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A point set XN on the unit sphere is a spherical t-design is equivalent to the nonnegative 
quantity AN,t+1 vanished. We show that if XN is a stationary point set of AN,t+1 and 
the minimal singular value of basis matrix is positive, then XN is a spherical t-design. 
Moreover, the numerical construction of spherical t-designs is valid by using Barzilai-
Borwein method. We obtain numerical spherical t-designs with N = (t + 2)2 points for 
t + 1 up to 127.

© 2019 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Distributing finite points on the unit sphere is a challenging problem in the 21st century [17]. Spherical t-design is to 
find the “good” finite sets of points on the unit sphere Sd := {x ∈ Rd+1|‖x‖ = 1} for spherical polynomial approximations, 
where ‖·‖ is the Euclidean 2-norm. Spherical t-design is very useful in approximation theory, geometry and combinatorics. 
Recently, it has been applied in quantum mechanics (for quantum t-design) and statistics (for rotatable design) [20].

Definition 1.1. A finite set XN := {x1, . . . , xN } ⊂ Sd is a spherical t-design if for any polynomial p : Rd+1 → R of degree at 
most t such that the average value of p on the XN equals the average value of p on Sd , i.e.,

1

N

N∑
i=1

p(xi) = 1

|Sd|
∫
Sd

p(x)dω(x) ∀p ∈ �t, (1)

where |Sd| is the surface of the whole unit sphere Sd , �t := �t(Sd) is the space of spherical polynomials on Sd with 
degree at most t and dω(x) denotes the surface measure on Sd .
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The concept of spherical t-design was introduced by Delsarte et al. [11] in 1977. From then on, spherical t-designs have 
been studied extensively [15,8,4,16,3,9,1,7]. In this paper, we pay attention to 2-dimensional unit sphere S2.

A lower bound on the number of points N to construct a spherical t-design for any t ≥ 1 on S2 was given in [11]:

N ≥ N∗ =
{

1
4 (t + 1)(t + 3), t is odd,
1
4 (t + 2)2, t is even.

When a spherical t-design achieves the lower bound, we call it a tight spherical t-design. However, there is no tight spherical 
t-design with N∗ points except t = 1,2,3,4,5,7,11 [4]. Bondarenko et al. [7] proved spherical t-designs exists for O (t2)

points. From the work of Chen et al. [9], we know that spherical t-designs with (t + 1)2 points exist for all degrees t up to 
100 on S2. This encourages us to find higher degrees t for spherical t-designs.

Extremal systems are sets of N = (t +1)2 points on S2 which maximize the determinant of a basis matrix for an arbitrary 
basis of �t [15]. For N = (t + 1)2, Chen and Womersley verified a spherical t-design exist in a neighborhood of an extremal 
system [8]. For N ≥ (t + 1)2, An et al. [3] verified extremal spherical t-designs exist for all degrees t up to 60 and provided 
well conditioned spherical t-designs for interpolation and numerical integration.

By now, numerical methods have been developed for finding spherical t-designs. The problem of finding a spherical 
t-design is expressed as solving nonlinear equations or optimization problems [16,3]. However, the first order methods 
for computing spherical t-designs are rarely developed. In this paper, we numerically construct spherical t-designs by using 
Barzilai-Borwein method (BB method). The BB method [5] is a gradient method with modified step sizes, which is motivated 
by Newton’s method but not involving any Hessian. Further investigations [10] showed that BB method is locally R-linear 
convergent for general objective functions.

In the next section, we present the required techniques, definitions and first order conditions for spherical t-designs. The 
BB method for computing spherical t-designs and its convergence analysis are presented in Section 3. Numerical results for 
point sets which t + 1 up to 127 and N = (t + 2)2 = 16384 are included in Section 4. Section 5 ends this paper with a brief 
conclusion.

2. First order conditions for spherical t-design

{Y1
0, Y

1
1, . . . , Y

2t+1
t } for degree n = 0, ..., t and order k = 1, . . . , 2n + 1 is a complete set of orthonormal real spherical 

harmonics basis for �t , where orthogonality with respect to the L2 inner product [12],

〈 f , g〉L2 :=
∫
S2

f (x)g(x)dω(x), f , g ∈ L2(S
2). (2)

Note that Y1
0 = 1√

4π
. It is well known that the addition theorem [12] for spherical harmonics on S2 gives

2n+1∑
k=1

Yk
n(x)Yk

n(y) = 2n + 1

4π
Pn(〈x, y〉) ∀x, y ∈ S2, (3)

where Pn : [−1, 1] → R is Legendre polynomial and 〈x, y〉 := x� y is the inner product in R3. Sloan and Womersley [16]
introduced a variational characterization of spherical t-designs

AN,t(XN) := 4π

N2

t∑
n=1

2n+1∑
k=1

(

N∑
i=1

Yk
n(xi))

2 = 4π

N2

N∑
j=1

N∑
i=1

t∑
n=1

2n + 1

4π
Pn(〈x j, xi〉). (4)

Theorem 2.1 ([16]). Let t ≥ 1, and XN ⊂S2 . Then

0 ≤ AN,t(XN) ≤ (t + 1)2 − 1, (5)

and XN is a spherical t-design if and only if

AN,t(XN) = 0.

It is known that XN is a spherical t-design if and only if AN,t(XN ) vanished. Naturally, one might consider the first order 
condition to check the global minimizer of AN,t(XN ).

Definition 2.1. A point x is a stationary point of f ∈ C1(S2) if ∇∗ f (x) = 0, where ∇∗ := ∇∗
S2 is the spherical gradient (or 

surface gradient [12]) of f .
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Let the basis matrix be Yt(XN ) :=
⎡
⎣

1√
4π

e�

Y0
t (XN )

⎤
⎦ ∈R(t+1)2×N , where e =

⎡
⎢⎣

1
.
.
.

1

⎤
⎥⎦ ∈RN and

Y0
t (XN) =

⎡
⎢⎣

Y1
1(x1) · · · Y1

1(xN)
...

. . .
...

Y2t+1
t (x1) · · · Y2t+1

t (xN)

⎤
⎥⎦ ∈R(t2+2t)×N .

Definition 2.2. A finite set XN := {x1, . . . , xN } ⊂S2 is called a fundamental system for �t if the zero polynomial is the only 
element of �t that vanishes at each point in XN .

An et al. [3] described the fundamental system in finding spherical t-designs.

Lemma 2.2 ([3]). A set XN ⊂ S2 is a fundamental system for �t if and only if Yt(XN ) is of full row rank (t + 1)2 .

Lemma 2.3 ([3]). Let t ≥ 2 and N ≥ (t + 2)2 . Assume XN ⊂ S2 is a stationary point set of AN,t and XN is a fundamental system for 
�t+1 . Then XN is a spherical t-design.

Based on these results, we have the applicable first order condition for spherical t-designs as follows.

Theorem 2.4. Let t ≥ 2 and N ≥ (t + 2)2 . Assume XN ⊂ S2 is a stationary point set of AN,t and the minimal singular value of basis 
matrix Yt+1(XN ) is positive. Then XN is a spherical t-design.

Proof. Suppose that the minimal singular value of Yt+1(XN ) is positive, then we have all the singular values of Yt+1(XN )

are positive immediately. We know that the number of non-zero singular values of Yt+1(XN ) equals the rank of Yt+1(XN ), 
so Yt+1(XN ) is of full rank, which means XN is a fundamental system of �t+1 by Lemma 2.2. And then suppose that XN is 
a stationary point set, then XN is a spherical t-design by Lemma 2.3. Hence, we complete the proof. �

Theorem 2.4 is useful in first order optimization method, which provides a simple way to verify the global minimizer to 
the objective function.

3. Iterative methods for finding spherical t-designs

3.1. Algorithm design

Fix N and t , for objective function AN,t :S2×N →R, we consider the optimization problem

min
XN ⊂S2

AN,t(XN). (6)

Apparently, AN,t is a non-convex and differentiable function. For computing XN conveniently, we assume the first point 
x1 = (0, 0, 1)� is the north pole point and the second point x2 = (x2, 0, z2)

� is on the primer meridian. Then we can define 
coordinates convert functions η : R3×N → R2N−3 which can convert Cartesian coordinates into spherical coordinates as 
a vector, and μ : R2N−3 → R3×N which can convert a vector form spherical coordinates into Cartesian coordinates as a 
matrix. So for (θ, φ) ∈ [0, π ] × [0, 2π) we have

η(XN) = η

⎡
⎣sin θ1 cosφ1 · · · sin θN cosφN

sin θ1 sinφ1 · · · sin θN sinφN

cos θ1 · · · cos θN

⎤
⎦ = (�,	),

μ(η(XN)) = μ(�,	) =
⎡
⎣ x1 · · · xN

y1 · · · yN

z1 · · · zN

⎤
⎦ ,

where vector � := (θ2, . . . , θN )� ∈RN−1 and vector 	 := (φ3, . . . , φN)� ∈RN−2.
We apply BB method (with the step size (6) in [5]) to construct Algorithm 1 for seeking an efficient way to compute 

AN,t , that x achieves the local minimum. Due to the universality of quasi-Newton method [16], we also apply quasi-Newton 
method for comparing the efficiency. And then we try to use Theorem 2.4 to prove the local minimum we found is the 
global minimum, that is, we find the real numerical spherical t-design.
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Fig. 1. Numerical simulation of regular tetrahedron vertices on S2 by using Algorithm 1.

To make sure that objective function f (xk) is sufficient to descend and approximate to ε which is as near as 0, we use 
Armijo-Goldstein rule [18] and backtracking line search [18] to lead BB method in a proper way to find local minimum x∗ .

Algorithm 1 Barzilai-Borwein method for computing spherical t-designs.
Input: t: spherical polynomial degree; N: number of points; XN : distributing N points on unit sphere S2; Kmax: maximum iterations; ε1: termination 

tolerance on the first-order optimality; ε2: termination tolerance on progress in terms of function or parameter changes.
Initialize k = 1, x0 = x1 = η(XN ), f0 = f1 = AN,t (μ(x0)), g0 = g1 = η(∇∗ AN,t (μ(x0))) and α1 = 1.

1: while k ≤ Kmax and ‖gk+1 − gk‖ > ε1, ‖ fk+1 − fk‖ > ε2 or ‖xk+1 − xk‖ > ε2 do
2: sk = xk − xk−1, yk = gk − gk−1
3: compute step size αk = (s�

k sk)(s�
k yk)

−1

4: if αk ≤ 10−10 or αk ≥ 1010 then
5: αk = 1
6: end if
7: if f (xk − αk gk) ≤ f (xk) − αkρg�

k gk and

8: f (xk − αk gk) ≥ f (xk) − αk(1 − ρ)g�
k gk , (0 < ρ < 1

2 ) then
9: αk = αk (Armijo-Goldstein rule)

10: else
11: αk = ταk−1, τ ∈ (0, 1) (backtracking line search)
12: end if
13: xk+1 = xk − αk gk

14: compute fk+1 = AN,t (μ(xk+1)) and search direction gk+1 = η(∇∗ AN,t (μ(xk+1)))

15: end while
Output: numerical spherical t-designs x∗ ⊂S2.

Now we give a small numerical example by using Algorithm 1, which is used to illustrate the numerical construction of 
spherical t-design.

Example 3.1. We generate spiral points X4 = {x1, x2, x3, x4} ⊂S2 from [6],

x1 =
⎡
⎣0

0
1

⎤
⎦ , x2 =

⎡
⎣ 0.9872

0
−0.1595

⎤
⎦ , x3 =

⎡
⎣−0.3977

0.6727
−0.6239

⎤
⎦ , x4 =

⎡
⎣−0.6533

−0.7455
−0.1318

⎤
⎦ .

By using Algorithm 1, we obtain the termination output: k = 25, |AN,t(X∗
4)| = 2.775558 × 10−17, ‖∇∗ AN,t(X∗

4)‖ = 1.0446 ×
10−8 and X∗

4 ends with value

x∗
1 =

⎡
⎣0

0
1

⎤
⎦ , x∗

2 =
⎡
⎣ 0.9428

0
−0.3333

⎤
⎦ , x∗

3 =
⎡
⎣−0.4714

0.8165
−0.3333

⎤
⎦ , x∗

4 =
⎡
⎣−0.4714

−0.8165
−0.3333

⎤
⎦ .

In fact, X∗
4 is a set of regular tetrahedron vertices, which is known as a spherical 2-design. As a result, Algorithm 1 reaches 

the global minimum X∗
4, thus the numerical solution for spherical 2-design was found. We can see the explicit change of 

X4 by using Algorithm 1 from Fig. 1 and the behavior of objective function from Fig. 2.

3.2. Convergence analysis

From the view of (4), we know AN,t ∈ Ct(S2) for t ≥ 2. We assume that
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Fig. 2. Numerical behavior of |AN,t | and ‖∇∗ AN,t‖ with t = 2, N = 4 by using Algorithm 1.

Assumption 3.1. The level set D := {x ∈Rn| f (x) ≤ f (xl)} is bounded, and there exists M > 0 such that ‖∇2 f (x)‖ ≤ M, where ∇2 f
is the Hessian matrix of f (x).

Now we present the convergence result of Algorithm 1. We shall mention that the idea of proof originated in [19,13].

Theorem 3.1. Let x1 = η(XN ) be an initial point and g1 = η(∇∗ AN,t(μ(x1))) and assume Assumption 3.1 holds. Suppose that xk is 
generated by Algorithm 1, then lim

k→∞
inf‖gk‖ = 0.

Proof. By using the Armijo rule (mark 8) from Algorithm 1 and mean value theorem, we have

f (xk) − f (xk − αk gk) = αk∇ f (xk − καk gk)
�gk ≤ αk(1 − ρ)g�

k gk, (7)

where ∇ f is a gradient of f and κ ∈ (0, 1), then

ρg�
k gk ≤ (∇ f (xk) − ∇ f (xk − καk gk))

�gk. (8)

According to Cauchy inequality, we obtain

ρg�
k gk ≤ (∇ f (xk) − ∇ f (xk − καk gk))

�gk ≤ ‖∇ f (xk) − ∇ f (xk − καk gk)‖‖gk‖, (9)

moreover, by using the mean value theorem

‖∇ f (xk) − ∇ f (xk − καk gk)‖ = ‖
1∫

0

F (xk − ξκαk gk)καk gk dξ‖ ≤ Mκαk‖gk‖. (10)

Combine (9) and (10), we know

ρg�
k gk

‖gk‖ ≤ Mκαk‖gk‖. (11)

Therefore

αk‖gk‖ ≥ ρg�
k gk

M‖gk‖ . (12)

By Armijo rule (mark 7) from Algorithm 1 and (12), we have

f (xk+1) ≤ f (xk) − αkρ‖gk‖
g�

k gk

‖gk‖ ≤ f (xk) − ρ2

M
(

g�
k gk

‖gk‖ )2, (13)

thus



300 C. An, Y. Xiao / Applied Numerical Mathematics 150 (2020) 295–302
Table 1
Computing of spherical t-designs by BB method.

t + 1 N Iteration AN,t (XN ) ‖∇∗ AN,t (XN )‖∞ Time min(σi)

10 121 100 7.796661e-16 1.8478e-09 1.049909s 1.3270
50 2601 335 1.879594e-12 6.3307e-09 336.663545s 2.3394
96 9409 715 8.237123e-10 7.3212e-08 22724.767736s 2.1647
127 16384 803 8.229142e-10 2.7122e-08 84579.358811s 1.9673

Table 2
Computing of spherical t-designs by quasi-Newton method.

t + 1 N Iteration AN,t (XN ) ‖∇∗ AN,t (XN )‖∞ Time min(σi)

10 121 81 1.054716e-15 2.1856e-09 1.062004s 1.3232
50 2601 278 8.455657e-15 2.4398e-09 397.480675s 2.3380
96 9409 465 1.418436e-14 1.4049e-09 40101.809512s 2.1637
127 16384 543 3.709079e-13 2.0536e-09 143631.176093s 1.9656

k∑
j=1

(
g�

j g j

‖g j‖ )2 ≤ M

ρ2
( f (x1) − f (xk+1)). (14)

Since D is bounded, we know lim
k→∞

f (xk+1) exists, then

k∑
j=1

(
g�

j g j

‖g j‖ )2 < +∞, (15)

hence

lim
k→∞

g�
k gk

‖gk‖ = 0. (16)

Now we assume that lim
k→∞

sup‖gk‖ �= 0. We can find a set of {kn} (n ∈ Z+), when n → ∞, kn → ∞, and there exist ε > 0

such that ‖gkn ‖ > ε . Therefore, (15) can not be hold, which contradicts. Thus, lim
k→∞

inf‖gk‖ = lim
k→∞

sup‖gk‖ = 0, we complete 

the proof. �
Theorem 3.1 shows the convergence of Algorithm 1. Based on the above theorem, we summarize the following results.

Remark 1. Let xk be the starting point set of Algorithm 1, by Theorem 3.1, then there exist ε > 0 such that
lim

k→∞
∇∗ AN,t(μ(xk)) = 0 when k > ε , where 0 ∈RN is a zero vector. Therefore, XN is a stationary point set of AN,t .

Remark 2. Let xk be the starting point set of Algorithm 1, then we have lim
k→∞

AN,t(μ(xk)) = 0. If Theorem 2.4 is established 

in x∗ , then x∗ is a spherical t-design.

4. Numerical results

Based on the code in [16,14], we present the feasibility of Algorithm 1 to compute spherical t-design with the point 
set XN where N = (t + 2)2 for t + 1 up to 127. As an initial point set XN to solve the optimization problem of minimizing 
AN,t(XN ) from (4), we use the extremal systems from [15] without any additional constraint. To make sure BB method 
is meaningful in spherical t-designs, we compare BB method with quasi-Newton method (QN). These methods are imple-
mented in Matlab R2015b and tested on an Intel Core i7 4710MQ CPU with 16 GB DDR3L memory and a 64 Bit Windows 
10 Education.

We present the results in Table 1 and Table 2, and these numerical spherical t-designs can be founded in [2]. We observe 
that BB method cost less time than quasi-Newton method, especially in large XN . Furthermore, all point sets XN are verified 
to be fundamental systems. In fact, we use singular value decomposition (SVD) [18] to obtain all singular values of Yt+1(XN ), 
which are defined as {σi} for i = 1, . . . , (t + 2)2. As a result, the min(σi) > 0, then Yt+1(XN ) is of full rank, thus XN is a 
fundamental system. This is a strong numerical support to Theorem 2.4. Here we set ε1 = ε2 = 10−16.

Fig. 3(a) and Fig. 4(a) are well exhibited the locally R-linear convergence [10] of BB method by numerical computation 
of AN,t with t = 50, N = 2601. We can see that AN,t converges to 0 with iteration increase.
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Fig. 3. The behavior of AN,t for t = 50, N = (t + 1)2 on S2 in each iteration.

Fig. 4. The behavior of ‖∇∗ AN,t‖ for t = 50, N = (t + 1)2 on S2 in each iteration.

5. Conclusion

In this paper, we employ Barzilai-Borwein method for finding numerical spherical t-designs with N = (t + 2)2 points 
for t + 1 up to 127. This method performs high efficiency and accuracy. Moreover, we check numerical solution as global 
minimizer with positivity of minimal singular value of basis matrix. Numerical experiments show that Barzilai-Borwein 
method is better than quasi-Newton method in time efficiency for solving large scale spherical t-designs. These numerical 
results are interesting and inspiring. The numerical construction of higher order spherical t-designs are expected in future 
study.
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Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .apnum .2019 .10 .008.
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