## On the numerical compression of QMC rules.

Giacomo Elefante, Alvise Sommariva, Marco Vianello

Constructive approximation of functions 3 Krakow, Poland, 22-24 February 2023.

Thanks: Conference Organizers, co-workers, RITA, UMI group TAA, GNCS project Methods and software for multivariate integral models

### Purpose

In this talk,

we start introducing the well-known Tchakaloff theorem (and one of its variants)

existence theorem of certain algebraic and *low* cardinality cubature rules with positive weights on a multivariate compact domain  $\Omega \subset \mathbb{R}^d$ :

#### we compress cubature rules,

we show how, from cubature rules on  $\Omega$  (w.r.t. a positive measure) with positive weights and interior nodes (i.e. of PI-type), whose algebraic degree of precision *ADE* is equal to *m* and the number of nodes higher than the dimension "*r*" of the polynomial space  $\mathbb{P}_m(\Omega)$  of total degree *m*, we can extract rules of PI-type but with at most "*r*" nodes, by means of Lawson-Hanson algorithm;

## application to Quasi-Montecarlo Cubature: rule compression

given a Quasi-Montecarlo Cubature rule (acronym: QMC) and a certain degree of precision m, we compress the QMC rule with a positive one, that provides the same results over polynomials of degree at most m;

#### some multivariate examples

results over bivariate and trivariate domains, peculiarities of volumes and surfaces obtained by union of balls.

# *Important:* all the Matlab routines used in this talk are available at the author's homepage.

#### Paper

Compressed cubature over polygons with applications to optical design (2020)

- purpose: cubature formula over a convex, nonconvex or even multiply connected polygons Ω.
- strategy: once a minimal triangulation of  $\Omega$  is available, we obtain the rule by applying an almost-minimal rule of PI-type on each triangle with the wanted ADE, summing the contributions.

#### Remark

- minimal triangulation: one can triangulate a general M-sides polygon via M 2 triangles (easy task in a convex polygon, not trivial for a general one),
- almost-minimal rule the number of its nodes is almost minimal between those having a certain degree of precision and requirement on the nodes (e.g. internal) and weights (e.g. positive).

## Example: quadrature over polygons (triang. based approach)



Figure: Examples of polygonal domains (ADE=9).

Left: a convex domain with 6 sides (76 nodes), Right: a non-convex domain with 9 sides (133 nodes).

Note: all the weights are positive.

- Pros: In general these rules always have internal nodes as well as positive weights.
- **Cons**: Rule still may have high cardinality if the polygon has many sides.

Observe that in the examples above for ADE = 9

- convex domain: the rule has 76 nodes,
- not convex domain: the rule has 133 nodes.

### Remark

In both cases the number of nodes is higher than the dimension of the polynomial space  $\mathbb{P}_9$  that is equal to (9+1)(9+2)/2 = 55.

Our project is to quickly extract from the previous one, another rule of Pl-type with the same degree of precision but with a number of nodes at most equal to  $\dim(\mathbb{P}_9)$  (i.e. a rule compression).

#### Paper

M. Putinar, A Note on Tchakaloff's Theorem, Proc. of AMS, Vol. 125, No. 8 (1997), 2409-2414.

#### Theorem (Carathéodory-Tchakaloff, see more general Putinar theorem)

Let

- If  $\mu$  be a multivariate discrete measure supported at a finite set  $X = {\mathbf{x}_k}_{k=1,...,N} \subset \mathbb{R}^d$ , with correspondent positive weights  ${w_k}_{k=1,...,N}$ ,
- **2**  $\Phi = span(\phi_1, \ldots, \phi_r)$  a finite dimensional space of *d*-variate functions defined on  $\Omega \supseteq X$ , with  $dim(\Phi|_X) \leq r$ .

Then there exist a quadrature formula with nodes  $T = {\mathbf{t}_k}_{k=1,...,N_c} \subseteq X$  and positive weights  ${u_k}_{k=1,...,N_c}$ , such that  $N_c \leq \dim(\Phi|_X)$  and

$$\int_{\Omega} f(\mathbf{x}) d\mu := \sum_{k=1}^{N} w_k f(\mathbf{x}_k) = \sum_{i=1}^{N_c} u_i f(\mathbf{t}_i) := \int_{\Omega} f(\mathbf{x}) d\mu_C, \text{ for all } f \in \Phi|_X.$$

#### Example

If we have a rule of PI-type with cardinality N higher than  $r = \dim(\mathbb{P}_m(\Omega))$  then we can extract one of PI-type with cardinality  $N_c \leq r$ , having the same *integration* values in  $\mathbb{P}_m(\Omega)$ .

### Paper

Compression of multivariate discrete measures and applications (2015).

Given

■ a formula of Pl-type with ADE=*m*, nodes  $X = {x_k}_{k=1,...,N} \subset \mathbb{R}^d$  and positive weights  ${w_k}_{k=1,...,N}$ ,

• a basis 
$$\{\phi_1,\ldots,\phi_r\}$$
 of  $\mathbb{P}_m(\Omega)$ ,

let

- $V_{i,j} = (\phi_j(\mathbf{x}_i))$  the Vandermonde matrix at the nodes,
- $\mathbf{b} = (b_j)_{j=1,...,r}$  where  $b_j = \int_{\Omega} \phi_j d\mu = \sum_{i=1}^N w_i \phi_j(\mathbf{x}_i)$ , the vector of the  $\mu$  moments.

The problem mentioned above resorts into computing a nonnegative solution with at most "*r*" nonvanishing components to the underdetermined linear system

$$V^T \mathbf{u} = \mathbf{b}.$$

The computation of a nonnegative solution with at most  $r = \dim(\mathbb{P}_m(\Omega))$ nonvanishing components to the underdetermined linear system  $V^T \mathbf{u} = \mathbf{b}$  can be performed finding a sparse solution to the quadratic minimum problem

NNLS: 
$$\begin{cases} \min_{u} \| V^{T} \mathbf{u} - \mathbf{b} \|_{2} \\ \mathbf{u} \ge \mathbf{0} \end{cases}$$

via Lawson-Hanson active set method for NonNegative Least Squares (NNLS).

In Matlab this can be done by means of the Matlab built-in routine <code>lsqnonneg</code> as well as by the more recent LHDM by Dessole, Marcuzzi and Vianello.

#### Remark

- The approach mentioned above is effective for mild ADE, say on the order of ADE=20 for bivariate domains and ADE=10 for trivariate domains.
- There are also other approaches, e.g. by based on linear programming or by a different combinatorial algorithm (recursive Halving Forest), based on SVD.

As example, we can consider the application of the technique mentioned above to extract a rule of PI-type, for computing a similar one on the polygonal domains treated above.

### Algorithm

input: the nodes  $\{\mathbf{x}_k\}_{k=1,...,N}$ , the weights  $\{w_k\}_{k=1,...,N}$  of a PI-type rule with N > r(r is the dimension of the polynomial space  $\mathbb{P}_m$ ) and a polynomial basis  $\{\psi_j\}_{j=1,...,r}$ ;

- **1** Vandermonde matrix: compute  $U = (\phi_k(\mathbf{x}_i))$ ;
- **2** fight ill-conditioning: compute the QR factorization with column pivoting  $\sqrt{W}U(:,\pi) = QR$ , where  $\sqrt{W} = diag(\{w_k\})$  and  $\pi$  is a permutation vector; this corresponds to a change of basis  $(\phi_1, \ldots, \phi_r) = (\psi_1, \ldots, \psi_r)R^{-1}$ , so obtaining an orthonormal basis w.r.t. the discrete measure defined by the nodes  $\{\mathbf{x}_k\}_{k=1,\ldots,N}$  and the weights  $\{w_k\}_{k=1,\ldots,N}$ ;
- **3** moments: evaluate the vector  $\mathbf{b} = Q^T \mathbf{w}$  where  $\mathbf{w}_k = w_k$ ;
- **4** compute a positive sparse solution: solve  $Q^T \mathbf{u} = \mathbf{b}$  by Lawson-Hanson algorithm (or its alternatives).

By this algorithm,

adopting as basis {ψ<sub>i</sub>} the total-degree product Chebyshev basis of the smallest Cartesian rectangle [a<sub>1</sub>, b<sub>1</sub>] × [a<sub>2</sub>, b<sub>2</sub>] containing Ω, with the graded lexicographical ordering,

from the PI-rules with ADE=9 obtained via triangulation,

we get the PI-rules below with cardinality  $55 = \dim(\mathbb{P}_9)$ .



Figure: Examples of polygonal domains (ADE=9).

Left: a convex domain with 6 sides (55 nodes, the previous rule had 76 nodes), Right: a non-convex domain with 9 sides (55 nodes, the previous rule had 133 nodes).

#### Remark (When do not apply this technique)

We observe that this approach is useful only when the initial rule of Pl-type with ADE=m has cardinality higher the dimension L of  $\mathbb{P}_m(\Omega)$ .

Thus it is worthless in the case of classical domains as the interval, the disk, simplex, cube, sphere, where there are explicit rules of PI-type with cardinality inferior to L.

#### Remark (Cputimes on the previous domains)

For mild ADE the computation of these compressed rules is fast. Running Matlab R2022a, on a computer with an Apple M1 processor and 16GB of RAM, we had average cputimes as in the table below:

| Domain            | tri. rule | compress. |
|-------------------|-----------|-----------|
| Convex domain     | 1.1e-3s   | 1.7e-2s   |
| Non-convex domain | 5.2e-3s   | 1.1e-2s   |

Table: Average cputime for computing rules with ADE=9 in the previous polygonal domains.

## Application to QMC compression

This technique can be used to compress Quasi-Montecarlo cubature rules on  $\Omega \subset \mathbb{R}^d$  obtained by set operations of compact domains  $\Omega_1, \ldots, \Omega_\nu \subset \mathbb{R}^d$ :

- polynomial basis: product-type Chebyshev basis in P<sub>m</sub>(Ω) on the bounding box R of the domain Ω;
- mesh points: sufficiently dense low discrepancy points in the bounding box R (good choice for volumes) or on a suitable subdomain of R containing Ω (good for surfaces); notice that if the measure of the domain is not known, it must be approximated numerically in order to apply QMC;
- in-domain routine: in domain routine on each domain  $\Omega_k$ ,  $k = 1, ..., \nu$  followed by suitable set operations;
- **moment computation**: via Quasi-Montecarlo cubature.

This allows to achieve a rule with few nodes that equals the results of the QMC rule applied to polynomials in  $\mathbb{P}_m$ .

#### Purpose

Retaining the approximation power of the original QMC formula (up to a quantity proportional to the best polynomial approximation error of degree m to f, in the uniform norm on  $\Omega$ ), using much fewer nodes.

- Domains: this technique can be used to compress QMC on Ω ⊂ ℝ<sup>d</sup> obtained by set operations of compact domains Ω<sub>1</sub>,..., Ω<sub>ν</sub> ⊂ ℝ<sup>d</sup>.
- Alternatives: very often the detection of specific features (as its boundary  $\partial \Omega$  or computation of the polynomial moments) may be not available or so difficult to make extremely complicated the usage of other techniques than QMC.
- In-domain routine:
  - Verification of certain inequalities: for example, the unit-ball B(0,1) is defined as the set

$$B(\mathbf{0}, 1) := \{ \mathbf{x} = (x, y, z) \in \mathbb{R}^3 \text{ such that } x^2 + y^2 + z^2 \le 1 \}.$$

 Specific codes: Matlab built-in inpolygon (polygonal domains), inpolyhedra (polyhedral domains), in-rs (curved polygons with boundary defined by NURBS).

#### Paper

For details about in-rs see: inRS: implementing the indicator function for NURBS-shaped planar domains, Applied Mathematics Letters, Volume 130, August 2022.

### Application to QMC compression: some bivariate examples



Figure: 231 compressed QMC nodes with exactness degree n = 20, on complex shapes arising from union (top-left), intersection (top-right) and symmetric difference (bottom) of two NURBS-shaped domains (extraction from a million Halton points of domain bounding boxes, basis  $\Phi$  obtained by orthonormalization of a tensorial type basis in the bounding box  $\mathcal{R}$  of the domain  $\Omega$ ).

- Domains:  $\mathcal{R}$  is the smaller rectangle (with sides parallel to the axes) containing  $\Omega$ ;
- **polynomial basis:** subset of tensorial-type Chebyshev basis defining  $\mathbb{P}_m$  on  $\mathcal{R}$ ;
- In-domain routine: in-rs;

| deg              | 5       | 10      | 15      | 20      |
|------------------|---------|---------|---------|---------|
| card. CQMC       | 21      | 66      | 136     | 231     |
| compr. ratio     | 1.2e+04 | 3.9e+03 | 1.9e+03 | 1.1e+03 |
| сри СОМС         | 4.0e-02 | 1.2e-01 | 2.8e-01 | 5.8e+00 |
| mom. resid. CQMC | 5.8e-16 | 1.4e-15 | 2.4e-15 | 7.0e-15 |

Table: Compression parameters of QMC cubature with N = 255923 Halton points on the intersection of two NURBS-shaped domains as in Figure above top-right. By CQMC we intend results obtained via the new compression algorithm.

| deg      | 5       | 10      | 15      | 20      |
|----------|---------|---------|---------|---------|
|          | 2.7e-04 |         |         |         |
| $E(f_2)$ | 2.3e-04 | 2.4e-05 | 1.1e-05 | 5.6e-06 |

Table: Relative CQMC errors  $E(f_k)$ , k = 1, 2 for the two test functions  $f_1(P) = \exp(-|P - P_0|^2)$ ,  $f_2(P) = |P - P_0|^5$  on the intersection of Fig. 1 top-right.

## Application to QMC compression: trivariate examples



Figure: 84 compressed QMC nodes with exactness degree n = 6, on intersection (red bullets) and difference (green bullets) of a tetrahedral element with a ball (extraction from a million Halton points of domain bounding boxes, cputime:  $\approx 5 \cdot 10^{-2}s$ , basis  $\Phi$  obtained by orthonormalization of a tensorial type basis in the bounding box  $\mathcal{R}$  of the domain  $\Omega$ ).

## Application to QMC compression: trivariate examples

| deg              | 2       | 4       | 6       |
|------------------|---------|---------|---------|
| card. CQMC       | 10      | 35      | 84      |
| compr. ratio     | 2.2e+04 | 6.2e+03 | 2.6e+03 |
| сри СОМС         | 4.1e-02 | 4.1e-02 | 1.8e-01 |
| mom. resid. CQMC | 1.7e-16 | 6.0e-16 | 1.2e-15 |

Table: Compression parameters of QMC cubature with N = 216217 Halton points on the intersection of a tetrahedral element with a ball as in the last figure. By CQMC we intend results obtained via the new compression algorithm.

| deg              | 2       | 4       | 6       |
|------------------|---------|---------|---------|
| card. CQMC       | 10      | 35      | 84      |
| compr. ratio     | 5.9e+03 | 1.7e+03 | 7.0e+02 |
| сри СОМС         | 3.3e-02 | 2.1e-02 | 5.5e-02 |
| mom. resid. CQMC | 5.0e-16 | 6.1e-16 | 1.2e-15 |

Table: Compression parameters of QMC cubature with N = 58561 Halton points on the difference of a tetrahedral element with a ball as in the last figure. By CQMC we intend results obtained via the new compression algorithm.

## Application to QMC compression: union of balls (volumes and surfaces)

Let  $B(C_j, r_j)$  be a ball with center  $C_j \in \mathbb{R}^3$  and radius  $r_j > 0$  and consider domains of the forms

- 1  $\Omega_V = \bigcup_{j=1}^L B(C_j, r_j)$  (volume);
- 2  $\Omega_S = \partial \cup_{j=1}^L B(C_j, r_j)$  (surface).





Figure: Left: union of 3 balls, Right: union of 100 balls.

### Main difficulties:

- their geometry can be very complicated, since the balls may intersect, even creating cavities: hard to subdivide in manageable subregions;
- depending on the balls, the polynomial space  $\mathbb{P}_m(\Omega_S)$  over the surface  $\Omega_S$  may have a dimension inferior than  $\mathbb{P}_m(\mathbb{R}^3)$  (spheres are algebraic surfaces), and it is not straightforward to determine exactly a well-conditioned basis (even the computation of dim $(\mathbb{P}_m(\Omega_S))$  may be a tough problem).

## Where they arise:

 molecular modelling, computational geometry, computational optics, wireless network analysis;

Problems:

- basic (but not trivial): exact computation of areas or volumes of such sets;
- more difficult: computing volume or surface integrals there by quadrature formulas.

### Paper

*Qbubble: a numerical code for compressed QMC volume and surface integration on union of balls, submitted.* 

#### Purpose

We intend to compress a rule, matching the QMC values of integrands in  $\mathbb{P}_m$ , in the case of the volumes, i.e.  $\Omega_V = \bigcup_{j=1}^{L} B(C_j, r_j)$ .

## full QMC rule: easy,

- low discrepancy sequences in the bounding box  $\mathcal{R}$  are available, and the restriction on  $\Omega_V$  provides low discrepancy sequences;
- easy approximation of domain volume via QMC and volume of the parallelepiped *R* (bounding box);
- polynomial basis: technical and new,

starting from product Chebyshev basis a trick is used to reduce computations for determining a well-conditioned basis (using just a small subset of QMC nodes);

moment evaluation: easy,

via the full QMC rule;

compressed QMC: technical and new,

a trick is used to reduce computations (again using just a small subset of QMC nodes);

#### Purpose

We intend to compress a rule, matching the QMC values of integrands in  $\mathbb{P}_m$ , in the case of the surfaces, i.e.,  $\Omega_S = \partial \cup_{j=1}^{L} B(C_j, r_j)$ :

- full QMC rule: quite easy,
  - low discrepancy sequences X<sub>i</sub> in each sphere S<sub>i</sub> = ∂B(C<sub>i</sub>, r<sub>i</sub>) are available, hence one can determine after some technicalities low discrepancy sequences over Ω<sub>5</sub>;
  - easy approx. of  $\Omega_S$  area via QMC and area of each sphere  $S_j$ , j = 1, ..., L;
- polynomial basis: very technical and new,
  - usage of Matlab numerical rank revealing algorithms to determine the dimension of the polynomial space and a well-conditioned basis (the dimensions of  $\mathbb{P}_m(\Omega_S)$  and  $\mathbb{P}_m(\mathbb{R}^3)$  may be different);
  - starting from product Chebyshev basis a trick is used to reduce computations for determining a well-conditioned basis (using just a small subset of QMC nodes);
- moment evaluation: easy,

via the full QMC rule;

compressed QMC: technical and new,

a trick is used to reduce computations (again using a small subset of QMC nodes);

| deg 3            |         | 6       | 9       | 12      |
|------------------|---------|---------|---------|---------|
| card. QMC        | 1128709 |         |         |         |
| card. CQMC       | 20      | 84      | 220     | 455     |
| compr. ratio     | 5.6e+04 | 1.3e+04 | 5.1e+03 | 2.5e+03 |
| сри <i>QMC</i>   | 9.0e-01 |         |         |         |
| cpu CQMC         | 2.5e-01 | 8.6e-01 | 2.2e+00 | 5.5e+00 |
| mom. resid. CQMC |         |         |         |         |
| iter. 1          | 4.2e-16 | 1.2e-15 | 1.9e-15 | 5.3e-15 |

Table: Example with the union of 3 balls, in a bounding box with 2400000 low-discrepancy points. Compressed codes used the acronym CQMC.

#### Remark

New codes are from 13.6 to 25.4 times faster than the old ones

| deg              | 3       | 6       | 9       | 12      |
|------------------|---------|---------|---------|---------|
| card. QMC        | 1195806 |         |         |         |
| card. CQMC       | 20      | 84      | 220     | 455     |
| compr. ratio     | 5.6e+04 | 1.3e+04 | 5.1e+03 | 2.8e+03 |
| сри <i>QMC</i>   |         | 1.3e    | +00     |         |
| cpu CQMC         | 2.6e-01 | 9.1e-01 | 2.4e+00 | 5.8e+00 |
| mom. resid. CQMC |         |         |         |         |
| iter. 1          | 1.3e-16 | 7.2e-16 | 1.6e-15 | 7.3e-15 |

Table: Example with the union of 100 balls, in a bounding box with 2400000 Halton points. Compressed codes used the acronym CQMC.

#### Remark

New codes are from 13.1 to 27.9 times faster than the old ones.

| deg                                | 3       | 6       | 9       | 12      |
|------------------------------------|---------|---------|---------|---------|
| card. QMC                          | 1024179 |         |         |         |
| card. CQMC                         | 20      | 83      | 200     | 371     |
| compr. ratio                       | 5.1e+04 | 1.2e+04 | 5.1e+03 | 2.8e+03 |
| сри <i>QMC</i>                     | 8.8e-01 |         |         |         |
| cpu CQMC                           | 2.8e-01 | 1.1e+00 | 2.8e+00 | 5.9e+00 |
| speed-up                           | 10.7    | 16.4    | 17.9    | 23.7    |
| сри Q <sub>c</sub> <sup>full</sup> | 2.7e+00 | 1.3e+01 | 2.9e+01 | 5.9e+01 |
| speed-up                           | 9.6     | 11.8    | 10.4    | 10.0    |
| mom. resid. CQMC                   |         |         |         |         |
| iter. 1                            | 7.2e-16 | 1.1e-15 | 2.3e-15 | 4.0e-15 |

Table: Compression of surface QMC integration on the union 3 balls, starting from 500000 low-discrepancy points on each sphere. Compressed codes used the acronym CQMC.

#### Remark

New codes are from 10.7 to 23.7 times faster than the old ones.

| deg              | 3       | 6       | 9       | 12      |
|------------------|---------|---------|---------|---------|
| card. QMC        | 1032718 |         |         |         |
| card. CQMC       | 20      | 84      | 220     | 455     |
| compr. ratio     | 5.2e+04 | 1.2e+04 | 4.7e+03 | 2.3e+03 |
| сри <i>QMC</i>   |         |         | e+01    |         |
| cpu CQMC         | 3.0e-01 | 1.2e+00 | 3.0e+00 | 6.6e+00 |
| (                |         |         |         |         |
| mom. resid. CQMC |         |         |         |         |

Table: Compression of surface QMC integration on the union 100 balls, starting from 60000 low-discrepancy points on each sphere. Compressed codes used the acronym CQMC.

#### Remark

New codes are from 9.3 to 16.7 times faster than the old ones.

## Application to QMC compression: on the numerical integration of some functions

Next we show the integration errors on three test functions with different regularity, namely

•  $f_1(P) = |P - P_0|^5$  (class  $C^4$  with discontinuous fifth derivatives);

• 
$$f_2(P) = \cos(x + y + z)$$
 (analytic);

•  $f_3(P) = \exp(-|P - P_0|^2)$  (analytic);

where  $P_0 = (0, 0, 0) \in \Omega$ .

#### Remark

• It is easy to see that for every  $f \in C(\Omega)$ , the following error estimate holds

$$|I_{\scriptscriptstyle CQMC}(f) - I(f)| \leq \mathcal{E}_{\scriptscriptstyle QMC}(f) + 2\,\mu(\Omega)\,\mathcal{E}_n(f;\Omega)$$
 ,

where  $\mathcal{E}_{QMC}(f) = |I_{QMC}(f) - I(f)|$  and  $E_n(f; \Omega)$  is the best approximation error of f w.r.t.  $\mathbb{P}_n$ , in  $\Omega$ , w.r.t. the sup-norm.

 The reference values of the integrals have been computed by a QMC formula starting from 10<sup>8</sup> Halton points in the bounding box.

# Application to QMC compression: on the numerical integration of some functions, 3 balls volumes

| deg            | 3                                     | 6       | 9       | 12      |  |
|----------------|---------------------------------------|---------|---------|---------|--|
| $E^{QMC}(f_1)$ | 3.5e-04                               |         |         |         |  |
| $E^{new}(f_1)$ | 4.8e-02   3.0e-04   3.5e-04   3.5e-04 |         |         |         |  |
| $E^{QMC}(f_2)$ |                                       | 7.3e-04 |         |         |  |
| $E^{new}(f_2)$ | 3.5e+00                               | 7.6e-02 | 2.0e-03 | 7.3e-04 |  |
| $E^{QMC}(f_3)$ | 8.7e-05                               |         |         |         |  |
| $E^{new}(f_3)$ | 5.6e-01                               | 1.2e-01 | 1.4e-02 | 2.7e-03 |  |

Table: Example with 3 balls (the reference values are computed via QMC starting from 10<sup>8</sup> Halton points in the bounding box).

# Application to QMC compression: on the numerical integration of some functions, 100 balls volumes

| deg            | 3       | 6       | 9       | 12      |  |
|----------------|---------|---------|---------|---------|--|
| $E^{QMC}(f_1)$ | 1.1e-04 |         |         |         |  |
| $E^{new}(f_1)$ | 7.7e-03 | 8.9e-05 | 1.1e-04 | 1.1e-04 |  |
| $E^{QMC}(f_2)$ |         | 1.7e    | • •     |         |  |
| $E^{new}(f_2)$ | 4.5e-03 | 6.5e-05 | 1.7e-04 | 1.7e-04 |  |
| $E^{QMC}(f_3)$ | 2.2e-04 |         |         |         |  |
| $E^{new}(f_3)$ | 2.4e-02 | 1.4e-02 | 3.5e-05 | 2.2e-04 |  |

Table: Example with 100 balls (the reference values are computed via QMC starting from  $10^8$  Halton points in the bounding box).

# Application to QMC compression: on the numerical integration of some functions, 3 balls surfaces

| deg            | 3       | 6       | 9       | 12      |  |
|----------------|---------|---------|---------|---------|--|
| $E^{QMC}(f_1)$ | 3.9e-06 |         |         |         |  |
| $E^{new}(f_1)$ | 1.1e-04 | 6.3e-07 | 4.0e-06 | 3.9e-06 |  |
| $E^{QMC}(f_2)$ |         | 0.0     | e-05    |         |  |
| $E^{new}(f_2)$ | 6.7e-01 | 1.0e-02 | 5.9e-04 | 8.6e-05 |  |
| $E^{QMC}(f_3)$ | 5.8e-06 |         |         |         |  |
| $E^{new}(f_3)$ | 3.0e-01 | 2.5e-03 | 6.9e-04 | 4.8-05  |  |

Table: Compression of surface QMC integration on the union 3 balls (the reference values are computed via QMC starting from  $10^6$  points on each sphere).

# Application to QMC compression: on the numerical integration of some functions, 100 balls surfaces

| deg            | 3       | 6       | 9       | 12      |
|----------------|---------|---------|---------|---------|
| $E^{QMC}(f_1)$ | 4.0e-05 |         |         |         |
| $E^{new}(f_1)$ | 2.3e-03 | 2.9e-05 | 4.0e-05 | 4.0e-05 |
| $E^{QMC}(f_2)$ | 2.0e-04 |         |         |         |
| $E^{new}(f_2)$ | 5.2e-01 | 3.6e-04 | 1.9e-04 | 2.0e-04 |
| $E^{QMC}(f_3)$ | 1.6e-04 |         |         |         |
| $E^{new}(f_3)$ | 4.1e-01 | 4.8e-03 | 1.3e-04 | 1.6e-04 |

Table: Compression of surface QMC integration on the union 100 balls (the reference values are computed via QMC starting from 10<sup>6</sup> points on each sphere).

## Bibliography

- M. Dessole, F. Marcuzzi, M. Vianello, Accelerating the Lawson-Hanson NNLS solver for large-scale Tchakaloff regression designs, DRNA 13, 20–29 (2020). Fast Lawson-Hanson algorithm and Matlab codes.
- 2 C. Bittante, S. De Marchi and G. Elefante: A new quasi-Monte Carlo technique based on nonnegative least-squares and approximate Fekete points, Numer. Math. TMA, Vol 9(4), pp. 640–663 (2016).

Compression of Quasi-Montecarlo rules.

3 S. De Marchi, G. Elefante: Quasi-Monte Carlo integration on manifolds with mapped low-discrepancy points and greedy minimal Riesz s-energy points, Applied Numerical Mathematics 127, 110–124 (2018).

Quadrature points on manifolds via the Quasi-Monte Carlo (QMC) method

- G. Elefante, A. Sommariva, and M. Vianello, CQMC: an improved code for low-dimensional Compressed Quasi-MonteCarlo cubature, DRNA 15 (2), 92–1000 (2022). Compression of Quasi-Montecarlo rules.
- G. Elefante, A. Sommariva, and M. Vianello, Qbubble: a numerical code for compressed QMC volume and surface integration on union of balls, submitted.
  Compression of Quasi-Montecarlo rules over suitable volumes and surfaces.
- 6 A. Sommariva, Matlab codes used in the numerical experiments
- A. Sommariva, M. Vianello, Compression of multivariate discrete measures and applications, Numer. Funct. Anal. Optim., 36, 1198–1223 (2015).
   Details on cubature compression