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Purpose

The purpose it to provide some basics on numerical integration over
bounded intervals, that is

description of symbolic software for computation of integrals;

introduce the basic ideas on univariate polynomial interpolation;

show some rules of interpolatory type, in the Newton-Cotes family,
as midpoint, trapezoidal and Cavalieri-Simpson rules;

disadvantages of Newton-Cotes rules and pros of composite rules;

practical examples in Matlab/Octave.

The purpose is to compute

∫ b

a
f (x)dx

where f is typically continuous in the interval [a, b].
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Numerical integration over bounded intervals

Remark
There are of course more general instances, e.g. f could have a finite
number of jump discontinuities, but we will not take this case into
account.

Remark (Pathological continuous functions)
Between the continuous functions there are many odd examples, as
the Weierstrass function

f (x) =
+∞∑
k=1

sin(πk2x)
πk2

that is continuous everywhere but differentiable only on a set of null
measure (proof by Hardy).

Poincaré defined it as “an outrage against common sense”and Hermite
as a “lamentable scourge”.
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https://mathworld.wolfram.com/WeierstrassFunction.html


Numerical integration over bounded intervals

Analitically, a typical approach is to primitive) of the integrand.

In view of the fundamental theorem of calculus (known as
Torricelli-Barrow theorem), once a primitive is available then
one can easily compute the definite integral.

Unfortunately in many cases there are no known primitives in
terms of elementary functions and one cannot adopt the
technique described above.
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Function with no primitive in terms of elementary functions

Some examples of integrands with no primitive in terms of
elementary functions, we have:

the function g : R → R defined as

g(x) = exp(x2)

the function sinc : R → R defined as

sinc(x) =
{

sin(πt)
πt , x ̸= 0,

1, x = 0

The proof concerning the absence of primitives in terms of
elementary functions depend on the Liouville theorem.
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https://en.wikipedia.org/wiki/Elementary_function
https://en.wikipedia.org/wiki/Liouville's_theorem_(differential_algebra)


Symbolic calculus of integrals

There are several environments for symbolic calculus, that allow
the computation of definite and indefinite integrals, e.g.

Maple, offering also online services;
Mathematica, offering also online services;
Maxima, free, with interesting online demo.

We will propose some examples to understand their usage.
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https://www.maplesoft.com/products/Maple/
https://www.maplesoft.com/products/StudentApps/index.aspx
https://www.wolfram.com/mathematica/
https://www.wolfram.com/mathematica/online/
https://maxima.sourceforge.io
https://www.cs.kent.edu/~pwang/m/research/demo.html


Symbolic calculus of integrals

1 As first example we consider a rational function and its
integration that can be done by decomposition in partial
fractions.

∫
1 + x − x2

1 + x2 dx =
log(x2 + 1)

2
− x + 2 arctan(x) + C

This technique has been discovered indipendently by Johann
Bernoulli and Gottfried Leibniz (1702) and usually requires
some boring computations.

2 As second example we consider exp(−x2).
For each of them we will compute definite integrals in [0, 1].
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https://en.wikipedia.org/wiki/Partial_fraction_decomposition
https://en.wikipedia.org/wiki/Partial_fraction_decomposition


Symbolic calculus of integrals

We first use Maple via Matlab shell for the computation of
indefinite integrals.

Figure: Indefinite integrals in Maple (via Matlab shell).
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Symbolic calculus of integrals

Now we adopt Maple via Matlab shell for the computation of
definite integrals.

Figure: Definite integrals in Maple (via Matlab shell).
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Symbolic calculus of integrals

We now make the computations of indefinite integrals via
Mathematica, e.g. visiting the website Online Integral Calculator. To
complete the computations, use the “equal ”symbol on the right.

Figure: Indefinite integrals in Mathematica (via Online Integral Calculator).
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https://www.wolframalpha.com/calculators/integral-calculator


Symbolic calculus of integrals

About the second integral, we insert the new integrand and digit
=on the right side of the box.

Figure: Indefinite integrals in Mathematica (via Online Integral Calculator).
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Symbolic calculus of integrals

Concerning definite integrals, writing the data in Math Input,
clicking on more digits:

Figure: Definite integrals in Mathematica (via Online Integral Calculator).
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Symbolic calculus of integrals

We repeat the procedure for the second function.

Figure: Definite integrals in Mathematica (via Online Integral Calculator).

13/91



Symbolic calculus of integrals

We repeat the computation by means of Maxima demo homesite

Figure: Indefinite integrals in Maxima (via online site).
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http://www.dma.ufv.br/maxima/index.php?


Symbolic calculus of integrals

Figure: Indefinite integrals in Maxima (via online site).
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Symbolic calculus of integrals

Figure: Definite integrals in Maxima (via online site).
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Symbolic calculus of integrals

Figure: Definite integrals in Maxima (via online site).

Remark
The installation of Maxima may be not trivial (e.g. is not immediate on
MacOS).
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Calcolo di integrali in ambiente Matlab/Octave

The previous definite integrals∫ 1

0

1 + x − x2

1 + x2 dx ≈ 0.917369917074869

∫ 1

0
exp (−x2)dx ≈ 0.746824132812427

may also be approximate by Matlab/Octave.
We make the experiments in Octave, taking into account that
the Matlab version is equal.
To this purpose one can use OctaveOnline as well as
Octave/Matlab.
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https://octave.org
https://octave-online.net
https://www.mycompiler.io/it/online-octave-matlab-compiler


Adaptive codes in Matlab/Octave

We show how we can compute definite integrals in Matlab/Octave by
adaptive algorithm implemented in integral, controlling the absolute
and relative error, with tolerances decided by the users. This is
guaranteed numerically but not mathematically (the code may fail in
special and rare examples).

Consider that the function definition in Matlab/Octave requires the
knowledge of pointwise operations, using “.”.

Figure: Definite integrals in Octave.
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Univariate polynomial interpolation (summary)

Problema. (Univariate polynomial interpolation)

Given

n + 1 distinct points x0, . . . , xn,

the valuea y0, . . . , yn

the problem of polynomial interpolation consists in computing

pn(x) = a0 + . . .+ anxn

such that

pn(xi) = yi , i = 0, . . . , n.

Example (Straight line for two given points)

Given 2 distinct points x0, x1 and the values y0, y1, determine p1 ∈ P1 such
that

p1(x0) = y0, p1(x1) = y1 (1)

that is the straight line that passes for the couples (x0, y0), (x1, y1).
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https://en.wikipedia.org/wiki/Polynomial_interpolation


Univariate polynomial interpolation (summary)

0 0.5 1 1.5 2 2.5 3 3.5
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f(x)=exp(x).*sin(x)+cos(x)

polinomio cubico interpolatore

punti interpolazione

Figure: Example consisting in interpolating the function
f (x) = exp(x) sin(x) + cos(x) (in black) by an algebraic polynomial of
degree 3 (in red) in 4 equispaced points in [0, π] (green circles). We plot
the pertinent plots and the points {(xk , yk)}k=0,...,3, where xk = kπ/3 e
yk = f (xk), k = 0, . . . , 3. 21/91



Univariate polynomial interpolation (summary)

Theorem (Existence and uniqueness of polynomial interpolant)

GIven n + 1 distinct points x0, x1, . . . , xn and the values vy0, y1, . . . , yn, the
polynomial pn ∈ Pn such that

pn(xi) = yi , i = 0, . . . , n.
exists and is unique.
Next

pn(x) =
n∑

k=0

ykLk(x) = y0L0(x) + y1L1(x) + . . .+ ynLn(x)

where

Lk(x) :=
n∏

j=0,j ̸=k

x − xj

xk − xj
=

(x − x0) . . . (x − xk−1)(x − xk+1) . . . (x − xn)

(xk − x0) . . . (xk − xk−1)(xk − xk+1) . . . (xk − xn)

is the k-th Lagrange polynomial w.r.t. the nodes {xk}k=0,...,n.
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Historical remark

The Lagrange polynomials where discovered by
Waring in Problems concerning interpolations in 1779,
rediscovered by Euler in 1783,
published by Lagrange in Leçon Cinquième. Sur l’usage des
courbes dans la solution des problèmes in 1795 (volume 7,
p.286).

For an interesting note see A Chronology of Interpolation: From
Ancient Astronomy to Modern Signal and Image Processing.
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http://www.seminariomatematico.polito.it/rendiconti/70-4/347.pdf
https://www.jstor.org/stable/106408
http://eulerarchive.maa.org/docs/originals/E555.pdf
https://archive.org/details/oeuvresdelagrang07lagr/page/286/mode/1up?view=theater
https://archive.org/details/oeuvresdelagrang07lagr/page/286/mode/1up?view=theater
https://bigwww.epfl.ch/publications/meijering0201.pdf
https://bigwww.epfl.ch/publications/meijering0201.pdf


Historical remark

Figure: The paper by Waring in which the Lagrange polynomials were discovered.
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Historical remark

Figure: Paper by Eulero in which the Lagrange polynomials were rediscovered.
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Historical remark

Figure: Work by Lagrange on the relative polynomials.
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Choice of interpolation points

One may believe that if we take more and more equispaced nodes
in [a, b], that is

xk = a + k
(b − a)

n
, k = 0, . . . , n

increasing n, the polynomial pn will approximate better and better
the function f , but it is not so.

Runge discovered a famous counterexample in Über die Darstellung
willkrlicher Functionen und die Interpolation zwichen äquidistanten
Ordinaten, p.243, (1901), that is f ∈ C∞([−5, 5]) defined by

f (x) =
1

1 + x2 , x ∈ [−5, 5]

in which increasing n, maxx∈[a,b] |f (x)− pn(x)| does not converge to
0. 27/91

https://history-of-approximation-theory.com/fpapers/run3.pdf
https://history-of-approximation-theory.com/fpapers/run3.pdf
https://history-of-approximation-theory.com/fpapers/run3.pdf


Runge counterexample
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Figure: Plot illustrating the polynomial interpolant (of the Runge function) of
degree 12 based on 13 equispaced nodes. The plot in red is the interpolant, while
the plot in black is the Runge function. The green dots are the couples to be
interpolated. Observe the wild obscillations at extrema. Increasing the degree
things get worse!
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Runge counterexample

Figure: Original paper on Runge counterexample.
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Interpolatory qaudrature rules

The following theorem holds.

Theorem (Stability of integration)

If f̃ , f ∈ C([a, b]), and [a, b] is a bounded interval then∣∣∣∣∣
∫ b

a
f (x)dx −

∫ b

a
f̃ (x)dx

∣∣∣∣∣ ≤ (b − a) max
x∈[a,b]

|f (x)− f̃ (x)|.

Thus, if we assume that

the points {xk}k=0,...,n ⊂ [a, b] are distinct,

the polynomial f̃ = pn that interpolates (x0, f (x0)), . . . , (xn, f (xn)) is
a good approximation of f ∈ C([a, b]).

then

I(pn) =

∫ b

a
pn(x)dx ≈ I(f ) =

∫ b

a
f (x)dx

with the advantage that the computation of I(pn) is usually easier than
that of I(f ).
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Interpolatory quadrature rules

In virtue of what we have seen, let Lk be the Lagrange polynomials
relatively to the set {xk}k=0,...,n, and the weights

wk =

∫ b

a
Lk(x)dx

and get

∫ b

a
f (x)dx ≈

∫ b

a
pn(x)dx=

∫ b

a

n∑
k=0

f (xk)Lk(x)dx

=
n∑

k=0

∫ b

a
f (xk)Lk(x)dx =

n∑
k=0

f (xk)

∫ b

a
Lk(x)dx

=
n∑

k=0

wk f (xk). (2)

that is ∫ b

a
f (x)dx ≈

n∑
k=0

wk f (xk).
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Interpolatory quadrature rules

Observe that if f ∈ Pn then it it is exactly the polynomial pn that
interpolates the couples (xk , f (xk)), k = 0, . . . , n ( by the uniqueness of
the polynomial interpolant) and then∫ b

a
f (x)dx=

∫ b

a
pn(x)dx =

∫ b

a

n∑
k=0

f (xk)Lk(x)dx = . . . =
n∑

k=0

wk f (xk).

Cnosequently, if f ∈ Pn then
∑n

k=0 wk f (xk) is equal to
∫ b

a f (x)dx.

We will say that the degree of exactness of an interpolatory rule in n + 1
nodes is at least n.

Thus, an interpolatory rule on

1 node, surely integrates exactly the constants;

2 nodes, surely integrates exactly the polynomials of degree 0, 1;

3 nodes, surely integrates exactly the polynomials of degree 0, 1, 2.

We will see that sometimes things can be even better.
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Interpolatory quadrature rules

The fact that∫ b

a
f (x)dx ≈

n∑
k=0

wkf (xk), wk =

∫ b

a
Lk(x)dx

says that to approximate the required integral it is not necessary to
1 compute the polynomial interpolant,
2 determine its primitive,
3 apply the fundamental theorem of integral calculus,

but
1 compute the weights {wk}k=0,...,n relatively to the nodes
{xk}k=0,...,n,

2 use the function evaluations {f (xk)}k=0,...,n.

Remark
This fact is important, since if we change the integrand we minimize the
computation, since the weights wk , k = 0, . . . , n do not change, depending
only on the nodes.
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Rectangular rule

Definition (Rectangular rule)
Let

f ∈ C([a, b]), −∞ < a < b < +∞,
x0 ∈ [a, b].

The rettangular rule is defined by

∫ b

a
f (x)dx ≈ w0f (x0) = (b − a)f (x0) := S∗

0(f ). (3)

If x0 = a+b
2 we get the so called midpoint rule.

34/91



Midpoint rule

For the midpoint rule, the following error estimate holds

Theorem (Midpoint rule error estimate)

If f ∈ C(2)([a, b]) then the midpoint rule error estimate is

E0(f ) := I(f )− S∗
0(f ) =

(b − a)3

24
f (2)(ξ), ξ ∈ (a, b).

Observe that if f ∈ P1 allora

E0(f ) := I(f )− S∗
0(f ) = 0

thus the rule is exact.

This is a little surprising since being based on just one function
evaluation one may believe it integrates exactly just the constants
and not polynomials of degree 1.
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Rectangular rule
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Figure: Rectangular rule with node x0 = (a + b)/2, a = 0, b = 2π, for
approximating

∫ 2π
0 (3 + sin(2x) + cos(x) + x) dx (midpoint rule computes

the area in cyan).
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Trapezoidal rule.

Definition (Trapezoidal rule)

The trapezoidal rule is defined by

∫ b

a
f (x)dx ≈ S1(f ) :=

b − a
2

· (f (a) + f (b)).
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Figure: Trapezoidal rule for the approximation of∫ 2π
0 3 + sin(2x) + cos(x) + x dx (the rule computes the area in cyan).
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Trapezoidal rule

Theorem (Error of the Trapezoidal rule)

If f ∈ C2([a, b]) then the error of the trapezoidal rule is

E1(f ) := I(f )− S1(f ) =
−(b − a)3

12
f (2)(ξ), ξ ∈ (a, b).

Theorem (Degree of exactness of the trapezoidal rule)
The degree of exactness of the trapezoidal rule is exactly 1.
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Cavalieri-Simpson rule

Definition (Cavalieri-Simpson rule)

The Cavalieri-Simpson rule is defined as
∫ b

a f (x)dx ≈ S2(f ) with

S2(f ) :=
b − a

6
·f (a)+2(b − a)

3
·f
(

a + b
2

)
+

b − a
6

·f (b).

This interpolatory rule is equivalent to determine the definite
integral for the polynomial with nodes the interval extrema a, b and
their midpoint (a + b)/2.

Consequently, its degree of exactness is at least 2.
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Cavalieri-Simpson rule
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Figure: Cavalieri-Simpson rule for the computation of∫ 2π
0 3 + sin(2x) + cos(x) + x dx, it determines the area in cyan).
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Cavalieri-Simpson rule

Theorem (Cavalieri-Simpson rule error)

If f ∈ C4([a, b]) the error made by Cavalieri-Simpson rule is

E2(f ) := I(f )− S2(f ) =
−h5

90
f (4)(ξ), h =

b − a
2

with ξ ∈ (a, b).

Theorem (Degree of exactness of Cavalieri-Simpson rule)

The degree of exactness of Cavalieri-Simpson rule is exactly 3.

Remark
As in the case of midpoint rule, this result is remarkable, since it is
expected to be 2, since the formula of interpolatory type is based on
3 nodes.
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Historical notes

Observe that integration had a complicated history.

Cavalieri did not have the modern concept of integration since he
was researcher between 1629 and 1647, while

the fundamental of integral calculus by (Torricelli-Barrow)
appears in a primitive form in Lectiones geometricae by
Barrow (1670) and in Geometriae pars universalis by Gregory
(1668), see [?];
Riemann integral was introduced in december 1853 (in his
habilitation thesis);
Lebesgue integral was discovered in 1904.

Cavalieri, by means of the so called method of indivisibles
computed

∫ b
a xndx for n = 1, . . . , 9.
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https://archive.org/details/operageometrica00torr
https://archive.org/details/geometricallectu00barruoft
https://archive.org/download/geometricallectu00barr/geometricallectu00barr.pdf
https://archive.org/details/gregory_universalis/mode/1up?view=theater
https://ia800700.us.archive.org/23/items/bub_gb__zcPAAAAQAAJ/bub_gb__zcPAAAAQAAJ.pdf
https://ia902903.us.archive.org/25/items/leconegrarecher00leberich/leconegrarecher00leberich.pdf
https://keespopinga.blogspot.com/2017/07/gli-indivisibili-di-cavalieri.html


Historical notes

Figure: Work by Torricelli in which the fundamental theorem of integral calculus is
introduced geometrically (link between displacement on a straight line and
velocity).

43/91



Historical notes

Figure: Work by Barrow in which a geometrical form of fundamental theorem of
calculus. On this subject, see also the paper Barrow and Leibniz on the
fundamental theorem of the calculus.
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https://arxiv.org/pdf/1111.6145
https://arxiv.org/pdf/1111.6145


Historical notes

Figure: Geometriae pars universalis, published in Padua in 1668.
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Historical notes

At the webpage Riemann integral we find this interesting remark.

The Riemann integral was introduced in Bernhard Riemann’s paper ”Über
die Darstellbarkeit einer Function durch eine trigonometrische Reihe” (On
the representability of a function by a trigonometric series; i.e., when can
a function be represented by a trigonometric series).

This paper was submitted to the University of Göttingen in 1854 as Rie-
mann’s Habilitationsschrift (qualification to become an instructor).

It was published in 1868 in Abhandlungen der Königlichen Gesellschaft der
Wissenschaften zu Göttingen (Proceedings of the Royal Philosophical Soci-
ety at Göttingen), vol. 13, pages 87-132.

For Riemann’s definition of his integral, see section 4, ”Über den Begriff
eines bestimmten Integrals und den Umfang seiner Gültigkeit” (On the con-
cept of a definite integral and the extent of its validity), pages 101–103.
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https://en.wikipedia.org/wiki/Riemann_integral


Historical notes

Figure: Monograph in which the Riemann integral was introduced.
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Historical notes

Figure: Monograph in which the Lebesgue integral was introduced.
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Cavalieri-Simpson rule

About the ascription to Cavalieri, Peano wrote in Residuo in Formula de quadratura
Cavalieri-Simpson (1916), in a simplified latin language, that this formula was
discovered by Cavalieri (1639), Gregory (1668), Cotes (1722) and Simpson (1743).

Figure: Peano paper and historical notes on the ascription of this rule.
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https://www.asut.unito.it/peano/pdf/opere/1916t.pdf
https://www.asut.unito.it/peano/pdf/opere/1916t.pdf
https://archive.org/details/bub_gb_ZdkAoCkhjfsC
https://archive.org/details/ita-bnc-mag-00001357-002
https://www.jstor.org/stable/41723298


Cavalieri-Simpson rule

It is surprising why Cavalieri for what purpose Cavalieri used this
rule.

At that time there were many efforts on solids of rotation. For
instance, Kepler in Nova stereometria doliorum vinariorum that is
New measure of the volume of barrels of wine justified an empirical
method used by austrian coopers, by means of a geometrical
approach.

Also Cavalieri had some interest on the topic. In Note - Postille
Matematiche, Gabrio Piola, discusses of the work Centuria di varii
problemi, by Cavalieri. In particular at page 83, he writes

Problem 80 concerns the measure of elliptical-circular barrels,
giving a rule that is exactly the same that nowadays stems
from Rossi-Amulis formula, demonstrated in 1806.
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https://archive.org/details/den-kbd-pil-21009000066F-001
https://iris.polito.it/bitstream/11583/2505638/1/13593471.pdf
https://iris.polito.it/bitstream/11583/2505638/1/13593471.pdf


Historical notes

Figure: Cover of Kepler work Nova stereometria doliorum vinariorum on the
volume of barrels.
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Historical notes

Figure: The cover of the work by Cavalieri, suggested by Peano.
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Historical notes

Figure: Remark by Peano on the volume of barrels.
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Historical notes

Figure: Remark by G.N. Watson about Cavalieri and the volume of barrels.
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Historical notes

Figure: Problem 80, at p.445 of the Centuria di varii problemi by Cavalieri. 55/91



Historical notes

The same rule can be found in Mathematical dissertations On A
Variety of Physical and Analytical subjects by Thomas Simpson. It is
clear that T. Simpson is thinking to composite rules.

Figure: Excerpt from Mathematical dissertations On A Variety of Physical and
Analytical subjects by T. Simpson.
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https://ia601000.us.archive.org/12/items/RMSE006367_TO0324_PNI-3156_000000/RMSE006367_TO0324_PNI-3156_000000.pdf
https://ia601000.us.archive.org/12/items/RMSE006367_TO0324_PNI-3156_000000/RMSE006367_TO0324_PNI-3156_000000.pdf


Newton-Cotes rules

Considerazione.
Assume that f ∈ C([a, b]), where [a, b] is bounded.

By Weierstrass theorem, since that function can be approximated
arbitrary well and uniformly by polynomials, one may believe that that
rules with higher degree may approximate arbitrarialy well the definite
integral, but we shall see this is not true.

After the previous note on Runge function, one forsees that if the
nodes are {xk}k=0....,n some problems may happen.

We will see later the results.
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Newton-Cotes rules

Definition (Newton-Cotes rules)
Let [a, b] be a bounded interval. A rule

Sn(f ) =
n∑

i=0

wif (xi) ≈
∫ b

a
f (x)dx

is of closed Newton-Cotes type if

that the set of nodes is equispaced and contains the extrema, that is

xi = a +
i (b − a)

n
, i = 0, . . . , n,

the weights are

wi =

∫ b

a
Li(x)dx, i = 0, . . . , n, Li(x) =

n∏
j=0, j ̸=i

(x − xi)

xj − xi
.

Remark (Degree of exactness of closed Newton-Cotes formulae)

This rule is interpolatory and has n + 1 nodes, thus it has degree of
exactness at least n.
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Historical notes

Remark (Facoltativa)
These rules were introduced by Newton in 1676 and described in
Of Quadrature by Ordinates in 1695. The literature is not clear, it
written they had 5 ordinates (so degree of exactness at least 4).
Cotes, that was editor of the second version of the Principia,
generalised the results by Newton, possibly in 1707, though they
were published in 1722. In particular Cotes computed rules that
had up to 11 nodes.

Considering Harmonia mensurarum, it is not easy to found where
these rules are. An appendix is sometimes mentioned, but it is
not easy to understand where it can be found.

Historians say that Cotes was not cited and paid for his work in
the second version of Newton’s Principia. In spite of that, when
Cotes died at 34 yo, Newton said If he had lived, we might have
known something.
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https://link.springer.com/article/10.1007/s00407-013-0117-1
https://www.e-rara.ch/download/pdf/1255698.pdf


Historical notes

Figure: First page of Harmonia mensurarum
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Newton-Cotes rules

We show numerically the lack of convergence of the Newton-Cotes closed formula
when applied to compute

∫ 5
−5 1/(1 + x2)dx (i.e. we adopt as integrand the RUnge

function). Since the interpolant is far from approximating the Runge function we
believe that also the integrals will be very different.

n Integral Intp. Pol. Absolute Error
1 3.846153846153846e − 01 2.362e + 00
2 6.794871794871796e + 00 4.048e + 00
3 2.081447963800905e + 00 6.654e − 01
4 2.374005305039788e + 00 3.728e − 01
5 2.307692307692308e + 00 4.391e − 01
6 3.870448673470800e + 00 1.124e + 00
7 2.898994409748379e + 00 1.522e − 01
8 1.500488907127907e + 00 1.246e + 00
9 2.398617897841837e + 00 3.482e − 01
10 4.673300555653490e + 00 1.926e + 00
15 4.155558992699889e + 00 1.409e + 00
20 −2.684955208653064e + 01 2.960e + 01

Table: Newton-Cotes formulas failing to approximate∫ 5
−5 1/(1 + x2)dx ≈ 2.746801533890032.
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Midpoint composite rule

composite rules are obtained integrating a piecewise polynomial interpolant of degree m.

As example,
we subdivide [a, b] in L equispaced intervals [t0, t1],. . .,[tL−1, tL];
define in each [tk−1, tk ] a set of m + 1 equispaced points xm(k−1) < . . . < xmk con
tk−1 = xm(k−1) and tk = xmk ;
let “sm”the piecewise polynomial interpolant of degree m, relatively to the subdivision
[tk , t(k+1)], with k = 0, . . . , L, and couples (xj , f(xj)), j = 0, . . . , n = Lm;
suppose that Sm(f , tk−1, tk) is a closed formula of Newton-Cotes close type, in the
interval [tk−1, tk ], with m + 1 nodes (so having at least degree of exactness m).
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Figure: In black: the function f(x) = 3 + sin(2x) + cos(x) + x. In red: the piecewise interpolant sm of degree m = 2,

relatively to the subdivision [tk = x2k , tk+1 = x2(k+1)], with k = 0, 1, 2, and to the couples (xj , f(xj )),

j = 0, . . . , n = 6. In green: the couples (xj , f(xj )), j = 0, . . . , 6.
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composite rules

Being sm a polynomial of degree m in each [tk , tk+1],
since Sm(f , tk , t(k+1)) has degree of exactness m,

by additivity of integration operator

∫ b

a
f (x)dx ≈

∫ b

a
sm(x)dx

=

∫ t1

t0=a
sm(x)dx +

∫ t2

t1
sm(x)dx + . . .+

∫ xL=b

tL−1

sm(x)dx

= Sm(f , t0, t1) + Sm(f , t1, t2) + . . .+ Sm(f , tL−1, tL)

Thus we obtained the approximation of the integral not by a
Newton-Cotes rule with high degree of exactness “n”, but applying
the same rule with a low ADE “m”in each subinterval, summing up
all the contributions.
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composite rules

Definition (Composite rule)

Let

1 [a, b] a bounded interval,

2 tj = a + jh with h = (b − a)/N, j = 0, . . . ,N,

3 S(f , α, β)) a rule in the bounded interval [α, β].

The quadrature formula

S(c)(f , a, b,N) =
N−1∑
j=0

S(f , tj , tj+1) (4)

è is a composite rule using S.

Remark

In this discussion, the points xj , j = 0, . . . ,N, will be equispaced, but with some
effort we can extend the analysis to a different distribution. In other terms:

if t0 = a < t1 < . . . < tN = b, one partitions [a, b] as union of subintervals
[tk , tk+1], k = 0, . . . ,N − 1;

in each subinterval we apply the same rule, summing up the contributions.
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Midpoint composite rule

Definition (Midpoint composite rule)

The midpoint composite rule is defined as

S(c)
0 (f , a, b,N) :=

b − a
N

N−1∑
k=0

f(xk), (5)

where xk is the midpoint of the k + 1-th interval, that is

xk = a +
2k + 1

2
· b − a

N
, k = 0, . . . ,N − 1.

Subdividing [a, b] in N equispaced interval [tk , tk+1], K = 0, . . . , N − 1 with tj = a + jh, j = 0, . . . , N, h = (b − a)/N, if
xk is the midpoint of [tk , tk+1] then

xk =
tk + tk+1

2
=

a + kh + a + (k + 1)h

2
= a +

(2k + 1)h

2
.

and since wk = tk+1 − tk = a + (k + 1)h − (a + kh) = h = (b − a)/N we get

S(c)0 (f , a, b, N) :=

N−1∑
k=0

b − a

N
f(xk ) =

b − a

N

N−1∑
k=0

f(xk ).
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Midpoint composite rule
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Figure: Midpoint composite rule and approximation of∫ 2π
0 3 + sin(2x) + cos(x) + x dx (the formula computes the area in cyan).
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Midpoint composite rule

Theorem (Error of midpoint composite rule)

If [a, b] is subdivided in N equispaced intervals of length h = b−a
N , then

E(c)
0 (f ) := I(f )−S(c)

0 (f , a, b,N) =
(b − a)

24
h2 f (2)(ξ∗), ξ∗ ∈ (a, b)

Remark (Degree of exactness)
From the formula above, it is immediate to get that ADE is exactly
equal to 2.
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Midpoint composite rule

Remark (Comparison with the midpoint rule)
The midpoint rule had an error

E0(f ) := I(f )− S0(f ) =
(b − a)3

24
f (2)(ξ), ξ ∈ (a, b),

while for N > 1

(b − a)
24

h2 =
(b − a)

24

(
b − a

N

)2

=
(b − a)3

24N2 <
(b − a)3

24
.

Consequently, one may think that if f 2 does not vary much, the
composite rule tend to provide smaller errors (notice that in general
ξ∗ ̸= ξ).
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Trapezoidal composite rule

Purpose. (How it is obtained)

To give some insight, suppose that [a, b] is subdivided N = 4 equispaced subintervals
[tk , tk+1], K = 0, . . . ,N − 1 = 3 con tj = a + jh, j = 0, . . . ,N = 4,
h = (b − a)/N = (b − a)/4.

Let S1(f , α, β) the application of the trapezoidal rule relatively to f and to the interval
[α, β],

S1(f , t0, t1) = h
2 (f(t0) + f(t1)),

S1(f , t1, t2) = h
2 (f(t1) + f(t2)),

S1(f , t2, t3) = h
2 (f(t2) + f(t3)),

S1(f , t3, t4) = h
2 (f(t3) + f(t4)),

thus being N = 4

S(c)
1 (f , a, b, 4) =

h
2
(f(t0) + f(t1) + f(t1) + f(t2) + f(t2) + f(t3) + f(t3) + f(t4))

=
h
2
(f(t0) + 2f(t1) + 2f(t2) + 2f(t3) + f(t4))

=
b − a

N

(
1
2

f(t0) + f(t1) + f(t2) + f(t3) +
1
2

f(t4)
)
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Trapezoidal composite rule

Definition (Trapezoidal composite rule)

Let xk = a + kh, k = 0, . . . ,N, h = (b − a)/N, the trapezoidal
composite rule is defined as

S(c)
1 (f , a, b,N) :=

b − a
N

[
f (x0)

2
+ f (x1) + . . .+ f (xN−1) +

f (xN)

2

]
,

In the previous assumptions,

E (c)
1 (f ) := I(f )−S(c)

1 (f , a, b,N) =
−(b − a)

12
h2 f (2)(ξ), h =

(b − a)
N

ξ ∈ (a, b).
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Trapezoidal composite rule

Remark (Grado di exactness)
Similarly to the basic rule, the degree of precision is exactly 1 since

|E (c)
1 (f )| := |I(f )− S(c)

1 (f , a, b,N)| = (b − a)
12

h2 |f (2)(ξ)|, h =
(b − a)

N
,

Remark (Comparison with the rule)

With regards to the rule, we had

|E1(f )| := |I(f )− S1(f )| =
(b − a)3

12
|f (2)(ξ)|, ξ ∈ (a, b).

but here, being N > 1

(b − a)
12

h2 =
(b − a)

12

(
(b − a)

N

)2

=
(b − a)3

12N2 <
(b − a)3

12
,

and as in the case of the midpoint composite rule, we expect an inferior
error increasing N if f 2 does not vary much.
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Trapezoidal composite rule

-1 0 1 2 3 4 5 6 7

0

2

4

6

8

10

12

Figure: Trapezoidal composite rule for approximating∫ 2π
0 3 + sin(2x) + cos(x) + x dx (it computes the area in cyan, that is the

area defines by the piecewise interpolant in red).
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Historical notes

The trapezoidal composite rule has many interesting features., that are
carefully described in [?]. In particular we can consider a note on a work
by Poisson.
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Eulero-Maclaurin formula

Consider the integrand
1

2π

√
1 − 0.36 sin2 θ

and verify it is periodic with its derivatives in [0, 2π]. Both the geometry (meaning
of the integral) and Maple confirm this.

>> syms f(x)

>> f(x)=(1/(2*pi))*sqrt(1-0.36*(sin(x))^2);

>> g=diff(f,x,1); g(2*pi)-g(0)

ans = 0

>> g=diff(f,x,2); g(2*pi)-g(0)

ans = 0

>> g=diff(f,x,3); g(2*pi)-g(0)

ans = 0

>> g=diff(f,x,4); g(2*pi)-g(0)

ans = 0

>> g=diff(f,x,25); g(2*pi)-g(0)

ans = 0

>> g=diff(f,x,30); g(2*pi)-g(0)

ans = 0
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Euler-Maclaurin formula

Let hN be the length of the generic subinterval of the equispaced subdivision of
[a, b].

Theorem ( Euler-Mac Laurin formula, 1735)

If f ∈ C2M+2([a, b]) then

∫ b

a
f(x)dx = S(c)

1 (f ,N) +
M∑

k=1

B2k

(2k)!
h2k

N

(
f (2k−1)(b)− f (2k−1)(a)

)
− B2M+2

(2M + 2)!
h(2M+2)

N (b − a)f (2M+2)(ξ), ξ ∈ (a, b)

where Bk are the Bernoulli numbers (Bernoulli, 1713).

If f ∈ C2M+2([a, b]) e f (2k−1)(b) = f (2k−1)(a), for k = 1, . . . ,M

∫ b

a
f(x)dx − S(c)

1 (f ,N) = − B2M+2

(2M + 2)!
h(2M+2)

N (b − a)f (2M+2)(ξ),

where ξ ∈ (a, b) and from hN = (b − a)/N, we get E (c)
1 (f) ≈ C

N2M+2 .
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Euler-Maclaurin formula (Bernoulli numbers)

Bernoulli numbers might have been the first quantities computes numerically by a
code on a machine, the so called Analytical Engine (1842), that is considered as
the first modern calculator.

There is a controversy if the programmer was Babbage, the designer of the
machine or Ada Lovelace, daughter of Lord Byron.

Figure: A component of the Analytical Engine.
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Euler-Maclaurin formula

From Euler-Mac Laurin formula, in the case of f (θ) := 1
2π

√
1 − 0.36 sin2 θ

we have that

|E (c)
1 (f )| := |

∫ b

a
f (x)dx − S(c)

1 (f ,N)|

is more rapid than N−M for any M (here Nis the number of subintervals).

Actually it is of geometric type, that is |E (c)
1 (f )| ≈ αγ−N , for suitable α, γ

(cf. [?], p.387). he

N |E(c)
1 (f )| N |E(c)

1 (f )|
2 9.7e − 02 32 0
4 2.8e − 03 64 0
8 1.1e − 05 128 0
16 5.4e − 10 256 0
32 1.1e − 16 512 0

Table: Error of Trapezoidal composite rule on Poisson example, subdividing [a, b] in N
equispaced intervals
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Trapezoidal composite rule: applications

Numerical integration of periodic functions is an important subject
due to its applications.

It is a fundamental ingredient of FFT algorithm that requires the
evaluations of these quantities for specific integrands.

The Fast Fourier Transform is used in
elaboration of digital signals (fundamental for the mp3
compression),
solution of PDEs;
algorithms for multiplication of integers of large magnitude.

This algorithm was discovered by Cooley-Tukey in 1965 (but some
sources say it was known is some form to Gauss!).

Remark
In IEEE Guest Editors’ Introduction: The Top 10 Algorithms. it is written:

The FFT is perhaps the most ubiquitous algorithm in use today to
analyze and manipulate digital or discrete data. 78/91
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Cavalieri-Simpson composite rule

Purpose. (Composite Cavalieri-Simpson rule)

As illustration, let us subdivide [a, b] in N = 4 equispaced intervals [tk , tk+1],
k = 0, . . . ,N − 1 = 3 with tj = a + jh, j = 0, . . . ,N = 4, h = (b − a)/N.

Defining with S2(f , tk , tk+1) the application of Cavalieri-Simpson rule relatively to f and to the
interval [tk , tk+1], letting ck =

tk+tk+1
2 = a + 2k+1

2 · b−a
N be the midpoint of [tk , tk+1],

S2(f , t0, t1) = h
6 (f(t0) + 4 · f(c0) + f(t1)),

S2(f , t1, t2) = h
6 (f(t1) + 4 · f(c1) + f(t2)),

S2(f , t2, t3) = h
6 (f(t2) + 4 · f(c2) + f(t3)),

S2(f , t3, t4) = h
6 (f(t3) + 4 · f(c3) + f(t4)),

we obtain from N = 4

S(c)2 (f , a, b, 4) =
h
6
(f(t0) + 4 · f(c0) + f(t1)) +

h
6
(f(t1) + 4 · f(c1) + f(t2))

+
h
6
(f(t2) + 4 · f(c2) + f(t3)) +

h
6
(f(t3) + 4 · f(c3) + f(t4)) = . . .

=
h
6

f(t0) +
2h
6
(f(t1) + f(t2) + f(t3)) +

h
6

f(t4)

+
4h
6
(f(c0) + f(c1) + f(c2) + f(c3)). (6)
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Cavalieri-Simpson composite rule

From

S(c)2 (f , a, b, 4) =
h
6

f(t0) +
2h
6
(f(t1) + f(t2) + f(t3)) +

h
6

f(t4)

+
4h
6
(f(c0) + f(c1) + f(c2) + f(c3)). (7)

setting t0 = x0, c0 = x1, t1 = x2, c1 = x3, t2 = x4, c2 = x5, t3 = x6, c3 = x7, t4 = x8, we get
for N = 4 (i.e. the number of subdivisions)

S(c)2 (f , a, b, 4) =
h
6

(
f(x0) + 2

N−1∑
r=1

f(x2r) + 4
N−1∑
s=0

f(x2s+1) + f(x2N)

)
(8)

This ideas can be easily generalized to any N.

Figure: Relation between tk , ck e xj .
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Cavalieri-Simpson composite rule

Definition (Cavalieri-Simpson composite rule)

Set xk = a + kh/2, k = 0, . . . , 2N, h = (b − a)/N, Cavalieri-Simpson composite
rule is defined as

S(c)
2 (f , a, b,N) =

h
6

[
f(x0) + 2

N−1∑
r=1

f(x2r) + 4
N−1∑
s=0

f(x2s+1) + f(x2N)

]
(9)

Theorem (Error of Cavalieri-Simpson composite rule)

In the assumptions of subvisions via equispaced intervals of length h, the integration
error is

E (c)
2 (f) := I(f)− S(c)

2 (f , a, b,N) =
−(b − a)

180

(
h
2

)4

f (4)(ξ), ξ ∈ (a, b)

Remark (Degree of exactness of Cavalieri-Simpson composite rule)

The degree of exactness is exactly 3, as Cavalieri-Simpson rule, but if N > 1 the length h is inferior and consequently an inferior
absolute integration error is expected.
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Cavalieri-Simpson composite rule
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Figure: Cavalieri-Simpson composite rule for the computation of∫ 2π
0 3 + sin(2x) + cos(x) + x dx (the rule determines the area in cyan).
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Some numerical comparisons: example 1

In this section we analyse some examples in which we apply
composite rules to integrate some test integrands in f ∈ C([a, b]).

Example (1)
Approximate the definite integral

I =
∫ π

0
exp(x) cos(x)dx = −(exp(π) + 1)/2.

by means of composite rules S(c)
k (f ,0, π,N), N = 1, 2, 4, . . . , 512,

k = 0, 1, 2.

Remark
Note that the integrand belongs to C∞([0, 2π]) (actually it is entire).
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Some numerical comparisons: example 1

N |E(c)
0 (f )| |E(c)

1 (f )| |E(c)
2 (f )| #R

N #T
N #CS

N
1 1.2e + 01 2.3e + 01 4.8e − 01 1 2 3
2 2.8e + 00 5.3e + 00 8.5e − 02 2 3 5
4 6.4e − 01 1.3e + 00 6.1e − 03 4 5 9
8 1.6e − 01 3.1e − 01 3.9e − 04 8 9 17
16 3.9e − 02 7.8e − 02 2.5e − 05 16 17 33
32 9.7e − 03 1.9e − 02 1.6e − 06 32 33 65
64 2.4e − 03 4.8e − 03 9.7e − 08 64 65 129
128 6.1e − 04 1.2e − 03 6.1e − 09 128 129 257
256 1.5e − 04 3.0e − 04 3.8e − 10 256 257 513
512 3.8e − 05 7.6e − 05 2.4e − 11 512 513 1025

Table: Comparison of midpoint, trapezoidal and Cavalieri-Simpson composite rule, for N
equispaced intervals relatively to the computation of I =

∫ π
0 f(x)dx con

f(x) = exp(x) cos(x)dx,describing the absolute errors
|E(c)

0 (f)| = |I(f , a, b)− S(c)0 (f , a, b,N), |E(c)
1 (f)| = |I(f , a, b)− S(c)1 (f , a, b,N)|,

|E(c)
2 (f)| = |I(f , a, b)− S(c)2 (f , a, b,N)|, for each formula and the respective number of

nodes #R
N , #T

N , #CS
N .
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Some numerical comparisons: example 1 (optional)

Remark (optional)
In the second table we show the ratio between two successive errors
for each formula. The value (E(c)

k (f ))N , k = 0, 1, 2, is the absolute
integration error by Sk , for computing

∫ b
a f (x)dx, over N subdivisions,

while

(r(c)k (f ))N =
(E(c)

k (f ))N
(E(c)

k (f ))2N

is the ratio for k = 0, 1, 2 (in order, midpoint, trapezoidal and
Cavalieri-Simpson composite rule).
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Some numerical comparisons: example 1 (optional)

N (r(c)0 (f ))N (r(c)1 (f ))N (r(c)2 (f ))N
1 4.33 4.27 5.59
2 4.34 4.20 13.92
4 4.10 4.06 15.54
8 4.03 4.02 15.89
16 4.01 4.00 15.97
32 4.00 4.00 15.99
64 4.00 4.00 16.00
128 4.00 4.00 16.00
256 4.00 4.00 16.00

Table: Ratios relatively to I =
∫ π

0 f (x)dx with f (x) = exp(x) cos(x)dx,
showing the ratios between two successive absolute errors of the
formulas.
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Some numerical comparisons: example 2

Example (2)
Approximate the definite integral

I =
∫ 5

−5

1
1 + x2 dx ≈ 2.7468015338900322319659608

by composite rules S(c)
k (f ,−5, 5,N), N = 1, 2, 4, . . . , 1024,

k = 0, 1, 2.

Remark
The integrand belongs to C∞([−5, 5]). Thus we can apply the error
theorems for all the composite rules.
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Some numerical comparisons: example 2

N |E(c)
0 (f )| |E(c)

1 (f )| |E(c)
2 (f )| #R

N #T
N #CS

N
1 7.3e + 00 2.4e + 00 4.0e + 00 1 2 3
2 1.4e + 00 2.4e + 00 9.6e − 02 2 3 5
4 4.6e − 01 5.4e − 01 1.3e − 01 4 5 9
8 3.9e − 02 3.8e − 02 1.3e − 02 8 9 17
16 2.1e − 04 6.9e − 04 9.1e − 05 16 17 33
32 1.2e − 04 2.4e − 04 4.5e − 08 32 33 65
64 3.0e − 05 6.0e − 05 2.6e − 09 64 65 129
128 7.5e − 06 1.5e − 05 1.6e − 10 128 129 257
256 1.9e − 06 3.8e − 06 1.0e − 11 256 257 513
512 4.7e − 07 9.4e − 07 6.4e − 13 512 513 1025
1024 1.2e − 07 2.4e − 07 4.0e − 14 1024 1025 2049

Table: Comparison of midpoint, trapezoidal and Cavalieri-Simpson composite rule, for N
equispaced intervals relatively to the computation of I =

∫ 5
−5 f(x)dx con f(x) = 1/(1 + x2),

describing the absolute errors |E(c)
0 (f)| = |I(f , a, b)− S(c)0 (f , a, b,N),

|E(c)
1 (f)| = |I(f , a, b)− S(c)1 (f , a, b,N)|, |E(c)

2 (f)| = |I(f , a, b)− S(c)2 (f , a, b,N)|, for each
formula and the respective number of nodes #R

N , #T
N , #CS

N .
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Some numerical comparisons: example 3 (optional)

Example (3)
Approximate the definite integral

I =
∫ 1

0
x3√xdx = 2/9.

by composite rules S(c)
k (f ,0, 1,N), N = 1, 2, 4, . . . , 1024, k = 0, 1, 2.

Remark

The integrand belongs to C3([0, 1]). Thus we can take into account all
the error formulas but that of composite Cavalieri-Simpson rule that
requires f ∈ C4([0, 1])
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Some numerical comparisons: example 3

N |E(c)
0 (f )| |E(c)

1 (f )| |E(c)
2 (f )| #R

N #T
N #CS

N
1 1.3e − 01 2.8e − 01 3.4e − 03 1 2 3
2 3.6e − 02 7.2e − 02 2.3e − 04 2 3 5
4 9.1e − 03 1.8e − 02 1.5e − 05 4 5 9
8 2.3e − 03 4.6e − 03 1.0e − 06 8 9 17
16 5.7e − 04 1.1e − 03 6.5e − 08 16 17 33
32 1.4e − 04 2.8e − 04 4.1e − 09 32 33 65
64 3.6e − 05 7.1e − 05 2.6e − 10 64 65 129
128 8.9e − 06 1.8e − 05 1.7e − 11 128 129 257
256 2.2e − 06 4.5e − 06 1.0e − 12 256 257 513
512 5.6e − 07 1.1e − 06 6.6e − 14 512 513 1025
1024 1.4e − 07 2.8e − 07 4.1e − 15 1024 1025 2049

Table: Comparison of midpoint, trapezoidal and Cavalieri-Simpson composite rule, for N
equispaced intervals relatively to the computation of I =

∫ 1
0 f(x)dx con

f(x) = x3√xdx,describing the absolute errors |E(c)
0 (f)| = |I(f , a, b)− S(c)0 (f , a, b,N),

|E(c)
1 (f)| = |I(f , a, b)− S(c)1 (f , a, b,N)|, |E(c)

2 (f)| = |I(f , a, b)− S(c)2 (f , a, b,N)|, for each
formula and the respective number of nodes #R

N , #T
N , #CS

N .
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Some numerical comparisons: example 3 (optional)

Remark (optional)
In the second table we show the ratio between two successive errors
for each formula. The value (E(c)

k (f ))N , k = 0, 1, 2, is the absolute
integration error by Sk , for computing

∫ b
a f (x)dx, over N subdvisions,

while

(r(c)k (f ))N =
(E(c)

k (f ))N
(E(c)

k (f ))2N

is the ratio for k = 0, 1, 2 (in order, midpoint, trapezoidal and
Cavalieri-Simpson composite rule).

From the tables we see that the ratio for
composite midpoint and trapezoidal rule is approximatively 4,
composite Cavalieri-Simpson rule is approximatively 16,

and thus the errors are of the form C∗h2 and C∗h4.
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