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Purpose

The purpose of this note is to provide a brief introduction to
numerical cubature over the sphere.

We
start introducing some formulas of tensorial type, discussing
their pros and cons;
describe the so called designs and show what it is known
about them;
give a look to some results on rules based on extremal sets;
show some formula on spherical triangles and spherical
rectangles;
we use them for integration over spherical polygons.
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Tensorial rules

Let us suppose that we have to compute

I(f ) :=
∫
S2
f (η)dS2(η)

with f ∈ C(S2).
A first technique consists in reducing I(f ) to an integral over a
certain rectangle and then apply suitable tensorial rules.
To this purpose, consider the spherical coordinates

η → (cosϕ sin θ, sinϕ sin θ, cos θ), 0 ≤ ϕ ≤ 2π, 0 ≤ θ ≤ π.

Thus, taking into account the jacobian determinant of the
transformation, we get

I(f ) =
∫ 2π

0

∫ π

0
f (cosϕ sin θ, sinϕ sin θ, cos θ) sin θ dθdϕ.
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Tensorial rules

Aiming to determine

I(f ) =
∫ 2π

0

∫ π

0
f (cosϕ sin θ, sinϕ sin θ, cos θ) sin θ dθdϕ.

in view of the periodicity in the variable ϕ, we apply the composite
trapezoidal rule with uniform spacing, that is

Ĩ(g) =
∫ 2π

0
g(ϕ)dϕ ≈ Ĩm(g) =

m∑
j=0

′′g(jh), h =
2π
m

where prime′ means the first and last argument of the sum must
be halved.
Taking into account the periodicity of the integrand, it is immediate
that

Ĩm(g) =
m∑
j=0

′′g(jh) =
m∑
j=1

g(jh).
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Tensorial rules

The integral of

I(f ) =
∫ 2π

0

∫ π

0
f (cosϕ sin θ, sinϕ sin θ, cos θ) sin θ dθdϕ.

w.r.t. the variable θ is more problematic. Setting z = cos(θ), we
have

I(f ) =
∫ 2π

0

∫ 1

−1
f (cosϕ

√
1− z2, sinϕ

√
1− z2, z) dz dϕ.

At his point one can apply
Gauss-Legendre quadrature over [−1, 1] with n nodes
{zk}k=1,...,n and weights {wk}k=1,...,n;
the trapezoidal rule with nodes ϕj = j πn , j = 1, . . . , 2n and
weights h = π

n .
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Tensorial rules

After these substitutions we get

In(f ) = h
2n−1∑
j=1

n∑
k=1

wkf (cosϕj
√
1− z2k , sinϕj

√
1− z2k , zk)

thus for θk = arccos zk

In(f ) = h
2n−1∑
j=1

n∑
k=1

wkf (cosϕj sin θk , sinϕj sin θk , cos θk)

The following result holds, setting P2n−1 the set of polynomials on
the sphere of degree at most 2n− 1.

Theorem
Assume that f ∈ P2n−1. Then I(f ) = In(f ) for any f ∈ P2n−1 but for
f (x, y, z) = z2n we have that I(f ) ̸= In(f ).

In other words the formula has degree of exactness 2n− 1.
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Tensorial rules

Next, introducing the best approximation error at degree n, w.r.t.
uniform norm,

En(f ) = min
p∈Pn

∥f − p∥∞

one can prove that

|I(f )− In(f )| ≤ 8πE2n−1(f ).

The following result holds

Theorem (Atkinson, Han, p.141)
Let r ≥ 1 be an integer. Assume f is r-times continuously
differentiable over S2. with all such derivatives in C(S2). Then

En(f ) ≤
c

(n+ 1)r
.
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Tensorial rules

Supposing that we have at hand the Matlab codes
rjacobi,
gauss,

that implement the Gaussian rules w.r.t. a Jacobi weight, we intend
to test the product Gauss rule on the computation of the integral

I(f ) :=
∫
S2
exp(x)dS2 ≈ 14.76801374576529.

To this purpose we define the routines
product gaussian rule that computes nodes and weight of
the rule for a fixed n,
demo product gaussian rule that tests the results on the
approximation of I(f ), by means of product Gauss rules for
n = 2, 3, 4, 5, 6.
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Tensorial rules

f u n c t i o n [ nodes , w ]=gaussian_product_rule ( n )

% Gauss ian product r u l e o f degree 2n − 1 .
% Nodes are i n c a r t e s i a n coo rd i n a t e s .

% T r ape z o i d a l r u l e
h=( p i / n ) ; phi = ( 1 : 2 * n ) ’ * h ;

% Gauss − Legendre r u l e
ab=r_jacobi ( n , 0 , 0 ) ; xw=gauss ( n , ab ) ;

% Nodes
z=xw ( : , 1 ) ;
[ P , T ]= meshgr id ( phi , s q r t ( 1 − z . ˆ 2 ) ) ;
P=P ( : ) ; T=T ( : ) ; Z=sq r t ( 1 − T . ˆ 2 ) ;
nodes=[ cos ( P ) . * T s i n ( P ) . * T Z ] ;

% Weights
hv=h*ones ( 2 * n , 1 ) ;
[ W1 , W2 ]= meshgr id ( hv , xw ( : , 2 ) ) ;
w=W1 ( : ) . * W2 ( : ) ;

9/44



Tensorial rules

f u n c t i o n demo_product_gaussian_rule

% Demo : see
% K . Atk inson , W. Han , S p h e r i c a l Harmonics and Approx imat ions on the Un i t
% Sphere : An i n t r o d u c t i o n , p . 1 7 2 .

f=@ ( x , y , z ) exp ( x ) +0*y+0*z ;

% re f e r ence i n t e g r a l v i a Chebfun
% F=spherefun ( f ) ; I =sum2 ( F )

I=1 .476801374576529e +0 1 ;
AE = [ ] ;

f o r n=2:6
[ nodes , w ]=gaussian_product_rule ( n ) ;
x=nodes ( : , 1 ) ; y=nodes ( : , 2 ) ; z=nodes ( : , 3 ) ;
fnodes=f e v a l ( f , x , y , z ) ;

In=w ’ * fnodes ;
AE ( end + 1 ) =abs ( In −I ) ;

f p r i n t f ( ’\n \ t n : %3.0 f nodes : %5.0 f e r r o r : %1 .2 e ’ , . . .
n , l e n g t h ( x ) , AE ( end ) )

end

f p r i n t f ( ’\n \n ’ ) ;
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Tensorial rules

The routine demo product gaussian rule provides the following
results
>> demo_product_gaussian_rule

n : 2 nodes : 8 e r r o r : 1 . 1 7 e −02
n : 3 nodes : 18 e r r o r : 4 .00e −04
n : 4 nodes : 32 e r r o r : 4 . 9 1 e −07
n : 5 nodes : 50 e r r o r : 3 .84e −09
n : 6 nodes : 72 e r r o r : 2 . 2 2 e − 1 2

>>

Note the fast convergence, in view of the fact that the function
exp(x) is analytic.
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Tensorial rules

In view of the rotational symmetry of the sphere, one prefers
points that are not clustered to the poles, but due to the structure
of Gauss-Legendre rules, this set does.

Figure: Gauss Product Rule for n = 15.
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Spherical designs

An interesting set for cubature over S2 is that of spherical designs.

Definition (Spherical t-design)

A finite subset X = {Pi}i=1,...,N on Sd is called a spherical t-design
on Sd , if for any pt ∈ Pt we have∫

Sd
pt(η)dSd(η) =

µ(Sd)
N

N∑
i=1

pt(Pi),

where, µ(Sd) is the area of the unit-sphere S2, e.g., µ(S2) = 4π.

Remark

Notice that all the weights are equal, i.e. w1 = . . . ,wN = µ(Sd)
N .
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Spherical designs

Purpose.
A first question that arises is if such a set X exists, for a fixed
degree t.
A second question is if the cardinality N of such a set has some
lower-bounds and when they are attained.
Finally one would like to see some examples.

We will try to respond to all these questions. The theory is rich and
connects combinatorics with numerical analysis.

For details see the introduction of Numerical construction of
spherical t-designs by Barzilai-Borwein method.
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Spherical designs

Theorem (Bounds of spherical t-designs)

Let X = {Pi}i=1,...N be a spherical t-design on Sd Then
if t = 2e then

N ≥ N∗ =

(
d + e
e

)
+

(
d + e− 1
e− 1

)
if t = 2e+ 1 then

N ≥ N∗ = 2
(
d + e
e

)
.

Definition (Tight Design)

Let X be a spherical t-design on Sd . If the lower bound above is
reached as equality, i.e. N = N∗, then X is a tight spherical t-design.
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Spherical designs

Theorem (Bounds of spherical t-designs on S2)

Let X = {Pi}i=1,...N be a spherical t-design on S2 If
t is odd then

N ≥ N∗ =
1
4
(t + 1)(t + 3);

t is even then
N ≥ N∗ =

1
4
(t + 2)2,

16/44



Spherical designs

Important things that we know about such is that sets in Sd :
there is no tight spherical t-design with N∗ points except possibly
for t = 1, 2, 3, 4, 5, 7, 11 (Delsarte, Goethals and Seidel, p.364);

there are spherical t-designs having N ≥ Ct2 points (for a certain C )
(Bondarenko, Radchenko and Viazovska, 2013);

spherical t-designs with (t + 1)2 points exist for all degrees t up to
100.

Other interesting features are the following.

1. Extremal systems are sets of N = (t + 1)2 points on S2 which maximize
the absolute value of the determinant of the Vandermonde matrix for an
arbitrary fixed basis (e.g. spherical harmonics, a well-known basis on the
2-sphere).

For N = (t + 1)2, verified that a spherical t-design exists in a
neighborhood of an extremal system.

2. For N ≥ (t + 1)2 verified extremal spherical t-designs exist for all
degrees t up to 60 and provided well-conditioned spherical t-designs for
interpolation and numerical integration. 17/44



Spherical designs

At this stage one would like to have examples of spherical
t-designs.

1 A good list can be found at Spherical Designs, by Hardy and
Sloane.

2 Spherical t-designs for t = 1, . . . , 180 and symmetric
(antipodal) t-designs for degrees up to 325, are available at all
with low mesh ratios (see Efficient Spherical Designs with Good
Geometric Properties). A good list of these points is available
at Efficient Spherical Designs with Good Geometric Properties.

There the author computes
Spherical t-designs on the 2-sphere with N = t2/2+ t + O(1)
points;
Symmetric (antipodal) spherical t-designs on the 2-sphere with
N = t2/2+ t/2+ O(1) points.
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Spherical designs

Let us make some numerical examples, looking for tight spherical
t-designs, by considering Hardy and Sloane homepage, each one
having at best Nt points (being N∗

t the optimal value).

t N∗
t Nt

0 1 1
1 2 2
2 4 4
3 6 6
4 9 14
5 12 12
6 16 26
7 20 24
8 25 40
9 30 48
10 36 62
11 42 70
12 49 84
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Spherical designs

Figure: A spherical n = 11-design with 72 points. Notice that the points are
well-distributed on the 2-sphere.
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Spherical designs

Supposing we call the 72 points of the spherical 11-design from the routine
set11, we can write this demo, to integrate f (x, y, z) = exp(x) on the
2-sphere.
f u n c t i o n demo_designs

f=@ ( x , y , z ) exp ( x ) +0*y+0*z ;
I=1 .476801374576529e +0 1 ;

P=set11 ;
x=P ( : , 1 ) ; y=P ( : , 2 ) ; z=P ( : , 3 ) ; N=l e n g t h ( x ) ;
w=(4* p i / N ) *ones ( N , 1 ) ;
fnodes=f e v a l ( f , x , y , z ) ;
In=w ’ * fnodes ;
AE=abs ( In −I ) ;
f p r i n t f ( ’\n \ t AE : %1 .2 e ’ , AE )

As result we get
>> demo_designs

AE =
6.6258e − 1 3

>>

a little better w.r.t. that obtained via tensorial rules with degree of
exactness 11.
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Spherical triangles/rectangles

In the previous part, we have considered two classical methods for
integration over the 2-sphere.
Now we focus on two classes of domains on the sphere, i.e.

spherical triangles,
spherical rectangles.

These elements are important since many regions can be
approximated by spherical polygons, that can be written as union of
spherical triangles and hence composite rules can be constructed.
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Spherical triangles

In the previous part, we have considered two classical methods for
integration over the 2-sphere.
Now we focus on two classes of domains on the sphere, i.e.

spherical triangles,
spherical rectangles.

These elements are important since many regions can be
approximated by spherical polygons, that can be written as union of
spherical triangles and hence composite rules can be constructed.
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Spherical triangles

Let T =
⌢
ABC be a spherical triangle, that is, the arcs

⌢
AB,

⌢
BC ,

⌢
AC

are geodesic, i.e. arcs of great circles, that is the intersection of a
plane containing the origin,with the sphere.

There is no restriction to suppose that the centroid

(A+ B + C)/∥A+ B + C∥2

is at the north pole. In fact, if it is not so, one can rotate the
original spherical triangle so that it has this property, compute a
formula and than rotate it back to the original position.
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Spherical triangles

Then we can write the surface integral of a continuous function f (x, y, z)
on such a spherical triangle in cartesian coordinates∫

T
f (x, y, z) dσ =

∫
Ω

f (x, y, g(x, y))
1

g(x, y)
dx dy , (1)

where

g(x, y) =
√

1− x2 − y2,

Ω is the projection of T onto the xy-plane,i.e. the curvilinear
triangle with vertices Â, B̂, Ĉ being the xy-coordinates of A, B, C .
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Spherical triangles

Notice that the sides of this planar and curvilinear polygon Ω are
arcs of ellipses centered at the origin, being the projections (and
thus transformations by an affine mapping) of great circle arcs (the
sides of T ).

Then we can split the planar integral into the sum of the integrals
on three elliptical sectors S1, S2, S3, obtained by joining the origin
with the vertices Â, B̂, Ĉ , namely∫
Ω
f (x, y, g(x, y))

1
g(x, y)

dx dy =
3∑
i=1

∫
Si
f (x, y, g(x, y))

1
g(x, y)

dx dy .

Now, we seek a quadrature formula which is as close as possible to
an algebraic formula (at machine precision), when f ∈ Pn.
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Spherical triangles

We observe that if the integrand is a monomial as

f (x, y, z) = xαyβzγ , , 0 ≤ α+ β + γ ≤ n

then, being g(x, y) =
√
1− x2 − y2, we have

f (x, y, g(x, y))/g(x, y) = xαyβ(1− x2 − y2)
γ/2−1/2

. (2)

We have two distinct situations:
if γ is odd, then f (x, y, g)/g is a polynomial in (x, y) of degree
at most n− 1, namely f (x, y, g)/g ∈ P2

α+β+γ−1 ⊆ P2
n−1;

if γ is even (including γ = 0), since g ≥ 0, then gγ = (g2)γ/2 is
a polynomial of degree γ and f (x, y, g)/g ∈ 1

g P
2
α+β+γ ⊆ 1

g P
2
n.

27/44



Spherical triangles

If γ is even, let pε(x, y) be a polynomial of degree m = m(ε) such
that

|pε(x, y)− 1/g(x, y)| ≤ ε (1/|g(x, y)|)

for any (x, y) ∈ Ω.

Then fpε ∈ P2
n+m approximates f/g with a relative error at most ε.

In order to find m = m(ε), recalling that g(x, y) =
√
1− (x2 + y2)

and

0 ≤ x2 + y2 ≤ ρ = max
{
∥Â∥22, ∥B̂∥22, ∥Ĉ∥22

}
< 1 , (x, y) ∈ Ω , (3)

it is sufficient to find the degree of a (near) optimal univariate
polynomial approximation (up to ε) to the function 1/

√
1− t for

t ∈ [0, ρ].
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Spherical triangles

This can be done efficiently by Chebfun and list the results on a file.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

50

100

150

200

250

300

350

Figure: The degree m(ε) as a function of ρ.
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Spherical triangles

At this point we are able to solve the problem if we can compute a
formula on each curvilinear polygon S1, S2, S3 such that
Ω = S1 ∪ S2 ∪ S3.

This is possible since, for any degree of exactness there are
algebraic cubature formulas on circular and elliptical sectors with
positive weights and internal nodes, that have been constructed by
means of arc blending and subperiodic trigonometric gaussian
quadrature.

This entails that
1 a quadrature formula with nodes {(xj , yj)} and positive
weights {wj} of exactness degree n+m on Ω will be nearly
exact for f (x, y, g)/g if f ∈ Pn(S2),

2 a formula with nodes {(xj , yj , g(xj , yj))} and weights
{wj/g(xj , yj)} will be near-algebraic (nearly exact) in Pn(T ), i.e.
for spherical polynomials restricted to the spherical triangle T .
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Spherical triangles

We observe that in general, due to the fact that for determining a
rule with degree of exatness n on the triangle T , then one must
compute one of degree m+ n in the curvilinear polygon Ω, the
cardinality of the rule, with positive weights and internal nodes,
may be pretty high.

There is an algorithm, named Caratheodory-Tchakaloff
compression, that allows to compress the rule, so that the resulting
one has

degree of precision n+m,
positive weights,
a number of nodes at most (n+m+ 1)2, that is the dimension
of the space Pn+m(T ), taken from those of the initial rule.
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Spherical triangles

As numerical examples, we consider a sphere octant, i.e. the
spherical triangle T with vertices (1,0,0), (0, 1,0), (0,0, 1). For this
domain, the parameter ρ ruling the degree m = m(ϵ), ϵ being the
machine precision, is approximatively 0.67.

By a previous figure, this means that m ≈ 60.

As test functions we take

1 f1(x, y, z) = 1+ x + y2 + x2y + x4 + y5 + x2y2z2;

2 f2(x, y, z) = cos(10(x + y + z));

3 f3(x, y, z) = franke(x, y, z);

4 f4(x, y, z) = (1+ tanh(9x − 9y + 9z))/9;

5 f5(x, y, z) = (1+ sign(9x − 9y + 9z))/9.
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Spherical triangles

We have compute the reference values of these integrals by
adaptive codes and reported in the table below the numerical
results.

n Ecompr(f1) Ecompr(f2) Ecompr(f3) Ecompr(f4) Ecompr(f5)
5 1e-05 4e-03 6e-02 3e-02 9e-02
10 2e-15 3e-06 9e-04 2e-03 1e-02
15 2e-15 2e-11 2e-04 1e-04 3e-03
20 1e-15 5e-15 2e-05 4e-04 6e-03
25 1e-15 3e-15 2e-07 5e-05 5e-03
30 6e-16 4e-15 4e-08 3e-05 2e-03

Table: Relative errors in the integration of the test functions defined
above by the compressed formula, on the sphere octant T with vertices
(1,0,0), (0, 1,0), (0,0, 1).
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Spherical triangles

Finally we report some statistics concerning the basic formula and
its compressed version, applying Caratheodory-Tchakaloff algorithm.

n # basic # compr Cratio CPU Ebasic(SPH) Ecompr(SPH)
5 5580 36 155:1 0.02s 3e-15 4e-15
10 6435 121 53:1 0.1s 1e-14 1e-14
15 7560 256 30:1 0.3s 1e-14 3e-14
20 8550 441 19:1 1s 1e-14 5e-14
25 9840 676 15:1 4s 1e-14 6e-14
30 10965 961 11:1 19s 3e-14 1e-13

Table: Cardinalities, compression ratio, CPU time in seconds and average
relative errors on Spherical Harmonics (SPH) for the spherical octant T
with vertices (1,0,0), (0, 1,0), (0,0, 1).

Remark
As for the numerical software, see the Matlab package Software
package for polynomial interpolation on spherical triangles.
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Spherical rectangles

Let
R = [a1, b1]× [a2, b2] ⊆ [0, π]× [0, 2π]

be a rectangle, and define as spherical rectangle ΩR (sometimes
also known as geographical rectangle) the subdomain of the sphere
S2 whose points are of the form

P = ξ(θ, ϕ) := (cosϕ sin θ, sinϕ sin θ, cos θ), (θ, ϕ) ∈ R.

We observe that depending on R, several well-known subdomains
ΩR = ξ(R) of the 2-sphere can be defined in this way, as

caps,
collars,
slices,
more generally spherical rectangles defined by longitudes and
latitudes.
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Spherical rectangles

Figure: Above and below: a spherical rectangle ξ([π/6, π/3]× [0, π/2]) and a
spherical cap ξ([0, π/3]× [0, 2π]).
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Spherical rectangles

Figure: Above and below: a (spherical) collar ξ([π/6, π/3]× [0, 2π]) and a
(spherical) slice ξ([0, π]× [0, π/3]).
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Spherical rectangles

To this purpose, we introduce the following result

Theorem

Let w ∈ [0, π].

Tn([−ω, ω]) = span{1, cos (kθ), sin (kθ)}, 1 ≤ k ≤ n, θ ∈ [−ω, ω],

w : [−ω, ω] → R be a symmetric weight function,

{ξj}j=1,...,n+1, {λj}j=1,...,n+1 be respectively the nodes and the weights
of an algebraic gaussian rule relatively to the symmetric weight function

s̃(x) = w(2 arcsin (sin (ω/2)x))
2 sin (ω/2)√

1− sin2(ω/2) x2
, x ∈ (−1, 1).

Then ∫ ω

−ω

f (θ)w(θ) dθ =
n+1∑
j=1

λjf (θj), f ∈ Tn([−ω, ω]) (4)

where θj = 2 arcsin (sin (ω/2)ξj) ∈ (−ω, ω), j = 1, . . . , n+ 1.
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Spherical rectangles

This theorem says that if we intend to integrate∫ ω

ω
f (θ)w(θ)dθ

where f is a trigonometric polynomial of degree n and w a
symmetric weight function in [−ω, ω] then it is sufficient to

compute the nodes {ξj} and weights {λj} of a gaussian rule
with n nodes w.r.t. a certain weight function s̃;
modify the nodes {ξj} into {θj} by a simple transformation.

The hidden difficulty is that the computation of these formula is
not trivial since the weight function is a little unusual.
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Spherical rectangles

From the previous theorem we have the following one, that
determines an algebraic rule over the spherical rectangle ΩR ⊆ S2.
Theorem

Let

ΩR a spherical rectangle, where R = [a1, b1]× [a2, b2] ⊆ [0, π]× [0, 2π];

{θ[aj ,bj ]k }k=1,...,n+3−j and {λ[aj ,bj ]
k }k=1,...,n+3−j be respectively the nodes and the

weights of a gaussian subperiodic trigonometric rule on [aj , bj ] w.r.t. w(x) = 1,
having trigonometric degree of precision n+ 2− j, for j = 1, 2.

Then the cubature rule

Sn(f) =
n+2∑
j1=1

n+1∑
j2=1

λj1,j2 f(ξj1,j2)

where
ξj1,j2 = ξ(θ

[a1,b1]
j1

, θ
[a2,b2]
j2

)

λj1,j2 =
2∏
k=1

λjk sin
2−k (θ

[ak ,bk ]
jk

)

integrates exactly in ΩR every algebraic polynomial of total degree n.
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Spherical rectangles

Remark (Caps)

The cardinality of these rules is ≈ n2, where n is the degree of
precision. With some tricks, one can have a formula on the spherical
cap with ≈ n2/2 points.

Remark (Software)
Though at first sight the result of the theorem is a little complicated,
in practice when one provides the nodes and the weights of the
subperiodic formula (not easy!), everything become simpler.

As for the numerical software, see the Matlab package Cubature rules
on spherical rectangles.
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Spherical rectangles

As numerical tests, we consider the cubature of the functions

f1(x) = exp (−x2 − 100 y2 − 0.5 z2),
f2(x) = sin (−x2 − 100 y2 − 0.5 z2),
f3(x) = max(1/4− ((x − 1/

√
5)2 + (y − 2/

√
5)2 + (z − 2/

√
5)2),0))3

on the spherical rectangle

ΩR = ξ(R), R = [π/6, π/3]× [0, π/2].

Figure: The spherical rectangle ξ([π/6, π/3]× [0, π/2]) and the nodes of the rule
of degree of exactness 10. 42/44



Spherical rectangles

Deg. f1 f2 f3
5 3.34e− 04 7.38e− 02 4.53e− 06
10 4.89e− 06 2.69e− 02 5.44e− 07
15 9.12e− 09 5.14e− 03 4.07e− 08
20 1.76e− 10 1.13e− 02 2.43e− 08
25 7.73e− 14 1.13e− 02 9.53e− 09
30 3.33e− 16 1.23e− 03 2.23e− 09
35 3.47e− 17 2.58e− 05 2.33e− 09
40 1.14e− 16 1.96e− 07 2.82e− 10
45 3.47e− 17 6.94e− 10 8.84e− 10
50 2.08e− 17 1.33e− 12 5.48e− 11

Table: Absolute errors for degrees 5, 10, . . . , 50, w.r.t. the integrals on the
spherical rectangle ξ([π/6, π/3]× [0, π/2]) on the test functions f1, f2, f3.
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