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Purpose

In this presentation we consider the basics of the tensorial type
rules (sometimes known as product rules), for numerical integration
over a domain Q C RY via a weighted sum, that is

/ F(x)dQ =~ > wief(x)-
Q k=1

These formulas are usually based on univariate rules of Gaussian
type, in virtue of all their favourable properties.
We will consider the basic case of domains 2 as

m the hypercube [—1,1];

m the simplex;

m the disk and more general specific domains obtained by linear
blending.

For details, see e.g. [?, p.361].
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In order to show the basic idea behind this approach, we consider
first the example of the sometimes called normal domain.

To introduce this technique, we consider the case of bivariate
normal domains

Q={(xy): a<x<b Y(x)<y<d(x)}
being v, ¢ : [a, b] — R two sufficiently regular functions.

Figure: A normal domain Q where a = 0, b = 27, ¥(x) = sin(x),
é(x) = sin(x) + log(x + 3).
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Since

Q={(x,y): a<x<b, ¢(x)<y<o(x)},

m setting g(x fw X) f(x,y)dy,

m using the rule fa g(x)dx =~ 31, wig(x),
we havee from basic calculus,

| rxdn - / ( /w " ey dy) o= [ o

#(xi)
~ Z wig(xi) = Z Wi/ f(xi,y) dy (0
i=1 = vk

I(f) -
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We observe that we can approximated the n inner integrals of

n P(xi)
H~3 w /w | fendy
i=1 Xi

with a suitable m-point rule.

Notice that the domain of the integral may vary with the index “i ", but
that this is not a problem, since we can scale the rule (e.g. one can use a
shifted Gauss-Legendre rule, from [—1,1] to [¢)(Xi), (x;)]). If

#(x) u
/ f(xi,y)dy ~ Z v;.if (%, ;i)

»(x) j=1

we finally get the formula with cardinality mn

I(f) = Z Wi Z viif (%, i) = Z Z wiv;.if (xi, ;i)
P

=1 j=1
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We observe that in the construction of the formula
I(f ZW:Z vi, :f leyl, ZZ WIV/,:f(th;,:)
i=1 j=1 i=1 j=1

we did not make assumptions on the degree of exactness of

b n
/ g(x)dx ~ Z wig(xi)
a i=1

and of each

#(x) m
/ F(xiny) dy = > vif (6 )-
j=1

»(x;)

Except for specific cases, e.g. ¢, polynomials, it will not be
possible to choose m, n so to have formulas with a fixed degree of

exactness.
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Normal domains

We define some Matlab codes to illustrate these formulas. We start
with a routine define normal_rule that computes the nodes and
weights on a normal domain defined by the interval [a, b] and the
functions 1, ¢.

function [nodes ,weights]=define_normal_rule (n,m,a,b,psi,phi)

% Rule direction "x".
abn=r_jacobi(n,0,0); xw=gauss(n,abn); % Gauss—Legendre
x=xw (:,1); w=xw(:,2); x=(a+b)/2+(b—a)*x/2; w=(b—a)*w/2;

% Rule direction "y”.
abm=r_jacobi (m,0,0); yv=gauss(m,abm); % Gauss—Legendre

% Rule on the normal domain
y=yv(:.,1); v=yv(:,2);

nodes =[]; weights =[];

for i=1:n
psi_i=feval (psi,x(i)); phi_i=feval(phi,x(i));
y_i=(psi_i+phi_i)/2+((phi_i—psi_i)/2)*y; % scaled nodes
v_i=((phi_i—psi_i)/2)*v; % scaled weights

nodes_add =[x(i)*ones(size(y_i)) y_il; % rule nodes/weights to add
nodes =[nodes; nodes_add];

weights_add=w(i)*v_i;

weights =[weights; weights_add];
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Normal domains

Next we implement a demo, to study the case in which
m a=0, b=2r, ¢(x) = sin(x) and ¢(x) = sin(x) + log(x + 3);
m the integrand is f(x,y) = (x + 0.5 * y)'° and I(f) = 234913153.2071612.. . ..

function demo_normal_domain

a=0; b=2*%pi; % Define "normal domain”.

psi=@(x) sin(x);

phi=0@(x) sin(x)+log(x+3);

f=@(x,y) (x+0.5*y)."10; % integrand

Iex=2.349131532071612e+08; % integral computed with high order rule
n=10; m=11; % Define "n”, "m” (cardinality of the rules).

% External routine that computes nodes and weights.
[nodes ,weights]=define_normal_rule (n,m,a,b,psi,phi);

% Compute integral.
fnodes=feval (f,nodes (: ,1) ,nodes (: ,2));
Inum=weights '* feval (f,nodes (:,1) ,nodes(:,2));

fprintf ('\n \t * | : %—115e’,Inum);
fprintf('\n \t * AE: %—13e’,abs(Inum—Iex));
fprintf(’'\n \t * RE: %—13e \n’,abs(Inum—Iex)/abs(Iex));

% Plot normal domain (external subroutine)

plot_normal_domain (a,b,psi,phi);

plot (nodes (: ,1) ,nodes (:,2), go’, MarkerEdgeColor’, 'k’
"MarkerFaceColor ', 'g’, "MarkerSize ' ,4);

axis equal; axis tight;

hold off;
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Below we mention the routine for plotting the domain.

As numerical results we see that the formula is not exact for degree 10, since the

integrand belongs to Pig.
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Figure: The normal domain Q where a = 0, b = 2, 1(x) = sin(x),
¢(x) = sin(x) + log(x + 3) and the cubature nodes achieved from the
usage of Gauss-Legendre rules in which n =10 and m = 15.
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m This technique can be used for computing integrals over
hypercubes Q = [—1,1]¢ (thus, by shifting, also on
hyperectangles).

m This time we ask the rule must have a fixed degree of
exactness ADE = 4.

m Following the ideas described in the part about normal
domains, we adopt a Gauss-Legendre rule

1 n
Zg(x)dx ~ Z wig(xi)
—1 i=1

with n = [2F1] nodes, so having at least ADE = 6.
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Hypercubes

Thus we have

) -

/f(x)dﬂ:/...f F(xts -~ xa) i . . . dxg

Z ZW,]. Wi f(Xis - .., Xiy)- ()

ig=1

%

That is a formula with cardinality

= () =)

Since it grows exponentially with the dimension d, this formula
maybe not suitable for d high, causing the so called curse of
dimensionality.

For example, if ADE = § = 20 and d = 10, one needs 10" function
evaluations (possibly expensive, in view of the number of variables
involved).

12/42



Hypercubes

In general this kind of rules are very used in low dimension (e.g. 2
or 3), but they are not minimal, in the sense that there are rules
with much lower number of nodes, sharing the same cardinality.

In the case of the square [—1,1], a rule with ADE =4, in view of a
bound by Méller must have at least cardinality

9

(ees?) g o

ng =

(k+1)2(l<+2) I L(kf)ﬁ d=2k+1

and there are rules that go closer to this bound than those of
tensorial type.
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Hypercubes

Table: Formulas on the unit square. Algebraic degree of exactness ADE,
the Méeller bound MB, the cardinality of almost minimal rules AMR and

that of tensorial rules TR.

ADE

MB

AMR

TR

5
10
15

20
25
30
35
40
45
50

7
21
40
66
97

136
180
231
287
351

7
22
46
77
13
166

222
287
361
442

9
36
64
121
169

256
324
441
529
676
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Hypercubes

We now approximate certain integrals on the unit-square and unit-cube.

function demo_hypercube
ADE=10; d=2;

% Define integrand
switch d
case 2
f=0(x,y) (0.3*x+0.9%y)."10; 1=5.002201832727280e—01
case 3
f=0(x,y,z) (0.3*x+0.9*y+0.8%z)."10; 1I=4.377443514181815e+01
end

% Gaussian rule with degree ADE.
n=ceil ((ADE+1) /2);
abn=r_jacobi(n,0,0); xw=gauss(n,abn); % Gauss—Legendre

x=xw (:,1); w=xw(:,2);
switch d
case 2
[x1,x2] meshgrid (x); [wl,w2] = meshgrid (w);

fP=feval (f,x1,x2); w=wl.*¥u2;
Inum=sum (sum (w.*£P));
case 3
[x1,%x2,%x3] = ndgrid(x); [wl,w2,w3] = ndgrid(w);
fP=feval (f,x1,x2,x3); w=wl.*w2.*w3;
Inum=sum (sum (sum(w.*fP)));
end

fprintf('\n \t * | : %I1.15e’,Inum)
fprintf('\n \t * AE: %1.3e’,abs(I—Inum))
fprintf('\n \t * RE: %1.3e \n’,abs(I—Inum)/abs(Inum))
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Hypercubes

1. We consider the case of the formula on [—1,1]. It has degree 10 and we show it

integrates exactly (in the numerical sense!) p(x, y) = (0.3x + 0.9y)".

>> f=0@(x,y) (0.3*x+0.9%y)."10;
>> I=integral2(f, —1,1, —1,1, "AbsTol " ,10°(—15), 'RelTol " ,10"°( —15));
>> format long e
>> 1
I =
5.002201832727280e—01
>> demo_hypercube

* I : 5.002201832727267e—01
* AE: 1.332e—15
* RE: 2.663e—15

>>

2. We consider the case of the formula on [—1,1]3. It has degree 10 and we show
it integrates exactly (in the numerical sense!) p(x, y, z) = (0.3x + 0.9y + 0.82)"°.

>> f=0@(x,y,z) (0.3*x+0.9*y+0.8*z)."10;
>> I=integral3(f, —1,1,—1,1, —1,1, AbsTol " ,10°(—15), 'RelTol’,10°( —15));
>> format long; I
I =
43.774435141818145
>> demo_hypercube

* I : 4.377443514181813e+01
* AE: 2.132e—14
* RE: 4.870e—16

>>
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Unit-disk

Similar rules can be established for the d-dimensional unit-ball. For
sake of simplicity we restrict our attention to the bivariate
unit-disk, i.e. Q = B(0,1).

We observe that in this case, after the transformation in polar
coordinates, taking into account the determinant of the jacobian
matrix,

/Qf(X) d2 = /01 /027r f(rcos(0),rsin(0)) - rdé dr

Observe that the r.h.s. consists of an integral over a rectangle
[a,b] x [0,27] where the integrand is

g(r,0) = f(rcos(8),rsin(f)) - r.
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Unit-disk

As rules, a common choice, to get a formula with ADE = 4, is to
adopt
m a Gauss-Legendre rule, shifted in [0, 1], with ADE =6 + 1, in
the variable “r 7,
m a trapezoidal rule, on § 4 2 equispaced points, including the
extrema, on the angular interval [0, 2], that can be proved to
be exact over trigonometric polynomials of degree 4.

In view of the fact that
m the Gauss-Legendre rule does not have nodes at the extrema
0,1,
m the trapezoidal rule has nodes in 0, 27 and
(rcos(0), rsin(0)) = (rcos(2w), rsin(27)),
after some computation one can see that such a product rule has
cardinality [(0 +1)/2](0 +1).

In what follows, we implement these tensorial rules and show some
numerical examples.
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Unit-disk
function demo_disk

ade=10; % Define ”"n”, "m” (cardinality of the rules).
example =1; % define example

switch example
case 1
f=@(x,y) (x+0.5*y)."10; % integrand
Iex=3.932323797070195e—01 ; % numerically exact integral
otherwise
f=0(x,y) (1+x+0.5*%y)."11; % integrand
Iex=5.546261116442703e+02 ; % numerically exact integral
end

% External routine that computes nodes and weights.
[nodes ,weights]=define_rule_disk (ade);

% Compute integral.
fnodes=feval (f,nodes (: ,1) ,nodes (: ,2));
Inum=weights '* feval (f,nodes (:,1) ,nodes(:,2));

% Statistics
fprintf('\n \t * # : %—8.0f",length (weights));

fprintf ('\n \t * #T: %—80f ", ceil ((ade+1)/2) *(ade+1));
fprintf ('\n \t * | : %—115e’,Inum);

fprintf('\n \t * AE: %—13e’,abs(Inum—Tex));
fprintf('\n \t * RE: %—13e \n’,abs(Inum—Iex)/abs(Iex));

% Plot disk and pointset

th=linspace(0,2*pi,100); gray_color =[211, 211, 211]/256;

fill (cos(th),sin(th),gray_color); hold on;

plot (nodes (: ,1) ,nodes (:,2),'go’, MarkerEdgeColor’, 'k’
"MarkerFaceColor ', g’ , "MarkerSize ' ,6);

axis equal; axis tight;

hold off; 20/42




Unit-disk

1. As first experiment we integrate a polynomial of degree 10, by a
rule with ADE equal to 10. To this purpose we set in ade=10 and
example=1 in the file demo_disk, getting

>> demo_disk
* # : 66
* #T: 66
* I : 3.932323797070124e—01
* AE: 7.161e—15
* RE: 1.821e—14
>>

2. As second experiment we integrate a polynomial of degree 11, by
a rule with ADE equal to 11. To this purpose we set in ade=11 and
example=2 in the file demo_disk, getting

>> demo_disk
* #0072
#T: 72
I : 3.932323797070125e—01
AE: 6.994e—15
RE: 1.779e—14

*
*
*
*

>>
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Unit-disk

We observe that the numerical approximation of the desired integral can be
obtained by the following adaptive routine,

function exact_integral_disk
example =1;

switch example

case 1

fpolar=Q(r,t) (1*r.*cos(t)+0.5%r.*sin(t))."10.*r;

I=integral2 (fpolar,0,1,0,2*pi, "AbsTol " ,107°( —15), RelTol " ,10°( —=15));
case 2

fpolar=0@(r,t) (1+1*r.*cos(t)+0.5%r . *sin(t)). "11.*%r;
I=integral2 (fpolar,0,1,0,2*pi, "AbsTol " ,107°( —15), RelTol " ,10°( —=15));
end

fprintf ('\n \t | : %1.15e \n',I)
or alternatively, by means of chebfun environment,

function exact_integral_disk_chebfun
example =1;

switch example
case 1
f=e(x,y) (1*x+0.5%y)."10;
case 2
f=0(x,y) (1+1*x+0.5%y)."11;
end

fc=diskfun (£f); Ic=sum2(fc);
fprintf('\n \t lc: %1.15e \n’,Ic)
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Figure: Nodes of the tensorial rule on the unit-disk, for ADE =10.
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Simplex

A tensorial rule can be also found for the n-simplex. For simplicity
we shall take into account the case of a triangle, see e.g. [?] for a
survey on the topic.

In general, there are many reference triangles, depending on the
purpose. We will consider first the triangle 7 with vertices (0, 0),

(1,0), (0,M).

It can be easily seen, setting y = ux and shifting the variables that
iss=2x—1t=2u—1

/Tf(x,y)afxdy:/o1 /Oxf(xm)dxdy
/1x/1f(x,xu)dxdu:...:
// <s—|—1 S—H)4(t+1)>(1+s)dsdt &)

Thus, we have reduced to a certain interval on the square [—1,1]?
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Simplex

Settin
e s+1 (s—H)(t—H)

os.0 = g1 (5 EEED)

we get
1 s s

f) = /_1/_1%,(( ;1,( +1L(t+1)>(1+s)dsdt
- /1 /] 6(s, t)(1 + 5) ds dt @

-1/

Defining

m for the direction s, a Gauss-Jacobi rule with degree of

exactness ADE = §, w.r.t. the weight (1 —5)°(1+ s)!,
m for the direction t, a Gauss-Legendre rule with degree of
exactness ADE = §, i.e. w.rt. the weight (1 —3)°(1+ s)°,
we get a formula with positive weights, internal nodes, ADE = ¢ on
the simplex, with cardinality ([%1)2 ~ %
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More precisely, letting
b n=[%],
H 6(s,t) =1 f(s+1 anl (T))'
I &(s)(1+ s)ds = 30, WD g(x(D),
B [ s()de=>", (@ g (),

we have
1 1
/ / o(s, t)(1+ s) ds dt
1J

)
1N n 1

/ >4, g = 3wl JRCREE:
1= f —1

ZZ ()9 3D, ()

=1 j=1

n (GL) (GJ) (X,-(Gj)+1 XI(C?J)+1 X/_(GL)+1>

Q

R

>y 401 A

=1 j=1
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Simplex

As first thing, we define a routine define_rule_simplex that
determines such a formula on the reference simplex.

function [nodes , weights]=define_rule_simplex (ade)

% Cubature rule on the unit simplex
% * with vertices (0,0), (1,0), (1,1),
% * with ADE equal to ade.

% Gaussian—Jacobi rule.

m=ceil ((ade+1)/2);

ab_GJ=r_jacobi(m,0 ,1); xw_GJ=gauss(m,ab_GJ); % Gauss—|acobi
x_GI=(xw_GJ(:,1)+1)/2; w_GI=xw_GJ(:,2);

% Gaussian—Legendre rule.
ab_GL=r_jacobi(m,0,0); xw_GL=gauss(m,ab_GL); % Gauss—Legendre
x_GL=(xw_GL (: ,1) +1) /2; w_GL=xw_GL (:,2);

% Define tensorial rule
[x_mat_GJ,x_mat_GL]=meshgrid (x_GJ ,x_GL) ;
X_mat=x_mat_GJ; Y_mat=x_mat_GJ.*x_mat_GL;

[w_mat_GJ,w_mat_GL]=meshgrid (w_GJ ,w_GL) ;
W_mat =(1/8)*w_mat_GJ .*w_mat_GL ;

nodes=[X_mat (:) Y_mat (:)];
weights=W_mat (:) ;
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Simplex

Next we present a Matlab demo demo_simplex in which we test
the polynomial exactness and plot the nodes of the formula.
function demo_simplex

ade=10;

£=a(x.y) (0.3*x+0.9%y)."10;

1=6.254277723408297e—02;

% Gaussian rule with degree ADE.
[nodes ,weights]=define_rule_simplex (ade);
fP=feval (f,nodes (:,1) ,nodes(:,2));

Inum=weights *fP;

% Stats

fprintf ('\n \t * ade: %—80f ", ade)

fprintf ('\n \t * # : %—80f",length (weights))

fprintf ('\n \t * | : %—115¢’,Inum)

fprintf(’'\n \t * AE : %—1.3e’,abs(I—Inum))

fprintf('\n \t * RE : %—13e \n’',abs(I—Inum)/abs (Inum))

gray_color =[211, 211, 211]/256;

fill ([0 1 1 0],[0 O 1 0],gray_color);

hold on;

plot (nodes (: ,1) ,nodes (:,2),’go’, MarkerEdgeColor’, 'k’
"MarkerFaceColor ', g’ , "MarkerSize ' ,6);

axis equal; axis tight;

hold off;
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Simplex

For the computation of the reference value I, we have written the
routine exact_integral_simplex, based on adaptive procedure
integral2 over a rectangle.
H As first method for approxmatmg fT X, y) dxdy we took into
account an integrand on [0, 1]%, equal to f - X7, where X7 is
the carachteristic function on the simplex 7.
H Alternatively we replaced the desired integral with one on a
square, as described in 7?
function exact_integral_simplex
f=0(x,y) (0.3*%x+0.9%y)."10; % integrand on the simplex
method =2;

switch method

case 1
F=0(x,y) f(x,y). (y x);
I:integralQ(F 0 MO AhsToI ,10°( —15), "RelTol " ,10%°( —15));
case 2
F=0(s,t) (1/8)*f( (s+1)/2,(s+1) . *x(t+1)/4) .*(1+s);
I=integral2 (F, —1,1,—1,1, "AbsTol " ,10"°( —15), 'RelTol "’ ,10°( —15));
end
fprintf ('\n \t | : %1.15e \n ’',I)
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Running the demo we get

1

09

08

07

06

05

04

03

02

01

0

0 01 02 03 04 05 06 07 08 09 1

Figure: Nodes of the tensorial rule on the unit-simplex, for ADE = 10.
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Simplex

As before, these rules are easily at hand, but they are far from

being the best around in terms of cardinality.

For example, at degree 10, the tensorial rule above had 36 nodes,
but it is known there is one with these feature having only 24
positive weights and internal nodes (sometime known with the

acronym Pl type, see table below).

0

N5

0

N5

o

N3

o

N5

w~o s w2

1

12
16
19
10|24

coONOYUT S WN =

O

n
12
13
14
15
16
17
18
19
20

27
32
36
42
46
52
57
66
70
78

21
22
23
24
25
26
27
28
29
30

85
93

100
109
17
130
41

150
159
7

31
32
33
34
35
36
37
38
39
40

181

193
204
214
228
243
252
267
282
295

4
42
43
44
45
46
47
48
49
50

309
324
339
354
370
385
399
423
435
453

Table: Cardinality Nj of (almost) minimal rules on triangles with ADE = 4.
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We investigate the case of circular regions that can be obtained by
the so called linear blending of elliptical arcs.

Let two elliptical arcs defined respictively by
P(#) = Acos(f)+ Bsin(9) + G,
Q(9) = Aycos(f)+ Bysin(8) + G,
where 6 € [, 5], 0 < 8 — a < 27 and
Ai=(an,ap), Bi=(ba,bp), G =(cnca), i=12
The region
S ={(xy) = U(t,0) = tP(0) + (1 - )Q(0), (t,0) < [0,1] x [, 5]}
is known as linear blending of elliptical arcs.
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Linear blending: circular segments 1

We provide some examples, for different choices of the
parameters.

Example
Set in (??)
| A =(r,0).8=(0,r).G=(0,0)
Ay =(r,0), B, =(0,-r). G = (0,0).
and consider the interval [0, 5] with 0 < 5 < 7.

The regions that we obtain are circular segments. In particular for
B = 7 we get the unit-disk.
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o

5
5

Figure: Example 1, with 8 ==, 8 =7/2, 8 =n/3, B = /4.
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Linear blending: circular segments 2

Example

Set in (?7)
B A =(r,0), B,=(0,r), G = (cos(5),0),
A =(r,0), B =(0,r), &G =(0,0).

and consider the interval [—3, 8] with 0 < 8 < 7/2.
The regions that we obtain are again circular segments.

35/42



Figure: Example 2, with s =m, 8 =7/2, f =x/3, B =7n/4, 8 =7/5.
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Linear blending: circular segments 3

Example

Set in (??)
b A = (rcos(B),0), B = (0,r), G = (cos(p),0),
Ay =(r,0), B, =(0,r), G =(0,0).

and consider the interval [—3, 8] with 0 < 8 < 7/2.
The regions that we obtain are again circular segments.

37/42



- 8 2

Figure: Example 3, with s =m, 8 =7/2, 8 =7/3, B =n/4, 3 = =/5.
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Linear blending: symmetric annular sectors

Example
Set in (7?)
B A= (I’],O), B = (0, I’1), G = (0,0).
Ay = (r2,0), B2 = (0,r2), G = (0,0).
and consider the interval [, 5] with 0 < 5 — a < 27.
The regions that we obtain are symmetric annular sectors.

Figure: Symmetric annular sector, withn=1,rn =2, =0, 8 =«/3.
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Linear blending: circular sectors

Set in (?7)

A= (07 O), B = (O?O)' G= (07 O)'

A2 = (r,O), BZ = (O,I’), CZ = (070)'
and consider the interval [, 5] with 0 < 5 — a < 27.
The regions that we obtain are sectors.

Figure: Symmetric annular sector, with r=1, « =0, 8 = /3.
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As one may understand, depending on the parameters, many other
circular regions can be defined as

m Asymmetric sectors and asymmetric annuli,
m circular zones,
m circular lenses,
m butterfly-shaped and candy-shaped regions.

See [?] for more details.
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Linear blending: cubature

Theorem

Consider the planar domain generated by linear blending of two
parametrics arcs

S ={(x,y) = U(t,0) = tP(6)+(1—t)Q(theta) € [0,1]x[a, 8], 0 < f—a
where

P(0) = Acos(f)+ Bsin(f) + G,
Q(0) = Aycos(9)+ Bysin(0) + G,

in which 6 € [a, 5], 0 < 8 — a < 27 and

A= (ar,ap), Bi=(bi,bp), GC =(cn,cn), i=12.

Assume that the transformation U is injective for
(t,0) € (0,1) x (a, ), and let

un = (011 — 071)(1317 — b77) -+ (017 — 077)(b71 — bn) 42/42
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