Computing Fekete and Lebesgue points: simplex, square, disk

Alvise Sommariva

Università degli Studi di Padova
Dipartimento di Matematica Pura e Applicata

October 16, 2011
Collaborators/Group

Joint work with

- Matteo Briani, Luca Mezzalira, Marco Vianello (University of Padua)
- Francesca Rapetti (University of Nice)

Other collaborators:

- Stefano De Marchi (University of Padua)
- Len Bos (University of Verona)
- Norman Levenberg (University of Indiana)
- Jean Paul Calvi (University of Toulouse)
Purpose of our research

- Computation and analysis of good nodes for interpolation and approximation in 2D and 3D.
- Computation and analysis of good nodes for cubature in 2D and 3D.
- Providing Matlab/Octave codes to the users.

Alvise Sommariva
Computing Fekete and Lebesgue points: simplex, square, disk
Purpose of our research

- Computation and analysis of good nodes for interpolation and approximation in 2D and 3D.
- Computation and analysis of good nodes for cubature in 2D and 3D.
Purpose of our research

- Computation and analysis of good nodes for interpolation and approximation in 2D and 3D.
- Computation and analysis of good nodes for cubature in 2D and 3D.
- Providing Matlab/Octave codes to the users.
Good interpolation sets

Let $\Omega \subset \mathbb{R}^d$ be a compact domain. We denote by $\text{vdm}(\mathcal{P})$ the Vandermonde matrix (w.r.t. some polynomial basis $\{\phi_k\}$) evaluated at the discrete set \mathcal{P}.

Classical good interpolation sets are:

- Fekete points (maximization of absolute value of Vandermonde determinant).
- Leja points (known ξ_1, \ldots, ξ_k, the point ξ_{k+1} maximizes $\text{vdm}(\xi_1, \ldots, \xi_k, x)$, a generalization of the classical 1D Leja points).
- Lebesgue points (minimization of Lebesgue constant, i.e. the ∞-norm of the interpolation operator).

Note: Few of these sets are known explicitly.
Due to the theoretical difficulties, one tries to compute the Fekete, Leja or Lebesgue points $\{\xi_k\}$ numerically.

Approximate Fekete Points and Discrete Leja Points are obtained

- Generating an *admissible* of *weakly admissible mesh* on the compact domain Ω (i.e. sets satisfying a particular polynomial inequality).
Due to the theoretical difficulties, one tries to compute the Fekete, Leja or Lebesgue points \(\{ \xi_k \} \) numerically.

Approximate Fekete Points and Discrete Leja Points are obtained by:

- Generating an \textit{admissible} of \textit{weakly admissible mesh} on the compact domain \(\Omega \) (i.e. sets satisfying a particular polynomial inequality).
- Extracting by linear algebra routines sets that mimic the Fekete or Leja points (in the continuum).
Figure: Weakly admissible mesh on a non-convex polygon (degree 10) and Approximate Fekete Points (red circles)
Pros:

1. For mild degrees: fast computation of good points for interpolation on very general domains.
2. Many good meshes are known for simplex, squares, polygons, disk and some trivariate domains.
Pros:
1. For mild degrees: fast computation of good points for interpolation on very general domains.
2. Many good meshes are known for simplex, squares, polygons, disk and some trivariate domains.

Cons:
1. Possible difficulties in computing small admissible or weakly admissible meshes.
2. The points are usually not the actual Fekete/Leja points (though they have the same asymptotic behavior w.r.t.
equilibrium measure).
In this work, for a fixed degree N, we compute points $\mathcal{P} = \{\xi_k\}_{k=1,\ldots,M}$ on interval, simplex, square and unit disk that have low Lebesgue constant $\Lambda_N(\mathcal{P})$.

Remember that $\Lambda_N(\mathcal{P})$ is the norm of the interpolation operator in ∞-norm and correspond to

$$
\Lambda_N(\mathcal{P}) = \max_{x \in \Omega} \sum_{k=1}^{M} |L_k(x)|
$$

where

- L_K are the Lagrange polynomials w.r.t \mathcal{P},
- $M = \text{bynomial}(N + d, d)$ is the dimension of \mathbb{P}_N, the space of total polynomials of degree N in \mathbb{R}^d.
Lebesgue constant

Some facts:

- There are sets \(\{\xi_k\}_{k=1,\ldots,M} \) that minimize the Lebesgue constant (the so-called Lebesgue points).

At degree \(N \), the Fekete points \(\{\xi_k\}_{k=1,\ldots,M} \) possess Lebesgue constant less or equal than the cardinality \(M \) that in 2D is equal to \(\frac{(N+1)(N+2)}{2} \). In general, they do not minimize the Lebesgue constant.

- Let \(C(\Omega) \) be the space of continuous functions in \(\Omega \). If \(f \in C(\Omega) \), \(p_N \) the interpolant of \(f \) in \(P \) and \(p^* N \) \(\in P \) is the best approximant of \(f \) in \(P \) then it is easy to show that

\[
\|f - p_N\|_{\infty} \leq (1 + \Lambda_N(P)) \|f - p^* N\|_{\infty}.
\]

Small Lebesgue constant implies

\[
\|f - p_N\|_{\infty} \approx \|f - p^* N\|_{\infty}.
\]
Some facts:

- There are sets \(\{\xi_k\}_{k=1}^{M} \) that minimize the Lebesgue constant (the so called Lebesgue points).

- At degree \(N \), the Fekete points \(\{\xi_k\}_{k=1}^{M} \) possess Lebesgue constant less or equal than the cardinality \(M \) that in 2D is equal to \((N + 1)(N + 2)/2\). In general they do not minimize the Lebesgue constant.

\[\|f - p_N\|_{\infty} \leq (1 + \Lambda_N(P)) \|f - p^*_N\|_{\infty}. \]

Small Lebesgue constant implies \(\|f - p_N\|_{\infty} \approx \|f - p^*_N\|_{\infty} \).
Lebesgue constant

Some facts:

- There are sets $\{\xi_k\}_{k=1,...,M}$ that minimize the Lebesgue constant (the so called Lebesgue points).

- At degree N, the Fekete points $\{\xi_k\}_{k=1,...,M}$ possess Lebesgue constant less or equal than the cardinality M that in 2D is equal to $(N + 1)(N + 2)/2$. In general they do not minimize the Lebesgue constant.

- Let $C(\Omega)$ be the space of continuous functions in Ω. If $f \in C(\Omega)$, p_N the interpolant of f in \mathcal{P} and $p_N^* \in \mathbb{P}_N$ is the best approximant of f in \mathbb{P}_N than it is easy to show that

$$\|f - p_N\|_\infty \leq (1 + \Lambda_N(\mathcal{P}))\|f - p_N^*\|_\infty.$$

Small Lebesgue constant implies $\|f - p_N\|_\infty \approx \|f - p_N^*\|_\infty$.

Alvise Sommariva
Computing Fekete and Lebesgue points: simplex, square, disk
Provide (almost) Fekete and Lebesgue points on simplex, square and disk ($N \leq 18$). By affine mapping, these points can be used on any simplex, parallelogram and ellipse.
Provide (almost) Fekete and Lebesgue points on simplex, square and disk ($N \leq 18$). By affine mapping, these points can be used on any simplex, parallelogram and ellipse.

Provide freeware Matlab codes for the computation of these sets.
The Lebesgue points \mathcal{P} minimize the Lebesgue constant $\Lambda_N(\mathcal{P})$.

- We used \texttt{fmincon} (constrained minimization), \texttt{fminsearch}, \texttt{fminunc} (unconstrained minimization) and the Differential Evolution algorithm for computing the (almost-)optimal sets.
The Lebesgue points \mathcal{P} minimize the Lebesgue constant $\Lambda_N(\mathcal{P})$.

- We used \texttt{fmincon} (constrained minimization), \texttt{fminsearch}, \texttt{fminunc} (unconstrained minimization) and the Differential Evolution algorithm for computing the (almost-)optimal sets.
- We use Matlab codes to compute the optimal points. Special settings/strategies to avoid erratic behaviors.
The Lebesgue points \mathcal{P} minimize the Lebesgue constant $\Lambda_N(\mathcal{P})$.

- We used \texttt{fmincon} (constrained minimization), \texttt{fminsearch}, \texttt{fminunc} (unconstrained minimization) and the Differential Evolution algorithm for computing the (almost-)optimal sets.
- We use Matlab codes to compute the optimal points. Special settings/strategies to avoid erratic behaviors.
- We consider a fine mesh \mathcal{T} of about 62500 test points. At degree N, the value target function F_1 on a unisolvent set \mathcal{P} is

$$F_1(\mathcal{P}) := \max_{x \in \mathcal{T}} \sum_{k=1}^{M} |L_k(x)| \approx \max_{x \in \Omega} \sum_{k=1}^{M} |L_k(x)| := \Lambda_N(\mathcal{P}),$$

where $M = \text{bynomial}(N + d, d)$.

The Fekete points \mathcal{P} maximize the absolute value of the determinant of the Vandermonde matrix $V(\mathcal{P}) = [\phi_k(\xi_s)]$ with respect to a basis $\{\phi_k\}$ of \mathbb{P}_N. Reminder: Fekete points do not depend on the basis $\{\phi_k\}$.

- As in the case of Lebesgue points, we used \texttt{fmincon} (constrained minimization), \texttt{fminsearch}, \texttt{fminunc} (unconstrained minimization) and the Differential Evolution algorithm for computing the (almost-)optimal sets.
The Fekete points \mathcal{P} maximize the absolute value of the determinant of the Vandermonde matrix $V(\mathcal{P}) = [\phi_k(\xi_s)]$ with respect to a basis $\{\phi_k\}$ of \mathbb{P}_N. Reminder: Fekete points do not depend on the basis $\{\phi_k\}$.

- As in the case of Lebesgue points, we used `fmincon` (constrained minimization), `fminsearch`, `fminunc` (unconstrained minimization) and the Differential Evolution algorithm for computing the (almost-)optimal sets.

- We use Matlab codes to compute the (almost-)optimal points. Special settings/strategies to avoid erratic behaviors. Fekete points can be computed faster than Lebesgue points.
Computation of Fekete points

The Fekete points \mathcal{P} maximize the absolute value of the determinant of the Vandermonde matrix $V(\mathcal{P}) = [\phi_k(\xi_s)]$ with respect to a basis $\{\phi_k\}$ of \mathbb{P}_N. Reminder: Fekete points do not depend on the basis $\{\phi_k\}$.

- As in the case of Lebesgue points, we used fmincon (constrained minimization), fminsearch, fminunc (unconstrained minimization) and the Differential Evolution algorithm for computing the (almost-)optimal sets.

- We use Matlab codes to compute the (almost-)optimal points. Special settings/strategies to avoid erratic behaviors. Fekete points can be computed faster than Lebesgue points.

- At degree N, the value target function F_2 on a set \mathcal{P} of cardinality $M = \text{bynomial}(N + d, d)$ is

$$F_2(\mathcal{P}) := -|\det V(\mathcal{P})|$$
Many pointsets \mathcal{P} on the simplex have been proposed in the literature. The best results were achieved by

- Heinrichs (2005) for the Lebesgue points.

We will compare our results with their ones.
Many pointsets \mathcal{P} on the simplex have been proposed in the literature. The best results were achieved by

- Heinrichs (2005) for the Lebesgue points.

We will compare our results with their ones.
Many pointsets \mathcal{P} on the simplex have been proposed in the literature. The best results were achieved by

- Heinrichs (2005) for the Lebesgue points.

We will compare our results with their ones.
Many pointsets \mathcal{P} on the simplex have been proposed in the literature. The best results were achieved by

- General distribution (LEB).

We will compare our results with their ones.
Many pointsets \mathcal{P} on the simplex have been proposed in the literature. The best results were achieved by

- General distribution (LEB).
- General distribution with Gauss-Legendre-Lobatto points on the sides of the simplex (LEBGL).

We will compare our results with their ones.
Many pointsets \mathcal{P} on the simplex have been proposed in the literature. The best results were achieved by

- General distribution (LEB).
- General distribution with Gauss-Legendre-Lobatto points on the sides of the simplex (LEBGL).
- Symmetric distribution with Gauss-Legendre-Lobatto points on the sides of the simplex (LEBGLS).

We will compare our results with their ones.
Many pointsets \mathcal{P} on the simplex have been proposed in the literature. The best results were achieved by

- General distribution (LEB).
- General distribution with Gauss-Legendre-Lobatto points on the sides of the simplex (LEBGL).
- Symmetric distribution with Gauss-Legendre-Lobatto points on the sides of the simplex (LEBGLS).
- Fekete points (FEK).

We will compare our results with their ones.
Table: \(\Lambda_N \) on the simplex. New sets: LEB, LEBGL, LEBGLS, FEK.

<table>
<thead>
<tr>
<th>deg</th>
<th>3</th>
<th>6</th>
<th>9</th>
<th>12</th>
<th>15</th>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEB</td>
<td>1.97</td>
<td>3.39</td>
<td>5.28</td>
<td>6.90</td>
<td>8.91</td>
<td>9.88</td>
</tr>
<tr>
<td>LEBGL</td>
<td>2.11</td>
<td>3.59</td>
<td>5.51</td>
<td>7.13</td>
<td>8.91</td>
<td>9.88</td>
</tr>
<tr>
<td>LEBGLS</td>
<td>2.11</td>
<td>3.59</td>
<td>5.49</td>
<td>7.26</td>
<td>8.91</td>
<td>12.69</td>
</tr>
<tr>
<td>FEK</td>
<td>2.11</td>
<td>4.17</td>
<td>6.97</td>
<td>8.57</td>
<td>11.42</td>
<td>14.43</td>
</tr>
<tr>
<td>TWV</td>
<td>2.11</td>
<td>4.17</td>
<td>6.80</td>
<td>9.68</td>
<td>10.01</td>
<td>14.73</td>
</tr>
<tr>
<td>HEI</td>
<td>-</td>
<td>3.67</td>
<td>5.58</td>
<td>7.12</td>
<td>8.41</td>
<td>10.08</td>
</tr>
<tr>
<td>HEI2</td>
<td>-</td>
<td>3.87</td>
<td>5.59</td>
<td>7.51</td>
<td>9.25</td>
<td>11.86</td>
</tr>
<tr>
<td>WAR</td>
<td>2.11</td>
<td>3.70</td>
<td>5.73</td>
<td>9.36</td>
<td>17.64</td>
<td>36.76</td>
</tr>
<tr>
<td>BP</td>
<td>2.11</td>
<td>3.87</td>
<td>7.39</td>
<td>17.78</td>
<td>49.59</td>
<td>156.16</td>
</tr>
<tr>
<td>CB</td>
<td>2.11</td>
<td>3.79</td>
<td>5.91</td>
<td>10.08</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>HES</td>
<td>2.11</td>
<td>4.07</td>
<td>6.94</td>
<td>12.39</td>
<td>29.68</td>
<td>-</td>
</tr>
<tr>
<td>AFP</td>
<td>2.26</td>
<td>5.35</td>
<td>11.33</td>
<td>14.81</td>
<td>29.52</td>
<td>36.34</td>
</tr>
<tr>
<td>DLP</td>
<td>3.88</td>
<td>14.68</td>
<td>17.79</td>
<td>31.37</td>
<td>33.07</td>
<td>83.18</td>
</tr>
</tbody>
</table>
Figure: (Almost-)Lebesgue points on the simplex (degree 10)
The Padua points (at degree n) are defined as follows. Let

\[C_{n+1} = \{ z_j = \cos((j - 1)/n), j = 1, \ldots, n + 1 \} \]

and

\[CE_{n+1} = \{ z_j \in C_{n+1}, j - 1 \text{ even} \} \]
\[CO_{n+1} = \{ z_j \in C_{n+1}, j - 1 \text{ odd} \}. \]

Then

\[Pad_n = (CE_{n+1} \times CO_{n+2}) \cup (CO_{n+1} \times CE_{n+2}) \subseteq C_{n+1} \times C_{n+2}. \]

The Lebesgue constant is $O(\log^2(n))$ (almost optimal). We can obtain new family of Padua points using Jacobi-Lobatto points instead of C_{n+1}. We will denote by PdJ the Jacobi set with (almost-)lower Lebesgue constant.
Lebesgue/Fekete points on the square: results

Table: Lebesgue constants of some interpolation sets in the square.

<table>
<thead>
<tr>
<th>deg</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEK</td>
<td>2.00</td>
<td>2.93</td>
<td>3.72</td>
<td>4.00</td>
<td>4.73</td>
<td>6.07</td>
<td>5.48</td>
<td>5.96</td>
<td>6.21</td>
<td>6.65</td>
</tr>
<tr>
<td>LEB</td>
<td>2.00</td>
<td>2.38</td>
<td>2.73</td>
<td>3.24</td>
<td>3.59</td>
<td>3.98</td>
<td>4.33</td>
<td>4.85</td>
<td>5.12</td>
<td>5.23</td>
</tr>
<tr>
<td>PdJ</td>
<td>2.00</td>
<td>2.65</td>
<td>3.71</td>
<td>3.74</td>
<td>4.14</td>
<td>4.58</td>
<td>4.94</td>
<td>5.30</td>
<td>5.60</td>
<td>5.92</td>
</tr>
<tr>
<td>Pd</td>
<td>2.00</td>
<td>3.00</td>
<td>3.78</td>
<td>4.41</td>
<td>4.95</td>
<td>5.42</td>
<td>5.84</td>
<td>6.21</td>
<td>6.66</td>
<td>6.88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>deg</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEK</td>
<td>6.88</td>
<td>7.37</td>
<td>7.55</td>
<td>7.95</td>
<td>8.05</td>
<td>8.33</td>
<td>8.43</td>
<td>8.68</td>
<td>8.84</td>
<td>8.99</td>
</tr>
<tr>
<td>LEB</td>
<td>5.97</td>
<td>6.26</td>
<td>6.50</td>
<td>6.82</td>
<td>7.00</td>
<td>7.14</td>
<td>7.41</td>
<td>7.61</td>
<td>7.86</td>
<td>8.05</td>
</tr>
<tr>
<td>Pd</td>
<td>7.17</td>
<td>7.45</td>
<td>7.71</td>
<td>7.95</td>
<td>8.19</td>
<td>8.41</td>
<td>8.62</td>
<td>8.82</td>
<td>9.01</td>
<td>9.20</td>
</tr>
</tbody>
</table>
Figure: (Almost-)Lebesgue points on the square (degree 10).
Table: Lebesgue constants of (quasi)-Fekete and (quasi)-Lebesgue points in the unit disk.

<table>
<thead>
<tr>
<th>deg</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEK</td>
<td>1.67</td>
<td>1.99</td>
<td>2.63</td>
<td>3.19</td>
<td>3.95</td>
<td>4.38</td>
<td>5.58</td>
<td>6.45</td>
</tr>
<tr>
<td>LEB</td>
<td>1.67</td>
<td>1.99</td>
<td>2.47</td>
<td>2.97</td>
<td>3.49</td>
<td>4.10</td>
<td>5.00</td>
<td>5.38</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>deg</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>FEK</td>
<td>7.02</td>
<td>7.84</td>
<td>8.92</td>
<td>14.85</td>
<td>17.02</td>
<td>18.51</td>
<td>21.44</td>
<td>28.91</td>
</tr>
<tr>
<td>LEB</td>
<td>6.54</td>
<td>7.14</td>
<td>7.84</td>
<td>8.97</td>
<td>10.14</td>
<td>11.14</td>
<td>13.08</td>
<td>14.72</td>
</tr>
</tbody>
</table>
(Almost-)Lebesgue points on the square: a figure

Figure: (Almost-)Lebesgue points on the square (degree 8): *polygonal distribution on concentric circles*
Lebesgue/Fekete points on the disk: distribution on concentric circles

Table: Cardinality distribution (number of vertices of the regular polygons) on concentric circles of (quasi-)Fekete and (quasi-)Lebesgue points in the unit disk.

<table>
<thead>
<tr>
<th>deg</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>11</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>15</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>19</td>
<td>14</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| \(N\) | 3 | 6 | 10 | 15 | 21 | 28 | 36 | 45 | 55 | 66 | 78 |
See I. Yaman’s talk: *Radially orthogonal multivariate basis function* for a possible explanation of this particular distribution.

ALVANIA: S8.

Friday 14th October, 12-12.30.
References

Sets

Point sets are available at the homepage

http://www.math.unipd.it/~alvise/software.html