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a b s t r a c t

This survey ismainly intended for non-specialists, thoughwe try to
include many recent developments that may interest the experts
as well. We want to study ‘‘good’’ finite subsets of the unit sphere.
To consider ‘‘what is good’’ is a part of our problem. We start with
the definition of spherical t-designs on Sn−1 inRn. After discussing
some important examples, we focus on tight spherical t-designs
on Sn−1. Tight t-designs have good combinatorial properties, but
they rarely exist. So, we are interested in the finite subsets
on Sn−1, which have properties similar to tight t-designs from
the various viewpoints of algebraic combinatorics. For example,
rigid t-designs, universally optimal t-codes (configurations), as
well as finite sets which admit the structure of an association
scheme, are among them. We will discuss various results on the
existence and the non-existence of special spherical t-designs,
as well as general spherical t-designs, and their constructions.
We will discuss the relations between spherical t-designs and
many other branches of mathematics. For example: by considering
the spherical designs which are orbits of a finite group in the
real orthogonal group O(n), we get many connections with
group theory; by considering those which are shells of Euclidean
lattices, we get many unexpected connections with number
theory, such as modular forms and Lehmer’s conjecture about
the zeros of the Ramanujan τ function. Spherical t-designs
and Euclidean t-designs are special cases of cubature formulas
in approximation theory, and thus we get many connections
with analysis and statistics, and in particular with orthogonal
polynomials, and moment problems. Moreover, Delsarte’s linear
programming method and many recent generalizations, including
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the work of Musin and the subsequent progress in using semi-
definite programming, have strong connections with geometry
(in particular sphere packing problems) and the theory of
optimizations. These various connections explain the reason of the
charm of algebraic combinatorics on spheres. At the same time,
these theories of spherical t-designs and related topics have strong
roots in the developments of algebraic combinatorics in general,
which was started as Delsarte theory of codes and designs in the
framework of association schemes.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The purpose of this paper is to give a survey on the study of spherical designs and codes, in
particular from the viewpoint of ‘‘algebraic combinatorics’’.
Our aim is to study ‘‘good’’ finite sets of points on the unit sphere Sn−1 in the Euclidean spaceRn. The

natural question is what does ‘‘good’’ mean. There is yet no final answer known. (Also, it is unrealistic
to expect a single good answer.) To consider this question of ‘‘what is good’’ is an important part of
our problem.
Let X be a finite subset of Sn−1. Spherical codes and spherical designs are nothing but finite

subsets of Sn−1. Roughly speaking, the code theoretical viewpoint is to try to find X , whose points
are scattered on Sn−1 as far as possible, i.e. the minimum distance dmin of X is as large as possible
for a given size of X . (In some other cases, we impose some other conditions, e.g. there are only
s kinds of distances between two distinct points of X , i.e. X is an s-distance subset, and then try
to increase the size of X as large as possible.) On the other hand, the design theoretical viewpoint
is to try to find X which globally approximates the sphere Sn−1 very well. Of course, ‘‘What does
approximate the sphere Sn−1 well mean?’’ is also an interesting question. There is one very reasonable
answer introduced by Delsarte–Goethals–Seidel [88] in 1977. Namely, a finite subset X on Sn−1
is called a spherical t-design on Sn−1, if for any polynomial f (x) = f (x1, x2, . . . , xn) of degree
at most t, the value of the integral of f (x) on Sn−1 (divided by the volume of Sn−1) is just the
average value of f (x) on the finite set X . As is obvious from the definition, a spherical t-design is
better if t is larger, and usually a spherical t-design X is better if the cardinality |X | is smaller. It
seems that the concept of spherical t-designs caught the hearts of combinatorialists, as a natural
analogue of the classical concept of combinatorial t-designs (t–(v, k, λ) designs) which appear
in the traditional theory of designs in combinatorics. Actually there is a nice analogy between
the theories of codes and designs in the frame work of association schemes as formulated in
Delsarte [87] and the theory of spherical codes and designs as formulated in Delsarte–Goethals–Seidel
[88]. These are called Delsarte theory on association schemes and Delsarte theory on spheres, or
slightly more broadly, algebraic combinatorics on association schemes or algebraic combinatorics on
spheres.
In Section 2, we consider algebraic combinatorics on spheres starting from the definition of

spherical t-designs. Our main focus is on the interplay between the design theoretical viewpoint and
the code theoretical viewpoint. We will discuss examples of spherical t-designs, including tight t-
designs, i.e. t-designs whose size attain the natural lower bounds (called Fisher type bounds). Also,
we see that tight t-designs have good extremal properties in the interplay of code theory and design
theory viewpoints. (Tight 2s-designs are s-distance sets, and tight (2s − 1)-designs are antipodal s-
distance sets, etc.) If X ⊂ Sn−1 is a t-design and an s-distance set, then we always have t ≤ 2s, so
the designs with t close to 2s are interesting. In particular if X is a tight t-design, or more generally if
t ≥ 2s−2, then X has the structure of a Q-polynomial association scheme [88]. Thenwe discuss topics,
such as classification problems of tight t-designs, rigid spherical t-designs, the existence theorem (of
Seymour–Zaslavsky [164]) of spherical t-designs on Sn−1 for any t and n, and the explicit construction
problems of spherical t-designs (and interval t-designs). Most of the material treated in Section 2 is
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standard and well known, and not particularly new to experts. But some of them are very recent, and
may be new to them.
In Section 3, we givemore examples of spherical designs. It seems that themost natural way to get

a good distribution of finitely many points on Sn−1 is to take a finite subgroup G of the real orthogonal
group O(n), and a point u on Sn−1, and take the orbit of u by G. Many good examples are obtained this
way. For example, taking G = W (H4), the real reflection group of type H4 and a suitable u ∈ S3 ⊂ R4,
we can get a spherical 19-design on S3 ⊂ R4. Manymore examples of spherical t-designs are obtained
by this method. However, it seems difficult to obtain t-designs for large t by this method for n ≥ 3.
In Section 3.1, we mention what kinds of conditions of the group G insure that such orbits are t-
designs for certain t . For example, the irreducibility of certain representations of G is an important
factor. Various related materials will also be surveyed. Somewhat older work in this direction are due
to Sobolev [171], Goethals–Seidel [97,98], Bannai [22–24] and many others. Newer results include
the work of: Sidelnikov [168,169], Nebe–Rains–Sloane [138], de la Harpe–Pache [84], and some
others.
Another natural way to get examples of spherical t-designs is to take a shell (layer, i.e. the set of

points in the lattice with a fixed distance from the origin) of a lattice in Rn. For example, any shell of
the E8-lattice (Korkine–Zorotaleff lattice) in R8 is a spherical 7-design on S7 ⊂ R8, and any shell of
the Leech lattice in R24 is a spherical 11-design on S23 ⊂ R24. Many other examples are also obtained
from other lattices. In Section 3.2, we first review the work of Venkov which says that any shell of an
extremal evenunimodular lattices inR8m is a spherical 11-(respectively, 7-, 3-)design ifm is congruent
to 0 (respectively, 1, 2) modulo 3. (The E8-lattice and the Leech lattice are extremal even unimodular
lattices. The proof of this theorem uses modular forms.) This result of Venkov can be regarded as an
analogue of the Assmus–Mattson theorem which guarantees that a certain combinatorial t-design is
obtained as a shell of a code, that is, a subset of a code with a fixed Hamming weight. This work of
Venkovwas influential in obtaining newproofs of theAssmus–Mattson theorem in the classical design
theory. It is very interesting to note that so far no spherical t-designs with t ≥ 12 have been obtained
as shells of a lattice. (The situation is also true for classical design theory, namely no combinatorial 6-
designs have been obtained as shells of a code either in F2 or in Fq.) It is an interesting open question,
whether this is indeed the case. As for the E8-lattice, it is known that all the shells are spherical 7-
designs. Whether there is any among them which is a spherical 8-design is a very interesting and
difficult open question. It is equivalent to the famous conjecture called D.H. Lehmer’s Conjecture in
number theory, as pointed out by Venkov, de la Harpe, and Pache [85,86,147]. The situation is the
same for other extremal even unimodular lattices in R24k, and it is a very interesting problem to
determine whether every shell can be a spherical 12-design in R24k or not. We mention an approach
to this question, although it is still at an unsatisfactory stage, by Bannai–Koike–Shinohara–Tagami
[47].
In Section 3.3, we discuss some connections with the sphere packing problems and algebraic

combinatorics on spheres. Recently, there were three major breakthroughs on sphere packing
problems, they are (1) the proof of Kepler’s Conjecture by Hales, (2) the determination of the kissing
number in dimension 4 by Musin, and (3) the developments of sphere packing problems in 8- and
24-dimensional Euclidean spaces by Cohn and Elkies, in particular the optimality of the Leech lattice
among lattice packings in the 24-dimensional Euclidean space. In this paper we discuss the last
two topics. Musin used a method which is a generalization of the linear programming method by
Delsarte (which is outlined in Sections 2.2 and 2.4 of this paper). In the meantime, there were several
recent attempts to generalize the method of Delsarte in various directions. Schrijver, using the idea of
Terwilliger algebras of association schemes, formulated semi-definite programming to improve the
previously known bounds for binary codes (i.e. codes in binary Hamming schemes), and succeeded
in obtaining very notable improvements. (Gijswijt–Schrijver–Tanaka [95] generalized it for q-ary
codes.) Setting up semi-definite programming for the kissing numbers was successfully done, and
again, notable improvements were obtained even for kissing numbers in dimensions 3 and 4. (So,
a new proof for the result of Musin was obtained.) We briefly survey these developments. In the
sphere packing problem, as well as in the kissing number problem, the dimensions 8 and 24 are
very special. It is expected that the packing of spheres coming from the E8-lattice and the Leech
lattice in these dimensions give the best sphere packing among general (not necessarily lattice)
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packings. Cohn–Elkies first proved that these lattice packings are close to the best packings with
respect to density. Moreover, Cohn–Kumar [75,76] proved in particular that the Leech lattice gives
the best packing among all the lattice packings. In a part of their proof, the consideration of the
association schemes attached to the 196560minimum vectors together with other techniques, which
are a kind of generalization of the method of Delsarte, play an important role. Another important
new concept is that of universally optimal codes (on Sn−1), due to Cohn–Kumar [77]. A universally
optimal code is a subset of Sn−1 which gives the minimum energy among all the subsets of the
same size, with respect to any potential function in a very wide class. The concept of universally
optimal codes is defined independently of the degree s or strength t of finite sets on Sn−1. However
tight spherical t-designs as well as subsets of Sn−1 satisfying t ≥ 2s − 1 are universally optimal
codes. We believe that the classification problem of universally optimal codes on Sn−1 proposed
by Cohn–Kumar will become a very important problem in the future. We conclude Section 3 by
discussing related materials, e.g. the connection with real MUBs and Q-polynomial association
schemes, etc.
In Section 4, we briefly survey various generalizations of spherical designs. In the first subsection,

we discuss generalizations to compact symmetric spaces of rank one, i.e. projective spaces over real,
complex, quaternion fields and Cayley octanion, and the designs on Grassmannian spaces, which are
examples of compact symmetric spaces of bigger ranks. In Section 4.2, we will focus on the recent
developments of the theory of Euclidean t-designs. The concept of Euclidean t-designs is a two step
generalization of the theory of spherical t-designs: we allow the points to have different weights
(that is, we consider cubature formulas) and we allow the points to have different norms (that is,
we consider points on several concentric spheres). Our main emphasis is on the study of Euclidean
t-designs which are tight t-designs (in the sense we define later in this paper), or close to tight t-
designs. Analogous to the fact that good subsets on the sphere are related to association schemes (as
we have seen before in the introduction of Section 2), good subsets in Euclidean spaces (i.e. on several
concentric spheres) are related to coherent configurations, which is a generalization of association
schemes. Then, in Section 4.3, we will discuss cubature formulas of degree t , i.e. weighted t-designs
in various spaces. The theory of cubature formulas is far older than the theory of spherical designs
in combinatorics, and includes the theory of spherical designs as a special case. We will discuss the
similarities as well as the differences between the theory of cubature formulas and the theory of t-
designs. In Section 4.4, we discuss various related materials, as much as time and space permit.
So far we have been giving a very brief description of the contents of this survey. The main

objective of this survey is to look at ‘‘good’’ finite subsets of the sphere and also in some
other spaces. We would like to emphasize that the charm of this direction of research is that
the theory of spherical designs have many interesting strong ties with many different areas of
mathematics, and at the same time, the theories we introduced in this survey have solid foundation
in algebraic combinatorics, and association schemes play important roles in various places. This is
the reason why this survey is included in this special volume whose main topic is on association
schemes.
The authors would be extremely happy, if the reader recognizes both the diversity of spherical

designs (more generally of algebraic combinatorics on spheres) and the strong backbone of the theory
of association schemes (more generally of algebraic combinatorics in general) behind it.

2. Theory of spherical designs

In the first two Sections 2.1 and 2.2 we will very briefly discuss the basic theories of spherical t-
designs and their connection with association schemes following Delsarte–Goethals–Seidel [88]. We
will not repeat most of the materials treated in the fundamental paper [88]. Instead we encourage
the reader to read the paper [88]. (See also [29] which is written in Japanese.) In [88], the so-
called Delsarte theory on spheres is developed very much. The first part of Section 2.4 is also taken
from [88].
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Notation
Rn := {u = (u1, u2, . . . , un) | ui ∈ R, 1 ≤ i ≤ n}, the n-dimensional Euclidean space.
u · v := usual inner product of Rn.
‖u‖ :=

√
u · u.

For a matrixM = (mi,j), we define ‖M‖2 :=
∑
i,jm

2
i,j.

Sn−1 := {u ∈ Rn | ‖u‖ = 1}, the unit sphere.
P (Rn) := R[x1, x2, . . . , xn], the vector space over the real number field R consisting of all the
polynomials in n variables x1, x2, . . . , xn.
Harm(Rn) := {f ∈ P (Rn) | 1f = 0}, where1 :=

∑n
i=1

∂2

∂x2i
is the Laplacian operator.

Homl(Rn) := the subspace of P (Rn) spanned by all the homogeneous polynomials of degree l.
Harml(Rn) := Harm(Rn) ∩ Homl(Rn).
Pl(Rn) :=

∑l
j=0 Homj(R

n).

hl,n := dim(Harml(Rn)) =
(
n+l−1
l

)
−

(
n+l−3
l−2

)
.

〈f , g〉 := 1
|Sn−1|

∫
x∈Sn−1 f (x)g(x)dσ(x) for f , g ∈ P (Rn), with the usual integral on the unit sphere.

{ϕl,1, ϕl,2, . . . , ϕl,hl,n} := an orthonormal basis of Harml(R
n)with respect to the inner product 〈 , 〉.

Ql,n(x) := the Gegenbauer polynomial of degree lwhich is normalized to Ql,n(1) = hl,n.
A(X) := {u · v | u, v ∈ X, u 6= v} for X ⊂ Sn−1 with |X | <∞. A′(X) := A(X) ∪ {1}.
Hl := lth characteristic matrix of X whose rows and columns are indexed by
X × {ϕl,1, ϕl,2, . . . , ϕl,hl,n}, (u, ϕl,i)-entry of Hl is defined by Hl(u, ϕl,i) = ϕl,i(u).

2.1. Definitions and basic properties of spherical designs

Spherical designs were defined by Delsarte–Goethals–Seidel in 1977 [88].
We consider a finite subset X on the unit sphere Sn−1 in n-dimensional Euclidean space Rn. The

following is the definition of spherical t-designs.

Definition 2.1. Let t be a natural number. A finite subset X ⊂ Sn−1 is called a spherical t-design if
1
|Sn−1|

∫
x∈Sn−1

f (x)dσ(x) =
1
|X |

∑
u∈X

f (u)

holds for any polynomial f (x) (=f (x1, x2, . . . , xn)) of degree at most t , with the usual integral on the
unit sphere.

To study spherical t-designs, it is convenient to use the conditions given in the following theorem.

Theorem 2.2. Let X ⊂ Sn−1 be a non-empty finite set. Then the following conditions are equivalent to
each other.

(1) X is a spherical t-design.
(2)

∑
u∈X ϕ(u) = 0 for any ϕ ∈ Harml(R

n) with 1 ≤ l ≤ t.
(3) tHlH0 = 0 for l = 1, 2, . . . , t.
(4) tHkHl = |X |∆k,l, for any k, l satisfying 0 ≤ k + l ≤ t, where ∆k,k denotes the identity matrix of size
hk,n and∆k,l is a zero matrix of size hk,n × hl,n.

(5) Any kind of moment of X of degree at most t is invariant under any orthogonal transformation.
(6) The following holds for any a ∈ Rn.

1
|X |

∑
u∈X

(a · u)k =


1 · 3 · 5 · · · (2k− 1)

n(n+ 2) · · · (n+ 2k− 2)
(a · a)

k
2 if k is even and 0 ≤ k ≤ t,

0 if k is odd and 0 ≤ k ≤ t.

Remark. The condition (6) in Theorem 2.2 is due to Venkov [179], which is called the fundamental
equation of spherical t-designs.



Eiichi Bannai, Etsuko Bannai / European Journal of Combinatorics 30 (2009) 1392–1425 1397

2.2. Spherical designs and association schemes (Delsarte theory on spheres)

Let X be a finite set on Sn−1. Let A(X) = {u · v | u, v ∈ X, u 6= v}. We say that X is of degree s if
X is an s-distance set, i.e. |A(X)| = s. On the other hand we say X has the strength t , if X is a spherical
t-design and X is not a spherical (t + 1)-design. Delsarte–Goethals–Seidel proved that if a spherical
t-design satisfies a certain condition, then X has a structure of a Q-polynomial association scheme.
Before giving the precise statement of their result, we briefly give the definition of an association
scheme. Now we consider X = (X, {Ri}0≤i≤d), where X is an abstract finite set and R0, R1, . . . , Rd are
subsets in X × X .

Definition 2.3 ([46,64,87]). We say X = (X, {Ri}0≤i≤d) is a commutative association scheme of class
d if the following conditions are satisfied.

(1) {Ri}0≤i≤d is a partition of X × X , i.e. X × X = R0 ∪ R1 ∪ · · · ∪ Rd and Ri ∩ Rj = ∅ for i 6= j.
(2) R0 = {(x, x) | x ∈ X}.
(3) For each i ∈ {0, 1, . . . , d}, there exists i′ ∈ {0, 1, . . . , d} satisfying tRi = Ri′ , where tRi = {(x, y) |

(y, x) ∈ Ri}.
(4) For each i, j, k ∈ {0, 1, . . . , d}, the cardinality |{z ∈ X | (x, z) ∈ Ri, (z, y) ∈ Rj}| is constant for
any (x, y) ∈ Rk. We denote this cardinality by pki,j.

(5) pki,j = p
k
j,i for any i, j, k ∈ {0, 1, . . . , d}.

An association scheme is called symmetric if tRi = Ri holds for any i ∈ {0, 1, . . . , d}.
For each relation Ri of an association scheme, we define an adjacency matrix Ai which is indexed by

X . More precisely for (x, y) ∈ X×X , the (x, y)-entry of Ai is 1 if (x, y) ∈ Ri and 0 if (x, y) 6∈ Ri. It is well
known that the linear span A = 〈A0, A1 . . . , Ad〉 is closed under matrix multiplications. A is called the
Bose–Mesner algebra of the association scheme X. An association scheme X is called a P-polynomial
scheme if there is an ordering of the relations R1, . . . , Rd so that each Ai is expressed as a polynomial
in A1 of degree i. It is well known that X is a P-polynomial scheme if and only if the graph (X, R1)
defined on X by the relation R1 ⊂ X × X is a distance-regular graph.
The Bose–Mesner algebra A is a semi-simple algebra. Hence it has a basis consisting of primitive

idempotents E0, E1, . . . , Ed. The Bose–Mesner algebra A, has another multiplication, so called the
Hadamard product: for M1,M2 ∈ A, M1 ◦ M2 is defined to have (x, y)-entry M1(x, y) · M2(x, y). With
the basis E0, E1, . . . , Ed and the Hadamard product ◦, we define the notion of Q-polynomial association
schemes. That is, if there exists an ordering of E0, E1, . . . , Ed so that each Ei is expressed as a polynomial
in E1 of degree i using the Hadamard product, then X is called a Q-polynomial association scheme. Both
P-polynomial association schemes andQ -polynomial association schemes are very important families
of association schemes.
Delsarte–Goethals–Seidel proved Theorems 2.11 and 2.12 given in Section 2.4, which imply that

t ≤ 2s holds for any finite set X ⊂ Sn−1 of degree s and strength t . The following theorem is also
proved by Delsarte–Goethals–Seidel [88], which shows that good structures on the unit sphere in the
Euclidean space have good combinatorial structures. (We will not touch any more of the materials
contained in [88], hoping that the reader can read the original paper [88]. Also refer to [29] which is
written in Japanese.)

Theorem 2.4 ([88]). Let X be a finite set on Sn−1 of degree s and strength t. If t ≥ 2s − 2, then the
relations defined by the set A′(X) = A(X) ∪ {1} give the structure of a Q-polynomial association scheme
on X.

Proof. Let A′(X) = {α0 (=1), α1, . . . , αs}. Let Ai be a matrix whose rows and columns are indexed by
X and whose (u, v)-entry is defined by

Ai(u, v) =
{
1 if u · v = αi
0 otherwise.

Let p(αi, αj, u, v) = |{a ∈ X | u · a = αi, a · v = αj}| for u, v ∈ X . On the other hand Theorem 2.2(4)
implies
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(HktHk)(HltH l) = |X |Hk∆k,ltH l (2.1)

for any k, j satisfying 0 ≤ k, l ≤ t, 0 ≤ k+ l ≤ t . By computations of the (u, v)-entry of both sides of
(2.1) we obtain the following.

s∑
i=0

s∑
j=0

Qk,n(αi)Ql,n(αj)p(αi, αj, u, v) = δk,l|X |Qk,n(u · v). (2.2)

Let u · v = γ . Since 2s− 2 ≤ t , (2.2) implies
s∑
i=1

s∑
j=1

Qk,n(αi)Ql,n(αj)p(αi, αj, u, v)

= δk,l|X |Qk,n(γ )− Qk,n(1)Ql,n(1)δγ ,1 − Qk,n(1)Ql,n(γ )− Qk,n(γ )Ql,n(1), (2.3)

for any k and lwith 0 ≤ k, l ≤ s− 1. LetW be a matrix of degree swhose (i, j)-entry is Qi−1,n(αj). Let
Pu,v be the matrix of degree s whose (i, j)-entry equals p(αi, αj, u, v). Then for any 0 ≤ k, l ≤ s − 1,
the left hand side of (2.3) is the (k+ 1, l+ 1)-entry ofWPu,vW . SinceW is a non-singular matrix, the
matrix Pu,v is uniquely determined by γ and does not depend on the choice of u · v = γ . This implies
that (X, {Ri}0≤i≤s) is an association scheme, where Ri = {(u, v) ∈ X × X | u · v = αi} for 0 ≤ i ≤ s.
Next, let Ek = 1

|X |Hk
tHk for 0 ≤ k ≤ s− 1. The (u, v)-entry of Ek is given by

Ek(u, v) =
1
|X |

hk∑
i=1

ϕk,i(u)ϕk,i(v) =
1
|X |
Qk,n(u · v).

Hence Ek = 1
|X |

∑s
i=0 Qk,n(αi)Ai for any k = 0, 1, . . . , s − 1. Let Es = I −

∑s−1
k=0 Ek. Then

(2.1) implies EkEl = δk,lEk for any 0 ≤ k, l ≤ s. Hence E0, E1, . . . , Es is the basis consisting of
primitive idempotents of the Bose–Mesner algebra of (X, {Ri}0≤i≤s). Thus we can describe the second
eigenmatrix of the association scheme (X, {Ri}0≤i≤s) using Gegenbauer polynomials, and using the
property of Gegenbauer polynomials we can show that it is a Q-polynomial association scheme. As
for a detailed proof refer to the paper by Delsarte–Goethals–Seidel [88]. �

If we assume that X is antipodal then we can prove the following theorem. As for the proof
refer [30].

Theorem 2.5 ([30]). Let X be an antipodal finite set on Sn−1 of degree s and strength t. If t ≥ 2s − 3,
then the relations defined by the set A′(X) = A(X) ∪ {1} give the structure of a Q-polynomial association
scheme on X.

2.3. Examples of spherical designs

Example 2.6. Regular N-gon on S1 ⊂ R2 is a t-design for 1 ≤ t ≤ N − 1.

Example 2.7 (Spherical Designs in R3).

X |X | s,
degree

t ,
strength

Regular tetrahedron 4 1 2
Cube 8 3 3
Regular octahedron 6 2 3
Regular dodecahedron 20 4 5
Regular icosahedron 12 3 5



Eiichi Bannai, Etsuko Bannai / European Journal of Combinatorics 30 (2009) 1392–1425 1399

Example 2.8 (Regular Polytopes X in Rn).

n Number of cells |X | s, degree t , strength
4 24 24 4 5
4 120 600 30 11
4 600 120 8 11
n n+ 1 n+1 1 2
n 2n 2n n 3
n 2n 2n 2 3

Example 2.9 (Root Systems in Rn).

n Type |X | s, degree t , strength
n ≥ 1 An n(n+ 1) 4 3
4 D4 24 4 5

n ≥ 5 Dn 2n(n− 1) 4 3
6 E6 72 4 5
7 E7 126 4 5
8 E8 240 4 7

Example 2.10 (The Set of Minimal Vectors of the Leech Lattice).

n |X | s, degree t , strength
24 196560 6 11

2.4. More on Delsarte theory on spheres and tight spherical designs

In a sense, a spherical t-design X approximates the unit sphere with respect to the integrations of
polynomials of degree at most t . In this sense it is natural to ask how small the cardinality |X | can be.
Delsarte–Goethals–Seidel found similar theorems for designs and codes on the unit sphere Sn−1 in the
context of classical design and code theory. First they proved the following very natural upper bounds
for the cardinalities of s-distance sets on Sn−1.

Theorem 2.11 ([88]). Let X ⊂ Sn−1 be a finite set of degree s and let X∗ be amaximal subset of X satisfying
X∗ ∩ (−X∗) = ∅. Then the following hold.

(1) |X | ≤
(
n+s−1
s

)
+

(
n+s−2
s−1

)
.

(2) If X is antipodal, then |X | = 2|X∗| and |X | ≤ 2
(
n+s−2
s−1

)
.

Proof. Let A(X) = {αi | 1 ≤ i ≤ s}. (1) For each u ∈ X we define a polynomial fu(x) =∏s
i=1(x · u − αi). Then {fu | u ∈ X} is a linearly independent set of polynomials of degree s.

Hence |X | ≤
∑s
i=0 dim(Homi(S

n−1)) =
∑s
i=0 dim(Harmi(R

n)) =
(
n+s−1
s

)
+

(
n+s−2
s−1

)
. (2) Let

A2(X∗) = {(u · v)2 | u, v ∈ X∗, u 6= v} = {βi | 1 ≤ i ≤ s∗} and f ∗u (x) =
∏
βi∈A2(X∗)

((x ·u)2−δβi,0 −βi).
Then deg(f ∗u ) = s− 1 and f

∗
u is a linear combination of monomials whose degrees are equal to s− 1

modulo 2 for any u ∈ X∗. Since {f ∗u | u ∈ X
∗
} is a linearly independent set of polynomials, similar

arguments imply |X | = 2|X∗| ≤ 2
∑[ s−12 ]
i=0 dim(Harms−1−2i(R

n−1)) = 2
(
n+s−2
s−1

)
. �
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Delsarte–Goethals–Seidel found that the lower bounds for the cardinalities of spherical t-designs
are very much related to the upper bounds given in Theorem 2.11.

Theorem 2.12 ([88]).

(1) Let X be a spherical 2e-design, then |X | ≥
(
n+e−1
e

)
+

(
n+e−2
e−1

)
holds.

(2) Let X be a spherical (2e+ 1)-design, then |X | ≥ 2
(
n+e−1
e

)
holds.

Definition 2.13 (Tight Design). Let X be a spherical t-design on Sn−1. If equality holds in one of the
inequalities given above, then we say X is a tight spherical t-design.

A tight spherical t-design, if it exists, has a good combinatorial structure. The following theorem
was also proved by Delsarte–Goethals–Seidel.

Theorem 2.14 ([88]).

(1) Let X be a spherical 2e-design. Then X is a tight spherical 2e-design if and only if X is of degree e.
(2) Let X be a spherical (2e+ 1)-design. Then X is a tight spherical (2e+ 1)-design if and only if X is of
degree e+ 1 and is antipodal.

Actually the theorems given above are proved in a much stronger manner. In the following we
introduce the method given by Delsarte–Goethals–Seidel. Let X ⊂ Sn−1 be a finite set of degree s and
strength t . Let A′(X) = {α0(= 1), α1, . . . , αs}. For each i, we define a matrix Ai whose entries are
indexed by X × X in the following way.

Ai(u, v) =
{
1 for u · v = αi
0 otherwise.

Let F(x) be an any polynomial and

F(x) =
∞∑
l=0

flQl,n(x), fl ∈ R, l = 0, 1, . . . ,

be the Gegenbauer expansion of F(x). Then they showed the following lemma.

Lemma 2.15 ([88]). Let X ⊂ Sn−1 be a non-empty finite set of degree s. Then

(f0|X | − F(1)) |X | =
s∑
i=1

F(αi)di −
∞∑
l=1

fl ‖t HlH0‖2

holds, where di =
∑

u,v∈X Ai(u, v) for i = 1, 2, . . . , s.

Then apply Lemma 2.15 to non-empty finite sets X ⊂ Sn−1 of degree s and strength t with particular
polynomials F(x). In this case Theorem 2.2(3) implies ‖t HlH0‖2 = 0 for any 1 ≤ l ≤ t .
Case t = 2e
In this case, they used the polynomial F(x) = f (x)2, where f (x) =

∑e
l=0 Ql,n(x). Then the formula

for the products of Gegenbauer polynomials implies F(1)f0 =
(
n+e−1
e

)
+

(
n+e−2
e−1

)
, F(αi) ≥ 0 for

i = 1, . . . , s, fl = 0 for any l ≥ 2e + 1. This implies |X | ≥
(
n+e−1
e

)
+

(
n+e−2
e−1

)
and the equality

holds if and only if f (αi) = 0 holds for i = 1, 2, . . . s. Since f (x) is a polynomial of degree exactly e
with simple zeros, we must have s ≤ e. On the other hand since X is of degree s, Theorem 2.11(1)
implies |X | ≤

(
n+s−1
s

)
+

(
n+s−2
s−1

)
. Hence wemust have s = e. This implies Theorem 2.14(1). We note

that for tight spherical 2e-design X , A(X)must coincide exactly with the set of zeros of
∑e
l=0 Ql,n(x),

which is a Jacobi polynomial.
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Case t = 2e+ 1
In this case, they used the polynomial F(x) = (x + 1)g(x)2, where g(x) =

∑[ e2 ]
l=0 Qe−2l,n(x). Then

F(1)
f0
= 2

(
n+e−1
e

)
, F(αi) ≥ 0 holds for i = 1, 2, . . . , s, fl = 0 holds for any l ≥ 2e + 2. This implies

|X | ≥ 2
(
n+e−1
e

)
and the equality |X | = 2

(
n+e−1
e

)
holds if and only if F(αi) = 0 for i = 1, 2, . . . , s.

Hence X is a tight spherical (2e + 1)-design, if and only if A(X) coincides with the set of zeros of
(x + 1)g(x). It is known that (x + 1)g(x) is a polynomial of degree exactly e + 1 and every root is
simple. Hence we must have s ≤ e+ 1. Moreover it is well known that g(α) = 0 holds if and only if
g(−α) = 0. Let Y = X ∪ (−X) and s′ = |A(Y )|. Then Y is an antipodal set and s ≤ s′ ≤ e + 1 holds.
Hence Theorem 2.11(2) implies 2

(
n+e−1
e

)
≤ |X | ≤ |Y | ≤ 2

(
n+s′−2
s′−1

)
≤ 2

(
n+e−1
e

)
. This implies

Theorem 2.14(2). We note that for a tight spherical (2e + 1)-design X , A(X) must coincide with the

set of zeros of the polynomial (x+ 1)
∑[ e2 ]
l=0 Qe−2l,n(x).

Classification of tight spherical designs
Later we will introduce the existence theorems for spherical t-designs. It is known that for fixed

n and t , there always exists a spherical t-design X on Sn−1 if the cardinality |X | is large enough.
However it is still a difficult problem to construct them explicitly. We are also interested in the
classification of tight spherical t-designs. It is well known that the image of a spherical t-design under
an orthogonal transformation is also a spherical t-design. Sowewant to classify tight spherical designs
up to orthogonal transformations. In the following we explain the classification of tight spherical t-
designs done so far.

Theorem 2.16 (Bannai–Damerell [42,43]). Assume n ≥ 3. If a tight spherical t-design exists on Sn−1, then
t is in {1, 2, 3, 4, 5, 7, 11}. Moreover, if t = 11, then n = 24 and hence |X | = 196 560.

Let X be a tight spherical t-design on Sn−1 with t ≥ 4 and n ≥ 3. The first crucial step of the
proof of Theorem 2.16 is to show that all the elements αi ∈ A(X) (i = 0, 1, . . . , [ t+12 ]) must be
rational numbers, ‘‘except for the case (t, n) = (5, 3)’’, if t ≥ 4 and n ≥ 3. The statements in [42,
43] are incorrect, since it failed to mention this exception. But it is easily shown that this is the only
exception. (See Lemma 8.3.7 in [29] for the details.) The second step is to show that (if (t, n) 6= (5, 3)
and) if αi 6= 0, then it must be the reciprocal of an integer. The rest of the proof in [42,43] is to
show that this does not happen if t = 6, 8, and ≥ 9 unless (t, n) = (11, 24). The proofs in [42,
43] showing this use quite different techniques for t even and t odd, and are fairly involved. The last
case actually corresponds to the existence of a tight 11-design on S23, and its uniqueness is proved by
Bannai–Sloane [49].

Theorem 2.17 (Bannai–Sloane [49]). There is (up to orthogonal transformations) a unique tight
spherical 11-design on S23 ⊂ R24 is unique, namely the 196 560minimal vectors of the Leech lattice.

• A tight 1-design consists of 2 points on Sn−1 which are antipodal to each other.
• A tight 2-design is a regular simplex on Sn−1 consisting of n+ 1 points.
• A tight 3-design is a cross polytope on Sn−1, that is, {±ei | 1 ≤ i ≤ n}, where e1, . . . , en is a
orthonormal basis of Rn.
• The classification of tight spherical t-designs for t = 4, 5, 7 is still an open problem. The following
are the known example of spherical tight designs on Sn−1 (n ≥ 3).

t = 4: 27 points on S5 related to the E6 root system. 275 points on S21.
t = 5: 12 vertices of an icosahedron on S2. 126 vectors of the E7 root system on S6. 552 points on

S22.
t = 7: 240 points of the E8 root system on S7. 4600 points on S22 which is a section of the Leech

lattice.
There is a work by Bannai–Munemasa–Venkov [48] that shows the non-existence of certain tight

4-, 5-, and 7-designs. It is shown in [88] that the existence of a tight 4-design on Sn−2 implies the
existence of a tight 5-design on Sn−1 (and vice versa). So, we consider the cases t = 5 and t = 7. It is
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shown by the same arguments as in Theorem 2.16, that if there exists a tight 5-design X on Sn−1, then
either n = 3 or n = (2m+1)2−2 for a positive integerm. The case n = 3 actually corresponds to the
12 vertices of a regular icosahedron. Examples form = 1, 2 are known, as just mentioned above. [48]
shows the non-existence form = 3, 4 and for infinitelymany values ofm. The first open case for t = 5
ism = 5 (n = 119). Similarly, if X is a tight 7-design on Sn−1, then n = 3d2 − 4 for a positive integer
d ≥ 2. For d = 2, 3, the examples are known, as just mentioned above. [48] shows the non-existence
for d = 4, 5 and for infinitely many values of d. The first open case for t = 7 is d = 6 (n = 104). These
proofs for both t = 5 and t = 7 are very involved, and the considerations of the Euclidean lattices
generated by the points of X play important roles. The reader is referred to [48] for the details.

2.5. Rigid spherical designs

Let X ⊂ Sn−1 be a spherical t-design. Let σ be an orthogonal transformation ofRn. It is well known
that Xσ is also a spherical t-design. The following definition is given by Bannai in [25].

Definition 2.18. Let X = {u1, u2, . . . , uN}(⊂ Sn−1) be a spherical t-design. X is called non-rigid, if
for any positive real number ε, there exists a spherical t-design X ′ = {u′1, u

′

2, . . . , u
′

N} satisfies the
following two conditions.

(1) ‖ui − u′i‖ < ε for i = 1, 2, . . . ,N .
(2) There is no orthogonal transformation σ satisfying X ′ = Xσ .

If X is not non-rigid, then X is called rigid.

The definition of rigid t-designs implies that they cannot be deformed in the class of t-designs. So,
this rigidity may have some physical meaning, though we do not know what they are in a rigorous
sense.
Tight t-designs are rigid t-designs. Besides tight t-designs, not many rigid t-designs are known.

Bannai [25] (cf. [107]) proved the following theorem which gives the classification of rigid t-designs
on S1 ⊂ R2.

Theorem 2.19 ([25]). Let X be a rigid t-design on S1. Then X is a regular (k+ 1)-gon, with t ≤ k ≤ 2t.

The only rigid t-designs on Sn−1 currently known (with n ≥ 3) which are not tight t-designs are the
following:
(1) (n + 2)-point sets on Sn−1 with n = even. (See Sali [156].) (These point sets first appeared in

the old work of Seidel [159] on 2-distance sets in Rn.)
(2) 120 points of a 600-cell on S3 ⊂ R4. (See Boyvalenkov [59], and Nozaki [143].)
It is interesting to note that each of these examples has the structure of an association scheme. It

seems that it is an interesting open question to classify rigid t-designs X on Sn−1, even for some special
values of t , n, and |X |. Bannai proposed the following conjectures:

Conjecture 1. There exists a function f (n, t) such that, if X is a spherical t-design on Sn−1 with |X | >
f (n, t), then X is non-rigid.

Conjecture 2. For each given pair of n and t, there are only finitely many rigid spherical t-designs on
Sn−1, up to orthogonal transformations.

(Obviously, Conjecture 2 implies Conjecture 1.)
Lyubich–Vaserstein [127] proved that Conjecture 1 implies Conjecture 2, and so these two

conjectures are equivalent. It seems that we do not know the answer to this conjecture even for
the simplest case (n, t) = (3, 2). There are many results which prove the non-rigidity of some
particular t-designs. (See, Seki [162], Sali [156,157], Cohn–Conway–Elkies–Kumar [73], Nozaki [143].)
In particular, Sali studied which spherical t-designs on Sn−1 that are orbits of a real reflection group G
in O(n) are rigid as sphericalm2-design on Sn−1. (See Section 3.1, for the undefined terminology.) The
two cases of H4 and E8 were left open in Sali [157], and these cases were settled by Nozaki [143]. (See
also Boyvalenkov [59] for the case H4.)
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2.6. Existence theorem of spherical designs

In this sectionwe discuss the existence of spherical t-designs in general. Seymour–Zaslavsky [164]
proved a theorem in a very general situation including the case of spherical t-designs. There is also a
proof for the existence of interval t-designs on an interval of the real lineR by Juan Arias de Reyna [2].
Her proof is comparatively easier to read even for non-experts. Here we state her theorem first.

Theorem 2.20 (Juan Arias de Reyna, [2]). Given real valued continuous functions f1, f2, . . . , fm defined
on the interval [0, 1] ⊂ R, there exist points x1, x2, . . . , xN in [0, 1] satisfying∫ 1

0
fj(x)dx =

1
N

N∑
i=1

fj(xi)

for any j with 1 ≤ j ≤ m. Moreover N may be any number with a finite number of exceptions.

Next we introduce the theorem proved by Seymour–Zaslavsky [164]. Let Ω be a path-connected
topological space provided with a positive finite measure µ which satisfies µ(S) ≥ 0 for any
measurable set andµ(U) > 0 for any non-empty open set. Let f1, f2, . . . , fm be continuous integrable
functions: fi : Ω −→ Rp. An averaging set for f1, f2, . . . , fm is a finite subset X ⊂ Ω satisfying

1
µ(Ω)

∫
Ω

fjdµ =
1
|X |

∑
u∈X

fj(u)

for any fj, 1 ≤ j ≤ m.

Theorem 2.21 (Main Theorem in [164], 1984). Given Ω , µ and f1, f2, . . . , fm as above, there exists an
averaging set X. The size of X may be any number, with a finite number of exceptions. Moreover X may
be chosen so that the vectors {f1(u), f2(u), . . . , fm(u)} for u ∈ X are all distinct.

If Ω = Sn−1, with the usual Haar measure σ , and for a basis {f1, f2, . . . , fm} of Pt(Sn−1), then an
averaging set X is a spherical t-design. As a corollary of Theorem 2.21we have the following existence
theorem for spherical t-designs.

Theorem 2.22 ([164]). For each pair of integers n and t > 0, and for any sufficiently large integer N,
there exists a spherical t-design X ⊂ Sn−1 whose cardinality is N.

These theorems show that for given n and t , there exists an integer g(n, t) depending on n
and t , and for any N ≥ g(n, t) there exists a spherical t-design of cardinality N . There are
several works estimating the lower bound of such an integer g(n, t). For more information on this
material refer the following papers (and also the Section 2.7): Wagner [182], Rabau–Bajnok [151],
Korevaar–Meyers [113], Kuijlaars [114].

2.7. Explicit construction of spherical designs

Spherical t-designs with small parameters have been constructed explicitly. For t = 2,
Mimura [131] proved that if n is even and |X | = n + 2, spherical 2-designs on Sn−1 do not exist.
Except for these cases, spherical 2-designs on Sn−1 with |X | ≥ n+ 1 do exist.
For t = 3. Bajnok [13] proved the following:
If n = 3, then for |X | = 6, 8, ≥ 10, spherical 3-designs on Sn−1 exist. For other values of |X |, it is

conjectured that spherical 3-designs on Sn−1 do not exist.
If n = 4, then for |X | = 8 ≥ 10, spherical 3-designs on Sn−1 exist. For other values of |X |, it is

conjectured that spherical 3-designs on Sn−1 do not exist.
If n = 5, then for |X | = 10, 12, ≥ 14, spherical 3-designs on Sn−1 exist. For other values of |X |, it

is conjectured that spherical 3-designs on Sn−1 do not exist.
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If n ≥ 6, then for |X |: even number with ≥ 2n, or |X |: odd number with ≥ 5n
2 , spherical 3-design

on Sn−1 exist. For other values of |X |, it is conjectured that spherical 3-designs on Sn−1 do not exist.
(For some further developments, see [62].)
For t = 4, Hardin–Sloane [101] proved that if n = 3, then those with |X | = 12, 14, ≥ 16 do

exist, and conjecture that they do not exist for other values of |X |.
For t = 5, Hardin–Sloane [102] and Reznick [152] proved that if n = 3, then those with

|X | = 12, 14, 16, 18, 20, ≥ 22 do exist, and conjecture that they do not exist for other values
of |X |.
Further results are available in Hardin–Sloane [102] and Reznick [152]. More detailed and updated

information will be available in the home page of N.J.A. Sloane.: http://www.research.att.com/∼njas/
sphdesigns/index.html. For related topics, see Bajnok [14–17], Reznick [153].
For n = 3, Hardin–Sloane [102] constructed putative t-designs with size N = 12m (m ≥ 2)

with N = (t2/2)(1 + o(1)), numerically for t ≤ 21. They conjecture that there exist spherical
t-designs on S2 with N = (t2/2)(1 + o(1)). (For some further discussion on related topics, see
Chen–Womersley [72]. Also numerically computed spherical t-designs with (t+1)2 points for degree
up to 50 are available at http://web.maths.unsw.edu.au/∼rsw/Sphere.
(See Sloan and Womersley [170].)
Concerning the existence of spherical t-designs on Sn−1, there is a method to reduce it to the

existence of interval t-designs with certain (i.e. Gegenbauer) weight functions for the integral, by
using the separation of variables as follows.
Let ωα(x) := (1− x2)α with α = n−3

2 , be the weight function (Gegenbauer weight) on the interval
[−1, 1].We say that a subset X = {ξ1, ξ2, . . . , ξM} is an interval t-design on [−1, 1] with respect to
the weight function ωα(x). Namely,

1∫ 1
−1 ωα(x)dx

∫ 1

−1
ωα(x)f (x)dx =

1
|X |

∑
x∈X

f (x)

for any polynomial f (x) of degree at most t . Let Si (i = 1, 2, . . . ,M) be the sphere in Rn−1 of radius√
1− ξ 2i with the center (ξi, 0, . . . , 0) ∈ Rn whose first abscissa is ξi. Then all the Si’s are on Sn−1.
Let Xi (i = 1, 2, . . . ,M) be any spherical t-design on Si (i = 1, 2, . . . ,M). We assume that all
|Xi| = K (i = 1, 2, . . . ,M). Then ∪Mi=1 Xi becomes a spherical t-design of size K × M on S

n−1. (See,
e.g. Wagner [182] Rabau–Bajnok [151].)
If we apply this method of separation of variables to construct spherical t-designs with n = 3, then

ωα is a constant function. Therefore, if there exists an ordinary interval t-design X = {ξ1, ξ2, . . . , ξM}
on the interval [−1, 1], then taking Xi as a regular (t + 1)-gon on Si for i = 1, 2, . . . ,M, we have a
spherical t-design on S2 of size (t+1)M.As is explained in the next paragraph, combining the result of
Bernstein [52] and Kuijlaars [114] (or just by Kuijlaars) we get an ordinary interval t-design on [−1, 1]
of size O(t2). Therefore, we get the existence of spherical t-designs of size O(t3) on S2. (See also [112,
113].)
The main theorem of Kuijlaars [114] (Theorem 2.25 in the following) shows the existence of

interval t-designs of size O(t2+2α) on [−1, 1] with respect to the weight function ωα(x). Therefore,
there are spherical t-designs on Sn−1 of size O(tn(n+1)/2). Then what is the smallest cardinality of
spherical t-designs actually existing? This still seems to be an open problem. It seems that many
people think O(tn−1) should be possible cf. Remark 3.3.4 in [112] (see Seidel [160]). In [183] (page
1062 in English version), Yudin mentioned that the conjecture Nn(t)� tn−1 has been made by many
authors, where Nn(t) is the smallest cardinality of a t-designs on Sn−1 and A � Bmeans that A ≤ cB
for some constant c > 0 that depends only on n. Yudin [184] gives an interesting new kind of bound
for the size of spherical t-designs.)
Kuijlaars explains the work of Bernstein [53,52] in his paper published in 1993 [114].

Theorem 2.23 (Bernstein [53]). Let∫ 1

−1
f (x)w(x)dx =

n∑
i=1

pif (xi)

http://www.research.att.com/~njas/sphdesigns/index.html
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be a quadrature formula of degree t = 2m− 1. Let X = {x1, x2, . . . , xN} be a Chebyshev type quadrature
formula, i.e. the pi’s are all equal. Then,

N ≥
1
λ1,m

holds, where λ1,m is the Christoffel number appearing in the m-point Gauss quadrature formula∫ 1

−1
f (x)w(x)dx =

m∑
i=1

λi,mf (ξi,m)

of degree 2m − 1 with respect to w(x) and 1 > ξ1,m > ξ2,m · · · > ξm,m > −1. (This implies N ≥ O(t2)
for w(x) = constant, and N ≥ O(t2+2α) for wα(x) = (1− x2)α .)

Theorem 2.24 (Bernstein [52]). For w(x) = 1
2 , and for every m, there exists a Chebyshev type quadrature

formula of degree 2m− 1 with N nodes, where

N ≈ 4
√
2(m+ 1)(m+ 4).

(Note that, here we do not assume that N nodes x1, x2, . . . , xN are mutually distinct.)

Kuijlaars explains that these results of Bernstein are not well known, and are stronger than the
estimate O(t3) for the minimal number of nodes in a Chebyshev quadrature formula of degree t,
mentioned in Rabau–Bajnok [151].
The main theorem of Kuijlaars’s paper [114] is stated as follows.

Theorem 2.25 (The Main Theorem of Kuijlaars [114]). Let wα(x) = Cα(1 − x2)α , where Cα is a positive
constant and α ≥ 0. There is a constant K = Kα > 0, depending only on α such that, for every t,
there exists a Chebyshev type quadrature formula of degree t for the weight function wα(x) having size
N < Kt2+2α . Moreover, it is possible to use either a large number of multiple nodes: only≈ t+1

2 nodes, or
N distinct nodes.

The last part of the claim in Theorem 2.25 is obtained by using the following splitting theorem,
which may be of interest itself.

Theorem 2.26 (Theorem 2.1 in [114]). Let 1 > y1 ≥ y2 ≥ · · · ≥ ym > −1 be m points. Assume that
yi = yi+1 and yj = yj+1 imply j− i is even. Let pi > 0, i = 1, 2, . . . ,m. Then for t > 0 sufficiently small,
there exist points xi(t), i = 1, 2, . . . ,m, satisfying the following (i)–(iii) .
(i) 1 > x1(t) > x2(t) > · · · > xm(t) > −1.
(ii) limt↓0 xi(t) = yi, for i = 1, 2, . . . ,m.
(iii)

∑m
i=1 pixi(t)

l
=
∑m
i=1 piy

l
i, for l = 1, 2, . . . ,m.

Using this separation lemma, Kuijlaars proves that if there are enough, say N0 > m − 1, distinct
nodes xi ∈ (−1, 1) in the original Chebyshev type quadrature formula of degree m − 1, then we can
get a new Chebyshev type quadrature formula of degree m − 1 with N0 + 1 nodes. Repeating this
process, we can take the N nodes all distinct in the main theorem, Theorem 2.25.
As is shown in Wagner [182], Rabau–Bajnok [151], it is easily shown that if we have an interval t-

design on [−1, 1]with the Gegenbauer weight functionwα with α = n−3
2 and a spherical t-design on

Sn−2, thenwe can construct a spherical t-design on Sn−1, using the separation of variables of integral on
the sphere. So, it is very interesting to find explicit constructions of interval t-designswithGegenbauer
weight functions. As we discussed in Section 2.6, the existence is guaranteed by the theorem of
Seymour–Zaslavsky and there are many different proofs available. Note that the combination of
Bernstein [52] and the main theorem of Kuijlaars [114] (Theorem 2.25) gives yet another existence
proof of spherical t-designs in Sn−1. It seems that all these results for n ≥ 3 and large t are existence
theorems. So, explicit constructions are very desirable. We remark that Kuperberg [115] proved that
2s points

±z1 ± z2 ± · · · ± zs
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form a Chebychev type quadrature formula of degree (2s+ 1) on [−1, 1]with constant weight if and
only if the zi’s are the zeros of the polynomial

Q (x) = xs −
xs−1

3
+
xs−2

45
− · · · +

(−1)s

1 · 3 · 15 · · · · · (4s − 1)
.

Moreover, all the roots of Q are real and the resulting quadrature formula is interior, i.e. all these
2s points are in the open interval (−1, 1). Moreover, these 2s points are distinct. This result can be
regarded as giving a kind of explicit construction for an interval design on [−1, 1]withwα = 1

2 , hence
the explicit construction of spherical designs for S2 ⊂ R3. It is interesting if we could find similar
explicit constructions for n ≥ 4, i.e. for interval t-design on [−1, 1] with the Gegenbauer weight
function wα(x) = (1 − x2)α with α = n−3

2 . We expect it is probably not difficult. We propose this
as an open problem for the reader to challenge. This would give an explicit construction of spherical
t-designs on Sn−1 for any t and n.

3. Further examples of spherical configurations

3.1. Spherical designs which are orbits of finite subgroups of O(n)

Let G be a finite subgroup of the real orthogonal group O(n), and let u be an element on Sn−1. Let

uG = {ug | g ∈ O(n)} ⊂ Sn−1.

(Namely, uG is obtained as an orbit of the group G.) Note that all the examples of spherical designs
mentioned in Section 2.3 are obtained in this way. Actually, this is one of the easiest ways to obtain
spherical t-designs. For n = 2, we can obtain spherical t-designs with arbitrary (large) t , since regular
(t + 1)-gons are t-designs obtained in this way. Our basic question is whether we can obtain good
spherical t-designs forn ≥ 3by thismethod. The answer is yes andno.Wedo getmany good examples
of t-designs with relatively big t , but we cannot get very good ones (i.e. those with arbitrary big t) by
this method. In this section we will discuss these facts as well as many related topics.
It seems that Sobolev [171] was the first who considered spherical t-designs which are orbits of

finite subgroups of O(n). Sobolev andhis school, ormore generally people in analysis of approximation
theory, were interested in these problems from the viewpoint of cubature formulas. They were the
true pioneers in the study of spherical designs. (Cf. also [137].)
It was in 1977 (Delsarte–Goethals–Seidel [88]) that the spherical t-designs were defined as

finite subsets (of points) on Sn−1, without considering weights in cubature formulas (or, with
constant weight). The spherical t-designs which are orbits of finite groups of O(n) were studied
in Goethals–Seidel [97,98], Bannai [22] (in 1970’s), and then Bannai [23,24] (in 1980’s), and more
recently in Sidelnikov [168,169], de la Harpe–Pache [84], Bajnok [18], Victoir [181], and others. Also,
there are several relatedworkswhich classify good finite subgroups of O(n) by using the classification
of finite simple groups, e.g. Lempken–Schroder–Tiep [121], Tiep [178], and so on. Some of the basic
results are summarized as follows. (We refer the reader to de la Harpe–Pache [84] for details.)
Let G be a subgroup of O(n). For any non-negative integer k, let π (k) be the real irreducible

representation of O(n) on the space Harmk(Rn) of the homogeneous harmonic polynomials of degree
k. π (k)G denotes the restriction of the representation to the subgroup G. (It is well known that the

degree of π (k) is equal to
(
n+k−1
k

)
−

(
n+k−3
k−2

)
.) We call a subgroup G of O(n)t-homogeneous, if for

an arbitrary u ∈ Sn−1, the orbit uG is a spherical t-design. Also, for representations ρ and σ of G, if ρ
is a subrepresentation of σ , then we denote ρ < σ . Let 1G denote the identity representation of G.

Theorem 3.1 (Combination of Many Works, cf. [22,97,84]). Let G be a finite subgroup of O(n) and let s,
t be positive integers.

(1) 1G 6< π
(k)
G for 1 ≤ k ≤ t if and only if G is t-homogeneous.

(Note that 1G 6< π
(k)
G is equivalent to Harmk(R

n)G = {0}.)
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(2) If n ≥ 3 and if π (k)G is irreducible for 1 ≤ k ≤ s, then G is 2s-homogeneous.
(3) If n ≥ 3, if π (k)G is irreducible for 1 ≤ k ≤ s, and if π

(s)
G 6< π

(s+1)
G , then G is (2s+ 1)-homogeneous.

Remark. It was later obtained by Pache (see [84], Appendix) that in (2), the irreducibility of π (s)G is
enough to ensure that G is 2s-homogeneous.

We also mention that the harmonic Molien series for G is given as follows:

ΦG =
∑
i≥0

dim
(
Harmi(Rn)G

)
t i =

∑
i≥0

ait i.

(Here, Harmi(Rn)G means the subspace of G-invariant homogeneous harmonic polynomials of degree
i in Rn.)
ThenG is t-homogeneous if and only if a1 = a2 = · · · = at = 0. (Moreover, the following assertion

holds: let u0 ∈ Sn−1. Then uG0 is a spherical t-design if f (u0) = 0, for any f ∈ ⊕
t
i=1 Harmi(R

n)G.
As a special case of this assertion, for any irreducible real reflection groupW in O(n), we have the

following results.
LetW be an irreducible real reflection group in O(n), and let 1 = m1 ≤ m2 ≤ m3 ≤ · · · ≤ mn be

the exponents ofW . (See Bourbaki [56] for the definition of exponents.) Then the following assertions
hold. (Here, note thatΦW =

∏n
i=2

1
(1−tmi+1)

, forW .)

(1) For any u ∈ Sn−1, uW is a sphericalm2-design.
(2) For some u0 ∈ Sn−1, uW0 is a sphericalm3-design.
(Note thatW (E8) has exponents m1 = 1,m2 = 7,m3 = 11, . . . . Therefore, any orbit uW (E8) is a

spherical 7-design, and some orbit uW (E8)0 is a spherical 11-design.)

Theorem 3.2 (Bannai [23]). Let u1, u2 ∈ Sn−1. Suppose that uG1 is a t1-design but not a (t1 + 1)-design,
and also that uG2 is a t2-design but not a (t2 + 1)-design. Then t2 ≤ 2t1 + 1.

Remark. This theorem gives a reason to why considering t-homogeneous subgroups of O(n) is
important.

Theorem 3.3 (Bannai [24]). Assume n ≥ 3. Then, there is a function f (n) such that if uG is a spherical
t-design for u ∈ Sn−1 and for a finite subgroup G of O(n), then t ≤ f (n) holds.
It is conjectured that there is an absolute constant t0 such that if u ∈ Sn−1 and if uG is a spherical
t-design, then t ≤ t0, though we have not yet succeeded in proving this. The largest example we
have is t = 19, when G = W (H4). (We can get examples of t = 15 for G = · 0 (Conway group,
i.e. the automorphism group of the Leech lattice fixing the origin) and so, t0 might be 19.) Also, it
is interesting to remark that no 12-homogeneous finite subgroup G of O(n) is known. (It would be
natural to expect that these problems might be solvable by using the classification of finite simple
groups, and extending the approach of Lempken–Schroder–Tiep [121], and Tiep [178].)
We remark that Sidelnikov [168] proved that the subgroups G = 21+2m+ O+2m(2) with m ≥

3 are 7-homogeneous subgroups of O(2m), where G are called real Clifford groups. Furthermore,
Sidelnikov [169] proved that dim Harmj(R2

m
)G = 0, for j = 9, 10, 11. This implies that for some

appropriate point u0 ∈ S2
m
−1, the orbit of u0 by G becomes an 11-design. (Nebe–Rains–Sloane [138]

explains that this information also follows from Runge [154].) It is very interesting that these groups
are famous in group theory, and they appear in many different areas: quantum error correcting
codes [67,68], construction of packings in real Grassmannian spaces [66,79,166], and construction of
orthogonal spreads and Kerdock sets (Calderbank–Cameron–Kantor–Seidel [65]). Also, these groups,
or more exactly speaking the complex Clifford groups Z8 ∗ 21+2mSp2m ∼= Z8 ∗ 21+2mO2m+1(2), which
are subgroups of the unitary group U(2m) are closely connected to the Siegel modular forms of genus
m (Runge [154]). The reader will find these (and further) interesting information in Chapter 6 of
Nebe–Rains–Sloane [138].
Although the authors have not digested the details yet, they found several further work by

Sidelnikov and others on spherical designs which are orbits of finite groups, see e.g. Doro-
feev–Kazarin–Sidelnikov–Tuzhilin [93], and many other papers written in Russian.
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3.2. Spherical designs which are shells of Euclidean lattices

Another natural method to obtain spherical t-designs is to consider the shells of a lattice in
Euclidean space.
(a) Modular forms and a theorem of Venkov
Let L be a lattice in Rn. This means that L = Zx1 + Zx2 + · · · + Zxn is a free abelian subgroup of

the additive group Rn and {x1, x2, . . . , xn} is a basis of the R-vector space Rn. As we discussed in the
previous section, if the automorphism group G ⊂ O(n) of L is t-homogeneous, then each orbit of any
x ∈ L by G is a spherical t-design. Therefore, if we assume Lm = {x ∈ L | ‖x‖2 = m}, then Lm is a
union of some orbits of G, and so, it is a spherical t-design.We call Lm a shell of the lattice L. Lm is a finite
set on Sn−1(

√
m), the sphere of radius

√
m. (Note that X ⊂ Sn−1(

√
m) is called a spherical t-design if

1
√
mX is a spherical t-design on the unit sphere S

n−1.)
Venkov [180] proved that for extremal even unimodular lattices, the shells are spherical t-designs,

even if their automorphism groups are not t-homogeneous. This result is stated as follows. Let us
recall some terminologies. A lattice L ⊂ Rn is called unimodular if the dual lattice L∗ coincides with
L, where L∗ = {x ∈ Rn | x · y ∈ Z, ∀y ∈ L}. If ‖x‖ is an even integer for any x ∈ L, then L is called
even. If L is even unimodular, then n must be a multiple of 8. For an even unimodular lattice L, it is
known that the minimum squared norm satisfies min{‖x‖2 | x ∈ L, x 6= 0} ≤ 2[ n24 ] + 2. An even
unimodular lattice L is called extremal, if the minimum squared norm of L is 2[ n24 ] + 2, i.e. L2m = 0
holds form = 1, 2, . . . , [ n24 ].

Theorem 3.4 (Venkov [180]). Let Λ be an extremal even unimodular lattice in Rn with n = 24µ. Then
any shellΛ2m with 2m ≥ 2µ+ 2 is a spherical 11-design. If n = 24µ+ 8, thenΛ2m, 2m ≥ 2µ+ 2, is a
spherical 7-design. Also if n = 24µ+ 16, thenΛ2m, 2m ≥ 2µ+ 2, is a spherical 3-design.

Examples. The E8-lattice in R8, is an extremal even unimodular lattice and so any of its shells is a
7-design. The Leech lattice in R24 is an extremal even unimodular lattice and so any of its shells is an
11-design.

The proof of Theorem 3.4 uses the following two well known results in modular forms, and it is
immediate. That is, just show that, if n = 24µ, then

∑
x∈L2m P(x) = 0, for any P ∈ Harmj(R

n), j =
1, 2, . . . , 11.

Theorem 3.5 (Theorem of Hecke and Schoeneberg). Let P ∈ Harmj(Rn), and let Λ be an even unimodular
lattice in Rn. Then

ΘΛ,P :=
∑
x∈Λ
P(x)q

x·x
2

is a modular form of weight j+ n
2 for the full modular group SL(2,Z), where q = e

2π
√
−1z , z ∈ H (upper

half plane). Moreover, if j ≥ 1, thenΘΛ,P is a cusp form.

Theorem 3.6 (Well known). The space of cusp forms of weight ≤ 10 and 14 are of dimension 0.

We remark that Theorem 3.4 is regarded as an analogue of the Assmus–Mattson theorem, which
ensures that any shell (the set of elements of a fixedweight) of a certain code becomes a combinatorial
t-design.
Currently, there are many different proofs of the Assmus–Mattson theorem, and also many

generalizations in various contexts. See Assmus–Mattson [3], Koch [110,111], Bachoc [4], Janusz [108],
etc. The reader is referred to a recent paper of Tanaka [175] about this topic.
We remark that there is a generalization of Theorem 3.4 for modular lattices. (Note that a lattice

L is p-modular if the integral dual L∗ satisfies L = pL∗. (See Bachoc–Venkov [12].) Let us call all those
generalizations of the Assmus–Mattson theorem in both code, lattice theories, etc. Assmus–Mattson
type theorems.
De la Harpe–Pache–Venkov [86] consider obtaining cubature formulas by taking the union of shells

of a lattice as the support of the cubature formulas. This topic will be discussed in Section 4, in
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connection with cubature formula and Euclidean designs. (For further connections between lattices
and spherical designs, see [149,81,99], etc.)

Question. We wonder whether there is an analogue of Theorem 3.2 for spherical t-designs obtained
as shells of a lattice. Namely, let L be an integral lattice, and let L1 and L2 be shells of it. If L1 is a t1-
design but not a (t1+1)-design, and if L2 is a t2-design but not a (t2+1)-design, then does there exist
any restriction between t1 and t2 ?

(b) D. H. Lehmer’s conjecture in Number theory, and more on Assmus–Mattson type theorems
Let η(q) = q

1
24
∏
∞

i=1(1− q
i) = q

1
24 (1− q− q2 + q5 + · · ·), and let

∆24(q) = η(q)24 = q− 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 167 44q7 + · · ·

=

∑
m≥1

τ(m)qm,

where q = e2π
√
−1z and ∆24 is the cusp form of weight 12 with respect to the full modular group

SL(2,Z).
It is known that |τ(p)| < 2 p

11
2 for all prime p. (This was conjectured by Ramanujan, and proved

by Deligne.)
(D.H.) Lehmer’s Conjecture. τ(m) 6= 0 for any m ≥ 1.
It is known that it is true for m ≤ 3316 799 (Lehmer [120], 1947), and true for m ≤ 1015

(Serre [163], 1985). Why are we interested in Lehmer’s conjecture? (It seems that a reason is partly
because, this is another extreme of the conjecture of Ramanujan mentioned above.) The following
very interesting observation was known to Venkov for many years and is stated in [85,86].

Observation (Venkov, de la Harpe–Pache, Pache). Let Λ be the E8-lattice inR8. ThenΛ2m is an 8-design,
if and only if τ(m) = 0.
(So, if Lehmer’s conjecture is true thenΛ2m will never be an 8-design for any m.)

Proof of Observation. Note that for any P ∈ Harm8(R8),ΘΛ,P =
∑
∞

m=0(
∑

x∈Λ2m P(x))q
m
=

c(P)∆24 for some constant c(P), since the space of the cusp forms of weight 12 is one-dimensional.
Hence, if Λ2m is not a spherical 8-design then there exists a polynomial P ∈ Harm8(R8) satisfying∑

x∈Λ2m P(x) 6= 0. HenceΘΛ,P 6= 0 and c(P) 6= 0. Hence we have τ(m) 6= 0. The converse is also true
because it is well known that Λ2 is not a spherical 8-design (|Λ2| = 240 and Λ2 is a spherical tight
7-design). �

We note that there are many similar situations and conjectures. For example, let Λ be the Leech
lattice in R24. ThenΛ2m is a 12-design, if and only if am = 0. (Note that here am =

∑
i+j=m τ(i)τ (j).)

Suppose n = 24µ. Then, ΘΛ,P ≡ 0 holds for all P ∈ Harm2j(Rn) and j ∈ {1, 2, 3, 4, 5, 7}. That is,
Λ2m is a (11 12 )-design (i.e.

∑
x∈Λ2m f (x) = 0 for any f ∈ Harm2j(R

n) for j ∈ {1, 2, 3, 4, 5, 7}) in the
sense of Venkov [180]. Moreover,

ΘΛ,P = c(P) ·∆
1+µ
24

holds for P ∈ Harm12(Rn), where c(P) satisfies one of the following two conditions:
Case 1: c(P) = 0, for any P ∈ Harm12(Rn).
(ThenΛ2m is a 12-design for allm.)

Case 2: c(P) 6= 0, for some P ∈ Harm12(Rn).

Theorem 3.7 (Bannai–Koike–Shinohara–Tagami [47]). Let Λ be an extremal even unimodular lattice in
Rn with n = 24µ. If µ ≤ 150 and µ is not in B, where

B = {5, 10, 15, 17, 20, 25, 28, 30, 39, 40, 45, 50, 52, 55, 61, 65, 70, 72, 75, 80, 83, 90, 94, 95,
100, 103, 115, 116, 120, 125, 127, 128, 130, 135, 138, 140, 145, 147, 149, 150},

then Case 2 holds (Case 1 does not hold.), i.e. c(P) 6= 0, for some P ∈ Harm12(Rn).



1410 Eiichi Bannai, Etsuko Bannai / European Journal of Combinatorics 30 (2009) 1392–1425

Note that it is known (by Mallows–Odlyzko–Sloane [128]) that extremal even unimodular lattices
in Rn exist only for n up to about 41000. So we may assume that µ ≤ 1800, say.
The proof of Theorem 3.7 is outlined as follows. We use the fundamental equation for spherical

designs, that is, Theorem 2.2(6) in Section 2.2, due to Venkov [179]. For each µ ≤ 150 (µ 6= 5, 6)
which is not in the set B, we can find an odd prime p andm, which satisfy the following conditions for
some k ∈ {1, 2, 3, 4, 5, 7}:

(1) p|n(n+ 2) · · · (n+ 2k− 2).
(2) p - 1 · 3 · 5 · · · (2k− 1).
(3) p - |Λ2m|.
(4) p - m.

This implies that Theorem2.2(6) does not hold forΛ2m. HenceΛ2m is not a 2k-design. The casesµ = 5
and µ = 6 were taken care of by ad hoc arguments. In fact, the case µ = 5 was later removed from
the set B, by a personal communication from G. Nebe, Oct. 29, 2007.
The following conjecture is known in number theory.

Generalizations of Lehmer’s conjecture due to Serre and Atkin (cf. [163])
Let r be even and let

η(q)r = q
r
24
∑
n≥0

pr(n)qn.

Then if r 6= 2, 4, 6, 8, 10, 14, 26 then pr(n) 6= 0 holds for any n. (Note that τ(n) = p24(n− 1).)
Many numerical confirmations for this conjecture are obtained in number theory!! So, if this

conjecture is true then there are no 12-designs among Λ2m for n = 24µ and µ ≤ 154 and µ not
in B.
In [47] we also obtained a result similar to Theorem 3.7 for extremal Type II codes, i.e. self-dual

doubly even binary codes. Let C be a Type II code of length n over F2. Then n is a multiple of 8. The
weight of elements of C are all multiples of 4. We say C is extremal if the minimum weight (of non-
zero elements) of C is equal to 4µ + 4. Here we assume that C is an extremal type II code, and
additionally that n = 24µ for simplicity. Let Ci be the shell of C of weight i. The Assmus–Mattson
theorem for codes guarantees that all the Ci (4µ + 4 ≤ i ≤ n − (4µ + 4), i ≡ (mod 4)) become
combinatorial 5-designs. Our question is whether any of them can become a combinatorial 6-design.
We note that by studying the relative invariants of the finite group (the complex reflection group No.
9 of order 192), Bachoc [4] obtained the result corresponding to the Hecke–Schoeneberg Theorem
(Theorem 3.5). By a similar method we used to prove Theorem 3.7, we obtained the following result
(Bannai–Koike–Shinohara–Tagami): In the assumptions given above, ifµ is not in the following set B:

B = {8, 15, 19, 35, 40, 41, 42, 50, 51, 52, 55, 57, 59, 60, 63, 65, 74, 75, 76, 80, 86, 90, 93,
100, 101, 104, 105, 107, 118, 125, 127, 129, 130, 135, 143, 144, 150, 151},

then any of the Ci cannot be a 6-design. (Note that it is known that extremal Type II codes do not exist
for n ≥ 3720, hence for µ ≥ 155, cf. Conway–Sloane [80] page 194.) It is not known whether any of
the Ci forµ in the set B given above can become a 6-design or not. There is one notable differencewith
the case of the lattice. Namely, we can show that in the case of codes, we have one of the following
exclusive two alternatives. Namely, for a given µ, (1) all the Ci are 6-designs, (2) none of the Ci is a
6-design. (So, the Lehmer type question does not occur for codes.)

3.3. Sphere packing problems

In this subsection we survey the works on algebraic combinatorics on spheres related to sphere
packing problems.
There were three major breakthroughs in the area of sphere packing recently:
(1) The proof of the Kepler Conjecture by Hales [100].
(2) The determination of the kissing number in 4 dimensions by Musin [133].
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(3) The developments of the sphere packing problem in 8- and 24-dimensional Euclidean spaces
by Cohn–Elkies [74], and in particular the optimality of the Leech lattice among the lattice packings
in 24-dimensional Euclidean space by Cohn–Kumar [75,76].
Here, we will discuss the last two topics of the three mentioned.

(a) Kissing numbers
For a given unit sphere in Rn, how many unit spheres can touch the sphere without overlapping

each other? The maximum number of such spheres is called the kissing number in Rn, and is
denoted by k(n). Clearly, we have k(2) = 6. Then how about k(3)? This question was started in the
Newton–Gregory dispute in 1694, whether it is 12 or 13. Now it is known that k(3) = 12, but the first
rigorous and acceptable proof was obtained by Shütte–van der Waerden [167] only in 1952. Since
then, the problem of determining the kissing number k(n) for other values of nwas studied by many
mathematicians. The exact values of k(n) for n = 8 and n = 24 were determined by Odlyzko–Sloane
[146] and Levenshtein [122] independently, both in 1979. Namely, k(8) = 240 and k(24) = 196 560.
The full paper [133] of Musin which proves k(4) = 24 was published only recently, in 2008. (The
announcement was in 2003.) For other cases, i.e. n ≥ 5 and n 6= 8, 24, exact values for k(n) are still
unknown.
Let us quickly recall the idea of Odlyzko–Sloane [146] and Levenshtein [122] which proved k(8) =

240 and k(24) = 196 560. The basic idea of the proof is due to Delsarte. Lemma 2.15 implies the
following lemma.

Lemma 3.8 ([88]). Let X ⊂ Sn−1 be a finite subset. Let F(x) be a polynomial of finite degree and let
F(x) =

∑
∞

i=0 fiQi,n(x) be the Gegenbauer expansion of F(x). If f0 > 0 and fl ≥ 0 for any l ≥ 1 and
F(α) ≤ 0 for any α ∈ A(X), then

|X | ≤
F(1)
f0

holds.

As for k(8), they use F(x) = (x + 1)(x + 1
2 )
2x2(x − 1

2 ). If X is a kissing configuration, then
A(x) ⊂ [−1, 12 ] holds, and this polynomial satisfies the condition of Lemma 3.8, and they obtained
k(8) ≤ 240. For k(24), they use F(x) = (x + 1)(x + 1

2 )
2x2(x − 1

2 )(x +
1
4 )
2(x − 1

4 )
2 and proved

k(24) ≤ 196 560. Since we have examples with 240 kissing configuration in R8 and 196560 kissing
configuration in R24, we obtain k(8) = 240 and k(24) = 196 560.
The idea of the proof of Musin [133] was to generalize the idea of Delsarte given above. Roughly

speaking, the basic idea is as follows:
It was rigorously proved (by Arestov and Babenko) that as long as one tries to use Lemma 3.8 and

tries to find a good polynomial F(x) of arbitrary large degree satisfying the assumptions of Lemma 3.8
for the interval [−1, 1/2], one cannot get better estimates than k(4) ≤ 25. So, instead of considering
the function F(x) which satisfies F(α) ≥ 0 for all α ∈ [−1, 1), Musin consider a function F(x) which
can be positive for α on a small subinterval close to−1, and then use some geometric considerations
which are very delicate. (SeeMusin [134,133], for the proofs of k(3) = 12 and k(4) = 24, respectively.
The proof for n = 3 is quite accessible and quite convincing.)
A new proof of k(3) = 12 was also given by Musin [134], following the line of proving k(4) = 24.

This proof is very transparent and very convincing. Computers were used extensively to find a good
evaluation polynomial F(x), but once it was obtained, the use of computer was limited to the use of
very standard software, likeMaple and/orMathematica, and it was used only to calculate the extrema
of certain polynomials of one variable in some interval. (See the good expository paper of Pfender-
Zigler [149]. Also, for different kind of generalization of Delsarte’s method, see [148].)
After the success of Musin, another very important generalization of the method of Delsarte

was obtained by Schrijver [158] in 2005. Using the idea of Terwilliger algebras of association
schemes, Schrijver succeeded in formulating semi-definite programming improving Delsarte’s linear
programming method. Then, using the actual computer calculation of semi-definite programming,
Schrijver succeeded in improving the actual bounds for binary codes (i.e. codes in binary Hamming
schemes) with small parameters. (It seems at this stage the amount of calculation in semi-definite
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programming is huge in general, and so it is difficult to get asymptotic good new bounds, if we
understand the situation correctly.) Gijswijt–Schrijver–Tanaka [95] generalized this to non-binary
codes.
The method of semi-definite programming is now rapidly going to be applied to wider areas.

Bachoc–Vallentin [9] succeeded in formulating semi-definite programming for the kissing number
problems. In particular, they gave a new proof of k(3) = 12 and k(4) = 24 in a very convincing
way. Also, they improved many of the previously known upper bounds of k(n) considerably for some
small values of n. This method is also applied to show the optimality of (4, 10, 16 ) spherical codes, as
well as to show the maximal cardinality of packings of spheres on spherical caps (for example, for
one sided kissing numbers), see [10,11,50], etc. We remark that Musin [136] also set up semi-definite
programming in a general context, but the actual use of it is not easy in general (it seems).
(b) Universally optimal configurations (Cohn–Kumar)
We say that X ⊂ Sn−1 is optimal (or is an optimal code), if its minimum distance is the largest

among all the subsets Y ⊂ Sn−1 with |X | = |Y |. An optimal code exists for any given n and size
|X |. Generally, they may not be unique up to orthogonal transformations. Optimal codes on S2 are
classified completely for |X | ≤ 12 and |X | = 24, by various mathematicians. (This problem is also
known as Tamme’s problem which originated in botany. Namely, how to plant the fixed number of
trees so that they are separated from each other most.) For other values of |X | the classification is still
open. The reader is referred to the book of Ericson–Zinoviev [94], for the details of this classification
for n = 3. The classification of optimal codes for a given pair (n, |X |) is usually difficult, and known
only for very special cases:
For n ≥ 4, except for the case (n, |X |) = (4, 10), all the cases so far solved are the cases where

there is a universally optimal code (this concept will be explained soon). The most interesting open
case is (n, |X |) = (4, 24), since this case is related to the uniqueness of the kissing configurations
in dimension 4. On the other hand, many conjectured (putative) optimal codes (of small dimensions
and relatively small sizes) are produced by computer simulations. (See, e.g. the home page of N.J.A.
Sloane.)
Good configurations, such as optimal codes, sometimes have good extremal properties. Yudin,

Kolushov andAndreev considered the extremal property, given in the following, and proved that some
of the known examples having good combinatorial properties satisfy the extremal condition (see the
reference of Cohn–Kumar [77]):
Let f (r) be a potential function, f (r) = 1

r
n
2−1
(harmonic potential law). Consider a finite subset X

of Sn−1 satisfying the following condition:∑
u,v∈X,u6=v

f (‖u− v‖2) ≤
∑

u,v∈Y ,u6=v

f (‖u− v‖2)

for all the subset Y ⊂ Sn−1 with |X | = |Y |.
Cohn–Kumar [77] formulated the concept of universally optimal codes (configurations), which

satisfy the optimality for a very wide class of potential functions in the following sense.

Definition 3.9 (Cohn–Kumar [77]). We call X ⊂ Sn−1 universally optimal if it minimizes∑
u,v∈X,u6=v f (‖u − v‖2), among the finite sets of cardinality with a fixed cardinality |X |, for any

completely monotonic function f : (0, 4] −→ R, (i.e. f is in C∞, and (−1)kf (k) ≥ 0, for all k, where
f (k) denotes the kth derivative of f ).

This definition is equivalent to the following definition.

Definition 3.10 (Cohn–Kumar [77]). We call X ⊂ Sn−1 universally optimal if it minimizes∑
x,y∈X,x6=y α(x · y), among the finite sets of cardinality with a fixed cardinality |X |, for any absolutely

monotonic function α : [−1, 1) −→ R, i.e. α is in C∞, and α(k) ≥ 0, for all k.

Note: A universally optimal code is an optimal code. We can see this by considering the function
f (r) = 1/rm withm→∞.
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Cohn–Kumar [77] proved the following theorem.

Theorem 3.11 (Cohn–Kumar [77]). If X ⊂ Sn−1 is a t-design and an s-distance set, and if t ≥ 2s − 1,
then X is universally optimal.

Theorem 3.11 implies that tight t-designs are universally optimal.
Cohn–Kumar [77] also conjecture that for each given n ≥ 3, there are only finitelymanyuniversally

optimal codes on Sn−1 (up to orthogonal transformations.) Moreover, they point out that, using an old
work of Leech [119], there are only three universally optimal codes on S2, that is, the vertices of the
regular tetrahedron, the regular octahedron (cross polytope), and the regular icosahedron. (They are
all tight designs.) They point out that for any other value of n ≥ 4, the classification of universally
optimal codes is open, and propose this classification problem. All the known examples are listed in
Table 1 in Cohn–Kumar [77] (cf. also Table 3 in [123], see also [124,125]). All of the known examples
satisfy the condition t ≥ 2s − 1, except for the example of 120 points in a 600-cell in R4. (Note that
this example already appeared before several times t = 11, and s = 8.)
Cohn–Kumar [77] and Ballinger, et al. [20] search for other candidates of universally optimal codes

of small dimension and size systematically by using computer simulations. In the range of n ≤ 32
and |X | ≤ 100, they found two new candidates with (n, |X |) = (10, 40), and (n, |X |) = (14, 64), and
conjecture that there are no more new ones. Interestingly enough, they both have good structures of
association schemes. They produced these point sets just by using a machine, and also proved that
they form association schemes by the machine, and then they identified these association schemes to
already known association schemes. See Section 4.1 in Ballinger et al. [20] for the first one. (Exactly
speaking, [20] says that this 40 point subset in R10 appears in Sloane’s online tables. It seems that the
fact it is an association schemewas first noticed in [20].) See de Caen–vanDam [83] for the second one.
Cohn personally asked us whether these association schemes are characterized by their parameters,
and Bannai–Bannai–Bannai [37] answered that indeed they are.Whether they are actually universally
optimal or not is still an open question.
Ballinger et al. [20] extended the area of their search, and found 2 more candidates. Namely, those

with the parameters: (n, |X |) = (7, 182), (15, 128). It is very delicate whether any of them are
actually universally optimal or not, and this question still remains open.
Abdukhalikov–Bannai–Suda [1] tried to find generalizations of some of these examples

for higher dimension. Actually, they find a series of candidates generalizing those with
(14, 64), (15, 128), (16, 288). They showed that if a possible maximum sized real MUB in RN exists,
then it gives candidates of universally optimal codes for (n, |X |) = (N,N2+2N), (N−1,N2/2), (N−
2,N2/4). It is known (cf. [70,65]) such an MUB exists for any N which is a power of 4, and that if such
an MUB exists then either N = 4 or N must be a square which is a multiple of 16. It seems that for
N > 4 only the codes in the first family of the three parameters given above are the strong candidates
of universally optimal codes. But whether any codes of the three families are actually universally op-
timal or not is an open problem. (See, [1,31] for more details on this topic.) As we mentioned before
in Section 2.2, the uniqueness of certain spherical codes (or designs) are important. The uniqueness of
tight 11-design on S23 was strongly relevant. We say that X ⊂ Sn−1 is an (n, |X |, a)-code, if x · y ≤ a
for all x, y ∈ X with x 6= y. The maximum size |X | of all (n, |X |, 1/2)-codes on Sn−1 is nothing but the
kissing number k(n).
Let X be an (n, |X |, 1/k)-code. Take x ∈ X , and let Xx be the set of y ∈ X with the inner prod-

uct x · y = 1/k. Then the set Xx forms an (n − 1, |Xx|, 1/(k + 1))-code on Sn−2 after normaliza-
tion. Thus, starting from the kissing configuration in R8, one gets a sequence of spherical codes with
parameters (8, 240, 1/2), (7, 56, 1/3), (6, 27, 1/4), (5, 16, 1/5), (4, 10, 1/6), (3, 6, 1/7). Starting
from the kissing configuration in R24, one gets sequences of spherical codes with parameters
(24, 196 560, 1/2), (23, 4600, 1/3), (22, 891, 1/4), (21, 336, 1/5), (20, 170, 1/6). The uniqueness
of these configurations for eachof the cases (8, 240, 1/2), (7, 56, 1/3), (24, 196 560, 1/2), (23, 4600,
1/3) was proved in [49]. The cases (6, 27, 1/4), (5, 16, 1/5) are treated in Cohn–Kumar [77], but
also follows from the uniqueness of the corresponding association scheme. The case (22, 891, 1/4)
was treated by Cuypers [82] and independently by Cohn–Kumar [78]. ([78] corrects a mi-
nor error in the proof of the case (23, 4600, 1/3) by Bannai–Sloane [49]. Whether each of
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(21, 336, 1/5), (20, 170, 1/6) codes is optimal, or unique are open problems. The case (3, 6, 1/7) is
obviously not optimal and not unique since the octahedron is a (3, 6, 0) code. The interesting re-
maining case (4, 10, 1/6)was solved by Bachoc–Vallentin [10], by using the method of semi-definite
programming. This is so far the only case where themethod of linear programming does not work but
the method of semi-definite programming works.
Another very interesting and important open case is (4, 24, 1/2). This case is related to the

uniqueness of the kissing configuration in dimension 4. This case was shown not to be universally
optimal by Cohn–Conway–Elkies–Kumar [73]. It is still open whether this code is optimal or not. (We
expect that it is optimal.)
(c) Work of Levenshtein
Here we survey the main result by Levenshtein [124,125,123]. The idea is to find good test

functions.
Let P

a+ n−32 ,b+ n−32
i (x) be the classical Jacobi polynomials with a, b ∈ {0, 1}. Set

T 1,εk (x, y) =
k∑
i=0

r1,εi P
n−1
2 ,ε+ n−32
i (x)P

n−1
2 ,ε+ n−32
i (y),

where r1,εi = ( n+2i−1+εn+ε−1 )
2−ε

(
n+i−2−ε

i

)
and ε ∈ {0, 1}. Let t1,1k and t1,0k be the largest zero of the

polynomials P
n−1
2 , n−12
k (x) and P

n−1
2 , n−32
k (x), respectively. Let Pnk (x) = P

n−1
2 , n−12
k (x). Then Pnk (x) =

Qk,n(x)
Qk,n(1)

holds and Pnk (x) is the Gegenbauer polynomial which is normalized to satisfy P
n
k (1) = 1. Levenshtein’s

polynomials are defined to be

f (y)m (x) = (x+ 1)ε(x− y)(T 1,εk−1(x, y))
2

wherem = 2k− 1+ ε and t1,1−εk−1+ε ≤ y < t
1,ε
k .

Theorem 3.12 (Levenshtein [124,125,123]). If X is an (n,M, y) code, then we have

M ≤
{
L2k−1(n, y), for t1,1k−1 ≤ y < t

1,0
k ,

L2k(n, y), for t1,0k ≤ y < t
1,1
k ,

where

L2k−1(n, y) =
(
k+ n− 3
k− 1

)(
2k+ n− 3
n− 1

−
P (n)k−1(y)− P

(n)
k (y)

(1− y)P (n)k (y)

)
,

L2k(n, y) =
(
k+ n− 2
k

)(
2k+ n− 1
n− 1

−
(1+ y)(P (n)k (y)− P

(n)
k+1(y))

(1− y)(P (n)k (y)+ P
(n)
k+1(y))

)
.

Moreover, if M = Lm(n, y), then X is a sphericalm-design and all the inner products x·y (x, y ∈ X, x 6= y)
are zeros of f (y)m (t).

We point out that the converse also holds. Namely, if X is a spherical t-design and an s-distance
set on Sn−1, and if t ≥ 2s− 1, then |X | = Lt(n, α) holds, where α is the largest number in A(X).
The work of Levenshtein mentioned above was to find good polynomial test functions F(x) to

use Lemma 3.8 or Lemma 2.15 for spherical codes and designs using Delsarte’s linear programming
method. Further improvements by finding better test functions for some particular n and t (say for
t-designs) were obtained by Boyvalenkov [57] and his associates. (See papers [57,60,62,142,61], etc.)
Yudin [183] extended these results further by considering test functions F(x)which are not necessarily
polynomial functions. His bound for the size |X | of spherical t-designs X on Sn−1 is far better than the
Fisher type bounds (mentioned in Theorem2.12), if the dimension n is fixed and if t goes to∞. (On the
other hand, if n and t are related in someway, it seems difficult to obtain substantial improvements of
the Fisher type bounds.) The method of Yudin is used in the work of Cohn–Kumar [77] on universally
optimal codes.
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(d) Spherical embeddings of association schemes and Q-polynomial association schemes
In this section, for simplicity, we consider symmetric association schemes. Let A =

〈A0, A1, . . . , Ad〉 = 〈E0, E1, . . . , Ed〉 be the Bose–Mesner algebra (over the real number field) of the
association scheme where E0, E1, . . . , Ed is the set of primitive idempotents. Then, for each i ≥ 1, we
can consider the embedding of the association scheme on the unit sphere Smi−1,wheremi = rank Ei.
As usual let {ex | x ∈ X} be the canonical basis of the |X |-dimensional vector space V indexed by X ,
i.e. for each x ∈ X , ex(y) = δx,y for y ∈ X .

X 3 x 7−→

√
|X |
mi

exEi ∈ Smi−1.

(Sometimes this map is not injective, but is always injective if the association scheme is primitive.)
We remark that in Bannai–Bannai [32], the primitive association scheme withm1 = 3 is uniquely

determined, i.e. a tetrahedron inR3. It is an interesting openproblem to study this problem form1 = 4,
say. You will find that this problem is not so easy to solve, because there are infinitely many examples
withm1 = 4. We believe that it is interesting to study the case when X are Q-polynomial schemes. (It
seems that this problem is still open.) Note that the balanced condition in Terwilliger [177] is closely
connected with the Q-polynomial property.
The condition that the association scheme X is Q-polynomial means that the dual intersection

matrix B∗1 is a tridiagonal matrix of size d + 1. The condition that X is embedded on S
m1−1 ⊂ Rm1

as a finite set of strength t (spherical t-design) and degree s (s-distance set) implies s = d and the first
few columns (about half of t) of B∗1 take certain specific values. So, in particular t is close to 2s, and the
freedom of parameters is very much restricted.
Very recently,Martin–Williford [130] proved that there are finitelymanyQ-polynomial association

schemes with a given first multiplicity (i.e. m1) at least three. (Still explicit determination even for
small values of m1 ≥ 4 seems to be relatively difficult.) Note that this is an analogue of the P-
polynomial version that there are only finitely many distance-regular graphs with given valency
k ≥ 3. (Bang–Koolen–Moulton [21] recently announced that the final solution to this problem was
obtained, but the paper is not yet available at the time of writing this survey: Oct 2008.)
The condition that X ⊂ Sm1−1 is equivalent to the condition that the dual intersection number

q11,1 = 0. (See Cameron–Goethals–Seidel [69], Cameron–van Lint [71], etc.) Such X (of strength t = 3
and degree s = 2) are strongly regular graphs whose subconstituents are also strongly regular graphs,
and are related to Margaret Smith graphs. Their parameters are classified as families (see [71]). The
construction and the classification problems of such graphs are very interesting. This can be regarded
as a very special case of the classification of universally optimal spherical codes.
In passing, we mention that a very short paper Bannai–Bannai [33] considers the spherical

embeddings of strongly regular graphs, and interpret the values of their character tables from the
viewpoint of 2-distance sets. (Larman–Rogers–Seidel [118] gives a nice result for 2-distance sets in
Rn namely, for a finite 2-distance set X in Rn satisfying |X | > 2n + 3, there exists a natural number
k ≥ 2 such that the ratio of the two distances of X is given by

√
k :
√
k− 1 with an integer satisfying

k ≤
√
n
2 +

1
2 .)

It would be very interesting if some generalization of this result of Larman–Rogers–Seidel could be
obtained, in particular for symmetric association schemes of class d ≥ 3 embedded on the unit sphere
Sm1−1.

Remark. Wemention thepapersMartin–Muzychuk–Williford [129] andAbdukhalikov–Bannai–Suda
[1], as papers discussing Q-polynomial association schemes and spherical embeddings.

4. Generalizations

4.1. Designs in compact symmetric spaces

In this subsection, we will discuss generalizations of spherical codes and designs to other spaces
such as projective spaces, Grassmannian spaces, Euclidean spaces, and possibly hyperbolic spaces,
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mostly just by referring the existing literature. The case of Euclidean spaces will be discussed more
carefully in the next section, and so in this subsection, we will discuss the generalizations to other
spaces.
(a) Projective spaces
There are many attempts to try to generalize the theory of spherical codes and designs to other

spaces. Before Delsarte–Goethals–Seidel studied spherical designs and codes in [88], they considered
systems of lines in [89] in Rn, and Cn. This is essentially equivalent to considering points in real and
complex projective spaces. Jacobi polynomials appear there instead of Gegenbauer polynomials.
The attempts try to find a common framework to study finite subsets in these projective spaces

(compact symmetric spaces of rank 1) and subsets in certain association schemes. They introduced
several concepts, like Delsarte spaces (see Neumaier [139,140], Godsil [96]), polynomial spaces (see
Levenshtein [124,125,123]), etc. The similarities of the theories between these continuous spaces
and association schemes (which are discrete) were evident from the earlier works of Delsarte [87],
Delsarte–Goethals–Seidel [89,88]. The most natural set up (for the continuous case) is in the compact
symmetric spaces of rank 1. (These spaces are classified, and they consist of projective spaces over
real, complex, quaternion fields, and projective places over the Cayley octanion.) The theory was
developed systematically by Hoggar [104] in that framework. Theory of codes and designs, the
concept of tight t-designs, and the classification problems of tight t-designs (i.e. Delsarte theory,
or algebraic combinatorics on projective spaces) were developed (cf. [44,45,105,106]). As it was
mentioned already, Gegenbauer polynomials in the case of spheres are replaced by certain classical
Jacobi polynomials. A similar theory was also developed in Russia, somewhat independently since the
communication between East andWest was not very good at that time, see e.g., Levenshtein [124,125,
123], Kabatiansky–Levenshtein [109]. The work of Levenshtein is very complete and thorough. (We
will not discuss these topics here, mainly because of the lack of both time and space, and the reader
is referred to the References [124,125,123,109,58,63,142], etc.)

(b) Grassmannian spaces
The Grassmannian spaces are the set of fixed-dimensional subspaces of a vector space. So this

is a generalization of projective spaces, where one-dimensional subspaces are considered. We can
consider Grassmannian spaces G(n, k) as the set of k-dimensional subspaces of an n-dimensional
vector space V overR,C,H. These are examples of general compact symmetric spaces of higher ranks.
(In what follows, we mostly consider real Grassmannian spaces over real field R.)
Interesting enough, sphere packing problems appear (in mid 1990) in connection with quantum

error correcting codes. (See [66,79,166], etc.)
The concept of t-designs in Grassmannian spaceswas introduced in Bachoc–Coulangeon–Nebe [8],

and basic properties were studied. Kinds of Delsarte theory, as well as the formulation of tight t-
designswas further studied in Bachoc–Bannai–Coulangeon [7], but the classification problems of tight
t-designs are still open. There are further studies on algebraic combinatorics of Grassmannian spaces,
although we will not go into the details. See, e.g., Bachoc [5,6], Barg–Nogin [51], Meyer (Ph.D. thesis,
Bordeaux, 2008), etc. Also, there are studies of t-designs in real Grassmannian spaces which are orbits
of finite groups of O(n). (See Tiep [178], etc.) Wewill not go into the details. It is expected that similar
theories exist in the framework of general (irreducible) compact symmetric spaces of arbitrary rank.
(They are completely classified, see e.g., Helgason [103], etc.)
(c) s-distance sets in various spaces
There is a natural upper bound for the cardinality of an s-distance subsetX ⊂ Sn−1 aswementioned

it in Section 2.4. (If this upper bound is attained, X becomes a tight 2s-design. So, they are basically
classified except for some small values of s. The situation is also true for s-distance sets in compact
symmetric spaces of rank 1.)
For s-distance subsets in Rn, Blokhuis [54], Bannai–Bannai–Stanton [39], proved an upper bound

|X | ≤
( n+s
s

)
. No non-trivial example attaining this upper bound was known at that time. Earlier

attempts to try to find or try to show the non-existence of such examples of s-distance set which
attain thus upper bound was unsuccessful. Finally, Lisoněk [126] found a non-trivial example for
(n, s) = (8, 2) with |X | = 45. (So far, this is the only known non-trivial example for s ≥ 2 and
n ≥ 2.) An attempt to try to understand this example in the frame work of Delsarte theory on Rn
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is unsuccessful yet. But it seems that this motivated the study of finite configurations in Rn, and the
recent study of Euclidean t-designs.
Deza–Frankl [92] consider s-inner product sets in Rn and obtain the same upper bound |X | ≤( n+s
s

)
. The existence and the classification problems seem to be open yet. There are recent works

by Nozaki [144], Nozaki–Shinoharaa [145], Musin [135], Shinohara [165] try to classify large sized
s-distance sets on Sn−1 or Rn for small s and n.
Finally, we mention that for the real hyperbolic space Hn−1, we have addition formulas on

Hn−1, and the same upper bound |X | ≤
( n+s
s

)
for an s-distance subset X in Hn−1, (see

Bannai–Blokhuis–Delsarte–Seidel [41], also Blokhuis–Seidel [55]). Again, it is open whether there is
any example which attains the upper bound. The concept of t-designs in Rn is defined. The concept
seems to be an appropriate one, although it may not be completely convincing, since they are rather
t-designs on several concentric spheres with the same center. The authors have been trying to define
the concept of t-designs in Hn−1, in some reasonable sense. We have to say our attempts have been
unsuccessful so far. So, we would like to challenge the reader to find it, if it is at all possible.

4.2. Euclidean designs

As a generalization of spherical t-designs, Neumaier and J.J. Seidel defined Euclidean t-
designs [141]. Let X be a finite set inRn. Let {‖u‖ | u ∈ X} = {r1, r2, . . . , rp}. Let Si = {x ∈ Rn | ‖x‖ =
ri} andXi = X∩Si for i = 1, 2, . . . , p. LetA(Xi, Xj) = {u·v | u ∈ Xi, v ∈ Xj}, and si,j(= sj,i) = |A(Xi, Xj)|
for 1 ≤ i, j ≤ p. We consider a positive weight function w : X −→ R>0. Let w(Xi) =

∑
u∈Xi w(u)

for i = 1, 2, . . . , p. Let σ , σ1, . . . , σp be the usual Haar measures on Sn−1, S1, . . . , Sp respectively
satisfying |Si| = rn−1i |S

n−1
| for i = 1, 2, . . . , p. Let S = S1∪S2∪· · ·∪Sp. LetPl(Rn) = ⊕li=0 Homi(R

n),

P ∗l (R
n) = ⊕

[
l
2 ]

i=0 Homl−2i(R
n), Pl(S) = {f |S | f ∈ Pl(Rn)} and P ∗l (S) = {f |S | f ∈ P ∗l (R

n)}.

Definition 4.1. A finite weighted set (X, w) is a Euclidean t-design if
p∑
i=1

w(Xi)
|Si|

∫
Si
f (x)dσi(x) =

∑
x∈X

w(x)f (x)

holds for any polynomial f (x) of degree at most t .

The following theorem gives a condition which is equivalent to the definition of Euclidean t-
designs.

Theorem 4.2 (Neumaier–Seidel). Let (X, w) be a weighted finite set in Rn. Then the following conditions
are equivalent.

(1) (X, w) is a Euclidean t-design.
(2)

∑
x∈X w(x)‖x‖

2jϕ(x) = 0 holds for any integers l and j satisfying 1 ≤ l ≤ t, 0 ≤ j ≤ [ t−l2 ] and
ϕ ∈ Harml(Rn).

(3) Any kind of moment of X of degree at most t is invariant under any orthogonal transformation.

Natural lower bounds for the cardinalities of Euclidean t-designs are known. The following
theorem is proved by Möller.

Theorem 4.3 (Möller). Let (X, w) be a Euclidean t-design. Then the following hold.

(1) If t = 2e, then |X | ≥ dim(Pe(S)).
(2) If t = 2e+ 1, then |X | ≥

{
2 dim(P∗e (S))− 1 if e is even and 0 ∈ X,
2 dim(P∗e (S)) otherwise.

Definition 4.4. Let (X, w) be a Euclidean t-design. If equality holds in one of the inequalities given
in Theorem 4.3, we say (X, w) is a tight t-design on p concentric spheres. Moreover if dim(Pe(S)) =
dim(Pe(Rn)) or dim(P ∗e (S)) = dim(P

∗
e (R

n)) holds, then (X, w) is called a Euclidean tight t-design.
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For basic properties on Euclidean designs, refer [141,91,34,26]. Interesting examples of Euclidean tight
designs or tight designs on p concentric spheres are found (see [19,18,31,26,27,38,40]).
In Section 2.2, wementioned that Delsarte–Goethals–Seidel showed that ‘‘good’’ spherical designs

have the structure of Q-polynomial association schemes. As a generalization of association schemes,
Higman defined coherent configurations. We investigated all the known examples of Euclidean tight
designs and found out that they have the structure of coherent configurations. Recentlywe proved the
following theorem which gives a connection between Euclidean designs and coherent configurations
[35]. (Cf. [142,61], etc. for coherent configurations.)

Theorem 4.5 (Bannai–Bannai). Let (X, w) be a Euclidean t-design. Assume w(x) is constant on each Xk,
(1 ≤ k ≤ p) and si,k + sk,j ≤ t − 2(p− 2) for any 1 ≤ i, j, k ≤ p. Then X has the structure of a coherent
configuration.

Theorem 4.6 (Bannai–Bannai). Let (X, w) be an antipodal Euclidean t-design. Assume w(x) is constant
on each Xk, (1 ≤ k ≤ p) and si,k + sk,j − δi,k − δk,j ≤ t − 2(p − 2) for any 1 ≤ i, j, k ≤ p. Then X has
the structure of a coherent configuration.

Remark. • It is proved that the weight functions of a tight t-design on p concentric spheres are
constant on each Xi and in particular if p = 2 then tight t-designs (X, w) on 2 concentric spheres
satisfy the condition of Theorems 4.5 and 4.6 [33,26].
•On the other hand, Bajnok [18] proved that inR3, the union of an octahedron, a cube–octahedron,

and a cube with appropriate weights, radii, and configurations, forms a tight 7-design of R3
which is antipodal. We checked that it has a structure of the coherent configuration of type
[3, 3, 2; 3, 5, 3; 2, 3, 4], however it does not satisfy the condition of Theorem 4.5.

It is known that if (X, w) is a Euclidean t-design, then (X ′, w′) is also a Euclidean t-design, where
X ′ = {ax | x ∈ X} and w′(ax) = λw(x) for x ∈ X with any positive real numbers a and λ. We call
Euclidean t-designs with constant weights on a sphere S(r) ⊂ Rn of radius r (i.e. p = 1) also spherical
t-designs when r 6= 1.Wewant to classify tight Euclidean t-designs or tight t-designs on p concentric
spheres up to similarities (including scaling of theweight functions). In the followingwe list all known
Euclidean tight t-designs or t-designs on p concentric spheres so far.

(1) InR2, Bajnok constructed examples of tight Euclidean t-designs or tight t-designs on p concentric
spheres for any t (see [19]). It is proved in [38] that if p is at most [ t4 ] + 1, then it is similar to one
of the examples given by Bajnok [19].

(2) (X, w) is a tight Euclidean 2-design inRn if and only if X is a (n+1)-point 1-innerproduct set with
a negative inner product, i.e. {u · v | u, v ∈ X, u 6= v} = {α} for a real number α < 0 (see [40]).

(3) Tight Euclidean 3-designs (X, w) in Rn are similar to X = {±riei | 1 ≤ i ≤ n}with w(riei) = 1
nr2i
,

1 ≤ i ≤ n (see [26]).
(4) Let (X, w) be a tight Euclidean 4-design with p = 2. Let X = X1 ∪ X2, |X1| ≤ |X2|.

If X1 = {0}, then X2 is a tight spherical 4-design.
If |X1| = n + 1, then n = 2, 4, 5, 6, 22. X2 has the structure of a tight 4-design in Johnson

scheme J(n+ 1, 2).
If |X1| = n+ 2, then n = 4 and X2 has the structure of the Hamming scheme H(2, 3).
If |X1| ≥ n+ 3 and n < 78, then n = 22 and |X1| = 33. In this case X2 has the structure of the

tight 4-design in the Hamming scheme H(11, 3).
For |X1| ≥ n + 3, n ≥ 78, the classification is still an open problem. For more information

see [27].
(5) Let (X, w) be a tight Euclidean 5-design with p = 2.

If X1 = {0}, then X2 is a tight spherical 5-design.
If 0 6∈ X , then n = 2, 3, 5, 6. For more information see [26].

(6) Let (X, w) be a tight Euclidean 7-design with p = 2.
Then 0 6∈ X and n = 2, 4, 7. For more information see [31].

(7) A tight Euclidean 7-design on 3 concentric spheres was constructed by Bajnok [18].
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Rigidity of the Euclidean t-designs
All the known examples of tight Euclidean t-designs are non-rigid except those given in (4) with

n 6= 2.
For Euclidean t-designs we give the following definition.

Definition 4.7 (StrongNon-rigidity [40]). Let
(
{ui}Ni=1, w

)
be a Euclidean t-design inRn. If the following

condition holds, then we say
(
{ui}Ni=1, w

)
is strongly non-rigid in Rn:

For any ε > 0 there exists a Euclidean t-design
(
{u′i}

N
i=1, w

′
)
such that the following two conditions

hold:

(1) ‖ui − u′i‖ < ε and |w(ui)− w′(u′i)| < ε, for any 1 ≤ i ≤ N; and
(2) There exist distinct i, j satisfying ‖ui‖ = ‖uj‖ and ‖u′i‖ 6= ‖u

′

j‖.

It is known that Euclidean tight 4 and 5-designs in R2 are strongly non-rigid [40]. Tight spherical 2
and 3-designs on Sn−1 are strongly non-rigid as Euclidean designs. (Euclidean tight 2 and 3-designs of
Rn are strongly non-rigid.)

4.3. Cubature formulas

In this section we consider cubature formulas and introduce the result obtained by Möller [132].
There is a long history of research on this subject.
First we give the definition. LetΩ be a subset of Rn. We consider an integral∫

Ω

f (x)µ(x)dx

where µ is a positive weight function onΩ and we assume all polynomials of up to sufficiently large
degrees are integrable. Usually the weight function µ(x) is normalized so that

∫
Ω
µ(x)dx = 1 holds.

Definition 4.8 (Cubature Formula of Degree t). Let X = {u1, . . . , uN} be a finite set in Ω . Then the
following equation is called a cubature formula of degree t with N points:∫

Ω

f (x)µ(x)dx =
N∑
i=1

λif (ui)

for any polynomial f (x) ∈ Pt(Rn), whereλ1, . . . , λN are positive real numberswhich are independent
of the choice of the polynomial f (x).

IfΩ is radially symmetric, i.e.Ω is a union of finite or infinite number of spheres centered at the
origin, and the weight function µ(x) is a radial function, i.e. depends only on ‖x‖, then the integral
is center symmetric, i.e.

∫
Ω
f (x)µ(x)d(x) = 0 holds for any polynomial of odd degree. In such a case∑N

i=1 λi‖xi‖
2jϕ(xi) = 0 holds for any integers l and j satisfying 1 ≤ l ≤ t , 0 ≤ j ≤ [ t−l2 ] and for any

ϕ ∈ Harml(Rn). Hence Theorem 4.2 implies that the weighted finite set (X, w) is a Euclidean t-design
with the weightw(xi) = λi, 1 ≤ i ≤ N .
For the number N of the points of a cubature formula of degree t , the following lower bounds are

known.

Theorem 4.9 (Möller [132]). Let N be the number of the points of a cubature formula of degree t on Ω .
Then the following hold.

(1) If t = 2e, then N ≥ dim(Pe(Ω)).

(2) If t = 2e+ 1, then N ≥
{
2 dim(P ∗e (Ω))− 1 for e even and 0 ∈ Ω
2 dim(P ∗e (Ω)) otherwise
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Also the following theorem is known.

Theorem 4.10. Let X = {x1, x2, . . . , xN} ⊂ Ω be the points of a cubature formula of degree 2e + 1.
Let w(xi) = λi, 1 ≤ i ≤ N. Assume N attains one of the lower bounds given in Theorem 4.9. Then the
following hold.

(1) (Möller) If e is odd, or e is even and 0 ∈ X, then X is antipodal and the weight function w(x) on X is
center symmetric.

(2) If e is even and 0 6∈ X, assume |Y | ≤ e
2 + 1 holds for any subset Y ⊂ X ∩ l satisfying x 6= −y for any

x, y ∈ Y , where l is any line passing through the origin. Then X is antipodal and the weight function
w(x) on X is center symmetric.

Remark. Theorem 4.10(1) was proved in [132], Theorem 4.10(2) was proved in [38] using a similar
method as in the proof of Möller.

A cubature formula of degree t ofRn with the exponential weight functionµ(x) = e−α‖x‖2 onRn is
called a Gaussian t-design when α is a positive real number (see [36]). Tight Euclidean 4-design with
n = 2 in the example (1) and the tight Euclidean 5-designs with n = 3, 5, 6 in the example (5) given
in the Section 4.2 are Gaussian designs with appropriately chosen α > 0 and w(x). For some of the
Euclidean tight t-design (X, w)with 0 6∈ X in the list we gave, X ∪ {0} become Gaussian t-designs for
an appropriately chosen α > 0 andw(x). For more information on this subject refer [36,38].
In Section 2.7, we briefly mentioned cubature formulas. (A one-dimensional cubature formula

is called quadrature formula.) The theory of cubature formulas has a tremendously rich history in
analysis, starting from Gauss, Jacobi, Tchebycheff, etc. and has many connections with other branches
of mathematics. We are not in a position to be able to summarize these deep and vast theories. Here,
we just mention that Stroud [174], Sobolev [172] are among the basic references on this topic.
When we discussed spherical t-designs X on Sn−1, we were interested in the two kinds of bounds,

(1): bounds for the value of Nn(t) (the minimum size of |X |; see Section 2.7), lower bound of |X |, and
(2): bounds for the value of g(n, t) (the minimum value for which a spherical t-design on Sn−1 exists
for every size |X | ≥ g(n, t); see Section 2.6). We can consider these two kinds of bounds for cubature
formulas. (We have briefly discussed the lower bound in this subsection already.) We remark that the
bound given below is a very general upper bound (for general domains with a general measure) and
known as Tchakaloff’s theorem [176].

Theorem 4.11 (Tchakaloff’s Theorem). Let µ be a positive measure with compact support K in Rn and
let t be a fixed positive integer. Then there are N points, xj ∈ K (1 ≤ j ≤ N), and positive real numbers
λj (1 ≤ j ≤ N) for some N ≤ dim(Pt(Rn)) such that:∫

Rn
f dµ(x) =

N∑
j=1

λjf (xj)

for all f ∈ Pt(Rn).

An alternative accessible (and giving a slightly more general result) proof is available in
Putinar [150].
The following theorem is an equivariant version of Tchakaloff’s theorem obtained by Victoir [181],

and for a finite groupG inO(n), it gives an upper bound of the number of nodes in the cubature formula
for a G-invariant measure on Rn.

Theorem 4.12 (Corollary 4.3 in [181]). Let n and t be positive integers. Let G be a finite subgroup of
O(n) and µ be a positive G-invariant measure on Rn with the property that

∫
|f (x)|dµ(x) < ∞ for

all f ∈ Pt(Rn). Then we can find N orbits xG1 , . . . , x
G
N in the support of µ and weights λ1, . . . , λN that

generate a G-invariant cubature formula of degree m with respect to µ with

N ≤ dim(Pt(Rn)G).
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(Here the theorem of Tchakaloff and theorem of Sobolev are used.) Moreover, Victoir [181] used
orthogonal arrays (designs inHamming association schemes) to obtain cubature formulas of relatively
small number of nodes for a hyperoctahedral group (W (Bn))-invariant measure. Essentially the same
result is also obtained by Kuperberg [116]. Bajnok [18] also considered explicit cubature formulas
(Euclidean designs) whose nodes are orbits of the hyperoctahedral groups. It seems interesting to
consider similar questions for other groups. (For further references on distributions of points on the
spheres, cf. [155,173,117], etc.)

4.4. Suggestions for further readings

For algebraic combinatorics in general, the books: Bannai–Ito [46], Brouwer–Cohen–Neumaier [64]
and Godsil [96] are the standard references. Delsarte [87] is a historical paper, which started Delsarte
theory (algebraic combinatorics) in the framework of association schemes.
The concept of spherical t-designswas introduced inDelsarte–Goethals–Seidel [88]. The paper [88]

coversmany interestingmaterials andwebelieve that it is relatively easy even for non-experts to read.
The book Bannai–Bannai [29] treat spherical t-designs, and more generally algebraic combinatorics
on spheres, following the paper Delsarte–Goethals–Seidel [88] and expands the treatments in various
directions. Unfortunately, this book is written in Japanese, and there is no English translation. The
reader will find that the present survey is a kind of short digest version of the book [29] with many
new updates.
There are already many survey articles which cover spherical codes and designs. Among them, de

la Harpe–Pache [84] gives a good survey from very broad viewpoints. There are many overlaps with
the book [29] and the present survey paper. Among our recent surveys, [38] discusses the topics of
cubature formulas and spherical and Euclidean t-designs more specifically. Of course, there are so
many books and survey papers on cubature formulas.
The papers Goethals–Seidel [97,98] are good references in early stages. Seidel [160] gives a short

survey on spherical designs in general. (See also [28,90,161], etc.) We mention the recent survey
papers [38,31] by the authors, including the discussions on Euclidean designs, in particular with
connection to Sections 4.2 and 4.3.
Conway–Sloane [80] is of course a comprehensive volume which deals with many related topics.

Ericson–Zinoviev [94] give many explicit examples of spherical codes. Levenshtein [123] gives a
very in-depth and comprehensive treatment on the various generalizations of Delsarte theory.
Venkov [179] of Enseignment Math explains the in-depth research of Venkov, as well as related
developments, in particular in connectionwith Section 3.2.We recommendNebe–Rains–Sloane [138],
in particular in connection with Section 3.1 and a part of Section 4.1. In connection with Section 4.3,
we recommend the reader to read Cohn–Kumar [77] and Ballinger et al. [20]. We are afraid that many
important references are still missing here.
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