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Monte Carlo integration
Want to estimate

µ = µ(f ) =

∫
[0,1)s

f (u) du = E[f (U)]

where f : [0, 1)s → R and U is a uniform r.v. over [0, 1)s .

Standard (or crude) Monte Carlo:

I Generate n independent copies of U, say U1, . . . ,Un;

I estimate µ by µ̂n = 1
n

∑n
i=1 f (Ui ).

Almost sure convergence as n→∞ (strong law of large numbers).
For confidence interval of level 1− α, can use central limit theorem:

P
[
µ ∈

(
µ̂n −

cαSn√
n

, µ̂n +
cαSn√

n

)]
≈ 1− α,

where S2
n is any consistent estimator of σ2 = Var[f (U)].
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Quasi-Monte Carlo (QMC)

Replace the independent random points Ui by a set of deterministic points
Pn = {u0, . . . ,un−1} that cover [0, 1)s more evenly.

Estimate

µ =

∫
[0,1)s

f (u)du by Qn =
1

n

n−1∑
i=0

f (ui ).

Integration error En = Qn − µ.

Pn is called a highly-uniform point set or low-discrepancy point set if some measure of
discrepancy between the empirical distribution of Pn and the uniform distribution converges
to 0 faster than O(n−1/2) (the typical rate for independent random points).

Main construction methods: lattice rules and digital nets.
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Simple case: one dimension (s = 1)
Obvious solutions:

Pn = Zn/n = {0, 1/n, . . . , (n − 1)/n} (left Riemann sum):

0 10.5

which gives Qn =
1

n

n−1∑
i=0

f (i/n), and En = O(n−1) if f ′ is bounded,

or P ′n = {1/(2n), 3/(2n), . . . , (2n − 1)/(2n)} (midpoint rule):

0 10.5

for which En = O(n−2) if f ′′ is bounded.
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Simplistic solution for s > 1: rectangular grid
Pn = {(i1/d , . . . , is/d) such that 0 ≤ ij < d ∀j} where n = d s .

0 1

1

ui ,1

ui ,2

Midpoint rule in s dimensions. Quickly becomes impractical when s increases.
Moreover, each one-dimensional projection has only d distinct points,
each two-dimensional projections has only d2 distinct points, etc.
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Lattice rules
[Korobov 1959; Sloan and Joe 1994; etc.] Integration lattice:

Ls =

v =
s∑

j=1

zjvj such that each zj ∈ Z

 ,

where v1, . . . , vs ∈ Rs are linearly independent over R and where Ls contains Zs .
Lattice rule: Take Pn = {u0, . . . ,un−1} = Ls ∩ [0, 1)s .

Each coordinate of each point must be a multiple of 1/n.

Lattice rule of rank 1: ui = iv1 mod 1 for i = 0, . . . , n − 1,
where nv1 = a = (a1, . . . , as) ∈ {0, 1, . . . , n − 1}s .

Korobov rule: a = (1, a, a2 mod n, . . . ).

For any u ⊂ {1, . . . , s}, the projection Ls(u) of Ls is also a lattice.

Fully projection-regular: Each Pn(u) = Ls(u) ∩ [0, 1)|u| contains n distinct points.
For a rule of rank 1: true iff gcd(n, aj) = 1 for all j .



D
ra

ft

6

Lattice rules
[Korobov 1959; Sloan and Joe 1994; etc.] Integration lattice:

Ls =

v =
s∑

j=1

zjvj such that each zj ∈ Z

 ,

where v1, . . . , vs ∈ Rs are linearly independent over R and where Ls contains Zs .
Lattice rule: Take Pn = {u0, . . . ,un−1} = Ls ∩ [0, 1)s .

Each coordinate of each point must be a multiple of 1/n.

Lattice rule of rank 1: ui = iv1 mod 1 for i = 0, . . . , n − 1,
where nv1 = a = (a1, . . . , as) ∈ {0, 1, . . . , n − 1}s .

Korobov rule: a = (1, a, a2 mod n, . . . ).

For any u ⊂ {1, . . . , s}, the projection Ls(u) of Ls is also a lattice.

Fully projection-regular: Each Pn(u) = Ls(u) ∩ [0, 1)|u| contains n distinct points.
For a rule of rank 1: true iff gcd(n, aj) = 1 for all j .



D
ra

ft

6

Lattice rules
[Korobov 1959; Sloan and Joe 1994; etc.] Integration lattice:

Ls =

v =
s∑

j=1

zjvj such that each zj ∈ Z

 ,

where v1, . . . , vs ∈ Rs are linearly independent over R and where Ls contains Zs .
Lattice rule: Take Pn = {u0, . . . ,un−1} = Ls ∩ [0, 1)s .

Each coordinate of each point must be a multiple of 1/n.

Lattice rule of rank 1: ui = iv1 mod 1 for i = 0, . . . , n − 1,
where nv1 = a = (a1, . . . , as) ∈ {0, 1, . . . , n − 1}s .

Korobov rule: a = (1, a, a2 mod n, . . . ).

For any u ⊂ {1, . . . , s}, the projection Ls(u) of Ls is also a lattice.

Fully projection-regular: Each Pn(u) = Ls(u) ∩ [0, 1)|u| contains n distinct points.
For a rule of rank 1: true iff gcd(n, aj) = 1 for all j .



D
ra

ft

7

Example: lattice with s = 2, n = 101, v1 = (1, 12)/n

0 1

1

ui ,1

ui ,2

v1

Here, each one-dimensional projection is {0, 1/n, . . . , (n − 1)/n}.
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Another example: s = 2, n = 1021, v1 = (1, 90)/n

Pn = {ui = iv1 mod 1 : i = 0, . . . , n − 1}
= {(i/1021, (90i/1021) mod 1) : i = 0, . . . , 1020}.

0 1

1

ui ,1

ui ,2

v1
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A bad lattice: s = 2, n = 101, v1 = (1, 51)/n

0 1

1

ui ,1

ui ,2

v1

Good uniformity for one-dimensional projections, but not in two dim.
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Sequence of imbedded lattices

Sequence of lattices L1
s ⊂ L2

s ⊂ L3
s ⊂ . . . .

Lξs ∩ [0, 1)s contains nξ points: nξ−1 divides nξ for all ξ.

Simple case: lattices of rank 1, nξ = 2ξ, aξ mod nξ−1 = aξ−1.

Then, aξ,j = aξ−1,j or aξ,j = aξ−1,j + nξ−1.

[Cranley and Patterson 1976, Joe 1990, Hickernell et al. 2001, Kuo et al. 2006]
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Error in terms of Fourier expansion of f

f (u) =
∑
h∈Zs

f̂ (h) exp(2πih · u),

with Fourier coefficients

f̂ (h) =

∫
[0,1)s

f (u) exp(−2πih · u)du.

If this series converges absolutely, then

En = Qn − µ =
∑

0 6=h∈L∗s

f̂ (h)

where L∗s = {h ∈ Rs : htv ∈ Z for all v ∈ Ls} ⊆ Zs is the dual lattice.
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Let α > 0 be an even integer. If f has square-integrable mixed partial derivatives up to order
α/2 > 0, and the periodic continuation of its derivatives up to order α/2− 1 is continuous
across the unit cube boundaries, then

|f̂ (h)| = O((max(1, h1) · · ·max(1, hs))−α/2).

Moreover, there are rank-1 integration lattices for which

Pα/2 :=
∑

0 6=h∈L∗s

(max(1, h1) · · ·max(1, hs))−α/2 = O(n−α/2+ε),

and they are easy to find via CBC construction. This criterion was proposed long ago as a
figure of merit, usually with α = 2. This is the error for a worst-case f for which
|f̂ (h)| = (max(1, |h1|) · · ·max(1, |hs |))−α/2.

Unfortunately, this bound becomes rapidly useless (in many ways) when s increases. But it
can be generalized in various directions: put different weights w(h) on vectors h, or on
subsets of coordinates; truncate the series if α is not even; etc.
Notions of tractability... Also hard to estimate the error.
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Randomized quasi-Monte Carlo (RQMC)

µ̂n,rqmc =
1

n

n−1∑
i=0

f (Ui ),

with Pn = {U0, . . . ,Un−1} ⊂ (0, 1)s an RQMC point set:

(i) each point Ui has the uniform distribution over (0, 1)s ;

(ii) Pn as a whole is a low-discrepancy point set.

E[µ̂n,rqmc] = µ (unbiased).

Var[µ̂n,rqmc] =
Var[f (Ui )]

n
+

2

n2

∑
i<j

Cov[f (Ui ), f (Uj)].

We want to make the last sum as negative as possible.

Weaker attempts to do the same: antithetic variates (n = 2), Latin hypercube sampling
(LHS), stratification, ...
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Variance estimation:

Can compute m independent realizations X1, . . . ,Xm of µ̂n,rqmc, then estimate µ and
Var[µ̂n,rqmc] by their sample mean X̄m and sample variance S2

m. Could be used to compute a
confidence interval.

Temptation: assume that X̄m has the normal distribution.
Beware: often wrong unless m→∞.
CLT for fixed m and n→∞ holds for nets with Owen nested scrambling, but not for
randomly-shifted lattice rules.
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Randomly-Shifted Lattice

Example: lattice with s = 2, n = 101, v1 = (1, 12)/101

0 1

1

ui ,1

ui ,2

U
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A small lattice shifted by the red vector, modulo 1.
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Can generate the shift uniformly in the parallelotope determined by basis vectors,

or in any
shifted copy of it.

0 1
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Perhaps less obvious: Can generate it in any of the colored shapes below.
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Generating the shift uniformly in one tile

Proposition. Let R ⊂ [0, 1)s such that

{Ri = (R + ui ) mod 1, i = 0, . . . , n − 1}

is a partition of [0, 1)s in n regions of volume 1/n.
Then, sampling the random shift U uniformly in any given Ri is equivalent to sampling it
uniformly in [0, 1)s .

The error function
gn(U) = µ̂n,rqmc − µ

over any Ri is the same as over R.
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Error function gn(u) for f (u1, u2) = (u1 − 1/2) (u2 − 1/2).
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Error function gn(u) for f (u1, u2) = (u1 − 1/2) + (u2 − 1/2).
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Error function gn(u) for f (u1, u2) = u1u2 (u1 − 1/2) (u2 − 1/2).
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Variance for randomly-shifted lattice

Suppose f has Fourier expansion

f (u) =
∑
h∈Zs

f̂ (h)e2πihtu.

For a randomly shifted lattice, the exact variance is (always)

Var[µ̂n,rqmc] =
∑

06=h∈L∗s

|f̂ (h)|2,

where L∗s is the dual lattice.

From the viewpoint of variance reduction, an optimal lattice for given f minimizes the

square “discrepancy” D2(Pn) = Var[µ̂n,rqmc].
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Var[µ̂n,rqmc] =
∑

06=h∈L∗s

|f̂ (h)|2.

Let α > 0 be an even integer. If f has square-integrable mixed partial derivatives up to order
α/2 > 0, and the periodic continuation of its derivatives up to order α/2− 1 is continuous
across the unit cube boundaries, then

|f̂ (h)|2 = O((max(1, h1) · · ·max(1, hs))−α).

Moreover, there is a vector v1 = v1(n) such that

Pα :=
∑

06=h∈L∗s

(max(1, h1) · · ·max(1, hs))−α = O(n−α+ε).

This Pα is the variance for a worst-case f having

|f̂ (h)|2 = (max(1, |h1|) · · ·max(1, |hs |))−α.

A larger α means a smoother f and a faster convergence rate.



D
ra

ft

25

If α is an even integer, this worst-case f is

f ∗(u) =
∑

u⊆{1,...,s}

∏
j∈u

(2π)α/2

(α/2)!
Bα/2(uj).

where Bα/2 is the Bernoulli polynomial of degree α/2.
In particular, B1(u) = u − 1/2 and B2(u) = u2 − u + 1/6.
Easy to compute Pα and to search for good lattices in this case!

However: This worst-case function is not necessarily representative of what happens in
applications. Also, the hidden factor in O increases quickly with s, so this result is not very
useful for large s.

To get a bound that is uniform in s, the Fourier coefficients must decrease rapidly with the
dimension and “size” of vectors h; that is, f must be “smoother” in high-dimensional
projections. This is typically what happens in applications for which RQMC is effective!
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A very general weighted Pα

Pα can be generalized by giving different weights w(h) to the vectors h:

P̃α :=
∑

0 6=h∈L∗s

w(h)(max(1, |h1|) · · ·max(1, |hs |))−α.

But how do we choose these weights? There are too many!

The optimal weights to minimize the variance are:

w(h) = (max(1, |h1|) · · ·max(1, |hs |))α|f̂ (h)|2.
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ANOVA decomposition
The Fourier expansion has too many terms to handle.
As a cruder expansion, we can write f (u) = f (u1, . . . , us) as:

f (u) =
∑

u⊆{1,...,s}

fu(u) = µ+
s∑

i=1

f{i}(ui ) +
s∑

i ,j=1

f{i ,j}(ui , uj) + · · ·

where

fu(u) =

∫
[0,1)|ū|

f (u) duū −
∑
v⊂u

fv(uv),

and the Monte Carlo variance decomposes as

σ2 =
∑

u⊆{1,...,s}

σ2
u , where σ2

u = Var[fu(U)].

The σ2
u ’s can be estimated (perhaps very roughly) by MC or RQMC.

Intuition: Make sure the projections Pn(u) are very uniform for subsets u with large σ2
u .
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Weighted Pγ,α with projection-dependent weights γu
Denote u(h) = u(h1, . . . , hs) the set of indices j for which hj 6= 0.

Pγ,α =
∑

0 6=h∈L∗s

γu(h)(max(1, |h1|) · · ·max(1, |hs |))−α.

For α/2 integer > 0, with ui = (ui,1, . . . , ui,s) = iv1 mod 1,

Pγ,α =
∑

∅6=u⊆{1,...,s}

1

n

n−1∑
i=0

γu

[
−(−4π2)α/2

(α)!

]|u|∏
j∈u

Bα(ui,j),

and the corresponding variation is

V 2
γ (f ) =

∑
∅6=u⊆{1,...,s}

1

γu(4π2)α|u|/2

∫
[0,1]|u|

∣∣∣∣∂α|u|/2

∂uα/2
fu(u)

∣∣∣∣2 du,

for f : [0, 1)s → R smooth enough. Then,

Var[µ̂n,rqmc] =
∑

u⊆{1,...,s}

Var[µ̂n,rqmc(fu)] ≤ V 2
γ (f )Pγ,α .
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Pγ,α =
∑

06=h∈L∗s

γu(h)(max(1, h1), . . . ,max(1, hs))−α

Variance for a worst-case function whose square Fourier coefficients are

|f̂ (h)|2 = γu(h)(max(1, h1), . . . ,max(1, hs))−α.

This is the RQMC variance for the function

f ∗(u) =
∑

u⊆{1,...,s}

√
γu
∏
j∈u

(2π)α/2

(α/2)!
Bα/2(uj).

We also have for this f :

σ2
u = γu

[
Var[Bα/2(U)]

(4π2)α/2

((α/2)!)2

]|u|
= γu

[
|Bα(0)| (4π2)α/2

(α)!

]|u|
.

For α = 2, we should take γu = (3/π2)|u|σ2
u ≈ (0.30396)|u|σ2

u .
For α = 4, we should take γu = [45/π4]|u|σ2

u ≈ (0.46197)|u|σ2
u .

For α→∞, we have γu → (0.5)|u|σ2
u .

The ratios weight / variance should decrease exponentially with |u|.
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Heuristics for choosing the weights

For f ∗, we should take γu = ρ|u|σ2
u for some constant ρ.

But there are still 2s − 1 subsets u to consider!

One could define a simple parametric model for the square variations and then estimate the
parameters by matching the ANOVA variances σ2

u

[Wang and Sloan 2006, L. and Munger 2012].

For example, product weights: γu =
∏

j∈u γj for some constants γj ≥ 0.

Order-dependent weights: γu depends only on |u|.
Example: γu = 1 for |u| ≤ d and γu = 0 otherwise. Wang (2007) suggests this with d = 2.

Mixture: POD weights (Kuo et al. 2011).

Note that all one-dimensional projections (before random shift) are the same.
So the weights γu for |u| = 1 are irrelevant.
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Weighted Rγ,α

When α is not even, one can take

Rγ,α(Pn) =
∑

∅6=u⊆{1,...,s}

γu
1

n

n−1∑
i=0

∏
j∈u

 bn/2c∑
h=−b(n−1)/2c

max(1, |h|)−αe2πihui,j − 1

 .

Upper bounds on Pγ,α can be computed in terms of Rγ,α.

Can be computed for any α > 0 (finite sum). For example, can take α = 1.

We can compute it using FFT.
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Figure of merit based on the spectral test
Compute the shortest vector `u(Pn) in dual lattice for each projection u and normalize by an
upper bound `∗|u|(n) (with Euclidean length):

Du(Pn) =
`∗|u|(n)

`u(Pn)
≥ 1.

L. and Lemieux (2000), etc., maximize

Mt1,...,td = min



min
2≤r≤t1

`{1,...,r}(Pn)

`∗r (n)

, min
2≤r≤d

min
u={j1,...,jr}⊂{1,...,s}

1=j1<···<jr≤tr

`u(Pn)

`∗r (n)

 .

Computing time of `u(Pn) is almost independent of n, but exponential in |u|. Poor lattices
can be eliminated quickly.

Can use a different norm, compute shortest vector in primal lattice, etc.
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Search methods
Korobov lattices. Search over all admissible a, for a = (1, a, a2, . . . , ...).
Random Korobov. Try r random values of a.

Rank 1, exhaustive search.
Pure random search. Try admissible vectors a at random.

Component by component (CBC) construction. (Sloan, Kuo, etc.).
Let a1 = 1;

For j = 2, 3, . . . , s, find z ∈ {1, . . . , n − 1}, gcd(z , n) = 1, such that
(a1, a2, . . . , aj = z) minimizes D(Pn({1, . . . , j})).

Fast CBC construction for Pγ,α: use FFT. (Nuyens, Cools).

Randomized CBC construction.
Let a1 = 1;

For j = 2, . . . , s, try r random z ∈ {1, . . . , n − 1}, gcd(z , n) = 1,
and retain (a1, a2, . . . , aj = z) that minimizes D(Pn({1, . . . , j})).

Can add filters to eliminate poor lattices more quickly.
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Embedded latticesPn1 ⊂ Pn2 ⊂ . . .Pnm with n1 < n2 < · · · < nm, for some m > 0.
Usually: nk = bc+k for integers c ≥ 0 and b ≥ 2, typically with b = 2, ak = ak+1 mod nk for
all k < m, and the same random shift.

We need a measure that accounts for the quality of all m lattices.
We standardize the merit at all levels k so they have a comparable scale:

Eq(Pn) = Dq(Pn)/D∗q(n),

where D∗q(n) is a normalization factor, e.g., a bound on Dq(Pn) or a bound on its average
over all (a1, . . . , as) under consideration.
For Pγ,α, bounds by Sinescu and L. (2012) and Dick et al. (2008).
For CBC, we do this for each coordinate j = 1, . . . , s (replace s by j).

Then we can take as a global measure (with sum or max):

[
Ēq,m(Pn1 , . . . ,Pnm)

]q
=

m∑
k=1

wk [Eq(Pnk )]q .



D
ra

ft

35

Available software tools

Construction: Nuyens (2012) provides Matlab code for fast-CBC construction of lattice
rules based on Pγ,α, with product and order-dependent weights.

Precomputed tables for fixed criteria: Maisonneuve (1972), Sloan and Joe (1994), L. and
Lemieux (2000), Kuo (2012), etc.

Software for using (randomized) lattice rules in simulations is also available in many places
(e.g., in SSJ).
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Lattice Builder

Implemented as C++ library, modular, object-oriented, accessible from a program via API.

Various choices of figures of merit, arbitrary weights, construction methods, etc. Easily
extensible.

For better run-time efficiency, uses static polymorphism, via templates, rather than dynamic
polymorphism. Several other techniques to reduce computations and improve speed.

Offers a pre-compiled program with Unix-like command line interface. Also graphical
interface.

Available for download on GitHub, with source code, documentation, and precompiled
executable codes for Linux or Windows, in 32-bit and 64-bit versions.

Coming very soon: Construction of polynomial lattice rules as well.

Show graphical interface
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Baker’s (or tent) transformation
To make the periodic continuation of f continuous.

If f (0) 6= f (1), define f̃ by f̃ (1− u) = f̃ (u) = f (2u) for 0 ≤ u ≤ 1/2.
This f̃ has the same integral as f and f̃ (0) = f̃ (1).

0 1
1/2

For smooth f , can reduce the variance to O(n−4+ε) (Hickernell 2002).
The resulting f̃ is symmetric with respect to u = 1/2.

In practice, we transform the points Ui instead of f

.
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One-dimensional case

Random shift followed by baker’s transformation.
Along each coordinate, stretch everything by a factor of 2 and fold.
Same as replacing Uj by min[2Uj , 2(1− Uj)].

0 10.5

U/n

Gives locally antithetic points in intervals of size 2/n.
This implies that linear pieces over these intervals are integrated exactly.
Intuition: when f is smooth, it is well-approximated by a piecewise linear function, which is
integrated exactly, so the error is small.
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Example: A stochastic activity network
Gives precedence relations between activities. Activity k has random duration Yk (also length
of arc k) with known cumulative distribution function (cdf) Fk(y) := P[Yk ≤ y ].

Project duration T = (random) length of longest path from source to sink.

May want to estimate E[T ], P[T > x ], a quantile, density of T , etc.

0source 1
Y0

2

Y1
Y2

3
Y3

4

Y7

5

Y9

Y4

Y5

6
Y6

7

Y11

Y8

8 sink

Y12

Y10



D
ra

ft

40

Simulation

Algorithm: to generate T :

for k = 0, . . . , 12 do
Generate Uk ∼ U(0, 1) and let Yk = F−1

k (Uk)
Compute X = T = h(Y0, . . . ,Y12) = f (U0, . . . ,U12)

Monte Carlo: Repeat n times independently to obtain n realizations X1, . . . ,Xn of T .
Estimate E[T ] =

∫
(0,1)s f (u)du by X̄n = 1

n

∑n−1
i=0 Xi .

To estimate P(T > x), take X = I[T > x ] instead.

RQMC: Replace the n independent points by an RQMC point set of size n.

Numerical illustration from Elmaghraby (1977):
Yk ∼ N(µk , σ

2
k) for k = 0, 1, 3, 10, 11, and Vk ∼ Expon(1/µk) otherwise.

µ0, . . . , µ12: 13.0, 5.5, 7.0, 5.2, 16.5, 14.7, 10.3, 6.0, 4.0, 20.0, 3.2, 3.2, 16.5.
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Results of an experiment with n = 100 000.
Histogram of values of T is a density estimator that gives more information than a confidence
interval on E[T ] or P[T > x ]. Values range from 14.4 to 268.6; 11.57% exceed x = 90.

RQMC can also reduce the error (e.g., the MISE) of a density estimator!

T
0 25 50 75 100 125 150 175 200

Frequency

0

5000

10000
T = x = 90

T = 48.2

mean = 64.2

ξ̂0.99 = 131.8
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Alternative estimator of P[T > x ] = E[I(T > x)] for SAN.

Naive estimator: Generate T and compute X = I[T > x ].
Repeat n times and average.

0source 1
Y0

2

Y1
Y2

3
Y3

4

Y7

5

Y9

Y4

Y5

6
Y6

7

Y11

Y8

8 sink

Y12

Y10
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Conditional Monte Carlo estimator of P[T > x ]. Generate the Yj ’s only for the 8 arcs
that do not belong to the cut L = {4, 5, 6, 8, 9}, and replace I[T > x ] by its conditional
expectation given those Yj ’s,

Xe = P[T > x | {Yj , j 6∈ L}].

This makes the integrand continuous in the Uj ’s.

To compute Xe: for each l ∈ L, say from al to bl , compute the length αl of the longest path
from 1 to al , and the length βl of the longest path from bl to the destination.

The longest path that passes through link l does not exceed x iff αl + Yl + βl ≤ x , which
occurs with probability P[Yl ≤ x − αl − βl ] = Fl [x − αl − βl ].
Since the Yl are independent, we obtain

Xe = 1−
∏
l∈L

Fl [x − αl − βl ].

Can be faster to compute than X , and always has less variance.
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ANOVA Variances for estimator of P[T > x ] in Stochastic Activity
Network

0 10 20 30 40 50 60 70 80 90 100

x = 64

x = 100

CMC, x = 64

CMC, x = 100

% of total variance for each cardinality of u

Stochastic Activity Network
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Variance for estimator of P[T > x ] for SAN

28.66 211.54 214.43 217.31 220.2

10−7

10−6

10−5

10−4

10−3

n

va
ri

an
ce

Stochastic Activity Network (x = 64)

MC

Sobol

Lattice (P2) + baker

n−2

Variance decreases roughly as O(n−1.2). For E[T ], we observe O(n−1.4).
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Variance for estimator of P[T > x ] with CMC

28.66 211.54 214.43 217.31 220.2
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Histograms, with n = 8191 and m = 10, 000
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Histograms, with n = 8191 and m = 10, 000
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Effective dimension

(Caflisch, Morokoff, and Owen 1997).
A function f has effective dimension d in proportion ρ in the superposition sense if∑

|u|≤d

σ2
u ≥ ρσ2.

It has effective dimension d in the truncation sense if∑
u⊆{1,...,d}

σ2
u ≥ ρσ2.

High-dimensional functions with low effective dimension are frequent.
One may change f to make this happen.
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Example: Function of a Multinormal vector

Let µ = E [f (U)] = E [g(Y)] where Y = (Y1, . . . ,Ys) ∼ N(0,Σ).

For example, if the payoff of a financial derivative is a function of the values taken by a
c-dimensional geometric Brownian motion (GMB) at d observations times
0 < t1 < · · · < td = T , then we have s = cd .

To generate Y: Decompose Σ = AAt, generate Z = (Z1, . . . ,Zs) ∼ N(0, I) where the
(independent) Zj ’s are generated by inversion: Zj = Φ−1(Uj), and return Y = AZ.

Choice of A?

Cholesky factorization: A is lower triangular.



D
ra

ft

50

Example: Function of a Multinormal vector

Let µ = E [f (U)] = E [g(Y)] where Y = (Y1, . . . ,Ys) ∼ N(0,Σ).

For example, if the payoff of a financial derivative is a function of the values taken by a
c-dimensional geometric Brownian motion (GMB) at d observations times
0 < t1 < · · · < td = T , then we have s = cd .

To generate Y: Decompose Σ = AAt, generate Z = (Z1, . . . ,Zs) ∼ N(0, I) where the
(independent) Zj ’s are generated by inversion: Zj = Φ−1(Uj), and return Y = AZ.

Choice of A?

Cholesky factorization: A is lower triangular.



D
ra

ft

50

Example: Function of a Multinormal vector

Let µ = E [f (U)] = E [g(Y)] where Y = (Y1, . . . ,Ys) ∼ N(0,Σ).

For example, if the payoff of a financial derivative is a function of the values taken by a
c-dimensional geometric Brownian motion (GMB) at d observations times
0 < t1 < · · · < td = T , then we have s = cd .

To generate Y: Decompose Σ = AAt, generate Z = (Z1, . . . ,Zs) ∼ N(0, I) where the
(independent) Zj ’s are generated by inversion: Zj = Φ−1(Uj), and return Y = AZ.

Choice of A?

Cholesky factorization: A is lower triangular.



D
ra

ft

50

Example: Function of a Multinormal vector

Let µ = E [f (U)] = E [g(Y)] where Y = (Y1, . . . ,Ys) ∼ N(0,Σ).

For example, if the payoff of a financial derivative is a function of the values taken by a
c-dimensional geometric Brownian motion (GMB) at d observations times
0 < t1 < · · · < td = T , then we have s = cd .

To generate Y: Decompose Σ = AAt, generate Z = (Z1, . . . ,Zs) ∼ N(0, I) where the
(independent) Zj ’s are generated by inversion: Zj = Φ−1(Uj), and return Y = AZ.

Choice of A?

Cholesky factorization: A is lower triangular.



D
ra

ft

50

Example: Function of a Multinormal vector
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Principal component decomposition (PCA) (Ackworth et al. 1998):
A = PD1/2 where D = diag(λs , . . . , λ1) (eigenvalues of Σ in decreasing order) and the
columns of P are the corresponding unit-length eigenvectors.

With this A, Z1 accounts for
the max amount of variance of Y, then Z2 the max amount of variance cond. on Z1, etc.

Function of a Brownian motion (or other Lévy process):
Payoff depends on c-dimensional Brownian motion {X(t), t ≥ 0} observed at times
0 = t0 < t1 < · · · < td = T .

Sequential (or random walk) method: generate X(t1), then X(t2)− X(t1), then
X(t3)− X(t2), etc.

Bridge sampling (Moskowitz and Caflisch 1996). Suppose d = 2m.
generate X(td), then X(td/2) conditional on (X(0),X(td)),
then X(td/4) conditional on (X(0),X(td/2)), and so on.

The first few N(0, 1) r.v.’s already sketch the path trajectory.

Each of these methods corresponds to some matrix A.
Choice has a large impact on the ANOVA decomposition of f .
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Example: Pricing an Asian basket option
We have c assets, d observation times. Want to estimate E[f (U)], where

f (U) = e−rT max

0,
1

cd

c∑
i=1

d∑
j=1

Si (tj)− K


is the net discounted payoff and Si (tj) is the price of asset i at time tj .

Suppose (S1(t), . . . ,Sc(t)) obeys a geometric Brownian motion.
Then, f (U) = g(Y) where Y = (Y1, . . . ,Ys) ∼ N(0,Σ) and s = cd .

Even with Cholesky decompositions of Σ, the two-dimensional projections often account for
more than 99% of the variance: low effective dimension in the superposition sense.

With PCA or bridge sampling, we get low effective dimension in the truncation sense. In
realistic examples, the first two coordinates Z1 and Z2 often account for more than 99.99%
of the variance!
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Numerical experiment with c = 10 and d = 25
This gives a 250-dimensional integration problem.

Let ρi ,j = 0.4 for all i 6= j , T = 1, σi = 0.1 + 0.4(i − 1)/9 for all i , r = 0.04, S(0) = 100,
and K = 100. (Imai and Tan 2002).

Variance reduction factors for Cholesky (left) and PCA (right)
(experiment from 2003):

Korobov Lattice Rules

n = 16381 n = 65521 n = 262139

a = 5693 a = 944 a = 21876

Lattice+shift 18 878 18 1504 9 2643

Lattice+shift+baker 50 4553 46 3657 43 7553

Sobol’ Nets

n = 214 n = 216 n = 218

Sobol+Shift 10 1299 17 3184 32 6046

Sobol+LMS+Shift 6 4232 4 9219 35 16557

Note: The payoff function is not smooth and also unbounded!
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ANOVA Variances for ordinary Asian Option
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Total Variance per Coordinate for the Asian Option
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Variance with good lattices rules and Sobol points
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Polynomial lattice rules
Integers and real numbers are replaced by polynomials and formal series, respectively.

Select prime base b ≥ 2. Usually b = 2.
Replace Z by Fb[z ], the ring of polynomials over finite field Fb ≡ Zb;
Replace R by Lb = Fb((z−1)), the field of formal Laurent series over Fb, of the form∑∞

`=ω x`z
−`, where x` ∈ Fb.

Polynomial lattice

Ls =

v(z) =
s∑

j=1

qj(z)vj(z) such that each qj(z) ∈ Fb[z ]

 ,

where v1(z), . . . , vs(z) are independent vectors in Ls
b, of the form vj(z) = aj(z)/P(z), where

P(z) = zk + α1z
k−1 + · · ·+ αk ∈ Zb[z ] and each aj(z) is a vector of polynomials of degree

less than k. Note that (Zb[z ])s ⊆ Ls (integration lattice) and Ls mod Fb[z ] contains exactly
bk points in Ls

b.

For a rule of rank 1, v2(z), . . . , vs(z) are the unit vectors.
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Define ϕ : L→ R by

ϕ

( ∞∑
`=ω

x`z
−`

)
=
∞∑
`=ω

x`b
−`.

The polynomial lattice rule (PLR) uses the node set Pn = ϕ(Ls)∩ [0, 1)s = ϕ(Ls mod Fb[z ]).

PLRs were first studied by Niederreiter, Larcher, Tezuka (circa 1990), with rank 1. They
were generalized and further studied by Lemieux and L’Ecuyer (circa 2000), then by Dick,
Pillischammer, Nuyens, Goda, and others. Most of the properties of ordinary lattice rules
have counterparts for the polynomial rules.

The Fourier expansion is replaced by a Walsh expansion, the weighted Pγ,α has a counterpart
Pγ,α,PRL, CBC constructions can provide good parameters, fast CBC also works, etc.
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Walsh expansion
For h ≡ h(z) = (h1(z), . . . , hs(z)) ∈ (Fb[z ])s and u = (u1, . . . , us) ∈ [0, 1)s , where

hi (z) =

`i∑
j=1

hi,jz
j−1 and ui =

∑
j≥1

ui,jb
−j ∈ [0, 1), define 〈h,u〉 =

s∑
i=1

`i∑
j=1

hi,jui,j in Fb.

The Walsh expansion in Fb of f : [0, 1)s → R is

f (u) =
∑

h∈(Fb [z])s

f̃ (h)e2πi〈h,u〉/b,

with Walsh coefficients

f̃ (h) =

∫
[0,1)s

f (u)e−2πi〈h,u〉/bdu.

Theorem: For a PLR with a random digital shift, Var[Qn] =
∑

0 6=h∈L∗s

|f̃ (h)|2.

Again, we want to kick out of the dual lattice the h’s for which |f̃ (h)|2 is large. For smooth f , the
small h are the most important.
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Version of Pγ,α for PLRs

A similar reasoning as for ordinary lattice rules leads to

Pγ,α,PLR =
∑

u⊆{1,...,s}

γu
∏

j∈u, hj 6=0

2αblog2 hjc

=
∑

u⊆{1,...,s}

γu
1

n

∑
i = 0n−1

∏
j∈u

(
µ(α)− 2(1+blog2(xi,j )c)(α−1)(µ(α) + 1)

)
.

where µ(α) = (1− 21−α)−1.

For α = 2, this simplifies to µ(2) = 2 and

Pγ,2,PLR =
∑

u⊆{1,...,s}

γu
1

n

n−1∑
i=0

∏
j∈u

(
2− 6 · 2blog2(xi,j )c

)
.
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Example in s = 2 dimensions
Base b = 2, k = 8, n = 28 = 256,
P(z) = 1 + z + z3 + z5 + z8 ≡ [110101001],
q1(z) = 1, q2(z) = 1 + z + z2 + z3 + z5 + z7 ≡ [11110101].

0 1

1

ui ,1

ui ,2
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A PLR is also a special case of a digital net in base b, and this can be used to generate the
points efficiently: compute the generating matrices and use the digital net implementation.
This is particularly fast in base b = 2.

Random shift in space of formal series: equivalent to a random digital shift in base b, applied
to all the points. It preserves equidistribution.
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Random digital shift for digital net
Equidistribution in digital boxes is lost with random shift modulo 1,
but can be kept with a random digital shift in base b.

In base 2: Generate U ∼ U(0, 1)s and XOR it bitwise with each ui .

Example for s = 2:

ui = (0.01100100..., 0.10011000...)2

U = (0.01001010..., 0.11101001...)2

ui ⊕U = (0.00101110..., 0.01110001...)2.

Each point has U(0, 1) distribution.
Preservation of the equidistribution (k1 = 3, k2 = 5):

ui = (0.***, 0.*****)

U = (0.010, 0.11101)2

ui ⊕U = (0.***, 0.*****)
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U = (0.1270111220, 0.3185275653)10

= (0. 0010 0000100000111100, 0. 0101 0001100010110000)2.

Changes the bits 3, 9, 15, 16, 17, 18 of ui ,1
and the bits 2, 4, 8, 9, 13, 15, 16 of ui ,2.

0 1

1

un+1

un 0 1

1

un+1

un

Red and green squares are permuted (k1 = k2 = 4, first 4 bits of U).
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Array-RQMC for Markov Chains
Setting: A Markov chain with state space X ⊆ R`, evolves as

X0 = x0, Xj = ϕj(Xj−1,Uj), j ≥ 1,

where the Uj are i.i.d. uniform r.v.’s over (0, 1)d . Want to estimate

µ = E[Y ] where Y =
τ∑

j=1

gj(Xj).

Ordinary MC: n i.i.d. realizations of Y . Requires s = τd uniforms.

Array-RQMC: L., Lécot, Tuffin, et al. [2004, 2006, 2008, etc.]
Simulate an “array” (or population) of n chains in “parallel.”
Goal: Want small discrepancy between empirical distribution of states
Sn,j = {X0,j , . . . ,Xn−1,j} and theoretical distribution of Xj , at each step j .
At each step, use RQMC point set to advance all the chains by one step.
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We estimate

µj = E[gj(Xj)] = E[gj(ϕj(Xj−1,U))] =

∫
[0,1)`+d

gj(ϕj(x,u))dxdu

by

µ̂arqmc,j,n =
1

n

n−1∑
i=0

gj(Xi,j) =
1

n

n−1∑
i=0

gj(ϕj(Xi,j−1,Ui,j)).

This is (roughly) RQMC with the point set Qn = {(Xi,j−1,Ui,j), 0 ≤ i < n} .

We want Qn to have low discrepancy (LD) over [0, 1)`+d .

We do not choose the Xi,j−1’s in Qn: they come from the simulation.
We select a LD point set

Q̃n = {(w0,U0,j), . . . , (wn−1,Un−1,j)} ,

where the wi ∈ [0, 1)` are fixed and each Ui,j ∼ U(0, 1)d .
Permute the states Xi,j−1 so that Xπj (i),j−1 is “close” to wi for each i (LD between the two sets), and
compute Xi,j = ϕj(Xπj (i),j−1,Ui,j) for each i .

Example: If ` = 1, can take wi = (i + 0.5)/n and just sort the states.
For ` > 1, there are various ways to define the matching (multivariate sort).
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Array-RQMC algorithm

Xi ,0 ← x0 (or Xi ,0 ← xi ,0) for i = 0, . . . , n − 1;
for j = 1, 2, . . . , τ do

Compute the permutation πj of the states (for matching);
Randomize afresh {U0,j , . . . ,Un−1,j} in Q̃n;
Xi ,j = ϕj(Xπj (i),j−1,Ui ,j), for i = 0, . . . , n − 1;

µ̂arqmc,j ,n = Ȳn,j = 1
n

∑n−1
i=0 g(Xi ,j);

Estimate µ by the average Ȳn = µ̂arqmc,n =
∑τ

j=1 µ̂arqmc,j ,n.

Proposition: (i) The average Ȳn is an unbiased estimator of µ.
(ii) The empirical variance of m independent realizations gives an unbiased estimator of
Var[Ȳn].
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Array-RQMC algorithm

Xi ,0 ← x0 (or Xi ,0 ← xi ,0) for i = 0, . . . , n − 1;
for j = 1, 2, . . . , τ do

Compute the permutation πj of the states (for matching);
Randomize afresh {U0,j , . . . ,Un−1,j} in Q̃n;
Xi ,j = ϕj(Xπj (i),j−1,Ui ,j), for i = 0, . . . , n − 1;

µ̂arqmc,j ,n = Ȳn,j = 1
n

∑n−1
i=0 g(Xi ,j);

Estimate µ by the average Ȳn = µ̂arqmc,n =
∑τ

j=1 µ̂arqmc,j ,n.

Proposition: (i) The average Ȳn is an unbiased estimator of µ.
(ii) The empirical variance of m independent realizations gives an unbiased estimator of
Var[Ȳn].
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Some generalizations

L., Lécot, and Tuffin [2008]: τ can be a random stopping time w.r.t. the filtration
F{(j ,Xj), j ≥ 0}.

L., Demers, and Tuffin [2006, 2007]: Combination with splitting techniques (multilevel and
without levels), combination with importance sampling and weight windows. Covers particle
filters.

L. and Sanvido [2010]: Combination with coupling from the past for exact sampling.

Dion and L. [2010]: Combination with approximate dynamic programming and for optimal
stopping problems.

Gerber and Chopin [2015]: Sequential QMC.
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Convergence results and applications
L., Lécot, and Tuffin [2006, 2008]: Special cases: convergence at MC rate, one-dimensional,
stratification, etc. O(n−3/2) variance.

Lécot and Tuffin [2004]: Deterministic, one-dimension, discrete state.

El Haddad, Lécot, L. [2008, 2010]: Deterministic, multidimensional. O(n−1/(`+1)) worst-case error
under some conditions.

Fakhererredine, El Haddad, Lécot [2012, 2013, 2014]: LHS, stratification, Sudoku sampling, ...

L., Lécot, Munger, and Tuffin [2016]: Survey, comparing sorts, and further examples, some with
O(n−3) empirical variance.

Wächter and Keller [2008]: Applications in computer graphics.

Gerber and Chopin [2015]: Sequential QMC (particle filters), Owen nested scrambling and Hilbert
sort. o(n−1) variance.



D
ra

ft

70

A (4,4) mapping
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A (4,4) mapping
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A (4,4) mapping
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A (4,4) mapping
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Hilbert curve sort
Map the states to [0, 1], then sort.

States of the chains
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Hilbert curve sort
Map the states to [0, 1], then sort.
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Hilbert curve sort
Map the states to [0, 1], then sort.

States of the chains

0.0
0.0

0.1

0.1

0.2

0.2

0.3

0.3

0.4

0.4

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

1.0

1.0

s
s

s
s

ss
s s

s
s

ss

ss

s
s



D
ra

ft

73

Hilbert curve sort
Map the states to [0, 1], then sort.
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Example: Asian Call Option
S(0) = 100, K = 100, r = 0.05, σ = 0.15, tj = j/52, j = 0, . . . , τ = 13.
RQMC: Sobol’ points with linear scrambling + random digital shift.
Similar results for randomly-shifted lattice + baker’s transform.

log2 n
8 10 12 14 16 18 20

log2 Var[µ̂RQMC,n]

-40

-30

-20

-10

n−2

array-RQMC, split sort

RQMC sequential

crude MC
n−1
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Example: Asian Call Option

Sort RQMC points
log2 Var[Ȳn,j ]

log2 n
VRF CPU (sec)

Batch sort SS -1.38 2.0× 102 744
(n1 = n2) Sobol -2.03 4.2× 106 532

Sobol+NUS -2.03 2.8× 106 1035
Korobov+baker -2.04 4.4× 106 482

Hilbert sort SS -1.55 2.4× 103 840
(logistic map) Sobol -2.03 2.6× 106 534

Sobol+NUS -2.02 2.8× 106 724
Korobov+baker -2.01 3.3× 106 567

VRF for n = 220. CPU time for m = 100 replications.
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Conclusion, discussion, etc.

I RQMC can improve the accuracy of estimators considerably in some applications.

I Cleverly modifying the function f can often bring huge statistical efficiency
improvements in simulations with RQMC.

I There are often many possibilities for how to change f to make it smoother, periodic,
and reduce its effective dimension.

I Point set constructions should be based on discrepancies that take that into account.

I Nonlinear functions of expectations: RQMC also reduces the bias.

I RQMC for density estimation.

I RQMC for optimization.

I Array-RQMC and other QMC methods for Markov chains. Sequential RQMC.

I Still a lot to learn and do ...
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76Some references on QMC, RQMC, and lattice rules:

I Monte Carlo and Quasi-Monte Carlo Methods 2014, 2012, 2010, ... Springer-Verlag, Berlin,
2016, 2014, 2012, ...

I J. Dick and F. Pillichshammer. Digital Nets and Sequences: Discrepancy Theory and
Quasi-Monte Carlo Integration. Cambridge University Press, Cambridge, U.K., 2010.

I F. J. Hickernell. Lattice rules: How well do they measure up? In P. Hellekalek and G. Larcher,
editors, Random and Quasi-Random Point Sets, volume 138 of Lecture Notes in Statistics, pages
109–166. Springer-Verlag, New York, 1998.

I F. J. Hickernell, H. S. Hong, P. L’Ecuyer, and C. Lemieux. Extensible lattice sequences for
quasi-Monte Carlo quadrature. SIAM Journal on Scientific Computing, 22(3):1117–1138, 2001.

I J. Imai and K. S. Tan. A general dimension reduction technique for derivative pricing. Journal
of Computational Finance, 10(2):129–155, 2006.

I P. L’Ecuyer. Polynomial integration lattices. In H. Niederreiter, editor, Monte Carlo and
Quasi-Monte Carlo Methods 2002, pages 73–98, Berlin, 2004. Springer-Verlag.

I P. L’Ecuyer. Quasi-Monte Carlo methods with applications in finance. Finance and
Stochastics, 13(3):307–349, 2009.
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76I P. L’Ecuyer. Randomized quasi-monte carlo: An introduction for practitioners. In P. W. Glynn
and A. B. Owen, editors, Monte Carlo and Quasi-Monte Carlo Methods 2016, 2017.

I P. L’Ecuyer and C. Lemieux. Variance reduction via lattice rules. Management Science,
46(9):1214–1235, 2000.

I P. L’Ecuyer and D. Munger. On figures of merit for randomly-shifted lattice rules. In
H. Woźniakowski and L. Plaskota, editors, Monte Carlo and Quasi-Monte Carlo Methods 2010,
pages 133–159, Berlin, 2012. Springer-Verlag.

I P. L’Ecuyer and D. Munger. Algorithm 958: Lattice builder: A general software tool for
constructing rank-1 lattice rules. ACM Trans. on Mathematical Software, 42(2):Article 15,
2016.

I C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling. Springer-Verlag, New York, NY,
2009.

I C. Lemieux and P. L’Ecuyer. Randomized polynomial lattice rules for multivariate integration
and simulation. SIAM Journal on Scientific Computing, 24(5):1768–1789, 2003.

I H. Niederreiter. Random Number Generation and Quasi-Monte Carlo Methods, volume 63 of
SIAM CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia, PA,
1992.
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76I D. Nuyens. The construction of good lattice rules and polynomial lattice rules. In Peter
Kritzer, Harald Niederreiter, Friedrich Pillichshammer, and Arne Winterhof, editors, Uniform
Distribution and Quasi-Monte Carlo Methods: Discrepancy, Integration and Applications, pages
223–255. De Gruyter, 2014.

I D. Nuyens and R. Cools. Fast algorithms for component-by-component construction of rank-1
lattice rules in shift-invariant reproducing kernel Hilbert spaces. Mathematics of Computation,
75:903–920, 2006.

I I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Clarendon Press, Oxford,
1994.
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76Some references on Array-RQMC:

I M. Gerber and N. Chopin. Sequential quasi-Monte Carlo. Journal of the Royal Statistical
Society, Series B, 77(Part 3):509–579, 2015.

I P. L’Ecuyer, V. Demers, and B. Tuffin. Rare-events, splitting, and quasi-Monte Carlo. ACM
Transactions on Modeling and Computer Simulation, 17(2):Article 9, 2007.

I P. L’Ecuyer, C. Lécot, and A. L’Archevêque-Gaudet. On array-RQMC for Markov chains:
Mapping alternatives and convergence rates. Monte Carlo and Quasi-Monte Carlo Methods
2008, pages 485–500, Berlin, 2009. Springer-Verlag.

I P. L’Ecuyer, C. Lécot, and B. Tuffin. A randomized quasi-Monte Carlo simulation method for
Markov chains. Operations Research, 56(4):958–975, 2008.

I P. L’Ecuyer, D. Munger, C. Lécot, and B. Tuffin. Sorting methods and convergence rates for
array-rqmc: Some empirical comparisons. Mathematics and Computers in Simulation, 2016.
http://dx.doi.org/10.1016/j.matcom.2016.07.010.

I P. L’Ecuyer and C. Sanvido. Coupling from the past with randomized quasi-Monte Carlo.
Mathematics and Computers in Simulation, 81(3):476–489, 2010.

I C. Wächter and A. Keller. Efficient simultaneous simulation of Markov chains. Monte Carlo
and Quasi-Monte Carlo Methods 2006, pages 669–684, Berlin, 2008. Springer-Verlag.


