
 

 
Cubature for the Sphere and the Discrete Spherical Harmonic Transform
Author(s): Mark Taylor
Source: SIAM Journal on Numerical Analysis, Vol. 32, No. 2 (Apr., 1995), pp. 667-670
Published by: Society for Industrial and Applied Mathematics
Stable URL: https://www.jstor.org/stable/2158417
Accessed: 02-10-2024 08:52 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

https://about.jstor.org/terms

Society for Industrial and Applied Mathematics is collaborating with JSTOR to digitize,
preserve and extend access to SIAM Journal on Numerical Analysis

This content downloaded from 87.15.46.198 on Wed, 02 Oct 2024 08:52:05 UTC
All use subject to https://about.jstor.org/terms



SIAM J. NUMER. ANAL. ? 1995 Society for Industrial and Applied MathematicsVol. 32, No. 2, pp. 667-670, April 1995 016

CUBATURE FOR THE SPHERE AND THE
DISCRETE SPHERICAL HARMONIC TRANSFORM*

MARK TAYLORt

Abstract. Using a result of Bannai and Damerell, it is shown that a cubature formula with N
points of degree 2s > 4 for the surface of the n-dimensional sphere Un cannot achieve the classical
lower bound of dim Ps, where Ps is the space of all polynomials in n variables of at most degree
s restricted to Un. This implies that for n > 2 there does not exist a cubature-based discrete
n-dimensional spherical harmonic transform for degree s > 2 with the same number of points as
spectral coefficients.
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1. Introduction. Computing integrals over the surface of the sphere has many
applications including the spectral transform algorithms used in most global climate
models [3], [6]. For stability and accuracy, discrete transforms compute a least squares
approximation of the spectral coefficients from a set of function values. To avoid
solving the associated linear system, most transforms are based on exact cubature (or
quadrature in one dimension) formulas. Here we denote a cubature formula which
approximates the integral over Un, the surface of the n-dimensional sphere, by

N

Cd(f) = Wkf(Xk) / f(x)ds(x),
k=1

where the Wk are positive weights and the Xk are points on Un, 1 < k < N. A cubature
formula is said to have degree d if

Cd(f) = j f(x)ds(x) Vf c pd

where pd is the space of all polynomials of at most degree d in n variables restricted
to U,. The spherical harmonics Yk are an orthonormal basis for pd for 0 < I < d and
1 Km < M(l, n). The dimension Of pd

dim ZdEM(l,t) (n + 2d- 1)(n + d- 2)!
1=0(r-)d

and the form of Y' and M(l, n) can be found in [13].
There has been a significant amount of work on the construction of cubature

formulas for Un which maximize d and minimize N, such as in [18], [9], [14], [7], [17],
and [1]. Numerical methods for their construction have been given in [10], [12], and
[8]. The classic lower bound for a degree d = 2s cubature formula is N > dim Ps ([18],
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668 MARK TAYLOR
[11]), but the above references show that for n > 2 there are only a few values of d
where such minimal cubature formulas are known. In this paper, using the following
result of [2], we show that for d = 2s, the lower bound for N of dim P cannot be
achieved for n > 2 and s > 2.

THEOREM 1 [2]. A cubature formula of degree 2s with N equally weighted points
does not exist for the surface of the n-dimensional sphere Un, n > 2 with N = dimPW
and s > 2.

For domains such as the unit interval, the restriction that the quadrature points
be equally weighted is quite severe and substantially increases the number of points
needed to achieve a given degree; see [16, Chap. 6]. However, in ?3 we show that for
Un, if a minimal (N = dimP8) cubature formula exists then all the weights must be
equal and thus the result of [2] applies.

2. Relation to the discrete spectral transform. A degree s discrete spher-
ical harmonic transform (DST) must invert the synthesis operation

s M(1,n)

(1) ~~~~~~f (X) flE fmEm
1=0 m=1

by computing the integrals

fl -J f (x)Y.' (x) ds (x), O < I < s, I < m < M(l,n)

exactly for all f c 'Ps. If this is to be done by cubature, a necessary and sufficient
condition is that the cubature formula be of degree 2s since the span of the product of
all pairs of polynomials in Ps iS p2s* The DST generated by such a cubature formula
represents an RN -> R' linear map from function values at the N cubature points to
the P = dim Ps spectral coefficients. That such a map, under a suitable norm, gives
the least squares approximation of the spectral coefficients was shown by Swarztrauber
[19]. This map inverts the Rp -* RN linear map given by the synthesis operation of
evaluating a function given by P spectral coefficients at the N cubature points. Thus
we have established that N > P. Furthermore, if N = P then both maps must be
inverses of each other.

It will be shown in the next section that there is no cubature formula with N = P
for s > 2, n > 2, and thus there can be no cubature-based invertible DST for s > 2,
n > 2. But first we will discuss the two- and three-dimensional cases.

For n 2, the restriction of polynomials in two variables to the boundary of the
unit disk U2 can be thought of as trigonometric polynomials on the interval [0, 27r].
For this case, we have the well-known discrete Fourier transform (DFT), which uses
the trapezoidal rule with 2s + 1 points to approximate the integrals which define the
Fourier coefficients up to degree s. This approximation is exact for the dimension
2s + 1 space of trigonometric polynomial up to degree s. The fast Fourier transform
(FFT) uses the trapezoidal rule with one less point, but does not resolve all of the
degree s trigonometric polynomials. Both of these quadrature-based transforms have
N = P and are invertible.

For n = 3, the DST most commonly used by spherical spectral mnethods relies
on the spherical product Gauss cubature formula ([5], [18, ?2.7]). For a function rep-
resentable as a sum of spherical harmonics up to degree s, this degree 2s cubature
formnula requires function values at (2s+ 1) (s+ 1) points to compute the (s + 1)2 spher-
ical harmonic coefficients. Unlike the DFT, this DST does not provide an invertible
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CUBATURE FOR THE SPHERE 669

mapping from the function values at the grid points to the spectral coefficients since
N > P.

3. Nonexistence of minimal cubature. We can now easily show the following
theorem.

THEOREM 2. A cubature formula of degree 2s does not exist for the surface of
the n-dimensional sphere Un, n > 2 with N = dimP8 and s > 2.

Proof. Assume such a minimal cubature formula exists with weights Wk and
points Xk, 1 < k < N. Since the points xk lie on the surface of the unit sphere,
they may be treated as vectors with inner product Xk Xk = 1. From ?2, we have that
the associated DST applied to an arbitrary set of function values {f (Xk), 1 < k < N}
must be inverted by the synthesis operation (1) and thus

s M(I,n) /NN\
f(xj) WkE E-mWk (Xk) f(Xk)) Y-1(Xj), 1 < j<N.

1=0 m=1 k=1

Interchanging the order of summation, we have

N

(2) f(xj) = W,kK(xj Xk)f(Xk)
k=1

where
s M(1,n)

K(xj * Xk) = E E Yl (xk,)Y (xj)
1=0 m=1

depends only on the inner product of xj and Xk by the addition theorem for spherical
harmonics [13]. Since equation (2) holds for arbitrary {f(Xk), 1 < k < N}, we have

WkK(Xk { Xj) = 1, k j,wkK(xkxJ) 0, k 4j,

and WkK(Xk * Xk) = WkK(l) = 1 for all k. Thus Wk must be independent of k and
we can apply Theorem 1 to finish the proof. We note that the reproducing kernel K
appears in the literature ([15], [11], [4]), but here the use of spherical harmonics allows
us to calculate the form of K.
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