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Codes (Spherical) and Designs (Experimental)

R. H. Hardin and N. J. A. Sloane

ABSTRACT. An overview of the authors’ work (partly in collaboration with
W. D. Smith) on the problems of packing equal nonoverlapping spherical caps
on a sphere in d dimensions, covering the sphere with equal caps in the most
economical way, finding sets of points on a sphere with minimal energy, or
whose convex hull has the greatest volume, or which can be used for numerical
integration on the sphere (spherical t-designs), etc., as well as the problems
of choosing good sets of points in the ball or cube to be used as experimental
designs.

1. Preamble

A lot has been written about the connections between classical codes and com-
binatorial designs [1], [44], [58], [65]. That is not what this lecture is about! The
codes we will discuss are sets of points on the unit sphere

Qd:Sd“lz{(xl,...,md)eRd:xf—kw-—i—xﬁ:l},

and the designs are those used by experimenters: statisticians’ designs, not math-
ematicians’.

There is a curious story behind our work on experimental designs. An article
about the second author, dealing especially with the perhaps surprising connections
between the problems of finding good packings of equal spheres in R? and of finding
good signaling sets for digital communications, appeared in the October 1990 issue
of the magazine Discover [5]. This article resulted in a large number of letters from
readers. A few quotations will indicate why most of them could be tossed aside
with a laugh:

“Amazing. Dr. K____ breaks through /2. Solves one of Science’s
Unbreakable Enigmas ...”

“On page 697 of this report, you will find the single most important
statement in the history of physics ...”

“It is convenient to assume that your ‘Handbook of Integer Sequences’
is the single most important mathematical ‘discovery’ in the last 3000
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years [He is referring to [71].] ... Get ready for your annual paid
vacation to Stockholm.”

One letter, however, looked extremely interesting. It was written by a statisti-
cian, David Doehlert, of the Experiment Strategies Foundation in Seattle. He had
come across the article by chance in an airplane, and immediately dashed off a note
saying: Since you know how to pack spheres, I wish you would solve this problem,
that has interested me for many years, and is of some importance in statistics: can
you place 14 (or 15, or 16) points “nicely” on a sphere in four dimensions? What
about 20 (or 21, or 22) points on a sphere in five dimensions, and so on?

2. Placing points on a sphere and related problems

Doehlert’s letter had come to the right place. For many years the authors and
Warren D. Smith have been building up tables of nice arrangements of points on
spheres. The three of us call ourselves the ‘Codemart’ team, and our logo is shown
in Figure 1. In fact we have even designed our own T-shirt, a photograph of which
can be seen on page 308 of [30].

Another code from

CODEMART
R. H. Hardin, N. J. A. Sloane and W. D. Smith

AT&T Bell Laboratories
Room 2C-376, Murray Hill, New Jersey 07974 USA

FIGURE 1. The ‘Codemart’ logo.

What does a “nice” arrangement mean? We have considered several different
criteria.

(P1) The packing problems. Place N points P,..., Py on the sphere 0,
0 as to maximize the minimal distance between them. The distance is chordal
distance, but an equivalent and nicer formulation is to choose Pi,..., Py so as to

(1) minimize max P; - P; ,
i#£]
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regarding the points as unit vectors from the center of the sphere. A third for-
mulation, also equivalent, is to maximize the minimal angle between the points,
measuring angles from the center.

(P2) The covering problem. Choose P;,...,Py on §; so as to minimize
the maximal distance from a point of Qg to the nearest P;:
minimize max max X P,
XeQq i=1,..,N
One may think of the P; as locations of fuel supplies on the moon, to be placed
so that no matter where one lands on the moon, the distance to the nearest fuel
supply is not too great.

The difference between the packing and covering problems is sometimes de-
scribed in terms of convenience stores (“7-11" stores in some parts of the U.S.A.).
From the point of view of the managers of the stores, they should be placed as far
apart as possible, i.e. they should be a packing. But from the customers’ point of
view, the stores should be placed so that no one has too far to walk to the nearest
store, i.e. they should form a covering.

(P3) The quantizing problem. Choose P, ..., Py on Qy so as to minimize
the mean squared error when the points are used as a quantizer or analog-to-digital
converter. A point X is chosen at random on £4, and replaced by the closest P;(X).
The P; should be chosen so that the average error

| = POoRa(x)
XeQy
is minimized, where 4 is uniform measure on the sphere.

(P4) The minimal error probability problem. Now the P; represent sig-
nals in a communication system. When P; is transmitted, the received signal is a
neighboring point X on the sphere, where | X — P;| has a Gaussian distribution with
mean 0 and variance o2. The decoder replaces X by the closest P;, and therefore
makes an error if j # i¢. The problem is to choose Pi,...,Py € Q4 so that the
average probability of error is minimized.

(P5) The maximal volume problem. Choose P;,... , Py € Q4 so that the
volume of their convex hull is maximized. The polytope formed by the convex hull
of such a set of points has sometimes been used as an answer to the question: which
N-vertex polytope inscribed in the unit sphere gives the best approximation to the
sphere?

(P6) Best set of points for numerical integration. The idea is that we
will approximate the integral of a function on the sphere by its average over our set
of points:

) | S@iuta NZf

(It is also possible to allow coefficients or weights on the right- hand side of (2}, but
we shall not consider this here.)

We say that Py,..., Py € Qy form a spherical t-design if equality holds in (2)
for all polynomials f of degree < ¢. For given values of d and t, the problem is
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to find what values of N are possible, and in particular to determine the minimal
value of N.

There are several related problems: for example, replace the sphere on the left-
hand side of (2) by the ball By = {(z1,...,24) € R%: 22 + ... + 2% < 1}, and
choose Py, ..., Py € By on the right-hand side.

Alternatively, there is the interpolation problem: we wish to interpolate f

over {4 from its values at P,... , Py. How should the P, be chosen?
(P7) Minimal energy arrangements. Choose P;,...,Py € g so as to
minimize the potential energy
Y R
< P =Pyl

for a given value of m (usually taken to be 2}.
After Doehlert’s letter arrived, we added another criterion:

(P8) Best statistical design. A simple version of this problem is: choose
Py, ..., Py € 1y so that, when supplemented by an appropriate number of mea-
surements at the center of the sphere, they form an optimal design for fitting a
quadratic response surface.

Of course, as we shall discuss in Section 4, this is just one special case of a very
large class of problems.

Two further problems should be mentioned, since we have successfully applied
the same methods to them.

(P9) Construction of Isometric Embeddings. A set of points Py,... , Py
in R? is said to form an isometric embedding of degree 2s if the following identity
holds:

N
(3) (@ 2)* =) (P,-2)°,
i=1
where z = (21, ... ,x4) is a vector of indeterminates. This problem is also connected

with numerical integration on the sphere (see [56], [66], [70]). We will discuss our
results on this problem in Section 6.

(P10) Minimal energy arrangements of balls. Choose Py,..., Py € R?
so that |P; — P;| > 2 for ¢ # j (so the balls have radius 1 and do not overlap) and

the second moment
N

d 1P PP

=1
is minimized, where P = (1/N) 3" P; is the centroid of the points. For our results
on this problem, see [72].

The packing problem, (P1), is the most widely studied. It is sometimes known
as the Tammes problem after the Dutch botanist P.M.L. Tammes who was led
to this question by studying the distribution of pores on pollen grains [74]. The
following rather long list of references has been chosen from a much greater list (see
the bibliography in [42]) to illustrate the richness of this subject: [11], [13], [15],
(17), [19], (28], [29], [31]-[35], [36], [50], [53], [54], [55], [57], [59], [67], [68], [69),
[73], [75]-]78], [81].
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Our own work on all these problems, and on the packing problem in particular,
will be described in our book-in-preparation [42] (see also the next section).

Problems (P2), (P3) and (P4) are related in that they can all be expressed in
terms of the Voronoi regions of the points. Problem (P2) asks that the greatest
circumradius of any Voronoi cell should be minimized, problem (P3) that the av-
erage second moment of the Voronoi cells be minimized, and so on. Not so much
has been written about these problems (see [14], [79]). For problem (P5) see [6],
[42] and the following section. We defer discussion of problems (P6) and (P8) to
Sections 5 and 4 respectively.

The minimal energy problem, (P7), also has an extensive literature: see [4],
(24], [26], [52], [59], [64], [80], and especially [42] and the following section.

Spherical codes. Strictly speaking, by analogy with classical coding theory,
only the solutions to problems (P1) and (P4) should be called spherical codes.
However, we often use the term more generally to refer to any nice arrangement of
points on Q.

Comparison of problems. At first one expects that the answers to all these
problems will be the same: a good packing of 24 points should also be a good
covering, and so on. Nothing could be further from the truth. Except in very
special cases, the answers to most of these problems are different. The case of 12
points in 3 dimensions is one of the exceptions: we believe the set of twelve vertices
of a regular icosahedron solves all these problems. But in general it seems that
each of problems (P1), (P2), (P5), (P6) and (P7) requires a different arrangement
of points for its solution. (We have not investigated problems (P3) and (P4), and
problem (P8) in the form we have stated it is very similar to the case t = 4 of (P6),
the construction of spherical 4-designs; so we exclude problems (P3), (P4) and (P8)
from this discussion.)

We illustrate by discussing the case of N = 24 points in 3 dimensions, since this
is one of the few cases where the optimal solution to any of these problems has been
established theoretically. Robinson [67] showed in 1961 that the best packing of 24
points is achieved by the vertices of a regular snub cube, one of the Archimedean
solids (cf. [20]). According to our tables, however (see the next section), the 24-
point solutions to the covering problem (P2}, the maximal volume problem (P5),
and the minimal energy configuration (P7) are all different from each other and
from the regular snub cube. Furthermore the vertices of the regular snub cube
form only a spherical 3-design (see Problem (P6)). We have recently discovered
[41] that by modifying the shape of the snub cube slightly the vertices can be made
to form a spherical 7-design: we call this the “improved snub cube”.

The following table compares the different solutions, giving both the minimal
angle between the points and the order of the symmetry group.

Problem Min. angle Group
Packing (P1) 43.691° 24
Min. energy (P7) 42.065° 24
t-design (P6) 41.376° 24
Max. volume (P5)  40.512° 4

Covering (P2) 36.673° 4
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The first three solutions are all snub cubes, consisting of the 24 points that can be
obtained from a single point (A, B, C) by applying any even permutation followed
by changing any even number of signs, or any odd permutation followed by changing
any odd number of signs. For the packing problem A, B, C are respectively .8503,
4623, .2514, giving the regular snub cube; for the minimal energy problem they are
8616, .4416, .2503; and for our new spherical 7-design, the “improved snub cube”,
they are .8662, .4225, .2666 (see [41] for details). The last two configurations in the
table have a completely different structure, being both less symmetrical and having
only triangular faces. Figure 2 shows the 24-point packing (left-hand picture),
covering (center picture) and maximal volume arrangement (right-hand picture).
The pictures show the convex hulls of the points. The regular snub cube in the
left-hand picture has a diagonal drawn on each of its square faces. The “improved
snub cube” and the 24-point minimal energy configurations are not shown, but in
appearance are almost indistinguishable from the regular snub cube.

Although we do not know for certain that these are the optimal solutions to
the minimal energy, maximal volume, and covering problems with 24 points, we
strongly believe that they are. (It should not be difficult to show that there cannot
be a single 24-point arrangement that beats the three designs mentioned for these
three problems.)

We find this very convincing evidence that in general these problems have
different solutions.

Incidentally it would be useful to have some theorems connecting the different
problems. For example, if 6, (resp. 6.) is the maximal angular separation in the
best N-point packing (resp. covering), then of course 6. < 6,. How small can 6,
be with respect to 6,7 Similar questions can be asked about the other problems.

ATAN
=

FIGURE 2. Best 24-point packing and putatively best 24-point cov-
ering and maximal-volume arrangements.

3. Our tables

Our initial response to Doehlert’s letter was to extract an appropriate collection
of packings from our tables and send them to him. (We will discuss his answer in
the next section.)

Our tables have been constructed using a variety of techniques, and include
putative solutions to problems (P1)-(P10) (except (P2) and (P3), which we have
not vet considered) for various dimensions (d) and numbers of points (N).
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Our main tool, at least for ‘small’ numbers of points (say with Nd < 500), is an
optimizer that is a modification of the Hooke and Jeeves [43] pattern search, and
which is described in greater detail in [38] (see also [3]). We have made effective use
of suitably modified versions of this optimizer for attacking all of these problems.

Our tables extend far beyond any others that have been published. We have
several reasons for believing that are solutions are either optimal or very close to
optimal: (a) in the case of the packing problem, where there has been a considerable
amount of prior work, our solutions (with seven exceptions') are at least as good
as the old records; (b) in the case of experimental designs for fitting linear models,
where again a considerable amount was already known about optimal solutions,
our optimizer was usually able to find these solutions in the range Nd < 500 (see
[38] for details); and (c) as we shall discuss in Section 9, similar remarks apply to
the case of quadratic response surface designs in the sphere.

We are in the process of publishing all these tables, principally in the book
[42] that we are preparing. But in view of the considerable recent interest in these
problems, we are making these tables available before the book is completed.

.The tables are in netlib, and can be accessed via ema OCT 2005 . THE
netlib archive the directories -

A DT e - )
att/math/sloane/packings THBLES ARE Now

att/math/sloane/coverings ON NT <0 Home

att/math/sloane/maxvolumes P& i
att/math/sloane/sphdesigns )
att/math/sloane/electrons
att/math/sloane/gosset

att/math/sloane/iedir

att/math/sloane/cluster

contain solutions to problems P1, P2, P5-P10 respectively, and
att/math/sloane /icosahedral

contains solutions to problems P1, P2 and P5 with icosahedral symmetry. Inci-
dentally there are similar directories for Hadamard matrices, orthogonal arrays,
minimal Lennard-Jones potentia] packings, and constant weight codes, as well as a
directory att/ math/sloane/doc that contains many of our papers.
We first describe how to access the archive by email. One can find out what is
available by sending a message to netlib@research.att.com containing lines like
send index for att/math/sloane/packings
send index for att/math/sloane/packings /dim4
send index for att/math /sloane/doc

The return mail will have a list of available material. For example, here is one of
the items from att/math /sloane/packings/dim4:

file att/math/sloane/packings/dim4/pack.4.24

by R.H. Hardin, N.J.A. Sloane & W.D. Smith

for  File pack.4.24 contains the coords of the putatively optimal
packing of 24 points on a sphere in 4 dimensions

# For more information see att /math/sloane/ packings/readme

# Copyright 1994 by R.H. Hardin, N.J.A. Sloane and W.D. Smith

'Ford =3 and N = 21, 27, 33, 66, 74, 81 and 86, Kottwitz’s packings [50], [51] were better

than ours. With his permission, we have added his packings, duly credited, to our tables.
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To order this item, send the message
send att/math/sloane/packings/dim4/pack.4.24
or equivalently
send pack.4.24 from att/math/sloane/packings/dim4

to netlib@research.att.com. The file will be sent in one or more pieces. The mail
header should be stripped from each piece to produce a shell file. The shell files
may be run in any order; the original document will be created as the last shell file
is run. (Of course this particular example would fit in a single file.)

For example, you might receive a large file in four chunks, which could arrive
in any order. Strip off the mail headers, and call them say templ, ..., temp4, in
any order. Then do $ sh templ, ..., $ sh temp4. At the end, the requested file will
have been created.

The default limit for the size of each chunk is just under one megabyte. If this
is too large for your mail program to handle, include a line such as

mailsize 40k

in your request. This will limit the size of the chunks to 40 KB.
The request
send getting.stuff from att/math

will produce further instructions.
Second, ftp access. Connect by ftp to netlib.att.com, login as anonymous, and
use your email address as password. Now type

binary
cd netlib/att/math/sloane/packings

for example. You can then use “Is” to see what files are available, “get” to fetch
them, “cd” to move to subdirectories, etc., and “quit” to quit.

(The files you receive will be compressed, and end with .Z, e.g. pack.4.24.7Z.
Do $ uncompress pack.4.24.Z to uncompress them.)

Third, from a Mosaic document viewer, you can get directly to the material.
Open an URL address such as:

ftp://netlib.att.com/netlib/att/math/sloane/doc/index.html.Z

ftp://netlib.att.com/netlib/att /math/sloane/packings/index.html.Z

ftp:/ /netlib.att.com/netlib/att /math/sloane/packings/dim4/index.html.Z
This will give you a screen of short descriptions of all the items available. Clicking
on one gives you the document, which can then be saved in a file.

At the present time the archive contains packings in dimensions 3, 4, 5 with
N < 130 points, as well as an extensive table of larger 3-dimensional packings
with icosahedral symmetry. We are in the process of adding a much larger table of
packings in up to 24 dimensions that we have constructed by other techniques.

We would greatly appreciate hearing? of improvements to any of these tables,
and will be glad to include them in the archive, giving credit to the discoverer.

Figures 3-10 show some examples of our spherical codes. Figure 3 shows our
best packings, coverings and maximal volume arrangements for 72 and 100 points.

28end them to N.J.A. Sloane, preferably by electronic mail to njas@research.att.com, or by
fax to (908) 582 3340, or by regular mail to N.J.A. Sloane, Room 2C-376, AT&T Bell Labs,
Murray Hill, NJ 07974, USA.
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FIGURE 3. From left to right, top to bottom, the putatively best
packings, coverings and maximal volume arrangements for 72 and
100 points respectively.

In Figure 3 (as in Figure 2) the pictures show the convex hulls of the arrange-
ments. Figures 4-9 show packings with icosahedral symmetry and various numbers
of points in the range 300 to 2000. In Figs. 4 and 5 we see the contact graph of
the points (i.e. only points at the minimal separation are joined). The pictures
have been projected stereographically with a horizon of 50° North. The 1952-point
packing shown in Fig. 5 is on the front of the Codemart T-sheet. On the back is
an 8192-point covering, shown in Fig. 6. Unlike the earlier pictures, which all show
the best arrangements found, Fig. 6 was chosen for its aesthetic appearance, and is
not the best 8192-point covering found. It has covering radius 1.408641°, which is
very slightly inferior to the arrangement shown in Fig. 7, which has covering radius
1.404871°. The best 8192-packing found (Fig. 8) is much less pleasing to the eye.

We have found this to be true in general: coverings look nicer (and have larger
symmetry groups) than packings.

After seeing Figs. 6-8 the reader may ask, why not simply cover the sphere
completely with a grid of triangles, with six lines meeting at each point? Or why
not simply place the points “uniformly” on the sphere, so that every point looks
like every one (as in the icosahedron, for example)? The answers are that the first
suggestion is simply impossible (it would violate Euler’s theorem, see [20], §3.6),
and the second suggestion is only viable for small numbers of points. Jordan’s
theorem (see for example [23], §30) gives an upper limit on how many points can be
placed on Qg (for d > 3) in such a way that their symmetry group acts transitively.
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FIGURE 6. Second-best 8192-point covering with icosahedral symmetry.

For nondegenerate arrangements the limits in dimensions 3, 4, 5, 8 are respectively
120, 14400, 720, 696729600 .

Except for degenerate arrangements — such as placing them all on the equator —
there is no way to place 121 or more points on {23 so that they are all equivalent.
Completely symmetric spherical codes with large numbers of points are impossible
in any dimension above 2. On the one hand this means that the solutions aren't
always pretty; on the other hand it makes the problems interesting.

4. Experimental designs and “Gosset”

We now return to our discussion of Doehlert’s letter. We sent him a number of
our best packings (of 14 to 20 points in 4 dimensions, 20-25 points in 5 dimensions,
and so on), which he was very happy to receive and started using right away in
his consulting work. However, he then explained that the problem he was really
interested in was not exactly the packing problem, but rather the question of finding
optimal experimental designs.

The following is a brief introduction to the subject of Design of Experiments.
Further information can be found in any one of a large number of books — see for
example (2], [9], [21], [46], (48], [63].

Your client is in charge of a refinery that produces oil (Fig. 9). The oil
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FIGURE 7. Best 8192-point covering with icosahedral symmetry,

output y depends on the settings of four variables, which we will pretend are
Z1 = temperature, z» = pressure, 23 = cooking time, 7, = percentage of nitrogen.
The client’s problem is to adjust the settings of these variables so as to maximize
the output. We suppose that the client has a rough idea of the best operating
region, so that after rescaling the variables we may assume that the sought-for best
operating point (the “sweet spot”) is in a ball of radius 1 around the origin.

Let us assume now that the oil output y is well-represented by the constant,
linear and quadratic terms of its Taylor series expansion in terms of the z;. Thus
our model for the refinery is

@ Yy = Bo+bBimi+ -+ faza+ Bzt + - 4 Buyx?
+ Biaxiza + - - + Baazars + €,

where the 3; are unknown coefficients, and ¢ is an error term. There are 15 coeffi-
cients 3; in this model (and more generally (";‘2) for a quadratic model involving n
variables). So we will certainly have to make at least 15 measurements (or “runs”)
to determine the coefficients. In fact a minimal design would consist of one mea-
surement at the center of the ball and 14 measurements on the boundary of the
ball — this explains Doehlert’s initial question about placing 14 points on a sphere
in four dimensions!




R. H. HARDIN AND N. J. A. SLOANE

NARGS
SRR
SUSEN

é‘n‘\‘s‘ﬁ\

A 1
v Vb AVai g
S T A AT G VAVAVAVAVAVAVAV VAV YAV, v, Q ORI
e N VAT T AVAVAYAVAN NN P v AVA VA, AVAV, y AV AV AV AV T AT I TN
A\ ALY, 2\ AV, AV YAy, AV VAV y Ay y A
N A A N T N AVAV Ay AVaV, y oA ATy AT AV AV T AV, AYAY, VAT, AT
N ANV A LA VAVAV AV AVAVAY, y AVAY, 3 VAV y VAV AV A VAR eAvay vy Vi
IR AN IND YAVAVAVAVA AVAVL Y, ‘477 AV, Vv . AV Avav vy ANy Vi
O Y AN AVAVAVAVAVAY v, AT AVAV, AV AV AV AV A A AV ey b Vg
BN I NN AT YA AV, YAV AV A o Y Ay, Ay AT
L0 YA ATAAAV YA,y SAVAVyy, AVAv, YAV y AV AV s ANy AV gy Uy
s e QU A SO VAV AV, o, AW o AV AV VA YAV AV Ay v
e O T AN ANV VAYaAV, v o AV S 4V, AV AV, A%y AVay, AWy aviplary Sy
PR HA O Y SO PSAEXOADAAAN
O A R A VA A haw, A%y, DOAASOAT Ay v
T e &
e S g
BNV KRR NDIICINRI S \
KRR
B R SRK]
RN KRS MK]
BRI KRR
BRI
FTRRR
: NRKERK
3 KK
DRI L
K]
>

)

50
{/
i,
0
\\
XD

FIGURE 8. Best 8192-point packing with icosahedral symmetry.

But minimal designs are risky, for a variety of reasons, and a good design
here would use some greater number p (say) of measurements, where p > 15,
perhaps p = 18 or 20. On the other hand p cannot be made too large, because the
experiments are expensive and time consuming.

The problem in designing the experiment is to determine the “best” location
for these p measurements. “Best” can be interpreted in many ways, and there is
no universal agreement on which sense is best. Our own preference is very strongly
in favor of what are called I-optimal designs.

In order to explain this, it is necessary to discuss what happens after the mea-
surements have been made. We continue to use the quadratic model (4), although
a similar analysis applies to other models.

Equation (4) can be written as

y=f(z)8" +e,

where f(x) = (1,21,22,... ,2374) is a vector listing the monomials that appear in
the model, 8 = (8y, 51, ... , 334) is a vector of unknown coefficients, and ¢r denotes
transpose. We will assume that the error ¢ can be represented as a random variable
with mean 0 and variance 02, and that the errors in different measurements are
independent.
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> oily = f(a)

FIGURE 9

Suppose we make p measurements of y at the points

29 = (@, 2,20, 2{), i=1,... p

bl

obtaining the values
Y = (y(@W),...,yz®)) .
Then we have
Ytr — Xﬂt’r + ZtT ,

where Z is a vector of érrors, and the p x 15 design matriz X is given by
Fzh)
x=[

E)

The best (least squares) estimate of 3 is then

-~

/6 — (XtTX)—lXtrY ’

which has mean Ef = 3, and covariance

Cov(ﬁ) = E(B— ﬁ)”(ﬁ— B)
- UZ(XtTX)—l .
Our estimate for y is R
v=f(z)8",

which has variance

Var(y) = E(7-p)?
(8) = o f@)(XTX) (@)

This is the prediction variance.
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An I-optimal design (see [7], [8]) is one which minimizes the average (or inte-
grated) prediction variance over the region where we are fitting the model. Actually
it i3 important to distinguish two difference regions: there is the measurement (or
operating) region O, where we can make observations, and the modeling region R,
where we want to fit the model. (In our program gosset, described below, these
two regions can be specified independently.)

More precisely, an I-optimal design is one which minimizes the “integrated
variance”

v = /R;lQ—Var y(x)du(x)

I

/ F@) (X7 X) " f ()" du(z)
= trace{ M(X"X) '},
where
M= [ o) se)iutz)

is the moment matrix of the modeling region. The I-efficiency of a design is the
ratio IV, /IV, where IV,, denotes the limiting value of IV as p — .

In short, for an I-optimal design, we wish to choose p points in O so as to

minimize
IV = trace M(X""X)~1 .

Other criteria that have often been used in the past include D-optimality, which
minimizes det(X" X)~! and A-optimality, which minimizes trace (X*X)~!. Nei-
ther of these involve M, and we have found them to be unsatisfactory (except when
the model is a polynomial of degree 1) for a number of reasons (see [38]). For later
use we define the D-value of the design to be

D = (det X" X)~1/P

and the D-efficiency to be D /D, where D, is the limiting value of D as p — oo.

Doehlert’s initial letter was followed by many subsequent ones, asking about
optimal placements of points in the cube, in the simplex, then in more complicated
regions, and for models which were not the full quadratic model shown in (4) but
also quadratics with some terms omitted, cubics, etc. Over the course of the next
three years we built up an ever-more complicated program that will attempt to find
optimal designs for a very wide range of problems.

The program is called gosset, is written in C, and runs on any Unix" “platform.
It is still being developed even today. However, we would like to hear from readers
who might be interested in testing the present version of the program for us.

The program is named after the amateur mathematician Thorold Gosset (1869~
1962), who was one of the first to study polytopes in six, seven and eight dimensions
[16, p. 164], and his contemporary, the statistician William Seally Gosset (1876—
1937), who was one of the first to use statistical methods in the planning and
interpretation of agricultural experiments [62]. Although from our geometric view-
point their work is related, we do not know if the paths of Thorold (Cambridge,
London, lawyer), and William Seally (Oxford, Dublin, brewer) ever crossed.

Some of the program’s features are the following. Only a few can be described
here — for further information see [38], [39].
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Problem specification. Problems are presented to the program using a very
simple language, rather like “BASIC” — examples can be seen below. Because

the program contains a built-in parser, the format is extremely flexible and user-
friendly.

Variables. Variables may be discrete or continuous. Continuous variables may

range over a sphere or a cube (or both). Discrete variables may be quantitative or
qualitative (or both). Example:

10 range Temp Pressure 100 200
means that Temp and Pressure are continuous variables ranging between 100 and
200.
Constraints. The variables may be required to satisfy linear equalities and/or
inequalities, so mixtures and constraints present no difficulty. Example:

20 constraint Temp + Pressure < 150
or

30 constraint A+ B+ C + D =100

Models. The user can specify a model in a quite general way. In principle,
almost any model at all can be used, provided it can be described by a C program!
In most applications so far the models used have been low degree polynomials, but
we expect this to change as this feature becomes more widely known. Example:

40 model (1 + Temp + Pressure) T 2
defines a full quadratic model of the form
Bo + 1 Temp + 35 Pressure

+  Bi1 Temp? + B12 Temp Pressure + 899 Pressure?
+ error term ,
while
40 model (1 + z +sin(y)) 7 2 — sin(y) T 2
specifies that the terms in the model are 1,z,z?% sin(y) and z sin(y).

If no model is available: packings. If no model is known, the user can
simply ask for a “packing”, that is, request the program to place N points in the
operating region so that they are well-separated. As far as we know, this is the first
time a program has been available that will search for packings in fairly arbitrary
regions. Here is a simple 2-dimensional example, showing 100 points packed into a
wedge-shaped region. The region was specified by

10 range a 50 1

20 constraint a < 4 b
The result is shown in Fig. 10.

Sequential designs. The design can be required to include a specified set of
points. Thus a sequence of optimal designs can be constructed, each one building
on the previous experiments.
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Ficure 10

Measuring region and modeling region can be different: There are
many situations where this feature is useful:

e some variables may take only discrete values (e.g. 5, 10, 25 or 100 grams),
but it is desired to fit a model over the whole range

¢ measurements can be made over a large region, but we want an accurate
model fitted over a smaller region

¢ extrapolation or prediction: we can make measurements only in a small
region, but want to fit a model over a larger region.

Number of runs. The user can specify how many runs (or observations) the
design will include. The user also has control over how hard the program works in
attempting to find a good design. Example:

design runs = 20 n = 30 processors = 6

would instruct the program to look for a 20-run design, taking the best of 30 tries,
and running 6 processors simultaneously. (Of course the latter feature is useful only
on a multiprocessor machine.)

Optimality criteria. The program can search for A-, D-, E- or I-optimal
designs. As already mentioned, our experience indicates that I-optimality is the
most useful of these criteria, since all the others have serious drawbacks.

We have also introduced some further optimality criteria, useful in situations
where it is possible that one of the measurements will fail, or otherwise be lost
for some reason (we are told by experimenters that in practice this is not at all
unusual).

For example, a J-optimal design with N runs has the property that the worst of
the N +1 designs (the original design and those obtained by dropping one run in all
possible ways) is I-optimized. In other words, J-optimal is “I-optimal given that
an experiment may be lost”. There are similar criteria for A-, D- and E-optimality.

Designs for situations where the errors are correlated. If the errors
in the measurements, instead of being independent, have a known (or estimated)
correlation, the program can take this into account. For example, Fig. 11 shows
some designs intended for a situation in which successive pairs of measurements are
correlated (the application was to an experiment making measurements on eyes,
first the left eye, then the right eye). The design is specified by

10 sphere X Y —11

20 model (1+X+Y) 12
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FIGURE 11

that is, a full quadratic model in a circle, in which the covariance matrix for the
samples is

1 8 0 0
8 1 0 0
0 0 1 8
0 0 8 1
The putatively I-optimal designs with 6, 7, 8, ... runs are as follows. (Pairs of

successive design points are joined by lines.)

Blocked designs. A feature that has had many applications is the ability to

look for a design in which the measurements are made in blocks. See the manual
[39] for examples.

Applications. So far there have been two main uses for gosset.

(1) We have attempted to construct optimal (especially I-optimal) designs for
a number of “classical” situations, for example linear, quadratic or cubic response-
surface designs with n continuous variables in a cube or ball with P experiments,
over quite a large range of values of n and p, typically 1 < n < 12 and p ranging
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from the minimal value to 6 (or more) greater than the minimal value. We have also
computed designs for similar models and regions in which the variables are discrete.
An extensive library of these designs is now built into gosset. Our work on these
“classical” problems can be regarded as an attempt to provide optimal “exact”
designs with small numbers of runs to complement the “asymptotic” designs of
Kiefer et al. (see [48]).

We have also used this collection of designs as data for theoretical investigations.
Two results are worth mentioning here.

(a) There is a simple lower bound on the integrated variance of an I-optimal
design for quadratic models with p measurements in an n-dimensional ball
(see the next section). A number of interesting designs meet the bound.
There is a similar bound for D-optimal designs.

(b) It is known that for large numbers of experiments D- and G-optimal designs
are equivalent [49]. Our results show that I-optimal designs are strictly
different. For example, I-optimal designs make more measurements at the
center of the region and fewer at the boundary. For quadratic models in
an n-dimensional ball, n large, an I-optimal design makes about 4/n? of
the measurements at the center of the sphere, compared with about 2 /n?
for D- and G-optimal designs. I-optimality also appears to be a more strict
condition than D-optimality. In situations where the criteria produce similar
designs (such as certain linear designs), we commonly find that although I-
optimal designs are D-optimal, the converse is not necessarily true.

(ii) We have constructed designs for a large number of industrial applications.
These include:

® optimizing the production of wafers for integrated circuits (see for example
60])

* placing laser beams for treatment of tumors in the brain

® growing protein crystals

® maximizing the thermal conductivity of heat-spreading diamond film

o designing potted meat

e designing a cellular ceramic substrate used in catalytic converters

® designing coated photographic paper

5. The construction of spherical 4-designs

One of the most interesting things to have come out of our work with gosset
is a series of discoveries that has led to the construction of many new spherical 4-
designs (see Problem (P6) of Section 2). These results are described in more detail
in [37] and [38].

These discoveries came about when we were comparing I- and D-optimal de-
signs in the ball for the full quadratic model of (4), using the extensive library of
designs that we had computed using gosset. Let Z(n,p) (resp. D(n,p)) denote
any [-optimal (resp. D-optimal) design for this model, where n is the number of
variables and p is the number of experiments, with p > (";2)

First, it appears that there is a unique design 7(3,14) (apart from orthogonal
transformations), which consists of three copies of a point distant .003622 from
the center of the ball and eleven points on the surface of the ball. The precise
design may be found in the gosset library. However, restricting 7 (3,14) to points
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at the center and on the surface of the ball incurs a loss of only about .00006% in
I-efficiency. A similar phenomenon occurs for other values of n and p.

In contrast, for D-optimal designs, it seems that the only points that occur are
at the center and on the surface. We formalize these observations in the following
conjecture, still unproved.

Conjecture. For all n and p, D(n,p) contains only points at the center and
on the surface of the ball. This is not true for I(n,p), but restricting I(n,p) to
designs with this property incurs a loss in I-efficiency of less than .01%.

In the rest of this section we therefore restrict attention to designs supported
only at the center and the surface of the ball. For any such design, not necessarily
optimal, let B and C' respectively denote the number of points on the surface (or
boundary) and at the center, so that p = B + C.

Our second discovery was that the IV -value of the best designs was often given
by the formula,

(©) 1 {n2(n2+5n+10)+8} ’

(n+2)(n+4) 20 ¥

where 8 = B/p, v = C/p. This was an empirical formula, found simply by ex-
amining our collection of designs (we observed that obviously rational IV-values
were arising from many geometrically distinct designs, suggesting that there was a
formula to be found). This formula was the key to everything that followed.

Our observations were that this formula is always a lower bound to the I'V-
value of a design, and that it could be attained once the number of experiments
was sufficiently large. We were then able to prove these results, by considering the
moments of the design points. Let & denote the discrete measure, normalized to
have total measure 1, defined by the B surface points of the design. The B surface
points form a spherical 4-design if and only if the moments of & up through order
4 agree with the moments of uniform measure on the sphere. The fact that (6) is
a lower bound on IV is a consequence of the following result

THEOREM 5.1. For fized values of n, p, B and C, both the I- and D-efficiencies
are mazimized if the B surface points can be arranged to form a spherical 4-design.

The proof for I-efficiency is given in [37], while for D-efficiency this follows
from the work of Box and Hunter [10] and Kiefer [47] (see also [27], [61]).

If the surface points do form a spherical 4-design, the IV- and D-values of
the design can be calculated analytically, and turn out to be given by (6) for the
IV-value, thus confirming our empirical observations, and by

n B
7 Mg 9)n-D/ni) | B
(7 G+ e
for the D-value. It follows from Theorem 5.1 that these are indeed lower bounds.
One can now select the values of 3 and +y to minimize (6) or (7) for any fixed
value of n. For large n, (6) implies that in an I-optimal design the fraction of points
at the center is

(8)

}2/((n+1)(n+2))

_ 4nvn? +5n+10-16
T (n=-1)(n+2)(n2+4n+8)
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(7) implies that in a D-optimal design this fraction is

:
© R |

|

|

/ which is a theorem of Kiefer [47].
J

\

By substituting these expressions in (6) and (7) we obtain the limiting values

n+2 {(n—l)(n2+4n+8)}2
TR ey .2 G
2n+4) L nvn? + 5n+ 10 — 4
(n+1)(n+2)2n/(n+1) 7y o g\ 2/((n+D)(n+2))
n\ﬁ( 7 )

I ” (10) v, =
\

J
| ay . ,
\ which enable us to determine the I- and D-efficiencies of any given design.
It follows from a result of Neumaier and Seidel [61] that a design has D-value
given by (7) if and only if the B surface points form a spherical 4-design. There is
a similar result for I-values.

‘J THEOREM 5.2. A quadratic design in the ball has I'V -value given by (6) if and
I only if the B surface points form a spherical 4-design.
J
|

| Thus whenever gosset is able to find a design that meets the bound (6), the
surface points form g, spherical 4-design. And the nonexistence of designs meeting
the bound imply the nonexistence of the 4-design. Since our program is very good I
at finding these designs, we take this as compelling evidence that the corresponding f
4-designs do not exist.

In summary, we believe that spherical 4-designs containing B points in n di-
| mensions exist for the following values of B and n:

B
2,4,6,8, . ..
>5

12,14, > 16
> 920

> 29
27,36,> 39
> 53

> 69

(12)

0T U W~

| See [37] and [38] for further information about these spherical 4-designs, as well
! as [41] for our more recent work on the extension of this investigation to spherical
i t-designs for larger values of ¢.

) 6. Isometric embeddings

Finally, we discuss problem (P9), the construction of isometric embeddings.
We will give just one example, and show that there exists a 23-point isometric
embedding in R*. Equivalently, we will show that (f + 2% + 27 + 22)3 can be
written as a sum of 23 sixth powers of linear forms. This is one less than is required
in a famous 1912 identity of Kempner. The discussion is based on [40], while further
examples can be found in [12].
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In connection with Waring’s problem of expressing integers as a sum of sixth
powers, Lucas published in 1876 the incorrect identity
(12)
(@i ai+a}) = =3 (@i )"
i<y
and in the following year replaced it by

) 1 42
(xf+x§+x§+xi)3:32x?+ﬁ (z; £ ;)%
i<j
also incorrect (cf. Dickson [22], p. 718). A correct version,
Cirei+aftad’ = £3@afs L5000, 40,

(13)
+ ﬁ 2(8) (.’L‘l + x5+ T3 + 1134)6
was apparently given for the first time by Kempner [45] in 1912.

More generally,. for any even number g, we look for N points
PO = p) P € R and positive coefficients ¢; € R, 1 < 5 < N, such
that there is an identity
q

N d
(14) (@4 a2 =3 e [ 3 P,
=1 Jj=1

The existence of such identities, for all d and even q, with ¢; and Pj(z) rational,
was a key step in Hilbert’s (1909) general solution of Waring’s problem (Ellison
[25]). Chapter XXV of Dickson [22] surveys the classical results concerning such
identities. They have recently resurfaced in works by Lyubich and Vaserstein [56],
Reznick [66] and Seidel [70], where many new results are given as well as connec-
tions with numerical quadrature, designs, and isometric embeddings of one space
in another.

Let N(d, q) denote the smallest value of N for which an identity ( 14) is possible.
Equation (13) shows that N (4,6) < 24, and Proposition 9.2 of [66] shows that
N(4,6) > 21. We will present an identity of the form
6

23 4
(15) (2 + 23 +a3+a3)° = ZCi ZIDJ(Z)ij ;
i=1 j=1

which establishes N (4, 6) < 23. The points P® and coefficients ¢; are given in
Table 1. (However, since some of the ¢; and P® gre irrational, (15) does not
contribute to Waring’s problem.)

Equation (15) was discovered in the following way. Let us rewrite it as

3 NN _ :

4 i
(E -1 xf) =5 331 (E j:l Q](-Z)x]-) , Where Q;Z) = cz-l/GPj( ). We used the com-

puter to find sets of Q;Z) ’s which satisfied this identity to within a small tolerance.
The algorithm was simply a further modification of the one mentioned in Section 3.
These sets of 23 points were then analyzed by hand. There appear to be many
inequivalent solutions, and it was not easy to find a set of points with enough sym-

metry to identify their coordinates Q;i) as algebraic numbers. Having identified

the QJ@, there is still the problem of finding a convenient way to factorize them
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TABLE 1(a). The points P(V, ..., P(?® in the identity (15). Double parentheses
indicate that all cyclic shifts of the last three components are to
be included.

1 0 0 0] = 1 0 0 0 ]
@ (( 0 41 +r))] = [1.473370 (( 0 +1 +1.618034 ))]
[0 1 1 1] = [0 1 1 1 ]
O (1 r-1 —r) = [0 (1 618034 —1.618034 ))]
O (- B Br+1)] = [0 (( —1.618034 1.868517  4.023324 ))]
0 (-1 ~ yr+1)] = [0 (( ~1.618034 —.535184 .134054 )]

as ci1 / 6PJ@. There is no unique way to do this, and our aim was to make the final
answer as simple as possible. The computer took a couple of hours to find each
approximate solution, but “beautification” of the points by hand took a couple of
weeks. We will not attempt to describe this fairly mysterious process, but just
give our best answer, which emerged after a series of miraculous simplifications, in
Table 1.

The P and ¢; are listed in Table 1, both exactly (as algebraic numbers) and
approximately (as decimal numbers, rounded to six significant figures). The geo-
metric structure of the points is as follows (there is a picture in [37]). PU) is at
the north pole, and P to PU3) form a regular icosahedron (with z; coordinate
V375714 where 7 = (14 1/5)/2). The remaining ten points lie on the equatorial
hyperplane x; = 0 and consist of a singleton and three equilateral triangles. The
vertices of those equilateral triangles lie on the edges (possibly produced) of the
icosahedron (with z; coordinate omitted). The only symmetries of the configura-
tion are the cyclic shifts of the last three components. However, if the negatives or
antipodes of the points are included, the resulting 46-point configuration has sym-
metry group of structure Cy x Cy X Dg, where Dg is a dihedral group of order 6. This
group contains the cyclic shift just mentioned and the reflection in [0,1,1/7, —7],
which together generate a three-dimensional triangular antiprismatic group (de-
noted by [2%, 6] in the notation of [18], by 2 % 3 in the Conway-Thurston orbifold
notation, and with structure Cy x Dg). The full group is generated by this sub-
group and negation of the first coordinate. where o = V3r5T14 B = (2+/13)/3,
v=(2-V13)/3.

The points P lie on six different spheres, one for each of the six rows of
Table 1(a). (So in the notation of [66], equation (15) is a sixth-caliber representation
of (z2 4+ -+ +x3)3.)

As to the proof that (15) is an identity: the verification could be carried out by
hand, but would be rather tedious. The ¢; and P are now simple enough, however,
that a computer algebra system such as Maple is able to verify the identity exactly
in a few seconds. Additional confirmation is provided by the fact that floating point
evaluations of the coefficients on each side of (15) agree very closely.

Our computer investigations have failed to produce a 22-term identity, and we
conjecture that N(4,6) = 23.
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| TABLE 1(B). The coefficients cy, ... ,co3 in the identity (15).

1

= .0000427301 (three times)

16
% = .64 (once) ,
1 00293258 (twelve times)
= . welve times
36735
16
T2E = .0217687 (once) ,
1 .
0 = .00833333 (three times) ,
1460 + /5 — V13(577 — 761/5)
2432572/13
1460 + V5 + V13(577 — 761/5)
2432572\/13

= .0230332 (three times)

We have also found sets of points which suggest that
N(3,10) < 24, N(3,12) < 32, N(3,14) <41, N(3,16) < 52, N(3, 18) < 66,
N(4,8) <43, N(6,6) < 63, N(7,6) <91, N(8,4) <45, N(9,4) <59 .

We are currently in the process of formally establishing these identities. Details

will be found in [12].
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