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Purpose

In this talk,
we start introducing the well-known Tchakaloff theorem (and one of its
variants)
existence theorem of certain algebraic and low cardinality cubature rules with positive weights on a

multivariate compact domain Ω ⊂ Rd ;

we compress cubature rules,
we show how, from cubature rules on Ω (w.r.t. a positive measure) with positive weights and interior nodes

(i.e. of PI-type), whose algebraic degree of precision ADE is equal to m and the number of nodes higher than

the dimension “r” of the polynomial space Pm(Ω) of total degree m, we can extract rules of PI-type but with

at most “r” nodes, by means of Lawson-Hanson algorithm;
application to Quasi-Montecarlo Cubature: rule compression
given a Quasi-Montecarlo Cubature rule (acronym: QMC) and a certain degree of precision m, we compress the

QMC rule with a positive one, that provides the same results over polynomials of degree at most m;
some multivariate examples
results over bivariate and trivariate domains, peculiarities of volumes and surfaces obtained by union of balls.

Important: all the Matlab routines used in this talk are available at the author’s
homepage.
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Example: quadrature over polygons (triang. based approach)

Paper

Compressed cubature over polygons with applications to optical design (2020)

purpose: cubature formula over a convex, nonconvex or even multiply
connected polygons Ω.
strategy: once a minimal triangulation of Ω is available, we obtain the rule by
applying an almost-minimal rule of PI-type on each triangle with the wanted
ADE, summing the contributions.

Remark

minimal triangulation: one can triangulate a general M-sides polygon via M − 2 triangles
(easy task in a convex polygon, not trivial for a general one),

almost-minimal rule the number of its nodes is almost minimal between those having a
certain degree of precision and requirement on the nodes (e.g. internal) and weights (e.g.
positive).
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Example: quadrature over polygons (triang. based approach)

Figure: Examples of polygonal domains (ADE=9).
Left: a convex domain with 6 sides (76 nodes), Right: a non-convex domain with 9 sides
(133 nodes).
Note: all the weights are positive. 4/31



Example: quadrature over polygons (triang. based approach)

Pros: In general these rules always have internal nodes as well as positive
weights.
Cons: Rule still may have high cardinality if the polygon has many sides.

Observe that in the examples above for ADE= 9
convex domain: the rule has 76 nodes,
not convex domain: the rule has 133 nodes.

Remark
In both cases the number of nodes is higher than the dimension of the polynomial
space P9 that is equal to (9 + 1)(9 + 2)/2 = 55.

Our project is to quickly extract from the previous one, another rule of PI-type with
the same degree of precision but with a number of nodes at most equal to dim(P9)
(i.e. a rule compression).
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Carathéodory-Tchakaloff Subsampling

Paper

M. Putinar, A Note on Tchakaloff’s Theorem, Proc. of AMS, Vol. 125, No. 8 (1997), 2409–2414.

Theorem (Carathéodory-Tchakaloff, see more general Putinar theorem)

Let

1 µ be a multivariate discrete measure supported at a finite set X = {xk}k=1,...,N ⊂ Rd , with
correspondent positive weights {wk}k=1,...,N ,

2 Φ = span(ϕ1, . . . , ϕr) a finite dimensional space of d-variate functions defined on Ω ⊇ X, with
dim(Φ|X ) ≤ r.

Then there exist a quadrature formula with nodes T = {tk}k=1,...,Nc ⊆ X and positive weights
{uk}k=1,...,Nc , such that Nc ≤ dim(Φ|X ) and∫

Ω
f(x)dµ :=

N∑
k=1

wk f(xk) =
Nc∑
i=1

ui f(ti) :=
∫
Ω
f(x)dµC , for all f ∈ Φ|X .

Example

If we have a rule of PI-type with cardinality N higher than r = dim(Pm(Ω)) then we can extract one of
PI-type with cardinality Nc ≤ r, having the same integration values in Pm(Ω).
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Carathéodory-Tchakaloff Subsampling

Paper

Compression of multivariate discrete measures and applications (2015).

Given
a formula of PI-type with ADE=m, nodes X = {xk}k=1,...,N ⊂ Rd and positive
weights {wk}k=1,...,N ,
a basis {ϕ1, . . . , ϕr} of Pm(Ω),

let
Vi,j = (ϕj(xi)) the Vandermonde matrix at the nodes,

b = (bj)j=1,...,r where bj =
∫
Ω
ϕjdµ =

∑N
i=1 wiϕj(xi), the vector of the µ

moments.
The problem mentioned above resorts into computing a nonnegative solution with
at most “r” nonvanishing components to the underdetermined linear system

V Tu = b.
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Carathéodory-Tchakaloff Subsampling

The computation of a nonnegative solution with at most r = dim(Pm(Ω))
nonvanishing components to the underdetermined linear system V Tu = b can be
perfomed finding a sparse solution to the quadratic minimum problem

NNLS:
{

minu ∥V Tu− b∥2
u ≥ 0

via Lawson-Hanson active set method for NonNegative Least Squares (NNLS).

In Matlab this can be done by means of the Matlab built-in routine lsqnonneg as
well as by the more recent LHDM by Dessole, Marcuzzi and Vianello.

Remark
The approach mentioned above is effective for mild ADE, say on the order of
ADE=20 for bivariate domains and ADE=10 for trivariate domains.
There are also other approaches, e.g. by based on linear programming or by a
different combinatorial algorithm (recursive Halving Forest), based on SVD.
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Carathéodory-Tchakaloff Subsampling

As example, we can consider the application of the technique mentioned above to
extract a rule of PI-type, for computing a similar one on the polygonal domains
treated above.

Algorithm

input: the nodes {xk}k=1,...,N , the weights {wk}k=1,...,N of a PI-type rule with N > r
(r is the dimension of the polynomial space Pm) and a polynomial basis {ψj}j=1,...,r ;

1 Vandermonde matrix: compute U = (ϕk(xi));
2 fight ill-conditioning: compute the QR factorization with column pivoting√

WU(:, π) = QR, where
√
W = diag({wk}) and π is a permutation vector; this

corresponds to a change of basis (ϕ1, . . . , ϕr) = (ψ1, . . . , ψr)R−1, so obtaining
an orthonormal basis w.r.t. the discrete measure defined by the nodes
{xk}k=1,...,N and the weights {wk}k=1,...,N ;

3 moments: evaluate the vector b = QTw where wk = wk ;
4 compute a positive sparse solution: solve QTu = b by Lawson-Hanson algorithm
(or its alternatives).
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Carathéodory-Tchakaloff Subsampling

By this algorithm,
adopting as basis {ψj} the total-degree product Chebyshev basis of the
smallest Cartesian rectangle [a1, b1]× [a2, b2] containing Ω, with the graded
lexicographical ordering,
from the PI-rules with ADE=9 obtained via triangulation,

we get the PI-rules below with cardinality 55 = dim(P9).

Figure: Examples of polygonal domains (ADE=9).
Left: a convex domain with 6 sides (55 nodes, the previous rule had 76 nodes), Right: a
non-convex domain with 9 sides (55 nodes, the previous rule had 133 nodes). 10/31



Carathéodory-Tchakaloff Subsampling

Remark (When do not apply this technique)

We observe that this approach is useful only when the initial rule of PI-type with
ADE=m has cardinality higher the dimension L of Pm(Ω).

Thus it is worthless in the case of classical domains as the interval, the disk, simplex,
cube, sphere, where there are explicit rules of PI-type with cardinality inferior to L.

Remark (Cputimes on the previous domains)

For mild ADE the computation of these compressed rules is fast. Running Matlab
R2022a, on a computer with an Apple M1 processor and 16GB of RAM, we had
average cputimes as in the table below:

Domain tri. rule compress.
Convex domain 1.1e-3s 1.7e-2s

Non-convex domain 5.2e-3s 1.1e-2s

Table: Average cputime for computing rules with ADE=9 in the previous polygonal domains.
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Application to QMC compression

This technique can be used to compress Quasi-Montecarlo cubature rules on
Ω ⊂ Rd obtained by set operations of compact domains Ω1, . . . ,Ων ⊂ Rd :

polynomial basis: product-type Chebyshev basis in Pm(Ω) on the bounding
box R of the domain Ω;
mesh points: sufficiently dense low discrepancy points in the bounding box R
(good choice for volumes) or on a suitable subdomain of R containing Ω
(good for surfaces); notice that if the measure of the domain is not known, it
must be approximated numerically in order to apply QMC;
in-domain routine: in domain routine on each domain Ωk , k = 1, . . . , ν
followed by suitable set operations;
moment computation: via Quasi-Montecarlo cubature.

This allows to achieve a rule with few nodes that equals the results of the QMC
rule applied to polynomials in Pm.

Purpose

Retaining the approximation power of the original QMC formula (up to a quantity
proportional to the best polynomial approximation error of degree m to f , in the
uniform norm on Ω), using much fewer nodes.
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Application to QMC compression: some advantages

Domains: this technique can be used to compress QMC on Ω ⊂ Rd obtained
by set operations of compact domains Ω1, . . . ,Ων ⊂ Rd .
Alternatives: very often the detection of specific features (as its boundary
∂Ω or computation of the polynomial moments) may be not available or so
difficult to make extremely complicated the usage of other techniques than
QMC.
In-domain routine:

Verification of certain inequalities: for example, the unit-ball B(0, 1) is defined as
the set

B(0, 1) := {x = (x, y, z) ∈ R3 such that x2 + y2 + z2 ≤ 1}.

Specific codes: Matlab built-in inpolygon (polygonal domains), inpolyhedra
(polyhedral domains), in-rs (curved polygons with boundary defined by NURBS).

Paper

For details about in-rs see: inRS: implementing the indicator function for NURBS-shaped planar domains,
Applied Mathematics Letters, Volume 130, August 2022.
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Application to QMC compression: some bivariate examples

Figure: 231 compressed QMC nodes with exactness degree n = 20, on complex shapes arising from
union (top-left), intersection (top-right) and symmetric difference (bottom) of two NURBS-shaped
domains (extraction from a million Halton points of domain bounding boxes, basis Φ obtained by
orthonormalization of a tensorial type basis in the bounding box R of the domain Ω).

Domains: R is the smaller rectangle (with sides parallel to the axes)
containing Ω;
polynomial basis: subset of tensorial-type Chebyshev basis defining Pm on R;
In-domain routine: in-rs;
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Application to QMC compression: some bivariate examples

deg 5 10 15 20
card. CQMC 21 66 136 231
compr. ratio 1.2e+04 3.9e+03 1.9e+03 1.1e+03
cpu CQMC 4.0e-02 1.2e-01 2.8e-01 5.8e+00

mom. resid. CQMC 5.8e-16 1.4e-15 2.4e-15 7.0e-15

Table: Compression parameters of QMC cubature with N = 255923 Halton points on the
intersection of two NURBS-shaped domains as in Figure above top-right. By CQMC we
intend results obtained via the new compression algorithm.

deg 5 10 15 20
E(f1) 2.7e-04 1.4e-08 3.0e-13 4.5e-16
E(f2) 2.3e-04 2.4e-05 1.1e-05 5.6e-06

Table: Relative CQMC errors E(fk), k = 1, 2 for the two test functions
f1(P) = exp(−|P − P0|2), f2(P) = |P − P0|5 on the intersection of Fig. 1 top-right.
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Application to QMC compression: trivariate examples

Figure: 84 compressed QMC nodes with exactness degree n = 6, on intersection (red
bullets) and difference (green bullets) of a tetrahedral element with a ball (extraction from a
million Halton points of domain bounding boxes, cputime: ≈ 5 · 10−2s, basis Φ obtained by
orthonormalization of a tensorial type basis in the bounding box R of the domain Ω).
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Application to QMC compression: trivariate examples

deg 2 4 6
card. CQMC 10 35 84
compr. ratio 2.2e+04 6.2e+03 2.6e+03
cpu CQMC 4.1e-02 4.1e-02 1.8e-01

mom. resid. CQMC 1.7e-16 6.0e-16 1.2e-15

Table: Compression parameters of QMC cubature with N = 216217 Halton points on the
intersection of a tetrahedral element with a ball as in the last figure. By CQMC we intend
results obtained via the new compression algorithm.

deg 2 4 6
card. CQMC 10 35 84
compr. ratio 5.9e+03 1.7e+03 7.0e+02
cpu CQMC 3.3e-02 2.1e-02 5.5e-02

mom. resid. CQMC 5.0e-16 6.1e-16 1.2e-15

Table: Compression parameters of QMC cubature with N = 58561 Halton points on the
difference of a tetrahedral element with a ball as in the last figure. By CQMC we intend
results obtained via the new compression algorithm.
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Application to QMC compression: union of balls (volumes and surfaces)

Let B(Cj , rj) be a ball with center Cj ∈ R3 and radius rj > 0 and consider domains
of the forms

1 ΩV = ∪L
j=1B(Cj , rj) (volume);

2 ΩS = ∂ ∪L
j=1 B(Cj , rj) (surface).

Figure: Left: union of 3 balls, Right: union of 100 balls.
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Application to QMC compression: union of balls (volumes and surfaces)

Main difficulties:
their geometry can be very complicated, since the balls may intersect, even
creating cavities: hard to subdivide in manageable subregions;
depending on the balls, the polynomial space Pm(ΩS) over the surface ΩS
may have a dimension inferior than Pm(R3) (spheres are algebraic surfaces),
and it is not straightforward to determine exactly a well-conditioned basis
(even the computation of dim(Pm(ΩS)) may be a tough problem).

Where they arise:
molecular modelling, computational geometry, computational optics, wireless
network analysis;

Problems:
basic (but not trivial): exact computation of areas or volumes of such sets;
more difficult: computing volume or surface integrals there by quadrature
formulas.

Paper

Qbubble: a numerical code for compressed QMC volume and surface integration on
union of balls, submitted.
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Application to QMC compression: union of balls (volumes)

Purpose

We intend to compress a rule, matching the QMC values of integrands in Pm, in the
case of the volumes, i.e. ΩV = ∪L

j=1B(Cj , rj).

full QMC rule: easy,
low discrepancy sequences in the bounding box R are available, and the
restriction on ΩV provides low discrepancy sequences;
easy approximation of domain volume via QMC and volume of the parallelepiped
R (bounding box);

polynomial basis: technical and new,
starting from product Chebyshev basis a trick is used to reduce
computations for determining a well-conditioned basis (using just a small
subset of QMC nodes);
moment evaluation: easy,
via the full QMC rule;
compressed QMC: technical and new,
a trick is used to reduce computations (again using just a small subset of
QMC nodes);
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Application to QMC compression: union of balls (surfaces)

Purpose

We intend to compress a rule, matching the QMC values of integrands in Pm, in the
case of the surfaces, i.e.. ΩS = ∂ ∪L

j=1 B(Cj , rj):

full QMC rule: quite easy,
low discrepancy sequences Xj in each sphere Sj = ∂B(Cj , rj) are available, hence
one can determine after some technicalities low discrepancy sequences over ΩS ;
easy approx. of ΩS area via QMC and area of each sphere Sj , j = 1, . . . , L;

polynomial basis: very technical and new,
usage of Matlab numerical rank revealing algorithms to determine the
dimension of the polynomial space anda well-conditioned basis (the dimensions
of Pm(ΩS) and Pm(R3) may be different);
starting from product Chebyshev basis a trick is used to reduce computations
for determining a well-conditioned basis (using just a small subset of QMC
nodes);

moment evaluation: easy,
via the full QMC rule;
compressed QMC: technical and new,
a trick is used to reduce computations (again using a small subset of QMC nodes);
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Application to QMC compression: union of 3 balls (example on a volume)

deg 3 6 9 12
card. QMC 1128709
card. CQMC 20 84 220 455
compr. ratio 5.6e+04 1.3e+04 5.1e+03 2.5e+03

cpu QMC 9.0e-01
cpu CQMC 2.5e-01 8.6e-01 2.2e+00 5.5e+00

mom. resid. CQMC
iter. 1 4.2e-16 1.2e-15 1.9e-15 5.3e-15

Table: Example with the union of 3 balls, in a bounding box with 2400000 low-discrepancy points.
Compressed codes used the acronym CQMC.

Remark
New codes are from 13.6 to 25.4 times faster than the old ones
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Application to QMC compression: union of 100 balls (example on a volume)

deg 3 6 9 12
card. QMC 1195806
card. CQMC 20 84 220 455
compr. ratio 5.6e+04 1.3e+04 5.1e+03 2.8e+03

cpu QMC 1.3e+00
cpu CQMC 2.6e-01 9.1e-01 2.4e+00 5.8e+00

mom. resid. CQMC
iter. 1 1.3e-16 7.2e-16 1.6e-15 7.3e-15

Table: Example with the union of 100 balls, in a bounding box with 2400000 Halton points.
Compressed codes used the acronym CQMC.

Remark
New codes are from 13.1 to 27.9 times faster than the old ones.
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Application to QMC compression: union of 3 balls (example on a surface)

deg 3 6 9 12
card. QMC 1024179
card. CQMC 20 83 200 371
compr. ratio 5.1e+04 1.2e+04 5.1e+03 2.8e+03

cpu QMC 8.8e-01
cpu CQMC 2.8e-01 1.1e+00 2.8e+00 5.9e+00
speed-up 10.7 16.4 17.9 23.7
cpu Qfullc 2.7e+00 1.3e+01 2.9e+01 5.9e+01
speed-up 9.6 11.8 10.4 10.0

mom. resid. CQMC
iter. 1 7.2e-16 1.1e-15 2.3e-15 4.0e-15

Table: Compression of surface QMC integration on the union 3 balls, starting from 500000
low-discrepancy points on each sphere. Compressed codes used the acronym CQMC.

Remark
New codes are from 10.7 to 23.7 times faster than the old ones.
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Application to QMC compression: union of 100 balls (example on a surface)

deg 3 6 9 12
card. QMC 1032718
card. CQMC 20 84 220 455
compr. ratio 5.2e+04 1.2e+04 4.7e+03 2.3e+03

cpu QMC 1.5e+01
cpu CQMC 3.0e-01 1.2e+00 3.0e+00 6.6e+00

mom. resid. CQMC
iter. 1 2.7e-16 1.0e-15 2.3e-15 4.5e-15

Table: Compression of surface QMC integration on the union 100 balls, starting from 60000
low-discrepancy points on each sphere. Compressed codes used the acronym CQMC.

Remark
New codes are from 9.3 to 16.7 times faster than the old ones.
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Application to QMC compression: on the numerical integration of some functions

Next we show the integration errors on three test functions with different
regularity, namely

f1(P) = |P − P0|5 (class C4 with discontinuous fifth derivatives);
f2(P) = cos(x + y + z) (analytic);
f3(P) = exp(−|P − P0|2) (analytic);

where P0 = (0,0,0) ∈ Ω.

Remark
It is easy to see that for every f ∈ C(Ω), the following error estimate holds

|ICQMC(f )− I(f )| ≤ EQMC(f ) + 2µ(Ω) En(f ; Ω) ,

where EQMC(f ) = |IQMC(f )− I(f )| and En(f ; Ω) is the best approximation error of f
w.r.t. Pn, in Ω, w.r.t. the sup-norm.
The reference values of the integrals have been computed by a QMC formula
starting from 108 Halton points in the bounding box.
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Application to QMC compression: on the numerical integration of some functions, 3 balls
volumes

deg 3 6 9 12
EQMC(f1) 3.5e-04
Enew(f1) 4.8e-02 3.0e-04 3.5e-04 3.5e-04
EQMC(f2) 7.3e-04
Enew(f2) 3.5e+00 7.6e-02 2.0e-03 7.3e-04
EQMC(f3) 8.7e-05
Enew(f3) 5.6e-01 1.2e-01 1.4e-02 2.7e-03

Table: Example with 3 balls (the reference values are computed via QMC starting from 108

Halton points in the bounding box).
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Application to QMC compression: on the numerical integration of some functions, 100 balls
volumes

deg 3 6 9 12
EQMC(f1) 1.1e-04
Enew(f1) 7.7e-03 8.9e-05 1.1e-04 1.1e-04
EQMC(f2) 1.7e-04
Enew(f2) 4.5e-03 6.5e-05 1.7e-04 1.7e-04
EQMC(f3) 2.2e-04
Enew(f3) 2.4e-02 1.4e-02 3.5e-05 2.2e-04

Table: Example with 100 balls (the reference values are computed via QMC starting from
108 Halton points in the bounding box).
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Application to QMC compression: on the numerical integration of some functions, 3 balls
surfaces

deg 3 6 9 12
EQMC(f1) 3.9e-06
Enew(f1) 1.1e-04 6.3e-07 4.0e-06 3.9e-06
EQMC(f2) 8.6e-05
Enew(f2) 6.7e-01 1.0e-02 5.9e-04 8.6e-05
EQMC(f3) 5.8e-06
Enew(f3) 3.0e-01 2.5e-03 6.9e-04 4.8-05

Table: Compression of surface QMC integration on the union 3 balls (the reference values
are computed via QMC starting from 106 points on each sphere).
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Application to QMC compression: on the numerical integration of some functions, 100 balls
surfaces

deg 3 6 9 12
EQMC(f1) 4.0e-05
Enew(f1) 2.3e-03 2.9e-05 4.0e-05 4.0e-05
EQMC(f2) 2.0e-04
Enew(f2) 5.2e-01 3.6e-04 1.9e-04 2.0e-04
EQMC(f3) 1.6e-04
Enew(f3) 4.1e-01 4.8e-03 1.3e-04 1.6e-04

Table: Compression of surface QMC integration on the union 100 balls (the reference values
are computed via QMC starting from 106 points on each sphere).
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