Giacomo Elefante, Alvise Sommariva, Marco Vianello

Constructive approximation of functions 3
Krakow, Poland, 22-24 February 2023.

Thanks: Conference Organizers, co-workers, RITA, UMI group TAA, GNCS
project Methods and software for multivariate integral models



Purpose

In this talk,

we start introducing the well-known Tchakaloff theorem (and one of its
variants)

existence theorem of certain algebraic and low cardinality cubature rules with positive weights on a
multivariate compact domain Q C RY

we compress cubature rules,

we show how, from cubature rules on 2 (w.r.t. a positive measure) with positive weights and interior nodes
(i.e. of Pl-type), whose algebraic degree of precision ADE is equal to m and the number of nodes higher than
the dimension “r” of the polynomial space Pr,(£2) of total degree m, we can extract rules of Pl-type but with
at most “r” nodes, by means of Lawson-Hanson algorithm;

application to Quasi-Montecarlo Cubature: rule compression

given a Quasi-Montecarlo Cubature rule (acronym: QMC) and a certain degree of precision m, we compress the
QMC rule with a positive one, that provides the same results over polynomials of degree at most m;

some multivariate examples

results over bivariate and trivariate domains, peculiarities of volumes and surfaces obtained by union of balls.

Important: all the Matlab routines used in this talk are available at the author’s
homepage.
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Example: quadrature over polygons (triang. based approach)

Compressed cubature over polygons with applications to optical design (2020)

m purpose: cubature formula over a convex, nonconvex or even multiply
connected polygons 2.

B strategy: once a minimal triangulation of Q is available, we obtain the rule by
applying an almost-minimal rule of Pl-type on each triangle with the wanted
ADE, summing the contributions.

m minimal triangulation: one can triangulate a general M-sides polygon via M — 2 triangles
(easy task in a convex polygon, not trivial for a general one),

m almost-minimal rule the number of its nodes is almost minimal between those having a
certain degree of precision and requirement on the nodes (e.g. internal) and weights (e.g.
positive).
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https://www.sciencedirect.com/science/article/abs/pii/S0377042719306636

Figure: Examples of polygonal domains (ADE=9).

Left: a convex domain with 6 sides (76 nodes), Right: a non-convex domain with 9 sides
(133 nodes).

Note: all the weights are positive. 4/31



Example: quadrature over polygons (triang. based approach)

m Pros: In general these rules always have internal nodes as well as positive
weights.

m Cons: Rule still may have high cardinality if the polygon has many sides.

Observe that in the examples above for ADE= 9
m convex domain: the rule has 76 nodes,

m not convex domain: the rule has 133 nodes.

Remark
In both cases the number of nodes is higher than the dimension of the polynomial
space Pqy that is equal to (9 +1)(9 + 2)/2 = 55.

Our project is to quickly extract from the previous one, another rule of Pl-type with
the same degree of precision but with a number of nodes at most equal to dim(PPg)
(i.e. a rule compression).
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Carathéodory-Tchakaloff Subsampling

M. Putinar, A Note on Tchakaloff's Theorem, Proc. of AMS, Vol. 125, No. 8 (1997), 2409-2414.

Theorem (Carathéodory-Tchakaloff, see more general Putinar theorem)

Let

I 1 be a multivariate discrete measure supported at a finite set X = {xx}x=1,...n C RY, with
correspondent positive weights {wi}=1.....n,
& = span(éy, . . ., ¢r) a finite dimensional space of d-variate functions defined on Q D X, with
dim(®|x) < r.
Then there exist a quadrature formula with nodes T = {ti}«=1,... n. C X and positive weights
{uc}k=,....N, such that Ne < dim(®|x) and

N Ne

/Qf(x)d# = wif(x) = D uif(t) = /Qf(x)d#c, for all f € ®|x.

k=1 i=1

Example

If we have a rule of Pl-type with cardinality N higher than r = dim(Pm(2)) then we can extract one of
Pl-type with cardinality N < r, having the same integration values in Pm(£2).
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https://www.jstor.org/stable/2162136

Carathéodory-Tchakaloff Subsampling

Compression of multivariate discrete measures and applications (2015).

Given
m a formula of Pl-type with ADE=m, nodes X = {xx }x=1...n C RY and positive
weights {wi k=1, N,
m a basis {¢1,..., 0.} of Pp,(Q),
let
m V;; = (¢j(x;)) the Vandermonde matrix at the nodes,
m b= (bj)j=1,....r where b; = [, ¢;du = Z,N:1 widj(x;), the vector of the

moments.

.....

The problem mentioned above resorts into computing a nonnegative solution with
at most “r” nonvanishing components to the underdetermined linear system

Viu =b.
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Carathéodory-Tchakaloff Subsampling

The computation of a nonnegative solution with at most r = dim(P,,(Q2))
nonvanishing components to the underdetermined linear system V' u = b can be
perfomed finding a sparse solution to the quadratic minimum problem

min, || VTu — bl

NNLS:{ u>0

via Lawson-Hanson active set method for NonNegative Least Squares (NNLS).

In Matlab this can be done by means of the Matlab built-in routine 1sqnonneg as
well as by the more recent LHDM by Dessole, Marcuzzi and Vianello.

Remark

m The approach mentioned above is effective for mild ADE, say on the order of
ADE=20 for bivariate domains and ADE=10 for trivariate domains.

m There are also other approaches, e.g. by based on linear programming or by a
different combinatorial algorithm (recursive Halving Forest), based on SVD.
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Carathéodory-Tchakaloff Subsampling

As example, we can consider the application of the technique mentioned above to
extract a rule of Pl-type, for computing a similar one on the polygonal domains
treated above.

Algorithm

input: the nodes {Xk}k=1.... n, the weights {wi},=1,... .~ of a Pl-type rule with N > r
(r is the dimension of the polynomial space IPr,) and a polynomial basis {1;}j—,... r:

Vandermonde matrix: compute U = (pi(x;));

fight ill-conditioning: compute the QR factorization with column pivoting
VWU(:, ) = QR, where VW = diag({w«}) and 7 is a permutation vector; this
corresponds to a change of basis (¢1, ..., ¢:) = (1, ...,%,)R™", so obtaining
an orthonormal basis w.r.t. the discrete measure defined by the nodes
{Xk}k=1,... .~ and the weights {wi }i=1 . n;

moments: evaluate the vector b = QTw where wy = wy;

compute a positive sparse solution: solve Q"u = b by Lawson-Hanson algorithm
(or its alternatives).
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Carathéodory-Tchakaloff Subsampling

By this algorithm,

m adopting as basis {1} the total-degree product Chebyshev basis of the

smallest Cartesian rectangle [a, bi] X [az, by] containing Q, with the graded
lexicographical ordering,

m from the Pl-rules with ADE=9 obtained via triangulation,
we get the Pl-rules below with cardinality 55 = dim(Pg).
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Figure: Examples of polygonal domains (ADE=9).

Left: a convex domain with 6 sides (55 nodes, the previous rule had 76 nodes), Right: a
non-convex domain with 9 sides (55 nodes, the previous rule had 133 nodes). 10/31



Carathéodory-Tchakaloff Subsampling

Remark (When do not apply this technique)

We observe that this approach is useful only when the initial rule of Pl-type with
ADE=m has cardinality higher the dimension L of P,(£2).

Thus it is worthless in the case of classical domains as the interval, the disk, simplex,
cube, sphere, where there are explicit rules of Pl-type with cardinality inferior to L.

Remark (Cputimes on the previous domains)

For mild ADE the computation of these compressed rules is fast. Running Matlab
R2022a, on a computer with an Apple Ml processor and 16GB of RAM, we had
average cputimes as in the table below:

Domain tri. rule | compress.
Convex domain 1.le-3s 1.7e-2s
Non-convex domain| 5.2e-3s| I.le-2s

Table: Average cputime for computing rules with ADE=9 in the previous polygonal domains.
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Application to QMC compression

This technique can be used to compress Quasi-Montecarlo cubature rules on
Q) C RY obtained by set operations of compact domains €, ...,Q, C R%:

m polynomial basis: product-type Chebyshev basis in P,(2) on the bounding
box R of the domain €;

m mesh points: sufficiently dense low discrepancy points in the bounding box R
(good choice for volumes) or on a suitable subdomain of R containing €2
(good for surfaces); notice that if the measure of the domain is not known, it
must be approximated numerically in order to apply QMC;

m in-domain routine: in domain routine on each domain Q, k=1,..., v
followed by suitable set operations;

B moment computation: via Quasi-Montecarlo cubature.

This allows to achieve a rule with few nodes that equals the results of the QMC
rule applied to polynomials in Pp,.

Purpose

Retaining the approximation power of the original QMC formula (up to a quantity
proportional to the best polynomial approximation error of degree m to f, in the
uniform norm on ), using much fewer nodes.
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Application to QMC compression: some advantages

m Domains: this technique can be used to compress QMC on Q2 C R? obtained
by set operations of compact domains ..., Q, C R

m Alternatives: very often the detection of specific features (as its boundary
0%2 or computation of the polynomial moments) may be not available or so
difficult to make extremely complicated the usage of other techniques than
QMC.

m In-domain routine:

m Verification of certain inequalities: for example, the unit-ball B(0,1) is defined as
the set

B(0,1) := {x = (x, y,2) € R? such that X’ + y* + 2> < 1}.

m Specific codes: Matlab built-in inpolygon (polygonal domains), inpolyhedra
(polyhedral domains), in-rs (curved polygons with boundary defined by NURBS).

For details about in-rs see: inRS: implementing the indicator function for NURBS-shaped planar domains,
Applied Mathematics Letters, Volume 130, August 2022.
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https://www.sciencedirect.com/science/article/abs/pii/S0893965922000696

Application to QMC compression: some bivariate examples

Figure: 231 compressed QMC nodes with exactness degree n = 20, on complex shapes arising from
union (top-left), intersection (top-right) and symmetric difference (bottom) of two NURBS-shaped
domains (extraction from a million Halton points of domain bounding boxes, basis ® obtained by
orthonormalization of a tensorial type basis in the bounding box R of the domain €).

m Domains: R is the smaller rectangle (with sides parallel to the axes)
containing 2;
m polynomial basis: subset of tensorial-type Chebyshev basis defining IP,, on R;

m In-domain routine: in-rs;
14/31



Application to QMC compression: some bivariate examples

[ deg [ 5 ] 10 [ 15 ] 20 |
card. COMC 21 66 136 231

compr. ratio 1.2e+04 | 3.9e+03 [ 1.9e+03| 1.1e+03
[ cpu COMC [4.0e-02] 1.2e-01 [ 2.8e-01[5.8e+00 |
[mom. resid. COMC[5.8e-16 | 1.4e-15 [ 2.4e-15 [ 7.0e-15 |

Table: Compression parameters of QMC cubature with N = 255923 Halton points on the
intersection of two NURBS-shaped domains as in Figure above top-right. By CQMC we
intend results obtained via the new compression algorithm.

[deg] 5 [ 0 [ 5 [ 20 |
E(f,) [2.7e-04 [1.4e-08 [3.0e-13] 4.5¢-16
E(f,) [23¢-04 | 2.4e-05 | 11e-05 | 5.6e-06

Table: Relative CQMC errors E(f), k = 1,2 for the two test functions
fi(P) = exp(—|P — Po|?), 2(P) = |P — Po|® on the intersection of Fig. 1 top-right.
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Figure: 84 compressed QMC nodes with exactness degree n = 6, on intersection (red
bullets) and difference (green bullets) of a tetrahedral element with a ball (extraction from a
million Halton points of domain bounding boxes, cputime: = 5 - 10~ s, basis ® obtained by
orthonormalization of a tensorial type basis in the bounding box R of the domain €).
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Application to QMC compression: trivariate examples

l deg | 2 [ 4 [ 6 |
card. CQMC 10 35 84
compr. ratio 2.2e+04 | 6.2e+03 | 2.6e+03

cpu COMC 4.1e-02 | 4.1e-02 | 1.8e-01
mom. resid. COMC | 1.7e-16 | 6.0e-16 | 1.2e-15

Table: Compression parameters of QMC cubature with N = 216217 Halton points on the
intersection of a tetrahedral element with a ball as in the last figure. By CQMC we intend
results obtained via the new compression algorithm.

l deg | 2 [ 4 [ 6 ]
card. COMC 10 35 84
compr. ratio 5.9e+03 |1.7e+03 | 7.0e+02

cpu CQMC 3.3e-02 | 2.1e-02 | 5.5e-02
mom. resid. COMC | 5.0e-16 | 6.1e-16 | 1.2e-15

Table: Compression parameters of QMC cubature with N = 58561 Halton points on the
difference of a tetrahedral element with a ball as in the last figure. By CQMC we intend
results obtained via the new compression algorithm.
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Let B(Cj, r;) be a ball with center C; € R? and radius r; > 0 and consider domains
of the forms

| Q= U/»L=1B(C,-, rj) (volume);

Qs =0 U,'L=1 B(G;, ;) (surface).

Figure: Left: union of 3 balls, Right: union of 100 balls.
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Application to QMC compression: union of balls (volumes and surfaces)

Main difficulties:

m their geometry can be very complicated, since the balls may intersect, even
creating cavities: hard to subdivide in manageable subregions;

m depending on the balls, the polynomial space P,,(Q2s) over the surface Qs
may have a dimension inferior than IP,,,(R3) (spheres are algebraic surfaces),
and it is not straightforward to determine exactly a well-conditioned basis
(even the computation of dim(PP,,(£2s)) may be a tough problem).

Where they arise:

m molecular modelling, computational geometry, computational optics, wireless

network analysis;
Problems:

m basic (but not trivial): exact computation of areas or volumes of such sets;

m more difficult: computing volume or surface integrals there by quadrature
formulas.

Paper

Qbubble: a numerical code for compressed QMC volume and surface integration on
union of balls, submitted.
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Application to QMC compression: union of balls (volumes)

We intend to compress a rule, matching the QMC values of integrands in Pp,, in the
case of the volumes, i.e. Qv = UB(G, r}).

m full QMC rule: easy,
m low discrepancy sequences in the bounding box R are available, and the
restriction on Qv provides low discrepancy sequences;
m easy approximation of domain volume via QMC and volume of the parallelepiped
R (bounding box);
m polynomial basis: technical and new,
starting from product Chebyshev basis a trick is used to reduce
computations for determining a well-conditioned basis (using just a small
subset of QMC nodes);
B moment evaluation: easy,
via the full QMC rule;
m compressed QMC: technical and new,
a trick is used to reduce computations (again using just a small subset of

QMC nodes);
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Application to QMC compression: union of balls (surfaces)

We intend to compress a rule, matching the QMC values of integrands in Pp,, in the
case of the surfaces, i.e.. Qs = 0 LJ,L:1 B(G,rj):

m full QMC rule: quite easy,

m low discrepancy sequences X; in each sphere S; = 9B(Cj, r;) are available, hence
one can determine after some technicalities low discrepancy sequences over Qs;

m easy approx. of s area via QMC and area of each sphere 5, j=1,...,L

m polynomial basis: very technical and new,

m usage of Matlab numerical rank revealing algorithms to determine the
dimension of the polynomial space anda well-conditioned basis (the dimensions
of Prm(2s) and Pn(RR%) may be different);

m starting from product Chebyshev basis a trick is used to reduce computations
for determining a well-conditioned basis (using just a small subset of QMC
nodes);

m moment evaluation: easy,
via the full QMC rule;
m compressed QMC: technical and new,

a trick is used to reduce computations (again using a small subset of QMC nodes); -



Application to QMC compression: union of 3 balls (example on a volume)

| deg 3 [ 6 [ 9 [ 7 |
card. QMC 1128709
card. COMC 20 84 220 455
compr. ratio 5.6e+04 | 1.3e+04 | 5.1e+03 | 2.5e+03
cpu QMC 9.0e-01

cpu CQMC 2.5e-01 | 8.6e-01|2.2e+00 | 5.5e+00
mom. resid. COMC
iter. 1 4.2e-16 | 1.2e-15 | 1.9e-15 | 5.3e-15

Table: Example with the union of 3 balls, in a bounding box with 2400000 low-discrepancy points.
Compressed codes used the acronym CQMC.

Remark

New codes are from 13.6 to 25.4 times faster than the old ones
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Application to QMC compression: union of 100 balls (example on a volume)

[

[ deg 3 6 9 [ 12 ]

card. QMC 1195806
card. COMC 20 84 220 455

compr. ratio 5.6e+04 | 1.3e+04 | 5.1e+03 | 2.8e+03
cpu QMC 1.3e+00

cpu COMC 2.6e-01 | 9.1e-01 | 2.4e+00 | 5.8e+00

mom. resid. COMC
iter. 1 1.3e-16 | 7.2e-16 | 1.6e-15 | 7.3e-15

Table: Example with the union of 100 balls, in a bounding box with 2400000 Halton points.

Compressed codes used the acronym CQMC.

New codes are from 13.1 to 27.9 times faster than the old ones.
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Application to QMC compression: union of 3 balls (example on a surface)

[ deg [ 317 6 ] 9 [ 12 ]
card. QMC 1024179
card. COMC 20 83 200 37
compr. ratio 5.1e+04 |1.2e+04 | 5.1e+03 | 2.8e+03
cpu QMC 8.8e-01
cpu CQMC 2.8e-01 | 1.1e+00 | 2.8e+00 | 5.9e+00
speed-up 10.7 16.4 17.9 237
cpu QM 2.7e+00 | 1.3e+01 | 2.9¢+01 | 5.9e+01
speed-up 9.6 11.8 10.4 10.0
mom. resid. COMC
iter. 1 7.2e-16 | 1le-15 | 2.3e-15 | 4.0e-15

Table: Compression of surface QMC integration on the union 3 balls, starting from 500000
low-discrepancy points on each sphere. Compressed codes used the acronym CQMC.

New codes are from 10.7 to 23.7 times faster than the old ones.
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Application to QMC compression: union of 100 balls (example on a surface)

| deg [ 3 [ 6 [ 9 [ 7 |
card. QMC 1032718
card. COMC 20 84 220 455
compr. ratio 5.2e+04 |1.2e+04 | 4.7e+03 | 2.3e+03
cpu QMC 1.5e+01

cpu CQMC | 3.0e-01 | 1.2e+00 | 3.0+00 | 6.6e+00

mom. resid. COMC
iter. 1 2.7e-16 | 1.0e-15 | 2.3e-15 | 4.5e-15

Table: Compression of surface QMC integration on the union 100 balls, starting from 60000
low-discrepancy points on each sphere. Compressed codes used the acronym CQMC.

Remark

New codes are from 9.3 to 16.7 times faster than the old ones.
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Application to QMC compression: on the numerical integration of some functions

Next we show the integration errors on three test functions with different
regularity, namely

m fi(P) = |P — Py (class C* with discontinuous fifth derivatives);

m f5(P) = cos(x + y + z) (analytic);

m f3(P) = exp(—|P — Py|?) (analytic);
where Py = (0,0,0) € Q.

m [t is easy to see that for every f € C(R), the following error estimate holds

eauc(f) — I(F)] < Eame(f) + 2 1(Q) En(f; Q) ,

where Equc(f) = lnc(f) — I(f)| and Ex(f; 2) is the best approximation error of f
w.r.t. P, in §, w.r.t. the sup-norm.

m The reference values of the integrals have been computed by a QMC formula
starting from 108 Halton points in the bounding box.
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[dg | 3 [ 6 [ 9 [ 12 ]
EQMC(f) 3.5e-04
Ere(f) | 4.8e-02 | 3.0e-04 | 3.5¢-04 | 3.5e-04
EMC(f) 73e-04
E"e*(f,) |3.5e+00 | 7.6e-02 | 2.0e-03 | 7.3e-04
EMC(f3) 8.7e-05
E™(f3) | 5.6e-01 | 12e-01 | 1.4e-02 | 2.7e-03

Table: Example with 3 balls (the reference values are computed via QMC starting from 10°
Halton points in the bounding box).
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[deg | 3 | 6 | 9 [ 12 |
ETC() 11e-04
E™(f,) | 7.7e-03 | 8.9¢-05] 1.1e-04 | 1.le-04
ETC(f,) 17e-04
E™(f) |4.5-03| 6.5e-05 | 1.7e-04 | 1.7e-04
EPC() 22e-04
Ere(f3) | 2.4e-02 | 1.4e-02 | 3.5e-05 | 2.2e-04

Table: Example with 100 balls (the reference values are computed via QMC starting from
108 Halton points in the bounding box).
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[ deg | 3 ] 6 ] 9 | 122 ]
EOMC(R) 3.9e-06
Eme¥(fi) | 11e-04 | 6.3e-07 | 4.0e-06 | 3.9e-06
ETC() 8.6e-05
E"®(f,) | 6.7e-01] 1.0e-02 | 5.9e-04 | 8.6e-05
EMC(F) 5.8e-06
E™e*(f3) | 3.0e-01|2.5e-03 | 6.9e-04 | 4.8-05

Table: Compression of surface QMC integration on the union 3 balls (the reference values
are computed via QMC starting from 10° points on each sphere).
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| deg | 3 [ 6 [ 9 [ 12 |
EMC(£) 4.0e-05
E™e¥(f) | 2.3e-03 | 2.9e-05 | 4.0e-05 | 4.0e-05
EOMC(R) 2.0e-04
Eme*(f,) | 5.2e-01]3.6e-04 | 1.9e-04 | 2.0e-04
EFMC(f) 1.6e-04
E™e*(f3) | 4.1e-01 | 4.8e-03 | 1.3e-04 | 1.6e-04

Table: Compression of surface QMC integration on the union 100 balls (the reference values
are computed via QMC starting from 10° points on each sphere).
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Details on cubature compression
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