On the numerical compression of QMC rules.

Giacomo Elefante, Alvise Sommariva, Marco Vianello

Constructive approximation of functions 3
Krakow, Poland, 22-24 February 2023.
Thanks: Conference Organizers, co-workers, RITA, UMI group TAA, GNCS project Methods and software for multivariate integral models

Purpose

In this talk,

- we start introducing the well-known Tchakaloff theorem (and one of its variants)
existence theorem of certain algebraic and low cardinality cubature rules with positive weights on a multivariate compact domain $\Omega \subset \mathbb{R}^{d}$;
- we compress cubature rules, we show how, from cubature rules on Ω (w.r.t. a positive measure) with positive weights and interior nodes (i.e. of Pl-type), whose algebraic degree of precision $A D E$ is equal to m and the number of nodes higher than the dimension " r " of the polynomial space $\mathbb{P}_{m}(\Omega)$ of total degree m, we can extract rules of PI-type but with at most " r " nodes, by means of Lawson-Hanson algorithm;
- application to Quasi-Montecarlo Cubature: rule compression given a Quasi-Montecarlo Cubature rule (acronym: QMC) and a certain degree of precision m, we compress the QMC rule with a positive one, that provides the same results over polynomials of degree at most m;
- some multivariate examples results over bivariate and trivariate domains, peculiarities of volumes and surfaces obtained by union of balls.

Important: all the Matlab routines used in this talk are available at the author's homepage.

Example: quadrature over polygons (triang. based approach)

Paper

Compressed cubature over polygons with applications to optical design (2020)

- purpose: cubature formula over a convex, nonconvex or even multiply connected polygons Ω.
■ strategy: once a minimal triangulation of Ω is available, we obtain the rule by applying an almost-minimal rule of PI-type on each triangle with the wanted ADE, summing the contributions.

Remark

- minimal triangulation: one can triangulate a general M-sides polygon via $M-2$ triangles (easy task in a convex polygon, not trivial for a general one),
- almost-minimal rule the number of its nodes is almost minimal between those having a certain degree of precision and requirement on the nodes (e.g. internal) and weights (e.g. positive).

Example: quadrature over polygons (triang. based approach)

Figure: Examples of polygonal domains (ADE=9).
Left: a convex domain with 6 sides (76 nodes), Right: a non-convex domain with 9 sides (133 nodes).
Note: all the weights are positive.

Example: quadrature over polygons (triang. based approach)

- Pros: In general these rules always have internal nodes as well as positive weights.
■ Cons: Rule still may have high cardinality if the polygon has many sides.
Observe that in the examples above for $A D E=9$
■ convex domain: the rule has 76 nodes,
■ not convex domain: the rule has 133 nodes.

Remark

In both cases the number of nodes is higher than the dimension of the polynomial space \mathbb{P}_{9} that is equal to $(9+1)(9+2) / 2=55$.
Our project is to quickly extract from the previous one, another rule of PI-type with the same degree of precision but with a number of nodes at most equal to $\operatorname{dim}\left(\mathbb{P}_{9}\right)$ (i.e. a rule compression).

Carathéodory-Tchakaloff Subsampling

Paper

M. Putinar, A Note on Tchakaloff's Theorem, Proc. of AMS, Vol. 125, No. 8 (1997), 2409-2414.

Theorem (Carathéodory-Tchakaloff, see more general Putinar theorem)

Let

1μ be a multivariate discrete measure supported at a finite set $X=\left\{\mathbf{x}_{k}\right\}_{k=1, \ldots, N} \subset \mathbb{R}^{d}$, with correspondent positive weights $\left\{w_{k}\right\}_{k=1, \ldots, N}$,
$2 \Phi=\operatorname{span}\left(\phi_{1}, \ldots, \phi_{r}\right)$ a finite dimensional space of d-variate functions defined on $\Omega \supseteq X$, with $\operatorname{dim}(\Phi \mid x) \leq r$.
Then there exist a quadrature formula with nodes $T=\left\{\mathbf{t}_{k}\right\}_{k=1, \ldots, N_{c}} \subseteq X$ and positive weights $\left\{u_{k}\right\}_{k=1, \ldots, N_{c}}$, such that $N_{c} \leq \operatorname{dim}\left(\left.\Phi\right|_{X}\right)$ and

$$
\int_{\Omega} f(\mathbf{x}) d \mu:=\sum_{k=1}^{N} w_{k} f\left(\mathbf{x}_{k}\right)=\sum_{i=1}^{N_{c}} u_{i} f\left(\mathbf{t}_{i}\right):=\int_{\Omega} f(\mathbf{x}) d \mu_{C}, \text { for all }\left.f \in \Phi\right|_{X}
$$

Example

If we have a rule of PI-type with cardinality N higher than $r=\operatorname{dim}\left(\mathbb{P}_{m}(\Omega)\right)$ then we can extract one of Pl-type with cardinality $N_{c} \leq r$, having the same integration values in $\mathbb{P}_{m}(\Omega)$.

Carathéodory-Tchakaloff Subsampling

Paper

Compression of multivariate discrete measures and applications (2015).
Given
■ a formula of PI-type with $\mathrm{ADE}=m$, nodes $X=\left\{\mathbf{x}_{k}\right\}_{k=1, \ldots, N} \subset \mathbb{R}^{d}$ and positive weights $\left\{w_{k}\right\}_{k=1, \ldots, N}$,
■ a basis $\left\{\phi_{1}, \ldots, \phi_{r}\right\}$ of $\mathbb{P}_{m}(\Omega)$,
let
■ $V_{i, j}=\left(\phi_{j}\left(\mathbf{x}_{i}\right)\right)$ the Vandermonde matrix at the nodes,
■ $\mathbf{b}=\left(b_{j}\right)_{j=1, \ldots, r}$ where $b_{j}=\int_{\Omega} \phi_{j} d \mu=\sum_{i=1}^{N} w_{i} \phi_{j}\left(\mathbf{x}_{i}\right)$, the vector of the μ moments.
The problem mentioned above resorts into computing a nonnegative solution with at most " r " nonvanishing components to the underdetermined linear system

$$
V^{\top} \mathbf{u}=\mathbf{b}
$$

Carathéodory-Tchakaloff Subsampling

The computation of a nonnegative solution with at most $r=\operatorname{dim}\left(\mathbb{P}_{m}(\Omega)\right)$ nonvanishing components to the underdetermined linear system $V^{\top} \mathbf{u}=\mathbf{b}$ can be perfomed finding a sparse solution to the quadratic minimum problem

$$
\text { NNLS: }\left\{\begin{array}{l}
\min _{u}\left\|V^{\top} \mathbf{u}-\mathbf{b}\right\|_{2} \\
\mathbf{u} \geq 0
\end{array}\right.
$$

via Lawson-Hanson active set method for NonNegative Least Squares (NNLS).
In Matlab this can be done by means of the Matlab built-in routine lsqnonneg as well as by the more recent LHDM by Dessole, Marcuzzi and Vianello.

Remark

- The approach mentioned above is effective for mild ADE, say on the order of $A D E=20$ for bivariate domains and $A D E=10$ for trivariate domains.
- There are also other approaches, e.g. by based on linear programming or by a different combinatorial algorithm (recursive Halving Forest), based on SVD.

Carathéodory-Tchakaloff Subsampling

As example, we can consider the application of the technique mentioned above to extract a rule of Pl-type, for computing a similar one on the polygonal domains treated above.

Algorithm

input: the nodes $\left\{\mathbf{x}_{k}\right\}_{k=1, \ldots, N}$, the weights $\left\{w_{k}\right\}_{k=1, \ldots, N}$ of a Pl-type rule with $N>r$ (r is the dimension of the polynomial space \mathbb{P}_{m}) and a polynomial basis $\left\{\psi_{i}\right\}_{j=1, \ldots, r}$;
1 Vandermonde matrix: compute $U=\left(\phi_{k}\left(\mathbf{x}_{i}\right)\right)$;
12 fight ill-conditioning: compute the $Q R$ factorization with column pivoting $\sqrt{W} U(:, \pi)=Q R$, where $\sqrt{W}=\operatorname{diag}\left(\left\{w_{k}\right\}\right)$ and π is a permutation vector; this corresponds to a change of basis $\left(\phi_{1}, \ldots, \phi_{r}\right)=\left(\psi_{1}, \ldots, \psi_{r}\right) R^{-1}$, so obtaining an orthonormal basis w.r.t. the discrete measure defined by the nodes $\left\{\mathbf{x}_{k}\right\}_{k=1, \ldots, N}$ and the weights $\left\{w_{k}\right\}_{k=1, \ldots, N}$;
3 moments: evaluate the vector $\mathbf{b}=Q^{\top} \mathbf{w}$ where $\mathbf{w}_{k}=w_{k}$;
4 compute a positive sparse solution: solve $Q^{\top} \mathbf{u}=\mathbf{b}$ by Lawson-Hanson algorithm (or its alternatives).

Carathéodory-Tchakaloff Subsampling

By this algorithm,

- adopting as basis $\left\{\psi_{j}\right\}$ the total-degree product Chebyshev basis of the smallest Cartesian rectangle $\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$ containing Ω, with the graded lexicographical ordering,
- from the PI-rules with $\mathrm{ADE}=9$ obtained via triangulation, we get the PI-rules below with cardinality $55=\operatorname{dim}\left(\mathbb{P}_{9}\right)$.

Figure: Examples of polygonal domains ($\mathrm{ADE}=9$).
Left: a convex domain with 6 sides (55 nodes, the previous rule had 76 nodes), Right: a non-convex domain with 9 sides (55 nodes, the previous rule had 133 nodes).

Carathéodory-Tchakaloff Subsampling

Remark (When do not apply this technique)

We observe that this approach is useful only when the initial rule of PI-type with $A D E=m$ has cardinality higher the dimension L of $\mathbb{P}_{m}(\Omega)$.
Thus it is worthless in the case of classical domains as the interval, the disk, simplex, cube, sphere, where there are explicit rules of PI-type with cardinality inferior to L.

Remark (Cputimes on the previous domains)

For mild ADE the computation of these compressed rules is fast. Running Matlab R2022a, on a computer with an Apple M1 processor and 16GB of RAM, we had average cputimes as in the table below:

Domain	tri. rule	compress.
Convex domain	$1.1 e-3 s$	$1.7 e-2 s$
Non-convex domain	$5.2 e-3 s$	$1.1 e-2 s$

Table: Average cputime for computing rules with $A D E=9$ in the previous polygonal domains.

Application to QMC compression

This technique can be used to compress Quasi-Montecarlo cubature rules on $\Omega \subset \mathbb{R}^{d}$ obtained by set operations of compact domains $\Omega_{1}, \ldots, \Omega_{\nu} \subset \mathbb{R}^{d}$:

■ polynomial basis: product-type Chebyshev basis in $\mathbb{P}_{m}(\Omega)$ on the bounding box \mathcal{R} of the domain Ω;

- mesh points: sufficiently dense low discrepancy points in the bounding box \mathcal{R} (good choice for volumes) or on a suitable subdomain of \mathcal{R} containing Ω (good for surfaces); notice that if the measure of the domain is not known, it must be approximated numerically in order to apply QMC;
■ in-domain routine: in domain routine on each domain $\Omega_{k}, k=1, \ldots, \nu$ followed by suitable set operations;
- moment computation: via Quasi-Montecarlo cubature.

This allows to achieve a rule with few nodes that equals the results of the QMC rule applied to polynomials in \mathbb{P}_{m}.

Purpose

Retaining the approximation power of the original QMC formula (up to a quantity proportional to the best polynomial approximation error of degree m to f, in the uniform norm on Ω), using much fewer nodes.

Application to QMC compression: some advantages

■ Domains: this technique can be used to compress QMC on $\Omega \subset \mathbb{R}^{d}$ obtained by set operations of compact domains $\Omega_{1}, \ldots, \Omega_{\nu} \subset \mathbb{R}^{d}$.
■ Alternatives: very often the detection of specific features (as its boundary $\partial \Omega$ or computation of the polynomial moments) may be not available or so difficult to make extremely complicated the usage of other techniques than QMC.

- In-domain routine:
- Verification of certain inequalities: for example, the unit-ball $B(0,1)$ is defined as the set

$$
B(\mathbf{0}, 1):=\left\{\mathbf{x}=(x, y, z) \in \mathbb{R}^{3} \text { such that } x^{2}+y^{2}+z^{2} \leq 1\right\} .
$$

- Specific codes: Matlab built-in inpolygon (polygonal domains), inpolyhedra (polyhedral domains), in-rs (curved polygons with boundary defined by NURBS).

Paper

For details about in-rs see: inRS: implementing the indicator function for NURBS-shaped planar domains, Applied Mathematics Letters, Volume 130, August 2022.

Application to QMC compression: some bivariate examples

Figure: 231 compressed QMC nodes with exactness degree $n=20$, on complex shapes arising from union (top-left), intersection (top-right) and symmetric difference (bottom) of two NURBS-shaped domains (extraction from a million Halton points of domain bounding boxes, basis Φ obtained by orthonormalization of a tensorial type basis in the bounding box \mathcal{R} of the domain Ω).

- Domains: \mathcal{R} is the smaller rectangle (with sides parallel to the axes) containing Ω;
- polynomial basis: subset of tensorial-type Chebyshev basis defining \mathbb{P}_{m} on \mathcal{R};

■ In-domain routine: in-rs;

Application to QMC compression: some bivariate examples

deg	5	10	15	20
card. CQMC compr. ratio	1.21	66	136	231
cpu CQMC	4.04	$3.9 \mathrm{e}+03$	$1.9 \mathrm{e}+03$	$1.2 \mathrm{e}-01$
$2.8 \mathrm{e}-01$	$5.8 \mathrm{e}+00$			
mom. resid. CQMC	$5.8 \mathrm{e}-16$	$1.4 \mathrm{e}-15$	$2.4 \mathrm{e}-15$	$7.0 \mathrm{e}-15$

Table: Compression parameters of QMC cubature with $N=255923$ Halton points on the intersection of two NURBS-shaped domains as in Figure above top-right. By CQMC we intend results obtained via the new compression algorithm.

deg	5	10	15	20
$E\left(f_{1}\right)$	$2.7 \mathrm{e}-04$	$1.4 \mathrm{e}-08$	$3.0 \mathrm{e}-13$	$4.5 \mathrm{e}-16$
$E\left(f_{2}\right)$	$2.3 \mathrm{e}-04$	$2.4 \mathrm{e}-05$	$1.1 \mathrm{e}-05$	$5.6 \mathrm{e}-06$

Table: Relative CQMC errors $E\left(f_{k}\right), k=1,2$ for the two test functions $f_{1}(P)=\exp \left(-\left|P-P_{0}\right|^{2}\right), f_{2}(P)=\left|P-P_{0}\right|^{5}$ on the intersection of Fig. 1 top-right.

Application to QMC compression: trivariate examples

Figure: 84 compressed QMC nodes with exactness degree $\mathrm{n}=6$, on intersection (red bullets) and difference (green bullets) of a tetrahedral element with a ball (extraction from a million Halton points of domain bounding boxes, cputime: $\approx 5 \cdot 10^{-2} s$, basis Φ obtained by orthonormalization of a tensorial type basis in the bounding box \mathcal{R} of the domain Ω).

Application to QMC compression: trivariate examples

deg	2	4	6
card. CQMC compr. ratio	10	35	84
cpu CQMC	$4.1 \mathrm{e}-04$	$6.2 \mathrm{e}+03$	$4.1 \mathrm{e}-02$
$\mathrm{e}+03$			
mom. resid. CQMC	$1.7 \mathrm{e}-16$	$6.0 \mathrm{e}-16$	$1.2 \mathrm{e}-15$

Table: Compression parameters of QMC cubature with $N=216217$ Halton points on the intersection of a tetrahedral element with a ball as in the last figure. By CQMC we intend results obtained via the new compression algorithm.

deg	2	4	6
card. CQMC compr. ratio	$5.9 \mathrm{e}+03$	35	84
$1.7 \mathrm{e}+03$	$7.0 \mathrm{e}+02$		
cpu CQMC	$3.3 \mathrm{e}-02$	$2.1 \mathrm{e}-02$	$5.5 \mathrm{e}-02$
mom. resid. CQMC	$5.0 \mathrm{e}-16$	$6.1 \mathrm{e}-16$	$1.2 \mathrm{e}-15$

Table: Compression parameters of QMC cubature with $N=58561$ Halton points on the difference of a tetrahedral element with a ball as in the last figure. By CQMC we intend results obtained via the new compression algorithm.

Application to QMC compression: union of balls (volumes and surfaces)

Let $B\left(C_{j}, r_{j}\right)$ be a ball with center $C_{j} \in \mathbb{R}^{3}$ and radius $r_{j}>0$ and consider domains of the forms
$1 \Omega_{V}=\cup_{j=1}^{L} B\left(C_{j}, r_{j}\right)$ (volume);
2 $\Omega_{S}=\partial \cup_{j=1}^{L} B\left(C_{j}, r_{j}\right)$ (surface).

Figure: Left: union of 3 balls, Right: union of 100 balls.

Application to QMC compression: union of balls (volumes and surfaces)

Main difficulties:

■ their geometry can be very complicated, since the balls may intersect, even creating cavities: hard to subdivide in manageable subregions;

- depending on the balls, the polynomial space $\mathbb{P}_{m}\left(\Omega_{S}\right)$ over the surface Ω_{S} may have a dimension inferior than $\mathbb{P}_{m}\left(\mathbb{R}^{3}\right)$ (spheres are algebraic surfaces), and it is not straightforward to determine exactly a well-conditioned basis (even the computation of $\operatorname{dim}\left(\mathbb{P}_{m}\left(\Omega_{S}\right)\right)$ may be a tough problem).
Where they arise:
- molecular modelling, computational geometry, computational optics, wireless network analysis;

Problems:

■ basic (but not trivial): exact computation of areas or volumes of such sets;

- more difficult: computing volume or surface integrals there by quadrature formulas.

Paper

Qbubble: a numerical code for compressed QMC volume and surface integration on union of balls, submitted.

Application to QMC compression: union of balls (volumes)

Purpose

We intend to compress a rule, matching the QMC values of integrands in \mathbb{P}_{m}, in the case of the volumes, i.e. $\Omega_{v}=\cup_{j=1}^{L} B\left(C_{i}, r_{j}\right)$.

■ full QMC rule: easy,

- low discrepancy sequences in the bounding box \mathcal{R} are available, and the restriction on Ω_{V} provides low discrepancy sequences;
- easy approximation of domain volume via QMC and volume of the parallelepiped \mathcal{R} (bounding box);
- polynomial basis: technical and new, starting from product Chebyshev basis a trick is used to reduce computations for determining a well-conditioned basis (using just a small subset of QMC nodes);
- moment evaluation: easy, via the full QMC rule;
- compressed QMC: technical and new, a trick is used to reduce computations (again using just a small subset of QMC nodes);

Application to QMC compression: union of balls (surfaces)

Purpose

We intend to compress a rule, matching the $Q M C$ values of integrands in \mathbb{P}_{m}, in the case of the surfaces, i.e.. $\Omega_{S}=\partial \cup_{j=1}^{L} B\left(C_{j}, r_{j}\right)$:

- full QMC rule: quite easy,

■ low discrepancy sequences X_{j} in each sphere $S_{j}=\partial B\left(C_{j}, r_{j}\right)$ are available, hence one can determine after some technicalities low discrepancy sequences over Ω_{S};
■ easy approx. of Ω_{S} area via QMC and area of each sphere $S_{j}, j=1, \ldots, L$;

- polynomial basis: very technical and new,

■ usage of Matlab numerical rank revealing algorithms to determine the dimension of the polynomial space anda well-conditioned basis (the dimensions of $\mathbb{P}_{m}\left(\Omega_{s}\right)$ and $\mathbb{P}_{m}\left(\mathbb{R}^{3}\right)$ may be different);

- starting from product Chebyshev basis a trick is used to reduce computations for determining a well-conditioned basis (using just a small subset of QMC nodes);
- moment evaluation: easy,
via the full QMC rule;
- compressed QMC: technical and new,
a trick is used to reduce computations (again using a small subset of QMC nodes);

Application to QMC compression: union of 3 balls (example on a volume)

deg	3	6	9	12
card. QMC card. CQMC compr. ratio	$5.6 \mathrm{e}+04$	$1.3 \mathrm{e}+04$	$5.1 \mathrm{e}+03$	$2.5 \mathrm{e}+03$
cpu QMC cpu CQMC	$2.5 \mathrm{e}-01$	$8.6 \mathrm{e}-01$	$2.2 \mathrm{e}+00$	$5.5 \mathrm{e}+00$
mom. resid. CQMC iter. 1	$4.2 \mathrm{e}-16$	$1.2 \mathrm{e}-15$	$1.9 \mathrm{e}-15$	$5.3 \mathrm{e}-15$

Table: Example with the union of 3 balls, in a bounding box with 2400000 low-discrepancy points. Compressed codes used the acronym CQMC.

Remark

New codes are from 13.6 to 25.4 times faster than the old ones

Application to QMC compression: union of 100 balls (example on a volume)

deg	3	6	9	12
card. QMC card. CQMC compr. ratio	1195806			
cpu QMC	$5.6 \mathrm{e}+04$	$1.3 \mathrm{e}+04$	$5.1 \mathrm{e}+03$	$2.8 \mathrm{e}+03$
cpu CQMC	$2.6 \mathrm{e}-01$	$9.1 \mathrm{e}-01$	$2.4 \mathrm{e}+00$	$5.8 \mathrm{e}+00$
mom. resid. CQMC iter. 1	$1.3 \mathrm{e}-16$	$7.2 \mathrm{e}-16$	$1.6 \mathrm{e}-15$	$7.3 \mathrm{e}-15$

Table: Example with the union of 100 balls, in a bounding box with 2400000 Halton points. Compressed codes used the acronym CQMC.

Remark

New codes are from 13.1 to 27.9 times faster than the old ones.

Application to QMC compression: union of 3 balls (example on a surface)

deg	3	6	9	12
card. QMC	1024179			
card. CQMC	20	83	200	371
compr. ratio	$5.1 \mathrm{e}+04$	$1.2 \mathrm{e}+04$	$5.1 \mathrm{e}+03$	$2.8 \mathrm{e}+03$
cpu QMC	$8.8 \mathrm{e}-01$			
cpu CQMC	$2.8 \mathrm{e}-01$	$1.1 \mathrm{e}+00$	$2.8 \mathrm{e}+00$	$5.9 \mathrm{e}+00$
speed-up	10.7	16.4	17.9	23.7
cpu Qull	$2.7 \mathrm{e}+00$	$1.3 \mathrm{e}+01$	$2.9 \mathrm{e}+01$	$5.9 \mathrm{e}+01$
speed-up	9.6	11.8	10.4	10.0
mom. resid. CQMC				
iter. 1	$7.2 \mathrm{e}-16$	$1.1 \mathrm{e}-15$	$2.3 \mathrm{e}-15$	$4.0 \mathrm{e}-15$

Table: Compression of surface QMC integration on the union 3 balls, starting from 500000 low-discrepancy points on each sphere. Compressed codes used the acronym CQMC.

Remark

New codes are from 10.7 to 23.7 times faster than the old ones.

Application to QMC compression: union of 100 balls (example on a surface)

deg	3	6	9	12
card. QMC	1032718			
card. CQMC compr. ratio	20	84	220	455
cpu QMC cpu CQMC	$3.2 \mathrm{e}+04$	$1.2 \mathrm{e}+04$	$4.7 \mathrm{e}+03$	$2.3 \mathrm{e}+03$
mom. resid. CQMC iter. 1	$2.7 \mathrm{e}-16$	$1.2 \mathrm{e}+00$	$3.0 \mathrm{e}+00$	$6.6 \mathrm{e}+00$

Table: Compression of surface QMC integration on the union 100 balls, starting from 60000 low-discrepancy points on each sphere. Compressed codes used the acronym CQMC.

Remark

New codes are from 9.3 to 16.7 times faster than the old ones.

Application to QMC compression: on the numerical integration of some functions

Next we show the integration errors on three test functions with different regularity, namely

- $f_{1}(P)=\left|P-P_{0}\right|^{5}$ (class C^{4} with discontinuous fifth derivatives);
- $f_{2}(P)=\cos (x+y+z)$ (analytic);

■ $f_{3}(P)=\exp \left(-\left|P-P_{0}\right|^{2}\right)$ (analytic);
where $P_{0}=(0,0,0) \in \Omega$.

Remark

- It is easy to see that for every $f \in C(\Omega)$, the following error estimate holds

$$
\left|I_{\text {СоMС }}(f)-I(f)\right| \leq \mathcal{E}_{\text {QMC }}(f)+2 \mu(\Omega) E_{n}(f ; \Omega),
$$

where $\mathcal{E}_{\text {Qмс }}(f)=\left|I_{\text {Qмс }}(f)-I(f)\right|$ and $E_{n}(f ; \Omega)$ is the best approximation error of f w.r.t. \mathbb{P}_{n}, in Ω, w.r.t. the sup-norm.

- The reference values of the integrals have been computed by a QMC formula starting from 10^{8} Halton points in the bounding box.

Application to QMC compression: on the numerical integration of some functions, 3 balls volumes

deg	3	6	9	12
$E^{\text {QMC }}\left(f_{1}\right)$	$3.5 \mathrm{e}-04$			
$E^{\text {new }}\left(f_{1}\right)$	$4.8 \mathrm{e}-02$	$3.0 \mathrm{e}-04$	$3.5 \mathrm{e}-04$	$3.5 \mathrm{e}-04$
$E^{\text {QMC }}\left(f_{2}\right)$	$7.3 \mathrm{e}-04$			
$E^{\text {new }}\left(f_{2}\right)$	$3.5 \mathrm{e}+00$	$7.6 \mathrm{e}-02$	$2.0 \mathrm{e}-03$	$7.3 \mathrm{e}-04$
$E^{\text {QMC }}\left(f_{3}\right)$	$8.7 \mathrm{e}-05$			
$E^{\text {new }}\left(f_{3}\right)$	$5.6 \mathrm{e}-01$	$1.2 \mathrm{e}-01$	$1.4 \mathrm{e}-02$	$2.7 \mathrm{e}-03$

Table: Example with 3 balls (the reference values are computed via QMC starting from 10^{8} Halton points in the bounding box).

Application to QMC compression: on the numerical integration of some functions, 100 balls volumes

deg	3	6	9	12
$E^{\text {QMC }}\left(f_{1}\right)$	$1.1 \mathrm{e}-04$			
$E^{\text {new }}\left(f_{1}\right)$	$7.7 \mathrm{e}-03$	$8.9 \mathrm{e}-05$	$1.1 \mathrm{e}-04$	$1.1 \mathrm{e}-04$
$E^{Q M C}\left(f_{2}\right)$	$1.7 \mathrm{e}-04$			
$E^{\text {new }}\left(f_{2}\right)$	$4.5 \mathrm{e}-03$	$6.5 \mathrm{e}-05$	$1.7 \mathrm{e}-04$	$1.7 \mathrm{e}-04$
$E^{\text {QMC }}\left(f_{3}\right)$	$2.2 \mathrm{e}-04$			
$E^{\text {new }}\left(f_{3}\right)$	$2.4 \mathrm{e}-02$	$1.4 \mathrm{e}-02$	$3.5 \mathrm{e}-05$	$2.2 \mathrm{e}-04$

Table: Example with 100 balls (the reference values are computed via QMC starting from 10^{8} Halton points in the bounding box).

Application to QMC compression: on the numerical integration of some functions, 3 balls surfaces

deg	3	6	9	12
$E^{Q M C}\left(f_{1}\right)$	$3.9 \mathrm{e}-06$			
$E^{\text {new }}\left(f_{1}\right)$	$1.1 \mathrm{e}-04$	$6.3 \mathrm{e}-07$	$4.0 \mathrm{e}-06$	$3.9 \mathrm{e}-06$
$E^{Q M C}\left(f_{2}\right)$	$8.6 \mathrm{e}-05$			
$E^{\text {new }}\left(f_{2}\right)$	$6.7 \mathrm{e}-01$	$1.0 \mathrm{e}-02$	$5.9 \mathrm{e}-04$	$8.6 \mathrm{e}-05$
$E^{\text {QMC }}\left(f_{3}\right)$	$5.8 \mathrm{e}-06$			
$E^{\text {new }}\left(f_{3}\right)$	$3.0 \mathrm{e}-01$	$2.5 \mathrm{e}-03$	$6.9 \mathrm{e}-04$	$4.8-05$

Table: Compression of surface QMC integration on the union 3 balls (the reference values are computed via QMC starting from 10^{6} points on each sphere).

Application to QMC compression: on the numerical integration of some functions, 100 balls surfaces

deg	3	6	9	12
$E^{Q M C}\left(f_{1}\right)$	$4.0 \mathrm{e}-05$			
$E^{\text {new }}\left(f_{1}\right)$	$2.3 \mathrm{e}-03$	$2.9 \mathrm{e}-05$	$4.0 \mathrm{e}-05$	$4.0 \mathrm{e}-05$
$E^{Q M C}\left(f_{2}\right)$	$2.0 \mathrm{e}-04$			
$E^{\text {new }}\left(f_{2}\right)$	$5.2 \mathrm{e}-01$	$3.6 \mathrm{e}-04$	$1.9 \mathrm{e}-04$	$2.0 \mathrm{e}-04$
$E^{\text {QMC }}\left(f_{3}\right)$	$1.6 \mathrm{e}-04$			
$E^{\text {new }}\left(f_{3}\right)$	$4.1 \mathrm{e}-01$	$4.8 \mathrm{e}-03$	$1.3 \mathrm{e}-04$	$1.6 \mathrm{e}-04$

Table: Compression of surface QMC integration on the union 100 balls (the reference values are computed via QMC starting from 10^{6} points on each sphere).

Bibliography

1 M. Dessole, F. Marcuzzi, M. Vianello, Accelerating the Lawson-Hanson NNLS solver for large-scale Tchakaloff regression designs, DRNA 13, 20-29 (2020).
Fast Lawson-Hanson algorithm and Matlab codes.
2 C. Bittante, S. De Marchi and G. Elefante: A new quasi-Monte Carlo technique based on nonnegative least-squares and approximate Fekete points, Numer. Math. TMA, Vol 9(4), pp. 640-663 (2016).
Compression of Quasi-Montecarlo rules.
3 S. De Marchi, G. Elefante: Quasi-Monte Carlo integration on manifolds with mapped low-discrepancy points and greedy minimal Riesz s-energy points, Applied Numerical Mathematics 127, 110-124 (2018).
Quadrature points on manifolds via the Quasi-Monte Carlo (QMC) method
4 G. Elefante, A. Sommariva, and M. Vianello, CQMC: an improved code for low-dimensional Compressed Quasi-MonteCarlo cubature, DRNA 15 (2), 92-1000 (2022). Compression of Quasi-Montecarlo rules.
5 G. Elefante, A. Sommariva, and M. Vianello, Qbubble: a numerical code for compressed QMC volume and surface integration on union of balls, submitted.
Compression of Quasi-Montecarlo rules over suitable volumes and surfaces.
6 A. Sommariva, Matlab codes used in the numerical experiments
7 A. Sommariva, M. Vianello, Compression of multivariate discrete measures and applications, Numer. Funct. Anal. Optim., 36, 1198-1223 (2015).
Details on cubature compression

