-Approximation Using Lattice Rules

holds for some 𝜏 ∈ [1/2, 𝛼), then the 𝜀-exponent is at most 2/𝜏. If (13.23) even holds
for every 𝜏 ∈ [1/2, 𝛼), then the 𝜀-exponent is at most 2/𝛼. Furthermore, polynomial
tractability holds if

lim sup
𝑑→∞

1
log 𝑑

𝑑∑︁
𝑗=1
𝛾 𝑗 < ∞. (13.24)

Proof For every odd prime number 𝑁 one can construct an algorithm 𝐴𝑁,𝑑 (𝒈) based
on a rank-1 lattice point set P(𝒈, 𝑁) such that according to Theorem 13.6 we have,
for every 𝜏 ∈ [1/2, 𝛼),

err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑑 (𝒈)) ≤
𝐶𝑑,𝛼,𝜏,𝜸

𝑁 𝜏/2
, (13.25)

where

𝐶𝑑,𝛼,𝜏,𝜸 ≤
√

2
𝑑∏
𝑗=1

(
1 + 24𝛼+1𝛾

1/(2𝜏)
𝑗

𝜁

(𝛼
𝜏

))2𝜏
.

Assume that (13.23) holds for some 𝜏 ∈ [1/2, 𝛼). Then

𝑑∏
𝑗=1

(
1 + 24𝛼+1𝛾

1/(2𝜏)
𝑗

𝜁

(𝛼
𝜏

))
≤ e24𝛼+1𝜁 (𝛼/𝜏) ∑𝑑

𝑗=1 𝛾
1/(2𝜏)
𝑗 ≤ e24𝛼+1𝜁 (𝛼/𝜏) ∑∞

𝑗=1 𝛾
1/(2𝜏)
𝑗

is bounded uniformly in 𝑑. This means that

err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑑 (𝒈)) ≤
𝐶𝛼,𝜏,𝜸

𝑁 𝜏/2

for some 𝐶𝛼,𝜏,𝜸 < ∞, which is independent of the dimension 𝑑. Let 𝑄 :=
⌈(𝐶𝛼,𝜏,𝜸𝜀−1)2/𝜏⌉ and let 𝑁 be the smallest odd prime number greater than or equal to
𝑄. Note that obviously 𝑁 ∈ [𝑄, 2𝑄). Now construct a generating vector 𝒈 according
to Algorithm 13.3. For this 𝒈 we then obtain

err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑑 (𝒈)) ≤ 𝜀,

and hence the information complexity satisfies

𝑁𝐿2−app (𝜀, 𝑑,Λstd) ≤ 𝑁 ≤ 2𝑄 = 2
⌈(
𝐶𝛼,𝜏,𝜸𝜀

−1
)2/𝜏

⌉
.

Thus, the problem is strongly polynomially tractable with an 𝜀-exponent of at most
2/𝜏. In particular, for 𝜏 = 1/2, we see that summability of the weights 𝛾 𝑗 , 𝑗 ∈ N,
is sufficient to obtain strong polynomial tractability. If (13.23) even holds for all
𝜏 ∈ [1/2, 𝛼), then the 𝜀-exponent is at most 2/𝛼.

Finally, let us assume that (13.24) holds. Then we can choose 𝜏 = 1/2 in (13.25)
and see by standard arguments as in the proof of Corollary 2.28 (in particular,
see (2.33)) that

13.4 Adaptions for General Weights 437

𝑑∏
𝑗=1

(
1 + 24𝛼+1𝛾 𝑗 𝜁 (2𝛼)

)
is bounded from above by a term that depends only polynomially on 𝑑. In this way,
we obtain polynomial tractability. □

13.4 Adaptions for General Weights

In this section, we will highlight some additional aspects of the theory developed in
this chapter so far. Up to now, we have only allowed product weights for approxima-
tion by means of lattice rules. Here we would like to generalize these observations
to the case of general (nonnegative) weights with a special focus on product-and-
order-dependent (POD) weights (recall that product weights are a special case of
POD weights). As for integration problems, the significance of POD weights is
mostly due to applications such as the analysis of PDEs with random coefficients
(see Appendix A).

Derivation of a CBC algorithm and an error bound

Analogously to what we did in Section 13.1, we define the set A𝑑,𝑀 as in (13.1),
i.e.,

A𝑑,𝑀 :=
{
𝒉 ∈ Z𝑑 : 𝑟2𝛼,𝜸 (𝒉) ≤ 𝑀

}
,

but now for general (nonnegative) weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] .
For given 𝑁 ∈ N and𝑀 ≥ 0, a given rank-1 lattice point set with generating vector

𝒈 ∈ 𝐺𝜑
𝑑
(𝑁), and for the Korobov space Hkor,𝑑,𝛼,𝜸 with weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] , the

algorithm 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈) and its error are defined exactly as in (13.2) and (13.3),
respectively.

First, we need an estimate on the size of the set A𝑑,𝑀 . The following lemma,
which is a generalization of Item 4 of Lemma 13.1, gives such a bound. For a proof,
we refer to [28].
Lemma 13.12 For 𝛼 > 1/2, 𝑑 ∈ N, general (nonnegative) weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] ,
and 𝑀 ≥ 0, let A𝑑,𝑀 :=

{
𝒉 ∈ Z𝑑 : 𝑟2𝛼,𝜸 (𝒉) ≤ 𝑀

}
. Then, for any 𝜆 > 1/(2𝛼), we

have
|A𝑑,𝑀 | ≤ 𝑀𝜆

∑︁
𝔲⊆[𝑑]

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 | .

Regarding the error analysis of the algorithm 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈), it can be shown in
exactly the same way as in the computations leading to (13.12) that

[err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2 ≤ 1
𝑀

+ 𝑀 [𝑆𝑁,𝑑,𝛼,𝜸 (𝒈)]2, (13.26)

where 𝑆𝑁,𝑑,𝛼,𝜸 (𝒈) is defined as in (13.11), i.e.,

438 13 𝐿2-Approximation Using Lattice Rules

𝑆𝑁,𝑑,𝛼,𝜸 (𝒈) :=
©«
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

∑︁
ℓ∈Z𝑑\{0}

ℓ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ)

ª®®®®¬
1/2

.

In Section 13.1, we then proceeded with a CBC construction of generating vectors 𝒈
such that 𝑆𝑁,𝑑,𝛼,𝜸 (𝒈) is small. This step, however, requires additional work for the
case of general weights as compared to the special case of product weights.

First, we need the following lemma to “decompose” the square of the quantity
𝑆𝑁,𝑑,𝛼,𝜸 (𝒈) component-wise. Before we state the lemma we remind the reader that
for 𝑑 ∈ N and 𝒉 ∈ Z𝑑 we use the notation 𝔲(𝒉) := { 𝑗 ∈ [𝑑] : ℎ 𝑗 ≠ 0}.

Lemma 13.13 Let 𝑑, 𝑁 ∈ N, let 𝛼 > 1/2, and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be general
(nonnegative) weights. Let 𝑆𝑁,𝑑,𝛼,𝜸 (𝒈) be as in (13.11), where 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈
𝐺
𝜑

𝑑
(𝑁). Then it is true that

[𝑆𝑁,𝑑,𝛼,𝜸 (𝒈)]2 =

𝑑∑︁
𝑠=1

𝑇𝑁,𝑑,𝑠,𝛼,𝜸 (𝑔1, . . . , 𝑔𝑠), (13.27)

where, for 𝑠 ∈ [𝑑],

𝑇𝑁,𝑑,𝑠,𝛼,𝜸 (𝑔1, . . . , 𝑔𝑠)
:=

∑︁
𝔴⊆{𝑠+1,...,𝑑 }

(2𝜁 (4𝛼)) |𝔴 | 𝑇𝑁,𝑠,𝛼 (𝑔1, . . . , 𝑔𝑠 , {𝛾𝔲∪𝔴}𝔲⊆[𝑠]), (13.28)

with

𝑇𝑁,𝑠,𝛼 (𝑔1, . . . , 𝑔𝑠 , {𝛾𝔲∪𝔴}𝔲⊆[𝑠]) :=
∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠
ℓ𝑠≠0

ℓ· (𝑔1 ,...,𝑔𝑠)≡0 (mod 𝑁)

𝛾𝔲 (𝒉)∪𝔴
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒉+ℓ)∪𝔴
𝑟2𝛼 (𝒉 + ℓ) .

(13.29)
The set {𝑠 + 1, . . . , 𝑑} in (13.28) is to be interpreted as ∅ if 𝑠 = 𝑑, i.e., in that case,
the summation is considered only over the empty set.

Proof Formally, we put 𝑆𝑁,0,𝛼,𝜸 := 0. Note that we can write, for 𝑑 ∈ N

[𝑆𝑁,𝑑,𝛼,𝜸 (𝒈)]2 = [𝑆𝑁,𝑑,𝛼, {𝛾𝔲 }𝔲⊆[𝑑] ((𝑔1, . . . , 𝑔𝑑))]2

=
∑︁
𝒉∈Z𝑑

∑︁
ℓ∈Z𝑑\{0}

ℓ·𝒈≡0 (mod 𝑁)

𝛾𝔲 (𝒉)
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒉+ℓ)
𝑟2𝛼 (𝒉 + ℓ) .

Now we can split up the double sum in the latter expression according to three cases
depending on 𝒉 = (ℎ1, . . . , ℎ𝑑) and ℓ = (ℓ1, . . . , ℓ𝑑), namely when ℎ𝑑 = ℓ𝑑 = 0,
when ℓ𝑑 = 0 but ℎ𝑑 ≠ 0, and when ℓ𝑑 ≠ 0. This yields

13.4 Adaptions for General Weights 439

[𝑆𝑁,𝑑,𝛼,𝜸 (𝒈)]2 =
∑︁

𝒉∈Z𝑑−1

∑︁
ℓ∈Z𝑑−1\{0}

ℓ· (𝑔1 ,...,𝑔𝑑−1)≡0 (mod 𝑁)

𝛾𝔲 (𝒉)
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒉+ℓ)
𝑟2𝛼 (𝒉 + ℓ)

+
∑︁

ℎ𝑑 ∈Z\{0}

1
|ℎ𝑑 |4𝛼

∑︁
𝒉∈Z𝑑−1

∑︁
ℓ∈Z𝑑−1\{0}

ℓ· (𝑔1 ,...,𝑔𝑑−1)≡0 (mod 𝑁)

𝛾𝔲 (𝒉)∪{𝑑 }
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒉+ℓ)∪{𝑑 }
𝑟2𝛼 (𝒉 + ℓ)

+
∑︁
𝒉∈Z𝑑

∑︁
ℓ∈Z𝑑
ℓ𝑑≠0

ℓ· (𝑔1 ,...,𝑔𝑑)≡0 (mod 𝑁)

𝛾𝔲 (𝒉)
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒉+ℓ)
𝑟2𝛼 (𝒉 + ℓ) .

Adapting notation slightly, we can therefore write

[𝑆𝑁,𝑑,𝛼, {𝛾𝔲 }𝔲⊆[𝑑] (𝒈)]
2 = [𝑆𝑁,𝑑−1,𝛼, {𝛾𝔲 }𝔲⊆[𝑑−1] ((𝑔1, . . . , 𝑔𝑑−1))]2

+2𝜁 (4𝛼) [𝑆𝑁,𝑑−1,𝛼, {𝛾𝔲∪{𝑑} }𝔲⊆[𝑑−1] ((𝑔1, . . . , 𝑔𝑑−1))]2

+𝑇𝑁,𝑑,𝛼 (𝑔1, . . . , 𝑔𝑑 , {𝛾𝔲}𝔲⊆[𝑑).

For a moment, we can omit the arguments 𝒈 and 𝑔1, . . . , 𝑔𝑑 , respectively, from the
latter recursion for simplicity, and continue with

[𝑆𝑁,𝑑,𝛼, {𝛾𝔲 }𝔲⊆[𝑑]]
2

= [𝑆𝑁,𝑑−1,𝛼, {𝛾𝔲 }𝔲⊆[𝑑−1]]
2 + 2𝜁 (4𝛼) [𝑆𝑁,𝑑−1,𝛼, {𝛾𝔲∪{𝑑} }𝔲⊆[𝑑−1]]

2 + 𝑇𝑁,𝑑,𝛼 ({𝛾𝔲}𝔲⊆[𝑑])
= [𝑆𝑁,𝑑−2,𝛼, {𝛾𝔲 }𝔲⊆[𝑑−2]]

2 + 2𝜁 (4𝛼) [𝑆𝑁,𝑑−2,𝛼, {𝛾𝔲∪{𝑑−1} }𝔲⊆[𝑑−2]]
2

+𝑇𝑁,𝑑−1,𝛼 ({𝛾𝔲}𝔲⊆[𝑑−1])
+2𝜁 (4𝛼) [𝑆𝑁,𝑑−2,𝛼, {𝛾𝔲∪{𝑑} }𝔲⊆[𝑑−2]]

2 + (2𝜁 (4𝛼))2 [𝑆𝑁,𝑑−2,𝛼, {𝛾𝔲∪{𝑑−1}∪{𝑑} }𝔲⊆[𝑑−2]]
2

+2𝜁 (4𝛼)𝑇𝑁,𝑑−1,𝛼 ({𝛾𝔲∪{𝑑 }}𝔲⊆[𝑑−1]) + 𝑇𝑁,𝑑,𝛼 ({𝛾𝔲}𝔲⊆[𝑑]).

We can continue this procedure repeatedly, until finally reaching the point where we
can use 𝑆𝑁,0,𝛼,𝜸 = 0, which yields (13.27). □

We are ready to formulate the CBC construction for 𝐿2-approximation in the
weighted Korobov space with general weights.

Algorithm 13.14 (CBC construction for 𝐿2-approximation in the weighted Ko-
robov space with general weights) Let prime 𝑁 and 𝑑 ∈ N be given, let 𝛼 > 1/2,
and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be given (nonnegative) weights. Construct a generating vector
𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺𝜑𝑑 (𝑁) as follows.

(1) Choose 𝑔1 as
𝑔1 := argmin

𝑔∈𝐺𝜑

1 (𝑁)
𝑇𝑁,𝑑,1,𝛼,𝜸 (𝑔1).

(2) For 𝑠 from 2 to 𝑑:
Assume that 𝑔1, . . . , 𝑔𝑠−1 ∈ 𝐺

𝜑

1 (𝑁) have already been found. Choose 𝑔𝑠 ∈
𝐺
𝜑

1 (𝑁) as

440 13 𝐿2-Approximation Using Lattice Rules

𝑔𝑠 := argmin
𝑔∈𝐺𝜑

1 (𝑁)
𝑇𝑁,𝑑,𝑠,𝛼,𝜸 (𝑔1, . . . , 𝑔𝑠−1, 𝑔).

End for.
(3) Set 𝒈 = (𝑔1, . . . , 𝑔𝑑).

Remark 13.15 It should be noted that, even though Algorithm 13.14 can in principle
be run for any 𝑑 ∈ N, it is as such not extensible in 𝑑. This is due to the fact that we
optimize 𝑇𝑁,𝑑,𝑠,𝛼,𝜸, and to define this quantity, 𝑑 needs to be fixed beforehand.

Next, we show the following theorem which indicates that the generating vectors
constructed by Algorithm 13.14 yield a low value of 𝑆𝑁,𝑑,𝛼,𝜸 for general weights 𝜸.

Theorem 13.16 Let 𝑁 ≥ 3 be a prime number, let 𝛼 > 1/2, let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be
given (nonnegative) weights, and assume that 𝒈 has been found by Algorithm 13.14.
Then for arbitrary 𝜏 ∈ [1/2, 𝛼) we have

𝑆𝑁,𝑑,𝛼,𝜸 (𝒈) ≤
𝐶𝛼,𝜏

𝑁 𝜏
©«

∑︁
∅≠𝔳⊆[𝑑]

|𝔳| 𝛾1/(2𝜏)
𝔳

(
2𝜁

(𝛼
𝜏

)) |𝔳 |ª®¬
𝜏

× ©«
∑︁

𝔲⊆[𝑑]
𝛾

1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
𝜏

,

where 𝐶𝛼,𝜏 =
(
17/2 + 22𝛼/𝜏+1) 𝜏 .

Proof Suppose that 𝒈 = (𝑔1, . . . , 𝑔𝑑) has been constructed according to Algo-
rithm 13.14. Then, Equation (13.27) implies that we can express [𝑆𝑁,𝑑,𝛼,𝜸 (𝒈)]2 in
terms of the quantities 𝑇𝑁,𝑑,𝑠,𝛼,𝜸 (𝑔1, . . . , 𝑔𝑠) for 𝑠 ∈ [𝑑]. By the formulation of the
algorithm, for 𝑠 ∈ [𝑑], the 𝑠-th component 𝑔𝑠 of 𝒈 has been chosen in a greedy
fashion to minimize 𝑇𝑁,𝑑,𝑠,𝛼,𝜸 (𝑔1, . . . , 𝑔𝑠−1, 𝑔) as a function of 𝑔 ∈ 𝐺𝜑1 (𝑁), with
𝑇𝑁,𝑑,𝑠,𝛼,𝜸 defined as in (13.28).

Let 𝜆 ∈ (1/(2𝛼), 1]. We again use the standard averaging argument (see Re-
mark 2.14) that the choice of 𝑔 as the minimizer must yield a value that is at least as
good as the average, and also use Jensen’s inequality (see Lemma 2.25) to get

[𝑇𝑁,𝑑,𝑠,𝛼,𝜸 (𝑔1, . . . , 𝑔𝑠−1, 𝑔𝑠)]𝜆 ≤ 1
𝑁 − 1

𝑁−1∑︁
𝑔=1

[𝑇𝑁,𝑑,𝑠,𝛼,𝜸 (𝑔1, . . . , 𝑔𝑠−1, 𝑔)]𝜆

=
1

𝑁 − 1

𝑁−1∑︁
𝑔=1

©«
∑︁

𝔴⊆{𝑠+1,...,𝑑 }
(2𝜁 (4𝛼)) |𝔴 | 𝑇𝑁,𝑠,𝛼 (𝑔1, . . . , 𝑔𝑠−1, 𝑔, {𝛾𝔲∪𝔴}𝔲⊆[𝑠])

ª®¬
𝜆

≤ 1
𝑁 − 1

𝑁−1∑︁
𝑔=1

∑︁
𝔴⊆{𝑠+1,...,𝑑 }

(2𝜁 (4𝛼))𝜆 |𝔴 |
[
𝑇𝑁,𝑠,𝛼 (𝑔1, . . . , 𝑔𝑠−1, 𝑔, {𝛾𝔲∪𝔴}𝔲⊆[𝑠])

]𝜆
=

∑︁
𝔴⊆{𝑠+1,...,𝑑 }

(2𝜁 (4𝛼))𝜆 |𝔴 | 1
𝑁 − 1

𝑁−1∑︁
𝑔=1

[
𝑇𝑁,𝑠,𝛼 (𝑔1, . . . , 𝑔𝑠−1, 𝑔, {𝛾𝔲∪𝔴}𝔲⊆[𝑠])

]𝜆
.

13.4 Adaptions for General Weights 441

(13.30)

Consider now an arbitrarily chosen but fixed 𝔴 ⊆ {𝑠 + 1, . . . , 𝑑}. Writing 𝒈 (𝑠−1) :=
(𝑔1, . . . , 𝑔𝑠−1) and using Jensen’s inequality again, we have

Θ𝑁,𝑠,𝛼 (𝒈 (𝑠−1))

:=
1

𝑁 − 1

𝑁−1∑︁
𝑔=1

[
𝑇𝑁,𝑠+1,𝛼 (𝑔1, . . . , 𝑔𝑠−1, 𝑔, {𝛾𝔲∪𝔴}𝔲⊆[𝑠])

]𝜆
≤ 1
𝑁 − 1

𝑁−1∑︁
𝑔=1

∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠
ℓ𝑠≠0

(ℓ1 ,...,ℓ𝑠−1) ·𝒈 (𝑠−1)≡−ℓ𝑠𝑔 (mod 𝑁)

(
𝛾𝔲 (𝒉)∪𝔴
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒉+ℓ)∪𝔴
𝑟2𝛼 (𝒉 + ℓ)

)𝜆

=
1

𝑁 − 1

∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠

ℓ𝑠.0 (mod 𝑁)
(ℓ1 ,...,ℓ𝑠−1) ·𝒈 (𝑠−1).0 (mod 𝑁)

(
𝛾𝔲 (𝒉)∪𝔴
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒉+ℓ)∪𝔴
𝑟2𝛼 (𝒉 + ℓ)

)𝜆

+
∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠

ℓ𝑠≠0, ℓ𝑠≡0 (mod 𝑁)
(ℓ1 ,...,ℓ𝑠−1) ·𝒈 (𝑠−1)≡0 (mod 𝑁)

(
𝛾𝔲 (𝒉)∪𝔴
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒉+ℓ)∪𝔴
𝑟2𝛼 (𝒉 + ℓ)

)𝜆

≤ 1
𝑁 − 1

∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠
ℓ𝑠≠0

(
𝛾𝔲 (𝒉)∪𝔴
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒉+ℓ)∪𝔴
𝑟2𝛼 (𝒉 + ℓ)

)𝜆
+

∑︁
𝒉∈Z𝑠

∑︁
ℓ∈Z𝑠

ℓ𝑠≠0, ℓ𝑠≡0 (mod 𝑁)

(
𝛾𝔲 (𝒉)∪𝔴
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒉+ℓ)∪𝔴
𝑟2𝛼 (𝒉 + ℓ)

)𝜆
.

To obtain the penultimate relation, we distinguished the cases where ℓ𝑠 is a multiple
of 𝑁 and where this is not the case, and used the fact that if ℓ𝑠 . 0 (mod 𝑁), then
ℓ𝑠𝑔 (mod 𝑁) runs through the whole set 𝐺𝜑1 (𝑁) when 𝑔 does. To obtain the last
inequality, we simply dropped some of the conditions on the indices.

For short, we write

𝐵(ℎ𝑠 , ℓ𝑠) :=
∑︁

𝒉∈Z𝑠−1

∑︁
ℓ∈Z𝑠−1

(
𝛾𝔲 ((𝒉,ℎ𝑠))∪𝔴
𝑟2𝛼 ((𝒉, ℎ𝑠))

𝛾𝔲 ((𝒉,ℎ𝑠)+(ℓ,ℓ𝑠))∪𝔴
𝑟2𝛼 ((𝒉, ℎ𝑠) + (ℓ, ℓ𝑠))

)𝜆
for ℎ𝑠 , ℓ𝑠 ∈ Z. This yields

Θ𝑁,𝑠,𝛼 (𝒈 (𝑠−1))

≤ 1
𝑁 − 1

∑︁
ℎ𝑠 ∈Z

∑︁
ℓ𝑠 ∈Z\{0}

𝐵(ℎ𝑠 , ℓ𝑠) +
∑︁
ℎ𝑠 ∈Z

∑︁
ℓ𝑠 ∈Z\{0}

ℓ𝑠≡0 (mod 𝑁)

𝐵(ℎ𝑠 , ℓ𝑠)

442 13 𝐿2-Approximation Using Lattice Rules

=
1

𝑁 − 1

∑︁
ℎ𝑠 ∈Z

∑︁
ℓ𝑠 ∈Z\{0}

𝐵(ℎ𝑠 , ℓ𝑠)

+
∑︁
ℎ𝑠 ∈Z

ℎ𝑠≡0 (mod 𝑁)

∑︁
ℓ𝑠 ∈Z\{0}

ℓ𝑠≡0 (mod 𝑁)

𝐵(ℎ𝑠 , ℓ𝑠) +
∑︁
ℎ𝑠 ∈Z

ℎ𝑠.0 (mod 𝑁)

∑︁
ℓ𝑠 ∈Z\{0}

ℓ𝑠≡0 (mod 𝑁)

𝐵(ℎ𝑠 , ℓ𝑠).

As a further abbreviation, we put

Ξ1 :=
∑︁
ℎ𝑠 ∈Z

∑︁
ℓ𝑠 ∈Z\{0}

𝐵(ℎ𝑠 , ℓ𝑠),

Ξ2 :=
∑︁
ℎ𝑠 ∈Z

ℎ𝑠≡0 (mod 𝑁)

∑︁
ℓ𝑠 ∈Z\{0}

ℓ𝑠≡0 (mod 𝑁)

𝐵(ℎ𝑠 , ℓ𝑠),

Ξ3 :=
∑︁
ℎ𝑠 ∈Z

ℎ𝑠.0 (mod 𝑁)

∑︁
ℓ𝑠 ∈Z\{0}

ℓ𝑠≡0 (mod 𝑁)

𝐵(ℎ𝑠 , ℓ𝑠).

Putting 𝒒 = 𝒉 + ℓ for 𝒉, ℓ ∈ Z𝑠−1, we can write

𝐵(ℎ𝑠 , ℓ𝑠) =
∑︁

𝒉∈Z𝑠−1

𝛾𝜆
𝔲 ((𝒉,ℎ𝑠))∪𝔴

(𝑟2𝛼 ((𝒉, ℎ𝑠)))𝜆
∑︁

𝒒∈Z𝑠−1

𝛾𝜆
𝔲 ((𝒒,ℎ𝑠+ℓ𝑠))∪𝔴

(𝑟2𝛼 ((𝒒, ℎ𝑠 + ℓ𝑠)))𝜆
.

Using this representation, we have, for ℎ𝑠 = 0 and ℓ𝑠 ∈ Z \ {0},

𝐵(0, ℓ𝑠) =
∑︁

𝔲⊆[𝑠−1]

∑︁
𝒉∈(Z\{0}) |𝔲 |

𝛾𝜆𝔲∪𝔴
(𝑟2𝛼 (𝒉))𝜆

∑︁
𝔳⊆[𝑠−1]

∑︁
𝒒∈(Z\{0}) |𝔳|

𝛾𝜆
𝔳∪{𝑠}∪𝔴

(𝑟2𝛼 (𝒒))𝜆
1

|ℓ𝑠 |2𝛼𝜆

=
1

|ℓ𝑠 |2𝛼𝜆
∑︁

𝔲⊆[𝑠−1]
𝛾𝜆𝔲∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔲 |

∑︁
𝔳⊆[𝑠−1]

𝛾𝜆
𝔳∪{𝑠}∪𝔴 (2𝜁 (2𝛼𝜆))

|𝔳 |

=
G · Q
|ℓ𝑠 |2𝛼𝜆

,

where we use the abbreviations

G :=
∑︁

𝔲⊆[𝑠−1]
𝛾𝜆𝔲∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔲 | and Q :=

∑︁
𝔳⊆[𝑠−1]

𝛾𝜆
𝔳∪{𝑠}∪𝔴 (2𝜁 (2𝛼𝜆))

|𝔳 | .

13.4 Adaptions for General Weights 443

Analogously, we obtain

𝐵(ℎ𝑠 , ℓ𝑠) =

G · Q
|ℎ𝑠 |2𝛼𝜆

if ℎ𝑠 ≠ 0 and ℓ𝑠 = −ℎ𝑠 ,

Q2

|ℎ𝑠 |2𝛼𝜆 |ℎ𝑠 + ℓ𝑠 |2𝛼𝜆
if ℎ𝑠 ≠ 0 and ℓ𝑠 ≠ −ℎ𝑠 .

Using these observations, we get

Ξ1 =
∑︁

ℓ𝑠 ∈Z\{0}

G · Q
|ℓ𝑠 |2𝛼𝜆

+
∑︁

ℎ𝑠 ∈Z\{0}

G · Q
|ℎ𝑠 |2𝛼𝜆

+
∑︁

ℎ𝑠 ∈Z\{0}

∑︁
ℓ𝑠 ∈Z\{0,−ℎ𝑠 }

Q2

|ℎ𝑠 |2𝛼𝜆 |ℎ𝑠 + ℓ𝑠 |2𝛼𝜆

≤ 4𝜁 (2𝛼𝜆) G · Q +
∑︁

ℎ𝑠 ∈Z\{0}

∑︁
𝑞∈Z\{0}

Q2

|ℎ𝑠 |2𝛼𝜆 |𝑞 |2𝛼𝜆

= 4𝜁 (2𝛼𝜆) G · Q + (2𝜁 (2𝛼𝜆))2Q2.

Similarly, we can derive

Ξ2 ≤ 4𝜁 (2𝛼𝜆) G · Q
𝑁2𝛼𝜆 + (2𝜁 (2𝛼𝜆))2 Q2

𝑁4𝛼𝜆 ≤ 4𝜁 (2𝛼𝜆) G · Q + 2(𝜁 (2𝛼𝜆))2 Q2

𝑁
,

where we used that 𝑁−2𝛼𝜆 ≤ 𝑁−1 and 𝑁−4𝛼𝜆 ≤ (2𝑁)−1. Finally,

Ξ3 =
∑︁
ℎ𝑠 ∈Z

ℎ𝑠.0 (mod 𝑁)

∑︁
ℓ𝑠 ∈Z\{0}

Q2

|ℎ𝑠 |2𝛼𝜆 |ℎ𝑠 + ℓ𝑠𝑁 |2𝛼𝜆

= Q2
∑︁
ℎ𝑠 ∈Z

ℎ𝑠.0 (mod 𝑁)

(
1

|ℎ𝑠 |2𝛼𝜆
∑︁
ℓ𝑠 ∈Z

1
|ℎ𝑠 + ℓ𝑠𝑁 |2𝛼𝜆

− 1
|ℎ𝑠 |4𝛼𝜆

)
.

The rest of the analysis of Ξ3 works in a way that is very analogous to the derivation
of the bound on [𝑆𝑁,1,𝛼,𝛾1 (1)]2 in the proof of Theorem 13.5 (or see [28]), and
eventually yields

Ξ3 ≤ 24𝛼𝜆+1 (2𝜁 (2𝛼𝜆))2 Q2

𝑁2𝛼𝜆 ≤ 24𝛼𝜆+1 (2𝜁 (2𝛼𝜆))2 Q2

𝑁
,

where we again used 𝑁−2𝛼𝜆 ≤ 𝑁−1.
Combining the estimates on Ξ1,Ξ2, and Ξ3, and noting that 1/(𝑁 − 1) ≤ 2/𝑁

gives

444 13 𝐿2-Approximation Using Lattice Rules

Θ𝑁,𝑠,𝛼 (𝒈 (𝑠−1)) ≤ 8𝜁 (2𝛼𝜆) G · Q + 2(2𝜁 (2𝛼𝜆))2 Q2

𝑁

+4𝜁 (2𝛼𝜆) G · Q + 2(𝜁 (2𝛼𝜆))2 Q2

𝑁
+ 24𝛼𝜆+1 (2𝜁 (2𝛼𝜆))2 Q2

𝑁

=
6(2𝜁 (2𝛼𝜆)) G · Q + (5/2 + 24𝛼𝜆+1) (2𝜁 (2𝛼𝜆))2 Q2

𝑁

≤ (17/2 + 24𝛼𝜆+1)2𝜁 (2𝛼𝜆) Q (G + 2𝜁 (2𝛼𝜆)Q)
𝑁

.

Inserting back for G and Q and writing 𝐶𝛼,𝜆 := 17/2 + 24𝛼𝜆+1, we obtain

Θ𝑁,𝑠,𝛼 (𝒈 (𝑠−1)) ≤
𝐶𝛼,𝜆

𝑁

©«2𝜁 (2𝛼𝜆)
∑︁

𝔳⊆[𝑠−1]
𝛾𝜆
𝔳∪{𝑠}∪𝔴 (2𝜁 (2𝛼𝜆))

|𝔳 |ª®¬
× ©«

∑︁
𝔲⊆[𝑠−1]

𝛾𝜆𝔲∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔲 | + 2𝜁 (2𝛼𝜆)
∑︁

𝔳⊆[𝑠−1]
𝛾𝜆
𝔳∪{𝑠}∪𝔴 (2𝜁 (2𝛼𝜆))

|𝔳 |ª®¬
=
𝐶𝛼,𝜆

𝑁

©«
∑︁

𝑠∈𝔳⊆[𝑠]
𝛾𝜆𝔳∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔳 |

ª®¬
× ©«

∑︁
𝔲⊆[𝑠−1]

𝛾𝜆𝔲∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔲 | +
∑︁

𝑠∈𝔳⊆[𝑠]
𝛾𝜆𝔳∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔳 |

ª®¬
≤
𝐶𝛼,𝜆

𝑁

©«
∑︁

𝑠∈𝔳⊆[𝑠]
𝛾𝜆𝔳∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔳 |

ª®¬ ©«
∑︁
𝔲⊆[𝑠]

𝛾𝜆𝔲∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔲 |
ª®¬ .

We can now insert this estimate into (13.30) to obtain

[𝑇𝑁,𝑑,𝑠,𝛼,𝜸 (𝑔1, . . . , 𝑔𝑠−1, 𝑔𝑠)]𝜆 ≤
∑︁

𝔴⊆{𝑠+1,...,𝑑 }
(2𝜁 (4𝛼))𝜆 |𝔴 |

×
𝐶𝛼,𝜆

𝑁

©«
∑︁

𝑠∈𝔳⊆[𝑠]
𝛾𝜆𝔳∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔳 |

ª®¬ ©«
∑︁
𝔲⊆[𝑠]

𝛾𝜆𝔲∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔲 |
ª®¬

≤
𝐶𝛼,𝜆

𝑁

∑︁
𝔴⊆{𝑠+1,...,𝑑 }

©«
∑︁

𝑠∈𝔳⊆[𝑠]
𝛾𝜆𝔳∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔳∪𝔴 |ª®¬

× ©«
∑︁
𝔲⊆[𝑠]

𝛾𝜆𝔲∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔲∪𝔴 |ª®¬

13.4 Adaptions for General Weights 445

≤
𝐶𝛼,𝜆

𝑁

©« max
𝔴⊆{𝑠+1,...,𝑑 }

∑︁
𝑠∈𝔳⊆[𝑠]

𝛾𝜆𝔳∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔳∪𝔴 |ª®¬
× ©«

∑︁
𝔴⊆{𝑠+1,...,𝑑 }

∑︁
𝔲⊆[𝑠]

𝛾𝜆𝔲∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔲∪𝔴 |ª®¬
=
𝐶𝛼,𝜆

𝑁

©« max
𝔴⊆{𝑠+1,...,𝑑 }

∑︁
𝑠∈𝔳⊆[𝑠]

𝛾𝜆𝔳∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔳∪𝔴 |ª®¬ ©«
∑︁

𝔲⊆[𝑑]
𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 |

ª®¬ .
Now, using (13.27) and applying the previous estimate to all 𝔴 ⊆ {𝑠 + 1, . . . , 𝑑}, we
obtain

[𝑆𝑁,𝑑,𝛼,𝜸 (𝒈)]2 ≤
𝑑∑︁
𝑠=1

©«𝐶𝛼,𝜆𝑁 ©« max
𝔴⊆{𝑠+1,...,𝑑 }

∑︁
𝑠∈𝔳⊆[𝑠]

𝛾𝜆𝔳∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔳∪𝔴 |ª®¬
× ©«

∑︁
𝔲⊆[𝑑]

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 |
ª®¬ª®¬

1/𝜆

≤ ©«𝐶𝛼,𝜆𝑁 ©«
𝑑∑︁
𝑠=1

max
𝔴⊆{𝑠+1,...,𝑑 }

∑︁
𝑠∈𝔳⊆[𝑠]

𝛾𝜆𝔳∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔳∪𝔴 |ª®¬
× ©«

∑︁
𝔲⊆[𝑑]

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 |
ª®¬ª®¬

1/𝜆

≤ ©«𝐶𝛼,𝜆𝑁 ©«
𝑑∑︁
𝑠=1

∑︁
𝔴⊆{𝑠+1,...,𝑑 }

∑︁
𝑠∈𝔳⊆[𝑠]

𝛾𝜆𝔳∪𝔴 (2𝜁 (2𝛼𝜆)) |𝔳∪𝔴 |ª®¬
× ©«

∑︁
𝔲⊆[𝑑]

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 |
ª®¬ª®¬

1/𝜆

=
©«𝐶𝛼,𝜆𝑁 ©«

∑︁
∅≠𝔳⊆[𝑑]

|𝔳| 𝛾𝜆𝔳 (2𝜁 (2𝛼𝜆)) |𝔳 |
ª®¬ ©«

∑︁
𝔲⊆[𝑑]

𝛾𝜆𝔲 (2𝜁 (2𝛼𝜆)) |𝔲 |
ª®¬ª®¬

1/𝜆

,

where we used that 𝜆 ≤ 1 in the second estimate.
The proof is concluded by taking the square root of the latter estimate and setting

𝜏 = 1/(2𝜆), which implies that 𝜏 ∈ [1/2, 𝛼) and𝐶1/(2𝜆)
𝛼,𝜆

= (17/2+22𝛼/𝜏+1)𝜏 = 𝐶𝛼,𝜏 .
□

We can now formulate the following error bound, which can be seen as a gener-
alization of Theorem 13.6.

446 13 𝐿2-Approximation Using Lattice Rules

Theorem 13.17 Let 𝑁 ≥ 3 be a prime number, let 𝛼 > 1/2, and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑]
be general (nonnegative) weights. Assume that 𝒈 has been found by Algorithm 13.14.
Then for arbitrary 𝜏 ∈ [1/2, 𝛼) we have

err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈)) ≤
𝐶𝑑,𝛼,𝜸,𝜏

𝑁 𝜏/2
,

where 𝑀 = 𝑁 𝜏 , and where

𝐶𝑑,𝛼,𝜸,𝜏 =

(
1 +

(
17
2

+ 22𝛼/𝜏+1
)2𝜏

)1/2 ©«
∑︁

𝔲⊆[𝑑]
(|𝔲 | + 1)𝛾1/(2𝜏)

𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
2𝜏

.

Proof We combine the result in Theorem 13.16 with Equation (13.26) to obtain

[err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2 ≤ 1
𝑀

+
𝑀 𝐶2

𝛼,𝜏

𝑁2𝜏
©«

∑︁
∅≠𝔳⊆[𝑑]

|𝔳| 𝛾1/(2𝜏)
𝔳

(
2𝜁

(𝛼
𝜏

)) |𝔳 |ª®¬
2𝜏 ©«

∑︁
𝔲⊆[𝑑]

𝛾
1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
2𝜏

≤ 1
𝑀

+
𝑀 𝐶2

𝛼,𝜏

𝑁2𝜏
©«

∑︁
𝔲⊆[𝑑]

(|𝔲 | + 1)𝛾1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
4𝜏

,

where𝐶𝛼,𝜏 is defined as in Theorem 13.16. In order to balance the latter bound with
respect to 𝑀 and 𝑁 , we choose 𝑀 = 𝑁 𝜏 , and get

[err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2

≤
1 + 𝐶2

𝛼,𝜏

𝑁 𝜏
©«

∑︁
𝔲⊆[𝑑]

(|𝔲 | + 1)𝛾1/(2𝜏)
𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
4𝜏

.

Taking the square root and inserting the expression for 𝐶𝛼,𝜏 yields the result as
claimed. □

Remark 13.18 Note that by an appropriate choice of 𝜏 we can obtain a convergence
rate arbitrarily close to 𝑁−𝛼/2 in Theorem 13.17. This is in correspondence with the
case of product weights in Theorem 13.6.

Tractability of approximation with general weights

From Theorem 13.17, we can deduce a sufficient condition for strong polynomial
tractability in the case of general weights, as we demonstrate in the following theorem.

13.4 Adaptions for General Weights 447

Theorem 13.19 The 𝐿2-approximation problem for the weighted Korobov space
Hkor,𝑑,𝛼,𝜸 with general (nonnegative) weights 𝜸, using information from the class
Λstd, is strongly polynomially tractable if∑︁

𝔲⊆N
|𝔲 |<∞

𝛾𝔲 (4𝜁 (2𝛼)) |𝔲 | < ∞, (13.31)

where the summation is meant to be extended over all finite subsets 𝔲 of N. If∑︁
𝔲⊆N
|𝔲 |<∞

𝛾
1/(2𝜏)
𝔲

(
4𝜁

(𝛼
𝜏

)) |𝔲 |
< ∞ (13.32)

for some 𝜏 ∈ [1/2, 𝛼), then we get strong polynomial tractability with an 𝜀-exponent
of at most 2/𝜏.

Proof Theorem 13.17 yields the existence of an algorithm 𝐴𝑁,𝑑 (𝒈) such that

err𝐿2−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑑 (𝒈)) ≤
𝐶𝑑,𝛼,𝜸,𝜏

𝑁 𝜏/2
,

where

𝐶𝑑,𝛼,𝜸,𝜏 =

(
1 +

(
17
2

+ 22𝛼/𝜏+1
)2𝜏

)1/2 ©«
∑︁

𝔲⊆[𝑑]
(|𝔲 | + 1)𝛾1/(2𝜏)

𝔲

(
2𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
4𝜏

≤
(
1 +

(
17
2

+ 22𝛼/𝜏+1
)2𝜏

)1/2 ©«
∑︁

𝔲⊆[𝑑]
𝛾

1/(2𝜏)
𝔲

(
4𝜁

(𝛼
𝜏

)) |𝔲 |ª®¬
4𝜏

≤
(
1 +

(
17
2

+ 22𝛼/𝜏+1
)2𝜏

)1/2 ©«
∑︁
𝔲⊆N
|𝔲 |<∞

𝛾
1/(2𝜏)
𝔲

(
4𝜁

(𝛼
𝜏

)) |𝔲 |ª®®®¬
4𝜏

.

Now, if Condition (13.31) holds, we can bound 𝐶𝑑,𝛼,𝜸,1/2 independently of 𝑑, and
we get strong polynomial tractability. If Condition (13.32) holds for some 𝜏 ∈
[1/2, 𝛼),𝐶𝑑,𝛼,𝜸,𝜏 can be bounded independently of 𝑑, and we get strong polynomial
tractability with an 𝜀-exponent of at most 2/𝜏. □

Remark 13.20 Similarly to Theorem 13.11, one could also show a sufficient condi-
tion for polynomial tractability, by modifying (13.31) accordingly.

448 13 𝐿2-Approximation Using Lattice Rules

Implementation of the CBC algorithm for POD weights

Finally, let us outline how Algorithm 13.14 can be implemented efficiently for POD
weights. The first step in our analysis is to rewrite the error criterion that is used in
Algorithm 13.14 in a suitable way. This is done in the following lemma.

Lemma 13.21 Let 𝑑, 𝑁 ∈ N, let 𝛼 > 1/2, and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be general
(nonnegative) weights. Let 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺𝜑𝑑 (𝑁). We write 𝒈 (𝑠) := (𝑔1, . . . , 𝑔𝑠)
and let 𝑇𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠)) be defined as in (13.28) for 𝑠 ∈ [𝑑]. Then,

𝑇𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠)) = 1
𝑁

𝑁−1∑︁
𝑡=0

𝜓𝛼

(𝑡𝑔𝑠
𝑁

)
𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡)

+ 2
𝑁

𝑁−1∑︁
𝑡=0

𝜑𝛼

(𝑡𝑔𝑠
𝑁

)
𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡),

where 𝜑𝛼 is defined in (3.7), i.e., for real 𝑥

𝜑𝛼 (𝑥) :=
∑︁

ℎ∈Z\{0}

e2𝜋iℎ𝑥

|ℎ|2𝛼
,

and where
𝜓𝛼 (𝑥) := (𝜑𝛼 (𝑥))2 − 2𝜁 (4𝛼),

as well as

𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡)

:=
∑︁

𝔴⊆{𝑠+1,...,𝑑 }
(2𝜁 (4𝛼)) |𝔴 | ©«

∑︁
𝔲⊆[𝑠−1]

𝛾𝔲∪{𝑠}∪𝔴
∏
𝑗∈𝔲

𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)ª®¬
2

,

and

𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡)

:=
∑︁

𝔴⊆{𝑠+1,...,𝑑 }
(2𝜁 (4𝛼)) |𝔴 | ©«

∑︁
𝔲⊆[𝑠−1]

𝛾𝔲∪{𝑠}∪𝔴
∏
𝑗∈𝔲

𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)ª®¬
× ©«

∑︁
𝔲⊆[𝑠−1]

𝛾𝔲∪𝔴
∏
𝑗∈𝔲

𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)ª®¬ .
In the previous two definitions, the set {𝑠 + 1, . . . , 𝑑} in (13.28) is again to be
interpreted as ∅ if 𝑠 = 𝑑, i.e., in that case, the summation is considered only over the
empty set.

13.4 Adaptions for General Weights 449

Proof We remind the reader of Equations (13.28) and (13.29), and use the notation
(𝑞1, . . . , 𝑞𝑠) = 𝒒 = 𝒉 + ℓ for 𝒉 = (ℎ1, . . . , ℎ𝑠) and ℓ = (ℓ1, . . . , ℓ𝑠) in Z𝑠 to write
𝑇𝑁,𝑠,𝛼 (𝒈 (𝑠) , {𝛾𝔲∪𝔴}𝔲⊆[𝑠]), for fixed 𝔴 ⊆ {𝑠 + 1, . . . , 𝑑}, as

𝑇𝑁,𝑠,𝛼 (𝒈 (𝑠) , {𝛾𝔲∪𝔴}𝔲⊆[𝑠]) =
∑︁
𝒉∈Z𝑠

∑︁
𝒒∈Z𝑠
𝑞𝑠≠ℎ𝑠

(𝒒−𝒉) ·𝒈 (𝑠)≡0 (mod 𝑁)

𝛾𝔲 (𝒉)∪𝔴
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒒)∪𝔴
𝑟2𝛼 (𝒒)

=
1
𝑁

𝑁−1∑︁
𝑡=0

∑︁
𝒉∈Z𝑠

∑︁
𝒒∈Z𝑠
𝑞𝑠≠ℎ𝑠

𝛾𝔲 (𝒉)∪𝔴
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒒)∪𝔴
𝑟2𝛼 (𝒒)

e2𝜋i𝑡 (𝒒−𝒉) ·𝒈 (𝑠) /𝑁 .

For fixed 𝑡 ∈ {0, 1, . . . , 𝑁 − 1}, let us for a moment drop the condition 𝑞𝑠 ≠ ℎ𝑠 in
the inner sum of the latter expression, such that we get

Σ1 :=
∑︁
𝒉∈Z𝑠

∑︁
𝒒∈Z𝑠

𝛾𝔲 (𝒉)∪𝔴
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒒)∪𝔴
𝑟2𝛼 (𝒒)

e2𝜋i𝑡 (𝒒−𝒉) ·𝒈 (𝑠) /𝑁

=

(∑︁
𝒉∈Z𝑠

𝛾𝔲 (𝒉)∪𝔴
e2𝜋i𝑡𝒉 ·𝒈 (𝑠) /𝑁

𝑟2𝛼 (𝒉)

)2

=

©«
∑︁
𝔳⊆[𝑠]

∑︁
𝒉∈Z𝑠
𝔲 (𝒉)=𝔳

𝛾𝔳∪𝔴
∏
𝑗∈𝔳

e2𝜋i𝑡ℎ 𝑗𝑔 𝑗/𝑁

𝑟2𝛼 (ℎ 𝑗)

ª®®®¬
2

=
©«

∑︁
𝔲⊆[𝑠]

𝛾𝔲∪𝔴
∏
𝑗∈𝔲

𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)ª®¬
2

=
©«

∑︁
𝑠∈𝔲⊆[𝑠]

𝛾𝔲∪𝔴
∏
𝑗∈𝔲

𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)
+

∑︁
𝑠∉𝔲⊆[𝑠]

𝛾𝔲∪𝔴
∏
𝑗∈𝔲

𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)ª®¬
2

=
©«𝜑𝛼

(𝑡𝑔𝑠
𝑁

) ∑︁
𝔲⊆[𝑠−1]

𝛾𝔲∪{𝑠}∪𝔴
∏
𝑗∈𝔲

𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)

+
∑︁

𝔲⊆[𝑠−1]
𝛾𝔲∪𝔴

∏
𝑗∈𝔲

𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)ª®¬
2

.

On the other hand, with similar reasoning as for Σ1,

Σ2 :=
∑︁
𝒉∈Z𝑠
ℎ𝑠=0

∑︁
𝒒∈Z𝑠
𝑞𝑠=0

𝛾𝔲 (𝒉)∪𝔴
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒒)∪𝔴
𝑟2𝛼 (𝒒)

e2𝜋i𝑡 (𝒒−𝒉) ·𝒈 (𝑠) /𝑁

450 13 𝐿2-Approximation Using Lattice Rules

=
©«

∑︁
𝔲⊆[𝑠−1]

𝛾𝔲∪𝔴
∏
𝑗∈𝔲

𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)ª®¬
2

.

Furthermore, again with a similar argumentation,

Σ3 :=
∑︁
𝒉∈Z𝑠
ℎ𝑠≠0

∑︁
𝒒∈Z𝑠
𝑞𝑠=ℎ𝑠

𝛾𝔲 (𝒉)∪𝔴
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒒)∪𝔴
𝑟2𝛼 (𝒒)

e2𝜋i𝑡 (𝒒−𝒉) ·𝒈 (𝑠) /𝑁

=
∑︁

ℎ𝑠 ∈Z\{0}

1
ℎ4𝛼
𝑠

∑︁
𝒉∈Z𝑠−1

∑︁
𝒒∈Z𝑠−1

𝛾𝔲 (𝒉)∪{𝑠}∪𝔴
𝑟2𝛼 (𝒉)

𝛾𝔲 (𝒒)∪{𝑠}∪𝔴
𝑟2𝛼 (𝒒)

e2𝜋i𝑡 (𝒒−𝒉) ·𝒈 (𝑠−1) /𝑁

= 2𝜁 (4𝛼) ©«
∑︁

𝔲⊆[𝑠−1]
𝛾𝔲∪{𝑠}∪𝔴

∏
𝑗∈𝔲

𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)ª®¬
2

.

Putting these observations together, we obtain

𝑇𝑁,𝑠,𝛼 (𝒈 (𝑠) , {𝛾𝔲∪𝔴}𝔲⊆[𝑠]) =
1
𝑁

𝑁−1∑︁
𝑡=0

(Σ1 − Σ2 − Σ3)

=
1
𝑁

𝑁−1∑︁
𝑡=0

((
𝜑𝛼

(𝑡𝑔𝑠
𝑁

))2
− 2𝜁 (4𝛼)

) ©«
∑︁

𝔲⊆[𝑠−1]
𝛾𝔲∪{𝑠}∪𝔴

∏
𝑗∈𝔲

𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)ª®¬
2

+ 2
𝑁

𝑁−1∑︁
𝑡=0

𝜑𝛼

(𝑡𝑔𝑠
𝑁

) ©«
∑︁

𝔲⊆[𝑠−1]
𝛾𝔲∪{𝑠}∪𝔴

∏
𝑗∈𝔲

𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)ª®¬
× ©«

∑︁
𝔲⊆[𝑠−1]

𝛾𝔲∪𝔴
∏
𝑗∈𝔲

𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)ª®¬ .
The result of the lemma now follows by inserting the latter expression into (13.28).

□

From now on assume that we are given POD weights as in (3.25), i.e., weights 𝜸
of the form

𝛾𝔲 = Γ|𝔲 |
∏
𝑗∈𝔲

𝛾 𝑗 , (13.33)

for 𝔲 ⊆ [𝑑], where (𝛾 𝑗) 𝑗≥1 is a given (positive) weight sequence, and where the Γ|𝔲 |
may depend on |𝔲 | but not on the elements of 𝔲. Furthermore, we set Γ0 := 𝛾∅ = 1.

In order to implement Algorithm 13.14 efficiently for POD weights, it is necessary
to compute, for 𝑠 ∈ [𝑑], the term 𝑇𝑁,𝑑,𝑠,𝛼,𝜸 (𝑔1, . . . , 𝑔𝑠−1, 𝑔) in a fast manner for all
possible values of 𝑔 ∈ 𝐺𝜑1 (𝑁). This can be done by making use of matrix-vector
multiplications for which we define the following vectors and matrices. For fixed 𝑁 ,
𝛼, and 𝜸, let

13.4 Adaptions for General Weights 451

𝒗𝑑,𝑠 (𝒈 (𝑠−1)) :=
(
𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 0), . . . , 𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑁 − 1)

)⊤
,

𝒘𝑑,𝑠 (𝒈 (𝑠−1)) :=
(
𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 0), . . . ,𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑁 − 1)

)⊤
,

so both 𝒗𝑑,𝑠 and 𝒘𝑑,𝑠 are column-vectors of length 𝑁 . Moreover, we define two
(𝑁 − 1) × 𝑁 matrices

𝛀𝑁,𝛼 :=
(
𝜑𝛼

(𝑡𝑔
𝑁

))
𝑔∈𝐺𝜑

1 (𝑁) ,𝑡 ∈{0,1,...,𝑁−1}
,

𝚿𝑁,𝛼 :=
(
𝜓𝛼

(𝑡𝑔
𝑁

))
𝑔∈𝐺𝜑

1 (𝑁) ,𝑡 ∈{0,1,...,𝑁−1}
,

where 𝜑𝛼 and𝜓𝛼 are as in Lemma 13.21. Using this notation, computing the quantity
𝑇𝑁,𝑑,𝑠,𝛼,𝜸 (𝑔1, . . . , 𝑔𝑠−1, 𝑔) for all 𝑔 ∈ 𝐺𝜑1 (𝑁) at once boils down to calculating

1
𝑁

𝚿𝑁,𝛼𝒗𝑑,𝑠 (𝒈 (𝑠−1)) + 2
𝑁

𝛀𝑁,𝛼𝒘𝑑,𝑠 (𝒈 (𝑠−1)),

i.e., to calculating two matrix-vector products. Obviously, here one can use the ma-
chinery in Chapter 3 to compute the two matrix-vector products by reordering the
involved matrices to become circulant, and by employing the fast Fourier transform.
This needs, by taking into account all 𝑑 components, O(𝑑 𝑁 log 𝑁) operations, sim-
ilar to what we showed in Chapter 3, and we do not repeat the details here. The
crucial open point for the construction in the present section is the efficient compu-
tation (and storage) of the quantities 𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) and𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡),
respectively, for 𝑡 ∈ {0, 1, . . . , 𝑁−1} and 𝑠 ∈ [𝑑]. To this end, we need the following
lemma.

Lemma 13.22 Let 𝑑, 𝑁 ∈ N, let 𝛼 > 1/2, and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be POD weights
as in (13.33). Let 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺

𝜑

𝑑
(𝑁), and 𝒈 (𝑠−1) := (𝑔1, . . . , 𝑔𝑠−1) for

𝑠 ∈ [𝑑]. Then, for 𝑡 ∈ {0, 1, . . . , 𝑁 − 1}, the quantities 𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) and
𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) defined in Lemma 13.21 can be expressed as

𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) = 𝛾2
𝑠

𝑑−𝑠∑︁
𝑚=0

𝑄𝑑,𝑠,𝑚,𝛼,𝜸

(
𝑠−1∑︁
ℓ=0

Γℓ+𝑚+1𝑃𝑠−1,ℓ,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡)
)2

,

and

𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) = 𝛾𝑠
𝑑−𝑠∑︁
𝑚=0

𝑄𝑑,𝑠,𝑚,𝛼,𝜸

(
𝑠−1∑︁
ℓ=0

Γℓ+𝑚+1𝑃𝑠−1,ℓ,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡)
)

×
(
𝑠−1∑︁
ℓ=0

Γℓ+𝑚𝑃𝑠−1,ℓ,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡)
)
,

where

452 13 𝐿2-Approximation Using Lattice Rules

𝑄𝑑,𝑠,𝑚,𝛼,𝜸 :=
∑︁

𝔴⊆{𝑠+1,...,𝑑 }
|𝔴 |=𝑚

∏
𝑗∈𝔴

(
2𝜁 (4𝛼)𝛾2

𝑗

)
for 𝑚 ∈ {0, 1, . . . , 𝑑 − 𝑠},

and

𝑃𝑠−1,ℓ,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) :=
∑︁

𝔲⊆[𝑠−1]
|𝔲 |=ℓ

∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)
for ℓ ∈ {0, 1, . . . , 𝑠 − 1}.

Proof Suppose that 𝔲,𝔴 ⊆ [𝑑] with 𝔲 ∩𝔴 = ∅. Then we have

𝛾𝔲∪𝔴 = Γ|𝔲 |+ |𝔴 |

(∏
𝑗∈𝔲

𝛾 𝑗

) (∏
𝑗∈𝔴

𝛾 𝑗

)
.

Using this equality for the quantity 𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) as defined in Lemma 13.21
yields

𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) =
∑︁

𝔴⊆{𝑠+1,...,𝑑 }
(2𝜁 (4𝛼)) |𝔴 |

× ©«
∑︁

𝔲⊆[𝑠−1]
Γ|𝔲 |+1+|𝔴 |𝛾𝑠

(∏
𝑗∈𝔲

𝛾 𝑗

) (∏
𝑗∈𝔴

𝛾 𝑗

) ∏
𝑗∈𝔲

𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)ª®¬
2

= 𝛾2
𝑠

∑︁
𝔴⊆{𝑠+1,...,𝑑 }

(∏
𝑗∈𝔴

(
2𝜁 (4𝛼)𝛾2

𝑗

)) ©«
∑︁

𝔲⊆[𝑠−1]
Γ|𝔲 |+1+|𝔴 |

∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)ª®¬
2

= 𝛾2
𝑠

𝑑−𝑠∑︁
𝑚=0

∑︁
𝔴⊆{𝑠+1,...,𝑑 }

|𝔴 |=𝑚

(∏
𝑗∈𝔴

(
2𝜁 (4𝛼)𝛾2

𝑗

)) ©«
𝑠−1∑︁
ℓ=0

Γℓ+𝑚+1
∑︁

𝔲⊆[𝑠−1]
|𝔲 |=ℓ

∏
𝑗∈𝔲

𝛾 𝑗𝜑𝛼

(
𝑡𝑔 𝑗

𝑁

)ª®®®¬
2

.

This yields the result for 𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) as claimed. The result for the term
𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) follows analogously. □

We will use the result and the notation in Lemma 13.22 to express the quantities
𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) and 𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) in a way that makes it possible to
compute them efficiently. To this end, we need some further notation. First, define,
for 𝑠 ∈ [𝑑],

𝒑𝑠−1,𝛼,𝜸 = 𝒑𝑠−1,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡)

:=
(
𝑃𝑠−1,0,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡), . . . , 𝑃𝑠−1,𝑠−1,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡)

)⊤
,

which is a column-vector of length 𝑠. Moreover, we remind the reader of the notation
diag(𝑎1, . . . , 𝑎𝑚) for 𝑚 ∈ N, by which we mean an 𝑚 × 𝑚 diagonal matrix

13.4 Adaptions for General Weights 453

(𝐴𝑖, 𝑗)𝑖, 𝑗∈{1,2,...,𝑚} with 𝐴𝑖, 𝑗 =

{
𝑎𝑖 if 𝑖 = 𝑗 ,
0 otherwise.

Using this notation, we put, for 𝑠 ∈ [𝑑],

𝑸𝑑,𝑠,𝛼,𝜸 := diag
(
𝑄𝑑,𝑠,0,𝛼,𝜸, . . . , 𝑄𝑑,𝑠,𝑑−𝑠,𝛼,𝜸

)
.

Finally, again for 𝑠 ∈ [𝑑], we define the two (𝑑 − 𝑠 + 1) × 𝑠 matrices

𝐻
(1)
𝑑,𝑠,𝜸 :=

©«
Γ1 Γ2 . . . Γ𝑠
Γ2 Γ3 . . . Γ𝑠+1
...

...
. . .

...

Γ𝑑−𝑠+1 Γ𝑑−𝑠+2 . . . Γ𝑑

ª®®®®¬
and 𝐻

(0)
𝑑,𝑠,𝜸 :=

©«
Γ0 Γ1 . . . Γ𝑠−1
Γ1 Γ2 . . . Γ𝑠
...

...
. . .

...

Γ𝑑−𝑠 Γ𝑑−𝑠+1 . . . Γ𝑑−1

ª®®®®¬
.

We now formulate the following lemma.

Lemma 13.23 Let 𝑑, 𝑁 ∈ N, let 𝛼 > 1/2, and let 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] be POD weights
as in (13.33). Let 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺

𝜑

𝑑
(𝑁), and 𝒈 (𝑠−1) := (𝑔1, . . . , 𝑔𝑠−1) for

𝑠 ∈ [𝑑]. Then for 𝑡 ∈ {0, 1, . . . , 𝑁 − 1}, the quantities 𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) and
𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) defined in Lemma 13.21 can be expressed, by using the notation
introduced above, as

𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) = 𝛾2
𝑠

(
𝐻

(1)
𝑑,𝑠,𝜸 𝒑𝑠−1,𝛼,𝜸

)⊤
𝑸𝑑,𝑠,𝛼,𝜸

(
𝐻

(1)
𝑑,𝑠,𝜸 𝒑𝑠−1,𝛼,𝜸

)
and

𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) = 𝛾𝑠
(
𝐻

(1)
𝑑,𝑠,𝜸 𝒑𝑠−1,𝛼,𝜸

)⊤
𝑸𝑑,𝑠,𝛼,𝜸

(
𝐻

(0)
𝑑,𝑠,𝜸 𝒑𝑠−1,𝛼,𝜸

)
.

Proof Let us first derive the result for𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡). Considering the formula
derived for this term in Lemma 13.22, we see that

𝑠−1∑︁
ℓ=0

Γℓ+𝑚+1𝑃𝑠−1,ℓ,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡)

is exactly the (𝑚 + 1)-st component of 𝐻 (1)
𝑑,𝑠,𝜸 𝒑𝑠−1,𝛼,𝜸 for 𝑚 ∈ {0, 1, . . . , 𝑑 − 𝑠}.

Hence, calculating the product(
𝐻

(1)
𝑑,𝑠,𝜸 𝒑𝑠−1,𝛼,𝜸

)⊤
𝑸𝑑,𝑠,𝛼,𝜸

(
𝐻

(1)
𝑑,𝑠,𝜸 𝒑𝑠−1,𝛼,𝜸

)
yields the sum over 𝑚 in the expression for𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) in Lemma 13.22, by
using that𝑸𝑑,𝑠,𝛼,𝜸 is a diagonal matrix. This gives the result for𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡).

The result for𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) follows analogously, by noting that

454 13 𝐿2-Approximation Using Lattice Rules

𝑠−1∑︁
ℓ=0

Γℓ+𝑚𝑃𝑠−1,ℓ,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡)

is the (𝑚 + 1)-st entry of 𝐻 (0)
𝑑,𝑠,𝜸 𝒑𝑠−1,𝛼,𝜸 for 𝑚 ∈ {0, 1, . . . , 𝑑 − 𝑠}. □

We now have all the ingredients to outline how the terms𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) and
𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) can be computed efficiently for POD weights, hence making
the construction in Algorithm 13.14 fast. Indeed, it is necessary to compute these two
quantities efficiently for all 𝑡 ∈ {0, 1, . . . , 𝑁 − 1}, step by step for every component.

For fixed 𝑠 ∈ [𝑑] and fixed 𝑡 ∈ {0, 1, . . . , 𝑁 − 1}, let us first analyze the com-
putational effort to compute 𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) and 𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡). To this
end, it should be noted that 𝐻 (1)

𝑑,𝑠,𝜸 is the left upper (𝑑 − 𝑠 + 1) × 𝑠 submatrix of the
Hankel matrix

𝐻𝑑,𝜸 =

©«
Γ1 Γ2 . . . Γ𝑑−1 Γ𝑑
Γ2 Γ3 . . . Γ𝑑 0
...

...
...

Γ𝑑 0 . . . 0 0

ª®®®®¬
.

Therefore, 𝐻 (1)
𝑑,𝑠,𝜸 can be embedded in the Hankel matrix 𝐻𝑑,𝜸, which, in turn,

can be embedded in a 2𝑑 × 2𝑑 circulant matrix. By extending the input vector by
zeros and then using only a suitably selected initial part of the output vector, we
can in this way compute the matrix-vector products involving 𝐻

(1)
𝑑,𝑠,𝜸. A similar

observation holds for 𝐻 (0)
𝑑,𝑠,𝜸 with a slightly modified Hankel matrix. Consequently

the matrix-vector products in the result in Lemma 13.23 can be computed using
O(𝑑 log 𝑑) operations. The matrix multiplications with the diagonal matrix 𝑸𝑑,𝑠,𝛼,𝜸
obviously do not increase this order of magnitude. Thus, the computational cost of
computing𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) and𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) for fixed 𝑠 ∈ [𝑑] and fixed
𝑡 ∈ {0, 1, . . . , 𝑁 − 1} is of order O(𝑑 log 𝑑). However, it is also necessary for these
computations to have the quantities𝑄𝑑,𝑠,𝑚,𝛼,𝜸 and 𝑃𝑠−1,ℓ,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) available for
the various 𝑠, ℓ, and 𝑚. This can be achieved by updating them recursively.

Indeed, by setting 𝑃𝑟 ,0,𝛼,𝜸 (𝒈 (𝑟) , 𝑡) := 1 for any 𝑟 , and 𝑃𝑟 ,ℓ,𝛼,𝜸 (𝒈 (𝑟) , 𝑡) := 0 if
ℓ > 𝑟, we can use the recursion

𝑃𝑟 ,ℓ,𝛼,𝜸 (𝒈 (𝑟) , 𝑡) = 𝑃𝑟−1,ℓ,𝛼,𝜸 (𝒈 (𝑟−1) , 𝑡) + 𝛾𝑟𝜑𝛼
(𝑡𝑔𝑟
𝑁

)
𝑃𝑟−1,ℓ−1,𝛼,𝜸 (𝒈 (𝑟−1) , 𝑡).

If 𝑟 is increased by 1, one can compute the according values starting from ℓ = 𝑟 , and
ending with ℓ = 1, and overwrite the previous values.

Regarding 𝑄𝑑,𝑠,𝑚,𝛼,𝜸, one can again proceed recursively. Putting 𝑄𝑑,𝑠,0,𝛼,𝜸 := 1
for any 𝑠, and 𝑄𝑑,𝑠,𝑚,𝛼,𝜸 := 0 if 𝑚 > 𝑑 − 𝑠, one can use the recursion

𝑄𝑑,𝑠,𝑚,𝛼,𝜸 = 𝑄𝑑,𝑠+1,𝑚,𝛼,𝜸 + 2𝜁 (4𝛼)𝛾2
𝑠+1𝑄𝑑,𝑠+1,𝑚−1,𝛼,𝜸 .

13.4 Adaptions for General Weights 455

Again, this recursion works “backwards”, i.e., it is started from 𝑠 = 𝑑, and ends
with 𝑠 = 1. The different values of 𝑄𝑑,𝑠,𝑚,𝛼,𝜸 can be precomputed and stored in a
triangular matrix (as for each 𝑠, one needs to calculate the values for 𝑚 ranging from
0 to 𝑑 − 𝑠) at a cost of O(𝑑2) computations and O(𝑑2) storage.

In summary, we can bound the order of magnitude of operations necessary
to run Algorithm 13.14 as follows. The computation of the matrix-vector prod-
ucts involving 𝛀𝑁,𝛼 and 𝚿𝑁,𝛼 requires O(𝑑 𝑁 log 𝑁) operations. The computa-
tion of 𝑉𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) and 𝑊𝑁,𝑑,𝑠,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) and updating 𝑄𝑑,𝑠,𝑚,𝛼,𝜸 and
𝑃𝑠−1,ℓ,𝛼,𝜸 (𝒈 (𝑠−1) , 𝑡) needs O(𝑑 log 𝑑) operations, but these calculations need to be
done in each step of the algorithm and for each 𝑡 ∈ {0, 1, . . . , 𝑁 − 1}. In total this
yields that Algorithm 13.14 can be efficiently implemented such that it requires

O(𝑑 𝑁 log 𝑁 + 𝑁𝑑2 log 𝑑)

operations. While the quadratic dependence on 𝑑 is a slight drawback, this is what
can reasonably be expected for the case of POD weights, and a further improvement
of this order of magnitude does not seem to be within reach according to the current
state of the art.

Notes and Remarks

The idea of using lattice rules for approximation in Korobov spaces goes back to
Korobov himself (see [140], and also [115]). Approximation in unweighted Korobov
spaces was studied by Temlyakov in the papers [247, 249]. Furthermore, a method
similar to the one presented in Section 13.1 was also considered before in [182, 271].
Moreover, we would like to point out that a similar approach based on so-called
reconstructing rank-1 lattices for trigonometric polynomials is due to Kämmerer and
his co-authors, see, e.g. [125, 126, 129, 130]. This approach is also applicable to
more general function spaces beyond Korobov spaces. We shall return to further
methods by Kämmerer et al. in the context of multiple rank-1 lattice point sets in
Chapter 15.

In the present chapter, however, we have followed Kuo, Sloan, and Woźni-
akowski [162] in our outline, as this was the first paper to show the result for
the weighted setting, and to include tractability results.

The lower bound presented in Section 13.2 for approximation was shown in a more
general setting in [24]. Here, we have restricted ourselves to the case of approximation
in Hkor,𝑑,𝛼,𝜸, but the bound can also be shown for more general/slightly different
function spaces with the same technique.

It is beyond the scope of this book to give an extensive overview of tractability of
function approximation, so we have focused only on the most important aspects here.
For further details on tractability of function approximation, we refer to the paper
[209], and the trilogy [210]–[212], as well as the references therein. A complete

456 13 𝐿2-Approximation Using Lattice Rules

overview of the weight conditions for all current standard notions of tractability
beyond (strong) polynomial tractability of the 𝐿2-approximation problem in weighted
Korobov spaces can be found in [72].

In the outline of adaptions for general weights in Section 13.4 we have mostly
followed the papers [28] and [29]. In [29], there is also an analysis of how to
implement Algorithm 13.14 for order-dependent weights and SPOD weights.

Lattice rules for approximation in the average case setting are considered in the
paper [163] by Kuo, Sloan, and Woźniakowski.

In this chapter we have only considered Korobov spaces of finite smoothness 𝛼.
𝐿2-approximation for Korobov spaces of analytic functions as introduced in Chap-
ter 9 is studied in the papers [46, 119] (see also [149] for a survey).

Chapter 14
𝑳∞-Approximation Using Lattice Rules

Besides 𝐿2-approximation, which we outlined in Chapter 13, it is natural to consider
whether one can also use lattice point sets in order to approximate functions in the
Korobov space in the 𝐿∞-norm. Obviously, 𝐿∞-approximation is in general a much
more difficult task than 𝐿2-approximation, so it is, a priori, not clear whether lattice
rules can help also in the more demanding 𝐿∞-case. This is an interesting problem,
and there are several results showing that lattice rules can be also effectively used in
𝐿∞-approximation. These results (from, e.g., [165, 167, 270]) will be discussed in
this chapter.

14.1 𝑳∞-Approximation of Functions in Korobov Spaces

The approach outlined in Section 13.1 can also be analyzed such that we can derive
bounds for 𝐿∞-approximation of elements of the Korobov space Hkor,𝑑,𝛼,𝜸. Indeed,
we will use the same algorithm (given in (13.2)) as we used for 𝐿2-approximation
for 𝐿∞-approximation, and analyze its worst-case error,

err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))
:= sup

𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

sup
𝒙∈[0,1]𝑑

| 𝑓 (𝒙) − 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈) (𝑓) (𝒙) |.

As in Section 13.1, we will restrict ourselves—for the sake of simplicity—to consid-
ering only product weights 𝜸 = (𝛾 𝑗) 𝑗≥1, where we shall additionally often assume
that 𝛾 𝑗 ∈ (0, 1] for all 𝑗 ∈ N.

Let again
A𝑑,𝑀 :=

{
𝒉 ∈ Z𝑑 : 𝑟2𝛼,𝜸 (𝒉) ≤ 𝑀

}

457© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_14&domain=pdf

458 14 𝐿∞-Approximation Using Lattice Rules

for a real 𝑀 > 0 and 𝑑 ∈ N. Let 𝑁 be a prime number, and assume that 𝒈 is a
generating vector of a rank-1 lattice rule with 𝑁 points. Then, we can define the
algorithm 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈) exactly as in (13.2) and use it for 𝐿∞-approximation of
𝑓 ∈ Hkor,𝑑,𝛼,𝜸.

For fixed 𝒉 ∈ A𝑑,𝑀 , define a function 𝜏𝒉 ∈ Hkor,𝑑,𝛼,𝜸 as

𝜏𝒉 (𝒙) := −
∑︁

ℓ∈Z𝑑\{𝒉}
(𝒉−ℓ) ·𝒈≡0 (mod 𝑁)

e2𝜋iℓ·𝒙

𝑟2𝛼,𝜸 (ℓ)
. (14.1)

Note that 𝜏𝒉 implicitly also depends on 𝒈, 𝑁 , and A𝑑,𝑀 , but we suppress this
dependence in the notation to keep it as simple as possible. Then, for 𝑓 ∈ Hkor,𝑑,𝛼,𝜸,
we get

⟨ 𝑓 , 𝜏𝒉⟩kor,𝑑,𝛼,𝜸 = −
∑︁

ℓ∈Z𝑑\{𝒉}
(𝒉−ℓ) ·𝒈≡0 (mod 𝑁)

�̂� (ℓ).

On the other hand, the integration error using P(𝒈, 𝑁) for the function defined by
𝑓𝒉 (𝒙) := 𝑓 (𝒙) e−2𝜋i𝒉 ·𝒙 for 𝒙 ∈ [0, 1)𝑑 is, by Proposition 1.12,∫

[0,1]𝑑
𝑓𝒉 (𝒙) d𝒙 − 1

𝑁

𝑁−1∑︁
𝑘=0

𝑓𝒉

({
𝑘𝒈

𝑁

})
= −

∑︁
ℓ∈Z𝑑\{0}

ℓ·𝒈≡0 (mod 𝑁)

�̂�𝒉 (ℓ)

= −
∑︁

ℓ∈Z𝑑\{0}
ℓ·𝒈≡0 (mod 𝑁)

�̂� (ℓ + 𝒉)

= −
∑︁

ℓ∈Z𝑑\{𝒉}
(ℓ−𝒉) ·𝒈≡0 (mod 𝑁)

�̂� (ℓ)

= −
∑︁

ℓ∈Z𝑑\{𝒉}
(𝒉−ℓ) ·𝒈≡0 (mod 𝑁)

�̂� (ℓ).

This immediately yields that

⟨ 𝑓 , 𝜏𝒉⟩kor,𝑑,𝛼,𝜸 = �̂� (𝒉) − 1
𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
e−2𝜋i𝑘𝒉 ·𝒈/𝑁 .

Furthermore, we get for 𝒉, 𝒑 ∈ A𝑑,𝑀 ,

⟨𝜏𝒉 , 𝜏𝒑⟩kor,𝑑,𝛼,𝜸 =
∑︁

ℓ∈Z𝑑\{𝒉,𝒑}
(𝒉−ℓ) ·𝒈≡0 (mod 𝑁)
(𝒑−ℓ) ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (ℓ)

14.1 𝐿∞-Approximation of Functions in Korobov Spaces 459

=
∑︁

ℓ∈Z𝑑\{0,𝒑−𝒉}
−ℓ·𝒈≡0 (mod 𝑁)

(𝒑−ℓ−𝒉) ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (ℓ + 𝒉)

=
∑︁

ℓ∈Z𝑑\{0,𝒑−𝒉}
ℓ·𝒈≡0 (mod 𝑁)

(𝒉−𝒑) ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (ℓ + 𝒉) .

Since the condition (𝒉 − 𝒑) · 𝒈 ≡ 0 (mod 𝑁) in the latter sum is independent of the
summation index ℓ, we can write, for 𝒉, 𝒑 ∈ A𝑑,𝑀 ,

⟨𝜏𝒉 , 𝜏𝒑⟩kor,𝑑,𝛼,𝜸 =

∑︁

ℓ∈Z𝑑\{0,𝒑−𝒉}
ℓ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ) if (𝒉 − 𝒑) · 𝒈 ≡ 0 (mod 𝑁),

0 otherwise.
(14.2)

Furthermore, for the proof of Proposition 14.1 below, we extend the definition of 𝜏𝒉
given in (14.1) such that for 𝒉 ∈ Z𝑑 \ A𝑑,𝑀 we put

𝜏𝒉 (𝒙) :=
e2𝜋i𝒉 ·𝒙

𝑟2𝛼,𝜸 (𝒉)
.

This yields ⟨ 𝑓 , 𝜏𝒉⟩kor,𝑑,𝛼,𝜸 = �̂� (𝒉) for 𝒉 ∈ Z𝑑 \ A𝑑,𝑀 .
For a given generating vector 𝒈 of a rank-1 lattice rule with 𝑁 points (𝑁 prime)

and given set A𝑑,𝑀 as above, we define a |A𝑑,𝑀 | × |A𝑑,𝑀 | matrix 𝑇𝒈,𝑑,𝑀 by

𝑇𝒈,𝑑,𝑀 :=
(
⟨𝜏𝒉 , 𝜏𝒑⟩kor,𝑑,𝛼,𝜸

)
𝒉,𝒑∈A𝑑,𝑀

. (14.3)

The fundamental error estimate

The following result due to Kuo, Wasilkowski, and Woźniakowski [166] is the basis
of the error analysis in this section. We will use the upper bound (14.4) for the
construction of good lattice rules yielding a small approximation error. The lower
bound is given as a reference and shows that the upper bound is, up to an absolute
constant, best possible.

Proposition 14.1 Let 𝛼 > 1/2, let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights, let 𝑀 be a
positive real, and let 𝑁 be a prime number. Let 𝒈 be the generating vector of a rank-1
lattice rule with 𝑁 points and define the algorithm 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈) as in (13.2). Let
𝑇𝒈,𝑑,𝑀 be given by (14.3). Then it is true that

460 14 𝐿∞-Approximation Using Lattice Rules

err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))

≤ ©«
∑︁

𝒉∈Z𝑑\A𝑑,𝑀

1
𝑟2𝛼,𝜸 (𝒉)

+ 3Σ(𝑇𝒈,𝑑,𝑀)ª®¬
1/2

(14.4)

and

err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))

≥ ©«
∑︁

𝒉∈Z𝑑\A𝑑,𝑀

1
𝑟2𝛼,𝜸 (𝒉)

+ Σ(𝑇𝒈,𝑑,𝑀)ª®¬
1/2

,

where Σ(𝑇) denotes the sum of all elements of a matrix 𝑇 .

Proof In analogy to (13.4), it is easy to see that, for any fixed 𝑓 ∈ Hkor,𝑑,𝛼,𝜸 and
any fixed 𝒙 ∈ [0, 1)𝑑 , we have

(𝑓 − 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈) (𝑓)) (𝒙) =
∑︁

𝒉∉A𝑑,𝑀

�̂� (𝒉) e2𝜋i𝒉 ·𝒙

+
∑︁

𝒉∈A𝑑,𝑀

(
�̂� (𝒉) − 1

𝑁

𝑁−1∑︁
𝑘=0

𝑓

({
𝑘𝒈

𝑁

})
e−2𝜋i𝑘𝒉 ·𝒈/𝑁

)
e2𝜋i𝒉 ·𝒙.

By our observations above, we can thus write

(𝑓 − 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈) (𝑓)) (𝒙)

=
∑︁

𝒉∉A𝑑,𝑀

⟨ 𝑓 (·), 𝜏𝒉 (·) e−2𝜋i𝒉 ·𝒙⟩kor,𝑑,𝛼,𝜸 +
∑︁

𝒉∈A𝑑,𝑀

⟨ 𝑓 (·), 𝜏𝒉 (·) e−2𝜋i𝒉 ·𝒙⟩kor,𝑑,𝛼,𝜸

=

〈
𝑓 (·),

∑︁
𝒉∈Z𝑑

𝜏𝒉 (·) e−2𝜋i𝒉 ·𝒙

〉
kor,𝑑,𝛼,𝜸

,

where the inner product is with respect to the hidden variable (·).
Having expressed the approximation error for a fixed 𝒙 as an inner product, we

can now proceed in the by now familiar manner. We apply the Cauchy–Schwarz
inequality and obtain in this way,

| (𝑓 − 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈) (𝑓)) (𝒙) | ≤ ∥ 𝑓 ∥kor,𝑑,𝛼,𝜸

 ∑︁
𝒉∈Z𝑑

𝜏𝒉 e−2𝜋i𝒉 ·𝒙

kor,𝑑,𝛼,𝜸

.

However, since the Cauchy–Schwarz inequality is sharp for

14.1 𝐿∞-Approximation of Functions in Korobov Spaces 461

𝑓 (𝒚) =
∑

𝒉∈Z𝑑 𝜏𝒉 (𝒚) e−2𝜋i𝒉 ·𝒙

∥∑
𝒉∈Z𝑑 𝜏𝒉 e−2𝜋i𝒉 ·𝒙∥kor,𝑑,𝛼,𝜸

,

we can even obtain equality. Accordingly we obtain

err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))

= sup
𝒙∈[0,1]𝑑

 ∑︁
𝒉∈Z𝑑

𝜏𝒉 e−2𝜋i𝒉 ·𝒙

kor,𝑑,𝛼,𝜸

= sup
𝒙∈[0,1]𝑑

������ ∑︁𝒉∈Z𝑑
∑︁
𝒑∈Z𝑑

⟨𝜏𝒉 , 𝜏𝒑⟩kor,𝑑,𝛼,𝜸 e2𝜋i(𝒑−𝒉) ·𝒙

������
1/2

. (14.5)

From (14.2), we already know expressions for ⟨𝜏𝒉 , 𝜏𝒑⟩kor,𝑑,𝛼,𝜸 if both 𝒉 and 𝒑 are
elements of A𝑑,𝑀 . However, we also need information regarding the inner product
if that is not the case. To this end, let us first suppose that 𝒉 ∈ A𝑑,𝑀 , but 𝒑 ∉ A𝑑,𝑀 .
Then we obviously have

⟨𝜏𝒉 , 𝜏𝒑⟩kor,𝑑,𝛼,𝜸 =

{
(𝑟2𝛼,𝜸 (𝒑))−1 if (𝒑 − 𝒉) · 𝒈 ≡ 0 (mod 𝑁),
0 otherwise,

(14.6)

and by symmetry the analog holds if 𝒉 ∉ A𝑑,𝑀 but 𝒑 ∈ A𝑑,𝑀 . If 𝒉, 𝒑 ∉ A𝑑,𝑀 , we
obtain

⟨𝜏𝒉 , 𝜏𝒑⟩kor,𝑑,𝛼,𝜸 =

{
(𝑟2𝛼,𝜸 (𝒑))−1 if 𝒉 = 𝒑,
0 otherwise.

(14.7)

Combining (14.2), (14.6), and (14.7), we have covered all possible cases for 𝒉, 𝒑 ∈
Z𝑑 . Since in all cases we have ⟨𝜏𝒉 , 𝜏𝒑⟩kor,𝑑,𝛼,𝜸 ≥ 0, it follows that the supremum in
(14.5) is attained for 𝒙 = 0, which yields

err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈)) =
©«
∑︁
𝒉∈Z𝑑

∑︁
𝒑∈Z𝑑

⟨𝜏𝒉 , 𝜏𝒑⟩kor,𝑑,𝛼,𝜸
ª®¬

1/2

=

©«
∑︁

𝒉∈Z𝑑\A𝑑,𝑀

1
𝑟2𝛼,𝜸 (𝒉)

+ 2
∑︁

𝒉∈A𝑑,𝑀

∑︁
𝒑∉A𝑑,𝑀

(𝒑−𝒉) ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒑)

+ Σ(𝑇𝒈,𝑑,𝑀)
ª®®®¬

1/2

.

This implies the lower bound. In order to prove the upper bound, we estimate the
double sum in the middle term of the right-hand side of the previous expression by∑︁

𝒉∈A𝑑,𝑀

∑︁
𝒑∉A𝑑,𝑀

(𝒑−𝒉) ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒑)

≤
∑︁

𝒉∈A𝑑,𝑀

∑︁
𝒑∈Z𝑑\{𝒉}

(𝒑−𝒉) ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒑)

462 14 𝐿∞-Approximation Using Lattice Rules

=
∑︁

𝒉∈A𝑑,𝑀

∑︁
ℓ∈Z𝑑\{0}

ℓ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ)

= trace(𝑇𝒈,𝑑,𝑀)
≤ Σ(𝑇𝒈,𝑑,𝑀),

where trace(𝑇𝒈,𝑑,𝑀), as usual, denotes the sum of the diagonal elements of the matrix
𝑇𝒈,𝑑,𝑀 . Hence

err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))

≤ ©«
∑︁

𝒉∈Z𝑑\A𝑑,𝑀

1
𝑟2𝛼,𝜸 (𝒉)

+ 3Σ(𝑇𝒈,𝑑,𝑀)ª®¬
1/2

. □

Next, we use Proposition 14.1 for the construction of good lattice rules yielding
a small approximation error. Before we do so, we give an estimate on the first term
on the right-hand side of (14.4). To this end, we use a method shown by Kuo, Sloan,
and Woźniakowski in [163, Lemma 6].

Lemma 14.2 Let 𝛼 > 1/2 and 𝑀 ≥ 1 be given. For any 𝑞 ∈ (1/(2𝛼), 1) we have∑︁
𝒉∈Z𝑑\A𝑑,𝑀

1
𝑟2𝛼,𝜸 (𝒉)

≤ 1
(𝛾1𝑀) (1/𝑞−1)/(2𝛼)

𝑞

1 − 𝑞

𝑑∏
𝑗=1

(
1 + 2𝛾𝑞

𝑗
𝜁 (2𝛼𝑞)

)1/𝑞
.

Proof Suppose that the vectors 𝒉 ∈ Z𝑑 are indexed by 𝑖 ∈ N such that they are
ordered according to the values of (𝑟2𝛼,𝜸 (𝒉))−1 in a nonincreasing fashion. Let us
denote this indexing by 𝒉 (𝑖) ∈ Z𝑑 . The ordering of vectors 𝒉 with the same value of
(𝑟2𝛼,𝜸 (𝒉))−1 is of no importance and can be arbitrary. Then it is obvious that A𝑑,𝑀

contains the 𝒉 (𝑖) with 𝑖 ∈ {1, 2, . . . , |A𝑑,𝑀 |}, and hence∑︁
𝒉∈Z𝑑\A𝑑,𝑀

1
𝑟2𝛼,𝜸 (𝒉)

=

∞∑︁
𝑖= |A𝑑,𝑀 |+1

1
𝑟2𝛼,𝜸 (𝒉 (𝑖))

.

Furthermore, for any 𝑖 ∈ N and any 𝑞 ∈ (1/(2𝛼), 1), we have, due to the ordering of
the 𝒉 (𝑖) ,

𝑖

(𝑟2𝛼,𝜸 (𝒉 (𝑖)))𝑞
≤

𝑖∑︁
𝑡=1

1
(𝑟2𝛼,𝜸 (𝒉 (𝑡)))𝑞

,

and hence

1
(𝑟2𝛼,𝜸 (𝒉 (𝑖)))𝑞

≤ 1
𝑖

𝑖∑︁
𝑡=1

1
(𝑟2𝛼,𝜸 (𝒉 (𝑡)))𝑞

14.1 𝐿∞-Approximation of Functions in Korobov Spaces 463

≤ 1
𝑖

∞∑︁
𝑡=1

1
(𝑟2𝛼,𝜸 (𝒉 (𝑡)))𝑞

=
1
𝑖

𝑑∏
𝑗=1

(
1 + 2𝛾𝑞

𝑗
𝜁 (2𝛼𝑞)

)
.

This yields∑︁
𝒉∈Z𝑑\A𝑑,𝑀

1
𝑟2𝛼,𝜸 (𝒉)

≤
∞∑︁

𝑖= |A𝑑,𝑀 |+1

1
𝑖1/𝑞

𝑑∏
𝑗=1

(
1 + 2𝛾𝑞

𝑗
𝜁 (2𝛼𝑞)

)1/𝑞

≤
(∫ ∞

|A𝑑,𝑀 |

1
𝑥1/𝑞 d𝑥

) 𝑑∏
𝑗=1

(
1 + 2𝛾𝑞

𝑗
𝜁 (2𝛼𝑞)

)1/𝑞

=
1

|A𝑑,𝑀 |1/𝑞−1
𝑞

1 − 𝑞

𝑑∏
𝑗=1

(
1 + 2𝛾𝑞

𝑗
𝜁 (2𝛼𝑞)

)1/𝑞
.

Recall that we know from Item 1 of Lemma 13.1 that for 𝒉 = (ℎ1, . . . , ℎ𝑑) ∈ A𝑑,𝑀

we have |ℎ 𝑗 | ≤ (𝛾 𝑗𝑀)1/(2𝛼) for 𝑗 ∈ [𝑑] and thus |A𝑑,𝑀 | ≥ |A1,𝑀 | ≥ (𝛾1𝑀)1/(2𝛼) ,
where we used that 𝑀 ≥ 1, since otherwise A1,𝑀 would be empty and the second
inequality would not hold. This then yields∑︁

𝒉∈Z𝑑\A𝑑,𝑀

1
𝑟2𝛼,𝜸 (𝒉)

≤ 1
(𝛾1𝑀) (1/𝑞−1)/(2𝛼)

𝑞

1 − 𝑞

𝑑∏
𝑗=1

(
1 + 2𝛾𝑞

𝑗
𝜁 (2𝛼𝑞)

)1/𝑞
. □

It remains to bound the term Σ(𝑇𝒈,𝑑,𝑀) in (14.4) in a suitable way. For this task
we now present two possible approaches.

Estimating Σ(𝑇𝒈,𝑑,𝑀) by means of 𝑆𝑁,𝑑,𝛼,𝜸 (𝒈)

The first way to bound Σ(𝑇𝒈,𝑑,𝑀) is in observing that

Σ(𝑇𝒈,𝑑,𝑀) =
∑︁

𝒉∈A𝑑,𝑀

∑︁
𝒑∈A𝑑,𝑀

(𝒉−𝒑) ·𝒈≡0 (mod 𝑁)

∑︁
ℓ∈Z𝑑\{0,𝒑−𝒉}
ℓ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ)

≤ |A𝑑,𝑀 |
∑︁

𝒉∈A𝑑,𝑀

∑︁
ℓ∈Z𝑑\{0}

ℓ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ)

≤ |A𝑑,𝑀 |
∑︁

𝒉∈A𝑑,𝑀

𝑀

𝑟2𝛼,𝜸 (𝒉)
∑︁

ℓ∈Z𝑑\{0}
ℓ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ)

≤ |A𝑑,𝑀 |𝑀 [𝑆𝑁,𝑑,𝛼,𝜸 (𝒈)]2,

464 14 𝐿∞-Approximation Using Lattice Rules

where we used the definition of the set A𝑑,𝑀 in the penultimate step, and where
𝑆𝑁,𝑑,𝛼,𝜸 (𝒈) is defined as in (13.11). Combining this estimate with Proposition 14.1
and Lemma 14.2 we get

[err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2

≤ 1
(𝛾1𝑀) (1/𝑞−1)/(2𝛼)

𝑞

1 − 𝑞

𝑑∏
𝑗=1

(
1 + 2𝛾𝑞

𝑗
𝜁 (2𝛼𝑞)

)1/𝑞
+3 |A𝑑,𝑀 |𝑀 [𝑆𝑁,𝑑,𝛼,𝜸 (𝒈)]2

(14.8)

for any 𝑞 ∈ ((2𝛼)−1, 1) as long as 𝑀 ≥ 1.
Fortunately, we are already familiar with the quantity 𝑆𝑁,𝑑,𝛼,𝜸 (𝒈) and we have

an algorithm for constructing reasonably good generating vectors 𝒈 together with an
upper bound on the corresponding value of 𝑆𝑁,𝑑,𝛼,𝜸 (𝒈) from Theorem 13.5.

Theorem 14.3 Let 𝑁 ≥ 3 be a prime number, let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights
with 𝛾 𝑗 ∈ (0, 1] for all 𝑗 ∈ N, and assume that 𝒈 has been found by Algorithm 13.3.
Then for any 𝜏 ∈ (1/2, 𝛼) we have

err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈)) ≤
𝐶𝑑,𝛼,𝜸,𝜏

𝑁 𝜏
2 (2𝜏−1)/(𝛼(2𝜏+1)+𝜏 (2𝜏−1))

,

where 𝑀 = 𝑁4𝛼𝜏2/(𝛼(2𝜏+1)+𝜏 (2𝜏−1)) , and where

𝐶𝑑,𝛼,𝜸,𝜏 =

(
3 + 1

𝛾
(2𝜏−1)/(2𝛼)
1 (2𝜏 − 1)

)1/2 𝑑∏
𝑗=1

(
1 + 24𝛼+1𝛾

1/(2𝜏)
𝑗

𝜁

(𝛼
𝜏

))2𝜏+1/2
.

Proof Using (14.8), the bound on |A𝑑,𝑀 | in Item 4 of Lemma 13.1 with 𝜆 = 1/(2𝜏),
Theorem 13.5, and setting also 𝑞 = 1/(2𝜏), we obtain for any 𝜏 ∈ (1/2, 𝛼) that

[err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2

≤
𝐶

(1)
𝑑,𝛼,𝜸,𝜏

𝑀 (2𝜏−1)/(2𝛼) +
𝑀1+1/(2𝜏)𝐶 (2)

𝑑,𝛼,𝜸,𝜏

𝑁2𝜏 , (14.9)

where

𝐶
(1)
𝑑,𝛼,𝜸,𝜏 =

1
𝛾
(2𝜏−1)/(2𝛼)
1 (2𝜏 − 1)

𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏

and

𝐶
(2)
𝑑,𝛼,𝜸,𝜏 = 3

𝑑∏
𝑗=1

(
1 + 24𝛼+1𝛾

1/(2𝜏)
𝑗

𝜁

(𝛼
𝜏

))4𝜏+1
.

We now balance the two terms in (14.9) with respect to the dependence on 𝑁 and 𝑀
by choosing

𝑀 = 𝑁4𝛼𝜏2/(𝛼(2𝜏+1)+𝜏 (2𝜏−1)) .

14.1 𝐿∞-Approximation of Functions in Korobov Spaces 465

Then we obtain

[err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2 ≤
𝐶

(1)
𝑑,𝛼,𝜸,𝜏 + 𝐶

(2)
𝑑,𝛼,𝜸,𝜏

𝑁2𝜏2 (2𝜏−1)/(𝛼(2𝜏+1)+𝜏 (2𝜏−1))
.

Obviously, 𝐶 (1)
𝑑,𝛼,𝜸,𝜏 + 𝐶

(2)
𝑑,𝛼,𝜸,𝜏 ≤ (𝐶𝑑,𝛼,𝜸,𝜏)2. Now the result follows by taking the

square root. □

Since 𝜏 can be chosen arbitrarily close to 𝛼 we achieve, using the result in Theo-
rem 14.3, an error rate of order O(𝑁−𝛼/2+1/4+𝛿) for arbitrarily small but positive 𝛿.

We will analyze this result with respect to tractability in Section 14.3 below.

An alternative way of bounding Σ(𝑇𝒈,𝑑,𝑀)

Let us also outline an alternative way to proceed from the bound (14.4). Indeed, we
can estimate

Σ(𝑇𝒈,𝑑,𝑀) =
∑︁

𝒉∈A𝑑,𝑀

∑︁
𝒑∈A𝑑,𝑀

⟨𝜏𝒉 , 𝜏𝒑⟩kor,𝑑,𝛼,𝜸 ≤ [𝑋𝑁,𝑑,𝛼,𝜸 (𝒈)]2,

where we put
𝑋𝑁,𝑑,𝛼,𝜸 (𝒈) :=

∑︁
𝒉∈A𝑑,𝑀

∥𝜏𝒉 ∥kor,𝑑,𝛼,𝜸 .

Note that we can express 𝑋𝑁,𝑑,𝛼,𝜸 (𝒈) as

𝑋𝑁,𝑑,𝛼,𝜸 (𝒈) =
∑︁

𝒉∈A𝑑,𝑀

⟨𝜏𝒉 , 𝜏𝒉⟩1/2
kor,𝑑,𝛼,𝜸 =

∑︁
𝒉∈A𝑑,𝑀

©«
∑︁

ℓ∈Z𝑑\{0}
ℓ·𝒈≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ)

ª®®®®¬
1/2

.

Accordingly, we get from (14.4) and Lemma 14.2 that

[err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2

≤
∑︁

𝒉∈Z𝑑\A𝑑,𝑀

1
𝑟2𝛼,𝜸 (𝒉)

+ 3 [𝑋𝑁,𝑑,𝛼,𝜸 (𝒈)]2

≤ 1
(𝛾1𝑀) (1/𝑞−1)/(2𝛼)

𝑞

1 − 𝑞

𝑑∏
𝑗=1

(
1 + 2𝛾𝑞

𝑗
𝜁 (2𝛼𝑞)

)1/𝑞
+ 3 [𝑋𝑁,𝑑,𝛼,𝜸 (𝒈)]2,

(14.10)

as long as 𝑀 ≥ 1. This naturally leads to the strategy to use the quantity 𝑋𝑁,𝑑,𝛼,𝜸 (𝒈)
as a search criterion for good generating vectors of rank-1 lattice rules for 𝐿∞-
approximation in the Korobov space. This strategy was first pursued in [166], and
we shall outline some of the main findings of that paper below. As it turns out, a

466 14 𝐿∞-Approximation Using Lattice Rules

search based on 𝑋𝑁,𝑑,𝛼,𝜸 (𝒈) leads to a better error bound than the search based
on 𝑆𝑁,𝑑,𝛼,𝜸 (𝒈) that we presented above. The drawback of this result is that we
require the smoothness parameter 𝛼 to be strictly bigger than 1. We shall make this
assumption for the rest of this section.

If we use 𝑋𝑁,𝑑,𝛼,𝜸 (𝒈) as a quality criterion for generating vectors of rank-1 lattice
rules for 𝐿∞-approximation, it is an obvious question whether we can optimize this
criterion by using a CBC construction, and the answer to this question is affirmative.
Indeed, the following algorithm is similar to Algorithm 13.3 that we used for finding
𝒈 with low values of 𝑆𝑁,𝑑,𝛼,𝜸 (𝒈).

Algorithm 14.4 (CBC construction for 𝐿∞-approximation in the weighted Ko-
robov space) Let prime 𝑁 and 𝑑 ∈ N be given. Let 𝑀 ≥ 1 and 𝛼 > 1, and let
𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights. Construct a generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈
𝐺
𝜑

𝑑
(𝑁) as follows.

(1) Choose 𝑔1 = 1.
(2) For 𝑠 from 1 to 𝑑 − 1:

Assume that 𝑔1, . . . , 𝑔𝑠 ∈ 𝐺
𝜑

1 (𝑁) have already been found. Choose 𝑔𝑠+1 ∈
𝐺
𝜑

1 (𝑁) as
𝑔𝑠+1 := argmin

𝑔∈𝐺𝜑

1 (𝑁)
𝑋𝑁,𝑠+1,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠 , 𝑔)).

End for.
(3) Set 𝒈 = (𝑔1, . . . , 𝑔𝑑).

Remark 14.5 As pointed out in [166], Algorithm 14.4 can be efficiently imple-
mented, using methods outlined in [163] combined with the usual methods for fast
CBC constructions (see Chapter 3), to obtain a runtime of O(|A𝑑,𝑀 |𝑑 𝑁 log 𝑁)
operations. This runtime can be seen as a slight disadvantage in comparison to Al-
gorithm 13.3 for finding generating vectors with small values of 𝑆𝑁,𝑑,𝛼,𝜸 (𝒈), as the
latter has a runtime of O(𝑑 𝑁 log 𝑁) operations.

Next we show that the generating vectors constructed by Algorithm 14.4 indeed
yield a low value of 𝑋𝑁,𝑑,𝛼,𝜸. However, as already pointed out, we have to assume
that 𝛼 is strictly greater than one in order to show this result.

Theorem 14.6 Let 𝛼 > 1 and 𝑀 ≥ 1 be given. Let 𝑁 ≥ 2𝑀1/(2𝛼) be a prime
number, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights with 𝛾 𝑗 ∈ (0, 1] for 𝑗 ∈ N. Assume
that 𝒈 has been found by Algorithm 14.4. Then for arbitrary 𝜏 ∈ [1, 𝛼) and for any
𝑠 ∈ [𝑑] we have

𝑋𝑁,𝑠,𝛼,𝜸 ((𝑔1, . . . , 𝑔𝑠)) ≤
4𝜏 |A𝑠,𝑀 |𝜏

𝑁 𝜏

𝑠∏
𝑗=1

(
1 + 22+𝛼/𝜏𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

)) 𝜏
. (14.11)

Proof We prove the result by induction on 𝑠. For 𝑠 = 1, we use that 𝑔1 = 1, and
Jensen’s inequality (see Lemma 2.25) for 𝜆 ∈ (1/𝛼, 1] to obtain

14.1 𝐿∞-Approximation of Functions in Korobov Spaces 467

(𝑋𝑁,1,𝛼,𝛾1 (1))𝜆 =

©«
∑︁

ℎ∈A1,𝑀

©«
∑︁

ℓ∈Z\{0}
ℓ≡0 (mod 𝑁)

1
𝑟2𝛼,𝛾1 (ℎ + ℓ)

ª®®®¬
1/2ª®®®¬

𝜆

≤
∑︁

ℎ∈A1,𝑀

∑︁
ℓ∈Z\{0}

ℓ≡0 (mod 𝑁)

1
𝑟
𝛼𝜆,𝛾

𝜆/2
1

(ℎ + ℓ) .

For ℎ ∈ A1,𝑀 we have by Item 1 of Lemma 13.1,

|ℎ| ≤ (𝛾1𝑀)1/(2𝛼) ≤ 𝑁

2
,

according to our assumption on 𝑁 . In particular, this implies that for every ℎ ∈ A1,𝑀
and every ℓ ∈ Z \ {0} with ℓ ≡ 0 (mod 𝑁) we have ℎ + ℓ ≠ 0.

Now, for ℎ ∈ A1,𝑀 , ℎ ≥ 0, we obtain∑︁
ℓ∈Z\{0}

ℓ≡0 (mod 𝑁)

1
𝑟
𝛼𝜆,𝛾

𝜆/2
1

(ℎ + ℓ)

= 𝛾
𝜆/2
1

(∞∑︁
ℓ=1

1
(ℎ + ℓ𝑁)𝛼𝜆 +

∞∑︁
ℓ=1

1
(ℓ𝑁 − ℎ)𝛼𝜆

)
= 𝛾

𝜆/2
1

(∞∑︁
ℓ=1

1
(ℎ + ℓ𝑁)𝛼𝜆 + 1

(𝑁 − ℎ)𝛼𝜆 +
∞∑︁
ℓ=1

1
(ℓ𝑁 + 𝑁 − ℎ)𝛼𝜆

)
≤ 𝛾

𝜆/2
1

(
2
𝑁𝛼𝜆

∞∑︁
ℓ=1

1
ℓ𝛼𝜆

+ 2𝛼𝜆

𝑁𝛼𝜆

)
=
𝛾
𝜆/2
1
𝑁𝛼𝜆

(2𝜁 (𝛼𝜆) + 2𝛼𝜆)

≤
𝛾
𝜆/2
1 21+𝛼𝜆𝜁 (𝛼𝜆)

𝑁𝛼𝜆
.

For ℎ ∈ A1,𝑀 , ℎ < 0 we have∑︁
ℓ∈Z\{0}

ℓ≡0 (mod 𝑁)

1
𝑟
𝛼𝜆,𝛾

𝜆/2
1

(ℎ + ℓ) =
∑︁

ℓ∈Z\{0}
ℓ≡0 (mod 𝑁)

1
𝑟
𝛼𝜆,𝛾

𝜆/2
1

(−ℎ − ℓ)

=
∑︁

ℓ∈Z\{0}
ℓ≡0 (mod 𝑁)

1
𝑟
𝛼𝜆,𝛾

𝜆/2
1

(−ℎ + ℓ)

≤
𝛾
𝜆/2
1 21+𝛼𝜆𝜁 (𝛼𝜆)

𝑁𝛼𝜆
.

468 14 𝐿∞-Approximation Using Lattice Rules

This yields

(𝑋𝑁,1,𝛼,𝛾1 (1))𝜆 ≤ |A1,𝑀 |
𝛾
𝜆/2
1 21+𝛼𝜆𝜁 (𝛼𝜆)

𝑁𝛼𝜆
.

Putting 𝜏 = 1/𝜆, which implies 𝜏 ∈ [1, 𝛼), implies

(𝑋𝑁,1,𝛼,𝛾1 (1))1/𝜏 ≤
|A1,𝑀 |
𝑁𝛼/𝜏

𝛾
1/(2𝜏)
1 21+𝛼/𝜏𝜁

(𝛼
𝜏

)
.

Taking both sides of the latter inequality to the 𝜏-th power gives

𝑋𝑁,1,𝛼,𝛾1 (1) ≤
|A1,𝑀 |𝜏
𝑁𝛼

(
𝛾

1/(2𝜏)
1 21+𝛼/𝜏𝜁

(𝛼
𝜏

)) 𝜏
and this implies the result for 𝑠 = 1.

In the induction step, let 𝒈 (𝑠) = (𝑔1, . . . , 𝑔𝑠) ∈ 𝐺𝜑𝑠 (𝑁) denote the 𝑠-dimensional
generating vector that has been obtained in the first 𝑠 steps of the algorithm,
and suppose that the claimed error bound (14.11) holds for the lattice rule gen-
erated by 𝒈 (𝑠) (with 𝜏 = 1/𝜆). Once again, we write (𝒈 (𝑠) , 𝑔𝑠+1) for the vector
(𝑔1, . . . , 𝑔𝑠 , 𝑔𝑠+1) ∈ 𝐺𝜑𝑠+1 (𝑁), where 𝑔𝑠+1 is the (𝑠 + 1)-st component of the gener-
ating vector selected by Algorithm 14.4. For 𝑋𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1)) we can distin-
guish two cases according to whether the (𝑠 + 1)-st component of ℓ ∈ Z𝑠+1 \ {0} is
zero or not, which yields

𝑋𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1))

=
∑︁

(𝒉,ℎ𝑠+1) ∈A𝑠+1,𝑀

©«
1

𝑟2𝛼,𝛾𝑠+1 (ℎ𝑠+1)
∑︁

ℓ∈Z𝑠\{0}
ℓ·𝒈 (𝑠)≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ)

+
∑︁

ℓ𝑠+1∈Z\{0}

∑︁
ℓ∈Z𝑠

ℓ·𝒈 (𝑠)≡−ℓ𝑠+1𝑔𝑠+1 (mod 𝑁)

1
𝑟2𝛼,𝜸 ((𝒉, ℎ𝑠+1) + (ℓ, ℓ𝑠+1))

ª®®®¬
1/2

≤
∑︁

(𝒉,ℎ𝑠+1) ∈A𝑠+1,𝑀

©«
1

𝑟2𝛼,𝛾𝑠+1 (ℎ𝑠+1)
∑︁

ℓ∈Z𝑠\{0}
ℓ·𝒈 (𝑠)≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ)

ª®®®®¬
1/2

+𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1)

14.1 𝐿∞-Approximation of Functions in Korobov Spaces 469

≤
∑︁
ℎ𝑠+1∈Z

1
𝑟
𝛼,𝛾

1/2
𝑠+1

(ℎ𝑠+1)
∑︁

𝒉∈A𝑠,𝑀

©«
∑︁

ℓ∈Z𝑠\{0}
ℓ·𝒈 (𝑠)≡0 (mod 𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ)

ª®®®®¬
1/2

+𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1)
= (1 + 2𝛾1/2

𝑠+1𝜁 (𝛼))𝑋𝑁,𝑠,𝛼,𝜸 (𝒈
(𝑠)) + 𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1),

where we used Item 2 of Lemma 13.1, and where we write

𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔𝑠+1)

:=
∑︁

(𝒉,ℎ𝑠+1) ∈A𝑠+1,𝑀

©«
∑︁

ℓ𝑠+1∈Z\{0}

∑︁
ℓ∈Z𝑠

ℓ·𝒈 (𝑠)≡−ℓ𝑠+1𝑔𝑠+1 (mod 𝑁)

1
𝑟2𝛼,𝛾𝑠+1 (ℎ𝑠+1 + ℓ𝑠+1)

1
𝑟2𝛼,𝜸 (𝒉 + ℓ)

ª®®®¬
1/2

.

Next, we use Jensen’s inequality and the standard averaging argument (see Re-
mark 2.14), such that we obtain, for any 𝜆 ∈ (1/𝛼, 1],

(𝑋𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1)))𝜆

≤ (1 + 2𝛾𝜆/2
𝑠+1𝜁 (𝛼𝜆)) (𝑋𝑁,𝑠,𝛼,𝜸 (𝒈

(𝑠)))𝜆 + 1
𝑁 − 1

𝑁−1∑︁
𝑔=1

(𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔))𝜆.

(14.12)

Using a procedure that is long and tedious, but very similar to what we did in the
proof of Theorem 13.5, it is possible to obtain the following estimate (we refer to
[162, 163, 166] for further details),

1
𝑁 − 1

𝑁−1∑︁
𝑔=1

(𝜃𝑁,𝑠,𝛼,𝜸 (𝒈 (𝑠) , 𝑔))𝜆

≤
2𝛾𝜆/2
𝑠+1𝜁 (𝛼𝜆)
𝑁 − 1

©«
𝑠∏
𝑗=1

(
1 + 2𝛾𝜆/2

𝑗
𝜁 (𝛼𝜆)

)ª®¬ |A𝑠,𝑀 |

+
1 + 2𝛾𝜆/2

𝑠+1𝜁 (𝛼𝜆)
𝑁 − 1

©«
𝑠∏
𝑗=1

(
1 + 2𝛾𝜆/2

𝑗
𝜁 (𝛼𝜆)

)ª®¬
∑︁

ℎ𝑠+1∈Z\{0}
|A

𝑠,𝑀 (ℎ𝑠+1) |

+
𝛾
𝜆/2
𝑠+121+𝛼𝜆𝜁 (𝛼𝜆)

𝑁 − 1
©«
𝑠∏
𝑗=1

(
1 + 2𝛾𝜆/2

𝑗
𝜁 (𝛼𝜆)

)ª®¬
∑︁

ℎ𝑠+1∈Z\{0}
|A

𝑠,𝑀 (ℎ𝑠+1) |

470 14 𝐿∞-Approximation Using Lattice Rules

≤
2𝛾𝜆/2
𝑠+1𝜁 (𝛼𝜆)
𝑁 − 1

©«
𝑠∏
𝑗=1

(
1 + 2𝛾𝜆/2

𝑗
𝜁 (𝛼𝜆)

)ª®¬ |A𝑠,𝑀 |

+
1 + 𝛾𝜆/2

𝑠+122+𝛼𝜆𝜁 (𝛼𝜆)
𝑁 − 1

©«
𝑠∏
𝑗=1

(
1 + 2𝛾𝜆/2

𝑗
𝜁 (𝛼𝜆)

)ª®¬
∑︁

ℎ𝑠+1∈Z\{0}
|A

𝑠,𝑀 (ℎ𝑠+1) |

≤
4𝛾𝜆/2
𝑠+1𝜁 (𝛼𝜆)
𝑁

©«
𝑠∏
𝑗=1

(
1 + 2𝛾𝜆/2

𝑗
𝜁 (𝛼𝜆)

)ª®¬ |A𝑠,𝑀 |

+
2(1 + 𝛾𝜆/2

𝑠+122+𝛼𝜆𝜁 (𝛼𝜆))
𝑁

©«
𝑠∏
𝑗=1

(
1 + 2𝛾𝜆/2

𝑗
𝜁 (𝛼𝜆)

)ª®¬
∑︁

ℎ𝑠+1∈Z\{0}
|A

𝑠,𝑀 (ℎ𝑠+1) |,

where, as in Lemma 13.1, we used the notation 𝑀 (ℎ𝑠+1) := (𝛾𝑠+1𝑀)/|ℎ𝑠+1 |2𝛼, and
where we made use of the fact that 1/(𝑁 − 1) ≤ 2/𝑁 in the last inequality.

Thus, inserting into (14.12) and using the induction assumption with 𝜏 = 1/𝜆, we
obtain

(𝑋𝑁,𝑠+1,𝛼,𝜸 ((𝒈 (𝑠) , 𝑔𝑠+1)))𝜆

≤ (1 + 2𝛾𝜆/2
𝑠+1𝜁 (𝛼𝜆))

4|A𝑠,𝑀 |
𝑁

𝑠∏
𝑗=1

(
1 + 22+𝛼𝜆𝛾𝜆/2

𝑗
𝜁 (𝛼𝜆)

)
+

4𝛾𝜆/2
𝑠+1𝜁 (𝛼𝜆)
𝑁

©«
𝑠∏
𝑗=1

(
1 + 2𝛾𝜆/2

𝑗
𝜁 (𝛼𝜆)

)ª®¬ |A𝑠,𝑀 |

+
2(1 + 𝛾𝜆/2

𝑠+122+𝛼𝜆𝜁 (𝛼𝜆))
𝑁

©«
𝑠∏
𝑗=1

(
1 + 2𝛾𝜆/2

𝑗
𝜁 (𝛼𝜆)

)ª®¬
∑︁

ℎ𝑠+1∈Z\{0}
|A

𝑠,𝑀 (ℎ𝑠+1) |

≤
4|A𝑠,𝑀 |

𝑁

𝑠+1∏
𝑗=1

(
1 + 22+𝛼𝜆𝛾𝜆/2

𝑗
𝜁 (𝛼𝜆)

)
+ 4
𝑁

©«
∑︁

ℎ𝑠+1∈Z\{0}
|A

𝑠,𝑀 (ℎ𝑠+1) |
ª®¬
𝑠+1∏
𝑗=1

(
1 + 22+𝛼𝜆𝛾𝜆/2

𝑗
𝜁 (𝛼𝜆)

)
=

4|A𝑠+1,𝑀 |
𝑁

𝑠+1∏
𝑗=1

(
1 + 22+𝛼𝜆𝛾𝜆/2

𝑗
𝜁 (𝛼𝜆)

)
,

where we used Item 3 of Lemma 13.1, which is

|A𝑠,𝑀 | +
∑︁

ℎ𝑠+1∈Z\{0}
|A

𝑠,𝑀 (ℎ𝑠+1) | = |A𝑠+1,𝑀 |.

Finally, set 𝜏 = 1/𝜆 to obtain the result in the theorem. □

14.1 𝐿∞-Approximation of Functions in Korobov Spaces 471

We can now show the following result.

Theorem 14.7 Let 𝛼 > 1 be given and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights with
𝛾 𝑗 ∈ (0, 1] for 𝑗 ∈ N. Let 𝑁 ≥ 2(4𝛼−1)/(2𝛼−1) be a prime number. Assume that 𝒈 has
been found by Algorithm 14.4. Then for any 𝜏 ∈ (1, 𝛼) it is true that

err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈)) ≤
𝐶𝑑,𝛼,𝜸,𝜏

𝑁 𝜏 (2𝜏−1)/(2𝛼+2𝜏−1) ,

where 𝑀 = 𝑁 (4𝜏𝛼)/(2𝛼+2𝜏−1) , and where

𝐶𝑑,𝛼,𝜸,𝜏 =

(
3 · 42𝜏 + 1

𝛾
(2𝜏−1)/(2𝛼)
1 (2𝜏 − 1)

)1/2 𝑑∏
𝑗=1

(
1 + 22+𝛼/𝜏𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏
.

Proof Combining Theorem 14.6 with (14.10) where we set 𝑞 = 1/(2𝜏), and using
Item 4 of Lemma 13.1 with 𝜆 = 1/(2𝜏), we obtain

[err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2 ≤
𝐶

(1)
𝑑,𝛼,𝜸,𝜏

𝑀 (2𝜏−1)/(2𝛼) +
𝑀 𝐶

(2)
𝑑,𝛼,𝜸,𝜏

𝑁2𝜏 , (14.13)

whenever 𝑁 ≥ 2𝑀1/(2𝛼) , where

𝐶
(1)
𝑑,𝛼,𝜸,𝜏 :=

1
𝛾
(2𝜏−1)/(2𝛼)
1 (2𝜏 − 1)

𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))2𝜏

and

𝐶
(2)
𝑑,𝛼,𝜸,𝜏 := 3 · 42𝜏

𝑑∏
𝑗=1

(
1 + 22+𝛼/𝜏𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))4𝜏
.

Again we balance the terms in (14.13) with respect to the dependence on 𝑁 and 𝑀 .
This time we put

𝑀 = 𝑁4𝜏𝛼/(2𝛼+2𝜏−1) .

This means that in order to fulfill the condition 𝑁 ≥ 2𝑀1/(2𝛼) , we need 𝑁 ≥
2(2𝛼+2𝜏−1)/(2𝛼−1) . This is certainly satisfied if 𝑁 ≥ 2(4𝛼−1)/(2𝛼−1) . For such 𝑁 we
obtain

[err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑀,𝑑,𝛼,𝜸 (𝒈))]2 ≤
𝐶

(1)
𝑑,𝛼,𝜸,𝜏 + 𝐶

(2)
𝑑,𝛼,𝜸,𝜏

𝑁2𝜏 (2𝜏−1)/(2𝛼+2𝜏−1) .

Obviously, 𝐶 (1)
𝑑,𝛼,𝜸,𝜏 + 𝐶

(2)
𝑑,𝛼,𝜸,𝜏 ≤ (𝐶𝑑,𝛼,𝜸,𝜏)2. Now the result follows by taking the

square root. □

Since 𝜏 can be chosen arbitrarily close to 𝛼 we achieve in this way an error rate
of order O(𝑁−𝛼(2𝛼−1)/(4𝛼−1)+𝛿) for arbitrarily small but positive 𝛿. Note that we
always have, as 𝛼 > 1,

472 14 𝐿∞-Approximation Using Lattice Rules

𝛼(2𝛼 − 1)
4𝛼 − 1

=
𝛼

2
4𝛼 − 2
4𝛼 − 1

>
𝛼

2
− 1

4
,

the latter being the corresponding value from the first approach. This means that we
have an improved convergence rate for the worst-case error with this second method.

We will analyze also this result with respect to tractability in Section 14.3 below.

14.2 𝑳∞-Approximation of Functions in Korobov Spaces Using
Splines

Finally, as an alternative to the method outlined in Section 14.1, we would like to
describe a particular approach to 𝐿∞-approximation based on splines. As we shall
see, this makes it possible to obtain a convergence rate that can be as good as the one
obtained in Theorem 14.7, but without having to make the additional assumption
that 𝛼 > 1 (see Theorem 14.11 below).

The basic spline algorithm

We start with a summary of some definitions and facts regarding splines. Suppose
that we are considering the Korobov space Hkor,𝑑,𝛼,𝜸 of smoothness 𝛼 with product
weights 𝜸 = (𝛾 𝑗) 𝑗≥1, and that we are given an 𝑁-element point set P with points
𝒙0, 𝒙1, . . . , 𝒙𝑁−1 ∈ [0, 1)𝑑 , along with function data 𝑓 (𝒙𝑘), 𝑘 ∈ {0, 1, . . . , 𝑁 − 1},
for 𝑓 ∈ Hkor,𝑑,𝛼,𝜸. We then define a spline

𝑠 𝑓 ,𝑑,P :=
argmin{∥ℎ∥kor,𝑑,𝛼,𝜸 : ℎ ∈ Hkor,𝑑,𝛼,𝜸, ℎ(𝒙𝑘) = 𝑓 (𝒙𝑘) ∀ 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}}.

It can be shown that

𝑠 𝑓 ,𝑑,P (𝒙) =
𝑁−1∑︁
𝑘=0

𝐾kor,𝑑,𝛼,𝜸 (𝒙, 𝒙𝑘) 𝑐𝑘 for 𝒙 ∈ [0, 1]𝑑 ,

where we recall that 𝐾kor,𝑑,𝛼,𝜸 denotes the reproducing kernel of the weighted
Korobov space. The coefficients 𝑐𝑘 in the previous equation are determined by the
so-called interpolating conditions

𝑓 (𝒙ℓ) =
𝑁−1∑︁
𝑘=0

𝐾kor,𝑑,𝛼,𝜸 (𝒙ℓ , 𝒙𝑘) 𝑐𝑘 .

Now, we may use the concept of a Lagrange or cardinal basis, which we denote by
𝜙𝑘 , 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. Each of the cardinal basis functions 𝜙𝑘 is given in terms
of the kernel,

14.2 𝐿∞-Approximation of Functions in Korobov Spaces Using Splines 473

𝜙𝑘 (𝒙) =
𝑁−1∑︁
ℓ=0

𝐾kor,𝑑,𝛼,𝜸 (𝒙, 𝒙ℓ) �̃�ℓ,𝑘 for 𝒙 ∈ [0, 1]𝑑 , (14.14)

with the �̃�ℓ,𝑘 are given by the conditions

𝛿𝑖,𝑘 :=
𝑁−1∑︁
ℓ=0

𝐾kor,𝑑,𝛼,𝜸 (𝒙𝑖 , 𝒙ℓ) �̃�ℓ,𝑘 ,

where 𝛿 denotes the Kronecker delta function. Since the Korobov kernel is symmet-
ric, we have 𝐾kor,𝑑,𝛼,𝜸 (𝒙𝑖 , 𝒙ℓ) = 𝐾kor,𝑑,𝛼,𝜸 (𝒙ℓ , 𝒙𝑖) and from this it is easy to see
that also the �̃�ℓ,𝑘 are symmetric, i.e., �̃�ℓ,𝑘 = �̃�𝑘,ℓ . Using the cardinal basis, we can
then write the spline in the form

𝑠 𝑓 ,𝑑,P (𝒙) =
𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘) 𝜙𝑘 (𝒙) for 𝒙 ∈ [0, 1]𝑑 . (14.15)

Let us briefly discuss whether choosing 𝑠 𝑓 ,𝑑,P as an algorithm for 𝐿∞-
approximation is a good choice, at least among linear algorithms of the form

𝑆 𝑓 ,P (𝒙) :=
𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘) 𝑎𝑘 (𝒙) for 𝒙 ∈ [0, 1]𝑑

for some suitably chosen 𝑎𝑘 , where 𝑓 ∈ Hkor,𝑑,𝛼,𝜸. Using the reproducing property
of 𝐾kor,𝑑,𝛼,𝜸 and the Cauchy–Schwarz inequality, we obtain, for any 𝒙 ∈ [0, 1]𝑑 ,

| 𝑓 (𝒙) − 𝑆 𝑓 ,P (𝒙) |

=

�����〈 𝑓 , 𝐾kor,𝑑,𝛼,𝜸 (·, 𝒙)
〉

kor,𝑑,𝛼,𝜸 −
𝑁−1∑︁
𝑘=0

〈
𝑓 , 𝐾kor,𝑑,𝛼,𝜸 (·, 𝒙𝑘)

〉
kor,𝑑,𝛼,𝜸 𝑎𝑘 (𝒙)

�����
=

������
〈
𝑓 , 𝐾kor,𝑑,𝛼,𝜸 (·, 𝒙) −

𝑁−1∑︁
𝑘=0

𝐾kor,𝑑,𝛼,𝜸 (·, 𝒙𝑘) 𝑎𝑘 (𝒙)
〉

kor,𝑑,𝛼,𝜸

������
≤ ∥ 𝑓 ∥kor,𝑑,𝛼,𝜸

𝐾kor,𝑑,𝛼,𝜸 (·, 𝒙) −
𝑁−1∑︁
𝑘=0

𝐾kor,𝑑,𝛼,𝜸 (·, 𝒙𝑘) 𝑎𝑘 (𝒙)

kor,𝑑,𝛼,𝜸

.

For an arbitrarily chosen but fixed 𝒙 ∈ [0, 1]𝑑 , it is easy to see that the latter
inequality is sharp for an appropriate choice of 𝑓 . This yields

sup
𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

sup
𝒙∈[0,1]𝑑

| 𝑓 (𝒙) − 𝑆 𝑓 ,P (𝒙) |

≤ sup
𝒙∈[0,1]𝑑

𝐾kor,𝑑,𝛼,𝜸 (·, 𝒙) −
𝑁−1∑︁
𝑘=0

𝐾kor,𝑑,𝛼,𝜸 (·, 𝒙𝑘) 𝑎𝑘 (𝒙)

kor,𝑑,𝛼,𝜸

474 14 𝐿∞-Approximation Using Lattice Rules

= sup
𝒙∈[0,1]𝑑

(
𝐾kor,𝑑,𝛼,𝜸 (𝒙, 𝒙) − 2

𝑁−1∑︁
𝑘=0

𝐾kor,𝑑,𝛼,𝜸 (𝒙, 𝒙𝑘) 𝑎𝑘 (𝒙)

+
𝑁−1∑︁
𝑘,ℓ=0

𝑎ℓ (𝒙)𝐾kor,𝑑,𝛼,𝜸 (𝒙ℓ , 𝒙𝑘) 𝑎𝑘 (𝒙)
)1/2

.

It is known (see [73]) that the choice of the 𝑎𝑘 minimizing this expression is exactly
the cardinal functions 𝜙𝑘 . If we make this choice, it can be shown that

𝑁−1∑︁
𝑘=0

𝐾kor,𝑑,𝛼,𝜸 (𝒙, 𝒙𝑘) 𝜙𝑘 (𝒙) =
𝑁−1∑︁
𝑘,ℓ=0

𝜙ℓ (𝒙) 𝐾kor,𝑑,𝛼,𝜸 (𝒙ℓ , 𝒙𝑘) 𝜙𝑘 (𝒙).

Consequently, we get

inf
𝑎0 ,...,𝑎𝑁−1

sup
𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

sup
𝒙∈[0,1]𝑑

| 𝑓 (𝒙) − 𝑆 𝑓 ,P (𝒙) |

= sup
𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

sup
𝒙∈[0,1]𝑑

| 𝑓 (𝒙) − 𝑠 𝑓 ,𝑑,P (𝒙) |

= sup
𝒙∈[0,1]𝑑

(
𝐾kor,𝑑,𝛼,𝜸 (𝒙, 𝒙) −

𝑁−1∑︁
𝑘=0

𝐾kor,𝑑,𝛼,𝜸 (𝒙, 𝒙𝑘) 𝜙𝑘 (𝒙)
)1/2

. (14.16)

This means that the best we can do in this context is to choose 𝑆 𝑓 ,P as the spline
algorithm 𝑠 𝑓 ,𝑑,P .

Spline algorithms and lattice rules

We are now ready to study 𝐿∞-approximation using rank-1 lattice rules and spline
algorithms in greater detail. According to (2.19) we can express the kernel 𝐾kor,𝑑,𝛼,𝜸
as

𝐾kor,𝑑,𝛼,𝜸 (𝒙, 𝒚) =
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

e2𝜋i𝒉 · (𝒙−𝒚)

=: 𝐾kor,𝑑,𝛼,𝜸 (𝒙 − 𝒚)
= 𝐾kor,𝑑,𝛼,𝜸 ({𝒙 − 𝒚}).

If we use a rank-1 lattice point set P(𝒈, 𝑁) as the point set underlying the spline
defined in (14.15), and observe its group structure, the properties of the Korobov
kernel carry over to the cardinal functions 𝜙𝑘 defined in (14.14). Indeed, by (14.14),

𝜙𝑘 (𝒙) =
𝑁−1∑︁
ℓ=0

𝐾kor,𝑑,𝛼,𝜸 ({𝒙 − 𝒙ℓ }) �̃�ℓ,𝑘

14.2 𝐿∞-Approximation of Functions in Korobov Spaces Using Splines 475

with the �̃�ℓ,𝑘 determined by the conditions

𝛿𝑖,𝑘 :=
𝑁−1∑︁
ℓ=0

𝐾kor,𝑑,𝛼,𝜸 ({𝒙𝑖 − 𝒙ℓ }) �̃�ℓ,𝑘

=

𝑁−1∑︁
ℓ=0

𝐾kor,𝑑,𝛼,𝜸 (𝒙𝑖−ℓ (mod 𝑁)) �̃�ℓ,𝑘

for 𝑖, 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. We define the 𝑁 × 𝑁 matrices

𝐾 := (𝐾kor,𝑑,𝛼,𝜸 (𝒙𝑖−ℓ (mod 𝑁)))𝑖,ℓ∈{0,1,...,𝑁−1},

𝐶 := (�̃�ℓ,𝑘)ℓ,𝑘∈{0,1,...,𝑁−1},

and denote, as before, the 𝑁 × 𝑁-identity matrix by𝑈𝑁 . Obviously, the matrix 𝐾 is
a circulant matrix. The conditions determining the �̃�ℓ,𝑘 can then be formulated as

𝑈𝑁 = 𝐾𝐶,

and since 𝐾 is circulant it is easily checked that also 𝐶 is circulant. The circulant
structure of 𝐶 then implies that we can simplify the expressions for 𝜙𝑘 for 𝑘 ∈
{0, 1, . . . , 𝑁 − 1}, to

𝜙𝑘 (𝒙) =
𝑁−1∑︁
ℓ=0

𝐾kor,𝑑,𝛼,𝜸 ({𝒙 − 𝒙ℓ }) �̃�ℓ−𝑘 (mod 𝑁)

for some suitably chosen �̃�0, �̃�1, . . . , �̃�𝑁−1, and this implies that

𝜙𝑘 (𝒙) =
𝑁−1∑︁
ℓ=0

𝐾kor,𝑑,𝛼,𝜸 ({𝒙 − 𝒙ℓ }) �̃�ℓ−𝑘 (mod 𝑁) (14.17)

=

𝑁−1∑︁
ℓ=0

𝐾kor,𝑑,𝛼,𝜸 ({𝒙 − 𝒙𝑘 + 𝒙𝑘 − 𝒙ℓ }) �̃�ℓ−𝑘 (mod 𝑁)

=

𝑁−1∑︁
ℓ=0

𝐾kor,𝑑,𝛼,𝜸 ({𝒙 − 𝒙𝑘 − 𝒙ℓ−𝑘 (mod 𝑁) }) �̃�ℓ−𝑘 (mod 𝑁)

= 𝜙({𝒙 − 𝒙𝑘})
= 𝜙(𝒙 − 𝒙𝑘),

where we use the notation 𝜙 := 𝜙0. Then, by (14.15), the spline for 𝑓 ∈ Hkor,𝑑,𝛼,𝜸 is
given as

𝑠 𝑓 ,𝑑,P(𝒈,𝑁) (𝒙) =
𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘) 𝜙(𝒙 − 𝒙𝑘) for 𝒙 ∈ [0, 1]𝑑 .

476 14 𝐿∞-Approximation Using Lattice Rules

Error analysis

We define the worst-case error of the spline 𝐿∞-approximation via 𝑠 𝑓 ,𝑑,P(𝒈,𝑁) for
𝑓 ∈ Hkor,𝑑,𝛼,𝜸 as

err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝑠𝑑,P(𝒈,𝑁))
:= sup

𝑓 ∈Hkor,𝑑,𝛼,𝜸
∥ 𝑓 ∥kor,𝑑,𝛼,𝜸≤1

sup
𝒙∈[0,1]𝑑

| 𝑓 (𝒙) − 𝑠 𝑓 ,𝑑,P(𝒈,𝑁) (𝒙) |,

and analyze this error in the following. We start with a general error bound.
Let 𝒙0, 𝒙1, . . . , 𝒙𝑁−1 denote the elements of the lattice point set P(𝒈, 𝑁). By

(14.16), we obtain that the worst-case error of the spline 𝐿∞-approximation equals

err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝑠𝑑,P(𝒈,𝑁))

= sup
𝒙∈[0,1]𝑑

(
𝐾kor,𝑑,𝛼,𝜸 (0) −

𝑁−1∑︁
𝑘=0

𝐾kor,𝑑,𝛼,𝜸 (𝒙 − 𝒙𝑘) 𝜙(𝒙 − 𝒙𝑘)
)1/2

. (14.18)

By (14.17) and by the Fourier expansion of the Korobov kernel, we obtain

𝜙(𝒙) =
𝑁−1∑︁
ℓ=0

𝐾kor,𝑑,𝛼,𝜸 ({𝒙 − 𝒙ℓ }) �̃�ℓ

=

𝑁−1∑︁
ℓ=0

�̃�ℓ

∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

e2𝜋i𝒉 · (𝒙−𝒙ℓ)

=
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

e2𝜋i𝒉 ·𝒙
𝑁−1∑︁
ℓ=0

�̃�ℓ e−2𝜋i𝒉 ·𝒙ℓ .

In particular, it must then be true that

𝛿𝑘,0 = 𝜙(𝒙𝑘) =
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

e2𝜋i𝒉 ·𝒙𝑘
𝑁−1∑︁
ℓ=0

�̃�ℓ e−2𝜋i𝒉 ·𝒙ℓ

for every 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. Let now 𝒗 ∈ Z𝑑 be arbitrarily chosen but fixed. We
multiply the above equation by e−2𝜋i𝒗 ·𝒙𝑘 , sum both sides over all 𝑘 ∈ {0, 1, . . . , 𝑁 −
1}, and use the group structure and character property of rank-1 lattices to obtain

1 =
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

𝑁−1∑︁
𝑘=0

e2𝜋i(𝒉−𝒗) ·𝒙𝑘
𝑁−1∑︁
ℓ=0

�̃�ℓ e−2𝜋i𝒉 ·𝒙ℓ

=
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉 + 𝒗)

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘
𝑁−1∑︁
ℓ=0

�̃�ℓ e−2𝜋i(𝒉+𝒗) ·𝒙ℓ

14.2 𝐿∞-Approximation of Functions in Korobov Spaces Using Splines 477

=
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉 + 𝒗)

𝑁−1∑︁
ℓ=0

�̃�ℓ e−2𝜋i𝒗 ·𝒙ℓ
𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 · (𝒙𝑘−𝒙ℓ)

= 𝑁
∑︁

𝒉∈L⊥ (𝒈,𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + 𝒗)

𝑁−1∑︁
ℓ=0

�̃�ℓ e−2𝜋i𝒗 ·𝒙ℓ ,

where L⊥ (𝒈, 𝑁) is the dual lattice corresponding to P(𝒈, 𝑁), given by (1.7). Hence,

𝑁−1∑︁
ℓ=0

�̃�ℓ e−2𝜋i𝒗 ·𝒙ℓ =
1
𝑁

©«
∑︁

𝒉∈L⊥ (𝒈,𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + 𝒗)

ª®¬
−1

.

This yields a different expression for 𝜙 in terms of its Fourier coefficients, namely

𝜙(𝒙) =
∑︁
𝒗∈Z𝑑

𝜙(𝒗) e2𝜋i𝒗 ·𝒙,

where

𝜙(𝒗) = 1
𝑁

1
𝑟2𝛼,𝜸 (𝒗)

©«
∑︁

𝒉∈L⊥ (𝒈,𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + 𝒗)

ª®¬
−1

.

Using the Fourier expansions of𝐾kor,𝑑,𝛼,𝜸 and 𝜙, respectively, we get, for 𝒙 ∈ [0, 1]𝑑 ,

𝐾kor,𝑑,𝛼,𝜸 (0) −
𝑁−1∑︁
𝑘=0

𝐾kor,𝑑,𝛼,𝜸 (𝒙 − 𝒙𝑘) 𝜙(𝒙 − 𝒙𝑘)

=
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

−
𝑁−1∑︁
𝑘=0

∑︁
𝒉,𝒗∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

e2𝜋i𝒉 · (𝒙−𝒙𝑘) 𝜙(𝒗) e2𝜋i𝒗 · (𝒙−𝒙𝑘)

=
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

−
∑︁

𝒉,𝒗∈Z𝑑

1
𝑁

1
𝑟2𝛼,𝜸 (𝒉)

1
𝑟2𝛼,𝜸 (𝒗)

©«
∑︁

ℓ∈L⊥ (𝒈,𝑁)

1
𝑟2𝛼,𝜸 (ℓ + 𝒗)

ª®¬
−1

× e2𝜋i(𝒉+𝒗) ·𝒙
𝑁−1∑︁
𝑘=0

e−2𝜋i(𝒉+𝒗) ·𝒙𝑘

=
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

−
∑︁
𝒗∈Z𝑑

1
𝑁

1
𝑟2𝛼,𝜸 (𝒗)

©«
∑︁

ℓ∈L⊥ (𝒈,𝑁)

1
𝑟2𝛼,𝜸 (ℓ + 𝒗)

ª®¬
−1

×
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

e2𝜋i(𝒉+𝒗) ·𝒙
𝑁−1∑︁
𝑘=0

e−2𝜋i(𝒉+𝒗) ·𝒙𝑘

478 14 𝐿∞-Approximation Using Lattice Rules

=
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

−
∑︁
𝒗∈Z𝑑

1
𝑁

1
𝑟2𝛼,𝜸 (𝒗)

©«
∑︁

ℓ∈L⊥ (𝒈,𝑁)

1
𝑟2𝛼,𝜸 (ℓ + 𝒗)

ª®¬
−1

×
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (−𝒉 − 𝒗) e−2𝜋i𝒉 ·𝒙

𝑁−1∑︁
𝑘=0

e2𝜋i𝒉 ·𝒙𝑘

=
∑︁
𝒉∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒉)

−
∑︁
𝒗∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒗)

©«
∑︁

ℓ∈L⊥ (𝒈,𝑁)

1
𝑟2𝛼,𝜸 (ℓ + 𝒗)

ª®¬
−1

×
∑︁

𝒉∈L⊥ (𝒈,𝑁)

1
𝑟2𝛼,𝜸 (𝒉 + 𝒗) e−2𝜋i𝒉 ·𝒙

=
∑︁
𝒗∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒗)

©«
∑︁

ℓ∈L⊥ (𝒈,𝑁)

1
𝑟2𝛼,𝜸 (ℓ + 𝒗)

ª®¬
−1 ∑︁

𝒉∈L⊥ (𝒈,𝑁)\{0}

1 − e−2𝜋i𝒉 ·𝒙

𝑟2𝛼,𝜸 (𝒉 + 𝒗) ,

where we made use of the character property of rank-1 lattice point sets, and the fact
that 𝑟2𝛼,𝜸 (𝒉) = 𝑟2𝛼,𝜸 (−𝒉) for any 𝒉 ∈ Z𝑑 .

By inserting the latter equality into the error formula (14.18), and since all
coefficients 𝑟2𝛼,𝜸 (𝒉) are nonnegative, we can bound the squared worst-case error of
the spline 𝐿∞-approximation based on the rank-1 lattice point set P(𝒈, 𝑁) by

[err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝑠𝑑,P(𝒈,𝑁))]2

≤ sup
𝒙∈[0,1]𝑑

∑︁
𝒗∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒗)

©«
∑︁

ℓ∈L⊥ (𝒈,𝑁)

1
𝑟2𝛼,𝜸 (ℓ + 𝒗)

ª®¬
−1 ∑︁

𝒉∈L⊥ (𝒈,𝑁)\{0}

|1 − e−2𝜋i𝒉 ·𝒙 |
𝑟2𝛼,𝜸 (𝒉 + 𝒗)

≤ 2
∑︁
𝒗∈Z𝑑

1
𝑟2𝛼,𝜸 (𝒗)

©«
∑︁

ℓ∈L⊥ (𝒈,𝑁)

1
𝑟2𝛼,𝜸 (ℓ + 𝒗)

ª®¬
−1 ∑︁

𝒉∈L⊥ (𝒈,𝑁)\{0}

1
𝑟2𝛼,𝜸 (𝒉 + 𝒗) .

(14.19)

Next, we use a special decomposition of the set Z𝑑 .

Lemma 14.8 Let L be a rank-1 lattice with 𝑁 elements and generating vector
𝒈 ∈ Z𝑑 , and let L⊥ (𝒈, 𝑁) be its dual lattice. Then there exists a set 𝑉𝑑,𝑁 ⊆ Z𝑑 of 𝑁
integer vectors with the following properties.

1. Z𝑑 is the direct sum of the dual latticeL⊥ (𝒈, 𝑁) and𝑉𝑑,𝑁 , i.e.,Z𝑑 = L⊥ (𝒈, 𝑁)⊎
𝑉𝑑,𝑁 , and

2. for any two distinct elements of 𝑉𝑑,𝑁 their difference is not in L⊥ (𝒈, 𝑁), i.e.,

if 𝒗, 𝒘 ∈ 𝑉𝑑,𝑁 and 𝒗 ≠ 𝒘, then 𝒗 − 𝒘 ∉ L⊥ (𝒈, 𝑁).

Furthermore, we can choose 𝑉𝑑,𝑁 such that 0 ∈ 𝑉𝑑,𝑁 and that

𝑟2𝛼,𝜸 (𝒗) ≤ 𝑟2𝛼,𝜸 (𝒗 + 𝒘) (14.20)

14.2 𝐿∞-Approximation of Functions in Korobov Spaces Using Splines 479

holds for any 𝒗 ∈ 𝑉𝑑,𝑁 and 𝒘 ∈ L⊥ (𝒈, 𝑁).

Proof For ℓ ∈ {0, 1, . . . , 𝑁 − 1} define the sets

𝑍ℓ := {𝒉 ∈ Z𝑑 : 𝒉 · 𝒈 ≡ ℓ (mod 𝑁)}.

Then we have 𝑍0 = L⊥ (𝒈, 𝑁) and

Z =

𝑁−1⋃
ℓ=0

𝑍ℓ .

From every set 𝑍ℓ we can choose an arbitrary vector, which we call 𝒚ℓ for ℓ ∈
{0, 1, . . . , 𝑁 − 1}, and set 𝑉𝑑,𝑁 := {𝒚0, 𝒚1, . . . , 𝒚𝑁−1}. Obviously, |𝑉𝑑,𝑁 | = 𝑁 . Let
𝒙 ∈ Z𝑑 , then there exists an ℓ∗ ∈ {0, 1, . . . , 𝑁−1} such that 𝒙 ∈ 𝑍ℓ∗ . Then 𝒚 := 𝒙−𝒚ℓ∗
belongs to L⊥ (𝒈, 𝑁), because

𝒚 · 𝒈 = (𝒙 − 𝒚ℓ∗) · 𝒈 ≡ ℓ∗ − ℓ∗ = 0 (mod 𝑁),

and hence 𝒙 = 𝒚 + 𝒚ℓ∗ ∈ L⊥ (𝒈, 𝑁) ⊎ 𝑉𝑑,𝑁 . This implies Z𝑑 = L⊥ (𝒈, 𝑁) ⊎ 𝑉𝑑,𝑁 .
Next, for different 𝑟, 𝑠 ∈ {0, 1, . . . , 𝑁 −1} we have (𝒚𝑟 − 𝒚𝑠) · 𝒈 ≡ 𝑟− 𝑠 . 0 (mod 𝑁)
which implies that 𝒚𝑟 − 𝒚𝑠 ∉ L⊥ (𝒈, 𝑁).

Since 0 ∈ 𝑍0 we can choose 𝒚0 = 0. Furthermore, we can guarantee the property
(14.20) for any 𝒗 ∈ 𝑉𝑑,𝑁 and any 𝒘 ∈ L⊥ (𝒈, 𝑁) by ranking the 𝒉 ∈ Z𝑑 according
to the value of 𝑟2𝛼,𝜸 (𝒉), and then choosing from every set 𝑍ℓ the element which
appears first in this list. □

Using a set 𝑉𝑑,𝑁 as in Lemma 14.8 that satisfies the monotonicity condition
(14.20), we easily derive, from (14.19), the bound

[err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝑠𝑑,P(𝒈,𝑁))]2

≤ 2
∑︁

𝒗∈𝑉𝑑,𝑁

©«
1

𝑟2𝛼,𝜸 (𝒗)
©«

∑︁
ℓ∈L⊥ (𝒈,𝑁)

1
𝑟2𝛼,𝜸 (ℓ + 𝒗)

ª®¬
−1 ∑︁

𝒉∈L⊥ (𝒈,𝑁)\{0}

1
𝑟2𝛼,𝜸 (𝒉 + 𝒗)

+
∑︁

𝒘∈L⊥ (𝒈,𝑁)\{0}

1
𝑟2𝛼,𝜸 (𝒗 + 𝒘)

©«
∑︁

ℓ∈L⊥ (𝒈,𝑁)

1
𝑟2𝛼,𝜸 (ℓ + 𝒗 + 𝒘)

ª®¬
−1

×
∑︁

𝒉∈L⊥ (𝒈,𝑁)\{0}

1
𝑟2𝛼,𝜸 (𝒉 + 𝒗 + 𝒘)

ª®®¬
≤ 4

∑︁
𝒗∈𝑉𝑑,𝑁

∑︁
𝒘∈L⊥ (𝒈,𝑁)\{0}

1
𝑟2𝛼,𝜸 (𝒗 + 𝒘) .

Before we proceed, we summarize the previous findings in the following propo-
sition.

480 14 𝐿∞-Approximation Using Lattice Rules

Proposition 14.9 For the worst-case error of 𝐿∞-approximation of the spline algo-
rithm 𝑠𝑑,P(𝒈,𝑁) based on a rank-1 lattice point set P(𝒈, 𝑁) we have

[err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝑠𝑑,P(𝒈,𝑁))]2 ≤ 4
∑︁

𝒗∈𝑉𝑑,𝑁

∑︁
𝒘∈L⊥ (𝒈,𝑁)\{0}

1
𝑟2𝛼,𝜸 (𝒗 + 𝒘) ,

where the 𝑁-element set 𝑉𝑑,𝑁 is chosen as in Lemma 14.8 and satisfies the mono-
tonicity condition (14.20).

From Proposition 14.9, we can now again take two different ways, as it was also
the case for 𝐿2-approximation in Section 13.1. Indeed, we can either use rank-1
lattices constructed for integration, or again construct rank-1 lattices directly for the
problem in the present section.

Using rank-1 lattices constructed for integration

Similarly to our analysis for 𝐿2-approximation above, let us start by using results
on lattice rules for numerical integration from previous chapters. To this end, we
assume that 𝛼 > 3/2 in the following and proceed directly with Proposition 14.9.
Using (13.7), we obtain for 𝒗 ∈ 𝑉𝑑,𝑁 and 𝒘 ∈ L⊥ (𝒈, 𝑁) \ {0}

1
𝑟2𝛼,𝜸 (𝒗 + 𝒘) ≤ Γ2𝛼,𝜸

𝑟2𝛼,𝜸 (𝒗)
𝑟2𝛼,𝜸 (𝒘)

,

where

Γ2𝛼,𝜸 := 22𝛼min(𝑑0 ,𝑑)
min(𝑑0 ,𝑑)∏

𝑗=1
𝛾 𝑗

with 𝑑0 (𝛼, 𝜸) = 𝑑0 ∈ N0 again being the minimal index 𝑗 for which it is true that
𝛾 𝑗+1 ≤ 2−2𝛼 < 𝛾 𝑗 (recall that 𝑑0 := 0 if 𝛾1 ≤ 2−2𝛼, and 𝑑0 := ∞ if no such index 𝑗
exists). Let 𝜏 ∈ [3/2, 𝛼) and recall that we have 𝑟2𝛼,𝜸 (𝒗) ≤ 𝑟2𝛼,𝜸 (𝒗+𝒘) for 𝒗 ∈ 𝑉𝑑,𝑁
and 𝒘 ∈ L⊥ (𝒈, 𝑁). Then we obtain

1
𝑟2𝛼,𝜸 (𝒗 + 𝒘) ≤ Γ2𝛼,𝜸

(𝑟2𝛼,𝜸 (𝒗)) (2𝜏+1)/(2𝜏−1)

𝑟2𝛼,𝜸 (𝒘) (𝑟2𝛼,𝜸 (𝒗))2/(2𝜏−1)

≤ Γ2𝛼,𝜸
(𝑟2𝛼,𝜸 (𝒗 + 𝒘)) (2𝜏+1)/(2𝜏−1)

𝑟2𝛼,𝜸 (𝒘) (𝑟2𝛼,𝜸 (𝒗))2/(2𝜏−1) ,

which implies

1
𝑟2𝛼,𝜸 (𝒗 + 𝒘) ≤

(
Γ2𝛼,𝜸

𝑟2𝛼,𝜸 (𝒘)

) (2𝜏−1)/(4𝜏) 1
(𝑟2𝛼,𝜸 (𝒗))1/(2𝜏) .

Inserting this into the result in Proposition 14.9 yields

14.2 𝐿∞-Approximation of Functions in Korobov Spaces Using Splines 481

[err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝑠𝑑,P(𝒈,𝑁))]2

≤ 4Γ (2𝜏−1)/(4𝜏)
2𝛼,𝜸

∑︁
𝒘∈L⊥ (𝒈,𝑁)\{0}

1
(𝑟2𝛼,𝜸 (𝒘)) (2𝜏−1)/(4𝜏)

∑︁
𝒗∈𝑉𝑑,𝑁

1
(𝑟2𝛼,𝜸 (𝒗))1/(2𝜏)

= 4Γ (2𝜏−1)/(4𝜏)
2𝛼,𝜸

∑︁
𝒘∈L⊥ (𝒈,𝑁)\{0}

1
𝑟 (𝜏−1/2) (𝛼/𝜏) ,𝜸 (𝜏−1/2)/(2𝜏) (𝒘)

∑︁
𝒗∈𝑉𝑑,𝑁

1
𝑟𝛼/𝜏,𝜸1/(2𝜏) (𝒗)

≤ 4Γ (2𝜏−1)/(4𝜏)
2𝛼,𝜸

×
∑︁

𝒘∈L⊥ (𝒈,𝑁)\{0}

1
𝑟 (𝜏−1/2) (𝛼/𝜏) ,𝜸 (𝜏−1/2)/(2𝜏) (𝒘)

𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))
,

(14.21)

where we note that (𝜏 − 1/2) (𝛼/𝜏) > 1 since 𝜏 ∈ [3/2, 𝛼). Note that∑︁
𝒘∈L⊥ (𝒈,𝑁)\{0}

1
𝑟 (𝜏−1/2) (𝛼/𝜏) ,𝜸 (𝜏−1/2)/(2𝜏) (𝒘)

is exactly the squared worst-case integration error of a lattice rule in the weighted
Korobov space of smoothness (𝜏 − 1/2)𝛼/(2𝜏) and with weights 𝜸 (𝜏−1/2)/(2𝜏) =

(𝛾 (𝜏−1/2)/(2𝜏)
𝑗

) 𝑗≥1. This observation suggests constructing a lattice rule with small
worst-case integration error for these parameters. This however, has already been
done before. For example, we may directly apply Algorithm 3.6 to construct a good
generating vector 𝒈 for given prime 𝑁 . The estimate (14.21) in combination with
Theorem 3.7 then leads to the following result.

Theorem 14.10 Let 𝛼 > 3/2, let 𝜏 ∈ [3/2, 𝛼), let 𝑁 be a prime number, and let
𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights. Assume that 𝒈 has been found by Algorithm 3.6 using
the weight sequence 𝜸 (𝜏−1/2)/(2𝜏) = (𝛾 (𝜏−1/2)/(2𝜏)

𝑗
) 𝑗≥1 and smoothness parameter

(𝜏 − 1/2)𝛼/(2𝜏). Then, for any 𝜆 ∈ [1/2, (𝜏 − 1/2)𝛼/(2𝜏)) the error of the spline
algorithm based on the lattice point set P(𝒈, 𝑁) satisfies

err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝑠𝑑,P(𝒈,𝑁)) ≤
𝐶𝑑,𝜏,𝜆

𝑁𝜆
,

where

𝐶𝑑,𝜏,𝜆 := 2𝜆+1Γ
(2𝜏−1)/(8𝜏)
2𝛼,𝜸

×
𝑑∏
𝑗=1

((
1 + 2𝛾 (𝜏−1/2)/(4𝜏𝜆)

𝑗
𝜁

(
(𝜏 − 1/2)𝛼/(2𝜏)

𝜆

))𝜆 (
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))1/2
)
.

Since 𝜏 can be chosen arbitrarily close to 𝛼 and 𝜆 can be chosen arbitrarily close
to (𝜏 − 1/2)𝛼/(2𝜏) we get in this way an error rate of order O(𝑁−𝛼/2+1/4+𝛿) for
arbitrarily small but positive 𝛿 in Theorem 14.10, which is exactly the same rate as
in the very first approach in this chapter.

482 14 𝐿∞-Approximation Using Lattice Rules

Direct construction of rank-1 lattices for 𝐿∞-approximation

We now demonstrate another approach to obtaining an error bound for the spline
algorithm which works for 𝛼 > 1/2 instead of requiring higher values of 𝛼. Let
us once more go back to Proposition 14.9. Then we choose 𝑀 > 1 and split the
summation in the error bound there into two parts,∑︁

𝒗∈𝑉𝑑,𝑁

∑︁
𝒘∈L⊥ (𝒈,𝑁)\{0}

1
𝑟2𝛼,𝜸 (𝒗 + 𝒘) =

∑︁
𝒗∈𝑉𝑑,𝑁

𝑟2𝛼,𝜸 (𝒗)>𝑀

∑︁
𝒘∈L⊥ (𝒈,𝑁)\{0}

1
𝑟2𝛼,𝜸 (𝒗 + 𝒘)

+
∑︁

𝒗∈𝑉𝑑,𝑁

𝑟2𝛼,𝜸 (𝒗) ≤𝑀

∑︁
𝒘∈L⊥ (𝒈,𝑁)\{0}

1
𝑟2𝛼,𝜸 (𝒗 + 𝒘) . (14.22)

Let us begin by analyzing the first sum in the right-hand side of (14.22). Since
𝑟2𝛼,𝜸 (𝒗) ≤ 𝑟2𝛼,𝜸 (𝒗 + 𝒘) for any 𝒗 ∈ 𝑉𝑑,𝑁 and 𝒘 ∈ L⊥ (𝒈, 𝑁), we have∑︁

𝒗∈𝑉𝑑,𝑁

𝑟2𝛼,𝜸 (𝒗)>𝑀

∑︁
𝒘∈L⊥ (𝒈,𝑁)\{0}

1
𝑟2𝛼,𝜸 (𝒗 + 𝒘) ≤

∑︁
𝒗∈Z𝑑

𝑟2𝛼,𝜸 (𝒗)>𝑀

1
𝑟2𝛼,𝜸 (𝒗)

.

We will now show by induction on 𝑑 that we have, for any 𝑝 ∈ [1/2, 𝛼),∑︁
𝒗∈Z𝑑

𝑟2𝛼,𝜸 (𝒗)>𝑀

1
𝑟2𝛼,𝜸 (𝒗)

≤ 𝑀1/(2𝑝)−1
𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝑝)

𝑗
𝜁

(
𝛼

𝑝

))
. (14.23)

Indeed, let us first consider 𝑑 = 1 and assume that 𝑀𝛾1 ≥ 1. We then write
𝑌 := ⌊(𝑀𝛾1)1/(2𝛼)⌋ + 1, and obtain∑︁

𝑣∈Z
𝑟2𝛼,𝛾1 (𝑣)>𝑀

1
𝑟2𝛼,𝛾1 (𝑣)

= 𝛾1
∑︁
𝑣∈Z

|𝑣 |> (𝑀𝛾1)1/(2𝛼)

1
|𝑣 |2𝛼

= 2𝛾1

∞∑︁
𝑣=𝑌

1
𝑣2𝛼

= 2𝛾1

∞∑︁
𝑣=1

𝑌−1∑︁
ℓ=0

1
(𝑣𝑌 + ℓ)2𝛼

≤ 2𝛾1

∞∑︁
𝑣=1

𝑌

(𝑣𝑌)2𝛼

= 2𝛾1𝑌
1−2𝛼𝜁 (2𝛼).

Since 2𝛼 > 1, we get

14.2 𝐿∞-Approximation of Functions in Korobov Spaces Using Splines 483

𝑌1−2𝛼 ≤
(
(𝑀𝛾1)1/(2𝛼)

)1−2𝛼
= (𝑀𝛾1)1/(2𝛼)−1.

Thus, ∑︁
𝑣∈Z

𝑟2𝛼,𝛾1 (𝑣)>𝑀

1
𝑟2𝛼,𝛾1 (𝑣)

≤ 2𝛾1 (𝑀𝛾1)1/(2𝛼)−1𝜁 (2𝛼) ≤ 2𝑀1/(2𝑝)−1𝛾
1/(2𝑝)
1 𝜁

(
𝛼

𝑝

)
for any 𝑝 ∈ [1/2, 𝛼), since 𝑀𝛾1 ≥ 1. This shows the desired bound in this case.

If, on the other hand, 𝑑 = 1 and 𝑀𝛾1 < 1, then∑︁
𝑣∈Z

𝑟2𝛼,𝛾1 (𝑣)>𝑀

1
𝑟2𝛼,𝛾1 (𝑣)

≤ 2
∞∑︁
𝑣=1

1
𝑟2𝛼,𝛾1 (𝑣)

= 2𝛾1𝜁 (2𝛼).

As 𝑀𝛾1 < 1, we have (𝑀𝛾1)1/(2𝑝)−1 ≥ 1, and so∑︁
𝑣∈Z

𝑟2𝛼,𝛾1 (𝑣)>𝑀

1
𝑟2𝛼,𝛾1 (𝑣)

≤ 2𝛾1𝜁 (2𝛼) (𝑀𝛾1)1/(2𝑝)−1 ≤ 2𝑀1/(2𝑝)−1𝛾
1/(2𝑝)
1 𝜁

(
𝛼

𝑝

)
,

and this again yields the bound for 𝑑 = 1.
Let us now assume that (14.23) holds for dimension 𝑑. We write (𝒗𝑑 , 𝑣𝑑+1) to

denote a (𝑑 + 1)-dimensional vector with the first 𝑑 components being given by 𝒗𝑑 ,
and the last component by 𝑣𝑑+1, and obtain∑︁

(𝒗𝑑 ,𝑣𝑑+1) ∈Z𝑑+1

𝑟2𝛼,𝜸 ((𝒗𝑑 ,𝑣𝑑+1))>𝑀

1
𝑟2𝛼,𝜸 ((𝒗𝑑 , 𝑣𝑑+1))

=
∑︁
𝑣𝑑+1∈Z

1
𝑟2𝛼,𝛾𝑑+1 (𝑣𝑑+1)

∑︁
𝒗𝑑 ∈Z𝑑

𝑟2𝛼,𝜸 (𝒗𝑑)>𝑀 (𝑟2𝛼,𝜸 (𝑣𝑑+1))−1

1
𝑟2𝛼,𝜸 (𝒗𝑑)

≤ 𝑀1/(2𝑝)−1 ©«
𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝑝)

𝑗
𝜁

(
𝛼

𝑝

))ª®¬
∑︁
𝑣𝑑+1∈Z

1
(𝑟2𝛼,𝛾𝑑+1 (𝑣𝑑+1))1/(2𝑝)

= 𝑀1/(2𝑝)−1
𝑑+1∏
𝑗=1

(
1 + 2𝛾1/(2𝑝)

𝑗
𝜁

(
𝛼

𝑝

))
for any 𝑝 ∈ [1/2, 𝛼). This concludes the proof of (14.23).

Let us now turn to the second term in (14.22). However, it is easy to see that this
term does not exceed the second term on the right-hand side of (13.10), which we
already bounded in Section 13.1 by means of the quantity 𝑆𝑁,𝑑,𝛼,𝜸 (𝒈). This then
yields

484 14 𝐿∞-Approximation Using Lattice Rules

[err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝑠𝑑,P(𝒈,𝑁))]2

≤ 𝑀1/(2𝑝)−1
𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝑝)

𝑗
𝜁

(
𝛼

𝑝

))
+ 𝑀 [𝑆𝑁,𝑑,𝛼,𝜸 (𝒈)]2 (14.24)

for any 𝑝 ∈ [1/2, 𝛼), where 𝑆𝑁,𝑑,𝛼,𝜸 (𝒈) is defined as in (13.11). This estimate holds
for any 𝒈 ∈ 𝐺𝜙

𝑑
(𝑁). In particular, we can use Algorithm 13.3 to make 𝑆𝑁,𝑑,𝛼,𝜸 (𝒈)

small. The corresponding bound is shown in Theorem 13.5. We summarize our
results in the following theorem, which is in a similar vein as Theorem 13.6 for
𝐿2-approximation.

Theorem 14.11 Let 𝑁 ≥ 3 be a prime number, let 𝛼 > 1/2, let 𝜸 = (𝛾 𝑗) 𝑗≥1 be
product weights, and assume that 𝒈 has been found by Algorithm 13.3. Then for
arbitrary 𝜏 ∈ [1/2, 𝛼) we have

err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝑠𝑑,P(𝒈,𝑁)) ≤
√

2
𝑁 𝜏 (2𝜏−1)/(4𝜏−1)

𝑑∏
𝑗=1

(
1 + 24𝛼+1𝛾

1/(2𝜏)
𝑗

𝜁

(𝛼
𝜏

))2𝜏
.

(14.25)

Proof From (14.24) with 𝑝 = 𝜏 and Theorem 13.5 we obtain for arbitrary 𝜏 ∈
[1/2, 𝛼),

[err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝑠𝑑,P(𝒈,𝑁))]2

≤ 𝑀1/(2𝜏)−1
𝑑∏
𝑗=1

(
1 + 2𝛾1/(2𝜏)

𝑗
𝜁

(𝛼
𝜏

))
+ 𝑀

𝑁2𝜏

𝑑∏
𝑗=1

(
1 + 24𝛼+1𝛾

1/(2𝜏)
𝑗

𝜁

(𝛼
𝜏

))4𝜏

≤
(
𝑀1/(2𝜏)−1 + 𝑀

𝑁2𝜏

) 𝑑∏
𝑗=1

(
1 + 24𝛼+1𝛾

1/(2𝜏)
𝑗

𝜁

(𝛼
𝜏

))4𝜏
.

We now choose
𝑀 = 𝑁4𝜏2/(4𝜏−1) .

With this choice we obtain

[err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝑠𝑑,P(𝒈,𝑁))]2

≤ 2
𝑁2𝜏 (2𝜏−1)/(4𝜏−1)

𝑑∏
𝑗=1

(
1 + 24𝛼+1𝛾

1/(2𝜏)
𝑗

𝜁

(𝛼
𝜏

))4𝜏
.

Now the result follows by taking the square root. □

Since 𝜏 can be chosen arbitrarily close to 𝛼 we get in this way an error rate of
order O(𝑁−𝛼(2𝛼−1)/(4𝛼−1)+𝛿) for arbitrarily small but positive 𝛿 in Theorem 14.11.
This is the same convergence rate as in Theorem 14.7, but here we do not need to
assume that 𝛼 > 1.

14.3 Tractability of 𝐿∞-Approximation Using Lattice Rules and Splines 485

Remark 14.12 We note that one could also use the spline method for 𝐿2-approximation
in the weighted Korobov space. Regarding error convergence rates, one would obtain
the same results as in Section 13.1.

14.3 Tractability of 𝑳∞-Approximation Using Lattice Rules and
Splines

We briefly discuss tractability results for the 𝐿∞-approximation problem on the basis
of Theorems 14.3, 14.6, and 14.11, using similar notation as in Section 13.3.

As the error criterion we choose the so-called absolute criterion (note that the
initial error strictly exceeds 1 for the present approximation problem; for further
details on this issue see the “Notes and Remarks” section at the end of this chapter),
and define the information complexity as

𝑁𝐿∞−app (𝜀, 𝑑,Λ)
:= min{𝑁 ∈ N : ∃𝐴𝑁,𝑑 ∈ Λ such that err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝐴𝑁,𝑑) ≤ 𝜀}.

In all three cases (i.e., in Theorems 14.3, 14.6, and 14.11) we have a similar
typical situation and it suffices to bound the product

𝑑∏
𝑗=1

(
1 + 24𝛼+2𝛾

1/(2𝜏)
𝑗

𝜁

(𝛼
𝜏

))
.

This, however, is an easy task, since this product is not larger than

e24𝛼+2𝜁 (𝛼/𝜏) ∑𝑑
𝑗=1 𝛾

1/(2𝜏)
𝑗 ,

which in turn is bounded uniformly in 𝑑 if

∞∑︁
𝑗=1
𝛾

1/(2𝜏)
𝑗

< ∞. (14.26)

So, if (14.26) holds for a suitable parameter 𝜏, then the error bounds in Theo-
rems 14.3, 14.6, and 14.11 hold uniformly in 𝑑, and from this one can deduce that
the 𝐿∞-approximation problem is strongly polynomially tractable. Exemplary, we
elaborate on this in greater detail for the case of Theorem 14.11, and also include
the notion of polynomial tractability.

Theorem 14.13 The 𝐿∞-approximation problem for the Korobov space, with smooth-
ness 𝛼 > 1/2 and product weights 𝜸 = (𝛾 𝑗) 𝑗≥1, 𝛾 𝑗 ∈ (0, 1] for 𝑗 ∈ N, with respect
to the absolute error criterion and with respect to information from the class Λstd is
strongly polynomially tractable if

486 14 𝐿∞-Approximation Using Lattice Rules

∞∑︁
𝑗=1
𝛾

1/(2𝜏)
𝑗

< ∞ (14.27)

holds for some 𝜏 ∈ (1/2, 𝛼). Then the 𝜀-exponent is at most (2𝛼+2𝜏−1)/(𝜏(2𝜏−1)).
If (14.27) even holds for every 𝜏 ∈ (1/2, 𝛼), then the 𝜀-exponent is at most

2
𝛼
+ 1
𝛼(2𝛼 − 1) .

Furthermore, polynomial tractability holds if

lim sup
𝑑→∞

1
log 𝑑

𝑑∑︁
𝑗=1
𝛾

1/(2𝜏)
𝑗

< ∞ (14.28)

holds for some 𝜏 ∈ (1/2, 𝛼).

Proof Assume that (14.27) holds for some 𝜏 ∈ (1/2, 𝛼). Then for every odd prime
number 𝑁 one can, by Theorem 14.11, construct a spline algorithm 𝑠𝑑,P(𝒈,𝑁) such
that

err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝑠𝑑,P(𝒈,𝑁)) ≤
𝐶𝛼,𝜏,𝜸

𝑁 𝜏 (2𝜏−1)/(4𝜏−1) , (14.29)

where

𝐶𝛼,𝜏,𝜸 =
√

2
∞∏
𝑗=1

(
1 + 24𝛼+1𝛾

1/(2𝜏)
𝑗

𝜁

(𝛼
𝜏

))2𝜏

is independent of the dimension 𝑑. Let 𝑄 := ⌈(𝐶𝛼,𝜏,𝜸𝜀−1) (4𝜏−1)/(𝜏 (2𝜏−1))⌉ and let
𝑁 be the smallest odd prime number greater than or equal to 𝑄. Note that obviously
𝑁 ∈ [𝑄, 2𝑄). Now construct a generating vector 𝒈 according to Theorem 14.11. For
this 𝒈 we then obtain

err𝐿∞−app (Hkor,𝑑,𝛼,𝜸, 𝑠𝑑,P(𝒈,𝑁)) ≤ 𝜀,

and thus the information complexity satisfies

𝑁𝐿∞−app (𝜀, 𝑑,Λstd) ≤ 𝑁 ≤ 2𝑄 = 2
⌈(
𝐶𝛼,𝜏,𝜸𝜀

−1
) (4𝜏−1)/(𝜏 (2𝜏−1))

⌉
.

Hence the problem is strongly polynomially tractable with an 𝜀-exponent of at most

4𝜏 − 1
𝜏(2𝜏 − 1) .

If (14.27) even holds for all 𝜏 ∈ (1/2, 𝛼), then the 𝜀-exponent is at most

4𝛼 − 1
𝛼(2𝛼 − 1) =

2
𝛼
+ 1
𝛼(2𝛼 − 1) .

14.3 Tractability of 𝐿∞-Approximation Using Lattice Rules and Splines 487

Finally, let us assume that (14.28) holds for some 𝜏 ∈ (1/2, 𝛼). Then we can start
again from the bound in Theorem 14.11 and see by standard arguments as in the
proof of Corollary 2.28, that

𝑑∏
𝑗=1

(
1 + 24𝛼+1𝛾

1/(2𝜏)
𝑗

𝜁

(𝛼
𝜏

))2𝜏

depends only polynomially on 𝑑. In this way, we obtain polynomial tractability. □

Notes and Remarks

The problem of 𝐿∞-approximation is also considered in the three volume-book
[210]–[212] by Novak and Woźniakowski. What we outlined in Section 14.1 has
mostly been shown for the first time in [166] (see also [168]).

The presentation of the spline method for 𝐿∞-approximation in Section 14.2
follows the more general paper [270], but in our outline we restrict ourselves to
the theory immediately relevant to Korobov spaces. For more general instances we
refer to [270]. Furthermore, for general information on spline methods, radial basis
functions, and related results that are partly used in Section 14.2, we refer to the
monographs [21, 73, 254, 263].

There is a close relation between 𝐿∞-approximation for Hkor,𝑑,𝛼,𝜸 in the worst-
case setting and 𝐿2-approximation in the average-case setting over a suitable function
space that is equipped with a Gaussian probability measure. This implies that in many
cases results for one problem can be transferred to the other and vice versa. For further
information see, e.g., [70, 163, 210, 212].

In Section 14.3 we have restricted ourselves to the information complexity with
respect to the absolute error criterion. We remark that the initial error of 𝐿∞-
approximation in the Korobov space Hkor,𝑑,𝛼,𝜸 equals

𝑒𝐿∞−app (0, 𝑑) =
𝑑∏
𝑗=1

(1 + 2𝛾 𝑗 𝜁 (2𝛼))1/2,

which is strictly greater than 1. In this sense the 𝐿∞-approximation problem is not
normalized (like, e.g., the 𝐿2-approximation problem). This means that it is ap-
propriate to study also the information complexity with respect to the normalized
criterion. See, for example, [70]. Furthermore, in [70] also an overview of known
weight conditions for most of the current standard notions of tractability beyond
(strong) polynomial tractability of the 𝐿∞-approximation problem in weighted Ko-
robov spaces can be found.

488 14 𝐿∞-Approximation Using Lattice Rules

In this chapter we only consider Korobov spaces of finite smoothness 𝛼. 𝐿∞-
approximation for Korobov spaces of analytic functions as introduced in Chap-
ter 9 is studied in the papers [150, 265]. These papers also discuss results for
𝐿𝑝-approximation with 𝑝 ∈ [2,∞].

Chapter 15
Multiple Rank-1 Lattice Point Sets

In this chapter, we would like to give an overview of multiple rank-1 lattice point sets,
as presented in [128] and [131], which can be used to obtain a better convergence rate
for approximation than when using ordinary rank-1 lattice point sets (see Chapters 13
and 14). The basic idea of multiple lattice point sets is to consider the “union”
of several rank-1 lattice point sets and to use them suitably in an approximation
algorithm. In order to find good multiple lattice point sets, one employs a probabilistic
search algorithm. We outline the ideas underlying these results for approximation
in the weighted Korobov space Hkor,𝑑,𝛼,𝜸 in this chapter. In order to make our
presentation not too technical, we restrict ourselves to considering only product
weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 ∈ (0, 1] for 𝑗 ∈ N.

As we have seen in Section 13.2, using 𝑁 function values at lattice points can
at best yield a convergence rate of the 𝐿2-approximation error of order 𝑁−𝛼/2.
This is due to aliasing of Fourier coefficients whose frequencies differ only by an
element of the dual lattice. To avoid the aliasing, one could use a rank-1 lattice rule
with generating vector 𝒈1 and consisting of 𝑁1 points to only approximate a set of
non-aliased Fourier coefficients, that is, a set of the form {𝒉1,1, . . . , 𝒉1,𝑁1 }, where
𝒉1,𝑖 − 𝒉1, 𝑗 ∉ L⊥ (𝒈1, 𝑁1) for all 𝑖 ≠ 𝑗 .

Assume that we were to use an algorithm of the form (13.2), where we approximate
all Fourier coefficients with frequencies in the set A𝑑,𝑀 , for some given value of
𝑀 . In Section 13.1 we used a rank-1 lattice rule as the underlying quadrature rule
to approximate the Fourier coefficients of a given function. In that approach we did
not assume that A𝑑,𝑀 ⊆ {𝒉1,1, . . . , 𝒉1,𝑁1 }, and so some Fourier coefficients in the
approximation may be aliased. If we demand that A𝑑,𝑀 ⊆ {𝒉1,1, . . . , 𝒉1,𝑁1 } then
we would have to make 𝑁1 large, but in any case, the lower bound in Theorem 13.7
shows that we cannot improve upon the convergence rate of order 𝑁−𝛼/2

1 .
The approach taken in this section is slightly different and based on an idea of

Kämmerer, who suggested using a union of rank-1 lattice rules. In the following
we provide some motivation for using several rank-1 lattice rules at once. Indeed,
we could proceed as follows. Given A𝑑,𝑀 , we first use a rank-1 lattice rule with
generating vector 𝒈1 and 𝑁1 points to approximate the Fourier coefficients in A𝑑,𝑀∩
{𝒉1,1, . . . , 𝒉1,𝑁1 }. Now we are left with approximating the Fourier coefficients in

489© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_15&domain=pdf

490 15 Multiple Rank-1 Lattice Point Sets

A𝑑,𝑀 \{𝒉1,1, . . . , 𝒉1,𝑁1 }. For these, we use a new rank-1 lattice rule with generating
vector 𝒈2 and 𝑁2 points. Ideally, this second lattice rule should cover as many
frequencies in A𝑑,𝑀 \ {𝒉1,1, . . . , 𝒉1,𝑁1 } as possible. This means that the second
lattice rule should be, in some sense, “very different” from the first lattice rule. After
having used the second lattice rule, we are again left with some frequencies which
we have not yet approximated and so we construct a third lattice rule, which again
should be “very different” from the first two lattice rules so that it can be used to
approximate as many of the remaining frequencies as possible. We continue this
procedure using new rank-1 lattice rules with generating vectors 𝒈ℓ and number of
points 𝑁ℓ until all the Fourier coefficients in A𝑑,𝑀 have been approximated (say,
ℓ ∈ {1, 2, . . . , 𝐿}). The number of different lattice rules needed to cover the set
A𝑑,𝑀 (this corresponds to the so-called reconstruction property defined below) can
be shown to be relatively small. The proof is based on probabilistic arguments.
This approach yields a convergence rate of the 𝐿∞-approximation error of order
𝑁−𝛼+1/2+𝛿 for any 𝛿 > 0, which is close to the best possible convergence rate. Since
𝐿2-approximation is not harder than 𝐿∞-approximation of functions, we shall also
obtain new (and, for significant choices of the smoothness parameter, better) results
regarding 𝐿2-approximation, see Section 15.3.

The precise details of this approach are given in the following section.

15.1 Multiple Rank-1 Lattice Point Sets for Approximation in
Korobov Spaces

Let us assume that we have 𝐿 rank-1 lattice point sets P(𝑔1, 𝑁1), . . . ,P(𝑔𝐿 , 𝑁𝐿)
with generating vectors 𝒈ℓ ∈ 𝐺𝑑 (𝑁ℓ) for ℓ ∈ [𝐿]. For the sake of simplicity, we
shall assume that 𝑁1, . . . , 𝑁𝐿 are prime numbers throughout this chapter. We remind
the reader that all points of a single rank-1 lattice point set with a prime number of
elements are distinct. Based on the P(𝑔ℓ , 𝑁ℓ) for ℓ ∈ [𝐿], we define the multiple
rank-1 lattice point set,

P̃ = P̃ (𝑔1, 𝑁1, . . . , 𝑔𝐿 , 𝑁𝐿) :=
𝐿⋃
ℓ=1

P(𝒈ℓ , 𝑁ℓ). (15.1)

Note that we obviously have |P̃ | ≤ 1 − 𝐿 + ∑𝐿
ℓ=1 𝑁ℓ , where the term 1 − 𝐿 appears

due to the fact that every single lattice point set P(𝒈ℓ , 𝑁ℓ) contains the origin.
The general idea of approximating functions by multiple rank-1 lattice point sets

is again to consider truncated Fourier series for 𝑓 ∈ Hkor,𝑑,𝛼,𝜸, and to approximate
the relevant Fourier coefficients by a QMC rule, but with some modifications as
compared to the preceding chapters. To this end, we assume that we are given an
index set A𝑑 ⊆ Z𝑑 , and then approximate 𝑓 ∈ Hkor,𝑑,𝛼,𝜸 by the algorithm given by

𝐴mult
A𝑑

(𝑓) (𝒙) :=
∑︁

𝒉∈A𝑑

�̂�
𝑃
(𝒉) e2𝜋i𝒉 ·𝒙 (15.2)

15.1 Multiple Rank-1 Lattice Point Sets for Approximation in Korobov Spaces 491

for 𝒙 ∈ [0, 1)𝑑 , where �̂�
𝑃
(𝒉) is a suitable approximation of the Fourier coefficients

�̂� (𝒉) for 𝒉 ∈ A𝑑 that is based on a multiple rank-1 lattice point set and will be
explained in greater detail below (see (15.11)).

The reconstruction property

When trying to find good instances of multiple rank-1 lattice point sets for approx-
imation, it is desirable that they fulfill the so-called reconstruction property, which
is to be understood in the following way.

Let A𝑑 ⊆ Z𝑑 be an index set, let P be a finite point set in [0, 1)𝑑 , and let

𝐹 = 𝐹P,A𝑑
:= (e2𝜋i𝒉 ·𝒙)𝒙∈P,𝒉∈A𝑑

be the corresponding Fourier matrix, where we assume an arbitrary but fixed ordering
of the elements in P and in A𝑑 . Note that here we use the term “Fourier matrix” in
a similar but slightly different way than previously in (3.18).

This matrix can be used to compute the evaluation of trigonometric polynomials

𝑝 : [0, 1)𝑑 → C, 𝑝(𝒙) =
∑︁

𝒉∈A𝑑

𝑝(𝒉) e2𝜋i𝒉 ·𝒙

with index set A𝑑 at all points of P, by means of the matrix-vector product

𝒑 = 𝐹 �̂�,

where 𝒑 := (𝑝(𝒙))⊤𝒙∈P and �̂� := (𝑝(𝒉))⊤𝒉∈A𝑑
. On the other hand, also the Fourier

coefficients 𝑝(𝒉) of 𝑝 with frequencies 𝒉 ∈ A𝑑 can be uniquely reconstructed
from the sample values 𝑝(𝒙), 𝒙 ∈ P, if and only if the Fourier matrix 𝐹 has
full column rank. Usually, this is achieved by means of the pseudo-inverse matrix
𝐹† := (𝐹∗𝐹)−1𝐹∗, where 𝐹∗ is the adjoint matrix of 𝐹, i.e., the conjugate transpose
of 𝐹, 𝐹∗ := (𝐹)⊤. Note that the full column rank of 𝐹 guarantees that 𝐹∗𝐹 is
invertible. Then we have

�̂� = 𝐹† 𝒑,

see also [128, p. 704] for further information. In this sense the reconstruction property
of a point set P for an index set A𝑑 means that for every trigonometric polynomial
𝑝 with index set A𝑑 ,

𝑝 ∈ span
{
𝒙 ↦→ e2𝜋i𝒉 ·𝒙 : 𝒉 ∈ A𝑑

}
,

all Fourier coefficients 𝑝(𝒉) with 𝒉 ∈ A𝑑 can be reconstructed from the pointwise
evaluations of 𝑝 at the points of P. As already mentioned, this property is equivalent
to having full column rank of the Fourier matrix 𝐹 corresponding to P and A𝑑 .
Likewise, the point set P is said to be reconstructing (with respect to A𝑑).

492 15 Multiple Rank-1 Lattice Point Sets

Let now P = P(𝒈, 𝑁) be a rank-1 lattice point set and let A𝑑 ⊆ Z𝑑 be a finite
index set. Then any two distinct columns of the corresponding Fourier Matrix 𝐹 =

𝐹P(𝒈,𝑁) ,A𝑑
are either orthogonal or equal. This follows because for any 𝒉, 𝒉′ ∈ A𝑑

the entry (𝐹∗𝐹)𝒉′,𝒉 of the matrix 𝐹∗𝐹 at position (𝒉′, 𝒉) ∈ A2
𝑑

satisfies

(𝐹∗𝐹)𝒉′,𝒉 =

𝑁−1∑︁
𝑘=0

e2𝜋i𝑘 ((𝒉−𝒉′) ·𝒈)/𝑁 =

{
𝑁 if 𝒉 · 𝒈 ≡ 𝒉′ · 𝒈 (mod 𝑁),
0 if 𝒉 · 𝒈 . 𝒉′ · 𝒈 (mod 𝑁).

This implies that the Fourier matrix 𝐹 has full column rank if and only if

𝒉 · 𝒈 . 𝒉′ · 𝒈 (mod 𝑁) for all 𝒉, 𝒉′ ∈ A𝑑 , 𝒉 ≠ 𝒉′. (15.3)

Therefore, for a rank-1 lattice point set P(𝒈, 𝑁), the reconstruction property with
respect to a finite index set A𝑑 is equivalent to Condition (15.3).

Note that Condition (15.3) is equivalent to

𝒉 · 𝒈 . 0 (mod 𝑁) for all 𝒉 ∈ D(A𝑑) \ {0}, (15.4)

where D(A𝑑) denotes the difference set of A𝑑 given by D(A𝑑) := {𝒉 ∈ Z𝑑 : 𝒉 =

𝒉1−𝒉2, 𝒉1, 𝒉2 ∈ A𝑑}. If (15.4) is satisfied, then for every trigonometric polynomial
𝑝 with 𝑝(𝒙) = ∑

𝒉∈D(A𝑑) 𝑎𝒉 e2𝜋i𝒉 ·𝒙, for 𝒙 ∈ [0, 1)𝑑 , with the index set D(A𝑑) it
holds that

1
𝑁

𝑁−1∑︁
𝑘=0

𝑝

({
𝑘

𝑁
𝒈

})
=

∑︁
𝒉∈D(A𝑑)

𝑎𝒉
1
𝑁

𝑁−1∑︁
𝑘=0

e2𝜋i𝑘 (𝒉 ·𝒈)/𝑁

=
∑︁

𝒉∈D(A𝑑)
𝒉 ·𝒈≡0 (mod 𝑁)

𝑎𝒉 = 𝑎0 =

∫
[0,1]𝑑

𝑝(𝒙) d𝒙.

From this it follows directly that for a reconstructing rank-1 lattice point set P(𝒈, 𝑁)
with respect to an index set A𝑑 we have

𝑝(𝒉) = 1
𝑁

𝑁−1∑︁
𝑘=0

𝑝

({
𝑘

𝑁
𝒈

})
e−2𝜋i𝑘 (𝒉 ·𝒈)/𝑁

for all 𝒉 ∈ A𝑑 and for all trigonometric polynomials with the index set A𝑑 .

For a multiple rank-1 lattice point set consisting of single rank-1 lattice point sets
P(𝒈ℓ , 𝑁ℓ), ℓ ∈ [𝐿], the strategy will be to select index sets A𝑑,ℓ , ℓ ∈ [𝐿], such that
P(𝒈ℓ , 𝑁ℓ) satisfies the reconstruction property for A𝑑,ℓ for ℓ ∈ [𝐿].

15.1 Multiple Rank-1 Lattice Point Sets for Approximation in Korobov Spaces 493

Constructing multiple rank-1 lattices algorithmically

Below, we will present a probabilistic algorithm (Algorithm 15.2) that will return
a good multiple rank-1 lattice point set P̃ = P̃ (𝑔1, 𝑁1, . . . , 𝑔𝐿 , 𝑁𝐿) with a certain
probability. The algorithm is designed such that each P(𝒈ℓ , 𝑁ℓ), ℓ ∈ [𝐿], has the
reconstruction property for an index set A𝑑,ℓ for ℓ ∈ [𝐿]. Given A𝑑 ⊆ Z𝑑 , the
single index sets A𝑑,ℓ will be determined by the algorithm such that

A𝑑,ℓ :=
{
𝒉 ∈ A𝑑 : 𝒉 · 𝒈ℓ . 𝒉′ · 𝒈ℓ (mod 𝑁ℓ) ∀𝒉′ ∈ A𝑑 \ {𝒉}

}
, (15.5)

i.e., A𝑑,ℓ consists of all frequencies 𝒉 ∈ A𝑑 for which the Fourier coefficients 𝑝(𝒉)
of any trigonometric polynomial 𝑝 with index set A𝑑 can be reconstructed exactly
using P(𝒈ℓ , 𝑁ℓ). The algorithm also chooses the cardinalities 𝑁1, . . . , 𝑁𝐿 of the
single rank-1 lattice point sets P(𝒈ℓ , 𝑁ℓ) as distinct prime numbers from the set

𝑃A𝑑
:= {𝑝 ∈ N : 𝑝 prime such that |{𝒉 (mod 𝑝) : 𝒉 ∈ A𝑑}| = |A𝑑 |} , (15.6)

where 𝒉 (mod 𝑝) is to be understood component-wise, and where, naturally,
𝒉 (mod 𝑝) ∈ 𝐺𝑑 (𝑝). To be more precise, given two parameters 𝜂, 𝐿max ∈ N, the
cardinalities 𝑁1, . . . , 𝑁𝐿 will be chosen from a subset of 𝑃A𝑑

defined as

𝑃A𝑑 ,𝜂,𝐿max := {𝑝1, . . . , 𝑝𝐿max ∈ 𝑃A𝑑
}, (15.7)

where the 𝑝 𝑗 for 𝑗 ∈ [𝐿max] are given by

𝑝 𝑗 :=

{
min{𝑝 ∈ 𝑃A𝑑

: 𝑝 > 𝜂} if 𝑗 = 1,
min{𝑝 ∈ 𝑃A𝑑

: 𝑝 > 𝑝 𝑗−1} if 2 ≤ 𝑗 ≤ 𝐿max.
(15.8)

I.e., 𝑃A𝑑 ,𝜂,𝐿max contains the 𝐿max smallest primes in 𝑃A𝑑
which are greater than 𝜂.

The condition |{𝒉 (mod 𝑝) : 𝒉 ∈ A𝑑}| = |A𝑑 | in (15.6) implies that for arbitrary
𝒈 ∈ 𝐺𝑑 (𝑝) the Fourier matrices 𝐹P(𝒈, 𝑝) ,A𝑑

and 𝐹P(𝒈, 𝑝) ,A𝑑 (mod 𝑝) coincide and
hence the lattice point set P(𝒈, 𝑝) has the recovery property for A𝑑 if and only if it
has this property for A𝑑 (mod 𝑝) := {𝒉 (mod 𝑝) : 𝒉 ∈ A𝑑}.

Remark 15.1 Let
𝑁A𝑑

:= max
𝑗∈[𝑑]

(
max
𝒌∈A𝑑

𝑘 𝑗 − min
𝒍∈A𝑑

𝑙 𝑗

)
.

The number 𝑁A𝑑
quantifies the expansion of the index set A𝑑 . The set 𝑃A𝑑

contains
all prime numbers greater than 𝑁A𝑑

, which can be seen as follows. Assume that 𝑝
is a prime number satisfying 𝑝 > 𝑁A𝑑

but that |{𝒉 (mod 𝑝) : 𝒉 ∈ A𝑑}| < |A𝑑 |.
Then there exist distinct 𝒌, 𝒍 ∈ A𝑑 with 𝒌 ≡ 𝒍 (mod 𝑝). Since 𝒌 − 𝒍 ≠ 0 there exists
at least one index 𝑗0 ∈ [𝑑], and a 𝑡 ∈ N such that |𝑘 𝑗0 − 𝑙 𝑗0 | = 𝑡 𝑝 ≥ 𝑝 > 𝑁A𝑑

and
this contradicts the definition of 𝑁A𝑑

.

494 15 Multiple Rank-1 Lattice Point Sets

We can now formulate a probabilistic algorithm to find reconstructing multiple
rank-1 lattices with a certain probability. The basic idea is to choose the lattice
sizes 𝑁1, . . . , 𝑁𝐿 deterministically and then to randomly select the corresponding
generating vectors 𝒈1, . . . , 𝒈𝐿 of rank-1 latticesP(𝒈ℓ , 𝑁ℓ) for ℓ ∈ [𝐿]. The following
algorithm was first proposed by Kämmerer, see [128, Algorithm 4].

Algorithm 15.2 (Probabilistic algorithm to find good multiple rank-1 lattices)
Let A𝑑 ⊆ Z𝑑 be a finite frequency index set, let 𝑐 ∈ (1,∞), and let 𝛿 ∈ (0, 1).

Find prime numbers 𝑁1, . . . , 𝑁𝐿 and generating vectors 𝒈ℓ ∈ 𝐺𝑑 (𝑁ℓ) for ℓ ∈ [𝐿]
as follows.

(1) Put

𝐿max :=
⌈(𝑐

𝑐 − 1

)2 log |A𝑑 | − log 𝛿
2

⌉
and 𝜂 := (|A𝑑 | − 1)𝑐.

(2) Determine 𝑃A𝑑 ,𝜂,𝐿max according to (15.7) and (15.8) and order its elements in
an increasing fashion, put Ã𝑑 := ∅, and put 𝐿 := 0.

(3) Increase 𝐿 by 1, put 𝑁𝐿 := 𝑝𝐿 ∈ 𝑃A𝑑 ,𝜂,𝐿max , and choose 𝒈𝐿 ∈ 𝐺𝑑 (𝑁𝐿)
uniformly at random.

(4) If {
𝒉 ∈ A𝑑 : �𝒉′ ∈ A𝑑 \ {𝒉} such that 𝒉 · 𝒈𝐿 ≡ 𝒉′ · 𝒈𝐿 (mod 𝑁𝐿)

}
⊈ Ã𝑑 ,

then put

Ã𝑑

:= Ã𝑑 ∪
{
𝒉 ∈ A𝑑 : �𝒉′ ∈ A𝑑 \ {𝒉} such that 𝒉 · 𝒈𝐿 ≡ 𝒉′ · 𝒈𝐿 (mod 𝑁𝐿)

}
,

otherwise reduce 𝐿 by 1.
(5) Repeat Steps (3) and (4) as long as |Ã𝑑 | < |A𝑑 | and 𝐿 < 𝐿max.

Algorithm 15.2 returns the cardinalities 𝑁1, . . . , 𝑁𝐿 and the generating vectors
𝒈1, . . . , 𝒈𝐿 of rank-1 lattices P(𝒈ℓ , 𝑁ℓ), ℓ ∈ [𝐿], which are then combined to a
multiple rank-1 lattice P̃ (𝑔1, 𝑁1, . . . , 𝑔𝐿 , 𝑁𝐿). The runtime of Algorithm 15.2 is of
order O(|A𝑑 | (𝑑 + log |A𝑑 |) log |A𝑑 |) (see [128, p. 716]).

Remark 15.3 The parameter 𝑐 in Algorithm 15.2 is sometimes referred to as the
“oversampling factor”, as it is related to how much oversampling occurs in the ap-
proximation (15.2), based on the multiple rank-1 lattice determined by the algorithm.

The “If”-condition in Step (4) of the algorithm ensures that in each step the
additional sampling nodes of the corresponding single rank-1 lattice point set do
actually contribute to getting closer to the underlying goal (see [128]).

As discussed in [131], with probability 1 − 𝛿, Algorithm 15.2 yields a multiple
rank-1 lattice P̃ (𝑔1, 𝑁1, . . . , 𝑔𝐿 , 𝑁𝐿) that has the reconstruction property for A𝑑 =⋃𝐿
ℓ=1 A𝑑,ℓ , with the A𝑑,ℓ as in (15.5). We omit the proof of this result and refer the

interested reader to [128, Theorem 3.4].

15.1 Multiple Rank-1 Lattice Point Sets for Approximation in Korobov Spaces 495

The following proposition gives an estimate on the number of points in the
multiple rank-1 lattice point set returned by Algorithm 15.2.

Proposition 15.4 Assume that 𝜂 := (|A𝑑 | − 1)𝑐 ≥ max(𝑁A𝑑
, 4𝐿max log 𝐿max),

where |A𝑑 | ≥ 2, and where 𝑁A𝑑
is defined as in Remark 15.1. Then the cardinality

of the multiple rank-1 lattice point set P̃ := P̃ (𝒈1, 𝑁1, . . . , 𝒈𝐿 , 𝑁𝐿) obtained by
Algorithm 15.2 satisfies

|P̃ | ≤ 2𝐿max (|A𝑑 | − 1)𝑐.

Proof We have

|P̃ | ≤
𝐿∑︁
ℓ=1

𝑁ℓ ≤ 𝐿max max
ℓ∈[𝐿]

𝑁ℓ ≤ 𝐿max max 𝑃A𝑑 ,𝜂,𝐿max ,

where we used that all 𝑁ℓ are chosen from the set 𝑃A𝑑 ,𝜂,𝐿max .
Since 𝜂 ≥ 𝑁A𝑑

it follows from Remark 15.1 that 𝑃A𝑑
contains all prime numbers

in the interval (𝜂, 2𝜂]. Thus it suffices to show that this interval contains at least 𝐿max
prime numbers. To this end we use a quantitative version of Bertrand’s postulate
which states that the number of primes in the interval (𝜂, 2𝜂] is bounded from below
by 3𝜂/(5 log 𝜂) when 𝜂 ≥ 20.5 (see [221, Corollary 3]). We distinguish four cases.

(1) If 𝐿max ≥ 4 we have by assumption 𝜂 ≥ 4𝐿max log 𝐿max > 22, and hence the
number of primes in the interval (𝜂, 2𝜂] is at least

3𝜂
5 log 𝜂

≥ 3 · 4𝐿max log 𝐿max
5 log(4𝐿max log 𝐿max)

= 𝐿max
log 𝐿12/5

max
log(4𝐿max log 𝐿max)

≥ 𝐿max,

where for the first estimate we used that the function 𝜂 ↦→ 3𝜂/(5 log 𝜂) is
monotonically increasing for 𝜂 > 22, and for the last estimate we used that for
𝐿max ≥ 4 we have 𝐿12/5

max ≥ 4𝐿max log 𝐿max.
(2) If 𝐿max = 3 we have 𝜂 ≥ 12 log 3 > 13. It follows from Case (1) that for 𝜂 > 22

there are at least four prime numbers in (𝜂, 2𝜂]. For 13 < 𝜂 ≤ 22 the interval
(𝜂, 2𝜂] still contains at least three primes, since

{17, 19, 23} ⊆ (𝜂, 2𝜂] for 𝜂 ∈ [11.5, 17)

and
{23, 29, 31} ⊆ (𝜂, 2𝜂] for 𝜂 ∈ [17, 22).

(3) If 𝐿max = 2 , this implies 𝜂 ≥ 8 log 2 > 5.5. For 𝜂 ∈ [5.5, 17) there are at least
two prime numbers in (𝜂, 2𝜂], namely

{7, 11} ⊆ (𝜂, 2𝜂] for 𝜂 ∈ [5.5, 7),

{11, 13} ⊆ (𝜂, 2𝜂] for 𝜂 ∈ [7, 11)

and
{17, 19} ⊆ (𝜂, 2𝜂] for 𝜂 ∈ [11, 17).

496 15 Multiple Rank-1 Lattice Point Sets

For 𝜂 ≥ 17 there are at least three prime numbers in (𝜂, 2𝜂], due to Cases (1)
and (2).

(4) If 𝐿max = 1 we have 𝜂 = (|A𝑑 | − 1)𝑐 > 1, and thus it follows directly from
Bertrand’s postulate that the interval (𝜂, 2𝜂] contains at least one prime number.

These considerations show that max 𝑃A𝑑 ,𝜂,𝐿max ≤ 2𝜂 = 2(|A𝑑 | − 1)𝑐, and so

|P̃ | ≤ 2𝐿max (|A𝑑 | − 1)𝑐.

This finishes the proof. □

Reconstruction based on multiple rank-1 lattices

We now introduce an algorithm which guarantees an efficient reconstruction of
trigonometric polynomials based on multiple rank-1 lattices. This algorithm is es-
sentially [131, Algorithm 2].

Algorithm 15.5 (Computing reconstructions based on multiple rank-1 lattices)
Let A𝑑 ⊆ Z𝑑 be a finite frequency index set, and let 𝑝 be a trigonometric polynomial
with index set A𝑑 . Let P̃ = P̃ (𝒈1, 𝑁1, . . . , 𝒈𝐿 , 𝑁𝐿) be a multiple rank-1 lattice point
set obtained by Algorithm 15.2.

(1) For all 𝒉 ∈ A𝑑 initialize #𝒉 := 0 and 𝑝 P̃ (𝒉) := 0.
(2) For ℓ from 1 to 𝐿:

(2a) Determine (see (15.5)) the set

A𝑑,ℓ := {𝒉 ∈ A𝑑 : 𝒉 · 𝒈ℓ . 𝒉′ · 𝒈ℓ (mod 𝑁ℓ) ∀𝒉′ ∈ A𝑑 \ {𝒉}}.

(2b) For every 𝒉 ∈ A𝑑,ℓ :
Compute

𝑝P(𝒈ℓ ,𝑁ℓ) (𝒉) :=
1
𝑁ℓ

𝑁ℓ−1∑︁
𝑘=0

𝑝

({
𝑘

𝑁ℓ
𝒈ℓ

})
e−2𝜋i𝑘 (𝒉 ·𝒈ℓ)/𝑁ℓ ,

and set
𝑝 P̃ (𝒉) := 𝑝 P̃ (𝒉) + 𝑝P(𝒈ℓ ,𝑁ℓ) (𝒉)

and
#𝒉 := #𝒉 + 1.

End for.
(3) For every 𝒉 ∈ A𝑑 set

𝑝 P̃ (𝒉) :=
𝑝 P̃ (𝒉)

#𝒉
,

and the algorithm terminates.

15.1 Multiple Rank-1 Lattice Point Sets for Approximation in Korobov Spaces 497

Note that in Step (2b) of Algorithm 15.5 we have

𝑝P(𝒈ℓ ,𝑁ℓ) (𝒉) = 𝑝(𝒉)

for trigonometric polynomials 𝑝 with index set A𝑑,ℓ , for ℓ ∈ [𝐿].
Introducing, for each 𝒉 ∈ A𝑑 , the set

E𝒉, P̃ :=
{
ℓ ∈ [𝐿] : 𝒉 · 𝒈ℓ . 𝒉′ · 𝒈ℓ (mod 𝑁ℓ) ∀𝒉′ ∈ A𝑑 \ {𝒉}

}
,

the outputs 𝑝 P̃ (𝒉) of Algorithm 15.5 can be written in the form

𝑝 P̃ (𝒉) =
1

|E𝒉, P̃ |
∑︁

ℓ∈E𝒉,P̃

𝑝P(𝒈ℓ ,𝑁ℓ) (𝒉), (15.9)

where for ℓ ∈ [𝐿] and 𝒉 ∈ A𝑑 , 𝑝P(𝒈ℓ ,𝑁ℓ) (𝒉) denotes the approximation to 𝑝(𝒉) by
applying the rank-1 lattice rule based on P(𝒈ℓ , 𝑁ℓ). Note that |E𝒉, P̃ | is exactly the
final value of the counter #𝒉 in Algorithm 15.5, for 𝒉 ∈ A𝑑 . Note, furthermore, that
for a given 𝒉 ∈ A𝑑 the value of |E𝒉, P̃ | corresponds to the number of ℓ ∈ [𝐿] such
that 𝒉 ∈ A𝑑,ℓ . Consequently, Equation (15.9) precisely implies the reconstruction
property of P̃ for A𝑑 =

⋃𝐿
ℓ=1 A𝑑,ℓ .

The approximation algorithm based on reconstructing multiple rank-1 lattices

We can now make the approximation algorithm in Equation (15.2) more concrete,
namely in the following way. Similarly to the notation introduced above for trigono-
metric polynomials, we write, for 𝑓 ∈ Hkor,𝑑,𝛼,𝜸,

�̂�P(𝒈ℓ ,𝑁ℓ) (𝒉) :=
1
𝑁ℓ

𝑁ℓ−1∑︁
𝑘=0

𝑓

({
𝑘

𝑁ℓ
𝒈ℓ

})
e−2𝜋i𝑘 (𝒉 ·𝒈ℓ)/𝑁ℓ

and
�̂�P̃ (𝒉) :=

1
|E𝒉, P̃ |

∑︁
ℓ∈E𝒉,P̃

�̂�P(𝒈ℓ ,𝑁ℓ) (𝒉). (15.10)

In order to approximate 𝑓 ∈ Hkor,𝑑,𝛼,𝜸 we apply the algorithm

𝐴mult
A𝑑

(𝑓) (𝒙) :=
∑︁

𝒉∈A𝑑

©« 1
|E𝒉, P̃ |

∑︁
ℓ∈E𝒉,P̃

�̂�P(𝒈ℓ ,𝑁ℓ) (𝒉)
ª®¬ e2𝜋i𝒉 ·𝒙 (15.11)

for 𝒙 ∈ [0, 1)𝑑 .

498 15 Multiple Rank-1 Lattice Point Sets

15.2 Error Analysis

Let us now proceed to the error analysis of multiple rank-1 lattices, in particular those
found by Algorithm 15.2. Assume that we are given a finite index set A𝑑 ⊆ Z𝑑 , a
multiple rank-1 lattice point set P̃, and that a function 𝑓 ∈ Hkor,𝑑,𝛼,𝜸 is approximated
by the algorithm in (15.11). We would like to analyze the error

∥ 𝑓 − 𝐴mult
A𝑑

(𝑓)∥𝐿∞ .

Our analysis is based on writing

𝑓 − 𝐴mult
A𝑑

(𝑓) = 𝑓 − ΣA𝑑
(𝑓) + ΣA𝑑

(𝑓) − 𝐴mult
A𝑑

(𝑓),

where
ΣA𝑑

(𝑓) :=
∑︁

𝒉∈A𝑑

�̂� (𝒉) e2𝜋i𝒉 ·𝒙.

We then split the error into

• the truncation error ∥ 𝑓 − ΣA𝑑
(𝑓)∥𝐿∞ , and

• the so-called aliasing error ∥ΣA𝑑
(𝑓) − 𝐴mult

A𝑑
(𝑓)∥𝐿∞ ,

and analyze these separately.

Analyzing the aliasing error

The following lemma gives an estimate on the aliasing error.

Lemma 15.6 Let 𝑓 : [0, 1]𝑑 → R be such that
∑

𝒉∈Z𝑑 | �̂� (𝒉) | < ∞. Let A𝑑 ⊆ Z𝑑 ,
2 ≤ |A𝑑 | < ∞. Let 𝐴mult

A𝑑
be the approximation algorithm in (15.11). Then we haveΣA𝑑
(𝑓) − 𝐴mult

A𝑑
(𝑓)

𝐿∞

≤ 𝐿
∑︁

𝒉∈Z𝑑\A𝑑

| �̂� (𝒉) |.

Proof Let ℓ ∈ [𝐿]. For 𝑘 ∈ {0, 1, . . . , 𝑁ℓ − 1} we have

𝑓

({
𝑘

𝑁ℓ
𝒈ℓ

})
=

∑︁
𝒎∈Z𝑑

�̂� (𝒎) e2𝜋i𝑘𝒎·𝒈ℓ/𝑁ℓ .

Using the notation introduced above, we obtain

�̂�P(𝒈ℓ ,𝑁ℓ) (𝒉) =
1
𝑁ℓ

𝑁ℓ−1∑︁
𝑘=0

𝑓

({
𝑘

𝑁ℓ
𝒈ℓ

})
e−2𝜋i𝑘𝒉 ·𝒈ℓ/𝑁ℓ

=
1
𝑁ℓ

𝑁ℓ−1∑︁
𝑘=0

∑︁
𝒎∈Z𝑑

�̂� (𝒎) e2𝜋i𝑘 (𝒎−𝒉) ·𝒈ℓ/𝑁ℓ

15.2 Error Analysis 499

=
1
𝑁ℓ

𝑁ℓ−1∑︁
𝑘=0

∑︁
𝒎∈Z𝑑

�̂� (𝒎 + 𝒉) e2𝜋i𝑘𝒎·𝒈ℓ/𝑁ℓ

=
∑︁
𝒎∈Z𝑑

�̂� (𝒎 + 𝒉) 1
𝑁ℓ

𝑁ℓ−1∑︁
𝑘=0

e2𝜋i𝑘𝒎·𝒈ℓ/𝑁ℓ

=
∑︁
𝒎∈Z𝑑

𝒎·𝒈ℓ≡0 (mod 𝑁ℓ)

�̂� (𝒎 + 𝒉), (15.12)

where we used the character property of the P(𝒈ℓ , 𝑁ℓ) as stated in Remark 1.10.
Due to the fact that the reconstruction property of P̃ holds for A𝑑 =

⋃𝐿
ℓ=1 A𝑑,ℓ , we

have E𝒉, P̃ ≠ ∅. Using (15.12), �̂�P̃ (𝒉) can be written in the form

�̂�P̃ (𝒉) =
1

|E𝒉, P̃ |
∑︁

ℓ∈E𝒉,P̃

∑︁
𝒎∈Z𝑑

𝒎·𝒈ℓ≡0 (mod 𝑁ℓ)

�̂� (𝒎 + 𝒉)

= �̂� (𝒉) + 1
|E𝒉, P̃ |

∑︁
ℓ∈E𝒉,P̃

∑︁
𝒎∈Z𝑑\{0}

𝒎·𝒈ℓ≡0 (mod 𝑁ℓ)

�̂� (𝒎 + 𝒉).

This implies, for any 𝒙 ∈ [0, 1)𝑑 ,(
ΣA𝑑

(𝑓) − 𝐴mult
A𝑑

(𝑓)
)
(𝒙) =

∑︁
𝒉∈A𝑑

(
�̂� (𝒉) − �̂�P̃ (𝒉)

)
e2𝜋i𝒉 ·𝒙

= −
∑︁

𝒉∈A𝑑

1
|E𝒉, P̃ |

∑︁
ℓ∈E𝒉,P̃

∑︁
𝒎∈Z𝑑\{0}

𝒎·𝒈ℓ≡0 (mod 𝑁ℓ)

�̂� (𝒎 + 𝒉) e2𝜋i𝒉 ·𝒙.

Now, taking the 𝐿∞-norm, we obtainΣA𝑑
(𝑓) − 𝐴mult

A𝑑
(𝑓)

𝐿∞

≤
∑︁

𝒉∈A𝑑

1
|E𝒉, P̃ |

∑︁
ℓ∈E𝒉,P̃

∑︁
𝒎∈Z𝑑\{0}

𝒎·𝒈ℓ≡0 (mod 𝑁ℓ)

| �̂� (𝒎 + 𝒉) |

≤
𝐿∑︁
ℓ=1

∑︁
𝒉∈A𝑑,ℓ

1
|E𝒉, P̃ |

∑︁
𝒎∈Z𝑑\{0}

𝒎·𝒈ℓ≡0 (mod 𝑁ℓ)

| �̂� (𝒎 + 𝒉) |

≤
𝐿∑︁
ℓ=1

∑︁
𝒉∈A𝑑,ℓ

∑︁
𝒎∈Z𝑑\{0}

𝒎·𝒈ℓ≡0 (mod 𝑁ℓ)

| �̂� (𝒎 + 𝒉) |,

where, for the second inequality, we changed the order of summation over 𝒉 and ℓ,
exploiting the definition of the index sets A𝑑 , A𝑑,ℓ , and E𝒉, P̃ .

500 15 Multiple Rank-1 Lattice Point Sets

Consequently it suffices to show that, for every ℓ ∈ [𝐿], we have∑︁
𝒉∈A𝑑,ℓ

∑︁
𝒎∈Z𝑑\{0}

𝒎·𝒈ℓ≡0 (mod 𝑁ℓ)

| �̂� (𝒎 + 𝒉) | ≤
∑︁

𝒉∈Z𝑑\A𝑑

| �̂� (𝒉) | (15.13)

to finish the proof.
Fix ℓ ∈ [𝐿]. We are now going to show by contradiction that

𝒉 + 𝒎 ≠ 𝒉′ + 𝒎′ (15.14)

for all 𝒉 ∈ A𝑑,ℓ , all 𝒉′ ∈ A𝑑 \ {𝒉}, and all 𝒎,𝒎′ in the dual of P(𝒈ℓ , 𝑁ℓ).
Let us assume to the contrary that there exist 𝒉 ∈ A𝑑,ℓ , 𝒉′ ∈ A𝑑 \{𝒉}, and 𝒎,𝒎′

in the dual of P(𝒈ℓ , 𝑁ℓ) such that 𝒉+𝒎 = 𝒉′+𝒎′. This implies that 𝒉−𝒉′ = 𝒎′−𝒎,
and thus also

(𝒉 − 𝒉′) · 𝒈ℓ ≡ (𝒎′ − 𝒎) · 𝒈ℓ (mod 𝑁ℓ).

Note, however, that also 𝒎′ − 𝒎 is in the dual of P(𝒈ℓ , 𝑁ℓ), and so

(𝒉 − 𝒉′) · 𝒈ℓ ≡ 0 (mod 𝑁ℓ),

or, equivalently,
𝒉 · 𝒈ℓ ≡ 𝒉′ · 𝒈ℓ (mod 𝑁ℓ).

However, the latter equivalence contradicts the construction of A𝑑,ℓ , so (15.14) is
shown.

From (15.14), by setting 𝒎′ = 0, we obtain that 𝒉 + 𝒎 ∉ A𝑑 for any 𝒉 ∈ A𝑑,ℓ

and any 𝒎 in the dual of P(𝒈ℓ , 𝑁ℓ). Moreover, for 𝒉, 𝒉′ ∈ A𝑑,ℓ with 𝒉 ≠ 𝒉′ we
have 𝒉 · 𝒈ℓ . 𝒉′ · 𝒈ℓ (mod 𝑁ℓ), as A𝑑,ℓ ⊆ A𝑑 and the reconstruction property
holds.

Consequently, the sets{
𝒌 ∈ Z𝑑 \ {𝒉} : 𝒌 · 𝒈ℓ ≡ 𝒉 · 𝒈ℓ (mod 𝑁ℓ)

}
=

{
𝒎 + 𝒉 : 𝒎 ∈ Z𝑑 \ {0}, 𝒎 · 𝒈ℓ ≡ 0 (mod 𝑁ℓ)

}
for 𝒉 ∈ A𝑑,ℓ are pairwise disjoint, and they are all subsets of Z𝑑 \ A𝑑 . These
considerations imply (15.13), and we are done. □

Choosing the set A𝑑 of frequency indices

Next, we use a particular choice of the index set A𝑑 . In analogy to (13.1) we define

A𝑑,𝑀,1/2,𝜸 :=
{
𝒉 ∈ Z𝑑 : 𝑟1,𝜸 (𝒉) ≤ 𝑀

}
, (15.15)

15.2 Error Analysis 501

for a real 𝑀 ≥ 1, i.e., we consider an extension of the definition in (13.1) to the case
where 𝛼 = 1/2. It is no major restriction to assume that 𝑀 is chosen large enough
to guarantee 𝑀𝛾1/4

1 ≥ 1, which we shall do in this chapter for technical reasons. We
have the following lemma regarding the cardinality of A𝑑,𝑀,1/2,𝜸.

Lemma 15.7 Let 𝑑 ∈ N and let 𝑀 ≥ 1 be a real number. For A𝑑,𝑀,1/2,𝜸 as defined
in (15.15), and for any choice of 𝜏 > 1 it is true that

|A𝑑,𝑀,1/2,𝜸 | ≤ 𝑀 𝜏

𝑑∏
𝑗=1

(
1 + 2𝛾𝜏𝑗 𝜁 (𝜏)

)
.

Proof The proof works analogously to that of the fourth item in Lemma 13.1. □

The 𝐿∞-approximation error

We can now show the following theorem bounding the error of the algorithm 𝐴mult
A𝑑

for 𝐿∞-approximation.

Theorem 15.8 Let 𝛼, 𝜆 > 1/2, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights with 𝛾 𝑗 ∈
(0, 1] for 𝑗 ∈ N. Let 𝑓 ∈ Hkor,𝑑,𝛼+𝜆,𝜸. Let 𝑀 ≥ 1 be such that 𝑀𝛾1/4

1 ≥ 1, let A𝑑 =

A𝑑,𝑀,1/2,𝜸1/4 , and assume that P̃ = P̃ (𝒈1, 𝑁1, . . . , 𝒈𝐿 , 𝑁𝐿) has been constructed by
Algorithm 15.2 for A𝑑,𝑀,1/2,𝜸1/4 . Let the approximated Fourier coefficients �̂�P̃ (𝒉)
of 𝑓 be computed according to (15.10) for 𝒉 ∈ A𝑑,𝑀,1/2,𝜸1/4 . Then we have

 𝑓 − 𝐴mult
A𝑑

(𝑓)

𝐿∞

≤
2𝛼𝛾 (1−𝛼)/41 (𝐿 + 1)

𝑀𝛼
∥ 𝑓 ∥kor,𝑑,𝛼+𝜆,𝜸

𝑑∏
𝑗=1

(
1 + 2𝛾1/2

𝑗
𝜁 (2𝜆)

)1/2
.

Proof Throughout the proof, let A𝑑 = A𝑑,𝑀,1/2,𝜸1/4 . By the triangle inequality we
obviously have 𝑓 − 𝐴mult

A𝑑
(𝑓)

𝐿∞

≤
 𝑓 − ΣA𝑑

(𝑓)

𝐿∞

+
ΣA𝑑

(𝑓) − 𝐴mult
A𝑑

(𝑓)

𝐿∞
. (15.16)

Regarding the first term on the right-hand side of (15.16), which is the truncation
error, we have (

𝑓 − ΣA𝑑
(𝑓)

)
(𝒙) =

∑︁
𝒉∈Z𝑑\A𝑑

�̂� (𝒉) e2𝜋i𝒉 ·𝒙,

so 𝑓 − ΣA𝑑
(𝑓)

𝐿∞

≤
∑︁

𝒉∈Z𝑑\A𝑑

| �̂� (𝒉) |.

For the aliasing error, which is the second term on the right-hand side of (15.16), we
can directly apply Lemma 15.6, which yieldsΣA𝑑

(𝑓) − 𝐴mult
A𝑑

(𝑓)

𝐿∞

≤ 𝐿
∑︁

𝒉∈Z𝑑\A𝑑

| �̂� (𝒉) |.

502 15 Multiple Rank-1 Lattice Point Sets

Therefore, using (15.16), we obtain 𝑓 − 𝐴mult
A𝑑

(𝑓)

𝐿∞

≤ (𝐿 + 1)
∑︁

𝒉∈Z𝑑\A𝑑

| �̂� (𝒉) |. (15.17)

Thus it remains to show that the right-hand side of (15.17) satisfies the asserted
upper bound in the theorem. We have∑︁

𝒉∈Z𝑑\A𝑑

| �̂� (𝒉) | =
∑︁

𝒉∈Z𝑑\A𝑑

𝑟𝛼,𝜸1/4 (𝒉)
𝑟𝛼,𝜸1/4 (𝒉)

| �̂� (𝒉) |

≤
(

sup
𝒉∈Z𝑑\A𝑑

1
𝑟𝛼,𝜸1/4 (𝒉)

) ∑︁
𝒉∈Z𝑑\A𝑑

𝑟𝛼,𝜸1/4 (𝒉) | �̂� (𝒉) |

≤
(

sup
𝒉∈Z𝑑\A𝑑

1
𝑟𝛼,𝜸1/4 (𝒉)

) ∑︁
𝒉∈Z𝑑

𝑟𝛼,𝜸1/4 (𝒉) | �̂� (𝒉) |.

We study the two factors in the latter expression separately. Let us first consider

sup
𝒉∈Z𝑑\A𝑑

1
𝑟𝛼,𝜸1/4 (𝒉)

.

For 𝒉 ∈ Z𝑑 \ A𝑑 , we have, by definition, 𝑟1,𝜸1/4 (𝒉) > 𝑀 , and for �̃� ∈ A𝑑 we have
𝑟1,𝜸1/4 (�̃�) ≤ 𝑀 . Therefore, 𝑟1,𝜸1/4 (𝒉) ≥ 𝑟1,𝜸1/4 (�̃�) for 𝒉 ∈ Z𝑑 \A𝑑 and �̃� ∈ A𝑑 , and
thus also 𝑟𝛼,𝜸1/4 (𝒉) ≥ 𝑟𝛼,𝜸1/4 (�̃�), which implies

sup
𝒉∈Z𝑑\A𝑑

1
𝑟𝛼,𝜸1/4 (𝒉)

≤ 1
sup𝒉∈A𝑑

𝑟𝛼,𝜸1/4 (𝒉)
.

By definition of 𝑟𝛼,𝜸 (see (2.22)), we have

𝑟1,𝜸1/4 ((𝑘1, 0, . . . , 0︸ ︷︷ ︸
𝑑−1 times

)) = |𝑘1 |
𝛾

1/4
1

≤ 𝑀

if 𝑘1 = ±⌊𝑀𝛾1/4
1 ⌋, such that (𝑘1, 0, . . . , 0) ∈ A𝑑 , and we have

𝑟𝛼,𝜸1/4 ((𝑘1, 0, . . . , 0︸ ︷︷ ︸
𝑑−1 times

)) = |𝑘1 |𝛼

𝛾
1/4
1

=
(⌊𝑀𝛾1/4

1 ⌋)𝛼

𝛾
1/4
1

≥
𝛾
(𝛼−1)/4
1 𝑀𝛼

2𝛼
,

where we used that ⌊𝑥⌋ ≥ 𝑥/2 for 𝑥 ≥ 1. This yields

1
sup𝒉∈A𝑑

𝑟𝛼,𝜸1/4 (𝒉)
≤

2𝛼𝛾 (1−𝛼)/41
𝑀𝛼

.

15.2 Error Analysis 503

So we obtain ∑︁
𝒉∈Z𝑑\A𝑑

| �̂� (𝒉) | ≤
2𝛼𝛾 (1−𝛼)/41

𝑀𝛼

∑︁
𝒉∈Z𝑑

𝑟𝛼,𝜸1/4 (𝒉) | �̂� (𝒉) |. (15.18)

Finally, let us deal with ∑︁
𝒉∈Z𝑑

𝑟𝛼,𝜸1/4 (𝒉) | �̂� (𝒉) |.

For 𝜆 > 1/2 we have, using the Cauchy–Schwarz inequality,∑︁
𝒉∈Z𝑑

𝑟𝛼,𝜸1/4 (𝒉) | �̂� (𝒉) |

=
∑︁
𝒉∈Z𝑑

𝑟𝜆,𝜸1/4 (𝒉)
𝑟𝜆,𝜸1/4 (𝒉)

𝑟𝛼,𝜸1/4 (𝒉) | �̂� (𝒉) |

≤
(∑︁
𝒉∈Z𝑑

1
(𝑟𝜆,𝜸1/4 (𝒉))2

)1/2 (∑︁
𝒉∈Z𝑑

(𝑟𝛼,𝜸1/4 (𝒉)𝑟𝜆,𝜸1/4 (𝒉))2 | �̂� (𝒉) |2
)1/2

=

(∑︁
𝒉∈Z𝑑

1
𝑟2𝜆,𝜸1/2 (𝒉)

)1/2 (∑︁
𝒉∈Z𝑑

𝑟2(𝛼+𝜆) ,𝜸 (𝒉) | �̂� (𝒉) |2
)1/2

= ∥ 𝑓 ∥kor,𝑑,𝛼+𝜆,𝜸

𝑑∏
𝑗=1

(
1 + 𝛾1/2

𝑗
2𝜁 (2𝜆)

)1/2
.

Employing this estimate in (15.18) yields∑︁
𝒉∈Z𝑑\A𝑑

| �̂� (𝒉) | ≤
2𝛼𝛾 (1−𝛼)/41

𝑀𝛼
∥ 𝑓 ∥kor,𝑑,𝛼+𝜆,𝜸

𝑑∏
𝑗=1

(
1 + 𝛾1/2

𝑗
2𝜁 (2𝜆)

)1/2
,

and inserting into (15.17) then gives

 𝑓 − 𝐴mult
A𝑑

(𝑓)

𝐿∞

≤
2𝛼𝛾 (1−𝛼)/41 (𝐿 + 1)

𝑀𝛼
∥ 𝑓 ∥kor,𝑑,𝛼+𝜆,𝜸

𝑑∏
𝑗=1

(
1 + 𝛾1/2

𝑗
2𝜁 (2𝜆)

)1/2
.

This concludes the proof of the theorem. □

Let us now recall that 𝐿 is the number of single rank-1 lattices that are used
in a multiple rank-1 lattice P̃ = P̃ (𝑔1, 𝑁1, . . . , 𝑔𝐿 , 𝑁𝐿), and that 𝐿 ≤ 𝐿max in
Algorithm 15.2. If we assume that P̃ has been found by Algorithm 15.2, and that we
choose A𝑑 = A𝑑,𝑀,1/2,𝜸1/4 in that algorithm, we get

𝐿max ≤ 𝐶𝑐, 𝛿 log |A𝑑,𝑀,1/2,𝜸1/4 |,

504 15 Multiple Rank-1 Lattice Point Sets

where 𝐶𝑐, 𝛿 is a positive quantity depending only on the parameters 𝑐 and 𝛿 in
Algorithm 15.2. Due to Lemma 15.7, this implies that

𝐿max ≤ 𝐶𝑐, 𝛿
©«𝜏 log𝑀 +

𝑑∑︁
𝑗=1

log
(
1 + 2𝛾𝜏/4

𝑗
𝜁 (𝜏)

)ª®¬ (15.19)

for any 𝜏 > 1. Using Proposition 15.4 we know that under the technical condi-
tion 𝜂 ≥ max(𝑁A𝑑

, 4𝐿max log 𝐿max) the multiple rank-1 lattice point set found by
Algorithm 15.2 satisfies

𝑁 := |P̃ | ≤ 2𝐿max (|A𝑑,𝑀,1/2,𝜸1/4 | − 1)𝑐

≤ 2 𝑐 𝐶𝑐, 𝛿
©«𝜏 log𝑀 +

𝑑∑︁
𝑗=1

log
(
1 + 2𝛾𝜏/4

𝑗
𝜁 (𝜏)

)ª®¬𝑀 𝜏

𝑑∏
𝑗=1

(
1 + 2𝛾𝜏/4

𝑗
𝜁 (𝜏)

)
,

where we again used Lemma 15.7, and (15.19) for the second inequality. This implies
that for any choice of a small 𝜈 > 0, there is a real number 𝐶𝑐, 𝛿,𝜏,𝜈 , depending only
on 𝑐, 𝛿, 𝜏, and 𝜈 such that

𝑁 ≤ 𝐶𝑐, 𝛿,𝜏,𝜈 𝑀 𝜏+𝜈
𝑑∏
𝑗=1

(
1 + 2𝛾𝜏/4

𝑗
𝜁 (𝜏)

)1+𝜈
,

or equivalently,

1
𝑀

≤
𝐶

1/(𝜏+𝜈)
𝑐, 𝛿,𝜏,𝜈

𝑁1/(𝜏+𝜈)

𝑑∏
𝑗=1

(
1 + 2𝛾𝜏/4

𝑗
𝜁 (𝜏)

) (1+𝜈)/(𝜏+𝜈)
. (15.20)

Let us return to (15.19) in order to obtain an upper bound on 𝐿max and to get rid
of the log𝑀-term there. It follows from the proof of Lemma 13.1 that

|A𝑑,𝑀,1/2,𝜸1/4 | ≥ |A1,𝑀,1/2,𝜸1/4 | = 1 + 2⌊𝛾1/4
1 𝑀⌋,

which implies, again under the assumption that 𝛾1/4
1 𝑀 ≥ 1 (which implies

2⌊𝛾1/4
1 𝑀⌋ ≥ 𝛾1/4

1 𝑀) that

𝑀 ≤
|A𝑑,𝑀,1/2,𝜸1/4 | − 1

𝛾
1/4
1

.

Furthermore, if A𝑑 is chosen equal to A𝑑,𝑀,1/2,𝜸1/4 in Algorithm 15.2, then the
algorithm chooses the cardinalities 𝑁ℓ of the single rank-1 lattices P(𝒈ℓ , 𝑁ℓ), ℓ ∈
[𝐿], such that they are at least 𝑐(|A𝑑,𝑀,1/2,𝜸1/4 | − 1), where 𝑐 ∈ (1,∞) is chosen as
in Algorithm 15.2. This obviously implies 𝑁 ≥ |A𝑑,𝑀,1/2,𝜸1/4 | −1, and consequently

15.2 Error Analysis 505

𝑁

𝛾
1/4
1

≥
|A𝑑,𝑀,1/2,𝜸1/4 | − 1

𝛾
1/4
1

≥ 𝑀.

Plugging this inequality into (15.19) it follows that there is a positive real 𝐶𝑐, 𝛿,𝛾1

such that

𝐿 ≤ 𝐶𝑐, 𝛿,𝛾1𝜏 log 𝑁 + 𝐶𝑐, 𝛿
𝑑∑︁
𝑗=1

log
(
1 + 2𝛾𝜏/4

𝑗
𝜁 (𝜏)

)
, (15.21)

for any 𝜏 > 1.
Combining Equations (15.20) and (15.21) with the bound on the worst-case

approximation error in Theorem 15.8 leads to the estimate

err𝐿∞−app (Hkor,𝑑,𝛼+𝜆,𝜸, 𝐴
mult
A

𝑑,𝑀,1/2,𝜸1/4
)

≤
2𝛼𝛾 (1−𝛼)/41 𝐶

𝛼/(𝜏+𝜈)
𝑐, 𝛿,𝜏,𝜈

𝑁𝛼/(𝜏+𝜈)

𝑑∏
𝑗=1

(
1 + 2𝛾𝜏/4

𝑗
𝜁 (𝜏)

)𝛼(1+𝜈)/(𝜏+𝜈)
× ©«1 + 𝐶𝑐, 𝛿,𝛾1𝜏 log 𝑁 + 𝐶𝑐, 𝛿

𝑑∑︁
𝑗=1

log
(
1 + 2𝛾𝜏/4

𝑗
𝜁 (𝜏)

)ª®¬
×

𝑑∏
𝑗=1

(
1 + 2𝛾1/2

𝑗
𝜁 (2𝜆)

)1/2
.

Setting

𝐶𝑐, 𝛿,𝜏,𝜈,𝛾1 := 2𝛼𝛾 (1−𝛼)/41 𝐶
𝛼/(𝜏+𝜈)
𝑐, 𝛿,𝜏,𝜈

max(1, 𝐶𝑐, 𝛿,𝛾1𝜏, 𝐶𝑐, 𝛿), (15.22)

the main result of this chapter can be summarized as follows.

Corollary 15.9 Let 𝛼, 𝜆 > 1/2, 𝜏 > 1, 𝜈 > 0, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product
weights with 𝛾 𝑗 ∈ (0, 1] for 𝑗 ∈ N. Let 𝑀 ≥ 1 be such that 𝑀𝛾1/4

1 ≥ 1, let A𝑑 =

A𝑑,𝑀,1/2,𝜸1/4 , and assume that P̃ = P̃ (𝒈1, 𝑁1, . . . , 𝒈𝐿 , 𝑁𝐿) has been constructed
by Algorithm 15.2 for A𝑑,𝑀,1/2,𝜸1/4 . Let 𝑐 and 𝛿 be as in Algorithm 15.2, and let
𝑁 := |P̃ |. Then we have for the worst-case error of the algorithm 𝐴mult

A
𝑑,𝑀,1/2,𝜸1/4

in
Hkor,𝑑,𝛼+𝜆,𝜸 that

err𝐿∞−app (Hkor,𝑑,𝛼+𝜆,𝜸, 𝐴
mult
A

𝑑,𝑀,1/2,𝜸1/4
)

≤
𝐶𝑐, 𝛿,𝜏,𝜈,𝛾1

𝑁𝛼/(𝜏+𝜈)

𝑑∏
𝑗=1

(
1 + 2𝛾𝜏/4

𝑗
𝜁 (𝜏)

)𝛼(1+𝜈)/(𝜏+𝜈)
× ©«1 + log 𝑁 +

𝑑∑︁
𝑗=1

log
(
1 + 2𝛾𝜏/4

𝑗
𝜁 (𝜏)

)ª®¬
𝑑∏
𝑗=1

(
1 + 2𝛾1/2

𝑗
𝜁 (2𝜆)

)1/2
,

506 15 Multiple Rank-1 Lattice Point Sets

where 𝐶𝑐, 𝛿,𝜏,𝜈,𝛾1 is as in (15.22).

15.3 Comparison to Previous Results and Tractability

We recall that in Chapter 14 we obtained, by using an algorithm based on a single
rank-1 lattice point set (see Theorem 14.7) or by using a spline algorithm (see
Theorem 14.11), a convergence rate of order O(𝑁−𝛼(2𝛼−1)/(4𝛼−1)+𝜂). This estimate
holds for arbitrarily small 𝜂 > 0 in the Korobov space Hkor,𝑑,𝛼,𝜸, where we need to
assume �̃� > 1 in Theorem 14.7 and �̃� > 1/2 in Theorem 14.11.

Considering Corollary 15.9 and the Korobov space Hkor,𝑑,𝛼,𝜸, where now �̃� =

𝛼 + 𝜆 with 𝛼, 𝜆 > 1/2 (which implies �̃� > 1), we obtain a convergence rate that is
arbitrarily close to the order

O
(
𝑁−(𝛼−𝜆)/(𝜏+𝜈)

)
.

For 𝜂 > 0 choose 𝜂 > 0 such that 𝜂(1 + 𝛼/(1 + 𝜂)) = 𝜂, i.e., choose

𝜂 :=
−(1 + 𝛼 − 𝜂) +

√︁
(1 + 𝛼 − 𝜂)2 + 4𝜂
2

.

Put then 𝜆 = 1/2 + 𝜂, and choose 𝜏 > 1 and 𝜈 > 0 such that 𝜏 + 𝜈 = 1 + 𝜂. With a
few elementary computations, using the relations between the parameters involved,
we see that

�̃� − 𝜆
𝜏 + 𝜈 = �̃� − 1

2
− 𝜂.

This means that for the error of 𝐿∞-approximation in the Korobov space Hkor,𝑑,𝛼,𝜸
with �̃� > 1 we can get a convergence rate of order

O
(
𝑁−𝛼+1/2+𝜂

)
, (15.23)

where 𝜂 > 0 can be chosen arbitrarily small. This implies that Theorem 15.9, which is
based on multiple rank-1 lattice point sets, yields an advantage over Theorem 14.7,
which is based on single rank-1 lattice point sets, and Theorem 14.11, which is
based on splines and single rank-1 lattice point sets, when the smoothness parameter
exceeds 1/2, i.e., for all admissible choices of �̃�.

Remark 15.10 Since the 𝐿∞-norm dominates the 𝐿2-norm it follows that also the
𝐿2-approximation error satisfies the upper bound in Theorem 15.8. Hence, also the
𝐿2-approximation error in Hkor,𝑑,𝛼,𝜸 decays at a rate of order

O
(
𝑁−𝛼+1/2+𝜂

)
,

where 𝜂 > 0 can be chosen arbitrarily small. If �̃� > 1 this is an improvement over
the rate

15.3 Comparison to Previous Results and Tractability 507

O
(
𝑁−𝛼/2+𝜂

)
that we obtained in Theorem 13.6, based on single rank-1 lattice rules.

Tractability

Similarly to what we presented in the previous chapters, we can deduce an upper
bound from Corollary 15.9 that is independent of the dimension, if the weights decay
sufficiently fast.

Theorem 15.11 Let 𝛼, 𝜆 > 1/2, 𝜏 > 1, 𝜈 > 0, and let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product
weights with 𝛾 𝑗 ∈ (0, 1] for 𝑗 ∈ N. Furthermore, assume that the weight sequence
𝜸 satisfies

∞∑︁
𝑗=1
𝛾

min(1/2,𝜏/4)
𝑗

< ∞. (15.24)

Let 𝑀 ≥ 1 be such that 𝑀𝛾1/4
1 ≥ 1 and assume that P̃ = P̃ (𝒈1, 𝑁1, . . . , 𝒈𝐿 , 𝑁𝐿)

has been constructed by Algorithm 15.2 for A𝑑,𝑀,1/2,𝜸1/4 . Let 𝑐 and 𝛿 be as in
Algorithm 15.2. Then there exists a quantity𝐶𝛼,𝜆,𝜏,𝜈,𝜸,𝑐, 𝛿 > 0, which is independent
of 𝑁 := |P̃ | and of the dimension 𝑑 such that

err𝐿∞−app (Hkor,𝑑,𝛼+𝜆,𝜸, 𝐴
mult
A

𝑑,𝑀,1/2,𝜸1/4
) ≤

𝐶𝛼,𝜆,𝜏,𝜈,𝜸,𝑐, 𝛿

𝑁𝛼/(𝜏+𝜈)
. (15.25)

In particular, this means that the approximation algorithm 𝐴mult
A

𝑑,𝑀,1/2,𝜸1/4
yields strong

polynomial tractability of 𝐿∞-approximation in Hkor,𝑑,𝛼+𝜆,𝜸 with respect to the
absolute error criterion, and the same is true for 𝐿2-approximation in Hkor,𝑑,𝛼+𝜆,𝜸.

Proof The result follows by using Corollary 15.9 and by noting that, if the weight
sequence 𝜸 satisfies (15.24), we have

𝑑∏
𝑗=1

(
1 + 2𝛾𝜏/4

𝑗
𝜁 (𝜏)

)
≤

∞∏
𝑗=1

(
1 + 2𝛾𝜏/4

𝑗
𝜁 (𝜏)

)
< ∞,

𝑑∑︁
𝑗=1

log
(
1 + 2𝛾𝜏/4

𝑗
𝜁 (𝜏)

)
≤

∞∑︁
𝑗=1

log
(
1 + 2𝛾𝜏/4

𝑗
𝜁 (𝜏)

)
< ∞,

and
𝑑∏
𝑗=1

(
1 + 2𝛾1/2

𝑗
𝜁 (2𝜆)

)
≤

∞∏
𝑗=1

(
1 + 2𝛾1/2

𝑗
𝜁 (2𝜆)

)
< ∞,

which can be shown using exactly the same methods that we have used in previous
chapters. This proves (15.25).

508 15 Multiple Rank-1 Lattice Point Sets

Let now 𝜀 ∈ (0, 1). Then 𝑁 ≥ (𝐶𝛼,𝜆,𝜏,𝜈,𝜸,𝑐, 𝛿 𝜀−1) (𝜏+𝜈)/𝛼, implies

err𝐿∞−app (Hkor,𝑑,𝛼+𝜆,𝜸, 𝐴
mult
A

𝑑,𝑀,1/2,𝜸1/4
) ≤ 𝜀.

This in turn shows that the information complexity 𝑁𝐿∞−app (𝜀, 𝑑,Λstd) is bounded
uniformly in 𝑑 by (𝐶𝛼,𝜆,𝜏,𝜈,𝜸,𝑐, 𝛿 𝜀−1)1/𝛼. Therefore we have strong polynomial
tractability.

Since strong polynomial tractability for 𝐿∞-approximation with respect to the
absolute error criterion implies strong polynomial tractability for 𝐿2-approximation,
it is clear that also the statement on 𝐿2-approximation in the theorem holds true. □

Remark 15.12 Further results on polynomial and weak tractability of 𝐿∞- and 𝐿2-
approximation using multiple rank-1 lattice point sets can be derived in a similar
manner, as it was done in previous chapters.

Notes and Remarks

In this chapter, we have mostly followed the paper [131] in outlining the results on
multiple rank-1 lattice point sets for 𝐿∞-approximation. These point sets were also
dealt with in the earlier papers [127, 128]. In particular, in [128], the reader can
find further technical details regarding Algorithm 15.2. We remark that the results
in these papers are presented for a more general family of function spaces than the
Korobov space. On the other hand, the setting in [131] does not include weights 𝜸,
which we included here to be able to keep track of the influence of the number of
variables, 𝑑, and to obtain tractability results.

The best possible convergence rate for 𝐿∞-approximation in the Korobov space
Hkor,𝑑,𝛼,𝜸 is O(𝑁−𝛼+1/2 (log 𝑁) (𝑑−1)𝛼), see [23, Theorem 6.10], and hence the rate
in (15.23) that is obtained from Corollary 15.9 is almost best possible.

Chapter 16
Fast QMC Matrix-Vector Multiplication

In this chapter we discuss the approximation of integrals of the form∫
[0,1]𝑑

𝑓 (𝒙𝐴) d𝒙, (16.1)

where 𝐴 is a 𝑑 × 𝑡 matrix with entries from R. Using a lattice rule with integration
nodes 𝒙0, 𝒙1, . . . , 𝒙𝑁−1, we can approximate this type of integral by

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒙𝑘𝐴). (16.2)

Integrals of the form (16.1) appear in practical applications, as for example in
the study of partial differential equations (PDEs) with random coefficients (see
Appendix A). There the main cost of approximating the integral (16.1) is computing
the vector-matrix products 𝒙0𝐴, 𝒙1𝐴, . . . , 𝒙𝑁−1𝐴.

Here we present an efficient way of computing such vector-matrix products, which
is essentially based on ideas presented in Section 3.4 and that works in particular
for node sets with a lattice structure. The presented approach is advantageous if 𝑁
is significantly smaller than 2𝑑 (say 𝑁 ≈ 𝑑𝜅 for some 𝜅 > 0). In the context of PDEs
with random coefficients this is often naturally satisfied. Or if 𝑑 is large, say 𝑑 > 100,
then 2𝑑 > 2100 ≈ 1030, so it is not possible to use 1030 points and hence 𝑁 ≪ 2𝑑 by
virtue of limitations of current computers.

16.1 The General Idea

In some examples where we encounter the problem described above, it is possible
to modify the matrix 𝐴 (and consequently the integrand 𝑓) to ensure that 𝐴 has a
certain structure (e.g., circulant, Toeplitz, tridiagonal, etc.), which can be used to

509© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,
https://doi.org/10.1007/978-3-031-09951-9_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-09951-9_16&domain=pdf

510 16 Fast QMC Matrix-Vector Multiplication

speed up the computation of 𝒙𝑘𝐴 for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. Our goal here is to
design a method based on lattice point sets that makes a modification of the matrix
𝐴 unnecessary.

The idea of this approach, called the fast QMC matrix-vector product, is the
following. We introduce the 𝑁 × 𝑑 matrix

𝑋 :=
©«

𝒙0
𝒙1
...

𝒙𝑁−1

ª®®®®¬
(16.3)

and would like to have a fast method to compute, for the 𝑑 × 𝑡 matrix 𝐴,

𝑋𝐴 =: 𝐵 =

©«
𝒃0
𝒃1
...

𝒃𝑁−1

ª®®®®¬
∈ R𝑁×𝑡 ,

where 𝒃0, 𝒃1, . . . , 𝒃𝑁−1 ∈ R𝑡 are the row vectors of the matrix 𝐵. In order to compute
(16.2), we first compute the matrix-matrix product 𝑋𝐴 = 𝐵, store the matrix 𝐵, and
then evaluate

1
𝑁

𝑁−1∑︁
𝑘=0

𝑓 (𝒃𝑘). (16.4)

Storing the matrix 𝐵 requires O(𝑁𝑡) storage. In general, the computation of 𝑋𝐴
requires O(𝑑 𝑁 𝑡) operations, and the computation of the quadrature sum in (16.4)
requires O(𝑁) operations. In the following we will construct quadrature points
𝒙0, 𝒙1, . . . , 𝒙𝑁−1 for which the matrix 𝑋 permits a matrix-vector multiplication 𝑋𝒂 in
O(𝑁 log 𝑁) operations, where 𝒂 can be any column of the matrix 𝐴. The computation
of 𝑋𝐴 then reduces to O(𝑡 𝑁 log 𝑁) operations, instead of O(𝑑 𝑁 𝑡) operations for
the straightforward implementation. This leads to a significant speedup provided that
𝑁 is much smaller than 2𝑑 .

We may refer to the matrix 𝑋 in (16.3) as the “QMC matrix”. We are interested
in a fast method for computing 𝑋𝒂, i.e., a fast method to compute the product of the
QMC matrix 𝑋 with a vector 𝒂, which motivates why we refer to the method as “fast
QMC matrix-vector multiplication”.

The basic idea of the proposed approach is to find quadrature point sets
{𝒙0, 𝒙1, . . . , 𝒙𝑁−1} in R𝑑 with a specific ordering such that the truncated QMC
matrix

𝑋 ′ :=
©«

𝒙1
...

𝒙𝑁−1

ª®®¬ ∈ R(𝑁−1)×𝑑

has a factorization of the form
𝑋 ′ = 𝑍𝑃,

16.2 Fast QMC Matrix-Vector Multiplication for Lattice Point Sets 511

where 𝑍 ∈ R(𝑁−1)×(𝑁−1) is a circulant matrix and 𝑃 ∈ {0, 1} (𝑁−1)×𝑑 is a matrix
in which each column has at most one value which is 1, with the remaining entries
being 0. The special structure of 𝑃 means that, for a given column vector 𝒂, the
column vector 𝒂′ = 𝑃𝒂 can be obtained in at most O(𝑁) operations, and the matrix-
vector multiplication 𝑍𝒂′ can be computed in O(𝑁 log 𝑁) operations using FFT.
The vector 𝒙0 is separated out because many QMC methods have a vector 𝒙0 for
which all components are equal. Then, the computation of 𝒙0𝒂 requires at most
𝑑 − 1 additions and one multiplication. Indeed, in many instances of common QMC
methods, as for example lattice rules, we even have 𝒙0 = (0, . . . , 0), such that no
extra computation is necessary.

In Sections 16.2 and 16.3, respectively, we will consider two important classes
of QMC point sets whose structure facilitates the use of the presently proposed
acceleration, namely

• (rank-1) lattice point sets, and
• the multi-set union of all Korobov lattice point sets (which is essentially one class

of Korobov’s 𝑝-sets as introduced in Definition 10.1).

16.2 Fast QMC Matrix-Vector Multiplication for Lattice Point
Sets

Let us first explain the fast QMC matrix-vector multiplication for lattice point sets.
We apply the main idea of the fast CBC construction of the generating vector 𝒈 of
(rank-1) lattice rules (see Section 3.4) to the matrix-vector multiplication 𝑋𝒂. For
the sake of simplicity, we again confine the exposition to cases where the number of
points 𝑁 is prime. Based on the presently developed ideas, the general case can be
handled analogously with the method of Nuyens and Cools [215].

Let 𝑞 be a primitive root modulo 𝑁 , i.e., we have

{𝑞 𝑘 (mod 𝑁) : 𝑘 ∈ {0, 1, . . . , 𝑁 − 2}} = {1, 2, . . . , 𝑁 − 1} = 𝐺𝜑1 (𝑁).

As is well known, 𝑞𝑁−1 ≡ 𝑞0 ≡ 1 (mod 𝑁). Moreover, the multiplicative inverse
of 𝑞, denoted by 𝑞−1 ∈ 𝐺𝜑1 (𝑁), is also a primitive root modulo 𝑁 . We write each
component of the generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑) ∈ 𝐺𝜑𝑑 (𝑁) as

𝑔 𝑗 ≡ 𝑞𝜈 𝑗−1 (mod 𝑁), where 𝜈 𝑗 ∈ {1, 2, . . . , 𝑁 − 1}.

Note that the fast CBC algorithm explained in Section 3.4 for constructing the
generating vector computes the values 𝜈 𝑗 as a by-product, and thus no additional
computation is needed to obtain the 𝜈 𝑗 if 𝒈 has been found by this construction.

Since the ordering of the QMC points does not affect the quadrature sum, we
can specify a particular (unconventional) ordering of the nodes of a rank-1 lattice
rule, which permits a fast QMC matrix-vector multiplication. Note that with 𝑘

also 𝑞−(𝑘−1) runs through the whole set 𝐺𝜑1 (𝑁). We put 𝒙0 := (0, . . . , 0), and for

512 16 Fast QMC Matrix-Vector Multiplication

𝑘 ∈ {1, 2, . . . , 𝑁 − 1} we define

𝒙𝑘 :=
({
𝑞−(𝑘−1)𝑔1

𝑁

}
,

{
𝑞−(𝑘−1)𝑔2

𝑁

}
, . . . ,

{
𝑞−(𝑘−1)𝑔𝑑

𝑁

})
=

({
𝑞−(𝑘−1)𝑞𝜈1−1

𝑁

}
,

{
𝑞−(𝑘−1)𝑞𝜈2−1

𝑁

}
, . . . ,

{
𝑞−(𝑘−1)𝑞𝜈𝑑−1

𝑁

})
=

({
𝑞𝜈1−𝑘

𝑁

}
,

{
𝑞𝜈2−𝑘

𝑁

}
, . . . ,

{
𝑞𝜈𝑑−𝑘

𝑁

})
.

In essence, we have changed the ordering by substituting the conventional index 𝑘
with 𝑞−(𝑘−1) and replacing each generating vector component 𝑔 𝑗 by 𝑞𝜈 𝑗−1.

This method not only works for lattice point sets, but also for transformed lattice
point sets, where each component of each point has been transformed using the same
mapping. In this case, the quadrature points are given by

𝒚𝑘 = 𝜓(𝒙𝑘)
= (𝜓(𝑥𝑘,1), 𝜓(𝑥𝑘,2), . . . , 𝜓(𝑥𝑘,𝑑)) for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1},

where we apply the same univariate transformation 𝜓 : [0, 1] → R to every com-
ponent of every point 𝒙𝑘 = (𝑥𝑘,1, 𝑥𝑘,2, . . . , 𝑥𝑘,𝑑). One example of such a trans-
formation is 𝜓 = Φ−1, the inverse of the cumulative normal distribution function,
which maps the points from (0, 1) to R. Another example is when 𝜓 is given by
𝜓(𝑥) = 𝜙(𝑥) = 1− |2𝑥−1| for 𝑥 ∈ [0, 1], which is the tent transformation; results for
lattice rules usually apply to periodic functions, and applying the tent transformation
yields similar results for nonperiodic functions, see Chapter 7. The case where 𝜓 is
the identity mapping is included as a special case.

We define the 𝑁 × 𝑑 matrix

𝑌 :=
©«

𝒚0
𝒚1
...

𝒚𝑁−1

ª®®®®¬
and discuss the multiplication of 𝑌 with a column vector 𝒂 ∈ R𝑑 . Since 𝒚0 =

(𝜓(0), 𝜓(0), . . . , 𝜓(0)) we have

𝒚0𝒂 = 𝜓(0)
𝑑∑︁
𝑗=1
𝑎 𝑗 .

In particular, if 𝜓 is the identity mapping, then 𝒚0𝒂 = 0. Thus the first component
of 𝑌 𝒂 can be computed using at most 𝑑 − 1 additions and one multiplication. We
therefore disregard the first row of𝑌 and consider the “remaining” (𝑁−1) ×𝑑 matrix

16.2 Fast QMC Matrix-Vector Multiplication for Lattice Point Sets 513

𝑌 ′ =
©«

𝒚1
...

𝒚𝑁−1

ª®®¬ .
In the following we show that 𝑌 ′ can be written as the product of a circulant matrix
𝑍 and a matrix 𝑃 in which 𝑁 − 1 entries are 1 and the remaining entries are 0.

Recall that 𝑞 is a primitive root modulo 𝑁 . For 𝑘 ∈ Z let

𝑧𝑘 := 𝜓
({
𝑞𝑘

𝑁

})
.

Then we have 𝑧𝑘 = 𝑧𝑘+ℓ (𝑁−1) for all ℓ ∈ Z. Define the circulant (𝑁 − 1) × (𝑁 − 1)
matrix

𝑍 =

©«

𝑧0 𝑧1 𝑧2 . . . 𝑧𝑁−3 𝑧𝑁−2

𝑧𝑁−2 𝑧0 𝑧1
. . .

. . . 𝑧𝑁−3

𝑧𝑁−3 𝑧𝑁−2 𝑧0
. . .

. . .
...

...
. . .

. . .
. . .

. . .
...

𝑧2
. . .

. . .
. . . 𝑧0 𝑧1

𝑧1 𝑧2 𝑧𝑁−2 𝑧0

ª®®®®®®®®®®®¬
,

and the (𝑁 − 1) × 𝑑 matrix 𝑃 = (𝑝𝑘, 𝑗)𝑘∈{1,2,...,𝑁−1}, 𝑗∈[𝑑] over {0, 1} by

𝑝𝑘, 𝑗 =

{
1 if 𝑘 = 𝜈 𝑗 ,

0 otherwise.

Each column of the matrix 𝑃 contains exactly one entry equal to 1, with the remaining
elements being 0. It is now elementary to check that

𝑌 ′ = 𝑍𝑃. (16.5)

Note that the matrix 𝑍 directly corresponds to the matrix 𝐶𝑁−1 in (3.21), used in the
fast CBC algorithm in Section 3.4. In effect, the matrix 𝑃 specifies which columns
of 𝑍 to select (namely, the 𝜈1-th, the 𝜈2-th, . . . , and the 𝜈𝑑-th) to recover 𝑌 ′.

Let 𝒂 ∈ R𝑑 be an arbitrary column vector. Then 𝒂′ = 𝑃𝒂 can be obtained in O(𝑁)
operations due to the special structure of 𝑃, and the matrix-vector multiplication 𝑍𝒂′
can be performed in O(𝑁 log 𝑁) operations using FFT (see Section 3.4) since 𝑍 is
circulant. Thus 𝑌 ′𝒂 can be computed in O(𝑁 log 𝑁) operations, and so the matrix-
vector multiplication 𝑋𝒂 can be carried out using O(𝑁 log 𝑁) operations and at most
𝑑 − 1 additions.

Further, if one wants to store the transformed point set, i.e., the matrix 𝑌 , one can
simply store the primitive root 𝑞 and the 𝑑 numbers 𝜈1, . . . , 𝜈𝑑 .

We finish this section with a simple example to illustrate the idea presented above.

514 16 Fast QMC Matrix-Vector Multiplication

Example 16.1 Let 𝑑 = 3, 𝑁 = 7, and (𝑔1, 𝑔2, 𝑔3) = (1, 3, 6). A primitive root
modulo 7 is 𝑞 = 5, with multiplicative inverse 𝑞−1 = 3, since 5 ·3 = 15 ≡ 1 (mod 7).
We have

𝑔1 = 1 ≡ 51−1 (mod 7), and hence 𝜈1 = 1,

𝑔2 = 3 ≡ 56−1 (mod 7), and hence 𝜈2 = 6,

𝑔3 = 6 ≡ 54−1 (mod 7), and hence 𝜈3 = 4.

The conventional ordering of the points and the new ordering are

(0, 0, 0),

(1
7 ,

3
7 ,

6
7),

(2
7 ,

6
7 ,

5
7),

(3
7 ,

2
7 ,

4
7),

(4
7 ,

5
7 ,

3
7),

(5
7 ,

1
7 ,

2
7),

(6
7 ,

4
7 ,

1
7),

versus

𝒙0 = (0, 0, 0),

𝒙1 = ({ 51−1

7 }, { 56−1

7 }, { 54−1

7 }) = (1
7 ,

3
7 ,

6
7),

𝒙2 = ({ 51−2

7 }, { 56−2

7 }, { 54−2

7 }) = (3
7 ,

2
7 ,

4
7),

𝒙3 = ({ 51−3

7 }, { 56−3

7 }, { 54−3

7 }) = (2
7 ,

6
7 ,

5
7),

𝒙4 = ({ 51−4

7 }, { 56−4

7 }, { 54−4

7 }) = (6
7 ,

4
7 ,

1
7),

𝒙5 = ({ 51−5

7 }, { 56−5

7 }, { 54−5

7 }) = (4
7 ,

5
7 ,

3
7),

𝒙6 = ({ 51−6

7 }, { 56−6

7 }, { 54−6

7 }) = (5
7 ,

1
7 ,

2
7).

It is easy to see that indeed

©«

𝜓(𝒙1)
𝜓(𝒙2)
𝜓(𝒙3)
𝜓(𝒙4)
𝜓(𝒙5)
𝜓(𝒙6)

ª®®®®®®®®®®¬︸ ︷︷ ︸
𝑌 ′

=

©«

𝜓(1
7) 𝜓(

5
7) 𝜓(

4
7) 𝜓(

6
7) 𝜓(

2
7) 𝜓(

3
7)

𝜓(3
7) 𝜓(

1
7) 𝜓(

5
7) 𝜓(

4
7) 𝜓(

6
7) 𝜓(

2
7)

𝜓(2
7) 𝜓(

3
7) 𝜓(

1
7) 𝜓(

5
7) 𝜓(

4
7) 𝜓(

6
7)

𝜓(6
7) 𝜓(

2
7) 𝜓(

3
7) 𝜓(

1
7) 𝜓(

5
7) 𝜓(

4
7)

𝜓(4
7) 𝜓(

6
7) 𝜓(

2
7) 𝜓(

3
7) 𝜓(

1
7) 𝜓(

5
7)

𝜓(5
7) 𝜓(

4
7) 𝜓(

6
7) 𝜓(

2
7) 𝜓(

3
7) 𝜓(

1
7)

ª®®®®®®®®®®¬︸ ︷︷ ︸
𝑍

©«

1 0 0
0 0 0
0 0 0
0 0 1
0 0 0
0 1 0

ª®®®®®®®®®®¬︸ ︷︷ ︸
𝑃

.

The matrix 𝑃 specifies that we select the first, the sixth, and the fourth columns of
𝑍 , as indicated by the values of 𝜈1, 𝜈2, and 𝜈3, to recover 𝑌 ′.

Remark 16.2 The method presented here does not work when we apply general
randomization techniques such as shifting of lattice rules (see Section 7.1). This is
because the corresponding transformation 𝜓 in the mapping 𝒚𝑘 = 𝜓(𝒙𝑘) fails to be
the same mapping in all coordinate directions. If we were to restrict all random shifts
to be of the form 𝚫 = (Δ, . . . ,Δ) ∈ [0, 1]𝑑 , then the method would work.

16.3 Fast QMC Matrix-Vector Multiplication for a Special Case of Korobov’s 𝑝-Sets 515

16.3 Fast QMC Matrix-Vector Multiplication for a Special Case
of Korobov’s 𝒑-Sets

The ideas presented above can also be applied to the (in comparison to Chapter 10,
slightly modified) 𝑝-set consisting of the elements

𝒙𝑔,𝑘 =

({
𝑘

𝑝

}
,

{
𝑔𝑘

𝑝

}
, . . . ,

{
𝑔𝑑−1𝑘

𝑝

})
for 𝑔, 𝑘 ∈ {1, 2, . . . , 𝑝 − 1},

where 𝑝 is a prime number. The number of points in this 𝑝-set is 𝑁 = (𝑝−1)2, and it
is essentially the union of all Korobov lattice point sets for given 𝑝 (see Remark 10.2).
Note that in the definition of the 𝑝-set R𝑝2 ,𝑑 in Definition 10.1 we also included the
cases 𝑘 = 0 or 𝑔 = 0, or both 𝑘 = 𝑔 = 0, but these only yield the zero vector, which
is why we do not consider them here.

We now specify a particular ordering of the points 𝒙𝑔,𝑘 to allow for fast matrix-
vector multiplications. Let again 𝑞 be a primitive root modulo 𝑝. In a similar manner
as above, we replace the index 𝑘 in the conventional ordering by 𝑞−(𝑘−1) , and the
index 𝑔 by 𝑞𝑔−1. That is, for 𝑔, 𝑘 ∈ {1, 2, . . . , 𝑝 − 1}, we define

𝒙𝑔,𝑘 :=
({
𝑞−(𝑘−1)𝑞0(𝑔−1)

𝑝

}
,

{
𝑞−(𝑘−1)𝑞1(𝑔−1)

𝑝

}
, . . . ,

{
𝑞−(𝑘−1)𝑞 (𝑑−1) (𝑔−1)

𝑝

})
=

({
𝑞𝜈𝑔,1−𝑘

𝑝

}
,

{
𝑞𝜈𝑔,2−𝑘

𝑝

}
, . . . ,

{
𝑞𝜈𝑔,𝑑−𝑘

𝑝

})
,

with
𝜈𝑔, 𝑗 = (𝑗 − 1) (𝑔 − 1) + 1 (mod 𝑝 − 1) for 𝑗 ∈ [𝑑].

We also define
𝒚𝑔,𝑘 := 𝜓(𝒙𝑔,𝑘)

for a given transformation 𝜓 : [0, 1] → R that is applied component-wise to the
points 𝒙𝑔,𝑘 .

Finally we define the 𝑁 × 𝑑 matrix

𝑌 ′ :=
©«
𝑌 ′

1
𝑌 ′

2
...

𝑌 ′
𝑝−1

ª®®®®¬
with 𝑌 ′

𝑔 :=
©«

𝒚𝑔,1
𝒚𝑔,2
...

𝒚𝑔,𝑝−1

ª®®®®¬
for 𝑔 ∈ {1, 2, . . . , 𝑝 − 1}, (16.6)

where we note that 𝑁 = (𝑝 − 1)2.
For the matrices 𝑌 ′

𝑔 we can apply the method discussed in Section 16.2 to write
them as 𝑌 ′

𝑔 = 𝑍𝑃𝑔, using the values of 𝜈𝑔,1, . . . , 𝜈𝑔,𝑑 , so that a matrix-vector
multiplication for a single instance 𝑌 ′

𝑔𝒂, for 𝒂 ∈ R𝑑 , can be computed in at most

516 16 Fast QMC Matrix-Vector Multiplication

O(𝑝 log 𝑝) operations. This has to be done for all 𝑔 ∈ {1, 2, . . . , 𝑝 − 1}, i.e., 𝑝 −
1 times. Thus one matrix-vector product for the matrix 𝑌 ′ can be evaluated in
O(𝑁 log 𝑁) operations (recall again that 𝑁 = (𝑝 − 1)2).

16.4 Applications

In this section, we present some concrete applications of the fast QMC matrix-vector
product multiplication.

Generation of normally distributed points with general covariance matrix

In many applications one requires realizations of random variables in R𝑑 which are
normally distributed according to N(𝝁, Σ) with mean 𝝁 = (𝜇1, 𝜇2, . . . , 𝜇𝑑) and
covariance matrix Σ ∈ R𝑑×𝑑 . An algorithm to generate such random variables is
described for instance in [114, Section 11.1.6] and works as follows.

Let 𝐴 ∈ R𝑑×𝑑 be such that 𝐴⊤𝐴 = Σ; for example, 𝐴 can be the up-
per triangular matrix in the Cholesky decomposition of Σ. To generate a point
(𝑍1, 𝑍2, . . . , 𝑍𝑑) ∼ N (𝝁, Σ), one generates i.i.d. standard normal random vari-
ables 𝑌1, 𝑌2, . . . , 𝑌𝑑 ∼ N(0, 1) with mean 0 and variance 1 and then computes
(𝑍1, 𝑍2, . . . , 𝑍𝑑) = (𝑌1, 𝑌2, . . . , 𝑌𝑑)𝐴 + (𝜇1, 𝜇2, . . . , 𝜇𝑑).

This procedure can for instance be implemented in the following way using
deterministic QMC point sets. Let {𝒙0, 𝒙1, . . . , 𝒙𝑁−1} be a lattice point set in [0, 1)𝑑 .
Let Φ−1 be the inverse of the cumulative standard normal distribution function. Set

𝒚𝑘 = Φ−1
(
𝒙𝑘 +

1
2𝑁

1
)

for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1},

where 1 = (1, . . . , 1) is a vector of length 𝑑 containing only ones, and where Φ−1 is
applied component-wise, and let furthermore

𝒛𝑘 = 𝒚𝑘𝐴 + 𝝁 for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}.

Note that we do not need to assume any structure in the matrix 𝐴, but we can directly
apply the methods outlined above.

Partial differential equations with “uniform” random coefficients

The fast QMC matrix-vector multiplication can also be used in the study of PDEs
with random coefficients. We first discuss the case of uniform random coefficients
outlined in the Appendix in Section A.1. We use notation as in that section.

16.4 Applications 517

The three sources of errors, namely the truncation error, the finite element error,
and the quadrature error, are independent of each other but need to be balanced to
reduce the overall error. For instance, in the case that

∞∑︁
𝑗=1

∥𝜓 𝑗 ∥2/3
𝐿∞ (𝐷) < ∞, (16.7)

and that the representer 𝑔 of the linear functional𝐺 is in 𝐿2 (𝐷), then for a continuous,
piecewise linear finite element discretization of𝐷 on a quasi-uniform mesh we should
choose

𝑑 ≍ 𝑀2/𝑠 ≍ 𝑁, (16.8)

where 𝑁 is the number of samples, 𝑑 is the truncation dimension, 𝑠 is the dimension
of the domain 𝐷, and 𝑀 is the resolution of the employed piecewise linear finite
elements, and where ≍ indicates that the terms should be of the same order of
magnitude. This can be deduced in the following way. For 𝛽 𝑗 = ∥𝜓 𝑗 ∥𝐿∞ (𝐷)/𝑎min
(see (A.18)), we have from (16.7) and (A.19) that 𝑝 = 2/3. To reduce the overall
error (A.22), we need to balance the truncation error (A.23) of order 𝑑−2(1/𝑝−1) , the
finite element error (A.24) of order 𝑀−2/𝑠 and the integration error (A.25) of order
𝑁−(1−𝛿) for any 𝛿 > 0. (We slightly cheat here by replacing 𝑁−(1−𝛿) for any 𝛿 > 0
with 𝑁−1 for the sake of simplifying the discussion.) In general we have 𝑁 ≍ 𝑑𝜅 for
some small 𝜅 > 0 (i.e., 𝑁 ≪ 2𝑑). Thus the fast QMC matrix-vector multiplication
can be applied in this scenario.

In the standard approach, one defines, for 𝑗 ∈ [𝑑], the symmetric matrices
𝐴 𝑗 := (𝑎 𝑗 ,ℓ,𝑚)ℓ,𝑚∈{1,2,...,𝑀 }, and puts

𝐵(𝒚𝑘) := 𝐴0 +
𝑑∑︁
𝑗=1

𝑦𝑘, 𝑗 𝐴 𝑗 for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}.

Note that the 𝐴 𝑗 are usually sparse, with only O(𝑀) nonzero entries in the same
position for each 𝑗 ∈ [𝑑], depending only on the relative supports of the basis
functions 𝜙ℓ , which are thus in particular independent of 𝑗 . The cost of computing
𝐵(𝒚𝑘) for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1} is therefore O(𝑑 𝑀 𝑁) operations.

The fast QMC matrix-vector approach is implemented as follows. Let

𝑌 =

©«
𝒚0
𝒚1
...

𝒚𝑁−1

ª®®®®¬
be the 𝑁 × 𝑑 matrix whose rows are the quadrature points of the QMC rule, and let
𝒂ℓ,𝑚 = (𝑎1,ℓ,𝑚, . . . , 𝑎𝑑,ℓ,𝑚)⊤. Then compute

𝒃ℓ,𝑚 = (𝑎0,ℓ,𝑚, . . . , 𝑎0,ℓ,𝑚)⊤ + 𝑌 𝒂ℓ,𝑚 for all ℓ, 𝑚 ∈ {1, 2, . . . , 𝑀}, (16.9)

518 16 Fast QMC Matrix-Vector Multiplication

where 𝒃ℓ,𝑚 = (𝑏0,ℓ,𝑚, . . . , 𝑏𝑁−1,ℓ,𝑚)⊤, and where each matrix-vector multiplication
𝑌 𝒂ℓ,𝑚 is done using the fast QMC matrix-vector multiplication. Since only O(𝑀)
vectors 𝒂ℓ,𝑚 are nonzero, this approach for obtaining 𝐵(𝒚𝑘) for all 𝑘 ∈ {0, 1, . . . , 𝑁−
1} therefore only requires O(𝑀 𝑁 log 𝑁) operations.

The improvement in the computational cost is that we have replaced a factor of
O(𝑑) by O(log 𝑁) (or O(log 𝑑) when 𝑁 ≍ 𝑑, see (16.8)). However, this method
requires us to store all the vectors 𝒃ℓ,𝑚. Using the sparsity of the stiffness matrices
𝐵(𝒚𝑘), which is of order O(𝑀), we require O(𝑀𝑁) storage.

Partial differential equations with “log-normal” random coefficients

The fast QMC matrix-vector multiplication can also be used in treating PDEs with
random log-normal coefficients. We consider the PDE (A.16) in Appendix A, but
now we assume that the random diffusion coefficient is log-normal (see (A.26)).

We need to estimate the coefficients 𝑏𝑘,ℓ,𝑚 defined in (A.28). The number of these
nonzero inner products is O(𝑀) since, for a fixed ℓ, the number of 𝑚 such that the
intersection of the supports of 𝜙ℓ and 𝜙𝑚 is nonempty does not depend on 𝑀 . The
standard approach to obtaining 𝐵(𝒚𝑘) for all 𝑘 ∈ {0, 1, . . . , 𝑁 −1} therefore requires
O(𝑑 𝑁𝐼 𝑀 𝑁) operations, where 𝑁𝐼 is the number of quadrature points (A.29) for
the approximation of 𝑏𝑘,ℓ,𝑚.

We now describe the fast approach. Let

Θℓ,𝑚 :=(𝜃𝑖,ℓ,𝑚,𝑘)𝑖∈{1,2,...,𝑁𝐼 },𝑘∈{0,1,...,𝑁−1} ∈ R𝑁×𝑁𝐼 ,

Ψ̂𝑖,ℓ,𝑚 :=
©«
𝜓0 (𝑥𝑖,ℓ,𝑚)
𝜓0 (𝑥𝑖,ℓ,𝑚)

...

𝜓0 (𝑥𝑖,ℓ,𝑚)

ª®®®®¬
∈ R𝑁 , Ψ̂ℓ,𝑚 := (Ψ̂1,ℓ,𝑚, . . . , Ψ̂𝑁𝐼 ,ℓ,𝑚) ∈ R𝑁×𝑁𝐼 ,

Ψ𝑖,ℓ,𝑚 :=
©«
𝜓1 (𝑥𝑖,ℓ,𝑚)
𝜓2 (𝑥𝑖,ℓ,𝑚)

...

𝜓𝑑 (𝑥𝑖,ℓ,𝑚)

ª®®®®¬
∈ R𝑑 , Ψℓ,𝑚 := (Ψ1,ℓ,𝑚, . . . ,Ψ𝑁𝐼 ,ℓ,𝑚) ∈ R𝑑×𝑁𝐼 .

Then (A.31) can be written in matrix form as

Θℓ,𝑚 = Ψ̂ℓ,𝑚 + 𝑌Ψℓ,𝑚 , (16.10)

where the multiplication 𝑌Ψℓ,𝑚 is done as described in Section 16.2. Thus, (A.31)
can be computed using the fast QMC matrix-vector multiplication and 𝐵(𝒚𝑘) for all
𝑘 ∈ {0, 1, . . . , 𝑁 − 1} can be computed in O(𝑁𝐼 𝑀 𝑁 log 𝑁) operations. Again, the
saving is that we have replaced the factor of O(𝑑) by O(log 𝑁) in the computational
cost.

16.5 Numerical Experiments 519

16.5 Numerical Experiments

In this section we carry out numerical experiments for the three applications from
the previous section. In all of these numerical experiments the times are averaged
over five independent runs. Tables 16.1 and 16.2 have been calculated using Matlab
R2013b on an Intel®CoreTM Xeon E5-2650v2 CPU @ 2.6GHz. These tables are
taken from [47] (with the last digit rounded). Table 16.3 has been calculated using
Matlab R2020a on an Intel®Core i7 CPU @ 2.2GHz.

Experiment 1: normally distributed points

We are interested in comparing the computation times using the standard approach
of multiplying 𝒚𝑘𝐴 for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, and the fast QMC matrix-vector
multiplication using lattice point sets.

Table 16.1 shows the computation times in seconds for various values of 𝑁 and 𝑑.
In the single cells, the values on top show the standard approach, whereas the values
below show the fast QMC matrix-vector approach. For our experiments we chose
𝝁 = (0, 0, . . . , 0), and 𝐴 as a random upper triangular matrix with positive diagonal
entries (such that 𝐴 corresponds to the Cholesky factor of a random matrix Σ). The
computation times do not include the fast component-by-component construction of
the lattice generating vectors (see Sections 3.4 and 3.5), the computation of 𝜈1, . . . , 𝜈𝑑
(since this information can be obtained from the fast component-by-component
construction), nor the computation of Φ−1 (𝑘/𝑁) for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1} (since
this computation is the same for both methods).

The numerical experiments in Table 16.1 show that there is an advantage in using
the fast QMC matrix-vector product if the dimension is large, and the advantage
grows as the dimension increases. This is in agreement with the theory since the
computational cost in the standard approach is of order O(𝑑2𝑁) operations, whereas
in the fast QMC matrix-vector approach it is of orderO(𝑑 𝑁 log 𝑁) operations. Recall
that the fast QMC matrix-vector method incurs a storage cost of order O(𝑑 𝑁). As we
can also see from Table 16.1, the advantage of the fast QMC matrix-vector approach
over the standard approach particularly occurs for cases where the computational
cost is dominated by the terms depending on 𝑑.

Experiment 2: PDEs with “uniform” random coefficients

We use the example (A.1) with random field (A.2) and boundary conditions (A.8)
in Appendix A in the uniform case with 𝜂 = 3/2.

Table 16.2 shows the computation times comparing the standard approach with the
fast QMC matrix-vector method based on lattice point sets. In this case the mapping
in 𝒚𝑘 = 𝜓(𝒙𝑘) is 𝜓(𝑥) = 𝑥 − 1/2, since the lattice points need to be translated
from the standard unit cube [0, 1)𝑑 to [−1/2, 1/2)𝑑 . Since the dimension 𝑑 is large,
the fast QMC matrix-vector method is very effective in reducing the computation

520 16 Fast QMC Matrix-Vector Multiplication

Method 𝑁 𝑑 = 200 𝑑 = 400 𝑑 = 600 𝑑 = 800 𝑑 = 1000
std. 16001 0.31 0.74 1.30 1.62 2.15
fast 0.16 0.30 0.45 0.59 0.74
std. 32003 0.59 1.47 2.44 3.06 4.24
fast 0.60 1.20 1.79 2.40 2.99
std. 64007 1.17 2.97 4.92 6.00 8.35
fast 1.80 3.85 5.55 7.58 9.83
std. 127997 2.58 5.89 9.49 11.9 16.8
fast 2.33 4.66 7.32 9.98 12.3
std. 256019 4.28 11.1 17.6 23.1 33.5
fast 5.40 10.9 16.2 24.1 26.9
std. 512009 8.88 23.4 31.9 48.1 66.4
fast 10.9 22.1 35.5 45.2 56.2

Table 16.1: Times (in seconds) to generate normally distributed points with random
covariance matrix. In each cell, the top row is the time required by using the standard
approach, whereas the bottom row shows the time required using the fast QMC
matrix-vector approach.

𝑀 = 𝑑 = 2𝑁

𝑁 67 127 257 509 1021 2053 4001 8009 16001
std. 1 5 31 190 1346 10610 74550 ≈144h ≈1000h
fast 0.035 0.042 0.11 0.46 1.56 5.59 19.68 87.2 343

𝑀 = 𝑑 = ⌈
√
𝑁 ⌉

𝑁 67 127 257 509 1021 2053 4001 8009 16001
std. 0.066 0.16 0.47 1.27 3.57 10.8 30.1 89.4 273
fast 0.012 0.015 0.028 0.059 0.13 0.27 0.52 1.11 2.44

𝑑 = 𝑁 and 𝑀 = 𝑁 2

𝑁 67 127 257 509
std. 6 82 1699 27935
fast 0.24 1.39 11.3 107

Table 16.2: Times (in seconds) to obtain the average value of the finite element
coefficients of the approximation (A.21) for a uniform random field (top: 𝑀 = 𝑑 =

2𝑁 , middle: 𝑀 = 𝑑 = ⌈
√
𝑁⌉, bottom: 𝑑 = 𝑁 and 𝑀 = 𝑁2).

times. In Table 16.2, for the case 𝑀 = 𝑑 = 2𝑁 , the times for the standard method
for 𝑁 = 8009 and 𝑁 = 16001 are in hours and are estimated from extrapolating on
previous values in the table. The experiments show that there is a clear advantage of
the fast QMC matrix-vector approach, especially for large values of 𝑀, 𝑁 , and 𝑑.

16.5 Numerical Experiments 521

𝑀 = 𝑑 = 2𝑁

𝑁 67 127 257 509 1021 2053 4001 8009 16001
std. 0.0090 0.028 0.078 0.33 2.27 17.8 138 1016 7646
fast 0.0065 0.019 0.048 0.19 0.71 2.82 9.98 42.0 237

𝑀 = 𝑑 = ⌈
√
𝑁 ⌉

𝑁 67 127 257 509 1021 2053 4001 8009 16001
std. 0.0059 0.011 0.0093 0.018 0.040 0.092 0.21 0.90 1.47
fast 0.0061 0.0099 0.0080 0.016 0.034 0.075 0.16 0.76 0.92

𝑑 = 𝑁 and 𝑀 = 𝑁 2

𝑁 67 127 257 509
std. 0.090 0.69 6.39 74.8
fast 0.10 0.65 5.9 60.6

Table 16.3: Times (in seconds) to obtain the average value of the finite element
coefficients of the approximation (A.21) for a log-normal random field (top: 𝑀 =

𝑑 = 2𝑁 , middle: 𝑀 = 𝑑 = ⌈
√
𝑁⌉, bottom: 𝑑 = 𝑁 and 𝑀 = 𝑁2).

Experiment 3: PDEs with “log-normal” random coefficients

We use the example (A.16) with random field (A.27) in Appendix A in the log-
normal case with 𝜂 = 3/2. To compute (A.30), we use an equal-weight quadrature
rule with 𝑀 (i.e., 𝑁𝐼 = 𝑀) points.

Table 16.3 shows the computation times for the log-normal case with different
choices of the number of finite elements 𝑀 , the number of QMC points 𝑁 , and the
truncated dimension 𝑑. As one would expect from the theory, the most significant
advantage of the fast QMC matrix-vector multiplication occurs when 2𝑑 is large in
comparison to 𝑁 , which is also reflected in the numerical results.

Notes and Remarks

The fast QMC matrix-vector multiplication has been introduced in [47]. Here we
have presented the application for the case of lattice point sets and for a special kind
of a 𝑝-set. A similar approach also works for other types of QMC point sets (e.g.,
polynomial lattice point sets).

The fast QMC matrix-vector multiplication can also be used in the randomized
setting, namely in Algorithm 11.2 for integrands of the form 𝑔(𝒙) = 𝑓 (𝒙𝐴) with
𝑔 ∈ Hkor,𝑑,𝛼,𝜸 and also together with the tent transformation for integrands 𝑔(𝒙) =
𝑓 (𝒙𝐴) with 𝑔 ∈ Hcos,𝑑,𝛼,𝜸, see Sections 11.1 and 11.2.

Appendix A
Partial Differential Equations With Random
Coefficients

Partial differential equations (PDEs) with random coefficients have become an im-
portant application area of QMC methods, and in particular lattice rules. In this
chapter we introduce basic background information regarding this field as it is rele-
vant for lattice rules. The areas of PDEs with random coefficients and finite element
methods are too vast to give a broad overview of or a detailed introduction to the
topic. In particular, this chapter is meant for readers who are not familiar with nu-
merical techniques for PDEs. Our goal is to provide some insight into how lattice
rules are applied in this context, what the computational algorithm looks like, and
how the error can be analyzed. We illustrate the ideas by some examples.

A.1 Uniform Random Coefficients

We first discuss the case where the random coefficients in a partial differential
equation are uniformly distributed.

An illustrative example

The prototypical example of a PDE with random coefficients is a diffusion equation
with random diffusion coefficients. We consider a simple concrete version of this
example for illustration, where the domain 𝐷 is just the interval (0, 1). In this case
the equation is given by

− 𝜕

𝜕𝑧

(
𝑎(𝑧, 𝒚) 𝜕

𝜕𝑧
𝑢(𝑧, 𝒚)

)
= 𝑓 (𝑧) for 𝑧 ∈ (0, 1), (A.1)

where the function 𝑓 on the right-hand side of (A.1) is a given function in, say,
𝐿2 ([0, 1]). As a concrete example, we first consider the random field

523

https://doi.org/10.1007/978-3-031-09951-9
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022

524 A Partial Differential Equations With Random Coefficients

𝑎(𝑧, 𝒚) = 𝑐 +
∞∑︁
𝑗=1

𝑦 𝑗
sin(2𝜋 𝑗𝑧)

𝑗 𝜂
, (A.2)

where 𝑐 ∈ R is a constant and the 𝑦 𝑗 are independent and identically uniformly
distributed random variables in [−1/2, 1/2], hence the name PDE with random
coefficients. We define the sequence 𝒚 = (𝑦1, 𝑦2, . . .) ∼ U([−1/2, 1/2]N), where U
denotes the continuous uniform distribution in the sense of probability theory. We
have

𝑎(𝑧, 𝒚) ≤ 𝑐 + 𝜁 (𝜂)
2

for all 𝒚 ∈
[
−1

2
,
1
2

]N
, (A.3)

where we remind the reader that 𝜁 (𝜂) =
∑∞
𝑗=1 𝑗

−𝜂 is the Riemann zeta function.
In order for 𝑎 to be well-defined and differentiable we impose the assumption that
𝜂 > 1, which ensures that 𝜁 (𝜂) < ∞. Some instances of this random field for 𝜂 = 2
and 𝜂 = 1.3 are shown in the top row of Figure A.1, where we truncated the infinite
sum (A.2) to 104 terms.

To illustrate the problem, let us first also impose boundary conditions which lead
to an explicit solution of (A.1), namely

𝑢(0, 𝒚) = 𝑏, and 𝑎(1, 𝒚) 𝜕

𝜕𝑧
𝑢(𝑧, 𝒚)

����
𝑧=1

= 𝑞, (A.4)

where for simplicity we choose 𝑏 and 𝑞 to be constants. Integrating (A.1) twice with
respect to 𝑧 and using the boundary conditions (A.4) leads to the explicit solution

𝑢(𝑧, 𝒚) = 𝑏 +
∫ 𝑧

0

1
𝑎(𝑣, 𝒚)

(
𝑞 +

∫ 1

𝑧

𝑓 (𝑤) d𝑤
)

d𝑣. (A.5)

In order for the solution 𝑢 to be well-defined, we also assume

𝑎(𝑥, 𝒚) ≥ 𝑐 − 𝜁 (𝜂)
2

> 0 for all 𝒚 ∈
[
−1

2
,
1
2

]N
. (A.6)

The conditions (A.3) and (A.6) are the so-called uniform ellipticity assumptions.
To numerically illustrate the problem, let 𝑏 = 0, 𝑐 = 2, 𝑞 = 1/2, and let 𝑓 be

given by 𝑓 (𝑧) = 𝑧 for 𝑧 ∈ [0, 1]. Then the explicit solution is given by

𝑢(𝑧, 𝒚) =
∫ 𝑧

0

1 − 𝑣2/2
𝑎(𝑣, 𝒚) d𝑣. (A.7)

To compute approximate values of 𝑢 for some given 𝑧 and 𝒚 we need to estimate
the integral and compute approximate values of the random field 𝑎. To estimate the
infinite sum (A.2) of the random field, we truncate this infinite sum after, say, 𝑑,
terms. We call 𝑑 the truncation dimension.

The random field 𝑎, the solution 𝑢 for various instances of the random field, and
a histogram of instances of the random variable 𝑢(1/2, ·) are shown in Figure A.1.

A.1 Uniform Random Coefficients 525

Fig. A.1: The left column uses 𝜂 = 2, whereas the right column uses 𝜂 = 1.3.
In the top row, instances of the random field 𝑎(·, 𝒚) are shown, as well as various
random selections of the random coefficients 𝒚. In the middle row, the corresponding
solutions 𝑢(·, 𝒚) of (A.7) are shown. The truncation dimension is 104. The bottom
row shows a histogram of 𝑢(1/2, ·) using 2 · 105 samples and 2000 bins, where we
have restricted the truncation dimension to 100.

526 A Partial Differential Equations With Random Coefficients

The case of no explicit solution

The boundary condition (A.4) is very artificial (as it is chosen such that we get an
explicit solution). We continue with the previous example (A.1), but now change the
boundary conditions to the more natural boundary conditions

𝑢(0, 𝒚) = 𝑢(1, 𝒚) = 0. (A.8)

In this case we do not have an explicit solution of the differential equation. We briefly
describe how one can use piecewise linear finite elements to obtain an approximation
of the solution 𝑢 in this case.

Let 𝑀 ∈ N, let 𝑧ℓ = ℓ/𝑀 for ℓ ∈ {0, 1, . . . , 𝑀}, and for ℓ ∈ {1, 2, . . . , 𝑀 − 1}
define the hat function

𝜙ℓ (𝑧) :=

(𝑧 − 𝑧ℓ−1)𝑀 if 𝑧ℓ−1 ≤ 𝑧 ≤ 𝑧ℓ ,

(𝑧ℓ+1 − 𝑧)𝑀 if 𝑧ℓ ≤ 𝑧 ≤ 𝑧ℓ+1,

0 otherwise.
(A.9)

The graphs of several hat functions are shown in Figure A.2, and an approximation
of the function 𝑓 with 𝑓 (𝑧) = 𝑧(1 − 𝑧), for 𝑧 ∈ [0, 1], as a linear combination of
such hat functions is shown in Figure A.3.

Fig. A.2: Finite element basis functions 𝜙1, 𝜙2, 𝜙3, 𝜙4, and 𝜙8 for 𝑀 = 10.

A.1 Uniform Random Coefficients 527

Fig. A.3: Approximation of the function 𝑓 with 𝑓 (𝑧) = 𝑧(1 − 𝑧), for 𝑧 ∈ [0, 1],
using piecewise linear hat functions as defined in Equation (A.9) with 𝑀 = 5. The
approximation is then (4/25)𝜙1 (𝑧) + (6/25)𝜙2 (𝑧) + (6/25)𝜙3 (𝑧) + (4/25)𝜙4 (𝑧).

The goal is to obtain an approximation of the solution 𝑢 of the form

𝑢(𝑧, 𝒚) ≈
𝑀−1∑︁
ℓ=1

�̂�ℓ (𝒚) 𝜙ℓ (𝑧). (A.10)

To do so, we multiply (A.1) by 𝜙𝑚 and integrate on both sides with respect to 𝑧 over
the unit interval [0, 1] to obtain

−
∫ 1

0

𝜕

𝜕𝑧

(
𝑎(𝑧, 𝒚) 𝜕

𝜕𝑧
𝑢(𝑧, 𝒚)

)
𝜙𝑚 (𝑧) d𝑧 =

∫ 1

0
𝑓 (𝑧) 𝜙𝑚 (𝑧) d𝑧. (A.11)

We use integration by parts on the left-hand side of (A.11) and the fact that 𝜙𝑚 (0) =
𝜙𝑚 (1) = 0 to obtain∫ 1

0
𝑎(𝑧, 𝒚) 𝜕

𝜕𝑧
𝑢(𝑧, 𝒚) 𝜕

𝜕𝑧
𝜙𝑚 (𝑧) d𝑧 =

∫ 1

0
𝑓 (𝑧) 𝜙𝑚 (𝑧) d𝑧. (A.12)

Set �̂�𝑚 :=
∫ 1
0 𝑓 (𝑧) 𝜙𝑚 (𝑧) d𝑧 for𝑚 ∈ {1, 2, . . . , 𝑀−1}. Since 𝑓 is a given function,

the values �̂�𝑚 can be computed, either explicitly, or approximately using a quadrature
rule. Next, we substitute the approximation (A.10) into (A.12) and use (A.2) to obtain
a system of linear equations in �̂�ℓ (𝒚),

𝑀−1∑︁
ℓ=1

�̂�ℓ (𝒚) ©«𝑐 𝑎0,ℓ,𝑚 +
∞∑︁
𝑗=1

𝑦 𝑗 𝑎 𝑗 ,ℓ,𝑚
ª®¬ = �̂�𝑚, (A.13)

where

𝑎0,ℓ,𝑚 :=
∫ 1

0
𝜙′ℓ (𝑧) 𝜙

′
𝑚 (𝑧) d𝑧,

528 A Partial Differential Equations With Random Coefficients

and

𝑎 𝑗 ,ℓ,𝑚 :=
∫ 1

0

sin(2𝜋 𝑗𝑧)
𝑗 𝜂

𝜙′ℓ (𝑧) 𝜙
′
𝑚 (𝑧) d𝑧

for 𝑗 ∈ N and ℓ, 𝑚 ∈ {1, 2, . . . , 𝑀 − 1}.
In the present example we can calculate the values 𝑎 𝑗 ,ℓ,𝑚 explicitly to obtain

𝑎0,ℓ,𝑚 =

2𝑀 if ℓ = 𝑚,
−𝑀 if |ℓ − 𝑚 | = 1,
0 otherwise,

and, for 𝑗 ∈ N,

𝑎 𝑗 ,ℓ,𝑚 =

∫ 1

0

sin(2𝜋 𝑗𝑧)
𝑗 𝜂

𝜙′ℓ (𝑧)𝜙
′
𝑚 (𝑧) d𝑧

=

𝑀2

2𝜋 𝑗𝜂+1

(
cos

(
2𝜋 𝑗 (ℓ−1)

𝑀

)
− cos

(
2𝜋 𝑗 (ℓ+1)

𝑀

))
if ℓ = 𝑚,

𝑀2

2𝜋 𝑗𝜂+1

(
cos

(
2𝜋 𝑗 min(ℓ,𝑚)

𝑀

)
− cos

(
2𝜋 𝑗 max(ℓ,𝑚)

𝑀

))
if |ℓ − 𝑚 | = 1,

0 otherwise.

In problems where these integrals cannot be computed explicitly one needs to resort
to some quadrature rule to approximate them numerically.

Now set 𝐴 𝑗 := (𝑎 𝑗 ,ℓ,𝑚)ℓ,𝑚∈{1,2,...,𝑀−1} for 𝑗 ∈ N0 and, for 𝒚 = (𝑦1, 𝑦2, . . .), set

𝐵(𝒚) := 𝑐𝐴0 +
∞∑︁
𝑗=1

𝑦 𝑗𝐴 𝑗 . (A.14)

Since the matrices 𝐴 𝑗 , 𝑗 ≥ 0, are tridiagonal (𝑀 − 1) × (𝑀 − 1) matrices, so is
𝐵(𝒚). In the context of finite element methods for solving PDEs the matrix 𝐵(𝒚) is
often called stiffness matrix. This matrix represents the linear system that has to be
solved to find an approximation of a random solution of (A.1), with the boundary
conditions given by (A.8).

We also define �̂� := (�̂�𝑚)𝑚∈{1,2,...,𝑀−1} and �̂� := (�̂�ℓ)ℓ∈{1,2,...,𝑀−1}, where both
vectors are considered as column vectors. The linear system (A.13) can now be
written as

𝐵(𝒚) �̂� = �̂� .

In order to be able to obtain solutions to this linear system, we need to truncate the
infinite sum (A.14) to

𝐵(𝒚 (𝑑)) = 𝑐𝐴0 +
𝑑∑︁
𝑗=1

𝑦 𝑗𝐴 𝑗 , (A.15)

where 𝑑 ∈ N is called the truncation dimension in this context, and where 𝒚 (𝑑) =
(𝑦1, . . . , 𝑦𝑑).

A.1 Uniform Random Coefficients 529

Consider now a numerical example where 𝑓 (𝑧) = 1 for 𝑧 ∈ [0, 1]. Then

�̂�𝑚 =

∫ 1

0
𝜙𝑚 (𝑧) d𝑧 =

1
𝑀

for all 𝑚 ∈ {1, 2, . . . , 𝑀 − 1}.

Solving the linear system
𝐵(𝒚 (𝑑)) �̂� = �̂�

for a random vector 𝒚 (𝑑) then yields an approximation of a random solution to (A.1),
with the boundary conditions given by (A.8). The random field and the solution 𝑢
for various instances of the random field and a histogram of the random variable
𝑢(1/2, ·) are shown in Figure A.4.

The general case

We consider the PDE with random coefficients

−∇𝒛 · (𝑎(𝒛, 𝒚)∇𝒛𝑢(𝒛, 𝒚)) = 𝑓 (𝒛) for 𝒛 ∈ 𝐷, (A.16)
𝑢(𝒛, 𝒚) =0 for 𝒛 ∈ 𝜕𝐷,

where 𝑓 ∈ 𝐿2 (𝐷), where 𝐷 ⊆ R𝑠 is a bounded Lipschitz domain with bound-
ary 𝜕𝐷, ∇𝒛 = (𝜕/𝜕𝑧1, . . . , 𝜕/𝜕𝑧𝑠)⊤ is a differential operator (the gradient),
𝒚 ∼ U([−1/2, 1/2]N), the random field is given by

𝑎(𝒛, 𝒚) = 𝜓0 (𝒛) +
∞∑︁
𝑗=1

𝑦 𝑗 𝜓 𝑗 (𝒛),

where 𝜓 𝑗 : 𝐷 → R and 𝒚 = (𝑦1, 𝑦2, . . .), and where the uniform ellipticity assump-
tions hold,

0 < 𝑎min ≤ 𝑎(𝒛, 𝒚) ≤ 𝑎max < ∞ for 𝒛 ∈ 𝐷 and 𝒚 ∈
[
−1

2
,
1
2

]N
, (A.17)

with 𝑎min, 𝑎max being constants. We define the coefficients

𝛽 𝑗 :=
∥𝜓 𝑗 ∥𝐿∞ (𝐷)
𝑎min

for 𝑗 ∈ N, (A.18)

and we assume that 𝛽1 ≥ 𝛽2 ≥ · · · satisfy the summability condition

∞∑︁
𝑗=1

𝛽
𝑝

𝑗
< ∞ for some 𝑝 ∈ (0, 1). (A.19)

530 A Partial Differential Equations With Random Coefficients

0 0.2 0.4 0.6 0.8 1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-4000 -3000 -2000 -1000 0 1000

0

0.5

1

1.5

2
10

5

0 0.2 0.4 0.6 0.8 1

1.4

1.6

1.8

2

2.2

2.4

2.6

0 0.2 0.4 0.6 0.8 1

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-1000 -800 -600 -400 -200 0 200 400

0

0.5

1

1.5

2
10

5

Fig. A.4: The left column uses 𝜂 = 2, whereas the right column uses 𝜂 = 1.3.
In the top row, instances of the random field 𝑎(·, 𝒚) are shown, as well as various
random selections of the random coefficients 𝒚. In the middle row, the corresponding
solutions 𝑢(·, 𝒚) of (A.1) with the boundary conditions (A.8) are shown. The bottom
row shows a histogram of𝑢(1/2, ·) using 2·105 samples and 2000 bins. The truncation
dimension is 100 in these examples.

A.1 Uniform Random Coefficients 531

Again, we do not have an explicit solution of the PDE and hence we have to resort
to numerical methods, like a finite element method, to obtain an approximation of the
PDE (A.16). We refer to [245] for more details on such methods. The goal then (under
further assumptions) is to estimate E[𝐺 (𝑢)], where 𝐺 is a linear functional, and
where the expectation is taken with respect to random 𝒚. Under certain assumptions,
we can represent 𝐺 by 𝐺 (𝑢(·, 𝒚)) =

∫
𝐷
𝑢(𝒛, 𝒚)𝑔(𝒛) d𝒛 for some suitable function

𝑔. The approach in the general case has many similarities to the case shown in
the previous section. We omit the technical details and refer to [160] for further
information instead.

The computational approach

As we have seen above, the way to compute an approximation to E[𝐺 (𝑢)] is as
follows.

Algorithm A.1 Consider the boundary value problem (A.16) with uniform i.i.d.
random coefficients. In order to find an approximation to E[𝐺 (𝑢)], do the following.

(1) Generate samples 𝒚0, 𝒚1, . . . , 𝒚𝑁−1 ∈ [0, 1]𝑑 (using (Q)MC), where the points
are given by 𝒚𝑘 = (𝑦𝑘,1, 𝑦𝑘,2, . . . , 𝑦𝑘,𝑑), for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}.

(2) Substitute these points into the truncated random field

𝑎𝑑

(
𝒛, 𝒚𝑘 − 1

21
)
= 𝜓0 (𝒛) +

𝑑∑︁
𝑗=1

(
𝑦𝑘, 𝑗 − 1

2

)
𝜓 𝑗 (𝒛) for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}.

(A.20)
(3) Use a PDE solver (for instance, the finite element method with mesh width ℎ),

in order to compute estimations of the solutions of the PDEs

−∇𝒛 ·
(
𝑎𝑑

(
𝒛, 𝒚𝑘 − 1

21
)
∇𝒛𝑢

(
𝒛, 𝒚𝑘 − 1

21
))

= 𝑓 (𝒛) for 𝒛 ∈ 𝐷,

𝑢

(
𝒛, 𝒚𝑘 − 1

21
)
= 0 for 𝒛 ∈ 𝜕𝐷,

to get approximations 𝑢ℎ
𝑑
(𝒚𝑘 − 1

21) for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}.
In the case of a finite element method, this involves computing the stiffness
matrices 𝐵(𝒚𝑘) given in (A.15) and solving the linear systems 𝐵(𝒚𝑘) �̂�𝑘 = �̂�
with unknown �̂�𝑘 for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}.

(4) An estimation of the expected value E[𝐺 (𝑢)] is then computed by

𝑄𝑁,𝑑 (𝐺 (𝑢ℎ𝑑)) =
1
𝑁

𝑁−1∑︁
𝑘=0

𝐺

(
𝑢ℎ𝑑

(
𝒚𝑘 − 1

21
))

≈ E[𝐺 (𝑢)] . (A.21)

532 A Partial Differential Equations With Random Coefficients

Error analysis

The error between the correct value E[𝐺 (𝑢)] and the approximation 𝑄𝑁,𝑑 (𝐺 (𝑢ℎ
𝑑
))

can be split into three parts using add-and-subtract and the triangle inequality. One
such approach leads to

|E[𝐺 (𝑢)] −𝑄𝑁,𝑑 (𝐺 (𝑢ℎ𝑑)) | (A.22)
≤ |E[𝐺 (𝑢)] − E[𝐺 (𝑢𝑑)] |︸ ︷︷ ︸

truncation error

+ |E[𝐺 (𝑢𝑑)] − E[𝐺 (𝑢ℎ𝑑)] |︸ ︷︷ ︸
finite element error

+ |E[𝐺 (𝑢ℎ𝑑)] −𝑄𝑁,𝑑 (𝐺 (𝑢ℎ𝑑)) |︸ ︷︷ ︸
integration error

,

where E[𝐺 (𝑢)] is the expected value of 𝐺 (𝑢), 𝑢𝑑 is the solution of (A.16) using
the truncated random field (A.20), and 𝑢ℎ

𝑑
is the approximation of 𝑢𝑑 using a finite

element method with mesh width ℎ (in the example above ℎ = 2/𝑀).
In [160, Theorem 5.1] it was shown that the truncation error satisfies

errtrnc (𝑑) := |E[𝐺 (𝑢)] − E[𝐺 (𝑢𝑑)] | ≲
©«

∞∑︁
𝑗=𝑑+1

𝛽 𝑗
ª®¬

2

≲
1

𝑑2(1/𝑝−1) , (A.23)

where the 𝛽 𝑗 are given by (A.18) with 𝑎min according to (A.17), and 𝑝 ∈ (0, 1)
is given by (A.19). The multiplicative factors involved in the notation “≲” are
independent of the truncation dimension 𝑑, the finite element method, and the QMC
method in use.

The convergence of the finite element error (as defined above) depends on the
particular finite elements used, the properties of the function 𝑓 , the domain 𝐷, the
linear functional 𝐺 and the random field 𝑎. Under certain assumptions the finite
element error is of order

O(𝑀−2/𝑠), (A.24)

with an implied multiplicative factor independent of the truncation dimension 𝑑 (see,
for instance, [160, Theorem 7.2], where 𝑡 = 𝑡 ′ = 1, and 𝑀 ≍ ℎ−𝑠).

Now consider the integrand 𝐹 (𝒚) = 𝐺 (𝑢ℎ
𝑑
(·, 𝒚)) in the integration problem. It was

shown in [25] that the integrand is infinitely many times differentiable and satisfies
the bound

sup
𝒚∈[0,1]𝑑

���� 𝜕 |𝝂 |

𝜕𝜈1 𝑦1 · · · 𝜕𝜈𝑑 𝑦𝑑
𝐹 (𝒚)

���� ≤ 𝐶 |𝝂 |! 𝑑∏
𝑗=1

𝛽
𝜈 𝑗

𝑗
with 𝝂 = (𝜈1, . . . , 𝜈𝑑) ∈ N𝑑0 ,

where |𝝂 | = 𝜈1 + · · · + 𝜈𝑑 , and where 𝐶 > 0 is an absolute constant. This estimate
can be used to obtain bounds on the integration error using QMC rules. In particular,
[160, Theorem 6.4] shows that the integration error can be bounded independently

A.2 Log-Normal Random Coefficients 533

of the dimension, yielding a convergence of order
O(𝑁−(1−𝛿)) for any 𝛿 > 0 when 𝑝 ∈ (0, 2/3],
O(𝑁−(1/𝑝−1/2)) when 𝑝 ∈ (2/3, 1),
O(𝑁−1/2) when 𝑝 = 1.

(A.25)

In order to reduce the overall error, the three sources of error need to be bal-
anced. This implies that if we want to reduce the overall error, we need to increase
the truncation dimension to reduce the truncation error. This in turn increases the
dimension of the integration domain of the numerical integration problem and leads
to a situation where we want to decrease the integration error while the dimension
simultaneously increases. To be able to balance the three error terms independently,
we require that the integration error can be bounded independently of the dimension,
i.e., that the integration problem is strongly polynomially tractable and this property
can be achieved by means of the employed integration rule. Otherwise, if the inte-
gration error depends on the dimension, then this would have to be compensated by
increasing 𝑁 , which reduces the convergence rate. Since the convergence rate of the
truncation dimension is rather low, this approach does not yield good convergence
rates in most cases.

A.2 Log-Normal Random Coefficients

We consider (A.1) again, but modify the definition of the random field (A.2) to

𝑎(𝑧, 𝒚) = 𝜓∗ (𝑧) + 𝜓0 (𝑧) exp ©«
∞∑︁
𝑗=1

𝑦 𝑗 𝜓 𝑗 (𝑧)ª®¬ , (A.26)

where the 𝑦 𝑗 are i.i.d. standard normal random variables, and where 𝜓∗ ≥ 0 and
𝜓0 > 0. If the functions (𝜓 𝑗) 𝑗≥0 are the eigenfunctions of a correlated Gaussian
random field, these functions are orthonormal in 𝐿2 ([0, 1]).

Define
𝑎(𝒚) := min

𝑧∈[0,1]
𝑎(𝑧, 𝒚) and 𝑎(𝒚) := max

𝑧∈[0,1]
𝑎(𝑧, 𝒚).

Under suitable assumptions (see [88]) the functions 𝑎 and 𝑎 are measurable and
satisfy 𝑎 > 0 and 𝑎 < ∞ almost surely.

An illustrative example

We consider the illustrative example from the uniform case again, with the random
field (A.2) replaced by

534 A Partial Differential Equations With Random Coefficients

𝑎(𝑧, 𝒚) = exp ©«2 +
∞∑︁
𝑗=1

𝑦 𝑗
sin(2𝜋 𝑗𝑧)

𝑗 𝜂
ª®¬ , (A.27)

where the 𝑦 𝑗 are now i.i.d. standard normal random variables, and where we assume
the boundary conditions given by (A.4). The explicit solution is again given by (A.5).
A numerical illustration is shown in Figure A.5.

The case of no explicit solution

We now consider (A.1) using the zero boundary condition (A.8) and a log-normal
random field (A.26). We use the same finite elements as in the uniform case. The
weak form (A.12) is not influenced by the change to a log-normal random field and
therefore still applies. However, the linear system (A.13) is now more difficult to
compute as the random field is not linear anymore.

Define �̂�𝑚 as in Section A.1. Then substituting (A.27) and the finite element
expansion of the solution (A.10) into (A.12) we obtain for the sequence 𝒚𝑘 =

(𝑦𝑘,1, 𝑦𝑘,2, . . .) ∈ RN that

𝑀−1∑︁
ℓ=1

�̂�ℓ (𝒚𝑘) 𝑏𝑘,ℓ,𝑚 = �̂�𝑚

for 𝑚 ∈ {1, 2, . . . , 𝑀 − 1}, where

𝑏𝑘,ℓ,𝑚 :=
∫ 1

0
exp ©«2 +

∞∑︁
𝑗=1

𝑦𝑘, 𝑗
sin(2𝜋 𝑗𝑧)

𝑗 𝜂
ª®¬ 𝜙′ℓ (𝑧) 𝜙′𝑚 (𝑧) d𝑧. (A.28)

In contrast to the uniform case, we do not have an explicit solution for the integral
in (A.28), and thus need to resort to a numerical method.

For |ℓ −𝑚 | > 1 we have 𝑏𝑘,ℓ,𝑚 = 0 since the supports of the functions 𝜙ℓ and 𝜙𝑚
intersect at most at one point, respectively. For the remaining cases, choose a set of
𝑁𝐼 quadrature points

𝑧0,ℓ,𝑚, 𝑧1,ℓ,𝑚, . . . , 𝑧𝑁𝐼−1,ℓ,𝑚 ∈ supp𝜙ℓ ∩ supp𝜙𝑚 (A.29)

and a set of 𝑁𝐼 integration weights 𝑤0,ℓ,𝑚, 𝑤1,ℓ,𝑚, . . . , 𝑤𝑁𝐼−1,ℓ,𝑚 ∈ R. Here, 𝑁𝐼 is
usually chosen to be a small positive integer, which can be chosen as independent of
𝑀 since the length of the support of 𝜙ℓ decreases as 𝑀 increases. To approximate
the integral in (A.28) we compute

𝑏𝑘,ℓ,𝑚 ≈ �̂�𝑘,ℓ,𝑚 =

𝑁𝐼−1∑︁
𝑖=0

𝑤𝑖,ℓ,𝑚 𝑎(𝑧𝑖,ℓ,𝑚, 𝒚𝑘) 𝜙′ℓ (𝑧𝑖,ℓ,𝑚) 𝜙
′
𝑚 (𝑧𝑖,ℓ,𝑚) (A.30)

A.2 Log-Normal Random Coefficients 535

Fig. A.5: The left column uses 𝜂 = 2, whereas the right column uses 𝜂 = 1.3.
In the top row, instances of the random field 𝑎(·, 𝒚) are shown, as well as various
random selections of the random coefficients 𝒚. In the middle row, the corresponding
solutions 𝑢(·, 𝒚) of (A.7) are shown. Here the truncation dimension is 104. The
bottom row shows a histogram of 𝑢(1/2, ·) using 2 · 105 samples and 2000 bins,
where we have restricted the truncation dimension to 100.

536 A Partial Differential Equations With Random Coefficients

for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1} and ℓ, 𝑚 ∈ {1, 2, . . . , 𝑀 − 1} such that |ℓ − 𝑚 | ≤ 1. Let
𝐵(𝒚𝑘) := (�̂�𝑘,ℓ,𝑚)ℓ,𝑚∈{1,2,...,𝑀−1}. To approximate 𝑎 at the quadrature points, we
use truncation, say after dimension 𝑑, and compute the truncated random field

𝑎𝑑 (𝑧𝑖,ℓ,𝑚, 𝒚𝑘) = exp(𝜃𝑖,ℓ,𝑚,𝑘) with 𝜃𝑖,ℓ,𝑚,𝑘 = 2 +
𝑑∑︁
𝑗=1

𝑦𝑘, 𝑗
sin(2𝜋 𝑗𝑧𝑖,ℓ,𝑚)

𝑗 𝜂
,

for all 𝑖 ∈ {0, 1, . . . , 𝑁𝐼 − 1}, 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}, and ℓ, 𝑚 ∈ {1, 2, . . . , 𝑀 − 1}
such that |ℓ − 𝑚 | ≤ 1. The number of these nonzero 𝑏𝑘,ℓ,𝑚 therefore is of order
O(𝑁 𝑀). Consequently, the standard approach to obtaining the stiffness matrices
𝐵(𝒚𝑘) for all 𝑘 ∈ {0, 1, . . . , 𝑁 − 1} requires O(𝑑 𝑁𝐼 𝑀 𝑁) operations.

To get an approximation to the solution 𝑢 we need to solve the linear system
𝐵(𝒚𝑘) �̂�𝑘 = �̂� , as before. The approximation is then given by (A.10).

A numerical example is shown in Figure A.6. Note that if we set 𝑎 = 1 and
𝑓 = 1, then the solution of (A.1) and (A.8) is given by 𝑢 with 𝑢(𝑧) = 𝑧(1 − 𝑧)/2 for
𝑧 ∈ [0, 1]. The solutions for a random field are in some sense perturbations of this
solution.

The general case

The PDE in the general case is again given by (A.16), but the random field is now
log-normal like in (A.26), with a multidimensional domain 𝐷 ⊆ R𝑠 .

We approximate the random field 𝑎 at the quadrature points by the truncated
random field 𝑎𝑑 , where 𝑑 ∈ N is the truncation dimension. To this end we need to
compute

𝑎(𝒛𝑖,ℓ,𝑚, 𝒚𝑘) ≈ 𝑎𝑑 (𝒛𝑖,ℓ,𝑚, 𝒚𝑘) = 𝜓∗ (𝒛𝑖,ℓ,𝑚) + 𝜓0 (𝒛𝑖,ℓ,𝑚) exp(𝜃𝑖,ℓ,𝑚,𝑘) (A.31)

with

𝜃𝑖,ℓ,𝑚,𝑘 =

𝑑∑︁
𝑗=1

𝑦𝑘, 𝑗 𝜓 𝑗 (𝒛𝑖,ℓ,𝑚),

for all 𝑖 ∈ {0, 1, . . . , 𝑁𝐼−1}, 𝑘 ∈ {0, 1, . . . , 𝑁−1}, and ℓ, 𝑚 ∈ {1, 2, . . . , 𝑀−1} such
that |ℓ − 𝑚 | ≤ 1. The coefficients �̂�𝑘,ℓ,𝑚 are then computed using (A.30). Setting
𝐵(𝒚𝑘) := (�̂�𝑘,ℓ,𝑚)ℓ,𝑚∈{1,2,...,𝑀−1}, the coefficients �̂�𝑘 = (�̂�ℓ (𝒚𝑘))ℓ∈{1,2,...,𝑀−1} are
computed by solving the linear system 𝐵(𝒚𝑘) �̂�𝑘 = �̂� . The approximation 𝑢ℎ

𝑑
(𝒚𝑘)

(where ℎ = 1/𝑀) to the solution 𝑢 is then given by (A.10).

The computational approach

The algorithm proceeds in a similar way as for the uniform case, with the difference
that we now need to sample from a log-normal random field.

A.2 Log-Normal Random Coefficients 537

0 0.2 0.4 0.6 0.8 1

0

10

20

30

40

50

60

70

80

0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0 0.005 0.01 0.015 0.02 0.025

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

0.02

0.025

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

0

200

400

600

800

1000

1200

Fig. A.6: The left column uses 𝜂 = 2, whereas the right column uses 𝜂 = 1.3.
In the top row, instances of the random field 𝑎(·, 𝒚) are shown, as well as various
random selections of the random coefficients 𝒚. In the middle row, the corresponding
solutions 𝑢(·, 𝒚) of (A.7) and (A.8) are shown. The bottom row shows a histogram
of 𝑢(1/2, ·) using 2 · 105 samples and 2000 bins. The truncation dimension is 100 in
these examples.

538 A Partial Differential Equations With Random Coefficients

Algorithm A.2 Consider the boundary value problem (A.16) with log-normal i.i.d.
random coefficients. In order to find an approximation to E[𝐺 (𝑢)], do the following.

(1) Generate samples 𝒙0, 𝒙1, . . . , 𝒙𝑁−1 ∈ [0, 1)𝑑 (using (Q)MC), where the points
are given by 𝒙𝑘 = (𝑥𝑘,1, 𝑥𝑘,2, . . . , 𝑥𝑘,𝑑), for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}.

(2) Substitute these points into the truncated random field

𝑎𝑑 (𝒛, 𝒚𝑘) = 𝜓∗ (𝒛) + 𝜓0 (𝒛) exp ©«
𝑑∑︁
𝑗=1

𝑦𝑘, 𝑗 𝜓 𝑗 (𝒛)
ª®¬ for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1},

where

𝒚𝑘 = (𝑦𝑘,1, . . . , 𝑦𝑘,𝑑) = Φ−1 (𝒙𝑘) = (Φ−1 (𝑥𝑘,1), . . . ,Φ−1 (𝑥𝑘,𝑑)) (A.32)

and Φ−1 is the inverse cumulative distribution function of the standard normal
distribution.

(3) Use a PDE solver (for instance the finite element method with mesh width ℎ), in
order to compute estimations of the solutions of the PDEs,

−∇𝒛 · (𝑎𝑑 (𝒛, 𝒚𝑘)∇𝒛𝑢(𝒛, 𝒚𝑘)) = 𝑓 (𝒛) for 𝒛 ∈ 𝐷,
𝑢(𝒛, 𝒚𝑘) =0 for 𝒛 ∈ 𝜕𝐷,

to get approximations 𝑢ℎ
𝑑
(𝒚𝑘) for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}. In the case of a fi-

nite element method, this involves computing the stiffness matrices 𝐵(𝒚𝑘) =

(𝑏𝑘,ℓ,𝑚)ℓ,𝑚∈{1,2,...,𝑀−1} using a quadrature rule as in (A.30) and solving the
linear systems 𝐵(𝒚𝑘) �̂�𝑘 = �̂� for 𝑘 ∈ {0, 1, . . . , 𝑁 − 1}.

(4) An estimation of the expected value E[𝐺 (𝑢)] is then computed by

𝑄𝑁,𝑑 (𝐺 (𝑢ℎ𝑑)) =
1
𝑁

𝑁−1∑︁
𝑘=0

𝐺 (𝑢ℎ𝑑 (𝒚𝑘)) ≈ E[𝐺 (𝑢)] .

Error analysis

The error can again be split into a truncation error, a finite element error, and
an integration error. The numerical integration problem is now defined over R𝑑 ,
which we transformed to the unit cube [0, 1]𝑑 using the inverse standard normal
cumulative distribution function. This integration problem has different properties
than the analogous problem defined over the unit cube, and QMC theory on this
type of integration problem is in some sense not as advanced as integration over
the unit cube (see also Chapter 8). In particular, to achieve integration error bounds
independent of the dimension using QMC, by the current state of the art we need to
use randomized QMC methods such as, e.g., randomly shifted lattice rules.

Consider the root mean square error of a randomly shifted lattice rule 𝑄𝑁,𝑑,𝚫
with random shift 𝚫 (see Section 7.1),

A.2 Log-Normal Random Coefficients 539

𝐸𝑑,ℎ,𝑁 :=

√︄
E𝚫

[(
E[𝐺 (𝑢)] −𝑄𝑁,𝑑,𝚫 (𝐺 (𝑢ℎ

𝑑
))

)2
]
.

Since the random shift 𝚫 and the (Q)MC points 𝒚𝑘 are independent, we have

𝐸2
𝑑,ℎ,𝑁 =

(
E[𝐺 (𝑢) − 𝐺 (𝑢ℎ𝑑)]

)2
+ E𝚫

[(
E[𝐺 (𝑢ℎ𝑑)] −𝑄𝑁,𝑑,𝚫 (𝐺 (𝑢ℎ𝑑))

)2
]
. (A.33)

The first term, E[𝐺 (𝑢) − 𝐺 (𝑢ℎ
𝑑
)], can be further split into the truncation error and

the finite element error, which can be bounded similarly to the uniform case, see [88]
for more information.

The second term in (A.33) is the integration error using a randomly shifted lattice
rule. As in the uniform case, the integrand 𝐹 (𝒚) = 𝐺 (𝑢ℎ

𝑑
(·, 𝒚)) defined over R𝑑 is

infinitely many times differentiable and satisfies the bound 𝜕 |𝝂 |

𝜕𝜈1 𝑦1 · · · 𝜕𝜈𝑑 𝑦𝑑
𝑢(·, 𝒚)

𝑉

≤ |𝝂 |!
(log 2) |𝝂 |

©«
𝑑∏
𝑗=1

𝛽
𝜈 𝑗

𝑗

ª®¬ ∥ 𝑓 ∥𝑉′

𝑎(𝒚) ,

where ∥·∥𝑉 is a certain norm for which 𝑢(·, 𝒚) ∈ 𝑉 , and where𝑉 ′ is the corresponding
dual space. For further details we refer to [88]. The bound on the norm of the partial
derivatives of the solution 𝑢 can again be used to obtain bounds on the integration
error.

Appendix B
Numerical Experiments for Lattice Rule
Construction Algorithms

By Adrian Ebert

In this chapter, we illustrate the computational cost of the various construction
algorithms, which were introduced in Chapters 3 and 4, and the error convergence
behavior of the resulting lattice rules, by means of numerical experiments. As before
we consider the construction of generating vectors of rank-1 lattice rules for the
weighted Korobov spaceHkor,𝑑,𝛼,𝜸 of smoothness 𝛼 > 1/2. Additionally, we assume
that the underlying weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] are either of product form, i.e., 𝛾𝔲 =∏
𝑗∈𝔲 𝛾 𝑗 for 𝔲 ⊆ [𝑑] (see Equation (2.21)), or of product and order dependent

(POD) form, i.e., 𝛾𝔲 = Γ|𝔲 |
∏
𝑗∈𝔲 𝛾 𝑗 for 𝔲 ⊆ [𝑑] (see Equation (3.25)).

We recall that for product weights the squared worst-case error of an 𝑁-point
rank-1 lattice rule with generating vector 𝒈 ∈ Z𝑑 in the space Hkor,𝑑,𝛼,𝜸 is explicitly
given by

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 = −1 + 1
𝑁

𝑁−1∑︁
𝑘=0

𝑑∏
𝑗=1

©«1 + 𝛾 𝑗
∑︁

ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔 𝑗/𝑁

|ℎ|2𝛼
ª®¬ , (B.1)

while for POD weights it equals

[err𝑁,𝑑,𝛼,𝜸 (𝒈)]2 =
1
𝑁

𝑁−1∑︁
𝑘=0

𝑑∑︁
ℓ=1

Γℓ

∑︁
𝔲⊆[𝑑]
|𝔲 |=ℓ

©«
∏
𝑗∈𝔲

𝛾 𝑗

∑︁
ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔 𝑗/𝑁

|ℎ|2𝛼
ª®¬ . (B.2)

As we will use smoothness parameters 𝛼 ∈ N for the numerical experiments,
we obtain by Remark 2.9 that the sum of exponentials occurring in (B.1) and (B.2)
further simplifies to∑︁

ℎ∈Z\{0}

e2𝜋iℎ𝑘𝑔 𝑗/𝑁

|ℎ|2𝛼
=

(−1)𝛼+1 (2𝜋)2𝛼

(2𝛼)! 𝐵2𝛼

({
𝑘𝑔 𝑗

𝑁

})
,

where 𝐵2𝛼 denotes the Bernoulli polynomial of degree 2𝛼. For non-integer 𝛼 > 1/2,
this sum can be numerically approximated.

541

https://doi.org/10.1007/978-3-031-09951-9
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022

542 B Numerical Experiments for Lattice Rule Construction Algorithms

B.1 Numerical Results for the CBC Construction

Error convergence behavior: fast CBC algorithm with product weights

We examine the convergence behavior of err𝑁,𝑑,𝛼,𝜸 (𝒈) for generating vectors 𝒈
constructed by the fast CBC algorithm (see Algorithm 3.6, and Section 3.4 (for
prime 𝑁) and Section 4.2 (for prime-power 𝑁 , where we set all reduction indices 𝑤 𝑗
equal to zero), respectively) for different sequences of product weights 𝜸 = (𝛾 𝑗) 𝑗≥1
and different values of 𝑁 . In particular, we consider prime 𝑁 as well as prime
powers 𝑁 = 2𝑚 for our experiments and the product weight sequences (𝛾 𝑗) 𝑗≥1 given
by 𝛾 𝑗 = 𝑗−2, 𝛾 𝑗 = 𝑗−3, 𝛾 𝑗 = (0.5) 𝑗 , or 𝛾 𝑗 = (0.95) 𝑗 . The dimension is fixed at
𝑑 = 100.

We stress that the asymptotic error convergence rates stated in Theorems 3.7 and
3.9 may not always be visible for the ranges of 𝑁 considered in the numerical exper-
iments. Therefore, the graphs presented in Figures B.1 and B.2 are to be understood
as a demonstration of the pre-asymptotic worst-case error behavior.

The convergence results presented are in accordance with Theorems 3.7 and 3.9,
and the observed convergence rates in the considered examples are of order O(𝑁−𝜏)
with 𝜏 ∈ [1/2, 𝛼). We also notice that the stronger the decay of the weight sequence
𝜸, the faster the worst-case error decays. Also this observation is in accordance with
Theorems 3.7 and 3.9.

Computation time: fast CBC algorithm with product weights

In this section, we illustrate the computation time of the fast CBC construction for
product weights (see Algorithm 3.6, and Section 3.4 (for prime 𝑁) and Section 4.2
(for prime-power 𝑁 , where we set all reduction indices 𝑤 𝑗 equal to zero), respec-
tively). To this end, let 𝑚, 𝑑 ∈ N and 𝑁 = 2𝑚, let 𝛼 = 1, and use the weight sequence
𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗−2. Note that the smoothness 𝛼 and the chosen weight
sequence do not influence the computation times. In Table B.1 and Figure B.3 we
report and display the timings for the construction of generating vectors of rank-1
lattice rules via the fast CBC algorithm. In order to assure robustness of the timings,
we display the average computation times over five independent executions of the
numerical experiments. All timings here and in the following sections were per-
formed on an Intel Core i5 CPU with 2.3 GHz using Matlab2019b, unless specified
otherwise.

The obtained results in Table B.1 and Figure B.3 confirm the computational
cost of O(𝑑 𝑁 log 𝑁) of the fast CBC construction. The linear dependence of the
construction cost on the dimension 𝑑 is well observable in Table B.1 while the
dependence on 𝑁 can be observed in Figure B.3.

B.1 Numerical Results for the CBC Construction 543

Error convergence in the space Hkor,𝑑,𝛼,𝜸 with 𝑑 = 100, 𝛼 = 1.

102 103 104

10−2

10−1

100

Number of points 𝑁

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.65)

(a) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗
−2.

102 103 104

10−4

10−3

10−2

10−1

Number of points 𝑁

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.90)

(b) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗
−3.

102 103 104

106

107

108

109

Number of points 𝑁

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.50)

(c) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = (0.95) 𝑗 .

102 103 104

10−3

10−2

10−1

100

Number of points 𝑁

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.75)

(d) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = (0.5) 𝑗 .

fast CBC algorithm reference line

Fig. B.1: Convergence results for the worst-case error err𝑁,𝑑,𝛼,𝜸 (𝒈) in the weighted
Korobov space Hkor,𝑑,𝛼,𝜸 of smoothness 𝛼 = 1 with dimension 𝑑 = 100. The
generating vectors 𝒈 have been constructed by the fast CBC algorithm for prime 𝑁
using product weights.

544 B Numerical Experiments for Lattice Rule Construction Algorithms

Error convergence in the space Hkor,𝑑,𝛼,𝜸 with 𝑑 = 100, 𝛼 = 1.

102 103 104

10−2

10−1

100

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.65)

(a) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗
−2.

102 103 104

10−4

10−3

10−2

10−1

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.90)

(b) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗
−3.

102 103 104

102

103

104

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.50)

(c) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = (0.95) 𝑗 .

102 103 104

10−3

10−2

10−1

100

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.75)

(d) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = (0.5) 𝑗 .

fast CBC algorithm reference line

Fig. B.2: Convergence results for the worst-case error err𝑁,𝑑,𝛼,𝜸 (𝒈) in the weighted
Korobov space Hkor,𝑑,𝛼,𝜸 of smoothness 𝛼 = 1 with dimension 𝑑 = 100. The
generating vectors 𝒈 have been constructed by the fast CBC algorithm for prime
powers 𝑁 = 2𝑚 using product weights.

B.1 Numerical Results for the CBC Construction 545

Table B.1: Mean computation times (in seconds, mean over five runs) for constructing
the generating vector 𝒈 of a lattice rule with 𝑁 = 2𝑚 points in 𝑑 dimensions using
the fast CBC algorithm.

𝑑 = 50 𝑑 = 100 𝑑 = 500 𝑑 = 1000 𝑑 = 2000
𝑚 = 10 0.02972 0.03323 0.1644 0.3324 0.6546

𝑚 = 12 0.03367 0.0484 0.2393 0.4767 0.9555

𝑚 = 14 0.04972 0.08306 0.4121 0.8214 1.645

𝑚 = 16 0.114 0.2213 1.105 2.201 4.409

𝑚 = 18 0.3843 0.7457 3.702 7.363 14.71

𝑚 = 20 1.659 3.244 15.93 31.97 63.9

Mean computation times for the fast CBC algorithm.

10 11 12 13 14 15 16 17 18 19 20

10−2

10−1

100

101

102

𝑚

C
om

pu
ta

tio
n

tim
e

in
se

co
nd

s

fast CBC with 𝑑 = 50
fast CBC with 𝑑 = 2000
O(𝑚 2𝑚)

Fig. B.3: Mean computation times (in seconds, mean over five runs) for constructing
the generating vector 𝒈 of a lattice rule with 𝑁 = 2𝑚 points in 𝑑 ∈ {50, 2000}
dimensions using the fast CBC construction for product weights.

546 B Numerical Experiments for Lattice Rule Construction Algorithms

Error convergence behavior: fast CBC algorithm with POD weights

In this section, we illustrate the convergence behavior of err𝑁,𝑑,𝛼,𝜸 (𝒈) for generating
vectors 𝒈 constructed by the fast CBC algorithm with POD weights (see Section 3.5)
(for prime 𝑁) and Section 4.2 (for prime-power 𝑁 , where we set all reduction indices
𝑤 𝑗 equal to zero), respectively). We use POD weights 𝜸 = {𝛾𝔲}𝔲⊆[𝑑] of the general
form

𝛾𝔲 = Γ|𝔲 |
∏
𝑗∈𝔲

𝛾 𝑗 = |𝔲 |!
∏
𝑗∈𝔲

𝑗−𝑎

with positive 𝑎 > 0, and consider different values of 𝑁 = 2𝑚 for our experiments.
The dimension is fixed at 𝑑 = 100.

In Figure B.4 we display the worst-case errors of lattice rules constructed by the
fast CBC algorithm for POD weights using two different weight sequences.

Error convergence in the space Hkor,𝑑,𝛼,𝜸 with 𝑑 = 100, 𝛼 = 1.

102 103 104

10−1

100

101

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.53)

(a) Weights 𝛾𝔲 = |𝔲 |! ∏ 𝑗∈𝔲 𝑗
−𝑎 with 𝑎 = 2.

102 103 104

10−3

10−2

10−1

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.83)

(b) Weights 𝛾𝔲 = |𝔲 |! ∏ 𝑗∈𝔲 𝑗
−𝑎 with 𝑎 = 4.

fast CBC algorithm reference line

Fig. B.4: Convergence results for the worst-case error err𝑁,𝑑,𝛼,𝜸 (𝒈) in the weighted
Korobov space Hkor,𝑑,𝛼,𝜸 of smoothness 𝛼 = 1 with dimension 𝑑 = 100 using POD
weights. The generating vectors 𝒈 have been constructed by the fast CBC algorithm
for prime power 𝑁 = 2𝑚.

The convergence results presented are again in accordance with Theorem 3.9,
and the observed convergence rates in the considered examples are of order O(𝑁−𝜏)
with 𝜏 ∈ [1/2, 𝛼). The stronger the decay of the POD weights (controlled by the
decay parameter 𝑎 in this case), the faster the worst-case error decays.

B.1 Numerical Results for the CBC Construction 547

Computation time: fast CBC algorithm with POD weights

Here, we illustrate the computation time of the fast CBC algorithm for POD weights.
In Sections 3.5 and 4.2, respectively, it was shown that the fast CBC algorithm for
POD weights has an asymptotic computational cost of order O(𝑑 𝑁 log 𝑁 + 𝑑2𝑁).

Let 𝑚, 𝑑 ∈ N and 𝑁 = 2𝑚, let 𝛼 = 1, and use the weight sequence with weights
given by 𝛾𝔲 = |𝔲 |! ∏ 𝑗∈𝔲 𝑗

−2. Note again that the smoothness𝛼 and the chosen weight
sequence do not influence the computation times. In Table B.2 and Figure B.5 we
report and display the timings for the construction of generating vectors of rank-1
lattice rules via the fast CBC algorithm for POD weights. In order to assure robustness
of the timings, we display the average computation times over five independent
executions of the numerical experiments.

Table B.2: Mean computation times (in seconds, mean over five runs) for constructing
the generating vector 𝒈 of a lattice rule with 𝑁 = 2𝑚 points in 𝑑 dimensions using
the fast CBC algorithm with POD weights.

𝑑 = 50 𝑑 = 100 𝑑 = 200 𝑑 = 500
𝑚 = 8 0.2215 0.5515 2.116 12.4

𝑚 = 10 0.2128 0.7601 2.958 17.51

𝑚 = 12 0.293 1.115 4.287 25.58

𝑚 = 14 0.5664 1.946 7.571 46.05

𝑚 = 16 1.628 5.916 23.13 144.9

The results displayed in Table B.2 and Figure B.5 confirm the computational
cost of O(𝑑 𝑁 log 𝑁 + 𝑑2𝑁) for the fast CBC construction for POD weights (see
Section 3.5 (for prime 𝑁) and Section 4.2 (for prime-power 𝑁 , where we set all
reduction indices 𝑤 𝑗 equal to zero), respectively).

548 B Numerical Experiments for Lattice Rule Construction Algorithms

Mean computation times for the fast CBC algorithm with POD weights.

8 9 10 11 12 13 14 15 16 1710−2

10−1

100

101

102

103

104

𝑚

C
om

pu
ta

tio
n

tim
e

in
se

co
nd

s
fast CBC with 𝑑 = 50
fast CBC with 𝑑 = 500
O(𝑚 2𝑚50 + 2𝑚502)
O (𝑚 2𝑚500 + 2𝑚5002)

Fig. B.5: Mean computation times (in seconds, mean over five runs) for constructing
the generating vector 𝒈 of a lattice rule with 𝑁 = 2𝑚 points in 𝑑 ∈ {50, 500}
dimensions using the fast CBC construction for POD weights.

Error convergence behavior: reduced fast CBC algorithm

In this section, we illustrate the error convergence behavior of rank-1 lattice rules
constructed by the reduced fast CBC algorithm, which was outlined in Sections 4.1
and 4.2. To this end, we assume that 𝑁 = 𝑏𝑚 is a prime power with prime base
𝑏 and 𝑚 ∈ N, and again consider the product weight sequences 𝜸 = (𝛾 𝑗) 𝑗≥1 with
𝛾 𝑗 = 𝑗−2, 𝛾 𝑗 = 𝑗−3, 𝛾 𝑗 = (0.5) 𝑗 , or 𝛾 𝑗 = (0.95) 𝑗 . Furthermore, we choose a fixed
dimension of 𝑑 = 100 and reduction indices 𝑤1 ≤ 𝑤2 ≤ · · · ≤ 𝑤𝑑 of the form
𝑤 𝑗 = ⌊𝑐 log𝑏 (𝑗)⌋ with 𝑐 ∈ {2, 3}. As a reference, we also display the worst-case
errors of the corresponding lattice rules constructed by the fast CBC algorithm. The
results of our experiments are displayed in Figures B.6 and B.7 below.

The results in Figures B.6 and B.7 reveal that the interplay between the weight
sequence 𝜸 and the reduction indices 𝑤1 ≤ 𝑤2 ≤ · · · ≤ 𝑤𝑑 greatly influences
the convergence behavior. If the weights decay sufficiently fast, the lattice rules
constructed by the reduced fast CBC algorithm yield a similar convergence order as
those constructed by the fast CBC algorithm. However, if the decay of the weights is
too slow, or, in other words, the increase of the reduction indices is too high, then the

B.1 Numerical Results for the CBC Construction 549

Error convergence in the space Hkor,𝑑,𝛼,𝜸 with 𝑑 = 100, 𝛼 = 1, 𝑏 = 2, 𝑤 𝑗 = ⌊2 log𝑏 (𝑗) ⌋.

102 103 104

10−2

10−1

100

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.57)

(a) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗
−2.

102 103 104

10−4

10−3

10−2

10−1

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.86)

(b) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗
−3.

102 103 104

106

107

108

109

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.50)

(c) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = (0.95) 𝑗 .

102 103 104

10−3

10−2

10−1

100

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.78)

(d) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = (0.5) 𝑗 .

fast CBC algorithm reduced CBC algorithm reference line

Fig. B.6: Convergence results for the worst-case error err𝑁,𝑑,𝛼,𝜸 (𝒈) in the weighted
Korobov space Hkor,𝑑,𝛼,𝜸 of smoothness 𝛼 = 1 with dimension 𝑑 = 100. The
generating vectors 𝒈 have been constructed by the reduced fast CBC algorithm
or the fast CBC algorithm, respectively, with indicated weights 𝜸 = (𝛾 𝑗) 𝑗≥1 and
reduction indices 𝑤 𝑗 = ⌊2 log𝑏 (𝑗)⌋ for 𝑗 ∈ [𝑑].

550 B Numerical Experiments for Lattice Rule Construction Algorithms

Error convergence in the space Hkor,𝑑,𝛼,𝜸 with 𝑑 = 100, 𝛼 = 1, 𝑏 = 2, 𝑤 𝑗 = ⌊3 log𝑏 (𝑗) ⌋.

102 103 104

10−2

10−1

100

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.23)

(a) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗
−2.

102 103 104

10−4

10−3

10−2

10−1

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.52)

(b) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗
−3.

102 103 104

106

107

108

109

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.50)

(c) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = (0.95) 𝑗 .

102 103 104

10−3

10−2

10−1

100

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.78)

(d) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = (0.5) 𝑗 .

fast CBC algorithm reduced CBC algorithm reference line

Fig. B.7: Convergence results for the worst-case error err𝑁,𝑑,𝛼,𝜸 (𝒈) in the weighted
Korobov space Hkor,𝑑,𝛼,𝜸 of smoothness 𝛼 = 1 with dimension 𝑑 = 100. The
generating vectors 𝒈 have been constructed by the reduced fast CBC algorithm
or the fast CBC algorithm, respectively, with indicated weights 𝜸 = (𝛾 𝑗) 𝑗≥1 and
reduction indices 𝑤 𝑗 = ⌊3 log𝑏 (𝑗)⌋ for 𝑗 ∈ [𝑑].

B.1 Numerical Results for the CBC Construction 551

experimental convergence rates of the reduced fast and the fast CBC constructions
may differ. We also observe that using a larger increase parameter 𝑐 for the reduction
indices in general leads to a higher worst-case error of the lattice rules constructed
by the reduced fast CBC algorithm.

Computation time: reduced fast CBC algorithm

In this section, we illustrate the computation time of the reduced fast CBC construc-
tion (see Sections 4.1 and 4.2). To this end, let 𝑚, 𝑑 ∈ N and 𝑁 = 2𝑚, let 𝛼 = 1, and
use the weight sequence 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗−2. In Table B.3 and Figure B.8
we illustrate the timings for the construction of generating vectors of rank-1 lattice
rules via the fast CBC algorithm and the reduced fast CBC algorithm. For the latter
we use the reduction indices given by 𝑤 𝑗 = ⌊2 log𝑏 (𝑗)⌋. Again, we performed five
independent executions of the numerical experiments in order to assure robustness
of the timings.

Table B.3: Mean computation times (in seconds, mean over five runs) for constructing
the generating vector 𝒈 of a rank-1 lattice rule with 𝑁 = 2𝑚 points in 𝑑 dimensions
using the fast CBC algorithm (normal font) or the reduced CBC algorithm (bold
font), respectively.

𝑑 = 50 𝑑 = 100 𝑑 = 500 𝑑 = 1000 𝑑 = 2000

𝑚 = 10 0.02972 0.03323 0.1644 0.3324 0.6546
0.02559 0.004809 0.00549 0.006638 0.008283

𝑚 = 12 0.03367 0.0484 0.2393 0.4767 0.9555
0.01115 0.01105 0.01255 0.01466 0.01851

𝑚 = 14 0.04972 0.08306 0.4121 0.8214 1.645
0.02233 0.02625 0.03607 0.0493 0.07358

𝑚 = 16 0.114 0.2213 1.105 2.201 4.409
0.0417 0.06807 0.148 0.2007 0.3

𝑚 = 18 0.3843 0.7457 3.702 7.363 14.71
0.1236 0.176 0.635 0.7876 1.053

𝑚 = 20 1.659 3.244 15.93 31.97 63.9
0.573 0.9255 4.175 7.174 9.915

The results in Table B.3 and Figure B.8 confirm that the times for constructing
generating vectors of rank-1 lattice rules can be drastically decreased when using
the reduced fast CBC algorithm (as compared to the fast CBC algorithm). The faster
the reduction indices 𝑤1 ≤ 𝑤2 ≤ · · · ≤ 𝑤𝑑 decay, the larger are the savings in
computational effort by using the reduced fast CBC construction.

552 B Numerical Experiments for Lattice Rule Construction Algorithms

Mean computation times for the fast and the reduced CBC algorithm.

10 12 14 16 18 20

10−3

10−2

10−1

100

101

102

𝑚

C
om

pu
ta

tio
n

tim
e

in
se

co
nd

s

10 12 14 16 18 20

10−3

10−2

10−1

100

101

102

𝑚

fast CBC algorithm reduced CBC algorithm O(𝑚 2𝑚)

Fig. B.8: Mean computation times (in seconds, mean over five runs) for constructing
the generating vector 𝒈 of a lattice rule with 𝑁 = 2𝑚 points in 𝑑 ∈ {50, 2000}
dimensions using the fast CBC construction and the reduced fast CBC algorithm,
respectively, with reduction indices 𝑤 𝑗 = ⌊2 log𝑏 (𝑗)⌋ for 𝑗 ∈ [𝑑].

Remark B.1 We obtain very similar results in terms of error convergence and com-
putation time when using the reduced fast SCS algorithm (described in Section 4.4)
instead of the reduced fast CBC construction. We therefore omit these results here
as they do not give additional insights.

B.2 Numerical Results for Alternative Constructions

In this section we examine the error convergence behavior and the computation
times of some alternative construction algorithms for the generating vectors of
rank-1 lattice rules, such as the successive coordinate search (SCS) algorithm or
the component-by-component digit-by-digit (CBC-DBD) construction, which were
discussed in Sections 4.3 and 4.6, respectively.

Numerical results for the successive coordinate search algorithm

We begin with the SCS algorithm. Since we require an initial vector 𝒈 (0) =

(𝑔 (0)1 , . . . , 𝑔
(0)
𝑑

) ∈ 𝐺
𝜑

𝑑
(𝑁) as additional input for this algorithm, we consider the

following two types of initial vectors.

B.2 Numerical Results for Alternative Constructions 553

• Fixed initial vector: We use the fixed vector 𝒈 (0) = (1, . . . , 1) ∈ 𝐺𝜑
𝑑
(𝑁) as the

initial vector.
• Random initial vector: The initial vector 𝒈 (0) = (𝑔 (0)1 , . . . , 𝑔

(0)
𝑑

) is randomly and
uniformly selected from the set 𝐺𝜑

𝑑
(𝑁).

Error convergence behavior: fast SCS algorithm with product weights

We examine the convergence behavior of err𝑁,𝑑,𝛼,𝜸 (𝒈) for generating vectors 𝒈
constructed by the fast SCS algorithm (see Section 4.3) for different sequences of
product weights 𝜸 = (𝛾 𝑗) 𝑗≥1 and different values of 𝑁 . In particular, we consider
prime 𝑁 , a dimension of 𝑑 = 100 and product weight sequences given by 𝛾 𝑗 =

𝑗−2, 𝛾 𝑗 = 𝑗−3, 𝛾 𝑗 = (0.5) 𝑗 , or 𝛾 𝑗 = (0.95) 𝑗 . Furthermore, we use fixed initial vectors
as well as random initial vectors as inputs for the SCS algorithm. For comparison,
we compute and display the worst-case errors of lattice rules computed by the fast
CBC construction. The corresponding results are displayed in Figure B.9.

The convergence results displayed are in accordance with Theorem 4.10, and the
observed convergence rates in the considered examples are of order O(𝑁−𝜏) with
𝜏 ∈ [1/2, 𝛼). We notice that the worst-case errors of lattice rules constructed by the
fast SCS algorithm are virtually identical to those of lattice rules constructed by the
fast CBC algorithm. Additionally, we see that both random and fixed initial vectors
yield good lattice rules when used as inputs for the fast SCS algorithm.

Computation time: fast SCS algorithm with product weights

In this section, we illustrate the computation time of the successive coordinate search
algorithm. We set 𝛼 = 1 and consider different values of prime 𝑁 , different dimen-
sions 𝑑, and use the weight sequence 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗−2. For each of the
displayed scenarios, we performed five independent timing runs and then calculated
the mean computation time.

The results of the experiments are given in Table B.4 and Figure B.10. For
comparison, we show the corresponding computation times that were obtained for
the fast CBC algorithm.

554 B Numerical Experiments for Lattice Rule Construction Algorithms

Error convergence in the space Hkor,𝑑,𝛼,𝜸 with 𝑑 = 100, 𝛼 = 1.

102 103 104

10−2

10−1

100

Number of points 𝑁

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.65)

(a) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗
−2.

102 103 104

10−4

10−3

10−2

10−1

Number of points 𝑁

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.90)

(b) Weighs 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗
−3.

102 103 104

106

107

108

109

Number of points 𝑁

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.50)

(c) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = (0.95) 𝑗 .

102 103 104

10−3

10−2

10−1

100

Number of points 𝑁

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾
(𝒈
)

O (𝑁−0.75)

(d) Weighs 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = (0.5) 𝑗 .

fast CBC fast SCS (𝒈 (0) fixed) fast SCS (𝒈 (0) random) reference

Fig. B.9: Convergence results for the worst-case error err𝑁,𝑑,𝛼,𝜸 (𝒈) in the weighted
Korobov space Hkor,𝑑,𝛼,𝜸 of smoothness 𝛼 = 1 with dimension 𝑑 = 100. The
generating vectors 𝒈 have been constructed for prime 𝑁 by the fast CBC algorithm
and the fast SCS algorithm with fixed or random initial vectors, respectively.

B.2 Numerical Results for Alternative Constructions 555

Table B.4: Mean computation times (in seconds, mean over five runs) for constructing
the generating vector 𝒈 of a lattice rule with prime 𝑁 points in 𝑑 dimensions using
the fast CBC construction (normal font) and the fast SCS algorithm (bold font),
respectively.

𝑑 = 50 𝑑 = 100 𝑑 = 500 𝑑 = 1000 𝑑 = 2000

𝑁 = 257 0.01563 0.00321 0.01274 0.02334 0.04384
0.007508 0.005391 0.02105 0.04033 0.07741

𝑁 = 1031 0.01084 0.01413 0.0486 0.09233 0.1797
0.01205 0.01723 0.06401 0.1222 0.2375

𝑁 = 4099 0.02519 0.04551 0.2211 0.4404 0.8807
0.02904 0.05216 0.2558 0.5095 1.019

𝑁 = 16411 0.07088 0.129 0.6324 1.263 2.524
0.08509 0.1546 0.7566 1.51 3.012

𝑁 = 65537 0.07908 0.1304 0.6284 1.28 2.548
0.1283 0.2147 1.061 2.113 4.234

𝑁 = 262147 0.6905 1.314 6.811 13.66 27.13
0.8547 1.685 8.268 16.54 32.96

Mean computation times for the fast SCS algorithm.

102 103 104 105

10−3

10−2

10−1

100

101

102

𝑁

C
om

pu
ta

tio
n

tim
e

in
se

co
nd

s

fast SCS with 𝑑 = 50
fast SCS with 𝑑 = 2000
O(𝑁 log 𝑁)
fast CBC with 𝑑 = 50
fast CBC with 𝑑 = 2000

Fig. B.10: Mean computation times (in seconds, mean over five runs) for constructing
the generating vector 𝒈 of a lattice rule with prime 𝑁 points in 𝑑 ∈ {50, 2000}
dimensions using the fast CBC construction or the fast SCS algorithm, respectively.

556 B Numerical Experiments for Lattice Rule Construction Algorithms

The performed timings confirm the theoretical cost of O(𝑑 𝑁 log 𝑁) of the fast
SCS algorithm (see Section 4.3). Moreover, we see that the computation times for
the fast SCS algorithm are comparable to those for the fast CBC algorithm. However,
we notice that the fast SCS algorithm always requires slightly more time. This can
be explained by the fact that in the fast SCS algorithm we keep the final dimension 𝑑
in each step, while in the CBC construction the dimension is increased gradually
in each step of the algorithm. Furthermore, in the SCS construction an additional
update based on the initial vector 𝒈 (0) is performed in each step which is not required
in the CBC algorithm.

Remark B.2 We observe that the construction times displayed in Figure B.10 fluc-
tuate stronger with respect to 𝑁 than for the previously depicted timing results in
Figure B.3. The reason for this difference is the fact that the fast Fourier transform
(FFT) is faster when applied to a vector whose length can be factored into small
primes. In our implementation of the fast CBC algorithm for 𝑁 = 2𝑚 the fast Fourier
transforms are always applied to vectors of length 2𝑘 with 𝑘 ∈ {1, 2, . . . , 𝑚 − 2}.
Therefore the timings are more robust with respect to different 𝑁 = 2𝑚 and no fluctu-
ations can be observed. In contrast, when using the fast CBC algorithm or the fast SCS
algorithm for prime 𝑁 , the fast Fourier transforms are applied to vectors of length
(𝑁 − 1)/2 (when exploiting the symmetry of the function 𝜑𝛼 (see Equation (3.7)).
The measured computation times do then strongly depend on the prime factorization
of 𝑁 − 1. In order to illustrate this, consider the two prime numbers 𝑁1 = 1031 and
𝑁2 = 2053. Since (𝑁1 − 1)/2 = 515 = 5 · 103 and (𝑁2 − 1)/2 = 1026 = 2 · 33 · 19,
the measured computation time for 𝑁1 is actually higher than the one for the larger
number 𝑁2.

Numerical results for the CBC-DBD construction

Here we illustrate the error convergence behavior and the computation time for the
CBC-DBD construction, which was introduced in Section 4.6. Due to the formulation
of the algorithm and the considerations in Section 4.6, we will restrict ourselves to
product weights and consider 𝑁 = 2𝑚, 𝑚 ∈ N, as the total number of points of the
lattice rules.

Error convergence behavior: CBC-DBD algorithm with product weights

We will examine the error convergence behavior of err𝑁,𝑑,𝛼,𝜸2𝛼 (𝒈) for generating
vectors 𝒈 constructed by the CBC-DBD algorithm (Algorithm 4.20) for different
sequences of product weights 𝜸 = (𝛾 𝑗) 𝑗≥1 and different values of 𝑁 = 2𝑚. In
particular, we will use the four product weight sequences given by 𝛾 𝑗 = 𝑗−2, 𝛾 𝑗 =
𝑗−3, 𝛾 𝑗 = (0.5) 𝑗 , or 𝛾 𝑗 = (0.95) 𝑗 , we let 𝛼 ∈ {1, 1.5, 2}, and fix the dimension at
𝑑 = 100. For comparison, we compute the worst-case error err𝑁,𝑑,𝛼,𝜸2𝛼 of lattice
rules obtained by the fast CBC construction for the function space Hkor,𝑑,𝛼,𝜸2𝛼 .

B.2 Numerical Results for Alternative Constructions 557

Error convergence in the space Hkor,𝑑,𝛼,𝜸2𝛼 with 𝑑 = 100, 𝛼 = 1, 1.5, 2.

102 103 104 105
10−20

10−14

10−8

10−2

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾

2𝛼
(𝒈
)

O (𝑁−1.79)
O (𝑁−2.83)
O (𝑁−3.86)

(a) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗
−2.

102 103 104 105
10−20

10−14

10−8

10−2

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾

2𝛼
(𝒈
)

O (𝑁−1.92)
O (𝑁−2.96)
O (𝑁−3.99)

(b) Weighs 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗
−3.

102 103 104 105
10−5

10−1

103

107

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾

2𝛼
(𝒈
)

O (𝑁−1.00)
O (𝑁−1.02)
O (𝑁−1.16)

(c) Weights 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = (0.95) 𝑗 .

102 103 104 105
10−20

10−14

10−8

10−2

Number of points 𝑁 = 2𝑚

W
or

st-
ca

se
er

ro
re

rr
𝑁
,𝑑

,𝛼
,𝛾

2𝛼
(𝒈
)

O (𝑁−1.80)
O (𝑁−2.82)
O (𝑁−3.81)

(d) Weighs 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = (0.5) 𝑗 .

CBC-DBD fast CBC 𝛼 = 1 𝛼 = 1.5 𝛼 = 2

Fig. B.11: Convergence results for the worst-case error err𝑁,𝑑,𝛼,𝜸2𝛼 (𝒈) in the
weighted Korobov space Hkor,𝑑,𝛼,𝜸2𝛼 for smoothness parameters 𝛼 ∈ {1, 1.5, 2} and
dimension 𝑑 = 100. The generating vectors 𝒈 have been constructed via the CBC-
DBD algorithm and the fast CBC algorithm (for each 𝛼 considered) for 𝑁 = 2𝑚,
respectively.

The results shown in Figure B.11 confirm that the CBC-DBD algorithm reliably
constructs good lattice rules with worst-case errors that are comparable to those of
the corresponding lattice rules obtained by the fast CBC construction. We notice that
the observed convergence rates are of similar order for both constructions, however,
the worst-case errors of lattice rules constructed by the CBC-DBD algorithm are
always slightly higher than the corresponding values for lattices constructed by

558 B Numerical Experiments for Lattice Rule Construction Algorithms

the CBC algorithm. This observation is not surprising since the CBC algorithm
constructs generating vectors of lattice rules that are tailored to the function space
Hkor,𝑑,𝛼,𝜸2𝛼 , while the CBC-DBD construction uses a more general quality function
that is independent of the smoothness parameter 𝛼.

Computation time: CBC-DBD algorithm with product weights

In this section, we discuss and illustrate the computation times for the CBC-DBD
construction. At first, we will derive an efficient implementation of Algorithm 4.20
that only requires O(𝑑 𝑁 log 𝑁) operations to construct the generating vector of a
lattice rule with 𝑁 = 2𝑚 points in 𝑑 dimensions.

Implementation and cost analysis of the CBC-DBD algorithm

Let 𝑚, 𝑑 ∈ N and 𝑁 = 2𝑚, let 𝜸 = (𝛾 𝑗) 𝑗≥1 be product weights, and let 𝑥 be an
odd integer. We recall from (4.30) that for given 𝑣 ∈ [𝑚] and 𝑠 ∈ [𝑑], and positive
integers 𝑎1,𝑚, . . . , 𝑎𝑠−1,𝑚, the quality function ℎ𝑠,𝑣,𝜸 in the CBC-DBD algorithm is
given by

ℎ𝑠,𝑣,𝜸 (𝑥) =
𝑚∑︁
𝑡=𝑣

1
2𝑡−𝑣

2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

©«−1 +
(
1 + 𝛾𝑠 log

(
1

sin2 (𝜋𝑘𝑥/2𝑣)

))

×
𝑠−1∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))ª®¬ .
We observe that a single evaluation of ℎ𝑠,𝑣,𝜸 requires O(𝑠∑𝑚

𝑡=𝑣 2𝑡−1) operations.
Therefore, in a naive implementation of Algorithm 4.20, the number of calculations
for each inner loop over 𝑣 = 1, 2, . . . , 𝑚 − 1 is

O
(
𝑠

𝑚−1∑︁
𝑣=1

2
𝑚∑︁

𝑡=𝑣+1
2𝑡−1

)
= O

(
𝑠

𝑚∑︁
𝑣=2

𝑚∑︁
𝑡=𝑣

2𝑡
)

= O (𝑠 (2𝑚𝑚 − 2(2𝑚 − 1))) = O(𝑠 𝑁 log 𝑁).

Since there is an inner loop for each 𝑠 = 1, 2, . . . , 𝑑−1, the execution of a naive imple-
mentation of the CBC-DBD construction (Algorithm 4.20) requires O(𝑑2𝑁 log 𝑁)
operations. For large 𝑑 this cost is prohibitive such that we aim for a more efficient
implementation.

For 𝑠 ∈ [𝑑 − 1], assume that the numbers 𝑎1,𝑚, . . . , 𝑎𝑠,𝑚 have been constructed
by Algorithm 4.20. For integers 𝑡 ∈ {2, 3, . . . , 𝑚} and odd 𝑘 ∈ {1, 2, . . . , 2𝑡 − 1}, we
introduce the term 𝑞(𝑠, 𝑡, 𝑘) as

B.2 Numerical Results for Alternative Constructions 559

𝑞(𝑠, 𝑡, 𝑘) =
𝑠∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))
and note that for the evaluation of ℎ𝑠+1,𝑣+1,𝜸 (𝑥) in Algorithm 4.20 we can compute
and store 𝑞(𝑠, 𝑡, 𝑘) as it is independent of 𝑣 + 1 and 𝑥. In this way ℎ𝑠+1,𝑣+1,𝜸 (𝑥) can
be rewritten as

ℎ𝑠+1,𝑣+1,𝜸 (𝑥)

=

𝑚∑︁
𝑡=𝑣+1

1
2𝑡−𝑣−1

2𝑡∑︁
𝑘=1

𝑘≡1 (mod 2)

(
−1 +

(
1 + 𝛾𝑠+1 log

(
1

sin2 (𝜋𝑘𝑥/2𝑣+1)

))
𝑞(𝑠, 𝑡, 𝑘)

)
, (B.3)

where, after having determined 𝑎𝑠+1,𝑚, the value of 𝑞(𝑠 + 1, 𝑡, 𝑘) is computed via
the recurrence relation

𝑞(𝑠 + 1, 𝑡, 𝑘) = 𝑞(𝑠, 𝑡, 𝑘)
(
1 + 𝛾𝑠+1 log

(
1

sin2 (𝜋𝑘𝑎𝑠+1,𝑚/2𝑡)

))
. (B.4)

For an algorithmic realization of this finding, we introduce the auxiliary vector
𝒑 = (𝑝(1), . . . , 𝑝(𝑁 − 1)) of length 𝑁 − 1 whose components, for the current
𝑠 ∈ [𝑑 − 1], are given by

𝑝(𝑘 2𝑚−𝑡) =
𝑠∏
𝑗=1

(
1 + 𝛾 𝑗 log

(
1

sin2 (𝜋𝑘𝑎 𝑗 ,𝑚/2𝑡)

))
for each 𝑡 ∈ [𝑚] and each corresponding odd index 𝑘 ∈ {1, 3, . . . , 2𝑡 − 1}. Note
that 𝑝(𝑘 2𝑚−𝑡) coincides with 𝑞(𝑠, 𝑡, 𝑘) for 𝑡 ∈ {2, 3, . . . , 𝑚}. Furthermore, we note
that for the evaluation of ℎ𝑠+1,𝑣+1,𝜸 we do not require the values of 𝑞(𝑠, 𝑡, 𝑘) (or
𝒑) for 𝑡 ∈ {2, 3, . . . , 𝑣}. Additionally, due to the way the 𝑎𝑠,𝑣 are constructed in
Algorithm 4.20, we have that 𝑎𝑠,𝑚 ≡ 𝑎𝑠,𝑣 (mod 2𝑣) for 𝑣 ∈ [𝑚] and thus, by the
periodicity of sin2 (𝜋𝑥),

sin2
(
𝜋
𝑘𝑎𝑠,𝑚

2𝑣

)
= sin2

(
𝜋
𝑘𝑎𝑠,𝑚 (mod 2𝑣)

2𝑣

)
= sin2

(
𝜋
𝑘𝑎𝑠,𝑣

2𝑣

)
.

Hence, we can perform the update as in (B.4) for 𝑘 ∈ {1, 3, . . . , 2𝑣 − 1} with 𝑎𝑠,𝑚
replaced by 𝑎𝑠,𝑣 immediately after each 𝑎𝑠,𝑣 has been determined.

These observations lead to the following fast implementation of Algorithm 4.20.

560 B Numerical Experiments for Lattice Rule Construction Algorithms

Algorithm B.3 (Fast component-by-component digit-by-digit algorithm)

Input: Integer 𝑚 ∈ N, dimension 𝑑, and positive weights 𝜸 = (𝛾 𝑗) 𝑗≥1.
for 𝑡 = 2 to 𝑚 do

for 𝑘 = 1 to 2𝑡 − 1 in steps of 2 do
𝑝(𝑘 2𝑚−𝑡) =

(
1 + 𝛾1 log

(
1/sin2 (𝜋𝑘/2𝑡)

))
end for

end for

Set 𝑎1,𝑚 = 1 and 𝑎2,1 = · · · = 𝑎𝑑,1 = 1.

for 𝑠 = 1 to 𝑑 − 1 do
for 𝑣 = 1 to 𝑚 − 1 do
𝑔∗ = argmin

𝑔∈{0,1}
ℎ𝑠+1,𝑣+1,𝜸 (𝑎𝑠+1,𝑣 + 2𝑣𝑔), where ℎ𝑠+1,𝑣+1,𝜸 is evaluated us-

ing (B.3).
𝑎𝑠+1,𝑣+1 = 𝑎𝑠+1,𝑣 + 2𝑣𝑔∗
for 𝑘 = 1 to 2𝑣+1 − 1 in steps of 2 do
𝑝(𝑘 2𝑚−1−𝑣) = 𝑝(𝑘 2𝑚−1−𝑣)

(
1 + 𝛾𝑠+1 log

(
1/sin2 (𝜋𝑘𝑎𝑠+1,𝑣+1/2𝑣+1)

))
end for

end for
end for

Set 𝒈 = (𝑔1, . . . , 𝑔𝑑) with 𝑔𝑠 := 𝑎𝑠,𝑚 for 𝑠 = 1, . . . , 𝑑.

Return: Generating vector 𝒈 = (𝑔1, . . . , 𝑔𝑑) for 𝑁 = 2𝑚.

The computational cost of Algorithm B.3 is summarized in the following propo-
sition.
Proposition B.4 Let 𝑚, 𝑑 ∈ N and 𝑁 = 2𝑚. For a given positive sequence
𝜸 = (𝛾 𝑗) 𝑗≥1 of product weights, Algorithm B.3 computes a generating vector
𝒈 = (𝑔1, . . . , 𝑔𝑑) of a rank-1 lattice rule using O(𝑑 𝑁 log 𝑁) operations and re-
quiring O(𝑁) memory.

Proof Due to the relation in (B.3), the cost of evaluating the quality function ℎ𝑠,𝑣,𝜸
is reduced to O(∑𝑚

𝑡=𝑣 2𝑡−1) operations. Thus, the number of calculations in the inner
loop over 𝑣 = 1, 2, . . . , 𝑚 − 1 of Algorithm B.3 equals

O
(
𝑚−1∑︁
𝑣=1

2
𝑚∑︁

𝑡=𝑣+1
2𝑡−1

)
= O

(
𝑚∑︁
𝑣=2

𝑚∑︁
𝑡=𝑣

2𝑡
)

= O (2𝑚𝑚 − 2(2𝑚 − 1)) = O (2𝑚𝑚) = O (𝑁 log 𝑁) .

Thus, the outer loop over 𝑠 = 1, 2, . . . , 𝑑 − 1 can be carried out in O(𝑑 𝑁 log 𝑁)
operations. Furthermore, we observe that initializing and updating the vector 𝒑 ∈
R𝑁−1 can both be executed in O(𝑁) operations. To store the vector 𝒑 itself, we
require O(𝑁) memory. □

B.2 Numerical Results for Alternative Constructions 561

We note that the runtime of Algorithm B.3 can be further reduced by precomputing
and storing the 𝑁 − 1 values

log
(

1
sin2 (𝜋𝑘/𝑁)

)
for 𝑘 ∈ [𝑁 − 1] .

Proposition B.4 reveals that the fast implementation of the CBC-DBD construc-
tion has the same order of computational complexity as the state of the art fast
CBC construction (see Section 3.4). In the fast CBC construction, the speedup of
the algorithm is achieved by exploiting the special (block-) circulant structure of
the involved matrices and by employing a fast matrix-vector product which uses
fast Fourier transforms (FFTs). We refer to Section 3.4 and the references there for
details. In contrast, the fast CBC-DBD algorithm does not rely on the use of FFTs
and its low complexity is the result of the smaller search space for the components
𝑔 𝑗 of 𝒈 as well as the efficient implementation.

Timings for the CBC-DBD algorithm

In order to illustrate the theoretically proven cost of order O(𝑑 𝑁 log 𝑁), we mea-
sured the time required to construct the generating vector of a lattice rule via the
fast CBC-DBD construction. As a comparison, we also measured the corresponding
construction time required by the fast CBC algorithm. The timings were performed
on an Intel Core i5 CPU with 2.3 GHz using Python 3.6.3.

We set 𝛼 = 1 and consider different prime powers 𝑁 = 2𝑚, different dimensions 𝑑,
and use the weight sequence 𝜸 = (𝛾 𝑗) 𝑗≥1 with 𝛾 𝑗 = 𝑗−2. For each of the considered
scenarios, we performed five independent timing runs and then calculated the mean
computation times. The results of the numerical experiments are given in Table B.5
and Figure B.12.

The timings in Table B.5 confirm that both algorithms considered have a similar
dependence on 𝑁 and 𝑑. The linear dependence on the dimension 𝑑 is well observable
and in accordance with the theoretical complexity O(𝑑 𝑁 log 𝑁) of both algorithms.
The computation times for both algorithms roughly differ by a factor between 2
and 4. We remark that the CBC algorithm, in particular the fast Fourier transforms,
are based on compiled and optimized code via Python’s Discrete Fourier Transform
(numpy.fft) library. It is therefore noteworthy that the CBC-DBD algorithm, which
is not based on any compiled libraries, is competitive nonetheless.

562 B Numerical Experiments for Lattice Rule Construction Algorithms

Table B.5: Mean computation times (in seconds, mean over five runs) for constructing
the generating vector 𝒈 of a lattice rule with 𝑁 = 2𝑚 points in 𝑑 dimensions using
the fast CBC construction (normal font) and the fast CBC-DBD algorithm (bold
font), respectively.

𝑠 = 50 𝑠 = 100 𝑠 = 500 𝑠 = 1000 𝑠 = 2000

𝑚 = 10 0.019 0.037 0.179 0.36 0.716
0.071 0.139 0.691 1.372 2.76

𝑚 = 12 0.026 0.048 0.237 0.473 0.964
0.107 0.21 1.059 2.097 4.233

𝑚 = 14 0.043 0.079 0.37 0.736 1.478
0.174 0.345 1.713 3.463 6.986

𝑚 = 16 0.113 0.199 0.878 1.716 3.413
0.363 0.719 3.594 7.167 14.501

𝑚 = 18 0.548 0.966 4.255 8.414 16.624
1.289 2.543 12.489 25.084 50.135

𝑚 = 20 3.129 5.696 26.267 51.637 103.476
7.803 15.78 79.511 158.982 318.403

Mean computation times for the fast CBC-DBD algorithm.

103 104 105 106
10−2

10−1

100

101

102

103

𝑁

C
om

pu
ta

tio
n

tim
e

in
se

co
nd

s

fast CBC-DBD with 𝑑 = 50
fast CBC-DBD with 𝑑 = 2000
O(𝑁 log 𝑁)
fast CBC with 𝑑 = 50
fast CBC with 𝑑 = 2000

Fig. B.12: Mean computation times (in seconds, mean over five runs) for construct-
ing the generating vector 𝒈 of a lattice rule with 𝑁 = 2𝑚 points in 𝑑 ∈ {50, 2000}
dimensions using the fast CBC construction or the fast CBC-DBD algorithm, re-
spectively.

References

1. Ch. Aistleitner. Tractability results for the weighted star-discrepancy. J. Complexity,
30(4):381–391, 2014. [219]

2. Ch. Aistleitner, J. S. Brauchart, and J. Dick. Point sets on the sphere S2 with small spherical
cap discrepancy. Discrete Comput. Geom., 48(4):990–1024, 2012. [211, 213, 218, 219]

3. Ch. Aistleitner, G. Larcher, F. Pillichshammer, S. Saad Eddin, and R. F. Tichy. On Weyl
products and uniform distribution modulo one. Monatsh. Math., 185(3):365–395, 2018.
[185]

4. N. Aronszajn. Theory of reproducing kernels. Trans. Amer. Math. Soc., 68:337–404, 1950.
[53]

5. E. I. Atanassov. On the discrepancy of the Halton sequences. Math. Balkanica (N.S.),
18(1–2):15–32, 2004. [52]

6. N. S. Bakhvalov. On the approximate computation of multiple integrals. Vestnik Moskov.
Univ. Ser. Mat. Meh. Astr. Fiz., 4:3–18, 1959. (In Russian). [52, 65, 138, 393]

7. N. S. Bakhvalov. Estimates in the mean of the remainder term of quadratic formulas. Ž.
Vyčisl. Mat i Mat. Fiz., 1:64–77, 1961. (In Russian). [377, 378, 393]

8. N. S. Bakhvalov. The optimality of linear operator approximation methods on convex function
classes. Ž. Vyčisl. Mat i Mat. Fiz., 11:1014–1018, 1971. (In Russian). [36]

9. N. S. Bakhvalov. On the approximate computation of multiple integrals. J. Complexity,
31(4):502–516, 2015. English translation of Russian original. [65, 138, 393]

10. J. Beck. Sums of distances between points on a sphere—an application of the theory of
irregularities of distribution to discrete geometry. Mathematika, 31(1):33–41, 1984. [219]

11. J. Beck. On the discrepancy of convex plane sets. Monatsh. Math., 105(2):91–106, 1988.
[213]

12. J. Beck and W. W. L. Chen. Irregularities of Distribution. Cambridge University Press,
Cambridge, 1987. [53]

13. R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, 1957. [38]
14. D. Bilyk, M. T. Lacey, and A. Vagharshakyan. On the small ball inequality in all dimensions.

J. Funct. Anal., 254(9):2470–2502, 2008. [29]
15. D. Bilyk, V. N. Temlyakov, and R. Yu. Fibonacci sets and symmetrization in discrepancy

theory. J. Complexity, 28(1):18–36, 2012. [54, 317]
16. D. Bilyk, V. N. Temlyakov, and R. Yu. The 𝐿2 discrepancy of two-dimensional lattices. In

D. Bilyk, L. De Carli, A. Petukhov, A. M. Stokolos, and B. D. Wick, editors, Recent Advances
in Harmonic Analysis and Applications, volume 25 of Springer Proc. Math. Stat., pages
63–77. Springer, New York, NY, 2013. [54]

17. J. Bourgain and A. Kontorovich. On Zaremba’s conjecture. Ann. of Math. (2), 180(1):137–
196, 2014. [45]

18. H. Brass and K. Petras. Quadrature Theory, volume 178 of Mathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 2011. [349]

563

https://doi.org/10.1007/978-3-031-09951-9
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022

564 References

19. S. Breneis and A. Hinrichs. Fibonacci lattices have minimal dispersion on the two-dimensional
torus. In D. Bilyk, J. Dick, and F. Pillichshammer, editors, Discrepancy Theory, volume 26
of Radon Ser. Comput. Appl. Math., pages 117–132. De Gruyter, Berlin, 2020. [54]

20. Y. Bugeaud. Approximation by Algebraic Numbers, volume 160 of Cambridge Tracts in
Mathematics. Cambridge University Press, Cambridge, 2004. [48]

21. M. D. Buhmann. Radial Basis Functions: Theory and Implementations. Cambridge University
Press, Cambridge, 2003. [487]

22. V. A. Bykovskii. The discrepancy of the Korobov lattice points. Izv. Math., 76(3):446–465,
2012. [201]

23. G. Byrenheid, D. Dũng, W. Sickel, and T. Ullrich. Sampling on energy-norm based sparse
grids for the optimal recovery of Sobolev type functions in 𝐻𝛾 . J. Approx. Theory, 207:207–
231, 2016. [508]

24. G. Byrenheid, L. Kämmerer, T. Ullrich, and T. Volkmer. Tight error bounds for rank-1 lattice
sampling in spaces of hybrid mixed smoothness. Numer. Math., 136(4):993–1034, 2017.
[427, 455]

25. A. Cohen, R. DeVore, and Ch. Schwab. Convergence rates of best 𝑁 -term Galerkin approxi-
mations for a class of elliptic sPDEs. Found. Comput. Math., 10(6), 2010. [532]

26. J. W. Cooley and J. W. Tukey. An algorithm for the machine calculation of complex Fourier
series. Math. Comp., 19:297–301, 1965. [122]

27. R. Cools, F. Y. Kuo, and D. Nuyens. Constructing embedded lattice rules for multivariate
integration. SIAM J. Sci. Comput., 28(6):2162–2188, 2006. [52, 238, 239, 241, 243, 245,
263, 264]

28. R. Cools, F. Y. Kuo, D. Nuyens, and I. H. Sloan. Lattice algorithms for multivariate approx-
imation in periodic spaces with general weight parameters. Contemp. Math., 754:93–113,
2020. [437, 443, 456]

29. R. Cools, F. Y. Kuo, D. Nuyens, and I. H. Sloan. Fast component-by-component construction
of lattice algorithms for multivariate approximation with POD and SPOD weights. Math.
Comp., 90(328):787–812, 2021. [456]

30. R. Cools, F. Y. Kuo, D. Nuyens, and G. I. Suryanarayana. Tent-transformed lattice rules
for integration and approximation of multivariate non-periodic functions. J. Complexity,
36:166–181, 2016. [304, 317]

31. R. Cools and D. Nuyens. The role of structured matrices for the construction of integration
lattices. JNAIAM J. Numer. Anal. Ind. Appl. Math., 1(3):257–272, 2006. [138]

32. R. Cools and D. Nuyens. A Belgian view on lattice rules. In A. Keller, S. Heinrich, and
H. Niederreiter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 3–21.
Springer, Berlin, 2008. [54, 138]

33. D. Dũng, V. Temlyakov, and T. Ullrich. Hyperbolic Cross Approximation. Advanced Courses
in Mathematics—CRM Barcelona. Birkhäuser/Springer, Cham, 2018. [16]

34. H. Davenport. Note on irregularities of distribution. Mathematika, 3:131–135, 1956. [317]
35. J. Dick. On the convergence rate of the component-by-component construction of good lattice

rules. J. Complexity, 20(4):493–522, 2004. [138]
36. J. Dick. Random weights, robust lattice rules and the geometry of the cbc𝑟c algorithm.

Numer. Math., 122(3):443–467, 2012. [408]
37. J. Dick. Numerical integration of Hölder continuous, absolutely convergent Fourier, Fourier

cosine, and Walsh series. J. Approx. Theory, 183:14–30, 2014. [363, 366, 372, 373, 375]
38. J. Dick and T. Goda. Stability of lattice rules and polynomial lattice rules constructed by

the component-by-component algorithm. J. Comput. Appl. Math., 382:Paper No. 113062, 16
pp., 2021. [407]

39. J. Dick, T. Goda, and K. Suzuki. Component-by-component construction of randomized rank-
1 lattice rules achieving almost the optimal randomized error rate. Submitted for publication,
arXiv:2109.11694, 2021. [378, 383, 393]

40. J. Dick, D. Gomez-Perez, F. Pillichshammer, and A. Winterhof. Digital inversive vectors
can achieve polynomial tractability for the weighted star discrepancy and for multivariate
integration. Proc. Amer. Math. Soc., 145(8):3297–3310, 2017. [219, 375]

References 565

41. J. Dick, A. Hinrichs, and F. Pillichshammer. Proof techniques in quasi–Monte Carlo theory.
J. Complexity, 31(3):327–371, 2015. [53]

42. J. Dick, Ch. Irrgeher, G. Leobacher, and F. Pillichshammer. On the optimal order of integration
in Hermite spaces with finite smoothness. SIAM J. Numer. Anal., 56(2):684–707, 2018. [337]

43. J. Dick and P. Kritzer. On a projection-corrected component-by-component construction. J.
Complexity, 32(1):74–80, 2016. [170, 193]

44. J. Dick, P. Kritzer, F. Y. Kuo, and I. H. Sloan. Lattice-Nyström method for Fredholm integral
equations of the second kind with convolution type kernels. J. Complexity, 23(4–6):752–772,
2007. [417, 418]

45. J. Dick, P. Kritzer, G. Leobacher, and F. Pillichshammer. A reduced fast component-by-
component construction of lattice points for integration in weighted spaces with fast decreas-
ing weights. J. Comput. Appl. Math., 276:1–15, 2015. [143, 192]

46. J. Dick, P. Kritzer, F. Pillichshammer, and H. Woźniakowski. Approximation of analytic
functions in Korobov spaces. J. Complexity, 30(2):2–28, 2014. [361, 456]

47. J. Dick, F. Y. Kuo, Q. T. Le Gia, and Ch. Schwab. Fast QMC matrix-vector multiplication.
SIAM J. Sci. Comput., 37(3):A1436–A1450, 2015. [519, 521]

48. J. Dick, F. Y. Kuo, and I. H. Sloan. High-dimensional integration: the quasi-Monte Carlo
way. Acta Numer., 22:133–288, 2013. [138, 139, 316]

49. J. Dick, G. Larcher, F. Pillichshammer, and H. Woźniakowski. Exponential convergence and
tractability of multivariate integration for Korobov spaces. Math. Comp., 80(274):905–930,
2011. [47, 54, 345, 361]

50. J. Dick, D. Nuyens, and F. Pillichshammer. Lattice rules for nonperiodic smooth integrands.
Numer. Math., 126(2):259–291, 2014. [304, 307, 315, 317]

51. J. Dick and F. Pillichshammer. A note on the figure of merit of 2-dimensional rank 2 lattice
rules. Integers, 5(3):A5, 10, 2005. [53]

52. J. Dick and F. Pillichshammer. Digital Nets and Sequences: Discrepancy Theory and Quasi-
Monte Carlo Integration. Cambridge University Press, Cambridge, 2010. [52, 53, 219, 222,
283, 317]

53. J. Dick and F. Pillichshammer. Discrepancy theory and quasi-Monte Carlo integration. In
W. W. L. Chen, A. Srivastav, and G. Travaglini, editors, A Panorama of Discrepancy Theory,
volume 2107 of Lecture Notes in Math., pages 539–619. Springer, Cham, 2014. [53, 317]

54. J. Dick and F. Pillichshammer. The inverse of the star-discrepancy problem and the generation
of pseudo-random numbers. In K.-U. Schmidt and A. Winterhof, editors, Sequences and Their
Applications—SETA 2014, volume 8865 of Lecture Notes in Comput. Sci., pages 173–184.
Springer, Cham, 2014. [375]

55. J. Dick and F. Pillichshammer. The weighted star discrepancy of Korobov’s 𝑝-sets. Proc.
Amer. Math. Soc., 143(12):5043–5057, 2015. [219, 365]

56. J. Dick and F. Pillichshammer. Weighted integration over a hyperrectangle based on digital
nets and sequences. J. Comput. Appl. Math., 393:Paper No. 113509, 25 pp., 2021. [337]

57. J. Dick, F. Pillichshammer, K. Suzuki, M. Ullrich, and T. Yoshiki. Lattice-based integration
algorithms: Kronecker sequences and rank-1 lattices. Ann. Mat. Pura Appl. (4), 197(1):109–
126, 2018. [54]

58. J. Dick, F. Pillichshammer, and B. J. Waterhouse. The construction of good extensible rank-1
lattices. Math. Comp., 77(264):2345–2373, 2008. [52, 245, 251, 252, 253, 263, 264]

59. J. Dick, I. H. Sloan, X. Wang, and H. Woźniakowski. Good lattice rules in weighted Korobov
spaces with general weights. Numer. Math., 103(1):63–97, 2006. [81]

60. S. Disney and I. H. Sloan. Error bounds for the method of good lattice points. Math. Comp.,
56(193):257–266, 1991. [18]

61. S. Disney and I. H. Sloan. Lattice integration rules of maximal rank formed by copying rank
1 rules. SIAM J. Numer. Anal., 29(2):566–577, 1992. [52]

62. B. Doerr and M. Gnewuch. Construction of low-discrepancy point sets of small size by brack-
eting covers and dependent randomized rounding. In A. Keller, S. Heinrich, and H. Niederre-
iter, editors, Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 299–312. Springer,
Berlin, 2007. [53]

566 References

63. B. Doerr, M. Gnewuch, P. Kritzer, and F. Pillichshammer. Component-by-component con-
struction of low-discrepancy point sets of small size. Monte Carlo Methods Appl., 14(2):129–
149, 2008. [53]

64. B. Doerr, M. Gnewuch, and A. Srivastav. Bounds and constructions for the star discrepancy
via 𝛿-covers. J. Complexity, 21(5):691–709, 2005. [53]

65. B. Doerr, M. Gnewuch, and M. Wahlström. Algorithmic construction of low-discrepancy
point sets via dependent randomized rounding. J. Complexity, 26(5):490–507, 2010. [53]

66. M. Drmota and R. F. Tichy. Sequences, Discrepancies and Applications. Springer, Berlin,
1997. [53, 195, 211]

67. A. Ebert and P. Kritzer. Constructing lattice points for numerical integration by a reduced fast
successive coordinate search algorithm. J. Comput. Appl. Math., 351:77–100, 2019. [160]

68. A. Ebert, P. Kritzer, and D. Nuyens. Constructing QMC finite element methods for elliptic
PDEs with random coefficients by a reduced CBC construction. In B. Tuffin and P. L’Ecuyer,
editors, Monte Carlo and Quasi-Monte Carlo Methods, pages 183–205. Springer, Cham,
2020. [158, 192]

69. A. Ebert, P. Kritzer, D. Nuyens, and O. Osisiogu. Digit-by-digit and component-by-component
constructions of lattice rules for periodic functions with unknown smoothness. J. Complexity,
66:Paper No. 101555, 37 pp., 2021. [135, 139, 174, 193]

70. A. Ebert, P. Kritzer, and F. Pillichshammer. Tractability of approximation in the weighted
Korobov space in the worst-case setting. arXiv:22201.09940. To appear in Z. Botev, A. Keller,
Ch. Lemieux, and B. Tuffin, editors, Advances in Modeling and Simulation, Springer Nature.,
2022. [487]

71. A. Ebert, H. Leövey, and D. Nuyens. Successive coordinate search and component-by-
component construction of rank-1 lattice rules. In A. B. Owen and P. W. Glynn, editors,
Monte Carlo and Quasi-Monte Carlo Methods 2016, pages 197–215. Springer, Cham, 2018.
[158, 159, 160, 192]

72. A. Ebert and F. Pillichshammer. Tractability of approximation in the weighted Korobov space
in the worst-case setting—a complete picture. J. Complexity, 67:Paper No. 101571, 15 pp.,
2021. [93, 435, 456]

73. G. E. Fasshauer. Meshfree Approximation Methods with MATLAB. World Scientific, Singa-
pore, 2007. [474, 487]

74. H. Faure, P. Kritzer, and F. Pillichshammer. From van der Corput to modern constructions of
sequences for quasi-Monte Carlo rules. Indag. Math. (N.S.), 26(5):760–822, 2015. [52, 222]

75. K. K. Frolov. Upper bounds for the errors of quadrature formulae on classes of functions.
Dokl. Akad. Nauk SSSR, 231(4):818–821, 1976. (In Russian). [393]

76. S. D. Galbraith. Mathematics of Public Key Cryptography. Cambridge University Press,
Cambridge, 2012. [215]

77. R. Gantner and Ch. Schwab. Computational higher order quasi-Monte Carlo integration. In
R. Cools and D. Nuyens, editors, Monte Carlo and Quasi-Monte Carlo Methods 2014, pages
271–288. Springer, Cham, 2016. [169, 173, 193]

78. P. Glasserman. Monte Carlo Methods in Financial Engineering, volume 53 of Stochastic
Modelling and Applied Probability. Springer-Verlag, New York, NY, 2003. [3, 52, 337]

79. M. Gnewuch and N. Hebbinghaus. Discrepancy bounds for a class of negatively dependent
random points including Latin hypercube samples. Ann. Appl. Probab., 31(4):1944–1965,
2021. [39]

80. M. Gnewuch, M. Hefter, A. Hinrichs, and K. Ritter. Embeddings of weighted Hilbert spaces
and applications to multivariate and infinite-dimensional integration. J. Approx. Theory,
222:8–39, 2017. [317]

81. M. Gnewuch, M. Hefter, A. Hinrichs, K. Ritter, and G. W. Wasilkowski. Equivalence of
weighted anchored and ANOVA spaces of functions with mixed smoothness of order one in
𝐿𝑝 . J. Complexity, 40:78–99, 2017. [317]

82. M. Gnewuch, M. Hefter, A. Hinrichs, K. Ritter, and G. W. Wasilkowski. Embeddings
for infinite-dimensional integration and 𝐿2-approximation with increasing smoothness. J.
Complexity, 54:Paper No. 101406, 32 pp., 2019. [317]

References 567

83. M. Gnewuch, M. Wahlström, and C. Winzen. A new randomized algorithm to approximate
the star discrepancy based on threshold accepting. SIAM J. Numer. Anal., 50(2):781–807,
2012. [53]

84. T. Goda. The 𝑏-adic symmetrization of digital nets for quasi-Monte Carlo integration. Unif.
Distrib. Theory, 12(1):1–25, 2017. [317]

85. T. Goda and P. L’Ecuyer. Construction-free median quasi-Monte Carlo rules for func-
tion spaces with unspecified smoothness and general weights. Submitted for publication,
arXiv:2201.09413, 2022. [394]

86. T. Goda, K. Suzuki, and T. Yoshiki. Lattice rules in non-periodic subspaces of Sobolev
spaces. Numer. Math., 141(2):399–427, 2019. [307, 317]

87. P. J. Grabner, P. Hellekalek, and P. Liardet. The dynamical point of view of low-discrepancy
sequences. Unif. Distrib. Theory, 7(1):11–70, 2012. [224]

88. I. G. Graham, F. Y. Kuo, J. A. Nichols, R. Scheichl, Ch. Schwab, and I. H. Sloan. Quasi-Monte
Carlo finite element methods for elliptic PDEs with lognormal random coefficients. Numer.
Math., 131(2):329–368, 2015. [533, 539]

89. S. Haber. Experiments on optimal coefficients. In S. K. Zaremba, editor, Applications of
Number Theory to Numerical Analysis (Proc. Sympos., Univ. Montréal, Montreal, Que.,
1971), pages 11–37. Academic Press, New York, NY, 1972. [138]

90. S. Haber. Parameters for integrating periodic functions of several variables. Math. Comp.,
41(163):115–129, 1983. [138]

91. G. Halász. On Roth’s method in the theory of irregularities of point distributions. In
H. Halberstam and C. Hooley, editors, Recent Progress in Analytic Number Theory, Vol. 2
(Durham, 1979), pages 79–94. Academic Press, London-New York, 1981. [29]

92. J. H. Halton. On the efficiency of certain quasi-random sequences of points in evaluating
multi-dimensional integrals. Numer. Math., 2:84–90, 1960. [52]

93. G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers. The Clarendon
Press, Oxford University Press, New York, NY, fifth edition, 1979. [47, 96]

94. M. Hefter and K. Ritter. On embeddings of weighted tensor product Hilbert spaces. J.
Complexity, 31(3):405–423, 2015. [317]

95. M. Hefter, K. Ritter, and G. W. Wasilkowski. On equivalence of weighted anchored and
ANOVA spaces of functions with mixed smoothness of order one in 𝐿1 or 𝐿∞. J. Complexity,
32(1):1–19, 2016. [296, 317]

96. S. Heinrich, E. Novak, G. W. Wasilikowski, and H. Woźniakowski. The inverse of the
star-discrepancy depends linearly on the dimension. Acta Arith., 96(3):279–302, 2001. [39]

97. P. Hellekalek. On the assessment of random and quasi-random point sets. In P. Hellekalek
and G. Larcher, editors, Random and Quasi-Random Point Sets, volume 138 of Lecture Notes
in Statist., pages 49–108. Springer, New York, NY, 1998. [54]

98. F. J. Hickernell. Quadrature error bounds with applications to lattice rules. SIAM J. Numer.
Anal., 33(5):1995–2016, 1996. [53]

99. F. J. Hickernell. A generalized discrepancy and quadrature error bound. Math. Comp.,
67(221):299–322, 1998. [53]

100. F. J. Hickernell. Lattice rules: how well do they measure up? In P. Hellekalek and G. Larcher,
editors, Random and Quasi-Random Point Sets, volume 138 of Lecture Notes in Statist., pages
109–166. Springer, New York, NY, 1998. [268]

101. F. J. Hickernell. Obtaining𝑂 (𝑁−2+𝜖) convergence for lattice quadrature rules. In K.-T. Fang,
H. Niederreiter, and F. J. Hickernell, editors, Monte Carlo and Quasi-Monte Carlo Methods
2000, pages 274–289. Springer, Berlin, 2002. [301, 302, 304, 314]

102. F. J. Hickernell and H. S. Hong. Computing multivariate normal probabilities using rank-1
lattice sequences. In G. H. Golub, L. Shui-Hong, T. L. Franklin, and R. J. Plemmons, editors,
Scientific Computing (Proceedings of the Workshop, 10–12 March 1997, Hong Kong), pages
209–215. Springer, Singapore, 1997. [221, 223]

103. F. J. Hickernell, H. S. Hong, P. L’Ecuyer, and Ch. Lemieux. Extensible lattice sequences for
quasi-Monte Carlo quadrature. SIAM J. Sci. Comput., 22(3):1117–1138, 2000. [52, 222, 223,
238, 245]

568 References

104. F. J. Hickernell, P. Kritzer, F. Y. Kuo, and D. Nuyens. Weighted compound integration rules
with higher order convergence for all 𝑁 . Numer. Algorithms, 59(2):161–183, 2012. [52, 235,
237, 263]

105. F. J. Hickernell and H. Niederreiter. The existence of good extensible rank-1 lattices. J.
Complexity, 19(3):286–300, 2003. [52, 135, 139, 223, 225, 226, 230, 232, 245, 263]

106. F. J. Hickernell and H. Woźniakowski. Tractability of multivariate integration for periodic
functions. J. Complexity, 17(4):660–682, 2001. [93]

107. A. Hinrichs. Covering numbers, Vapnik-Červonenkis classes and bounds for the star-
discrepancy. J. Complexity, 20(4):477–483, 2004. [39]

108. A. Hinrichs. Optimal importance sampling for the approximation of integrals. J. Complexity,
26(2):125–134, 2010. [22]

109. A. Hinrichs, P. Kritzer, F. Pillichshammer, and G. W. Wasilkowski. Truncation dimension for
linear problems on multivariate function spaces. Numer. Algorithms, 80(2):661–685, 2019.
[317]

110. A. Hinrichs and J. Oettershagen. Optimal point sets for quasi-Monte Carlo integration of
bivariate periodic functions with bounded mixed derivatives. In R. Cools and D. Nuyens,
editors, Monte Carlo and Quasi-Monte Carlo Methods, pages 385–405. Springer, Cham,
2016. [54]

111. A. Hinrichs, F. Pillichshammer, and W. Ch. Schmid. Tractability properties of the weighted
star discrepancy. J. Complexity, 24(2):134–143, 2008. [219]

112. E. Hlawka. Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Ann.
Mat. Pura Appl. (4), 54:325–333, 1961. (In German). [29]

113. E. Hlawka. Zur angenäherten Berechnung mehrfacher Integrale. Monatsh. Math., 66:140–
151, 1962. (In German). [18, 52]

114. W. Hörmann, J. Leydold, and G. Derflinger. Automatic Nonuniform Random Variate Gener-
ation. Statistics and Computing. Springer-Verlag, Berlin, 2004. [516]

115. L. K. Hua and Y. Wang. Applications of Number Theory to Numerical Analysis. Springer,
Berlin, 1981. [52, 316, 364, 365, 366, 375, 455]

116. Ch. Irrgeher, P. Kritzer, G. Leobacher, and F. Pillichshammer. Integration in Hermite spaces
of analytic functions. J. Complexity, 31(3):380–404, 2015. [337, 361]

117. Ch. Irrgeher, P. Kritzer, and F. Pillichshammer. Integration and approximation in cosine
spaces of smooth functions. Math. Comput. Simulation, 143:35–45, 2018. [361]

118. Ch. Irrgeher, P. Kritzer, F. Pillichshammer, and H. Woźniakowski. Approximation in Hermite
spaces of smooth functions. J. Approx. Theory, 207:98–126, 2016. [337, 361]

119. Ch. Irrgeher, P. Kritzer, F. Pillichshammer, and H. Woźniakowski. Tractability of multivariate
approximation defined over Hilbert spaces with exponential weights. J. Approx. Theory,
207:301–338, 2016. [337, 353, 361, 456]

120. S. Joe. Component by component construction of rank-1 lattice rules having𝑂 (𝑛−1 (ln(𝑛))𝑑)
star discrepancy. In H. Niederreiter, editor, Monte Carlo and Quasi-Monte Carlo Methods
2002, pages 293–298. Springer, Berlin, 2004. [203, 219]

121. S. Joe. Construction of good rank-1 lattice rules based on the weighted star discrepancy. In
H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte Carlo Methods 2004,
pages 181–196. Springer, Berlin, 2006. [219]

122. S. Joe and I. H. Sloan. Imbedded lattice rules for multidimensional integration. SIAM J.
Numer. Anal., 29(4):1119–1135, 1992. [12, 52]

123. S. Joe and I. H. Sloan. On computing the lattice rule criterion 𝑅. Math. Comp., 59(200):557–
568, 1992. [54]

124. S. Joe and I. H. Sloan. Implementation of a lattice method for numerical multiple integration.
ACM Trans. Math. Softw., 19:523–545, 1993. [52]

125. L. Kämmerer. Reconstructing hyperbolic cross trigonometric polynomials by sampling along
multiple rank-1 lattices. SIAM J. Numer. Anal., 51(5):2773–2796, 2013. [455]

126. L. Kämmerer. Reconstructing multivariate trigonometric polynomials from samples along
multiple rank-1 lattices. In G. E. Fasshauer and L. L. Schumaker, editors, Approximation
Theory XIV: San Antonio 2013, pages 255–271, Berlin, 2014. Springer. [455]

References 569

127. L. Kämmerer. Multiple rank-1 lattices as sampling schemes for multivariate trigonometric
polynomials. J. Fourier Anal. Appl., 24(1):17–44, 2018. [508]

128. L. Kämmerer. Constructing spatial discretizations for sparse multivariate trigonometric
polynomials that allow for a fast discrete Fourier transform. Appl. Comput. Harmon. Anal.,
47(3):702–729, 2019. [489, 491, 494, 508]

129. L. Kämmerer, D. Potts, and T. Volkmer. Approximation of multivariate periodic functions by
trigonometric polynomials based on rank-1 lattice sampling. J. Complexity, 31(4):543–576,
2015. [455]

130. L. Kämmerer, D. Potts, and T. Volkmer. Approximation of multivariate periodic functions
by trigonometric polynomials based on sampling along rank-1 lattice with generating vector
of Korobov form. J. Complexity, 31(3):424–456, 2015. [455]

131. L. Kämmerer and T. Volkmer. Approximation of multivariate periodic functions based on
sampling along multiple rank-1 lattices. J. Approx. Theory, 246:1–27, 2019. [489, 494, 496,
508]

132. A. Keller. Myths of computer graphics. In H. Niederreiter and D. Talay, editors, Monte Carlo
and Quasi-Monte Carlo Methods 2004, pages 217–243. Springer, Berlin, 2006. [52]

133. A. Keller. Quasi-Monte Carlo image synthesis in a nutshell. In J. Dick, F. Y Kuo, G. W.
Peters, and I. H. Sloan, editors, Monte Carlo and Quasi-Monte Carlo Methods 2012, pages
213–249. Springer, Berlin, Heidelberg, 2013. [52]

134. J. F. Koksma. A general theorem from the theory of uniform distribution modulo 1. Mathe-
matica, Zutphen. B., 11:7–11, 1942. (In Dutch). [29]

135. J. F. Koksma. Some integrals in the theory of uniform distribution modulo 1. Mathematica,
Zutphen. B., 11:49–52, 1942. (In Dutch). [316]

136. H. König and M. Rudelson. On the volume of non-central sections of a cube. Adv. Math.,
360:Paper No. 106929, 30 pp., 2020. [215]

137. N. M. Korobov. Approximate calculation of repeated integrals by number-theoretical methods.
Dokl. Akad. Nauk SSSR (N.S.), 115:1062–1065, 1957. (In Russian). [364, 375]

138. N. M. Korobov. Approximate evaluation of repeated integrals. Dokl. Akad. Nauk SSSR,
124:1207–1210, 1959. (In Russian). [52]

139. N. M. Korobov. Properties and calculation of optimal coefficients. Dokl. Akad. Nauk SSSR,
132:1009–1012, 1960. (In Russian). [45, 96, 138]

140. N. M. Korobov. Number-Theoretic Methods in Approximate Analysis. Gosudarstv. Izdat.
Fiz.-Mat. Lit., Moscow, 1963. (In Russian). [15, 52, 100, 174, 185, 364, 375, 455]

141. N. M. Korobov. On the calculation of optimal coefficients. Dokl. Akad. Nauk SSSR,
267(2):289–292, 1982. (In Russian). [174, 264]

142. D. Krieg and E. Novak. A universal algorithm for multivariate integration. Found. Comput.
Math., 17(4):895–916, 2017. [393]

143. P. Kritzer, F. Y. Kuo, D. Nuyens, and M. Ullrich. Lattice rules with random 𝑛 achieve
nearly the optimal O(𝑛−𝛼−1/2) error independently of the dimension. J. Approx. Theory,
240:96–113, 2019. [92, 378, 393]

144. P. Kritzer, F. Pillichshammer, L. Plaskota, and G. W. Wasilkowski. On efficient weighted
integration via a change of variables. Numer. Math., 146(3):545–570, 2020. [337]

145. P. Kritzer, F. Pillichshammer, and G. W. Wasilkowski. Very low truncation dimension for
high dimensional integration under modest error demand. J. Complexity, 35:63–85, 2016.
[297, 317]

146. P. Kritzer, F. Pillichshammer, and G. W. Wasilkowski. A note on equivalence of anchored
and ANOVA spaces; lower bounds. J. Complexity, 38:31–38, 2017. [317]

147. P. Kritzer, F. Pillichshammer, and G. W. Wasilkowski. On quasi-Monte Carlo methods in
weighted ANOVA spaces. Math. Comp., 90(329):1381–1406, 2021. [299]

148. P. Kritzer, F. Pillichshammer, and H. Woźniakowski. Multivariate integration of in-
finitely many times differentiable functions in weighted Korobov spaces. Math. Comp.,
83(287):1189–1206, 2014. [345, 361]

149. P. Kritzer, F. Pillichshammer, and H. Woźniakowski. Tractability of multivariate analytic
problems. In P. Kritzer, H. Niederreiter, F. Pillichshammer, and A. Winterhof, editors,
Uniform Distribution and Quasi-Monte Carlo Methods, volume 15 of Radon Ser. Comput.
Appl. Math., pages 147–170. De Gruyter, Berlin, 2014. [361, 456]

570 References

150. P. Kritzer, F. Pillichshammer, and H. Woźniakowski. L∞-approximation in Korobov spaces
with exponential weights. J. Complexity, 41:102–125, 2017. [361, 488]

151. R. Kritzinger. 𝐿𝑝− and 𝑆𝑟𝑝,𝑞𝐵-discrepancy of the symmetrized van der Corput sequence and
modified Hammersley point sets in arbitrary bases. J. Complexity, 33:145–168, 2016. [317]

152. R. Kritzinger and L. M. Kritzinger. 𝐿2 discrepancy of symmetrized generalized Hammersley
point sets in base 𝑏. J. Number Theory, 166:250–275, 2016. [317]

153. R. Kritzinger and F. Pillichshammer. 𝐿𝑝-discrepancy of the symmetrized van der Corput
sequence. Arch. Math. (Basel), 104(5):407–418, 2015. [317]

154. R. Kritzinger and J. Wiart. Improved dispersion bounds for modified Fibonacci lattices. J.
Complexity, 63:Paper No. 101522, 14 pp., 2021. [54]

155. L. Kuipers and H. Niederreiter. Uniform Distribution of Sequences. John Wiley, New York,
NY, 1974. Reprint, Dover Publications, Mineola, NY, 2006. [29, 33, 53, 195, 211]

156. F. Y. Kuo. Component-by-component constructions achieve the optimal rate of conver-
gence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complexity,
19(3):301–320, 2003. [103, 138]

157. F. Y. Kuo, W. T. M. Dunsmuir, I. H. Sloan, M. P. Wand, and R. S. Womersley. Quasi-Monte
Carlo for highly structured generalised response models. Methodol. Comput. Appl. Probab.,
10(2):239–275, 2008. [337]

158. F. Y. Kuo and S. Joe. Component-by-component construction of good lattice rules with a
composite number of points. J. Complexity, 18(4):943–976, 2002. [247]

159. F. Y. Kuo and S. Joe. Component-by-component construction of good intermediate-rank
lattice rules. SIAM J. Numer. Anal., 41(4):1465–1486, 2003. [52]

160. F. Y. Kuo, Ch. Schwab, and I. H. Sloan. Quasi-Monte Carlo finite element methods for a
class of elliptic partial differential equations with random coefficients. SIAM J. Numer. Anal.,
50(6):3351–3374, 2012. [139, 174, 531, 532]

161. F. Y. Kuo, I. H. Sloan, G. W. Wasilkowski, and B. J. Waterhouse. Randomly shifted lattice rules
with the optimal rate of convergence for unbounded integrands. J. Complexity, 26(2):135–160,
2010. [337]

162. F. Y. Kuo, I. H. Sloan, and H. Woźniakowski. Lattice rules for multivariate approximation in
the worst case setting. In H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte
Carlo Methods 2004, pages 289–330. Springer, Berlin, 2006. [415, 435, 455, 469]

163. F. Y. Kuo, I. H. Sloan, and H. Woźniakowski. Lattice rule algorithms for multivariate
approximation in the average case setting. J. Complexity, 24(2):283–323, 2008. [456, 462,
466, 469, 487]

164. F. Y. Kuo, G. W. Wasilkowski, and B. J. Waterhouse. Randomly shifted lattice rules for
unbounded integrands. J. Complexity, 22(5):630–651, 2006. [337]

165. F. Y. Kuo, G. W. Wasilkowski, and H. Woźniakowski. Multivariate 𝐿∞-approximation in the
worst case setting over reproducing kernel Hilbert spaces. J. Approx. Theory, 152(2):135–160,
2008. [457]

166. F. Y. Kuo, G. W. Wasilkowski, and H. Woźniakowski. Lattice algorithms for multivariate 𝑙∞
approximation in the worst-case setting. Constr. Approx., 30(3):475–493, 2009. [459, 465,
466, 469, 487]

167. F. Y. Kuo, G. W. Wasilkowski, and H. Woźniakowski. On the power of standard information
for multivariate approximation in the worst case setting. J. Approx. Theory, 158(1):97–125,
2009. [457]

168. F. Y. Kuo, G. W. Wasilkowski, and H. Woźniakowski. Correction to: Lattice algorithms for
multivariate 𝐿∞ approximation in the worst-case setting. Constr. Approx., 52(1):177–179,
2020. [487]

169. H. Laimer. On combined component-by-component constructions of lattice point sets. J.
Complexity, 38:22–30, 2017. [193]

170. G. Larcher. On the distribution of sequences connected with good lattice points. Monatsh.
Math., 101(2):135–150, 1986. [201]

171. G. Larcher. A best lower bound for good lattice points. Monatsh. Math., 104(1):45–51, 1987.
[201]

References 571

172. G. Larcher. On the distribution of the multiples of an 𝑠-tuple of real numbers. J. Number
Theory, 31(3):367–372, 1989. [219]

173. G. Larcher and G. Leobacher. Quasi-Monte Carlo and Monte Carlo methods and their
application in finance. Surv. Math. Ind., 11(1–4):95–130, 2005. [52, 337]

174. G. Larcher and H. Niederreiter. Optimal coefficients modulo prime powers in the three-
dimensional case. Ann. Mat. Pura Appl. (4), 155:299–315, 1989. [46]

175. G. Larcher and F. Pillichshammer. Walsh series analysis of the 𝐿2-discrepancy of symmetri-
sized point sets. Monatsh. Math., 132(1):1–18, 2001. [317]

176. G. Larcher and F. Pillichshammer. On the 𝐿2-discrepancy of the Sobol-Hammersley net in
dimension 3. J. Complexity, 18(2):415–448, 2002. [317]

177. P. L’Ecuyer. Quasi-Monte Carlo methods with applications in finance. Finance Stoch.,
13(3):307–349, 2009. [52]

178. Ch. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling. Springer Series in Statistics.
Springer, New York, NY, 2008. [3, 52]

179. G. Leobacher and F. Pillichshammer. Bounds for the weighted 𝐿𝑝 discrepancy and tractability
of integration. J. Complexity, 19(4):529–547, 2003. [219, 283, 317]

180. G. Leobacher and F. Pillichshammer. Introduction to Quasi-Monte Carlo Integration and
Applications. Birkhäuser, Cham, 2014. [52, 53, 138]

181. W. J. LeVeque. Fundamentals of Number Theory. Dover Publications, Inc., Mineola, NY,
1996. Reprint of the 1977 original. [241]

182. D. Li and F. J. Hickernell. Trigonometric spectral collocation methods on lattices. In S. Y.
Cheng, C.-W. Shu, and T. Tang, editors, Recent Advances in Scientific Computing and Partial
Differential Equations, pages 121–132. American Mathematical Society, Providence, RI,
2003. [455]

183. R. Lidl and H. Niederreiter. Finite Fields, volume 20 of Encyclopedia of Mathematics and
its Applications. Cambridge University Press, Cambridge, second edition, 1997. [366]

184. Y. Liu and G. Xu. A note on tractability of multivariate analytic problems. J. Complexity,
34:42–49, 2016. [361]

185. J. N. Lyness. Notes on lattice rules. J. Complexity, 19(3):321–331, 2003. [54]
186. J. N. Lyness and T. Sørevik. A search program for finding optimal integration lattices.

Computing, 47(2):103–120, 1991. [138]
187. D. Maisonneuve. Recherche et utilisation des “bons treillis”. Programmation et résultats

numériques. In S. K. Zaremba, editor, Applications of Number Theory to Numerical Analysis
(Proc. Sympos., Univ. Montréal, Montreal, Que., 1971), pages 121–201. 1972. (In French).
[138]

188. J. Matoušek. Geometric Discrepancy. Springer, Berlin, 1999. [53]
189. Th. Müller-Gronbach, E. Novak, and K. Ritter. Monte Carlo-Algorithmen. Springer-Lehrbuch.

[Springer Textbook]. Springer, Heidelberg, 2012. (In German). [52]
190. R. C. Mullin. Classroom Notes: Some Trigonometric Products. Amer. Math. Monthly,

69(3):217–218, 1962. [185]
191. J. A. Nichols and F. Y. Kuo. Fast CBC construction of randomly shifted lattice rules achieving

O(𝑛−1+𝛿) convergence for unbounded integrands over R𝑠 in weighted spaces with POD
weights. J. Complexity, 30(4):444–468, 2014. [324, 337]

192. H. Niederreiter. Application of Diophantine approximations to numerical integration. In C. F.
Osgood, editor, Diophantine Approximation and its Applications (Proc. Conf., Washington,
D.C., 1972), pages 129–199, 1973. [317]

193. H. Niederreiter. Pseudo-random numbers and optimal coefficients. Adv. in Math., 26(2):99–
181, 1977. [43, 195]

194. H. Niederreiter. Existence of good lattice points in the sense of Hlawka. Monatsh. Math.,
86(3):203–219, 1978. [200]

195. H. Niederreiter. Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Amer. Math.
Soc., 84(6):957–1041, 1978. [52, 53, 219, 316]

196. H. Niederreiter. Dyadic fractions with small partial quotients. Monatsh. Math., 101(4):309–
315, 1986. [45]

572 References

197. H. Niederreiter. Point sets and sequences with small discrepancy. Monatsh. Math.,
104(4):273–337, 1987. [52]

198. H. Niederreiter. Quasi-Monte Carlo methods for multidimensional numerical integration. In
H. Braß and G. Hämmerlin, editors, Numerical integration III (Proceedings of the Conference
held at the Mathematisches Forschungsinstitut, Oberwolfach, Nov. 8–14, 1987), volume 85
of Internat. Schriftenreihe Numer. Math., pages 157–171. Birkhäuser, Basel, 1988. [52]

199. H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63
of CBMS-NSF Series in Applied Mathematics. SIAM, Philadelphia, PA, 1992. [3, 10, 15, 18,
32, 33, 42, 43, 44, 52, 53, 138, 201, 202, 218, 219, 316, 400]

200. H. Niederreiter. Improved error bounds for lattice rules. J. Complexity, 9(1):60–75, 1993.
[42]

201. H. Niederreiter and F. Pillichshammer. Construction algorithms for good extensible lattice
rules. Constr. Approx., 30(3):361–393, 2009. [52, 264]

202. H. Niederreiter and J. M. Wills. Diskrepanz und Distanz von Maßen bezüglich konvexer und
Jordanscher Mengen. Math. Z., 144(2):125–134, 1975. (In German). [219]

203. H. Niederreiter and J. M. Wills. Berichtigung zu der Arbeit “Diskrepanz und Distanz von
Massen bezüglich konvexer und Jordanscher Mengen” (Math. Z. 144 (1975), no. 2, 125–134).
Math. Z., 148(1):99, 1976. (In German). [219]

204. H. Niederreiter and A. Winterhof. Applied Number Theory. Springer, Cham, 2015. [10, 138,
218]

205. E. Novak. Deterministic and Stochastic Error Bounds in Numerical Aanalysis, volume 1349
of Lecture Notes in Mathematics. Springer Verlag, Berlin, 1988. [392]

206. E. Novak. Numerische Verfahren für hochdimensionale Probleme und der Fluch der Dimen-
sion. Jahresber. Deutsch. Math.-Verein., 101:151–177, 1999. (In German). [53]

207. E. Novak. Some results on the complexity of numerical integration. In R. Cools and
D. Nuyens, editors, Monte Carlo and Quasi-Monte Carlo Methods, pages 161–183. Springer,
Cham, 2016. [53, 433]

208. E. Novak, I. H. Sloan, J. F. Traub, and H. Woźniakowski. Essays on the Complexity of
Continuous Problems. European Mathematical Society Publishing House, Zürich, 2009.
[53]

209. E. Novak, I. H. Sloan, and H. Woźniakowski. Tractability of approximation for weighted
Korobov spaces on classical and quantum computers. Found. Comput. Math., 4(2):121–156,
2004. [435, 455]

210. E. Novak and H. Woźniakowski. Tractability of Multivariate Problems. Volume I: Linear
Information. European Mathematical Society Publishing House, Zürich, 2008. [36, 53, 60,
92, 316, 393, 433, 434, 455, 487]

211. E. Novak and H. Woźniakowski. Tractability of Multivariate Problems. Volume II: Standard
Information for Functionals. European Mathematical Society Publishing House, Zürich,
2010. [53, 73, 84, 85, 93, 205, 219, 283, 316, 393]

212. E. Novak and H. Woźniakowski. Tractability of Multivariate Problems. Volume III: Standard
Information for Operators. European Mathematical Society Publishing House, Zürich, 2012.
[23, 53, 455, 487]

213. D. Nuyens and R. Cools. Fast algorithms for component-by-component construction of rank-1
lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comp., 75(254):903–
920, 2006. [115, 138]

214. D. Nuyens and R. Cools. Fast component-by-component construction, a reprise for different
kernels. In H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte Carlo
Methods 2004, pages 373–387. Springer, Berlin, 2006. [115, 138]

215. D. Nuyens and R. Cools. Fast component-by-component construction of rank-1 lattice rules
with a non-prime number of points. J. Complexity, 22(1):4–28, 2006. [115, 138, 139, 241,
243, 263, 511]

216. A. B. Owen. A constraint on extensible quadrature rules. Numer. Math., 132(3):511–518,
2016. [235]

217. F. Pillichshammer. A lower bound for rank 2 lattice rules. Math. Comp., 73(246):853–860,
2004. [219]

References 573

218. F. Pillichshammer. Tractability properties of the weighted star discrepancy of regular grids.
J. Complexity, 46:103–112, 2018. [204]

219. F. Pillichshammer. A note on Korobov lattice rules for integration of analytic functions. J.
Complexity, 63:Paper No. 101524, 8 pp., 2021. [361]

220. F. Pillichshammer and M. Sonnleitner. A note on isotropic discrepancy and spectral test of
lattice point sets. J. Complexity, 58:Paper No. 101441, 7 pp., 2020. [219]

221. J. B. Rosser and L. Schoenfeld. Approximate formulas for some functions of prime numbers.
Illinois J. Math., 6:64–94, 1962. [385, 389, 495]

222. K. F. Roth. On irregularities of distribution. Mathematika, 1:73–79, 1954. [29, 53]
223. A. I. Saltykov. Tables for evaluating multiple integrals by the method of optimal coefficients.

Ž. Vyčisl. Mat i Mat. Fiz., 3:181–186, 1963. (In Russian). [138]
224. W. M. Schmidt. Irregularities of distribution VII. Acta Arith., 21:45–50, 1972. [29]
225. W. M. Schmidt. Irregularities of distribution. IX. Acta Arith., 27:385–396, 1975. [213]
226. W. M. Schmidt. Irregularities of distribution. X. In Number Theory and Algebra, pages

311–329. Academic Press, New York, 1977. [29]
227. V. Sinescu. Shifted lattice rules based on a general weighted discrepancy for integrals over

Euclidean space. J. Comput. Appl. Math., 232(2):240–251, 2009. [219]
228. V. Sinescu and S. Joe. Good lattice rules based on the general weighted star discrepancy.

Math. Comp., 76(258):989–1004, 2007. [131, 219]
229. V. Sinescu and S. Joe. Good lattice rules with a composite number of points based on the

product weighted star discrepancy. In A. Keller, S. Heinrich, and H. Niederreiter, editors,
Monte Carlo and Quasi-Monte Carlo Methods 2006, pages 645–658. Springer, Berlin, 2008.
[203, 219]

230. I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Oxford Univ. Press, New
York and Oxford, 1994. [3, 10, 11, 12, 18, 43, 52, 53, 96, 138, 316]

231. I. H. Sloan and P. J. Kachoyan. Lattice methods for multiple integration: theory, error analysis
and examples. SIAM J. Numer. Anal., 24(1):116–128, 1987. [7, 16]

232. I. H. Sloan, F. Y. Kuo, and S. Joe. On the step-by-step construction of quasi-Monte Carlo
integration rules that achieve strong tractability error bounds in weighted Sobolev spaces.
Math. Comp., 71(240):1609–1640, 2002. [276]

233. I. H. Sloan and J. N. Lyness. The representation of lattice quadrature rules as multiple sums.
Math. Comp., 52(185):81–94, 1989. [9, 10, 11]

234. I. H. Sloan and J. N. Lyness. Lattice rules: projection regularity and unique representations.
Math. Comp., 54(190):649–660, 1990. [10, 11]

235. I. H. Sloan and A. V. Reztsov. Component-by-component construction of good lattice rules.
Math. Comp., 71(237):263–273, 2002. [100]

236. I. H. Sloan and L. Walsh. Lattice rules—classification and searches. In H. Braß and
G. Hämmerlin, editors, Numerical integration III (Proceedings of the Conference held at
the Mathematisches Forschungsinstitut, Oberwolfach, Nov. 8–14, 1987), volume 85 of Inter-
nat. Schriftenreihe Numer. Math., pages 251–260. Birkhäuser, Basel, 1988. [96]

237. I. H. Sloan and L. Walsh. A computer search of rank-2 lattice rules for multidimensional
quadrature. Math. Comp., 54(189):281–302, 1990. [96]

238. I. H. Sloan and H. Woźniakowski. An intractability result for multiple integration. Math.
Comp., 66(219):1119–1124, 1997. [40, 345]

239. I. H. Sloan and H. Woźniakowski. When are quasi-Monte Carlo algorithms efficient for
high-dimensional integrals? J. Complexity, 14(1):1–33, 1998. [53, 75, 78, 203, 205, 219,
283, 317]

240. I. H. Sloan and H. Woźniakowski. Tractability of multivariate integration for weighted
Korobov classes. J. Complexity, 17(4):697–721, 2001. [92, 393]

241. I. M. Sobol’. On quasi-Monte Carlo integrations. Math. Comput. Simulation, 47(2–5):103–
112, 1998. [235]

242. M. Sonnleitner. The power of random information for numerical approximation and integra-
tion. PhD thesis, University of Passau, 2022. [214, 219]

574 References

243. M. Sonnleitner and F. Pillichshammer. On the relation of the spectral test to isotropic
discrepancy and 𝐿𝑞-approximation in Sobolev spaces. J. Complexity, 67:Paper No. 101576,
9 pp., 2021. [217, 219]

244. E. M. Stein and G. Weiss. Introduction to Fourier analysis on Euclidean spaces. Princeton
University Press, Princeton, N.J., 1971. Princeton Mathematical Series, No. 32. [373]

245. G. Strang and G. J. Fix. An Analysis of the Finite Element Method. Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1973. Prentice-Hall Series in Automatic Computation. [531]

246. W. Stute. Convergence rates for the isotrope discrepancy. Ann. Probability, 5(5):707–723,
1977. [213]

247. V. N. Temlyakov. Approximate recovery of periodic functions of several variables. Mat.
Sbornik, 128:256–268, 1985. (In Russian; English translation in Math. USSR Sbornik 56,
249–261, 1987). [455]

248. V. N. Temlyakov. Error estimates for quadrature formulas for classes of functions with a
bounded mixed derivative. Mat. Zametki, 46(2):128–134, 160, 1989. (In Russian; English
translation in Math. Notes 46, no. 1-2, 663–668, 1990). [54]

249. V. N. Temlyakov. On approximate recovery of functions with bounded mixed derivative. J.
Complexity, 9(1):41–59, 1993. [455]

250. V. N. Temlyakov. Cubature formulas, discrepancy, and nonlinear approximation. J. Complex-
ity, 19(3):352–391, 2003. [93]

251. J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski. Information-Based Complexity.
Computer Science and Scientific Computing. Academic Press, Inc., Boston, MA, 1988. [53]

252. M. Ullrich. On “Upper error bounds for quadrature formulas on function classes” by K. K.
Frolov. In R. Cools and D. Nuyens, editors, Monte Carlo and Quasi-Monte Carlo Methods,
pages 571–582. Springer, Cham, 2016. [393]

253. M. Ullrich. A Monte Carlo method for integration of multivariate smooth functions. SIAM
J. Numer. Anal., 55(3):1188–1200, 2017. [389, 393]

254. G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional
Conference Series in Applied Mathematics. SIAM, Philadelphia, PA, 1990. [487]

255. J. Waldvogel. Towards a general error theory of the trapezoidal rule. In W. Gautschi,
G. Mastroianni, and T. M. Rassias, editors, Approximation and Computation, volume 42 of
Springer Optim. Appl., pages 267–282. Springer, New York, NY, 2011. [349]

256. H. Wang. A note about EC-(𝑠, 𝑡)-weak tractability of multivariate approximation with
analytic Korobov kernels. J. Complexity, 55:101412, 19, 2019. [361]

257. X. Wang and I. H. Sloan. Why are high-dimensional finance problems often of low effective
dimension? SIAM J. Sci. Comput., 27(1):159–183, 2005. [337]

258. X. Wang and I. H. Sloan. Quasi-Monte Carlo methods in financial engineering: an equivalence
principle and dimension reduction. Oper. Res., 59(1):80–95, 2011. [337]

259. X. Wang, I. H. Sloan, and J. Dick. On Korobov lattice rules in weighted spaces. SIAM J.
Numer. Anal., 42(4):1760–1779, 2004. [97, 99]

260. T. T. Warnock. Computational investigations of low discrepancy point sets. In S. K. Zaremba,
editor, Applications of Number Theory to Numerical Analysis (Proc. Sympos., Univ. Montréal,
Montreal, Que., 1971), pages 319–343. Academic Press, 1972. [316]

261. G. W. Wasilkowski and H. Woźniakowski. Weigthed tensor product algorithms for linear
multivariate problems. J. Complexity., 15(3):402–447, 1999. [435]

262. A. Weil. On some exponential sums. Proc. Nat. Acad. Sci. U. S. A., 34:204–207, 1948. [366]
263. H. Wendland. Scattered Data Approximation. Cambridge University Press, Cambridge, 2004.

[487]
264. H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins. Math. Ann., 77(3):313–352, 1916.

(In German). [26]
265. G. Xu. EC-tractability of L𝑝-approximation in Korobov spaces with exponential weights. J.

Approx. Theory, 249:Paper No. 105309, 20 pp., 2020. [361, 488]
266. S. K. Zaremba. Good lattice points, discrepancy, and numerical integration. Ann. Mat. Pura

Appl. (4), 73:293–317, 1966. [44]
267. S. K. Zaremba. La discrépance isotrope et l’intégration numérique. Ann. Mat. Pura Appl.

(4), 87:125–136, 1970. (In French). [219]

References 575

268. S. K. Zaremba. La méthode des “bons treillis” pour le calcul des intégrales multiples. In
S. K. Zaremba, editor, Applications of Number Theory to Numerical Analysis (Proc. Sympos.,
Univ. Montreal, Montreal, Que., 1971), pages 39–119, 1972. (In French). [43, 44, 52]

269. S. K. Zaremba. Good lattice points modulo composite numbers. Monatsh. Math., 78:446–460,
1974. [44]

270. X. Y. Zeng, P. Kritzer, and F. J. Hickernell. Spline methods using integration lattices and
digital nets. Constr. Approx., 30(3):529–555, 2009. [457, 487]

271. X. Y. Zeng, K. T. Leung, and F. J. Hickernell. Error analysis of splines for periodic problems
using lattice designs. In H. Niederreiter and D. Talay, editors, Monte Carlo and Quasi-Monte
Carlo Methods 2004, pages 501–514. Springer, Berlin, 2006. [455]

Index

abscissa set, 6
absolutely continuous function, 20
aliasing, 427
aliasing error, 498
anchor, 276
ANOVA Sobolev space, 272
approximation

in Korobov spaces, 409, 457, 472, 490
𝐿∞, 457, 472, 501
lower bounds for 𝐿2 approximation, 427
𝐿2, 409

𝑏-adic
integers, 223
numbers, 223

Bernoulli polynomial, 64

CBC algorithm, 100, 115, 124, 126, 143, 152,
237, 251, 254, 417, 439, 466

digit-by-digit construction, 174, 183
fast construction for POD weights, 124
fast construction for product weights, 115
fast sieve construction, 254
for finding embedded lattice rules, 237
for 𝐿∞-approximation, 466
for 𝐿2-approximation, 417, 439
for two quality criteria, 404
projection corrected, 169
reduced, 143
reduced fast, 152
sieve construction, 251

character, 13
trivial, 14

circulant matrix, 119
class of information, 433
combined 𝐿𝑝-discrepancy, 33

component-by-component algorithm, 100, 115,
124, 126, 143, 152, 237, 251, 254, 417,
439, 466

digit-by-digit construction, 174, 183
fast construction for POD weights, 124
fast construction for product weights, 115
fast sieve construction, 254
for finding embedded lattice rules, 237
for 𝐿∞-approximation, 466
for 𝐿2-approximation, 417, 439
projection corrected, 169
reduced, 143
reduced fast, 152
sieve construction, 251

component-by-component digit-by-digit
(CBC-DBD) construction, 174

copy rule, 11
curse of dimensionality, 38

determinant of a lattice, 7
digit-by-digit (DBD) construction, 183, 257
discrepancy

combined 𝐿𝑝-, 33
extreme, 28
isotropic, 211
𝐿𝑝-, 28
spherical cap, 212
star-, 28
weighted 𝐿𝑝-, 283
weighted 𝐿2-, 283
weighted star-, 204

dual lattice, 7

embedded
continuously (normed spaces), 287
lattice, 237
lattice rule, 237

577

https://doi.org/10.1007/978-3-031-09951-9
J. Dick et al., Lattice Rules, Springer Series in Computational Mathematics 58,

© The Editor(s) (if applicable) and The Author(s), under exclusive license
to Springer Nature Switzerland AG 2022

578 Index

enhanced trigonometric degree, 46
𝜀-exponent

of EXP-strong polynomial tractability, 353
of strong polynomial tractability, 38, 434

error
demand, 37
functional, 24
integration, 24
randomized, 378, 382
worst-case, 24, 36

exponent
exponential convergence, 344
uniform exponential convergence, 344

exponential convergence, 344
uniform, 344

extensible lattice point sets, 222
extreme discrepancy, 28

fast component-by-component
algorithm, 115
sieve algorithm, 254

fast Fourier transform, 120
fast QMC matrix-vector multiplication, 510

for Korobov’s 𝑝-set, 515
for lattice point sets, 511

FFT, 120
Fibonacci lattice, 44
figure of merit, 43
fold-and-sum operator, 156
folded

lattice rule, 300
point set, 300

Fourier matrix, 116, 119, 491
function approximation

in Korobov spaces, 409, 457, 472, 490
𝐿∞, 457, 472, 501
lower bounds for 𝐿2 approximation, 427
𝐿2, 409

generating vector, 4
generator matrix, 6

half-period cosine space, 286
Hlawka’s identity, 31
Hölder

condition, 372
seminorm, 372

hyperbolic cross, 16, 429

inequality
Jensen’s, 81
Koksma–Hlawka, 33
weighted Koksma–Hlawka, 205

information, 433

class of, 433
from the class Λall, 433
from the class Λstd, 433
standard, 433

Information Based Complexity, 36
information complexity, 37
initial error, 37
integration

lattice, 6
weights, 26

integration error, 24
invariants (of a lattice rule), 10
inverse

of star-discrepancy, 39
of weighted star-discrepancy, 208

isotropic discrepancy, 211

Jensen’s inequality, 81

kernel
reproducing, 18
shift-invariant, 268, 327

Koksma–Hlawka inequality, 33
weighted version, 205

Korobov class, 15
Korobov space, 55, 56, 60, 76

general, 340
weighted, 76

Korobov type
generating vector, 46, 97
lattice point, 97

Lambert cylindrical equal-area projection, 211
lattice, 6

basis, 6
determinant, 7
dual, 7
generator matrix, 6
integration, 6
point, 4
point set, 5
rule, 6
sequence, 222
unit cell, 7

lattice point set, 5
discrepancy, 195
multiple, 490

lattice rule, 6
embedded, 12, 237
folded, 300
Korobov, 97
rank-1, 10
shifted, 266
shifted and folded, 302

Index 579

stability, 395
symmetrized, 314

linear rule, 26
local discrepancy function, 27
𝐿𝑝-discrepancy, 28

combined, 33
weighted, 283

𝐿2-discrepancy
weighted, 283

method of good lattice points, 4
Minkowski’s fundamental theorem, 47
modulus, 4
Monte Carlo rule, 2

quasi-, 3
multiple lattice point set, 490

normal distribution, 331
𝑁 -th minimal

weighted star-discrepancy, 208
worst-case error, 36

𝑝-sets, 363
𝑃𝛼, 16
POD weights, 124
product and order dependent weights, 124
product rule, 35
product weights, 77
projection corrected CBC algorithm, 169

QMC matrix, 510
quasi-Monte Carlo rule, 3, 24

shifted, 266

Rader transform, 118
radical inverse function, 222
random shift, 393
random weights, 406
randomized

algorithm, 379
error, 378, 382
setting, 377

rank (of a lattice rule), 10
rank-1 lattice rule, 10
reconstruction property, 491
rectangle rule, 4
reduced component-by-component algorithm,

143
reduced fast component-by-component

algorithm, 152
reduction index, 142, 161
regular grid, 348
representer of the integration error, 25
reproducing kernel, 18

reproducing kernel Hilbert space, 18
𝜌(L) , 𝜌(𝒈, 𝑁) , 43
𝜌𝜶,𝜸 (𝒈, 𝑁) , 399
Riemann zeta function, 42
𝑅 (L) , 𝑅 (𝒈, 𝑁) , 41
rule

lattice, 6
linear, 26
QMC, 3
rectangle, 4
shifted lattice, 266

SCS construction, 158
reduced fast, 160

shift, 266, 393
random, 393

shift-averaged and folded worst-case error, 303
shift-averaged worst-case error, 267
shift-invariant kernel, 268, 327
shifted

lattice rule, 266
point set, 266
QMC rule, 266

sieve
algorithm, 251
principle, 245

𝜎 (L) , 𝜎 (𝒈, 𝑁) , 50
Sobolev space

anchored, 29
ANOVA, 272
embedding, 296
higher smoothness, 284
weighted anchored, 277
weighted unanchored, 272, 285

spectral test, 50, 213
spherical cap discrepancy, 212
spline, 472
stability, 395
standard averaging argument, 72
standard deviation of a function, 3
star-discrepancy, 28
stiffness matrix, 528
successive coordinate search construction, 158

reduced fast, 160
sum-exponent, 434
symmetrized lattice rule, 314

tent transformation, 300
tent-transformed

lattice rule, 300
point set, 300

Toeplitz matrix, 121
tractability, 37, 81, 433, 485

EXP-polynomial, 353

580 Index

EXP-strong polynomial, 353
EXP-weak, 353
polynomial, 38
strong polynomial, 38
weak, 38

trapezoidal rule, 4, 302
product, 349

trigonometric polynomial, 46, 491
truncation dimension, 524, 528

unbiased estimator, 267
uniform ellipticity assumptions, 524, 529
unit cell, 7

variance of a function, 2

weighted
anchored Sobolev space, 277
discrepancy, 203
𝐿𝑝-discrepancy, 283

𝐿2-discrepancy, 283
star-discrepancy, 203, 204
unanchored Sobolev space, 272

of smoothness 𝛼, 285
weights, 75

integration, 26
product, 77
product and order dependent (POD), 124
random, 406

Weil bound, 366
Wiener algebra, 372
worst-case error, 24, 36

shift-averaged, 267
shift-averaged and folded, 303

worst-case setting, 24

Zaremba
conjecture, 45
identity, 31
index, 43, 399

	Preface
	Contents
	List of Symbols
	Chapter 1 Introduction
	1.1 Monte Carlo and Quasi-Monte Carlo Integration
	1.2 Lattice Rules
	1.3 The Structure of Lattice Rules
	1.4 Lattice Rules for Numerical Integration—the Classical Theory
	1.5 QMC Integration in Reproducing Kernel Hilbert Spaces
	1.6 Discrepancy and Koksma–Hlawka Type Inequalities
	1.7 The Curse of Dimensionality
	1.8 Further Quality Criteria for Lattice Rules
	Notes and Remarks

	Chapter 2 Integration of Smooth Periodic Functions
	2.1 Korobov Spaces
	2.2 Integration in Korobov Spaces
	2.3 Error Bounds for the Unweighted Case
	2.4 Weighted Korobov Spaces
	2.5 Integration in Weighted Korobov Spaces
	2.6 Tractability
	Notes and Remarks

	Chapter 3 Constructions of Lattice Rules
	3.1 Exhaustive Search for Generating Vectors
	3.2 Korobov Type Generating Vectors
	3.3 Component-By-Component Constructions
	3.4 The Fast CBC Construction for Product Weights
	3.5 The Fast CBC Construction for POD Weights
	3.6 A CBC Algorithm Based on the Quality Criterion R
	Notes and Remarks

	Chapter 4 Modified Construction Schemes
	4.1 The Reduced CBC Construction
	4.2 The Reduced Fast CBC Construction for Product and POD Weights
	4.3 The Successive Coordinate Search Construction
	4.4 The Reduced Fast SCS Construction
	4.5 Projection-Corrected Constructions
	4.6 The Component-By-Component Digit-By-Digit Construction
	Notes and Remarks

	Chapter 5 Discrepancy of Lattice Point Sets
	5.1 Extreme Discrepancy
	5.2 CBC Construction of Low Discrepancy Lattice Point Sets
	5.3 Weighted Star-Discrepancy
	5.4 Tractability of the Weighted Star-Discrepancy
	5.5 Korobov Type Lattice Point Sets With Low Weighted Star-Discrepancy
	5.6 Isotropic Discrepancy and Lattice Point Sets on the Sphere
	Notes and Remarks

	Chapter 6 Extensible Lattice Point Sets
	6.1 The Definition of Extensible Lattice Point Sets
	6.2 Existence of Extensible Lattice Point Sets With Good Properties
	6.3 Constructions of Extensible Lattice Rules—Embedded Lattice Rules
	6.4 A Sieve Principle for Constructing Embedded Lattice Rules
	6.5 The CBC Sieve Algorithm
	6.6 The Fast CBC Sieve Algorithm
	6.7 A Digit-By-Digit Construction
	Notes and Remarks

	Chapter 7 Lattice Rules for Nonperiodic Integrands
	7.1 Shifted Lattice Rules and Integration in Weighted Sobolev Spaces
	7.2 Sobolev Spaces of Higher Smoothness and Cosine Spaces
	7.3 Folded Lattice Rules
	7.4 Symmetrized Lattice Rules
	Notes and Remarks

	Chapter 8 Integration With Respect to Probability Measures
	8.1 Transforming the Points Versus Transforming the Integrand
	8.2 Function Space Setting
	8.3 Unanchored Spaces
	8.4 The Shift-Invariant Kernel
	8.5 Integration Error
	Notes and Remarks

	Chapter 9 Integration of Analytic Functions
	9.1 General Korobov Spaces and Korobov Spaces of Analytic Functions
	9.2 Integration in Korobov Spaces of Analytic Functions
	9.3 Exponential Tractability
	Notes and Remarks

	Chapter 10 Korobov’s p-Sets
	10.1 The Construction of Korobov’s p-Sets
	10.2 The Weighted Star-Discrepancy of the p-Sets
	10.3 Integration of Hölder Continuous Fourier Series
	Notes and Remarks

	Chapter 11 Lattice Rules in the Randomized Setting
	11.1 The Randomized Algorithm for Korobov Spaces
	11.2 Randomized Folded Lattice Rules
	11.3 A Brief Discussion of Tractability
	Notes and Remarks

	Chapter 12 Stability of Lattice Rules
	12.1 A Stability Result
	12.2 The CBC Algorithm With Respect to More Than One Criterion
	12.3 Random Weights
	Notes and Remarks

	Chapter 13 L2-Approximation Using Lattice Rules
	13.1 L2-Approximation of Functions in Korobov Spaces
	13.2 Lower Error Bounds for L2-Approximation in Korobov Spaces Using Lattice-Based Algorithms
	13.3 Tractability of L2-Approximation Using Lattice Rules
	13.4 Adaptions for General Weights
	Notes and Remarks

	Chapter 14 L∞-Approximation Using Lattice Rules
	14.1 L∞-Approximation of Functions in Korobov Spaces
	14.2 L∞-Approximation of Functions in Korobov Spaces Using Splines
	14.3 Tractability of L∞-Approximation Using Lattice Rules and Splines
	Notes and Remarks

	Chapter 15 Multiple Rank-1 Lattice Point Sets
	15.1 Multiple Rank-1 Lattice Point Sets for Approximation in Korobov Spaces
	15.2 Error Analysis
	15.3 Comparison to Previous Results and Tractability
	Notes and Remarks

	Chapter 16 Fast QMC Matrix-Vector Multiplication
	16.1 The General Idea
	16.2 Fast QMC Matrix-Vector Multiplication for Lattice Point Sets
	16.3 Fast QMC Matrix-Vector Multiplication for a Special Case of Korobov’s p-Sets
	16.4 Applications
	16.5 Numerical Experiments

	Appendix A Partial Differential Equations With Random Coefficients
	A.1 Uniform Random Coefficients
	A.2 Log-Normal Random Coefficients

	Appendix B Numerical Experiments for Lattice Rule Construction Algorithms
	B.1 Numerical Results for the CBC Construction
	B.2 Numerical Results for Alternative Constructions

	References
	Index

