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Purpose

The purpose of this talk is to
recall the concept of the classical hyperinterpolation and its
basic properties;
outline the main variants and their features;
show some numerical examples and discuss the advantages of
the techniques mentioned above;
conclude by mentioning some new frontiers on this topic.
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Classical hyperinterpolation

The concept of hyperinterpolation has been introduced by I. Sloan
in the paper

Interpolation and hyperinterpolation over general regions

published in 1995 on Journal of Approx. Theory.

It is essentially an orthogonal (Fourier-like) projection on
polynomial spaces, w.r.t. the discrete measure associated with
a positive algebraic quadrature formula, or in other words a
weighted least-squares polynomial approximation at the
quadrature nodes.
It is called hyperinterpolation, since under special assumptions
it corresponds to interpolation.
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Classical hyperinterpolation

Let Pdn(Ω) be the vector space d-variate polynomials of total-degree
not exceeding n, restricted to a compact set or manifold Ω ⊂ Rd .

Given
an orthonormal basis {pj}, 1 ≤ j ≤ Nn = dim(Pdn(Ω)) of
Pdn(Ω) w.r.t. an absolutely continuous measure dµ on Ω,
a quadrature formula exact for Pd2n(Ω) w.r.t. µ, with nodes
X = {xi} ⊂ Ω and positive weights wi , 1 ≤ i ≤ M2n with
M2n ≥ Nn,

the discretized orthogonal projection (hyperinterpolation) of
f ∈ C(Ω) of degree n is

(Lnf )(x) =

M2n∑
j=1

⟨f , pj⟩l2,w(X)pj(x) =
M2n∑
i=1

wif (xi)
Nn∑
j=1

pj(xi)pj(x).

where

⟨f , g⟩l2,w(X) :=
M2n∑
i=1

wif (xi)g(xi).
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Classical hyperinterpolation

I. H. Sloan proved the following results:

1. (LS) The polynomial Lnf ∈ Pdn(Ω) is the solution to the LS
problem

min
p∈Pdn(Ω)

1
2
⟨f , p⟩l2,w = min

p∈Pdn(Ω)

1
2

M2n∑
j=1

wj(p(xj)− f (xj))2, (1)

2. (Operator norm) Given f ∈ C(Ω), ∥Lnf∥2 ≤
√

µ(Ω)∥f∥∞,
3. (Error estimate) If f ∈ C(Ω) then

∥Lnf − f∥2 ≤ 2
√

µ(Ω)En(f ,Ω)

where En(f ,Ω) = minp∈Pdn (Ω) ∥f − p∥∞.
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Classical hyperinterpolation

Definition
An algebraic quadrature rule

∫
Ω
f (x)dΩ ≈

M2n∑
i=1

wif (xi)

is minimal if it has algebraic degree of precision 2n and
M2n = dim(Pdn) := Nn

Examples
A. Gaussian rules in the interval;
B. Angular equispaced rules in the circle;
C. No such rules in general on the sphere (n ≥ 3).
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Classical hyperinterpolation

4. (Interpolation) The classical interpolation formula

Lnf (xj) = f (xj), j = 1, . . . ,Nn

holds for arbitrary f if and only if the quadrature rule is
minimal.

5. (Projection) If p ∈ Pdn then Lnp ≡ p.
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Filtered hyperinterpolation: introduction

Filtered hyperinterpolation was introduced by I.H.Sloan and
R.S.Womersley on the unit sphere, in the paper published in 2012

Filtered hyperinterpolation: A constructive polynomial
approximation on the sphere

In the introduction they wrote:
While there are many other ways (such as radial basis functions, spline functions on
a triangular mesh, wavelets) of representing scalar physical quantities on a sphere,
polynomials continue to play an important role.

Of course their resolving power is limited by the degree of the polynomial, but the
principal complaint about polynomials is often that irregularities or discontinuities in
the quantity being approximated lead to fringes or oscillations (Gibbs’ phenomenon
for the case of discontinuities).

A recognised way of reducing the effect of fringes is by filtering an initial polynomial
approximation, that is by modifying the amplitude of selected Fourier modes
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Filtered hyperinterpolation: filters

They introduce a filter function h ∈ C([0,+∞)) that satisfies

h(x) =

{
1, for x ∈ [0, 1/2],
0, for x ∈ [1,∞).

It is immediate to observe that depending on the behaviour in
[1/2, 1], one can define many filters.
Example: choose as filter h ∈ C([0,+∞)) the function

h(x) =


1, x ∈ [0, 1

2 ],

sin2(πx), x ∈ [ 1
2 , 1]

0, for x ∈ [1,∞).

(2)
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Filtered hyperinterpolation: filters

0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure: The filter h that is sin2(πx), for x ∈ [ 1
2 , 1].
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Filtered hyperinterpolation: definition

Definition
Consider the quadrature rule∫

Ω

f (x)dΩ ≈
Mδ∑
j=1

wjf (xj)

and suppose that

wj > 0, xj ∈ Ω, j = 1, . . . ,Mδ (i.e. it is PI-type rule);

it has algebraic degree of exactness δ = n− 1 + ⌊n/2⌋.

Introduce the discrete scalar product determined by such formula

⟨f , g⟩Mδ
:=

Mδ∑
j=1

wjf (xj)g(xj)

The filtered hyperinterpolant Fnf ∈ Pdn−1(Ω) of f ∈ C(Ω) is defined as

Fnf :=
Nn∑
k=1

h
(
deg(pk)

n

)
⟨f , pk⟩Mδ

pk (3)

where Nn = dim(Pdn(Ω)), {pk} family of orthonormal polynomials*. 11/26



Filtered hyperinterpolation: remark

Remark
Since

Fnf :=
Nn∑
k=1

h
(
deg(pk)

n

)
⟨f , pk⟩Mδ

pk (4)

and

h(x) =

{
1, for x ∈ [0, 1/2],
0, for x ∈ [1,∞).

depending on supp(h) ⊆ [0, 1] one can achieve more sparsity in the
polynomial coefficients w.r.t. classical hyperinterpolation, i.e. some
less relevant discrete Fourier coefficients are dismissed.

Remark (Projection)

Observe that Fnp = p for all p ∈ Pd⌊n/2⌋.
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Lasso hyperinterpolation: soft thresholding operator

An alternative to filtered hyperinterpolation is the so called Lasso
hyperinterpolation based on the concept of Soft thresholding
operator.

Definition (Soft thresholding operator)
The soft thresholding operator is defined as

Sk(a) := max(0, a − k) + min(0, a + k),

where k ≥ 0.

Alternatively, we can define Sk(a) as follows

Sk(a) =


a + k, if a < −k,

0, if − k ≤ a ≤ k,
a − k, if a > k.
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Lasso hyperinterpolation: definition

Definition

Consider the quadrature rule∫
Ω

f(x)dΩ ≈
M2n∑
j=1

wjf(xj)

and suppose that

wj > 0, xj ∈ Ω, j = 1, . . . ,M2n (i.e. it is PI-type rule);

it has algebraic degree of exactness 2n.

Introduce the discrete scalar product determined by such formula

⟨f , g⟩Nδ :=

M2n∑
j=1

wjf(xj)g(xj)

Then the Lasso hyperinterpolation of f is defined as

Lλ
n f :=

Nn∑
j=1

Sλµj (⟨f , pj⟩M2n)pj , (5)

where Sλµj , j = 1, . . . ,Nn are soft thresholding operators,

λ > 0 is the regularization parameter,

{µj}j=1,...,Nn is a set of positive penalty parameters. 14/26



Lasso hyperinterpolation: properties I

Being

Lλ
n f :=

Nn∑
j=1

Sλµj (⟨f , pj⟩Nδ)pj , (6)

the effect of the soft threshold operator

Sk(a) =


a + k, if a < −k,

0, if − k ≤ a ≤ k,
a − k, if a > k.

is such that

|⟨f , pj⟩M2n | ≤ λµj ⇒ Sλµj (⟨f , pj⟩M2n) = 0

that is more sparsity in the polynomial coefficients is achieved
(w.r.t. the classical hyperinterpolation).
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Lasso hyperinterpolation: properties II

Theorem
Let f ∈ C(Ω). Then

min
p∈Pn(Ω)

 1
2

M2n∑
j=1

wj(p(xj)− f (xj))2 + λ

Nn∑
ℓ=1

µℓ|γℓ|

 (7)

with

p(x) =
Nn∑
k=1

γkpk(x) ∈ Pdn(Ω).

Remark
Notice that

the first term in (7) is exactly that of classical hyperinterpolation,
the second term in (7) is a penalization,
issue: how to choose suitable λ, µ1, . . . , µNn .
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Hybrid hyperinterpolation

Now we introduce hybrid interpolation that mixes the features of
filtered and Lasso hyperinterpolation.

Definition (Hybrid hyperinterpolation)
Suppose that

Ω ⊂ Rd is a compact domain and f ∈ C(Ω),
⟨f , g⟩M2n is determined by an M2n-point quadrature rule of
PI-type in Ω with algebraic degree of exactness 2n,
h is a filter function,
{Sλµℓ

}Nnℓ=1 are soft thresholding operators with λ > 0 and
µ1, . . . , µNn > 0

The hybrid hyperinterpolation of f onto Pdn(Ω) is defined as

Hλ
n f :=

Nn∑
k=1

h
(
deg pk
n

)
Sλµk (⟨f , pk⟩M2n)pk . (8)
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Hybrid hyperinterpolation: properties I

Consider the ℓ2
2 + ℓ1-regularized LS problem

min
p∈Pdn(Ω)

1
2

Nn∑
j=1

wj(p(xj)− f (xj))2 +
1
2

N∑
j=1

wj(Rnp(xj))2 + λ

d∑
ℓ=1

µℓ|βℓ|,

(9)
where

λ > 0, µ1, . . . , µd > 0,
the operator Rn is defined as

Rnp =
Nn∑
ℓ=1

bℓ⟨pℓ, p⟩Mnpℓ =
Nn∑
ℓ=1

bℓβℓpℓ (10)

with

bℓ =

{
0, deg pℓ

n ∈ [0, 1
2 ],√

1
hℓ

− 1, deg pℓ
n ∈ [ 1

2 , 1).
(11)
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Hybrid hyperinterpolation: properties II

Theorem

Let f ∈ C(Ω). Then Hλ
L f is the solution to the regularized least

squares approximation problem

min
p∈Pdn(Ω)

1
2

Nn∑
j=1

wj(p(xj)− f (xj))2 +
1
2

N∑
j=1

wj(Rnp(xj))2 + λ

d∑
ℓ=1

µℓ|βℓ|,

(12)
with

p(x) =
Nn∑
k=1

γkpk(x) ∈ Pdn(Ω).
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Technical difficulties of Hyperinterpolation

There are technical difficulties.

Low cardinality rules: for a fixed degree of precision n, minimal
rules of PI-type exist in rare cases; alternatively one wants to
determine those with the lowest number of nodes Mn or not
exceeding the dimension Nn of the polynomial space Pn.
Computation of orthonormal basis: in some cases
orthonormal basis w.r.t. a suitable weight function are available
(e.g. interval, n-cube, sphere), but most of the times they are
not available and one must determine them numerically.
Computation of λ: in Lasso and Hybrid interpolation the
performance depends on a parameter λ and it is not trivial to
determine a good one (argument of future research).
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Numerical experiments: union of disks

The domain Ω is the union of M disks B(Ck , rk) with centers Ck and
radii rk , i.e.

Ω = ∪Mk=1B(Ck , rk) ⊂ R2.

low cardinality rules are available in which Nn ≤ Mn;
triangular polynomial orthonormal basis are computed
numerically by a QR based algorithm.

In the tests we set Ω = Ω(r1) ∪ Ω(r2), where Ω
(rj)
2 , j = 1, 2, is the

union of 19 disks, with

centers P(rj)k = (rj cos(θk), rj sin(θk)), with r1 = 2 and r2 = 4.
θk = 2kπ/19, k = 0, . . . , 18,
radii equal to rj/4, j = 1, 2.
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Some numerical experiments on union of disks

Figure: The domain Ω = Ω(r1) ∪ Ω(r2) in which we perform our tests. We
represent in red the N = 496 nodes of the cubature rule for algebraic
degree of exactness=30, useful for classical hyperinterpolation at
polynomial degree 15.

.
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Some numerical experiments: union of disks

We consider contaminated evaluations of

f (x) = (1 − (x2 + y2)) exp(x cos(y)),

contaminated by Gaussian noise (σ = 0.05).

Numerical tests show the favourable ratio between the sparsity and
L2 errors of the hybrid hyperinterpolants.

λ L2 error sparsity λ L∞ error sparsity
Hyperint. − 0.045 136 − 0.1185 136
Filtered − 0.0313 120 − 0.1043 120
Lasso 0.0059 0.0195 30 0.0072 0.0449 16
Hybrid 0.0048 0.0169 37 0.0068 0.0392 21

Table: Tests at degree 15 with λ choosen to minimize L2 and L∞ errors.
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Some numerical experiments: union of disks

Figure: Approximate f (x, y) = (1 − (x2 + y2)) exp(x cos(y)), perturbed by
Gaussian noise (σ = 0.05), over the union of disks, via hyperinterpolation
LLf ϵ, filtered hyperinterpolation FL,Nf ϵ, and hybrid hyperinterpolation
Hλ
L f

ϵ with L = 15 (different notation w.r.t. the talk).
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Some numerical experiments: union of disks
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Figure: The choices of regularization parameter λ for hybrid
hyperinterpolation Hλ

n f ϵ with n = 15 for approximating
f (x, y) = (1 − (x2 + y2)) exp(x cos(y)), perturbed by Gaussian noise
(σ = 0.05)).
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