1 Introduction

1.1. An experiment

Take a shallow dish and pour in salty water to a depth of 1cm.
Make a model wing with a length and span of 2cm or so,
ensuring that it has a sharp trailing edge. (One method is to cut
the wing out of an india rubber with a knife.) Dip the wing
vertically in the water and turn it to make a small angle of attack
« with the direction in which it is to be moved. Put a blob of ink
or food colouring around the trailing edge; a thin layer of this
should then float on the salt water.

Now move the wing across the dish, giving it a clean, sudden
start. If a is not too large there should be a strong anticlockwise
vortex left behind at the point where the trailing edge started, as
in Fig. 1.1.

Fig. 1.1. The starting vortex.

A ‘starting vortex’ of this kind forms a crucial part of the
mechanism by which an aircraft obtains lift, and we shall use
aerodynamics in this chapter as a means of introducing some
fundamental concepts of fluid flow.

Aerodynamics is, arguably, well suited to this purpose, but it
goes without saying that the theory of fluid motion finds
application in a wide variety of different fields. Within this book
alone we may point to waves on a pond (§3.1), the instability of
flow down a pipe (§9.1), the hydraulic jump in a kitchen sink
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(83.10), the interaction of two smoke rings (§5.4), the jet stream
in the atmosphere (§9.8), the motion of quantum vortices in
liquid helium (§5.8), the flow of volcanic lava (§7.9), the
swimming of biological micro-organisms (§7.5), and the spin-
down of a stirred cup of tea (§8.5) as examples of the breadth
and diversity of the subject.

1.2. Some preliminary ideas

The usual way of describing a fluid flow is by means of an
expression

u=u(x,1) (1.1)

for the flow velocity u at any point x and at any time ¢. This tells
us what all elements of the fluid are doing at any time; finding
eqn (1.1) is usually the main task.

In general we must expect this task to be quite difficult. Let us
take Cartesian coordinates, for example, and denote the three
components of u by u, v, and w. Then eqn (1.1) is a convenient
shorthand for

u=u(x,y, z, t), v=uv(x,y, z, t), w=w(x,y, zt).

There are, however, special classes of flow which have simplify-
ing features.
A steady flow is one for which

cu
—=0, 1.2
Y (1.2)

so that u depends on x alone. At any fixed point in space the
speed and direction of flow are both constant.
A two-dimensional (2-D) flow is of the form

u=I[ulx,y,t),vxy,t),0j, (1.3)

so that u is independent of one spatial coordinate (here selected
to be z) and has no component in that direction.
A two-dimensional steady flow is thus of the form

u=|[ux,y), v(x,y),0]. (1.4)
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These are idealizations. No real flow can be exactly two-
dimensional, but in the case of flow past a fixed wing of long span
and uniform cross-section we might reasonably expect a close
approximation to 2-D flow, except near the wing-tips.

Before exploring such a flow more closely it is useful to
introduce the concept of a streamline. This is, at any particular
time ¢, a curve which has the same direction as u(x, t) at each
point. Mathematically, then, a streamline x =x(s), y =y(s),
z =z(s) is obtained by solving

dx/ds dy/ds dz/ds
u v w

(1.5)

at a particular time ¢.

To imagine streamlines it can be convenient to consider a
widely used experimental technique which involves putting tiny,
neutrally buoyant polystyrene beads into the fluid. One particu-
lar plane of the fluid region is then illuminated by a collimated
light beam, and the beads reflect this light to the camera, thus
appearing as tiny pin-pricks of light if they are stationary. When
the fluid is moving, however, the beads get carried around with
it, so that a short-exposure-time photograph consists of short
streaks, the length and direction of each one giving a measure of
the fluid velocity at that particular point in space. As an example,
we show in Fig. 1.2 a streak photograph for the flow (with
uniform velocity at infinity) past a fixed wing. Because this is a
steady flow the streamline pattern is the same at all times, and a
fluid particle started on some streamline will travel along that

Fig. 1.2. Streamlines for steady flow past a fixed wing, as inferred from
a streak photograph.
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streamline as time proceeds. (In an unsteady flow, on the other
hand, streamlines and particle paths are usually quite different;
see Exercise 1.8.)

It is evident from Fig. 1.2 that even though the flow is steady,
so that u is constant at a point fixed in space, u changes as we
follow any particular fluid element. In particular—changes in
direction of flow aside—an element riding over the top of the
wing first speeds up and then slows down again.

Rate of change ‘following the fluid’

This notion is of fundamental importance in fluid dynamics.

Let f(x, y, z, t) denote some quantity of interest in the fluid
motion. It could, for example, be one component of the velocity
u, or it could be the density p. Note first that 3f/5t means the
rate of change of f at fixed x, y, and z, i.e. at a fixed position in
space.

In contrast, the rate of change of f ‘following the fluid’, which
we denote by Df /D¢, is

Df d

=== flx(@®), y(©), 20), 1],
where x(t), y(¢), and z(¢) are understood to change with time at
the local flow velocity u:

dx/dt = u, dy/dt=v, dz/dt=w,
so as to ‘follow the fluid’. A simple application of the chain rule
gives
Df_ofdx ofdy ofdz of
Dt Oxdt Odydt ozde ot

whence
Df of of of of
4 4+ v——4+w-=
D o “ax Vay "oz
l.e.
Df of
T\ vy 1.
L=t vy (1.6)

By applying eqn (1.6) to the velocity components u, v, and w
in turn it follows, in particular, that the acceleration of the fluid
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element at x 1S

%t‘= -cz—l: + (u - V)u. (1.7)

As an immediate check on eqn (1.7) consider fluid in uniform
rotation with angular velocity €2, so that

u=-—Qy, v = Qx, w=0.

Now Ju/at is zero, because the flow is steady, but

o o
. ={—-Qv—+ _) — , ,
(u V)u—( ya Qxa (—Qy, Qx, 0)

= —-Q%x, y, 0).

This is just as expected; it represents the familiar centrifugal
acceleration Q%r towards the rotation axis.

According to eqn (1.6) in any steady flow the rate of change of
f following a fluid element is (u - V)f, and it is quite easy to see
why this should be so. Let e, denote a unit vector which is always
parallel to the streamlines and in the same sense as the flow.
Then

w-Vf =lul e, Vf = lul 2,

where s denotes distance along a streamline. Now, 9f/3s is the
rate of change of f with distance along a streamline, so
multiplying it by the flow speed |u| evidently gives the rate of
change with time as we follow a fluid element along that
streamline.

The equation

(u-V)f =0, (1.8)

which arises at some important stages in the following theory,
thus implies that f is constant along a streamline. It should be
emphasized that eqn (1.8) offers no information at all about
whether f might be a different constant on different streamlines.
Suppose, for instance, that the flow is everywhere in the
x-direction, so that eqn (1.8) reduces to df/dx = 0. This equation
says that f is independent of x, but it contains no implication
about how f might depend on y, z, or ¢.
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Likewise, the equation

Df _

0, :
Dr (1.9)

which also arises in the following theory, implies that f is a
constant for a particular fluid element, and this follows directly
from the definition of Df/Dt above. It does not preclude
different elements having different values of f; it just implies that
each such element will retain whatever value of f it started with.
Finally, it is worth remarking that there will be occasions on
which we wish to follow not just an infinitesimal fluid element
but a finite blob consisting always of the same fluid particles.
Such a blob, which will of course deform as it moves about, is
typically called a ‘material’ volume in the literature, but we shall
freely describe it instead as ‘dyed’, with the understanding, of
course, that no diffusion of this imaginary dye is envisaged. Such
terminology can become rather colourful, but if it evokes a sharp
mental picture of a moving and deforming blob of fluid, as
opposed to some region fixed in space, it serves its purpose.

1.3. Equations of motion for an ideal fluid

In this text we define an ideal fluid as one with the following
properties:

(1) It is incompressible, so that no ‘dyed’ blob of fluid can
change in volume as it moves.

(i) The density p (i.e. the mass per unit volume) is a constant,
the same for all fluid elements and for all time ¢.

(iii) The force exerted across a geometrical surface element
n 68 within the fluid is

pn 0S8, (1.10)

where p(x, y, z, t) is a scalar function, independent of the
normal n, called the pressure. (To be more precise, eqn
(1.10) is the force exerted on the fluid into which n is
pointing by the fluid on the other side of 4S.)

There is, of course, no such thing in practice as an ideal fluid.
All fluids are to some extent compressible, and all fluids are to



Introduction 7

some extent viscous, so that adjacent fluid elements exert both
normal and tangential forces on one another across their
common interface. For the time being, however, we explore
some consequences of the assumptions (i)—(iii).

To examine the implications of (i), consider a fixed closed
surface S drawn in the fluid, with unit outward normal n. Fluid
will be entering the enclosed region V at some places on §, and
leaving it at others. The velocity component along the outward
normal is u - n, so the volume of fluid leaving through a small
surface element &S in unit time is # - n 6S. The net volume rate
at which fluid is leaving V is therefore

fu-ndS.
s

But this must plainly be zero for an incompressible fluid, and on
using the divergence theorem we find that

[V-udV=O.
|4

Now, this must be true for all regions V within the fluid.
Suppose, then, that V - u is greater than zero at some point in the
fluid. Assuming that it is continuous, V - u will be greater than
zero in some small sphere around that point, and by taking V to
be such a sphere we violate the above equation. The same
applies if V - u is negative at some point. We thus conclude that

V-u=0 (1.11)

everywhere in the fluid.

This incompressibility condition is an important constraint on
the velocity field u in virtually the whole of this book.f

To examine the implications of (iii) consider a surface §
enclosing a ‘dyed’ blob of fluid. The force exerted by the
surrounding fluid across any surface element S is, by hypothe-
sis, given by eqn (1.10), so that the net force exerted on the dyed
blob is

—fpndS=—J Vp dv,
S v

t Air is, of course, highly compressible, but it can behave like an incompressible
fluid if the flow speed is much smaller than the speed of sound (see p. 58).
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where we have used the identity (A.14)—see the Appendix (the
negative sign arises because n points out of ). Now, provided
that Vp is continuous it will be almost constant over a small blob
of fluid of volume 6V. The net force on such a small blob due to
the pressure of the surrounding fluid will therefore be —Vp V.

Euler’s equations of motion

We are now in a position to apply the principle of linear
momentum to a small ‘dyed’ blob of fluid of volume éV.
Allowing for the presence of a gravitational body force per unit
mass g, the total force on the blob is

(=Vp + pg) 6V.

This force must be equal to the product of the blob’s mass (which
is conserved) and its acceleration, i.e. to

We thus obtain

=, Vpte (1.12)

as the basic equations of motion for an ideal fluid. They are
known as Euler’s equations, and written out in full they become

8_w+u8_w+v£91+ w 19
3 ox 8y 8z poz

8u+8v+8w_
ox 3y 08z
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i.e. four scalar equations for four unknowns: u, v, w, and p. In
dealing with the gravitational term we have momentarily taken
the z-axis vertically upward, setting g = (0, 0, —g).

Now, the gravitational force, being conservative, can be
written as the gradient of a potential:

g=—-Vy. (1.13)

(In the above case, y = gz.) Using the expression (1.7) for the
fluid acceleration we may rewrite eqn (1.12) in the formt

%+ (u:Vu= —V(f—;+x),

where we have used the assumption that p is constant.
Furthermore, it can be helpful to use the identity

u-VYu=Aru)Au+VEu?
to cast the momentum equation into the form

ou
§+(VAu)Au=_V(%+%u2+x). (1.14)

The Bernoulli streamline theorem

If the flow is steady, eqn (1.14) reduces to

(VAu)Au=-VH,
where

H=%+%u2+x. (1.15)

On taking the dot product with 4 we obtain
(u-V)H =0, (1.16)

+ The way in which p/p + x appears as a combination is significant; there will be
many circumstances in this book in which gravity simply modifies the pressure
distribution in the fluid and does nothing to change the velocity u. Thus when we
speak occasionally of ‘ignoring’ gravity, or of gravitational body forces being
‘absent’, what we often mean is that separate allowance may be made for gravity
simply by subtracting py from the pressure field. This is emphatically not the
case, however, if there is a free surface—as with water waves in Chapter 3—or if
p is not constant—as in §3.8 and §9.3.
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SO
If an ideal fluid is in steady flow,
then H is constant along a streamline.

In the absence of gravity it follows that p + 3pu? is constant along
a streamline in steady flow.

The above theorem says nothing about H being the same
constant on different streamlines, only that it remains constant
along each one. There is, however, one important circumstance
in which H is constant throughout the whole flow field, and this
now follows.

DEFINITION. An irrotational flow is one for which

VAau=0. (1.17)

The Bernoulli theorem for irrotational flow

If the flow is steady and irrotational, then eqn (1.14) reduces to
VH =0, so H is independent of x, y, and z, as well as ¢. Thus

If an ideal fluid is in steady irrotational flow,
then H is constant throughout the whole flow field.

Whether this result is of any value rests, evidently, on whether
irrotational flows are of any real interest in practice. We address
this matter in the next section.

1.4. Vorticity: irrotational flow

The vorticity o is defined as
0=V Au, (1.18)

and it is a concept of central importance in fluid dynamics. The
vorticity is, by definition, zero for an irrotational flow.

We consider vorticity first in the context of two-dimensional
flow, for if

u=[ulx,y,t),vx,y,t),0]
then o is (0, 0, ), where
_ Jv Jdu

WLy 1.19
©=ox oy (1.19)
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Interpretation of vorticity in 2-D flow

Consider two short fluid line elements AB and AC which are
perpendicular at a certain instant, as in Fig. 1.3. Note that the
y-component of velocity at B exceeds that at A by

o
v(x + 6x, y,t) —v(x, y, t) #a—: ox,

so that dv/ox represents the instantaneous angular velocity of
the fluid line element AB. Likewise, du/Jdy represents the
instantaneous angular velocity (in the opposite sense) of the line
element AC. Thus at any point of the flow field

represents the average angular velocity of two short fluid line
elements that happen, at that instant, to be mutually perpendicu-
lar. In this precise sense the vorticity w acts as a measure of the
local rotation, or spin, of fluid elements.

We emphasize that vorticity has nothing directly to do with any
global rotation of the fluid. Take, for example, the shear flow of

ov

— 0

dyty

c—» s

dy Y

Oy
v
— Ox
ox

Ox —» % 5y
A B ox

Fig. 1.3. Sketch for the interpretation of vorticity in 2-D flow. The
velocity components shown are relative to the fluid particle at A.
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Fig. 1.4. Deformation of two short, momentarily perpendicular fluid
line elements in a shear flow.

Fig. 1.4, in which
u=(By, 0, 0), (1.20)

where B is a constant. The fluid is certainly not rotating globally
in any sense, but it has vorticity:

and two momentarily perpendicular line elements, AB and AC,
orientated as shown plainly have an average angular velocity (in
fact, of —3), because while that of AB is zero that of AC is not.
A more colourful example of the distinction between vorticity
and global rotation of the fluid is provided by the so-called line
vortex flow given in cylindrical polar coordinates (7, 8, z) by

k
u==e, (1.21)

where k is a constant. To find the vorticity of this flow we need
the expression (A.32) for V A u in cylindrical polar coordinates:

e, re, e,

11|20 d 0
VAau=-|— — —
r |or 060 Oz

u, rug Uu,
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Plainly, then, the vorticity is zero except at r = 0, where neither u
nor V A u is defined. Thus although the fluid is clearly rotating in
a global sense the flow is in fact irrotational, since VA u=0,
except on the axis. This is quite understandable if we consider
two momentarily perpendicular fluid line elements, AB and AC,
at =0 in Fig. 1.5. Clearly AC is rotating in an anticlockwise
sense, because it will continue to lie along the circular streamline
as time proceeds, but AB is rotating clockwise because of the
decrease of uy with r in eqn (1.21). This particular fall-off of u,
with r is, apparently, just the correct one—neither too slow nor
too rapid—to ensure that AB has an equal and opposite angular
velocity to AC at the instant they are perpendicular, so that their
average angular velocity is zero.

We keep emphasizing the instantaneous nature of this
conclusion about zero average angular velocity because two fluid
line elements such as AB and AC in Fig. 1.5 will not remain
perpendicular as they get carried about by the flow, and as soon
as this happens we have no cause to conclude from the
irrotationality of the flow that their average angular velocity
should any longer be zero.

‘B

A

Fig. 1.5. The fate of a small square fluid element in a line vortex flow.

The size of the element has been greatly exaggerated for the sake of

clarity; an unfortunate consequence is that B does not look as if it is
following a circular path.
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Fig. 1.6. A crude ‘vorticity meter’ (b), and its behaviour when
immersed in a line vortex flow (a) and a uniformly rotating flow (c).

What we have sketched in Fig. 1.6(a), then, is not what
happens to two momentarily dyed fluid elements, AB and AC, as
they get swept round but what would happen if we were to
immerse in the fluid a small ‘vorticity meter’ consisting of two
short, rigid vanes fixed at right angles to each other, as in Fig.
1.6(b). We have marked one tip of one of the vanes, and in Fig.
1.6(a) we see that this device would not rotate in this particular
(line vortex) flow, even though its axis would of course get swept
round on a circular streamline. This behaviour may be seen in
the bath by observing closely the strong vortex that may occur as
the water goes down the plug-hole. The azimuthal velocity ug
varies roughly as r~' over a fair distance from the axis, and a
crude but simple vorticity meter which serves the purpose
consists of a pair of short wooden line elements shaved off a
matchstick, sellotaped together at right angles and floated on the
surface.

However, if such a vorticity meter were to be inserted in the
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flow
u=Qrey, (1.22)

Q2 being a constant, the result would of course be as in Fig.
1.6(c), because the device would get carried around just as if it
were embedded in a rigid body. Its angular velocity would
evidently be 2, the same as the uniform angular velocity of the
fluid as a whole, and the vorticity of the flow is therefore
(0, 0, 2Q2), as may be confirmed by direct calculation of V A u.

By putting the two flows in Fig. 1.6 together in the following
way:

Qr, r<a,
=< Qag?
“e —a—, r>a,
r
u,=u, =0, (1.23)

we obtain a so-called ‘Rankine vortex’, which serves as a simple
model for a real vortex such as that in Fig. 1.1. Real vortices are
typically characterized by fairly small vortex ‘cores’ in which, by
definition, the vorticity is concentrated, while outside the core
the flow is essentially irrotational. The core is not usually exactly
circular, of course; nor is the vorticity usually uniform within it.
In these two respects the Rankine vortex of Fig. 1.7 is only an
idealized model.

We have now said a fair amount about vorticity, albeit strictly

2Q2

Qa

(a) (b)
Fig. 1.7. Distribution of (a) azimuthal velocity u, and (b) vorticity w in
a Rankine vortex.
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Fig. 1.8. The behaviour of a small ‘vorticity meter’ placed in the steady
flow past a fixed wing at small angle of attack. The flow is clearly
irrotational.

in the context of two-dimensional flow. We have discussed in
particular detail the absence of vorticity, i.e. irrotational flow. At
this stage, before the development seems to be getting rather a
long way from our starting point (the experiment in §1.1), we
should say that steady flow past a wing at small angles of
incidence « is typically irrotational, as indicated in Fig. 1.8.

Why this should be so emerges from the Euler equations in a
very elegant manner, as we now see.

1.5. The vorticity equation

In its form (1.14), Euler’s equation may be written

3
——E+m/\u=—VH,
ot

and on taking the curl we obtain

5
?‘;’w/\(m/\u):o. (1.24)

Using the vector identity (A.6) this becomes

0
?(;’+(u-V)m—(m-V)u+mV-u—uV-m=O.
Now the fourth term vanishes because the fluid is incompressible,

while the fifth term vanishes because div curl = 0. We therefore
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have
ow
—+ (u-V)o=(0-V)u,
ot
or, alternatively,
D
F‘:’ = (0 V)u. (1.25)

This vorticity equation is extremely valuable. Note that the
pressure has been eliminated; eqn (1.25) involves only # and o,
which are, of course, related by

o=V Au.

In particular, if the flow is two-dimensional, so that

u=[ulx,y,t),v,y,t)),0] (1.26)
and
o= (0, 0, ),
then
cu
“WVu=w—=0.
(0-Vu=w %

It then follows that

Dw
—=0, )
Dt (1.27)

and we thus conclude, referring back to eqn (1.9), that

In the two-dimensional flow of an ideal fluid subject to
a conservative body force g the vorticity w of each
individual fluid element is conserved. (1.28)

This result has important applications, which we discuss in
Chapter 5. In the particular case of steady flow, eqn (1.27)
reduces to

(u-VYo=0 (1.29)
and consequently

In the steady, two-dimensional flow of an ideal fluid
subject to a conservative body force g the vorticity
w is constant along a streamline. (1.30)
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This, then, is the reason why the steady flow in Fig. 1.8 is
irrotational. Note first that there are no regions of closed
streamlines in the flow; all the streamlines can be traced back to
x = —, Now, the vorticity is constant along each one, and hence
equal on each one to whatever it is on that particular streamline
at x = —o, As the flow is uniform at x = — the vorticity is zero
on all streamlines there. Hence it is zero throughout the flow
field in Fig. 1.8.

1.6. Steady flow past a fixed wing

In Fig. 1.9 we show typical measured pressure distributions on
the upper and lower surfaces of a fixed wing in steady flow. The
pressures on the upper surface are substantially lower than the
free-stream value p.., while those on the lower surface are a little
higher than p.. In fact, then, the wing gets most of its lift from a
suction effect on its upper surface.

But why is it that the pressures above the wing are less than
those below? Well, because the flow is irrotational, the Bernoulli
theorem tells us that p + 3pu® is constant throughout the flow.
Explaining the pressure differences, and hence the lift on the

p—p. /\ \_LOWER SURFACE

épUZ 0 \;

UPPER
SURFACE

Fig. 1.9. Typical pressure distribution on a wing in steady flow.
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wing, thus reduces to explaining why (as in Fig. 1.2) the flow
speeds above the wing are greater than those below.

Let us first dispose of one bogus explanation that occasionally
appears, namely that the air on the top of the wing flows faster
‘because it has farther to go’. There are many woolly aspects to
this argument, but it seems to turn principally on the notion that
two neighbouring fluid elements, after parting to go their
separate ways round the wing, meet up again at the trailing edge,
and this is demonstrably false (see Fig. 2.4).

The right way forward to an explanation of the higher flow
speeds above the wing is in terms of the concept of circulation.

Circulation

Let C be some closed curve lying in the fluid region. Then the
circulation I" round C is defined as

r- [C u - dr. (1.31)

At first sight, perhaps, there cannot be any circulation in an
irrotational flow, for Stokes’s theorem gives

Lu-dx=J;(VAu)-ndS, (1.32)

and an irrotational flow is, by definition, one for which V A u is
zero. But such an argument holds only if the closed curve C in
question can be spanned by a surface S which lies wholly in the
region of irrotational flow. Thus in the two-dimensional context
of Fig. 1.8, for example, for which eqn (1.32) reduces to

Jv Jdu
r Icudx+vdy L(@x ay)dxdy, (1.33)
it is true that I' must be zero for any closed curve C not enclosing
the wing, but the argument fails for any closed curve that does
enclose the wing. The most that can be said about such circuits is
that they all have the same value of I' (Exercise 1.6).

Circulation round a wing is permissible, then, in a steady
irrotational flow; but the question still arises as to why there
should be any, and, in particular, why it should be negative,
corresponding to larger flow speeds above the wing than below.
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The Kutta—Joukowski hypothesis

In the case of a wing with a sharp trailing edge, one good reason
for non-zero circulation I' is that there would otherwise be a
singularity in the velocity field. The irrotational flow past a wing
with I' =0 is sketched in Fig. 1.10(a), but the velocity is infinite
at the trailing edge where, loosely speaking, the fluid is having a
hard time turning the corner. We show in Chapter 4 that only for
one value of the circulation, I'k say, is the flow speed finite at the
trailing edge, as in Fig. 1.10(b). It is natural to hope that this
particular irrotational flow will correspond to the steady flow that
is actually observed; this is the Kutta—Joukowski hypothesis.

This hypothesis is inevitably somewhat ad hoc, resting as it
does on the unsatisfactory state of affairs that would otherwise
arise because of the sharp trailing edge. (How are we to decide
between all the different irrotational flows if the trailing edge is
not sharp?) It is, nonetheless, one of the key steps in the
development of aerodynamics, and gives results which are in
excellent accord with experiment, as we shall shortly see.

The critical value I'y depends, naturally, on the flow speed at
infinity U and on the size, shape, and orientation of the wing. In
Chapter 4 we show that if the wing is thin and symmetrical, of
length L, making an angle a with the oncoming stream, then

Ik = —aUL sin a. (1.34)

Lift

According to ideal flow theory, the drag on the wing (the force
parallel to the oncoming stream) is zero, but the lift (the force

(a) (b)
Fig. 1.10. Irrotational flow past a fixed wing with (¢) '=0 and (b)
I'=T<0.
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perpendicular to the stream) is
¥ = —pUT. (1.35)

This Kutta—Joukowski Lift Theorem is proved in §4.11.

That negative I' should give positive lift is entirely natural; we
have argued as much in the preceding sections. As a precise
theorem, however, eqn (1.35) is rather extraordinary, as it holds
for irrotational flow (uniform at infinity) past a two-dimensional
body of any size or shape; £ depends on the size and shape of
the body only inasmuch as I" does. For the thin symmetrical wing
of Fig. 1.10(b), for example, with I" as in eqn (1.34) by the
Kutta—Joukowski condition, the lift is

£ = apU>L sin a. (1.36)

Agreement with experiment is good provided that « is only a
few degrees (Fig. 1.11). Thereafter the measured lift falls
dramatically and diverges substantially from the predictions of
inviscid theory, for reasons to be discussed later. The angle « at
which this divergence begins may be anywhere between about 6°
and 12°, depending on the shape of the wing (see, e.g.,
Nakayama 1988, pp. 76—-80).

Accounting for the flow past a wing at small angles of attack «
is nevertheless one of the great, and practically important,
successes of ideal-flow theory.

Inviscid

72 / theory
[

v e
[ J
o
Experiment

A
>

o
Fig. 1.11. Lift on a symmetric aerofoil.
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1.7. Concluding remarks

In this chapter we have introduced some of the basic concepts of
fluid dynamics and, at the same time, given some indication of
how they figure in one particular branch of the subject, namely
aerodynamics. Our treatment of this branch has inevitably been
sketchy.

We have, for instance, focused wholly on 2-D aerodynamics,
yet any real wing, no matter how long, has ends, and important
new phenomena then arise. The circulation round a circuit such
as C in Fig. 1.12(a) is essentially that predicted by the 2-D theory
(i.e. eqn (1.34)), but plainly the flow cannot be everywhere
irrotational, because C can now be spanned by a surface S which
lies wholly in the fluid. Indeed, from Stokes’s theorem (1.32) we
deduce that there must be a positive flux of vorticity out of S,
and this is in practice observed as a concentrated trailing vortex
emanating from the wing-tip as shown. The higher the lift (and

(c)
Fig. 1.12. Trailing vortices: (a) definition sketch for application of
Stokes’s theorem; (b) view from some distance ahead of the aircraft; (c)
the original drawing from Lanchester’s Aerodynamics (1907).
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therefore the circulation), the stronger the trailing vortices.
Furthermore, the presence of these trailing vortices results in a
drag on the wing, even on ideal flow theory, for as they lengthen
they contain more and more kinetic energy, and creating all this
kinetic energy takes work.

But even within a purely two-dimensional framework we have
left some key questions unanswered. We indicated how the
Kutta—Joukowski hypothesis provides a rational, although ad
hoc, basis for deciding the circulation round an aerofoil in steady
flight, and we have noted that this gives good agreement with
experiment. Yet we have given no account of the dynamical
processes by which that circulation is generated when the aerofoil
starts from a state of rest. It arises, in fact, in response to the
‘starting vortex’ in §1.1, but why this should be so is far from
obvious, and rests on one of the deepest theorems in the subject
(§5.1).

Again, the sceptical reader may even be asking: ‘But what is
all this business about a starting vortex? If the aerofoil and fluid
are initially at rest, the vorticity w is initially zero for each fluid
element. By eqn (1.27) it remains zero for each fluid element,
even when the aerofoil has been started into motion. Therefore
there should not be a starting vortex.’

This is a legitimate conclusion—on the basis of ideal flow
theory. While that theory accounts well for the steady flow past
an aerofoil, the explanation of how that flow became established
involves viscous effects in a crucial way.

If this provokes the response: ‘But air isn’t very viscous, is it?’,
the answer is, ‘No, in some sense air is hardly viscous at all’. Yet,
as we shall see, viscous effects are sufficiently subtle that the
shedding of the vortex in §1.1, while being an essentially viscous
process, would occur no matter how small the viscosity of the
fluid happened to be.

Exercises

1.1. Whether a fluid is incompressible or not, each element must
conserve its mass as it moves. Consider the rate of mass flow through a
fixed closed surface S drawn in the fluid, and use an argument similar to
that on p. 7 to show that this conservation of mass implies

3
?‘;’w - (pu) =0, (1.37)
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where p(x, t) denotes the (variable) density of the fluid. Show too that
this equation may alternatively be written

Dp

—+pV-u=0. 1.

Dr pV-u (1.38)
It follows that if V-u =0, then Dp/Dt=0. What does this mean,

exactly, and does it make sense?

1.2. An ideal fluid is rotating under gravity g with constant angular
velocity Q, so that relative to fixed Cartesian axes u = (—Qy, Qx, 0).
We wish to find the surfaces of constant pressure, and hence the surface
of a uniformly rotating bucket of water (which will be at atmospheric
pressure).
‘By Bernoulli,” p/p + 3u’>+ gz is constant, so the constant pressure
surfaces are
2
z = constant — — (x> + y?).
28

But this means that the surface of a rotating bucket of water is at its
highest in the middle. What is wrong?

Write down the Euler equations in component form, integrate them
directly to find the pressure p, and hence obtain the correct shape for
the free surface.

1.3. Find the pressure p both inside and outside the core of the
Rankine vortex (1.23). Show that the pressure at r =0 is lower than that
at r = by an amount pQZa* (hence the very low pressure in the centre
of a tornado). Deduce that if there is a free surface to the fluid and
gravity is acting, then the surface at r =0 is a depth Q%?/g below the
surface at r = (hence the dimples in a cup of tea accompanying the
vortices that are shed by the edges of the spoon).

1.4. Take the Euler equation for an incompressible fluid of constant
density, cast it into an appropriate form, and perform suitable
operations on it to obtain the energy equation:

d
-f spu’dV = —f (p' +zpu’)u - nds,
de Jy s

where V is the region enclosed by a fixed closed surface S drawn in the
fluid, and p’ denotes p + px, the non-hydrostatic part of the pressure
field.

1.5. For an inviscid fluid we have Euler’s equation

Ou

1
= +u)/\u+V(%u2)=—;Vp—Vx,
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and, whether or not the fluid is incompressible, we also have
conservation of mass (Exercise 1.1):

Dp
—+pV-.-u=0.
Y
Show that
5 (5)= (- 9)u =)
—|=)=(—V]u—-V|[—=) A Vp. 1.39
Dt \p p p \p P (-39

Deduce that, if p is a function of p alone, the vorticity equation is
exactly as in the incompressible, constant density case, except that o is
replaced by w/p.

1.6. Show that the circulation is the same round all simple closed
circuits enclosing the wing in Fig. 1.8. (Hint: sketch two such circuits,
and then make a construction so as to create a single closed circuit that
does not enclose the wing.)

1.7. Sketch the streamlines for the flow
u=ax, vV =—ay, w=0,

where « is a positive constant.
Let the concentration of some pollutant in the fluid be

ot

c(x,y, t) = Bx’ye ™,

for y >0, where B is a constant. Does the pollutant concentration for
any particular fluid element change with time?

An alternative way of describing any flow is to specify the position x
of each fluid element at time ¢ in terms of the position X of that element
at time ¢t = 0. For the above flow this ‘Lagrangian’ description is

x=Xe", y=Ye ™, z=27.

Verify by direct calculation that

(2) —u () D2

o)y t/y Dt

in this particular case. Why are these results true in general?
Write ¢ as a function of X, Y, and ¢.

1.8. Consider the unsteady flow
U= Uy, v = kt, w=0,

where u, and k are positive constants. Show that the streamlines are
straight lines, and sketch them at two different times. Also show that
any fluid particle follows a parabolic path as time proceeds.



2 Elementary viscous flow

2.1. Introduction

Steady flow past a fixed aerofoil may seem at first to be wholly
accounted for by inviscid flow theory. The streamline pattern
seems right, and so does the velocity field. In particular, the fluid
in contact with the aerofoil appears to slip along the boundary in
just the manner predicted by inviscid theory. Yet close inspection
reveals that there is in fact no such slip. Instead there is a very
thin boundary layer, across which the flow velocity undergoes a
smooth but rapid adjustment to precisely zero—corresponding to
no slip—on the aerofoil itself (Fig. 2.1). In this boundary layer
inviscid theory fails, and viscous effects are important, even
though they are negligible in the main part of the flow.

To see why this should be so we must first make precise what
we mean by the term ‘viscous’. To this end, consider the case of
simple shear flow, so that u = [u(y), 0, 0]. The fluid immediately
above some level y = constant exerts a stress, i.e. a force per unit
area of contact, on the fluid immediately below, and vice versa.
For an inviscid fluid this stress has no tangential component T,
but for a viscous fluid 7 is typically non-zero. In this book we
shall be concerned with Newtonian viscous fluids, and in this case
the shear stress t is proportional to the velocity gradient du/dy,
i.e.

TR, (2.1)
where u is a property of the fluid, called the coefficient of
viscosity. Many real fluids, such as water or air, behave
according to eqn (2.1) over a wide range of conditions (although
there are many others, including paints and polymers, which are
non-Newtonian, and do not; see Tanner (1988)).

From a fluid dynamical point of view the so-called kinematic
viscosity

v=ulp (2.2)
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INVISCID
MAINSTREAM

Fig. 2.1. A boundary layer.

is often more significant than p itself, and some typical values of
v are given in Table 2.1. These values can vary quite
substantially with temperature, but throughout much of this book
we shall concentrate on a simple model of fluid flow in which pu,
p, and v are all constant.

We can see now, in general terms, why viscous effects become
important in a boundary layer. The reason is that the velocity
gradients in a boundary layer are much larger than they are in
the main part of the flow, because a substantial change in
velocity is taking place across a very thin layer. In this way the
viscous stress (2.1) becomes significant in a boundary layer, even
though p i1s small enough for viscous effects to be negligible
elsewhere in the flow.

But why are boundary layers so important that we begin this
chapter with them? The answer is that in certain circumstances

u(y)

du <= On upper fluid

4y ~ ey On lower fluid

Fig. 2.2. Viscous stresses in a simple shear flow.
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Table 2.1. Kinematic viscosity v (cm®s™') at 15°C.

Water 0.01 (u =0.01 c.g.s. units)
Air 0.15 (u =0.0002 c.g.s. units)
Olive oil 1.0

Glycerine 18

Golden syrup/treacle ~1200 (v ~200 at 27°C)

they may separate from the boundary, thus causing the whole flow
of a low-viscosity fluid to be quite different to that predicted by
inviscid theory.

Consider, for example, the flow of a low-viscosity fluid past a
circular cylinder. In the first instance it is natural to assume that
viscous effects will be negligible in the main part of the flow,
which will therefore be irrotational, by the argument of §1.5. If
we solve the problem of irrotational flow past a circular cylinder
(84.5) we obtain the streamline pattern of Fig. 2.3(a). This
‘solution’ is not wholly satisfactory, for it predicts slip on the
surface of the cylinder. We might then suppose that a thin
viscous boundary layer intervenes to adjust the velocity smoothly
to zero on the cylinder itself. But this turns out to be wishful
thinking; the observed flow of a low-viscosity fluid past a circular
cylinder is, instead, of an altogether different kind, with massive
separation of the boundary layer giving rise to a large
vorticity-filled wake (Fig. 2.3(b)).

Why does separation occur? The answer lies in the variation of
pressure p along the boundary, as predicted by inviscid theory.

(b)
Fig. 2.3. Flow past a circular cylinder for (@) an inviscid fluid and (b) a
fluid of small viscosity.
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Fig. 2.4. Flow past an aerofoil: the fate of successive lines of fluid
particles.

In Fig. 2.3(a), inviscid theory predicts that p has a local
maximum at the forward stagnation point A, falls to a minimum
at B, then increases to a local maximum at C, with p, = pc. This
implies that between B and C there is a substantial increase in
pressure along the boundary in the direction of flow. It is this
severe adverse pressure gradient along the boundary which causes
the boundary layer to separate, for reasons which are outlined in
§88.1 and 8.6 (see especially Fig. 8.2.)

An aerofoil, on the other hand, is deliberately designed to
avoid such large-scale separation, the key feature being its slowly
tapering rear. In Fig. 1.9, for example, the substantial fall in
pressure over the first 10% or so of the upper surface is followed
by a very gradual pressure rise over the remainder. For this
reason the boundary layer does not separate until close to the
trailing edge, and there is only a very narrow wake (Fig. 2.4).
This state of affairs persists as long as the angle of attack « is not
too large; if o is greater than a few degrees, the pressure rise
over the remainder of the upper surface is no longer gradual,

Fig. 2.5. Separated flow past an aerofoil.
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large-scale separation takes place, and the aerofoil is said to be
stalled, as in Fig. 2.5. This is the explanation for the sudden drop
in lift in Fig. 1.11.

The most important overall message of this introduction is that
the behaviour of a fluid of small viscosity u may, on account of
boundary layer separation, be completely different to that of a
(hypothetical) fluid of no viscosity at all. From a mathematical
point of view, what happens in the limit u— 0 may be quite
different to what happens when u = 0.

2.2. The equations of viscous flow

So far we have considered the motion of fluids of small viscosity.
Yet there is more to the subject than this, including the opposite
extreme of very viscous flow (Chapter 7). It is time, then, to take
a more balanced—if brief—look at viscous flow as a whole.

The Navier-Stokes equations

Suppose that we have an incompressible Newtonian fluid of
constant density p and constant viscosity u. Its motion is
governed by the Navier—Stokes equations

Ju 1
—+Ww-VYu=——Vp+vVu+g,
ot p 7 8 (2.3)

V.-u=0.

These differ from the Euler equations (1.12) by virtue of the
viscous term vV’u, where V? denotes the Laplace operator
&*/3x* + 3%/ 3y* + 3%/ 32>

The no-slip condition

Observations of real (i.e. viscous) fluid flow reveal that both
normal and tangential components of fluid velocity at a rigid
boundary must be equal to those of the boundary itself. Thus if
the boundary is at rest, u =0 there. The condition on the
tangential component of velocity is known as the no-slip
condition, and it holds for a fluid of any viscosity v+#0, no
matter how small v may be.

1 The Navier—Stokes equations are derived from first principles in Chapter 6.
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The Reynolds number

Consider a viscous fluid in motion, and let U denote a typical
flow speed. Furthermore, let L denote a characteristic length
scale of the flow. This is all somewhat subjective, but in dealing
with the spin-down of a stirred cup of tea, for instance, 4 cm and
5cms™! would be reasonable choices for L and U, while 10 m
and 100 ms™' would not. Having thus chosen a value for L and
for U we may form the quantity

R=—, (2.4)

which is a pure number known as a Reynolds number.

To see why R should be important, note that derivatives of the
velocity components, such as du/dx, will typically be of order
U/L—assuming, that is, that the components of u change by
amounts of order U over distances of order L. Typically, these
derivatives will themselves change by amounts of order U/L over
distances of order L, so second derivatives such as 3%u/dx? will
be of order U/L?. In this way we obtain the following order of
magnitude estimates for two of the terms in eqn (2.3):

inertia term: |(u - V)u| = O(U?/L), 2.5)
viscous term: |vVZu| = O(vU/L>). '
Provided that these are correct we deduce that
linertia term| ( U?/L )
= = O(R). 2.6
|viscous term| vU/L? (R) (2.6)

The Reynolds number is important, then, because it can give a
rough indication of the relative magnitudes of two key terms in
the equations of motion (2.3). It is not surprising, therefore, that
high Reynolds number flows and low Reynolds number flows
have quite different general characteristics.

High Reynolds number flow

The case R >> 1 corresponds to what we have hitherto called the
motion of a fluid of small viscosity. Equation (2.6) suggests that
viscous effects should on the whole be negligible, and flow past a
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thin aerofoil at small angle of attack provides just one example
where this is indeed the case. Even then, however, viscous effects
become important in thin boundary layers, where the unusually
large velocity gradients make the viscous term much larger than
the estimate in eqn (2.5). We show in §§8.1 and 8.2 that the
typical thickness 0 of such a boundary layer is given by

8/L = O(R™2). (2.7)

The larger the Reynolds number, then, the thinner the boundary
layer.

A large Reynolds number is necessary for inviscid theory to
apply over most of the flow field, but it is not sufficient. As we
have seen, boundary layer separation can lead to a quite different
state of affairs. A further complication at high Reynolds number
is that steady flows are often unstable to small disturbances, and
may, as a result, become turbulent. It was in fact in this context
that Reynolds first employed the dimensionless parameter that
now bears his name (see §9.1).

Low Reynolds number flow

Consider a laboratory experiment in which golden syrup occupies
the gap between two circular cylinders, the inner one rotating
and the outer one at rest. For reasonable rotation rates of the
inner cylinder the Reynolds number might be in the region of
1072 or so; it will certainly be much less than 1. At such Reynolds
numbers there is no sign of turbulence, and the flow is extremely
well ordered.

The flow is so well ordered, in fact, that if the rotation of the

|Q)Q)f'|>r

@Q@C@C&

g
t

. J Y -
(a) (b) (c) (d) (e)

Fig. 2.6. The reversibility of a very viscous flow.
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inner cylinder is stopped after a few revolutions, and the inner
cylinder is then rotated back through the correct number of turns
to its original position, a dyed blob of syrup, which has been
greatly sheared in the meantime, will return almost exactly to its
original configuration as a concentrated blob (Fig. 2.6).

This near reversibility is characteristic of low Reynolds number
flows, and helps account, in fact, for the unusual swimming
techniques that are adopted by certain biological micro-
organisms such as the Spermatozoa (§7.5).

2.3. Some simple viscous flows: the diffusion of vorticity

We now turn to some elementary exact solutions of the
Navier—Stokes equations. There is, in addition, a major theme
running through §§2.3 and 2.4, and that theme is the viscous
diffusion of vorticity, an important mechanism which was wholly
absent in Chapter 1, where v was zero.

Plane parallel shear flow

Suppose that a viscous fluid is moving so that relative to some set
of rectangular Cartesian coordinates

u=[u(y,t),0,0]. (2.8)

Such a flow is termed a plane parallel shear flow. It automatically
satisfies V- u =0, as u is independent of x, and in the absence of
gravityt the Navier—Stokes equations (2.3) become, in component
form:

du_ 13p u

—_— =% —,
ot p ox V8y2
o _2%p
dy 0z

The pressure p is thus a function of x and ¢ only. But from eqn
(2.9) 9p/ox is equal to the difference between two terms which
are independent of x. Thus dp/dx must be a function of ¢ alone.
As we shall see shortly, there are important circumstances in
which this fact enables us to deduce that dp/dx must be zero.

2.9)
=0.

t See footnote on p. 9.



34 Elementary viscous flow

First, however, it is instructive to see how eqn (2.9) may be
obtained by a simple and direct application of the expression
(2.1).

An ad hoc derivation of the equations of motion for a viscous
fluid in plane parallel shear flow

First note that in the absence of viscous forces the corresponding
Euler equation

du op
— == 2.10
& ot ox (2.10)

may be deduced by considering an element of fluid of unit length
in the z-direction and of small, rectangular cross-section in the

x—y plane, with sides of length 6x and dy (see Fig. 2.7). The net
pressure force on the element in the x-direction is

d
p(x) 8y —p(x + 6x) Oy = — a—i ox Oy,

and this is equal to the product of the element’s mass p dx 8y and
its acceleration

Du _ u ou

—=—+u—,
Dt ot ox

u U (y+08y)ox
oy

PSy — | Oy |+ pOr+ondy

p U (y)ox
ay

Fig. 2.7. The forces in the x-direction on a small rectangular blob in a
plane parallel shear flow.



Elementary viscous flow 35

which reduces simply to du/3dt because u is independent of x.

In a similar manner we may use eqn (2.1) to deduce that
viscous forces on the top and bottom of the element give rise to a
net contribution in the x-direction of

ou du u

u— x—u—| x=u—;
9y ly+ay oy Iy dy*

whence eqn (2.10) becomes modified to

ou op Ju

._=__+ ____,
Por™ "ax T HG2

ox Oy, (2.11)

i.e. to eqn (2.9).

This equation is, of course, valid only for a very restricted class
of flows, but the brevity of the above derivation does have its
merits. In particular, it brings out rather clearly, via eqns (2.1)
and (2.11), why the viscous term in the equation of motion (2.3)
involves the second derivatives of the velocity field.

The flow due to an impulsively moved plane boundary

Suppose that viscous fluid lies at rest in the region 0 <y <o and
suppose that at ¢ =0 the rigid boundary y =0 is suddenly jerked
into motion in the x-direction with constant speed U. By virtue
of the no-slip condition the fluid elements in contact with the
boundary will immediately move with velocity U. We wish to
find how the rest of the fluid responds.

It is natural to look for a flow of the form (2.8), and eqn (2.9)
then applies. We assume that the flow is being driven only by the
motion of the boundary, i.e. not by any externally applied
pressure gradient. This experimental consideration corresponds
to asserting that the pressures at x = o are equal, and as dp/dx
is independent of x (so that p is a linear function of x) it follows
that dp/ox is zero.

The velocity u(y, t) thus satisfies the classical one-dimensional
diffusion equation

ou  Ju
Vo
together with the initial condition
u(y,0)=0, y>0,

(2.12)
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and the boundary conditions
u,t)=U, t>0, u(eo, t)=0, t>0.

This whole problem is in fact identical with the problem of the
spreading of heat through a thermally conducting solid when its
boundary temperature is suddenly raised from zero to some
constant.

We may proceed most easily, on this occasion, by seeking a
similarity solution. We postpone a more rational discussion of
this method until §8.3; for the time being we simply observe that
the equation is unchanged by the transformation of variables
y > ay, t=> oa’t, a being a constant. This suggests the possibility
that there are solutions to eqn (2.12) which are functions of y and
t simply through the single combination y/t2, for this ‘similarity’
variable would itself be unchanged by such a transformation.
Inspection of eqn (2.12) suggests that it may be more convenient
still to take y/(vt)? as the similarity variable. Thus if we try

u=f(n), where 1 = y/(vt)2, (2.13)
so that
ou .. .on y
ou . .9on 1
3y =f'(n) 3y =f'(n) W etc.,
we obtain, from eqn (2.12),
f"+4nf' =0,
Integrating,
fr — Be—n2/4,
whence

n
f=A +Bf e " ds,
0

where A and B are constants of integration, to be determined
from the initial and boundary conditions. By virtue of eqn (2.13)
these reduce to

f(=)=0, f(0)=U,
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so that

n
u= U[l —ll f e'sz"'ds] (2.14)
72 Jy

is the solution of the problem, where 5 = y/(vt)2.

The simple form of the initial and boundary conditions was
essential to the success of the method. The underlying reason lies
in the nature of the similarity solution (2.14) itself. As its name
implies, the velocity profiles u(y) are, at different times, all
geometrically similar. At time ¢, the velocity u is a function of
y/(vt;)%; at a later time ¢, the velocity u is the same function of
y/(vt,):. All that happens as time goes on is that the velocity
profile becomes stretched out, as indicated in Fig. 2.8. We would
not expect this to be the case if, for instance, an upper boundary
were present, and the solution is, indeed, not then of similarity
form (see eqn (2.21)).

At time ¢ the effects of the motion of the plane boundary are
largely confined to a distance of order (vt)? from the boundary; u
is less than 1% of U at y =4(w):. In this way viscous effects
gradually communicate the motion of the boundary to the whole
fluid.

A more fundamental way of viewing this process, open to
considerable generalization, is in terms of the diffusion of
vorticity. The vorticity is

B ou U
dy (mwr):

e YAV (2.15)

w:

e v Ay v vy v . ey s e

7
—»

(b)

Fig. 2.8. The diffusion of vorticity from a plane boundary suddenly

moved with velocity U. The solid line indicates the velocity profile at

some early time (a) and some later time (b); the shading indicates the
region of significant vorticity.
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and this is exponentially small beyond a distance of order (vt)?
from the boundary. The spreading of vorticity by viscous action
thus smooths out what was, initially, a vortex sheet, i.e. an
infinite concentration of vorticity at the boundary (y =0, t— 0)
with none elsewhere (y >0, t— 0).

Finally we may state these broad conclusions in a slightly
different way. Vorticity diffuses a distance of order (v): in time
t. Equivalently, the time taken for vorticity to diffuse a distance of
order L is of the order

viscous diffusion time = O(L?/v). (2.16)

Steady flow under gravity down an inclined plane

This next solution of the Navier—Stokes equations serves to make
one or two elementary points about technique.

It may be argued that the key step in solving any flow problem,
having decided on a sensible coordinate system, is to decide the
number of independent variables (e.g. x,y, z,¢t) on which u
depends, and the rule is ‘the fewer, the better’.

In the present problem u is zero on y =0 (see Fig. 2.9), by
virtue of the no-slip condition, so 4 must depend on y. In the
absence of any a priori reason why # needs to depend on
arything else we examine the possibility that there is a
two-dimensional steady flow solution in which u=
[u(), v(y), O].

Now, it is only common sense in any problem to turn to the
incompressibility condition at an early stage, for of the two

Fig. 2.9. Steady flow of a viscous fluid down an inclined plane.
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equations (2.3) it is by far the simpler. In the present instance it
tells us immediately that

dv/dy =0,

i.e. that v is a constant. But v=0 on y=0, so v is zero
everywhere.

Substituting u = [u(y), 0, 0] into the momentum equation
(2.3), with the gravitational body force included, we obtain

19 d?
0=—-24 v—L;+gsin @,

p ox dy

1 9p (2.17)
0=——— — g Ccos a.

p dy 8

Integrating the second of these we find

p = —pgy cos &« + f(x),

where f(x) is an arbitrary function of x.

Now, the free surface must be y =h, where h is a constant,
because all the streamlines are parallel to the plane. At this free
surface the tangential stress must be zero and the pressure p must
be equal to atmospheric pressure p, (see Exercise 6.3), so
du _
dy
by virtue of eqn (2.1). Consequently,

p —Po= pg(h —y)cos a,
whence dp/ox is zero. Equation (2.17) then reduces to
d’u
Y —
dy?
and we may easily integrate this twice, applying the boundary
conditions

p=po and u 0 aty =h, (2.18)

= —g sin q,

d
u=0 at y=0, u—Lf=0 at y=h,
dy

to obtain

u= 2;‘; y(2h — y)sin a. (2.19)
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The velocity profile is therefore parabolic, as shown in Fig. 2.9.
The volume flux down the plane, per unit length in the
z-direction, is

3

h
gh” .
— d= A
[0 Luy 3Vsmcv

Another example of vorticity diffusion

Consider the problem in Fig. 2.10, in which a lower rigid
boundary y =0 is suddenly moved with speed U, while an upper
rigid boundary to the fluid, y = A, is held at rest. As in an earlier
subsection, we argue that u=[u(y,t),0,0] will satisfy eqn
(2.12):

ou_ v@ (2.20)

ot ay?’ '
subject to the initial condition

u(y, 0)=0, 0<y<h;
but this time the boundary conditions will be
u(0,)=U, t>0, uth,t)=0, t>0.

The equation is homogeneous, but the boundary conditions
are not. Before using the method of separation of variables and

— U —» U
(a) t<< h?lv (b) t >h*v
Fig. 2.10. Flow between two rigid boundaries, one suddenly moved

with speed U and one held fixed. Shading indicates regions of significant
vorticity.
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Fourier series we therefore reformulate the problem by first
seeking a steady solution that satisfies the boundary conditions;
this is clearly U(1 — y/h). We therefore write

u= U(l—y/h)"'ul,
where
u, *u,
—=v—,
ot dy
ui(y,00=-U(QQ—-y/h), 0<y<h,

u,(0,¢)=0, t>0, uyth,t)=0, t>0.

The boundary conditions are now homogeneous. By the
method of separation of variables we find that the functions

exp(—n’n*vt/h®sin(nmy/h), n=1,2,....

all satisfy the equation for u; and the boundary conditions for u;,
at y=0,h. None of these individually satisfies the initial
condition for u,, but by writing

u, = 531 A, exp(—n*m*vt/h*)sin(nmy/h),
we may use Fourier theory to determine the A, such that
slA,, sin(nwy/h)=—-U(1 —y/h) in0<y<h,
thus satisfying the initial condition. In this way we find

2 h
A,=— Zf U(1 —y/h)sin(nmy/h)dy = —=2U/nn,
0

and the solution is therefore

2U S 1
> - exp(—n’a*vt/h*)sin(nmy/h).
=1

u(y, )= U(L-y/h) =3

(2.21)

The main feature of this solution is that for times ¢ = h?/v (cf.
eqn (2.16)) the flow has almost reached its steady state, as in Fig.
2.10(b), and the vorticity is almost distributed uniformly
throughout the fluid.
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2.4. Flow with circular streamlines

The Navier—Stokes equations are

3 1
—8'7'+(u-V)u=—;vp+vv2u,

V-u=0,

and when written out in cylindrical polar coordinates they
become

du ul 139p u, 2 Jdug
“+(u-V)u, —— =———7+ (V2 ,——’—————)
o TV =7 por T\ T 2T 250
Jug U,ug 1 dp ( ) 2 du, u9>
—+(u-Vuy + =———+v|V S ———
ot (u - V)uo r pr 36 \VHe T 259 2
Su 1 8p ) (2.22)
‘+(u-V =———+vVu,,
10 10ug Ju,
-— +-—+ =0
rar('“’) réol 3z
where
O ug 0o %)
VY=u,—+——+u,—,
V) =u s+ 56t s,

) ( a) 1 &2 N &2
Sl [V DA
or\ ar/ r?oe6* o5z

(see eqn (A.35)).

Note the ‘extra’ terms that arise; the r-component of (u - V)u is
not (u - V)u,, for instance, but (u - V)u, — u3/r instead. This kind
of thing occurs because u = u,e, + uyey + u,e,, and some of the
unit vectors involved change with 0:

oe, égq__ de, _
30 89 G0

0, (2.23)

(see eqn (A.29)). When (u-V)u and vV are expanded
carefully using these expressions they may be seen to yield eqn
(2.22).
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Taking explicit account of the change in direction of unit
vectors may alternatively be avoided by use of the identities

(u-Vu=(VAau)Au+VGu), (2.24)
Viu=V(V-u)—VA(VAu). (2.25)
For this purpose we recall
e, re, e,
Vau=s |2 22 (2.26)
U, rug Uu,

(see Exercise 2.13).

The differential equation for circular flow

Consider solutions to the Navier—Stokes equations of the form
u=ug(r, t)ey, (2.27)

so that the streamlines are circular. The incompressibility
condition V - u =0 is automatically satisfied for any flow of the

form (2.27).
Rather than use the remaining equations in the ready-made

form (2.22) it is instructive to derive them, for the flow (2.27),
using the expressions (2.23). Thus

u, o us de uz
(u-V)u= ;’; [ue(r, t)es] = 7"8—;’= —f’e,, (2.28)
while
? 18 18 &
V= (35t o gt o et Dea)
and
L2 oA 2 (1,250 2T 2
72 592 [Mete] = S50 (e 50 ) = 12 5p(Uee) = = 5 €0,
SO
S%u 10us, u
vV2u=v< <9r2‘9 ;are—r_;))ee (2.29)
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When u = uy(r, t)e, the Navier—Stokes equations therefore
reduce to

_4o__10p
r p or’
%=_i@+v(32ue 13y _ o)
ot pr 30 or* raor r/’
10
0=--2,
p oz

as we might have deduced more quickly from eqn (2.22).

Now, u, is a function of r and ¢ only, so from the second
equation the same must be true of dp/30, so dp/30 = P(r, t),
say. Integrating:

p=P(r,t)0 +f(r, 1),
as op/dz=0. We conclude that P(r,t)=0, for otherwise p
would be a multivalued function of position (different at 6 =0
and at 6 =2, say). Thus
Ao _ (S, 1300 _to)
ot \aor* ror r

is the evolution equation for a viscous flow with u = uy(r, t)ey.

(2.30)

Steady flow between rotating cylinders

For steady flow we have

,d%ug  du,

r 02 +r = —ug =0,
with general solution
B
ungr +7 (2.31)

If the fluid occupies the gap r,<r=<r, between two circular

cylinders which rotate with angular velocities Q; and €2,, then we

may apply the no-slip condition at each cylinder to obtain
Q,r; — Qiri (Ql"gz)’%r%

A= B =
r3—ry r;—ri

(2.32)
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The most interesting thing about this flow is the manner in
which it becomes unstable if €2, is too large, so that superbly
regular and axisymmetric Taylor vortices appear (see §9.4,
especially Fig. 9.8).

Spin-down in an infinitely long circular cylinder

Suppose viscous fluid occupies the region r <a within a circular
cylinder of radius a, and suppose that both cylinder and fluid are
initially rotating with uniform angular velocity €2, so that

ug = Qr, r<a, t=0.

Suppose that the cylinder is then suddenly brought to rest. We
need to solve

%= V(azuo 1 aue_ ﬁ,)
ot ar* ror r?

with the above initial condition and the boundary condition
ug =0 atr=a, t>0.

The problem may be tackled in a Fourier-series type manner,
as for eqn (2.21), but the separable solutions now involve Bessel
functions, and

= Ji(Aqr/a vt
up(r, t)= —2Qa Z,l /{(T(ﬂ()) exp(—lﬁ;). (2.33)
Here A, denote the positive values of A at which J;(4) =0, and J,
denotes the Bessel function of order k. All the terms of the series
decay rapidly with ¢; the one that survives longest is the first one,
and A,=3.83. The ‘spin-down’ process is therefore well under
way in a time of order a?/vA%, i.e. in the classic viscous diffusion
time (2.16).

If we apply this to a stirred cup of tea, with a =4 cm and
v=10"2cm?s~! for water, we obtain a ‘spin-down’ time of about
2 minutes. This is much too long; casual observation suggests
that ug drops to about 1/e of its original value in about 15s. The
discrepancy arises because straightforward diffusion of (negative)
vorticity from the side walls is not the key process by which a
stirred cup of tea comes to rest; the bottom of the cup—wholly
absent in the present model—plays a crucial role (see Fig. 5.6.)
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(a) (b)

Fig. 2.11. ‘Spin-down’ in an infinitely long circular cylinder. Initially

there is vorticity 2Q everywhere, but negative vorticity diffuses inward

from the stationary boundary r =a, so that the (shaded) region of
significant vorticity shrinks with time.

Viscous decay of a line vortex

The line vortex
Uu=—— eB} (2. 34)

where Iy is a constant, has zero vorticity in r >0 but infinite
vorticity at »=0. In a viscous fluid, then, this flow does not
persist; the vorticity diffuses outward as time goes on.

To examine this process it is convenient to take the circulation

I'(r, t) = 2mruy(r, t) (2.35)

as the dependent variable of the problem. In place of eqn (2.30)
we then obtain
or (82F 1 ar)

E P

or’> r or (gey)

The initial condition is
F(r y O) =F 0-
We require u, finite at r = 0 at any later time, so

[, =0, t>0.
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This problem is very similar to that in which a plane rigid
boundary is jerked into motion (see eqn (2.14)); we leave it as an
exercise to seek, as in that case, a similarity solution in which

I'=f(n), where n = r/(vt):.
In this way we may discover that

= ro(l _ e—r2/4vt),
SO
rO 2
ug=——(1—e""*). 2.37
0 =52 ( ) (2.37)
At distances greater than about (4vr): from the axis the
circulation is almost unaltered, because very little vorticity has
yet diffused that far out. At small distances from the axis,
however, where r<<(4vt)?, the flow is no longer remotely
irrotational; indeed

" 8nvt

Ug for  r<<(4vi)s, (2.38)

which corresponds to almost uniform rotation with angular
velocity I'y/8mve. The intensity of the vortex thus decreases with
time as the ‘core’ spreads radially outward (Fig. 2.12).

(a) (b)

Fig. 2.12. The viscous diffusion of a vortex.
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2.5. The convection and diffusion of vorticity

If we take the curl of the momentum equation (2.3) we obtain

0
?‘:’ +(@-Vo=(0-Vu+v Ve, (2.39)
(cf. eqn (1.25)), and in the case of a 2-D flow this reduces to
dw o Fw
D@ No=v(S3+53) .
P (u-Vo=v 2 T 5y (2.40)

In Chapter 1 we set the viscosity v to zero from the outset;
was then conserved by individual fluid elements in 2-D flow.
Changes in w at a particular point in space took place only by the
convection of vorticity from elsewhere in the fluid, and this
process is represented by the second term in eqn (2.40). In §§2.3
and 2.4, on the other hand, we looked at some simple viscous
flow problems in which the term (u-V)w happened to be
identically zero; in other words, we isolated diffusion of vorticity
as a mechanism, this being represented by the third term in eqn
(2.40).

In general, there is both diffusion and convection of vorticity in
a viscous fluid flow, and we end this chapter with two examples.

2-D flow near a stagnation point

The main features of this exact solution of the Navier—Stokes
equations (Exercise 2.14) are as follows. First, there is an inviscid
‘mainstream’ flow

u=ax, v=—ay, (2.41)

where « is a positive constant. This fails to satisfy the no-slip
condition at the rigid boundary y =0, but the mainstream flow
speed « |x| increases with distance |x| along the boundary. By
Bernoulli’s theorem, the mainstream pressure p decreases with
distance along the boundary in the flow direction (Fig. 2.13), so
we may hope for a thin, unseparated boundary layer which
adjusts the velocity to satisfy the no-slip condition (see §2.1).
This is indeed the case, as Exercise 2.14 shows, and the boundary
layer, in which all the vorticity is concentrated, has thickness
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Fig. 2.13. Flow towards a 2-D stagnation point.

8= 0(v/a):. In this boundary layer there is a steady state
balance between the viscous diffusion of vorticity from the wall
and the convection of vorticity towards the wall by the flow. Thus
if v decreases the diffusive effect is weakened, while if «
increases the convective effect is enhanced; in either case the
boundary layer becomes thinner.

High Reynolds number flow past a flat plate

In uniform flow past a flat plate with a leading edge, as in Fig. 2.14,
there is no flow component convecting vorticity towards the plate
to counter the diffusion of vorticity from it, so the boundary layer
becomes progressively thicker with downstream distance x. (In
less formal terms, the layers of fluid closest to the centreline are
the first to be slowed down as they pass the leading edge,
and they in turn gradually slow down the layers of fluid which are
further away.)

Fig. 2.14. The boundary layer on a flat plate.
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We may estimate the boundary layer thickness § by a simple
argument based on the related problem in which the flat plate is
instead suddenly pulled to the left, with speed U, through fluid
which was previously at rest. From Fig. 2.8 we infer that at time ¢
after the plate is moved vorticity will have diffused out a distance
of order (vt)z. But by this time the leading edge of the plate will
have moved a distance x = Ut to the left. It follows that at
distance x downstream from the leading edge there will be
significant vorticity a distance of order

8 ~ (vx/U)? (2.42)

from the plate, but not beyond.

This crude estimate for the growth of the boundary layer with
downstream distance x in Fig. 2.14 is indeed confirmed by the
appropriate solution of the boundary layer equations (see §8.3).
For a plate of finite length L the thickness (2.42) is in keeping
with the claim (2.7) and is small compared with L at all points of
the plate if R = UL/v> 1.

Exercises

2.1. Give an order of magnitude estimate of the Reynolds number for:

(i) flow past the wing of a jumbo jet at 150 ms™' (roughly half the
speed of sound);

(ii) the experiment in §1.1 with, say, L=2cm and U=5cms™;
(iii) a thick layer of golden syrup draining off a spoon,;

(iv) a spermatozoan with tail length of 10°cm swimming at
10~2cmss™" in water.

Give an order of magnitude estimate of the thickness of the
boundary layer in case (i).

2.2. The problem of 2-D steady viscous flow past a circular cylinder of
radius a involves finding a velocity field u = [u(x, y), v(x, y), 0] which
satisfies

1
(u-V)u=—-;Vp+VV2u, V-u=0,

together with the boundary conditions

u=0 onx’+y’=a* u—(U,0,0) asx’+y*>ox,
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Rewrite this problem in dimensionless form by using the dimensionless
variables

x'=x/a, u'=u/U,  p' =p/pU?

in places of x, u, and p. Without attempting to solve the problem, show
that the streamline pattern can depend on v, a, and U only in the
combination R = Ua/v, so that flows at equal Reynolds numbers are
geometrically similar.

2.3. (1) Viscous fluid flows between two stationary rigid boundaries
y = 1h under a constant pressure gradient P = —dp/dx. Show that

P
u=§l—;(h2—y2), v=w=0.

(i) Viscous fluid flows down a pipe of circular cross-section r =a
under a constant pressure gradient P = —dp/dz. Show that

P

u, =—(a*-r?, u, = ue=0.

[These are called Poiseuille flows (Fig. 2.15), after the physician who
first studied (ii) in connection with blood flow. Their instability at high
Reynolds number constitutes one of the most important problems of
fluid dynamics (see §9.1).]

2.4. Two incompressible viscous fluids of the same density p flow, one
on top of the other, down an inclined plane making an angle a with the
horizontal. Their viscosities are u; and u,, the lower fluid is of depth A,
and the upper fluid is of depth h,. Show that
sin o«
uy(y) = [(h:+ hy)y — 2y7] &V— ,
1

so that the velocity of the lower fluid u,(y) is dependent on the depth
h,, but not the viscosity, of the upper fluid. Why is this?

High Low
p p
/44

Fig. 2.15. Poiseuille flow.
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2.5. Viscous fluid is at rest in a two-dimensional channel between two
stationary rigid walls y = +h. For t=0 a constant pressure gradient
P = —dp/dx is imposed. Show that u(y, t) satisfies

du Fu P

—=v_—+—,

ot ay° p
and give suitable initial and boundary conditions. Find u(y, ) in the
form of a Fourier series, and show that the flow approximates to steady
channel flow when ¢ >> h?/v.

2.6. Viscous fluid flows between two rigid boundaries y =0, y = h, the
lower boundary moving in the x-direction with constant speed U, the
upper boundary being at rest. The boundaries are porous, and the
vertical velocity v is —v, at each one, v, being a given constant (so that
there is an imposed flow across the system). Show that the resulting flow
is

e—voy/v _ e—voh/v
), V= —Vg.

u= U( 1 _ e_UOh/V

Show that the horizontal velocity profile u(y) is as in Fig. 2.16, so that
when vyh/v is large the downflow v, confines the vorticity to a very thin
layer adjacent to y =0.

[This is probably the mathematically simplest example of a steady
boundary layer, but it is untypical in that the boundary layer thickness is
proportional to v, rather than to vz (see eqn (2.7)).]

2.7. Incompressible fluid occupies the space 0 <y <o above a plane
rigid boundary y =0 which oscillates to and fro in the x-direction with
velocity U cos wt. Show that the velocity field u = [u(y, ?), 0, 0] satisfies

du Ju

=y

ot ay

-

y=0 T7777777727727227277272277777

U# *U() U-—)

(a) (b)
Fig. 2.16. Wall-driven channel flow with (a) v, =0 and (b) v h/v> 1.
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(there being no applied pressure gradient), and by seeking a solution of
the form

u=R[f(y)e"],
where & denotes ‘real part of’, show that
u(y, t) = Ue™ cos(ky — wt),

where k = (w/2v)}.
Sketch the velocity profile at some time ¢, and note that there is hardly
any motion beyond a distance of order (v/w)} from the boundary.

2.8. A circular cylinder of radius a rotates with constant angular
velocity Q in a viscous fluid. Show that the line vortex flow

is an exact solution of the equations and boundary conditions. Describe
roughly how the vorticity changes with time when the cylinder is
suddenly started into rotation with angular velocity Q from a state of
rest. Likewise, discuss the case in which an outer cylinder r=5b is
simultaneously given an angular velocity Qa?/b’.

2.9. A viscous flow is generated in r=a by a circular cylinder r =a
which rotates with constant angular velocity Q. There is also a radial
inflow which results from a uniform suction on the (porous) cylinder, so
that u, = —U on r = a. Show that

u,=—-Ual/r forr=a,
and that
d’u,
dr?

du
rPr—+(R+ 1)rd—"+ (R —1u, =0,
r
where R = Ua/v.
Show that if R <2 there is just one solution of this equation which
satisfies the no-slip condition on r=a and has finite circulation
I’ =27aru, at infinity, but that if R > 2 there are many such solutions.

2.10. Show that, as claimed in eqn (2.37), a line vortex of strength I,
decays by viscous diffusion in the following manner:

I‘0 2/4
ug=—(1—-e").
° 2Jtr( )
Calculate and sketch the vorticity as a function of r at two different

times.
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2.11.  Viscous fluid occupies the region 0 <z <h between two rigid
boundaries z =0 and z =h. The lower boundary is at rest, the upper
boundary rotates with constant angular velocity Q about the z-axis.
Show that a steady solution of the full Navier—Stokes equations of the
form

u= ug(r, Z)eg

is not possible, so that any rotary motion u,(r, z) in this system must be
accompanied by a secondary flow (u,, u, #0).

2.12. Viscous fluid is inside an infinitely long circular cylinder r =a
which is rotating with angular velocity Q, so that u, = Qr for r <a. The
cylinder is suddenly brought to rest at t=0. Rewrite the evolution
equation (2.30) in the form

T2

Jueg v 8( 8u9> Vig
r

ot ror\ ar

and thereby show that
where

which is proportional to the kinetic energy of the flow. Hence show that
E—0Qast—x.

[This may seem a little pointless, given that the exact solution (2.33) is
available, but the above approach is in fact of very general value, and
provides the basis for the proof, in §9.7, of an important uniqueness
theorem.]

2.13. Re-derive the results (2.28) and (2.29) by the alternative route
involving eqns (2.24), (2.25), and (2.26).

2.14. Consider in y =0 the 2-D flow

u=axf'(n), v=—(va)if(n),
where
n=(a/v)y.

Show that it is an exact solution of the Navier—Stokes equations which
(i) satisfies the boundary conditions at the stationary rigid boundary
y =0 and (ii) takes the asymptotic form u ~ ax, v ~ —ay far from the
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f(m)
Fig. 2.17. The velocity profile in the boundary layer near a 2-D
stagnation point.

boundary (see Fig. 2.13) if
fm +ffn + 1 _f,2 — O,

with
fO)=£'©0)=0, f'(»)=1

[The differential equation for f(7) is solved numerically, and f'(n) is
shown in Fig. 2.17. Notably, f'(3) =0.998, so beyond a distance of
3(v/a)! from the boundary the flow is effectively inviscid and
irrotational, with u = ax and v = —ay.]
2.15. If a flat plate is fixed between (0, 0) and (0, L) in Fig. 2.13, with
L> (v/a)}, one might at first think that the flow would not be much
affected, for the plate lies along one of the streamlines of the original

flow. Why is it, then, that the observed flow is quite different, as in Fig.
2.187

.

Fig. 2.18. High Reynolds number stagnation-point flow with a
protruding flat plate.




4 Classical aerofoil theory

4.1. Introduction

Let us begin by noting some of the key events in the early days of
aerodynamics.

1894 F. W. Lanchester presents a paper, ‘The soaring of
birds and the possibilities of mechanical flight’, to a meeting of
the Birmingham Natural History and Philosophical Society. It
contains the elements of the circulation theory of lift, but not in
conventional terms.

1897 Lanchester submits a written version of his paper for
publication by the Physical Society. It is rejected.

1901 The Wright brothers encounter failure with their first
attempts at glider design. One of them is heard to mutter that
‘nobody will fly for a thousand years’.

1902 Kutta publishes a short paper, ‘Lifting forces in flowing
fluids’. It contains the solution for 2-D irrotational flow past a
circular arc, with circulation round the surface and a finite
velocity at the trailing edge (Exercise 4.8). The connection
between circulation and lift is recognized, though not in the form
of the general theorem (1.35).

1903 17 December: The Wright brothers achieve their first
powered flight. It lasts for 12 seconds, although they improve on
this later the same day.

1904 Prandtl presents his paper on boundary layers to the
Third International Congress of Mathematicians at Heidelberg
(see §8.1).

1906 Joukowski publishes the lift theorem (1.35):

If an irrotational two-dimensional fluid current, having at infinity the
velocity V., surrounds any closed contour on which the circulation of
velocity is I, the force of the aerodynamic pressure acts on this contour
in a direction perpendicular to the velocity and has the value

L' =p.V.I.
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The direction of this force is found by causing to rotate through a right
angle the vector V., around its origin, in an inverse direction to that of
the circulation.

1907 Lanchester publishes his Aerodynamics, although some
of the most important results in the book date from as early as
1892. He was certainly years ahead of everyone else in
recognizing the inevitability, and the importance, of trailing
vortices from the tip of a wing of finite length (§1.7).

A list like this is a concise way of presenting some of the facts,
but it can be misleading, for the events within it were, at the
time, almost wholly unconnected. Thus Lanchester, Kutta, and
Joukowski came to their various conclusions about aerodynamics
quite independently, and Wilbur Wright, had he known, would
probably not have had much time for any of them. He and his
brother relied greatly on their own experimental work on
wind-tunnel flows past aerofoils of various shapes, but as late as
1909 he wrote to Lanchester:

... I note such differences of information, theory, and even ideals, as to
make it quite out of the question to reach common ground..., so I
think it will save me much time if I follow my usual plan and let the
truth make itself apparent in actual practice.

Our first aim in this chapter is to establish that for uniform
irrotational flow past an aerofoil with a sharp trailing edge there
is just one value of the circulation I' for which the velocity is
finite everywhere (Kutta—Joukowski condition). In particular, we
seek to show that in the case of a thin symmetrical aerofoil of
length L making an angle of attack a with the oncoming stream
the value I is given by

I'= —aUL sin a. (4.1)

We set about doing this by first solving the comparatively easy
problem of irrotational flow past a circular cylinder, and then
using the method of conformal mapping to infer the irrotational
flow past 2-D objects of more wing-like cross-section.

We must add one important warning before we start. The
present chapter is full of irrotational flows which involve slip at
rigid boundaries. While any particular flow may well serve a
quite different purpose, it will represent correctly the motion of a
viscous fluid at high Reynolds number only if the slip velocity can
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be adjusted to zero successfully, by a viscous boundary layer,
without separation. Rough guidelines on whether or not separa-
tion will occur have already been presented in §2.1.

4.2. Velocity potential and stream function

The velocity potential

The velocity potential ¢ is something that exists only if
V A u=0; it is defined at any point P by

¢=f:u-dx 4.2)

where O is some arbitrary fixed point. In a simply connected
fluid region ¢ is independent of the path between O and P, and
thus a single-valued function of position (Exercise 4.1.) Partial
differentiation of eqn (4.2) gives

u=Vgo, (4.3)

and the vector identity (A.2) at once confirms that this flow is
irrotational, as desired.

This representation of an irrotational flow, eqn (4.3), is valid
also in multiply connected fluid regions, but the integral in eqn
(4.2) may then depend on the path from O to P, in which case ¢
will be a multivalued function of position. In this case, it is worth
noting at once that the circulation round any closed curve C in
the flow is given by

r=3ﬂcu-dx=9€CV¢-dx=[¢1C, (4.4)

where the last expression denotes the change (if any) in ¢ after
one circuit round C (see eqn (A.12)).

Let us take some examples. The uniform flow u = (U, 0, 0) has
velocity potential ¢ = Ux (plus an insignificant arbitrary con-
stant, which has no effect on the flow (4.3)). The stagnation point
flow of Exercise 1.7:

u=ax, V= —ay, w=0
is irrotational, and writing
o¢/ox = ax, d¢/dy = —ay, o¢/3z=0
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we may integrate to obtain

¢ =32a(x* - y?).
In both these cases ¢ is a single-valued function of position;
there is therefore no circulation round any closed circuit lying in
the flow domain.
Now take the line vortex flow (1.21):

k
Uu=-—=~€y,
r

which is an irrotational flow except at the origin, where it is not
defined. To meet this difficulty, consider the flow domain to be
r =a, which is not simply connected, for there are now some
closed curves (i.e. those which enclose r =a) which cannot be
shrunk to a point without leaving the flow domain. To find the
velocity potential we integrate

_, 130_k ¢ _
or ro6 r’ 8z
and thus obtain

0,

¢ = k6,

which is a multivalued function of position. As we go round any
circuit not enclosing r =a it is clear that 6, and hence ¢, will
return, at the end of that circuit, to its original value. There is
therefore no circulation round such a circuit. But as we go round
any closed curve which winds once round the cylinder r =a, 6
increases by 2w, and the circulation round such a circuit will
therefore be I' =2xk. Thus all circuits which wind once round
the cylinder have the same circulation (cf. Exercise 1.6).

The stream function

This is a useful device for representing flows which are
incompressible and two-dimensional. The essential idea is to
write

oy oy
=—, =—-—, 4.5
4 dy v ox (4.5)
thus automatically satisfying the 2-D incompressibility condition
du Jdv

—+—=0. .
ox 9y (4.6)
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That such a function y(x, y, t) may be found can be shown by a
similar argument to that used above (Exercise 4.1).
An important property of y follows immediately from eqn
(4.5), for
oy Oy Jydy Jyoy

.V =u—+ = — =O, 4.7
(- V)y “ax vay dy ox Jx Jy (4.7)

so vy is constant along a streamline. This gives an effective way of
finding the streamlines for a 2-D incompressible flow; if we can
just find y(x, y,t) the equations for the streamlines can be
written down immediately.

A useful way of viewing the representation (4.5) is as

u=Vna (yk), (4.8)

where k is the unit vector in the z-direction. It provides, in
particular, a way of obtaining the plane polar counterparts to eqn
(4.5). Regarding y instead as a function of r, 8, and ¢, we obtain
at once
_ 13y 9y
;= = 4.9
“Tree T T (+9)
and such a flow automatically satisfies the 2-D incompressibility
condition in plane polar coordinates:

18
19 (ruyy+ 1240

=0 .
ror r 06 (4.10)

(see eqn (A.35)).

4.3. The complex potential

Suppose now that we have a flow which is (i) two-dimensional,
(ii) incompressible, and (iii) irrotational. Then the velocity field
can be represented by both eqns (4.3) and (4.5), so that

_%9_ov _3__ov
ox Jdy’ dy ox
The second of the equations in each pair constitute the well

known Cauchy—Riemann equations of complex variable theory,
and provided that the partial derivatives in eqn (4.11) are

(4.11)
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continuous it follows that
w=¢+iy (4.12)

is an analytic function of the complex variable z =x +iy
(Priestley 1985, pp. 16, 184). We call w(z) the complex potential.

One of the most important properties of a 2-D incompressible,
irrotational flow is that its velocity potential and stream function
both satisfy Laplace’s equation, so

82¢ 82¢
il A S 4.
ax2 ayZ ( 13)
and
Py Fy
ZriZ ¥y, .
axZ ayZ (4 14)

as may be seen directly from eqn (4.11).
The velocity components u and v are directly related to
dw/dz, which is most conveniently calculated as follows:

dw 0J¢ .Jy )
= + = — . .
reiairwid wil A o (4.15)
(Note the negative sign.) The flow speed at any point is therefore
dw
=W +vY)i=| —| 4.16
q=@+vi)i=| T (4.16)
We now consider a number of examples.
Uniform flow at an angle o to the x-axis
Here
u="Ucos qa, v=Usin «a,
so dw/dz = Ue™'*, and therefore
w=Uze™'* (4.17)

Line vortex

We may write this flow as

u=—eé,, (4.18)
r
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where T is the circulation round any simple circuit enclosing the
vortex, and we already know from the previous section that

¢ =T6/2x. (4.19)

Using eqn (4.9) we may also write

1oy_ _aw_T
roe or 2nr’
whence
1p=—£logr.
2n
Thus

r i
¢+itp=2—n(0—ilogr)=——;—]—t(logr+i0),

and the complex potential for a line vortex at the origin is
therefore
w i 1 (4.20)
= ——logz. .
2n &z

By the same token, the complex potential for a line vortex at
Z=218
il

w=—- log(z — z). (4.21)

2-D irrotational flow near a stagnation point

If the complex potential w(z) is analytic in some region it will
possess a Taylor series expansion in the neighbourhood of any
point 2, in that region (Priestley 1985, p. 69), i.e.

w(z) = w(zo) + (z — zo)W'(20) + 3(z — zo)*W"(z0) + . . . .

Now, the first term is an inconsequential constant which makes
no difference to dw/dz, and if z = 2, is a stagnation point for the
flow, then w'(z,) =0, by virtue of eqn (4.15). Unless w"(z;) also
happens to be zero, it follows that the flow in the immediate
neighbourhood of the stagnation point will be determined by the
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Fig. 4.1. 2-D irrotational flow near a stagnation point.

quadratic term in the above expression. Now, w"(z) will
typically be complex, ae””, say, but by first shifting our
coordinates:

Z—20= 2y,

so that the stagnation point is at z; =0, and then rotating them
so that

Zleiﬁlz = 25,
we may write
w =constant + az2+. ...

Dropping the inconsequential constant, we see that relative to
suitably located and orientated coordinates the complex potential
in the neighbourhood of a stagnation point is

w=1az? (4.22)
where a is real, the corresponding flow being
u=ax, vV=—ay (4.23)
(cf. Exercise 1.7). The stream function is
Y = axy, (4.24)

so the streamlines are rectangular hyperbolae, as in Fig. 4.1.
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44. The method of images

Suppose there is a line vortex of strength I'" at a distance d from a
rigid plane wall x =0, as in Fig. 4.2(a). A clever trick for
obtaining the flow is to imagine that the region x <0 is also filled
with fluid and that there is an equal and opposite vortex, i.e. of
strength —I", at the mirror-image point, as in Fig. 4.2(b). The
reason for doing this is that the x-components of velocity of the
two vortices obviously cancel on x =0, so there is no normal
velocity component there. Thus the complex potential
w=— %E log(z — d) + — log(z + d) (4.25)

serves not only for the flow problem in Fig. 4.2(b) but, in x =0,
for the flow in the presence of a wall in Fig. 4.2(a). This is a
simple example of the method of images, which is all about
getting flows that satisfy boundary conditions.

Let us examine the flow in Fig. 4.2 a little more carefully. The
stream function y is obtained by writing

i z—d
vig=— L iog(279) |
¢ +iy 27 08 z+d (4.26)
and the streamlines are therefore
—-d
§+ 7 = constant. (4.27)

\

S

\\

(©

RN
(b)

Fig. 4.2. Flows due to line vortices.
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These are circles, the so-called coaxal circles of elementary
geometry. Each circle cuts the circle |z| =d orthogonally, and if
the centre of any circle is distant ¢, and ¢, from the two vortices,
then c,c, = a®, where a is its radius.

It is a simple matter, then, to write down the flow inside a
circular cylinder |z| = a due to a line vortex at z = ¢ <a: it will be
as if the cylinder were not present and there were, instead, an
equal and opposite line vortex at z = a?/c. The complex potential
for the flow in Fig. 4.3 is therefore

il il a®
w > log(z —¢c) + om log(z c ) (4.28)

While it is not a matter of major concern at present, eqns (4.25)
and (4.28) are, in fact, only instantaneous complex potentials
corresponding to the momentary positions of the vortices; the
vortices, and the whole streamline patterns associated with them,
in fact move in a manner to be described in §5.6.

Milne-Thomson’s circle theorem

Suppose we have a flow with complex potential w = f(z), where
all the singularities of f(z) lie in |z] >a. Then

w=f(z)+f(a*/2), (4.29)

where an overbar denotes complex conjugate, is the complex
potential of a flow with (i) the same singularities as f(z) in |z| >a
and (ii) |z| = a as a streamline.

7 =

AN

Fig. 4.3. Flow due to a line vortex inside a circular cylinder.
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The last property makes the circle theorem a sort of automated
method of images for circular boundaries. To prove it, note first
that as all the singularities of f(z) are in |z|>a, all those of
f(a?/z) are in |a*/z|>a, i.e. in |z|<a. Second, on the circle
itself we have zZ = a2, so

w=f(z)+f(z) on|z|=a. (4.30)

Thus w is real on |z|=a, so Y =0 there, so |z|=a is a
streamline.

An elementary application of the circle theorem follows in the
next section.

4.5. Irrotational flow past a circular cylinder

Consider irrotational flow, uniform with speed U at infinity, past
a fixed circular cylinder |z| =a. If the stream is parallel to the
x-axis the complex potential for the undisturbed flow is
f(z) = Uz, which has a singularity only at infinity. Applying the
circle theorem we find

f(@®/z2)=Ua%z, f(a%/z)= Ua?/z,

SO
2

a
w(z)= U(z + ?) (4.31)
is the complex potential of an irrotational flow, uniform at
infinity, having |z| = a as a streamline.

It is not the only irrotational flow satisfying these conditions;
we may plainly superimpose a line vortex flow of arbitrary
strength I to give

2 .
a ir’
w(z =U<z+—)———l 4.32
(2) ;) 351087 (4.32)
as the complex potential of a more general irrotational flow
having no normal velocity at |z| =a, yet being uniform, with
speed U, at infinity.

Nevertheless, consider first the case (4.31) in which there is no

circulation round the cylinder. Putting z = re'® we find that

2

¢p=U (r + %)cos 6 (4.33)
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and
a2
y=U (r - 7)sin 0, (4.34)
whencet
a’ a?
u,= U(l - -;2—)c0s 0, Ug = —U(l + -r—z)sin 6. (4.35)

The flow is symmetric fore and aft of the cylinder, and some of
the streamlines are sketched in Fig. 4.4(a).

There is evidently slip on the cylinder—according to this
irrotational flow theory, at any rate—for

ug=-2Usin@ atr=a. (4.36)

In discussing this it is convenient to use instead u, = —uy, which
is positive, and s = (r — @)a, which is the distance along the top
of the cylinder from the forward stagnation point. Thus

us=2Usin£-, (4.37)
and
du, 2U osS
=—Cos—.
ds a a

The slip velocity therefore rises from zero at the front stagnation
point to a maximum of 2U at 6 = x/2; it then decreases again to
zero at the rear stagnation point.

When there is circulation I' round the cylinder, as in eqn
(4.32), the velocity components are

a’ a*\ . r
u,=U(1—-r—2)cos 0, u9=—U(1+? s1n9+2—m. (4.38)
Anticipating the applications to aerofoil theory that lie ahead, we

have taken I" to be negative in Fig. 4.4, so that the superimposed
circulatory flow is clockwise. The character of the streamline

T We do not, of course, need the full apparatus of complex variable theory and
circle theorem to establish this particular result; there is a much simpler way
(Exercise 4.4).
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(c) B=2 (d) B>2

Fig. 4.4. Irrotational flows past a circular cylinder.

pattern depends crucially on the parameter
B =-T'/2nUa, (4.39)

which is then positive.

One notable feature of the flow that changes with B is the
location of the stagnation points. When B <2 there are two of
them, both located on the cylinder r =a, at sin 6 = —3B. They
therefore move round as B is increased and coalesce when B =2
at 6 =3m/2. When B > 2 there is only one stagnation point, and
it lies off the cylinder at

r B /B2 3 37
S = ———1), 0=""\ 4.40
a 2 (4 2 ( )

This stagnation point thus moves further and further away from
the cylinder as B increases, and the region of closed streamlines
adjacent to the cylinder becomes steadily larger.

The net force on the cylinder may be calculated from the
pressure distribution on r =a. As the cylinder is a streamline,
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and the motion is steady, Bernoulli’s theorem gives

p +3ipu®=constant onr=a,
whence

P_ constant — 2U? sin’0 + — sin 6 onr=a.

p a
This pressure distribution is symmetric fore and aft of the
cylinder (i.e. unchanged by the transformation 6 = & — 0), so
any net force must be perpendicular to the oncoming stream.
The force on a small element a d@ of the cylinder is pa d6 (per
unit length in the z-direction). The y-component of this force is
—pa sin 0 d@, and there is therefore a net force on the cylinder
of

2r

p f (2U2 sin’0 — ﬂ‘sin 0>a sin 0 d6 = —pUT" (4.41)
o a

in the y-direction, in keeping with the far more general

Kutta—Joukowski Lift Theorem of §4.11.

There is positive ‘lift’, then, if I' <0, and it is easy to see why
this should be so, as we have already observed in §1.6. On top of
the cylinder in Fig. 4.4 the circulatory flow reinforces the
oncoming stream (if I'<0), leading to high speeds and low
pressures. Beneath the cylinder the circulatory flow opposes the
oncoming stream, leading to low speeds—as evinced by the
stagnation points—and high pressures.

Before proceeding further we should emphasize again that we
are currently using the irrotational flows in Fig. 4.4 purely as a
mathematical device for the calculation of irrotational flows past
a thin aerofoil. We are deferring, in particular, all question of
whether the flows of Fig. 4.4 are themselves observable for a real
(i.e. viscous) fluid, whether at high Reynolds number or
otherwise (see §§5.7 and 8.6, cf. §7.7).

For what follows it is convenient, in fact, to take the oncoming
stream at an angle a to the x-axis. The complex potential of the
undisturbed flow is Uze™'?, by virtue of eqn (4.17). Applying the
circle theorem and superposing a line vortex flow of strength T’
then gives

2 :
w(z) = U(ze_i" + 2 e“’) _r log z (4.42)
z 2
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as our starting point, and this corresponds to the flows of Fig. 4.4
turned anticlockwise through an angle a.

4.6. Conformal mapping

Let w(z) be the complex potential of some 2-D irrotational flow
in the z-plane, with w = ¢ + iy. Suppose now that we choose

Z=f(z) (4.43)
as some analytic function of z, with an inverse
z=F(2Z) (4.44)
which is an analytic function of Z. Then
W(Z)=w{F(Z)} (4.45)
is an analytic function of Z. Now write
Z=X+1Y (4.46)
and split W(Z) into its real and imaginary parts:
W(Z)=d(X, Y)+i¥(X, Y). (4.47)

As W is an analytic function of Z, ® and W satisfy the
Cauchy-Riemann equations, and it follows that the two
functions

u (X, Y)=0®0/3X=0W/3Y, v.(X,Y)=03d/3Y=—-0W/5X,
(4.48)

represent the velocity components of an irrotational, incompres-
sible flow in the Z-plane.

Further, because W(Z) and w(z) take the same value at
corresponding points of the two planes (i.e. points related by
eqns (4.43) or (4.44)) it follows that ¥ and y are the same at
corresponding points. Thus streamlines are mapped into
streamlines. In particular, a fixed rigid boundary in the z-plane,
which is necessarily a streamline, gets mapped into a streamline
in the Z-plane, which could accordingly be viewed as a rigid
boundary for the flow in the Z-plane. The key question, then, is:
Given flow past a circular cylinder in the z-plane (see eqn (4.42)),
can we choose the mapping (4.43) so as to obtain in the Z-plane
uniform flow past a more wing-like shape?
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What happens to the circulation round a closed circuit is
important in this connection. Evidently ® and ¢ are the same at
corresponding points of the two planes, and it follows that if we
go once round some closed circuit of the z-plane and obtain
some consequent change in ¢, we will obtain the same change in
® on going once round the corresponding circuit in the Z-plane.
Appealing to eqn (4.4), then, we see that the circulations round
two such corresponding circuits must be the same.

What happens to the flow at infinity is also of importance.
Plainly

dW _dw/dz
dZz dz/dz’ (4.49)
SO
u, —iv, = (u—iv)/f'(2). (4.50)

If we want to map uniform flow past some object into the same
uniform flow past another object we must therefore choose f(z)
such that f'(z)—1 as |z| > x.

One last general observation concerns a strictly local property
of conformal mapping which gives the method its name. Take
some point z, in the z-plane, with a corresponding point Z, in
the Z-plane, and let f*)(z,) be the first non-vanishing derivative
of the function f(z) at z,. Typically, n will be 1, but there will be
occasions in what follows when f'(z,) = 0 but f"(z,) #0, in which
case n=2. Let 8z denote a small element in the z-plane,
originating at z =2,, and let 6Z denote the corresponding
element in the Z-plane, originating at Z = Z,. By expanding f(z)
in a Taylor series we find that

(62)"

6Z =
n!

f(z0) + O(82)"™*

To first order in small quantities, then,
arg(6Z) = n arg(6z) + arg{f " (z)},

and it follows that if 6z; and 6z, denote two small elements in the
z-plane, both originating at z,, then

arg(6Z,) — arg(8Z,) = n[arg(dz,) — arg(8z,)].  (4.51)

Thus when two short intersecting elements in the z-plane are
mapped into two short intersecting elements in the Z-plane, the
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angle between them is multiplied by n. Usually, n =1, and such
angles are preserved. The shape of a small figure in the z-plane
(e.g. a small parallelogram) is then preserved by the mapping—
hence the name ‘conformal’.

A very effective transformation for our purposes is the

Joukowski transformation,

C2

Z=z+ ; ) (4.52)
and we shall exploit the fact that f'(£c) =0 but f"(£c) #0, so
that angles between two short line elements which intersect at
either z =c or z = —c are doubled by the transformation. The

inverse of eqn (4.52) is

=1Z + (32 - ¥, (4.53)
although we have to take steps to pin down the meaning of this,
for there are branch points at Z = 1+2c¢. In all that follows we
shall (i) cut the Z-plane along the real axis between Z = —2¢ and
Z =2c, which stops eqn (4.53) from being multivalued, and (ii)
interpret (3Z%—c?)? as meaning that branch of the function
which behaves like 3Z (as opposed to —3Z) as |Z|— , which
ensures that z ~ Z when |Z] is large.

4.7. Irrotational flow past an elliptical cylinder

Consider the effect of the Joukowski transformation (4.52) on
the circle z = ae'®, where 0 < ¢ <a. Plainly

c? c?
X +1Y = (a +—>cos 0+ i(a ——)sin 0,
a a

so the circle is mapped into the ellipse
XZ YZ
+ =
(@ +c?*/a)* (a—c?*la)?
in the Z-plane (see Fig. 4.5).
Substituting eqn (4.53) into eqn (4.42) we thus obtain

2

W(Z)=Ue " [AZ + 3Z% - c?)3] + Ueiel [AZ - (3Z% - c?)7]

C2

1 (4.54)

- |
- ;—n log[3Z + (322 — ¢?)}] (4.55)
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(a) z—plane (b) Z—plane

Fig. 4.5. Flow past an elliptical cylinder by conformal mapping; no
circulation.

as the complex potential for uniform flow at an angle « past the
ellipse (4.54), with circulation T'. It is an elementary, but messy,
exercise to write Z = X +1Y and then extract the imaginary part
of W(Z), namely W(X, Y). The streamlines are sketched in Fig.
4.5(b) for the case I' =0.

4.8. Irrotational flow past a finite flat plate

If we choose ¢ = a, so that

2

Z=z+2, (4.56)
Z

the ellipse (4.54) collapses to a flat plate of length 4a. Consider
the velocity components u, and v, in the Z-plane:

, _dW_dw/dz__( i _a’ iF)/( az)
- 1v*-_dZ_dZ/dz“ Ue Ue z? 2mz 1 z%)’

(4.57)

Using eqn (4.53) we can write them in terms of Z, but the
comparative simplicity of eqn (4.57) can be more helpful for
many purposes.

In particular, the flow speed is in general infinite at the ends of
the plate (Z = +2a), as these points correspond to the points
z = xa. The status of these sharp edges as singular points in the
flow is confirmed by a glance at the streamline pattern for the
case I' =0 in Fig. 4.6(a).
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!
\\\\\

(a) T=0 (b) '=—4nlasina
Fig. 4.6. Irrotational flow past a finite flat plate.
Notably, however, the singularity at the trailing edge Z =2a

(i.e. z =a) may be removed if the circulation I' is chosen so that
the numerator in eqn (4.57) vanishes at the trailing edge. Thus if

) ) i
Ue™* — Ue® — — =),
27a
1.e. if
I'=—4nUa sin «, (4.58)

then by writing z = a + € in both the numerator and denominator
of eqn (4.57) and taking the limit as e— 0 we find

u,—~>Ucosa, v,—0 as Z —2a,

so that the flow leaves the trailing edge smoothly and parallel to
the plate, as in Fig. 4.6(b). The sense of the circulation is
clockwise (for a >0), and this is why we chose to represent the
effects of a clockwise circulation in Fig. 4.4.

Of course, the presence of this circulation still leaves a
singularity in the velocity field at the leading edge in Fig. 4.6(b).

4.9. Flow past a symmetric aerofoil

In view of Figs 4.5 and 4.6 it will come as no surprise that if we
use the mapping (4.56) on a circle in the z-plane which passes
through z = a but which encloses z = —a, we obtain an aerofoil
with a rounded nose but a sharp trailing edge, as in Fig. 4.7(b).
If the centre of the circle is on the real axis in the z-plane, at
z = —A, say, the aerofoil is symmetric and given in terms of the
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A

(a) z—plane (b) Z—plane

Fig. 4.7. Flow past a symmetric Joukowski aerofoil by conformal
mapping.

parameter y by

a2

—A+(a+A)er

Z=-A+(a+A)e"+ (4.59)

Its shape and thickness depend on A.

The complex potential W(Z) corresponding to uniform flow
past this aerofoil at angle of attack « is obtained by first
modifying eqn (4.42) to take account of the new radius and
location of the cylinder in the z-plane:

@42

(z+ ) ——log(z + A),

w(z) = U[(z + Ae” ' + o

and then substituting z = 3Z + (3Z° — a?)-.
The counterpart to eqn (4.57) is

- C) )/ 09 o

but now it is only the vanishing of the denominator at z =a
(Z = 2a) that causes concern, for z = —a corresponds to a point
in the Z-plane which is inside the aerofoil. The value of I" which
makes the numerator in eqn (4.60) zero at the trailing edge
(z=a)1s

I'=—4xU(a + A)sin a. (4.61)
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The flow is then smooth and free of singularities everywhere, as
shown in Fig. 4.7(b), and this is an example of the Kutta—
Joukowski condition at work.

When A < a the aerofoil described by eqn (4.59) is thin and
symmetric, with length approximately 4a and maximum thickness
3V/3A. By neglecting A in comparison with a in eqn (4.61) we
obtain the classic expression (4.1).

4.10. The forces involved: Blasius’s theorem

Let there be a steady flow with complex potential w(z) about
some fixed body which has as its boundary the closed contour C,
as in Fig. 4.8. If F,-and F, are the components of the net force (per
unit length) on the body, then

d 2
F. —iF, = }ip 35 (—w) dz. (4.62)
C dz

This is Blasius’s theorem.

To prove it, let s denote arc length along C, and let 8 denote
the angle made with the x-axis by the tangent to C. Then the
force (per unit length) on a small element ds of the boundary is
(—sin 6, cos O)p Os, SO

OF, —i 6F, = —p(sin 0 + i cos 6) ds = —pie "¢ Js.

Fig. 4.8. Definition sketch for proof of Blasius’s theorem.
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Now, C is a streamline for the flow, so
u=qcosf, v=gqgsinb on C,
where g = (u® + v?)3, so
dw

—=u—iv=qge onC.
4y 4 Tiv=geTon

Using Bernoulli’s equation we may write
SF, — i 6F, = (3pq° — k)ie ™' 6s,
where k is a constant, and substituting for g we find

dw\? .
ip(—w) e'® 8s — ki(6x — i dy).

OF. —106F, =
x 100y dz

(]

Now, €'?8s = 6z. On integrating round the closed contour C
the final term disappears and we obtain eqn (4.62).

In a similar way we may establish a formula for &, the
moment about the origin of the forces on the body:

. dw\?
N = Real part of —w% z(——) dz] (4.63)
C dz

(see Exercise 4.5).
We now consider two examples.

Uniform flow past a circular cylinder

We have, of course, already calculated the net force in this case
by direct integration of the pressure distribution in §4.5.
Nevertheless, the complex potential is, in the case o =0:

a

w U( + 2) iI‘l
z 27 £

so applying Blasius’s theorem:
: , a®\ il 1?
R-if=tip§ [U(1-%) 5] &

When the integrand is expanded only the z™' term gives a
contribution to the integral. The coefficient of that term is
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—iUT/r, so a simple application of the residue calculus gives

iUT
F, —iF, = }ip - 2i - (—‘7) = ipUT.
Thus
E =0, F=—pUT, (4.64)

as found previously.

Uniform flow past an elliptical cylinder

Consider for simplicity the case when there is no circulation, as
in Fig. 4.5(b). By the Kutta—Joukowski Lift Theorem (§4.11)
there will be no net force on the ellipse, but there will in general
be a torque about the origin given by eqn (4.63), i.e.

d 2
Real atof[—l Z(—W) dZ].
catpar 2P ellipse dZ

Now, the expression (4.55) for W in terms of Z =1z +c?*/z is
quite complicated, even in the case I'=0. It is more sensible,
then, to write

dW_ dw dz
dZ dzdz

and change the variable of integration from Z to z, so calculating

dw\2 dz

Real part f[—l Z(—) —d ]
eal part o 2P  A\G) iz z

Now, when I’ =0,
. aZ .
w= U(ze"“ +— e“”),
z

so the torque on the ellipse is the real part of

2 2 2 2\ —1
g (55 (1-5) @
|z|=a

The integrand has poles at —c, 0, and c, all within the contour
(as 0 <c <a). Expanding the whole integrand in a Laurent series
valid for |z| >c, and therefore valid on the integration contour,
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we obtain

(z+c—2>(e‘2*“-2—az+a—4e2‘“)(1+c—2+c—4+ )
z z2 7 22 0 )

The coefficient of z ™' is
e~ _ 9,2 4 c2e—2ia,
and the torque on the ellipse is therefore the real part of

—31pU?  2mi - (2c?e™3* — 2a?),
i.e.
N = —2apU?c*sin 2a. (4.65)

For the flow in Fig. 4.5(b) the torque is negative, i.e. clockwise.
More generally, it is such as to tend to align the ellipse so that it
is broadside-on to the stream.

4.11. The Kutta—Joukowski Lift Theorem

Consider steady flow past a two-dimensional body, the cross-
section of which is some simple closed curve C, as in Fig. 4.9.
Let the flow be uniform at infinity, with speed U in the
x-direction, and let the circulation round the body be I'. Then

F,=0, FE=—pUr. (4.66)

To prove this theorem, first choose the origin O so that it lies
inside the body. Then, assuming the flow to be free of
singularities, dw/dz will be an analytic function of z in the flow
domain and can be expanded in a Laurent series valid for
R <|z| <, where R is the radius of the smallest circle centred
on O which encloses the body. Furthermore, the form of this
series must be

dw a, a,
p U+z+zz+... (4.67)
because the flow is uniform, speed U, at infinity.

Now, we stated Blasius’s theorem in the form of an integral
(4.62) taken round the contour C of the body, but if the flow is
free of singularities we may, by a cross-cut argument and use of
Cauchy’s theorem, take the integral equally well round any
simple closed contour C' which surrounds the body. In
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Fig. 4.9. Definition sketch for proof of the Kutta—Joukowski Lift
Theorem.

particular, if we take it round a contour C’, such as that in Fig.
4.9, which lies wholly in the region |z|> R, we may use eqn
(4.67) to write

: . a  a g
E(—le=%1p§ (U+—+—2+...) dz.
C’ Z Z

On expanding the integrand only the z ™' term contributes to the
integral, and with residue 2Ua,; at z =0 this gives
F, —iF, = 3ip - 27i - 2Ua, = —2npUa,. (4.68)

To find a,, use eqn (4.67) to write
2mia, = § —dz,
where C’ lies wholly in |z|] > R. We may then appeal again to
Cauchy’s theorem and a cross-cut argument to justify taking the

integral round C instead of C’, as dw/dz is analytic in the whole
of the flow region. Thus

2mia, = § —dz=[w]c=[¢ +iy]c.

But C is a streamline, so the change in v after one journey round
C is zero. The change in ¢, on the other hand, is simply I, the
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circulation round the body (see eqn (4.4)). Thus
2mia, =T, (4.69)

and substituting this in eqn (4.68) establishes the theorem, eqn
(4.66).

4.12. Lift: the deflection of the airstream

Notwithstanding the importance of circulation, the Kutta-
Joukowski condition, and the theorem of §4.11, an aerofoil
obtains lift essentially by imparting downward momentum to the
oncoming airstream. In the case of a single aerofoil in an infinite
expanse of fluid this elementary truth is disguised, perhaps, by
the way that the deflection of the airstream tends to zero at
infinity. But in uniform flow past an infinite array of aerofoils, as
in Fig. 4.10, there is a finite deflection of the airstream at infinity,
so that the downward momentum flux is more readily apparent.
Moreover, the deflection is related in a most instructive way to
both the circulation and the lift. For this reason, it is worth
exploring, and to do this we first need a reformulation of the
equation of motion.

The steady momentum equation in integral form

For steady flow, and in the absence of body forces, Euler’s
equation (1.12) reduces to

p(u-V)u=—Vp,

and using a suffix notation and the summation convention this
may be written

ou; op
Uy—=——".
Py ox; ox;

Let us integrate this over some fixed region V which is enclosed
by a fixed surface S, so that fluid is flowing in through some parts
of S and out at others. Then the left-hand side becomes

ou; o
jv pu,-a—xj dVv = J; P _87, (uju;) dV = J; pu;u;n; dS

=Lp(u - n)uy; ds,
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the first equation holding because ou;/dx;=V-u=0, and the
second holding by virtue of eqn (A.18). Thus

%)
fp(u-n)u,-dS=—f—pdV=—jpn,-dS,
S v OX; S

where we have used eqn (A.15). In vector terms, then,

_Lpn ds = Lpu(u -n)dS. (4.70)

Now, pu is the momentum per unit volume of a fluid element,
and (u - n) S is the volume rate at which fluid is leaving a small
portion 8S of the surface §, so the right-hand side represents the
rate at which momentum is getting carried out of S. The
equation states, then, that the total force on S is equal to the rate
at which momentum is carried out of S.

Flow past a stack of aerofoils

Let the (identical) aerofoils be a distance d apart, as in Fig. 4.10.
Consider the flow in and out of the control surface ABCDA,
where AB and DC are portions of identical streamlines a distance
d apart, AD being far upstream, where the velocity is (U, 0), and
BC being far downstream, where we assume the velocity to be

4

Fig. 4.10. Flow past a stack of aerofoils.
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uniform again, but equal to (u,, v,). Now, because the fluid is
incompressible the volume flux across AD must be equal to that
across BC, so Ud = u,d, and therefore

U, = U. (4.71)

We now apply the result (4.70) to the fixed region S which lies
within ABCDA but excludes the aerofoil. If the lift on the
aerofoil is F, there is a vertical component of force —F, on S.
(There is no other y-component to the first term in eqn (4.70),
for those at BC and DA are zero and those at AB and CD
cancel, because at any given x the pressures on AB and CD will
be the same, as the flow repeats periodically in the y-direction.)
There is no flux of momentum across either AB or CD, for they
are streamlines, and there is no flux of vertical momentum across
AD. Vertical momentum is, however, flowing out of BC at a rate
pv,Ud (per unit length in the z-direction). Equating this to the
force exerted on S by the aerofoil, we have

F, = —pUv,d. (4.72)

In this way we see clearly how the lift is related to the
deflection of the airstream; a downward deflection (v,<<0)
corresponds to positive lift. Moreover, it is clear, too, how the
circulation is related to this deflection, and hence to the lift itself,
for the circulation round ABCDA is

I'=v.d, (4.73)

as the contribution from DA is zero and those from AB and CD
cancel. Thus

F, = —pUT, (4.74)

so that the Kutta-Joukowski result for a single aerofoil in fact
holds in this rather different situation also.

4.13. D’Alembert’s paradox

Consider the steady flow of an ideal fluid around a 3-D body
which is placed in a long straight channel of uniform cross-section
(Fig. 4.11). Let us apply eqn (4.70) to the fixed region bounded
by the obstacle, two fixed cross-sections S, and S,, and the
channel walls. The net force in the downstream direction on the
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Fig. 4.11. Definition sketch for D’ Alembert’s paradox.

boundary of this region is

pldS—f p,dS —D,
S S

where D is the drag exerted by the fluid on the obstacle.
According to eqn (4.70), this net force is equal to the
downstream component of the flux of momentum out of the
region, which is

pJ' usdS —p | uids,

S $

where u; and u, are the velocity components parallel to the
channel walls at S, and S,. Thus

D=| (p,+pu3)dS - f (p2+ pu3) dS. (4.75)
S 52

Now let us assume that the flow is uniform with speed U, far
upstream, so that the pressure is a constant, p,, there. Let us
assume that conditions far downstream are similarly uniform;
then considerations of mass flow show that the speed must again
be U, far downstream, as the cross-sectional area of the channel
has not changed. Applying the Bernoulli streamline theorem
(1.16) to a streamline that runs along the channel walls from
x=-o to x=+ we find that the uniform pressure far
downstream must again be p,.

If, then, we let the cross-sections S; and S, in Fig. 4.11 recede
to infinity in the upstream and downstream directions, we see
that the two competing integrals in eqn (4.75) tend to the same
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limit, and we therefore deduce that
D =0. (4.76)

This is one of several ways of presenting D’Alembert’s paradox,
namely that steady, uniform flow of an ideal fluid past a fixed
body gives no drag on the body.

Another instructive way of viewing this result is as follows.
Consider a finite rigid body which has as its boundary a simple
closed surface S, and suppose that it is immersed in an infinite
expanse of ideal fluid, the entire system being initially at rest.
Suppose that the body now moves with speed U(t) in the
negative x-direction. The resulting flow is necessarily irrotational
(85.2), and it is, at any instant, unique (Exercise 5.24),
determined entirely by the instantaneous normal component of
velocity at the surface of the body. Indeed, at any instant the
kinetic energy T(¢) of the fluid is proportional to the square of
U(t), the constant of proportionality being simply a function of
the shape and size of the body (see, e.g., Exercise 5.27). Now, if
D is the drag exerted on the body (i.e. the force opposite to the
direction of U(t)), then the rate at which the fluid does work on
the body is —DU. Equivalently, the body does work on the fluid
at a rate DU, and the only way this energy can appear, in the
present circumstances,t is as the kinetic energy of the fluid. So

DU =dT/dt. (4.77)

There is therefore a drag on the body during the starting process,
because the body needs to do work to set up all the kinetic
energy of the fluid. But suppose that after a certain time the
translational velocity U is held constant. D is then zero,
according to eqn (4.77), because the kinetic energy of the fluid
remains constant (although it is redistributed, of course, in a
rather trivial way, as the whole streamline pattern shifts to follow
the body).

The above energy argument can be adapted quite easily for
2-D flow past a 2-D object, provided that there is no circulation;
if there is circulation round the object the kinetic energy T is
typically infinite, and the argument based on eqn (4.77) breaks

1 Equation (4.77) does not hold for a viscous fluid, because this energy can then
be dissipated (§6.5). Nor does it hold when water waves or sound waves are
present, because they can radiate energy to infinity (see, e.g., §3.7).
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down. The result nevertheless obtains; according to the Kutta—
Joukowski Lift Theorem (4.66) the drag is zero, whether or not
there is any circulation.

The result flies in the face of common experience; bodies
moving through a fluid are usually subject to a substantial
resistance, or drag. In Fig. 4.12 we see the drag on a circular
cylinder plotted as a function of the Reynolds number, and it
remains substantial even when R is changed from 10 to 107,
which is equivalent to decreasing the viscosity by five orders of
magnitude. But then, as the sketches indicate, the flow as a
whole shows no sign of settling down to the form in Fig. 4.4(a) as
v— (. This is because the mainstream flow speed would, in that
event, decrease very substantially along the boundary at the rear
of the cylinder, and there would therefore be a strong adverse
pressure gradient. An attached boundary layer cannot cope with
that (see §2.1), and separation of the boundary layer leads
instead to a substantial wake behind the cylinder. This wake
changes in character with increasing R, as in Fig. 4.12, but shows
no sign of disappearing as R — o.

D’Alembert described his result of zero drag as ‘a singular
paradox’. His original argument (c. 1745) was in fact quite
different to any of those above, and applied only to flow past

1.5
1.0+
Cp
ok /
_J
107 107

R=2aUlv
Fig. 4.12. Drag coefficient ¢, =D/pU’a for flow past a circular
cylinder of radius a.
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bodies, such as a sphere, that have fore—aft symmetry (see Exercise
5.26). Such an appeal to symmetry is unnecessary, and Euler
came across the full ‘paradox’ quite independently. His argument
involved consideration of the balance of momentum, but it
differed significantly from the first argument presented above,
not least because the concept of internal pressure p was not
secure at the time (see §6.1).

Lighthill (1986) argues that ‘D’Alembert’s paradox’ might
better be designated ‘D’Alembert’s theorem’, for if only a body
is designed so as to avoid the kind of boundary layer separation
evident in Fig. 4.12, then very low drag forces may indeed be
achieved. The key feature in this respect is a long, slowly
tapering rear to the body—as with an aerofoil—for this typically
implies a very weak adverse pressure gradient at the rear of the
body, enabling the boundary layer to remain attached. For flow
past such a ‘streamlined’ body cp, is typically O(R™%) as R—>x
(see eqn (8.24)).

Exercises

4.1. (i) Show that in a simply connected region of irrotational fluid
motion the integral (4.2) is independent of the path between O and P.

(ii) Show that in a simply connected region of two-dimensional,
incompressible fluid motion the integral

P
w=f udy —vdx
o

is independent of the path between O and P, and hence serves as a
definition of the stream function.

4.2. The velocity field
Q

u,=-—, Ug =O’
2nr

where Q is a constant, is called a line source flow if Q >0 and a line sink
if O <0. Show that it is irrotational and that it satisfies V - u = 0, save at

r =0, where it is not defined. Find the velocity potential and the stream
function, and show that the complex potential is

=—log z.
w=;_logz
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Y/

Fig. 4.13. Irrotational flow due to a line source near a wall.

Observe that the stream function is a multivalued function of position.
Why does this not contradict part (ii) of Exercise 4.1?

Fluid occupies the region x =0, and there is a plane rigid boundary at
x =0. Find the complex potential for the flow due to a line source at
z =d >0, and show that the pressure at x = 0 decreases to a minimum at
|y| = d and thereafter increases with |y|.

[Any attempt to reproduce the flow of Fig. 4.13 at high Reynolds
number would be fraught with difficulties. A viscous boundary layer
would be present, to satisfy the no-slip condition, but for |y|>d the
substantial adverse pressure gradient along the boundary would make
separation inevitable (see §2.1). More fundamentally still, there are
considerable practical difficulties in producing a line source, as opposed
to a line sink, at high Reynolds number. These are more easily seen by
considering the corresponding 3-D problem; a point sink can be
simulated quite well by sucking at a small tube inserted in the fluid, but
blowing down such a tube produces not a point source but a highly
directional and usually turbulent jet (see, e.g. Lighthill 1986, pp.
100-103). The streamline pattern in Fig. 4.13 may nevertheless be
observed in a Hele—Shaw cell (§7.7), although viscous effects are then
paramount throughout the whole flow, so the pressure distribution is not
given by Bernoulli’s equation.]

4.3. An irrotational 2-D flow has stream function Y =A(x —c)y,
where A and c¢ are constants. A circular cylinder of radius a is
introduced, its centre being at the origin. Find the complex potential,
and hence the stream function, of the resulting flow. Use Blasius’s
theorem (4.62) to calculate the force exerted on the cylinder.
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4.4. Show that the problem of irrotational flow past a circular cylinder
may be formulated in terms of the velocity potential ¢(r, ) as follows:

82¢ 18¢+182¢__
arr rar r’ae*

0,

with
¢~Urcos@ asr—ox, d¢/or=0 onr=a,

and obtain the solution (4.33) by using the method of separation of
variables.

When there is circulation round the cylinder, derive eqn (4.40), and
confirm that the stagnation points vary in position with the parameter B
in the manner of Fig. 4.4.

4.5. Establish the expression (4.63) for the moment, &', of forces on a
body in irrotational flow, using an argument similar to that for Blasius’s
theorem.

4.6. By writing z =a + € in eqn (4.57) and taking the limit € — 0 check
that the choice of circulation (4.58) does indeed lead to a finite velocity
at the trailing edge.

4.7. According to eqns (4.1) and (4.66), the force on a thin symmetric
aerofoil with a sharp trailing edge is

¥ = npU?*L sin @

in a direction perpendicular to the uniform stream. This amounts to a
component £ cos « perpendicular to the aerofoil and a component
Z sin « parallel to the aerofoil, directed towards the leading edge. This
latter component is, at first sight, rather curious; it might be thought that
the net effect of a pressure distribution on a thin symmetric aerofoil
should be almost normal to the aerofoil. That it is not is due to leading
edge suction, i.e. a severe drop in pressure in the immediate vicinity of
the rounded leading edge, this pressure drop being sufficient to make
itself felt despite the small thickness of the wing on which it acts.

To see evidence of this, consider the extreme case of flow past a flat
plate with circulation, as in Fig. 4.6(b) or Fig. 4.15. First, use eqns
(4.56) and (4.57), on z = ae'®, with T chosen according to eqn (4.58), to
show that the flow speed on the plate is

(1—-s)i ) ‘
cosa sin «|,
1+s

U

where the upper/lower sign corresponds to the upper/lower side of the
plate, and s denotes X/2a, which therefore runs between —1 at the
leading edge and +1 at the trailing edge.
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Show that the corresponding pressure distributions are

}
p(s)=pQ) - %pUz[(ﬁ:)sinza + 2(-1T:) sin & cos a'],

(see Fig. 4.14). Note that there is a (negative) pressure singularity at the
leading edge, whereas if the leading edge were rounded this pressure
drop would be finite.

As far as the force component normal to the plate is concerned, note
that the pressure difference across the plate is

1—s\}
Pp = 2pU2(1T:) sin a cos a.

This too has a singularity at the leading edge, but it is integrable. Show
that

2a
f pp dX = Fcos a,
—2a

in keeping with the Kutta—Joukowski Lift Theorem.

Finally, show that eqn (4.65) holds even if there is circulation I' round
the ellipse, and then take the case ¢ = a to show that the torque on a flat
plate about the origin is —%a cos a, i.e. as if the whole lift force £ were

p(s)-p(1) 4 LOWER SURFACE

1pUPsin 2

-6}F UPPER SURFACE

—-12F

—14F

_16l a=10

Fig. 4.14. Theoretical pressure distribution on a flat plate at a 10° angle
of attack.
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Fig. 4.15. The torque on a flat plate in uniform flow is as if the lift &
were concentrated at a point one-quarter of the way along the plate
from the leading edge.

applied at a point one-quarter of the way along the plate, as indicated in

Fig. 4.15.
[The fact that this point is independent of « is of practical value, and
makes for smooth control of an aircraft.]

4.8. Show that the Joukowski transformation Z =z +a?/z can be
written in the form

Z—-2a (z - a)2
Z+2a \z+al’
so that, in particular,
arg(Z — 2a) — arg(Z + 2a) = 2[arg(z — a) — arg(z + a)].

Consider the circle in the z-plane which passes through z = —a and
z = a and has centre ia cot 8. Show that the above transformation takes
it into a circular arc between Z = —24 and Z = 2a, with subtended angle
2B (Fig. 4.16). Obtain an expression for the complex potential in the
Z-plane, when the flow is uniform, speed U, and parallel to the real
axis. Show that the velocity will be finite at both the leading and trailing
edges if

I'=—4aUa cot B.
[This exceptional circumstance arises only when the undisturbed flow

is parallel to the chord line of the arc.]

4.9. Provided that f'(z,) # 0, points in the neighbourhood of z = z, are
mapped by Z = f(z), according to Taylor’s theorem, in such a way that

Z - Z,=f"(20)(z — 20) + O(z — zo)’,
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z—plane Z—plane

Fig. 4.16. Generation of a circular arc by a Joukowski transformation.

where Z,=f(z,). Use this to show that a line source of strength Q at
z = z, is mapped into a line source of strength Q at Z = Z,, provided
that f'(z,) #0.

Fluid occupies the region between two plane rigid boundaries at
y = +b, and there is a line source of strength Q at z =0. Find the

complex potential w(z) for the flow
(i) by the method of images,

(i) by using the mapping Z = e* with a suitably chosen a > 0.

4.10. Use the momentum equation in its integral form (4.70) to show
that there is a non-zero drag

E. =pI?/2d

on each of the aerofoils in Fig. 4.10.
Is this at odds with the Kutta—Joukowski Lift Theorem (4.66)?



5 Vortex motion

5.1. Kelvin’s circulation theorem

THEOREM. Let an inviscid, incompressible fluid of constant
density be in motion in the presence of a conservative body force
g =—Vyx per unit mass. Let C(t) denote a closed circuit that
consists of the same fluid particles as time proceeds (Fig. 5.1).
Then the circulation

F=| u-dr (5.1)
C(1)

round C(t) is independent of time.

Proof. We appeal to the following lemma:

d D
= f w-de=| —-dr (5.2)
dt C(r) C(r) Dt

(Exercise 5.2). Then, by Euler’s equation (1.12),

L, G e[
—=- Vi=+x)-dx=—|=+x]|,
dt cw \P X p xc

where the last term denotes the change in p/p + x on going once
round C (see eqn (A.12)). But this change is zero, as p, p, and x
are all single-valued functions of position. This proves the
theorem.

Notes on the theorem

(@) C denotes a ‘dyed’ circuit, composed of the same fluid
particles as time proceeds; the result is not true in general if
C is a closed curve fixed in space.

(b) The conditions of incompressibility and constant density are
not essential: Kelvin established his result subject to weaker
restrictions (Exercise 5.4).
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—
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L-/.{(tz)

Fig. 5.1. Definition sketch for Kelvin’s theorem, showing eight fluid
particles along a ‘dyed’ circuit C at time ¢,, and their positions at time ¢,.

(c) The theorem does not require the fluid region to be simply
connected, i.e. it does not require the dyed circuit C to be
spannable by a surface S lying wholly in the fluid.

(d) The inviscid equations of motion enter the proof only in
helping to evaluate a line integral round C, so if viscous
forces happened to be important elsewhere in the flow, i.e.
off the curve C, this would not affect the conclusion that I
remains constant round C.

The generation of lift on an aerofoil

We mentioned in §1.1 how the shedding of a starting vortex is
essential to the generation of lift on an aerofoil, and we now
investigate why this should be so.

Consider the situation at a time ¢ after the start. Vorticity and
viscous forces will be confined to (i) a thin boundary layer on the
aerofoil, (ii) a thin wake, and (iii) the rolled-up ‘core’ of the
starting vortex, as indicated by the shading in Fig. 5.2. Consider
now a dyed circuit abcda which is large enough to have been
clear of all these regions since the start of the motion. As the
original state was one of rest the circulation round that circuit
was originally zero. By Kelvin’s circulation theorem, then, the
circulation round that circuit will still be zero at time ¢ (see
especially note (d) above). Thus if we sketch in a line aec—an
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Fig. 5.2. The generation of circulation by means of vortex shedding.

instantaneous line in space at time ¢ such that the curve aecda
encloses the aerofoil but not the wake or the starting vortex—
then the circulation round aecda must be equal and opposite to
that round abcea.

What happens, then, as the aerofoil starts to move, is that
positive vorticity is shed in the form of a starting vortex. By
Stokes’s theorem,

fm-ndS=ju-dx,
S C

this gives a positive circulation round abcea. This in turn implies,
by the preceding argument, a negative circulation round aecda,
and this circulation is very evident in some classic photographs
taken by Prandtl and Tietjens (see, e.g., Batchelor 1967, Plate
13). The vortex shedding continues until the circulation round
the aerofoil is sufficient to make the main, irrotational flow
smooth at the trailing edge, as in Fig. 1.10(b), at which stage no
further net vorticity is shed into the wake from the boundary
layers on the upper and lower surfaces of the aerofoil. Thereafter
the aerofoil retains its final ‘Kutta—Joukowski’ value of the
circulation.

A novel mechanism of lift generation for hovering insects

An exotic variation on the above theme was discovered by
Weis-Fogh (1973, 1975) in the hovering motions of the tiny
chalcid wasp Encarsia formosa (wing chord ~0.2 mm). This
insect claps its wings together, then flings them open about a
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Fig. 5.3. The Weis-Fogh mechanism of lift generation. The first three

sketches give a 2-D model of (a) the ‘clap’, (b) the ‘fling’, and (c) the

parting of the wings. The remaining sketches (after Dalton 1977) show

the mechanism in practice, and the final sketch indicates also the flow

associated with the vortex (not shown) that extends, in a circular arc,
between the wing tips (cf. Fig. 1.12).

horizontal line of contact, so that air has to rush in to fill the gap
(Fig. 5.3(b)). Then it moves its wings apart, by which time each
one has acquired during the ‘fling’ movement a circulation of the
correct sign to give lift in the subsequent motion.

In practice, viscous effects are important, especially in causing
large leading-edge separation vortices (see the excellent photo-
graphs in Spedding and Maxworthy 1986). Nevertheless, one
remarkable feature of this novel lift generation mechanism is that
it could work, in principle, in a strictly inviscid fluid (Lighthill
1973). In this sense it differs markedly from the conventional
method for lift generation which we have just discussed, for that
relies in an essential way on viscous effects for boundary layer
formation, separation at the trailing edge, and consequent vortex
shedding. In the Weis-Fogh mechanism the circulation round one
wing essentially acts as the starting vortex for the other.

At first sight, perhaps, Kelvin’s circulation theorem does not
permit the situation in Fig. 5.3(c) for a strictly inviscid fluid: if
one views the circuits there as dyed circuits then the circulations
round them must have remained constant. Yet one cannot claim
that those circulations are zero, even if the fluid were wholly at
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rest at stage (a), for neither dyed circuit at stage (c) was a closed
circuit at stage (b), an unusual circumstance that arises only
because the topology of the fluid domain has changed in the
meantime.

The word ‘meantime’ gives, in fact, rather too leisurely an
impression; Encarsia formosa goes through the sequence in Fig.
5.3 roughly 400 times a second.

5.2. The persistence of irrotational flow

Let an inviscid, incompressible fluid of constant density move in
the presence of a conservative body force. Then if a portion of
the fluid is initially in irrotational motion, that portion will always
be in irrotational motion.

To prove this Cauchy-Lagrange theorem suppose that the
vorticity @ =V A u were not identically zero throughout that
portion of fluid at a later time. By virtue of Stokes’s theorem:

fu-dx=fm-nds,
C S

and it would then be possible to select some small closed dyed
circuit around which the circulation would be non-zero. But this
would violate Kelvin’s circulation theorem, because the circula-
tion round such a circuit must initially have been zero, on
account of Stokes’s theorem and the fact that @ was initially
zero. Our initial assumption must therefore be false. This
completes the proof.

For 2-D flows the result is obvious from the vorticity equation
(1.27); if w is zero for a portion of the fluid at =0 then,
according to eqn (1.27), w remains zero for each fluid element
constituting that portion for all time ¢. But in three dimensions
the result is not obvious from eqn (1.25), and it is here that the
theorem comes into its own. (Although it is of course quite
evident that if ®w is everywhere zero at t=0 then w=0
everywhere for all ¢ is one solution of eqn (1.25).)

Irrotational flows are important, then, even in three dimen-
sions. The velocity field can then be written as

u=Vop, (5.3)

and ¢ will be a single-valued function of position when the flow
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region is simply connected (see §4.2). [In other circumstances—
as, for example, with the irrotational part of the flow due to a
vortex ring (Fig. 5.7(b))—¢ may be multivalued.] As the fluid is
incompressible, V - u =0, so ¢ satisfies Laplace’s equation

V¢ =0. (5.4)

The general theory of irrotational flow is a classical and
important part of fluid dynamics, and we explore something of it
in Exercises 5.23-5.29. We should emphasize, however, that
much of the present chapter is concerned with fluid motions in
which the vorticity is not zero, in which case there is no such
thing as a velocity potential ¢ and u cannot be written in the
form (5.3).

5.3. The Helmholtz vortex theorems

A vortex line is, at any particular time ¢, a curve which has the
same direction as the vorticity vector

0o=VAu (5.5)

at each point. Mathematically, then, a vortex line x =x(s),
y =y(s), z =z(s), is obtained by solving

dx/ds _dy/ds _ dz/ds

w,

W, w,

at a particular time ¢.

The vortex lines which pass through some simple closed curve
in space are said to form the boundary of a vortex tube (Fig.
5.4(a)).

Suppose now that we have an inviscid, incompressible fluid of
constant density moving in the presence of a conservative body
force (so that Kelvin’s circulation theorem applies). Then

(1) The fluid elements that lie on a vortex line at some instant
continue to lie on a vortex line, i.e. vortex lines ‘move with

the fluid’.

An immediate consequence of this is that vortex tubes move with
the fluid in a like manner.
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(b)
Fig. 5.4. (a) A vortex tube. (b) A vortex surface.

(a)

(2) The quantity
F=Jm-ndS (5.6)
S

is the same for all cross-sections S of a vortex tube.
Furthermore, T is independent of time.

The quantity I is therefore a conserved property of the tube as a
whole, called the strength of the tube.

Proof of (1). We first define a vortex surface as a surface such
that o is tangent to the surface at every point (Fig. 5.4(b)). The
proof proceeds by viewing the vortex line, in its initial
configuration, as the intersection of two vortex surfaces. Mark
the particles which occupy one of the vortex surfaces, at ¢t =0,
with dye. Consider a closed circuit C made up of a particular set
of dyed particles and spanned by a portion S, of the vortex
surface. At ¢t =0 the circulation round C is zero, for by Stokes’s
theorem

Ju-dx=f o-nds,
C *

and o - n is zero on S,. Now, as time proceeds the dyed sheet of
fluid will deform, but the circulation round C will remain zero,
by Kelvin’s circulation theorem. This being so for all circuits such
as C it follows, by using Stokes’s theorem again, that o - n will
remain zero at all points of the dyed sheet of fluid. That sheet
therefore remains a vortex surface as time proceeds. The proof is
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completed by noting that the intersection of two such dyed sheets
therefore remains the intersection of two vortex surfaces, i.e. it
remains a vortex line.

Proof of (2). The statement that I' is independent of the
cross-section S has nothing to do with the equations of motion,
but is simply a consequence of the fact that the vorticity
o =V A u is divergence-free (Exercise 5.5). The statement that I’
is independent of time follows on considering a circuit, such as
C, in Fig. 5.4(a), composed of fluid particles which lie on the
wall of the vortex tube and encircle it. By Stokes’s theorem, I’ is
the circulation round C,, and by Kelvin’s circulation theorem this
remains constant as time proceeds.

It is instructive to consider the particular case of a thin vortex
tube in which ® is virtually constant across any particular
cross-section. In that case I' is essentially just the product w 8,
where 65 is the normal cross-section of the tube. But 4S5 is also
the normal cross-section of the fluid continually occupying the
tube, and as the fluid must conserve its volume 48§ will vary
inversely with the length / of a small section of the tube. Thus the
vorticity w varies in proportion to /; stretching of vortex tubes by
the fluid motion intensifies the local vorticity.

In a tornado, for example, the strong thermal updraughts into
the thunderclouds overhead produce intense stretching of vortex
tubes, and hence the potentially devastating rotary motions
observed. The funnel cloud serves, in fact, as a direct marker of
the vortex tube, rather than the air occupying it, because it
essentially marks regions of very low pressure (where the air
rapidly expands and condenses), and these in turn are located in
the core of the vortex, where all the vorticity is concentrated (see
Exercise 1.3). Thus when the thunderclouds move on, and the
funnel cloud tips over in the manner of Fig. 5.5, we have a vivid
illustration of Helmholtz’s first vortex theorem at work.

In contrast, it is the shortening of vortex tubes that is
responsible for the gradual ‘spin-down’ of a stirred cup of tea
(Fig. 5.6). The main body of the fluid is essentially inviscid and in
rapid rotation, the centrifugal force being (almost) balanced by a
radially inward pressure gradient. This pressure gradient also
imposes itself throughout the thin viscous boundary layer on the



Vortex motion 165

(a) ()

Fig. 5.5. The deformation of a tornado as the thunderclouds move
overhead.

bottom of the cup, where it is stronger than required, for the
fluid in the boundary layer rotates much less rapidly. That fluid
therefore spirals inward (as evinced by the way in which tea
leaves on the bottom of the cup congregate in the middle), and
eventually turns up and out of the boundary layer, as in Fig. 5.6.
In this way vortex tubes in the main body of the fluid become
shorter and expand in cross-section, so that the vorticity
decreases with time. It is by this subtle mixture of inviscid and
viscous dynamics that the apparently innocuous spin-down of a
stirred cup of tea is achieved (see §8.5).

(a) (b)
Fig. 5.6. The secondary circulation in a stirred cup of tea is driven by
the bottom boundary layer (beneath the dotted line) and turns a tall,
thin column of ‘dyed’ fluid into a short, fat one, so decreasing its angular
velocity.
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The Helmholtz vortex theorems and the vorticity equation

The vortex theorems above were first given by Helmholtz in
1858, but Kelvin did not obtain and publish his circulation
theorem until 1867. It goes without saying, then, that Helmholtz
took a different route; he appealed directly to the vorticity
equation (1.25):

Do

D: (0 - V)u. (5.7
We will not give his actual argument here,t but consider instead
the relationship between eqn (5.7) and the vortex theorems in
some simple specific cases.

It is possible, for instance, to see by inspection of eqn (5.7)
how stretching the fluid that lies along a vortex line leads to an
intensification of the local vorticity field. Suppose, for example,
that the vortex lines are almost in the z-direction, as in Fig. 5.5(a),
so that ® = wk and

Do ou
The z-component of this equation gives

Do ow

E =w —a—z ’

and the vorticity of a particular fluid element therefore increases
with time if dw/3z >0, i.e. if the instantaneous vertical velocity
increases with z. Such is the case, of course, if fluid elements are
being stretched in the vertical direction, whereas if they were
being carried up or down without any vertical stretching or
squashing, w would be independent of z.

A particularly simple case is that of 2-D flow. Vortex tubes are
aligned with the z-axis, and w=0. There is no stretching of
vortex tubes, and

Dw_

=, =0 (5.9)

1 It in fact contains a flaw, which may however be corrected (see, e.g. Lamb
1932, p. 206; Rosenhead 1963, pp. 122-123).
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so that the vorticity w of any particular fluid element is
conserved.
A more revealing case in the present context is that of

axisymmetric flow:
u=ug(R, z, t)eg + u,(R, z, t)e,, (5.10)

where (R, ¢, z) denote cylindrical polar coordinates.t The
velocity components are then independent of ¢, the streamlines
all lie in planes ¢ = constant, and the vorticity is ® = we,,, where

_ Sug _ 3u,
8z AR’

® (5.11)

In axisymmetric flow the vortex tubes are therefore ring-shaped,
around the symmetry axis. According to the first vortex theorem
they move with the fluid. In doing so they will, in general,
expand and contract about the symmetry axis, and thus change in
length. As the fluid is incompressible the cross-sectional area 8S
of a thin tube will be in inverse proportion to the length 27xR of
the tube. But the second vortex theorem implies that w 8S will
be a constant, so we conclude that w will be proportional to the
length of the tube 2xR. We leave it as an instructive exercise
(Exercise 5.7) to show that in the case of axisymmetric flow the
vorticity equation (5.7) reduces to

D /w
= (2)=0, (5.12)
which expresses just this result, that the vorticity of any
particular fluid element changes in proportion to R as time
proceeds.

When, in axisymmetric flow, an isolated vortex tube is
surrounded by irrotational motion, we speak of it as a vortex
ring. The familiar ‘smoke-ring’ is perhaps the most common
example, and provides a vivid illustration of the Helmholtz
vortex theorems, though the vortex core typically occupies only a
fraction of the smoke ring as a whole (see Fig. 5.7).

1 This is not our usual notation, as we are shortly to use spherical polar
coordinates (7, 6, ¢) for axisymmetric flow. It seemed best not to have the same
symbol meaning two different things in the space of a few pages. Thus ¢ has the
same meaning in the two cases, and R =r sin 6.
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(a) (b)

Fig. 5.7. Flow due to a vortex ring (a) relative to a fixed frame and (b)

relative to a frame moving with the vortex core. Shading denotes smoke,

in the case of a smoke ring, while the vortex core is indicated by the
black dots.

5.4. Vortex rings

We showed in §5.1 how Kelvin’s circulation theorem plays a key
part in the mechanism by which an aircraft obtains lift at
take-off. While this is one of the theorem’s most elegant and
significant applications, it is not of course what Kelvin had in
mind in 1867. What he did have in mind is quite extraordinary,
but clear enough from the following:

Jan. 22, 1867.
My bpearR HeLMmHOLTZ—I have allowed too long a time to pass
without thanking you for your kind letter .... Just now,
Wirbelbewegungen have displaced everything else, since a few days ago
Tait showed me in Edinburgh a magnificent way of producing them.
Take one side (or the lid) off a box (any old packing-box will serve)
and cut a large hole in the opposite side. Stop the open side loosely
with a piece of cloth, and strike the middle of the cloth with your hand.
If you leave anything smoking in the box, you will see a magnificent
ring shot out by every blow. A piece of burning phosphorus gives very
good smoke for the purpose; but I think nitric acid with pieces of zinc
thrown into it, in the bottom of the box, and cloth wet with ammonia, or
a large open dish of ammonia beside it, will answer better. The nitrite of
ammonia makes fine white clouds in the air, which, I think, will be less
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pungent and disagreeable than the smoke from the phosphorus. We
sometimes can make one ring shoot through another, illustrating
perfectly your description; when one ring passes near another, each is
much disturbed, and is seen to be in a state of violent vibration for a few
seconds, till it settles again into its circular form. The accuracy of the
circular form of the whole ring, and the fineness and roundness of
the section, are beautifully seen. If you try it, you will easily make rings
of a foot in diameter and an inch or so in section, and be able to follow
them and see the constituent rotary motion. The vibrations make a
beautiful subject for mathematical work. The solution for the lon-
gitudinal vibration of a straight vortex column comes out easily enough.
The absolute permanence of the rotation, and the unchangeable relation
you have proved between it and the portion of the fluid once acquiring
such motion in a perfect fluid, shows that if there is a perfect fluid all
through space, constituting the substance of all matter, a vortex-ring
would be as permanent as the solid hard atoms assumed by Lucretius
and his followers (and predecessors) to account for the permanent
properties of bodies (as gold, lead, etc.) and the differences of their
characters. Thus, if two vortex-rings were once created in a perfect fluid,
passing through one another like links of a chain, they never could come
into collision, or break one another, they would form an indestructible
atom; every variety of combinations might exist. Thus a long chain of
vortex-rings, or three rings, each running through each of the other,
would give each very characteristic reactions upon other such kinetic
atoms.

This atomic theory,t 40 years ahead of that of Niels Bohr, was
no speculative sideline to Kelvin’s hydrodynamic researches at
the time; it was the main impetus behind them, and in the
opening sentence of his 1867 paper he more or less says as much.

One hundred and twenty years later, vortex rings still exercise
a certain fascination, although more modest and less dangerous
ways of producing them are perhaps to be recommended. All
that is needed is some arrangement for discharging smoke
through a circular hole in a plane rigid boundary, where
separation of the boundary layer can take place and be followed
by the rolling up of the consequent vortex sheet (Fig. 5.9). Any
simple apparatus which achieves this will suffice; I employ a
syringe of the kind commonly used to squeeze icing on to cakes.

t Atiyah (1988) observes that one particular notion in this theory—that of using
topology as a source of stability—may be said to have surfaced again in modern
physics, albeit in a different guise.
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Fig. 5.8. Kelvin’s sketches of knotted and linked vortex rings, the basis
for his ‘vortex atom’ theory of matter.

A satisfactory procedure, having detached the nozzle itself, is as
follows. Push the piston fully in, then puff cigar smoke through
the circular hole while rapidly withdrawing the piston, so that the
smoke is sucked into the syringe. As soon as the piston is fully
withdrawn, put a hand over the hole to keep the smoke in. Allow
a few moments for the motions inside to die down, and then
generate vortex rings by holding the cylinder horizontally and
giving the piston short, sharp taps. Each ring should travel a foot
or so while maintaining its form, provided that the surrounding
air is fairly still.

Helmbholtz considered vortex rings in his 1858 paper, and after
deducing that rings of smaller radius travel faster, went on:

We can...see how two ring-formed vortex filaments having the
same axis would mutually affect each other, since each, in addition to its
proper motion, has that of its elements of fluid as produced by the
other. ..

Fig. 5.9. Generation of a vortex ring by the discharge of fluid through
a circular hole.
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If they have equal radii and equal and opposite angular velocities,
they will approach each other and widen one another; so that finally,
when they are very near each other, their velocity of approach becomes
smaller and smaller, and their rate of widening faster and faster. If they
are perfectly symmetrical, the velocity of fluid elements midway between
them parallel to the axis is zero. Here, then, we might imagine a rigid
plane to be inserted, which would not disturb the motion, and so obtain
the case of a vortex-ring which encounters a fixed plane.

The last sentence is, of course, an interesting example of the
method of images, while in saying earlier ‘they will approach
each other and widen one another’ Helmholtz is applying his first
vortex theorem.

He considers, too, the case when the vortex rings are travelling
in the same direction. On the same basis he deduces:

.. . the foremost widens and travels more slowly, the pursuer shrinks
and travels faster, till finally, if their velocities are not too different, it
overtakes the first and penetrates it. Then the same game goes on in the
opposite order, so that the rings pass through each other alternately.

Good photographs of this ‘leap-frogging’ phenomenon may be
found in Yamada and Matsui (1978), in Oshima (1978) and on p.
46 of van Dyke (1982). In practice, of course, viscous effects act
to stop such leap-frogging from continuing indefinitely; indeed
they have profound effects, more generally, on the behaviour of
real vortex rings (Maxworthy 1972).

Kelvin was of course well aware that real vortex rings do not,
on account of viscous effects, wholly retain their identity in the
manner indicated by Helmholtz’s vortex theorems. One never-
theless wonders, given his hopes for the theory of vortex
atoms, what he would have made of an experiment by Oshima
and Asaka (1975) in which a red vortex ring and a yellow vortex
ring (in water) collide at a certain angle. The rings merge, then
break up again into two separate rings, each half yellow and half
red. The way in which they do this is indicated in Fig. 5.10. In (a)
the vortex rings are coming towards us, but they are also
approaching one another. In (b) they collide, and after a
distortion (c) of the resulting (single) vortex ring two separate
rings are formed (d). These come towards us but move apart in a
plane at right angles to the plane of approach. Oshima and
Asaka provide excellent photographs of this collision process,
and further photographs and analysis may be found in Fohl and
Turner (1975).
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(b)

(d) ©)

Fig. 5.10. The coliision of two viscous vortex rings.

Even within the framework of strictly inviscid theory there are
subtle aspects of vortex rings which have taken a long time to
emerge. Kelvin himself expressed the view that ‘the known
phenomena of...smoke rings...convinces...us...that the
steady configuration . . . is stable’, and J. J. Thomson purported
to demonstrate as much in his 1883 essay, A treatise on vortex
motion. But Widnall and Tsai (1977) have carried out a more
accurate calculation, and have shown that a vortex ring is in fact
unstable, even according to ideal flow theory. The instability
takes the form of bending waves around the perimeter, and these
grow in amplitude as time proceeds (Fig. 5.11).

5.5. Axisymmetric flow

The uniform motion of a vortex ring—let alone its instability—
presents theoretical difficulties, but there is one particular
circumstance in which it is quite easy to calculate the self-induced
motion of an isolated, axisymmetric patch of vorticity. Before
doing this we introduce one or two concepts that are of more
general value for axisymmetric flow.



6 The Navier—Stokes equations

6.1 Introduction

In Book II of the Principia (1687) Newton writes:

SECTION IX
The circular motion of fluids
HYPOTHESIS

The resistance arising from the want of lubricity in the parts of a fluid is,
other things being equal, proportional to the velocity with which the
parts of the fluid are separated from one another.

PROPOSITION LI. THEOREM XXXIX

If a solid cylinder infinitely long, in an uniform and infinite fluid, revolves
with an uniform motion about an axis given in position, and the fluid be
forced round by only this impulse of the cylinder, and every part of the
fluid continues uniformly in its motion: I say, that the periodic times of
the parts of the fluid are as their distances from the axis of the cylinder.

This is the essence of what Newton has to say about viscous flow.
The hypothesis, of course, gets the subject off to a good start,
but it is contained and applied wholly within a section on the
circular motion of fluids, and it is immediately followed by a
proposition which is false; the final statement implies that ug is
independent of r, whereas the correct conclusion, on the basis of
Newton’s own hypothesis, is that u, is inversely proportional to r
(see Exercise 2.8). This error gives one small indication of how
rudimentary fluid mechanics was at the time, even in the hands
of a great master.

Indeed, setting viscous effects aside for a moment, it was not
until about 1743, when John Bernoulli published his Hydraulica,
that the concept of internal pressure was used with clarity and
confidence in the study of moving fluids. Furthermore, in spite of
all Newton’s work, the full generality of the basic principles of
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mechanics did not emerge until 1752, when Euler advanced

The principle of linear momentum: the total force on a
body is equal to the rate of change of the total
momentum of the body,

with the clear understanding that the term ‘body’ might be
applied to each and every part of a continuous medium such as a
fluid or elastic solid. In 1755 Euler combined this with the
concept of internal pressure to obtain his equations of motion for
an inviscid fluid (1.12), the achievement being all the greater
because he was having to formulate the calculus of partial
derivatives as he went along. It was Euler, too, who put forward
in 1775

The principle of moment of momentum: the total
torque on a body about some fixed point is equal to
the rate of change of the moment of momentum of the
body about that same point.

He recognized this at the time as an equally general, but quite
independent, law of mechanics (see Truesdell 1968).

The next key steps were taken in 1822, when Cauchy
introduced the concept of the stress tensor, and combined it with
Euler’s laws of mechanics to construct a general theoretical
framework for the motion of any continuous medium. To study,
say, a Newtonian viscous fluid it became necessary only to add
the appropriate constitutive relation describing its physical
properties. Yet it was not until 1845, a full 158 years after the
Principia, that Stokes extended Newton’s original hypothesis in a
wholly rational way to obtain that constitutive relation, so
deriving what we now term the Navier—Stokes equations.}

6.2. The stress tensor

In this section and the next we describe Cauchy’s theory. While
we use freely the term ‘fluid’ in what follows, the formalism
applies equally well to any continuous deformable medium.

1 In recognition of the fact that Navier obtained the correct equations of motion
(rather earlier than Stokes), but by making assumptions about the molecular basis
of viscous effects which have not stood the test of time.
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Fig. 6.1. The stress vector.

The stress vector

Let x denote the position vector of some fixed point in the fluid,
and let 45 be a small geometrical surface element, unit normal n,
drawn through x. Consider the force exerted on this surface by
the fluid towards which n is directed.

We assume that this force is

t 88, (6.1)

where the stress vector t, so defined, depends on the surface
element in question only through its normal n. For an inviscid
fluid, for example, ¢t= —p(x, t)n (see eqn (1.10)), but more
generally we expect ¢ to have components both tangential and
normal to 4.

Definition of nine local quantities T;;

The nine elements T;; of the stress tensor are defined at any point,
relative to rectangular Cartesian coordinates, as follows:

T; is the i-component of stress on a surface element 6S

which has a normal n pointing in the j-direction (6.2)

(see Fig. 6.2).

The stress on a small surface element of arbitrary orientation

Consider the stress ¢ on a small surface element 6S with unit
normal n. We wish to demonstrate that the components ¢; of the
stress are given in terms of the components 7;; of the stress
tensor by

t,=Tn, (6.3)

17 B
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Fig. 6.2. Three components of the stress tensor T;;.

where summation over j =1, 2, 3 is understood by virtue of the
repeated suffix.

To do this we take 65 to be the large face of the tetrahedron in
Fig. 6.3, and apply the principle of linear momentum to the fluid
that momentarily occupies the tetrahedron. Consider the i-
component of force on the fluid element. That exerted by the
surrounding fluid on the main face is ¢; 6S. The i-component of
stress exerted by the surrounding fluid on the face which is

Fig. 6.3. Definition sketch for the proof of eqn (6.3).
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normal to e, is —7;;, because the normal n to that surface is
pointing in the —e; direction, according to the conventions
established above in the definition of the stress vector and stress
tensor. Now, the area of the face which is normal to e, is, by
vector algebra or elementary geometry, n; S, where n denotes
the unit outward normal to the large face. The i-component of
force on the face which is normal to e, is therefore —T;;n, 6S. A
similar argument holds for the remaining two faces. The
i-component of the force exerted on the element by the sur-
rounding fluid is therefore

(t; — T;n;) 68,

summation over j being understood.

This force, together with a body force pg 6V, will be equal to
the mass p S8V of the element multiplied by its (finite)
acceleration. Now let the linear dimension L of the tetrahedron
tend to zero, while maintaining the orientation n of its large
surface. As 8V is proportional to L* and &S is proportional to L,
it follows that ¢, = T;;n;, as claimed above.

6.3. Cauchy’s equation of motion

Having developed the notion of the stress tensor, Cauchy
obtained the general equation of motion for any continuous
medium:

Du; 9T,

=—2+ pg,. 6.4
Dr = 2 T P8 (6.4)

1

P

To establish this we consider the ith component of force
exerted, by the surrounding fluid, on some dyed blob of fluid
with surface S. This is

aT;
S S v ax,-

where we have used eqn (6.3) together with the divergence
theorem. If we consider a small blob of fluid, then, 37;;/dx; will
be almost constant throughout it, and the surrounding fluid will
exert on it a force having an i-component which is 9T;/0x;
multiplied by the volume of the blob V. If there is also a body
force g per unit mass, equating the total force on the small blob
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to the rate of change of its momentum gives eqn (6.4), bearing in
mind that the mass p 6V of the blob is conserved.

Reynolds’s transport theorem

This theorem is about rates of change of volume integrals over
finite ‘dyed’ blobs of fluid, and it provides, in particular, a
pleasing alternative derivation of eqn (6.4). The theorem states
that

_(lf Gdv = (P—G—+GV-u) dv, (6.6a)
dt V(t) 20 Dt
where G(x, t) is any scalar or vector function and V(¢) denotes
the region of space occupied by a finite, deforming blob of fluid.
A strict proof of this result may be found in Exercise 6.13. For
the present we simply cast it into a different and more obvious
form by writing G = pF. Then it follows that for any function
F(x, t):

DF

il
— FpdV = —pdV 6.6b

(see Exercise 6.5). This is no surprise; the rate of change of the
quantity Fp 6V following a small element 6V is DF/Dt
multiplied by p 8V, because the mass p 6V of any particular
element is conserved.

Alternative derivation of Cauchy’s equation

The principle of linear momentum, applied to a finite blob of
dyed fluid, gives

d
dt Jy S(1)

V@)
and on applying Reynolds’s transport theorem (6.6b) to the
left-hand side and eqn (6.5) to the right we obtain

Du; 9T )
—_ T pe)dv =0.
fv(,) (p Dt ox; pE

7

This being true for arbitrary V(t) we deduce—provided that the
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integrand is continuous—that eqn (6.4) must hold, the argument
being exactly the same as that leading to eqn (1.11).

Summary

The development so far is valid for any continuous medium, and:

(i) the stress components ¢; on a surface element with normal n
may be written

t;=T;n, (6.7)
where T;; are the elements of a stress tensor,
(ii) the principle of linear momentum takes the form
Du; 9T;
Dt o

p + pg;. (6.8)
It is also the case, in fact, that the principle of moment of

momentum (§6.1) implies

T' = 7;‘i’

JJ

save in circumstances which, from a practical point of view, are
most exceptional (see Exercise 6.14).

What we do not know at this stage, and what we cannot
possibly know without deciding what kind of deformable medium
we are working with, is how to calculate the elements T;;.

6.4. A Newtonian viscous fluid: the Navier-Stokes
equations

We now restrict attention to an incompressible fluid, for which

Veu=0,
and at this point it is possible to take
ou; Ju;
T,=—pé;+ (—’+—i) 6.9
= P % T M 5, ox; (6.9)

as the constitutive relation defining an incompressible, New-
tonian viscous fluid of viscosity u. Notably, the stress tensor is
symmetric, i.e. T;=T;. In view of this symmetry, eqn (6.9)
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amounts to six, rather than nine equations:

du ou
Tu=-p+2u——, Tp=—p+2u_=,
1 2
Ju Ju; Jdu
Iiz=-p +2#8_x§’ T23=H<§3 §2>,
3 2 3
Ju, Ju, ou, Jdu,
(), ()
n=H ox3 OXx, e=H ox,; 0x,

The physical significance of the quantity p, called the pressure, is
simply that —p is the mean of the three normal stresses at a
point, i.e.

P= _%(Tn + T, + T;)

(see Fig. 6.2).
On substituting eqn (6.9) into Cauchy’s equation of motion we
obtain, in the case of constant viscosity pu,

Du; op o <8uj u;

th ox; 'u8x,- ox; ax,.> PE

8p+ ) <8u,-)+ o%u;
ax, ox,\ax) " Hax?

+ pg;.
But
5? &? &2 52

- b+ —,
ox; Oxi ox; 0Ox3

and for an incompressible fluid
Ou;/3x; =V - u=0,
whence the Navier—Stokes equations

D
pﬁl:= —Vp + pg + u Vu, (6.10)

V-u=0, (6.11)

as claimed in eqn (2.3).
Using the vector identity (A.10) we may rewrite eqn (6.10) as

D
pF':=—Vp+pg—,uVA(VAu) (6.12)
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and this can be more convenient when working in non-Cartesian
coordinate systems.

We also observe that on combining eqns (6.7) and (6.9) the
stress vector may be written

t=—pn+u[2(n-Vi)u+n A (VA u)l. (6.13)

We leave the proof as an exercise (Exercise 6.1).

Where does eqn (6.9) come from?

Stokes (1845) deduced eqn (6.9) from three elementary hypoth-
eses. On writing T; = —pd8,; + T these amount essentially to:

(i) each T should be a linear function of the velocity
gradients du,/dx,, du,/9x,, etc.;

(ii) each T should vanish if the flow involves no deformation
of fluid elements;

(iii) the relationship between T and the velocity gradients
should be isotropic, as the physical properties of the fluid
are assumed to show no preferred direction.

We do not pursue the argument in detail here (see Exercise
6.11), but try instead to indicate by example how eqn (6.9)
conforms to each of the above hypotheses. With regard to (i),
which is the most natural extension of Newton’s original
proposal, there is little to do beyond observe that in eqn (6.9) the
quantities 77 are indeed linear functions of the quantities
du;/ ox;.

With regard to (ii), consider first a fluid element in 2-D flow,
as in Fig. 6.4, where we have displayed the velocity components
of the fluid particles at B and C relative to those of the particle at
A. Plainly, the distance between the particles at A and B is
momentarily increasing with time if du,/dx, >0 and decreasing if
ou,/9x,<0. Thus the terms 2u du,/dx, and 2u du,/3x, in the
2-D version of eqn (6.9) have a simple physical interpretation in
terms of the stretching (or shrinking) of fluid elements, and they
vanish if the fluid is moving without deformation. Similarly, we
see that the fluid line element AB is momentarily rotating with
angular velocity Ju,/dx,, while the fluid line element AC is
rotating with angular velocity —du,/9x,. The angle between AB
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ox 2
A ~

U
_’a

8X2

ox 2

X3

C

8“2
67] (le

T ou
g ](3)(1

Fig. 6.4. Velocity components at two points of a fluid element, relative
to those at A.

and AC is therefore momentarily decreasing with time at a
rate Ou,/dx,+ Ju;/0x,. The so-called ‘shear stress’ term
u(du,/dx, + du,/3x,) in the 2-D version of eqn (6.9) therefore
also has a simple physical interpretation, and again vanishes if
the fluid is moving without deformation. We say more about (ii)
in the subsection which follows.

With regard to (iii) let us consider the simple example of a 2-D
shear flow

u; = Bx,, u,=0
over a rigid plane boundary x, = 0. In this case
I;,=—p, I = —p, T, = up.
The tangential stress on the boundary is
ty = Tyjn; = Tyon, = Ty, = up. (6.14)

Note that the terms 2u du,/9x; and 2u du,/dx, are zero.

But suppose that, somewhat perversely, we carry out the
whole calculation of the tangential stress on the boundary not
with reference to the obvious coordinate system but with
reference to the coordinates x1,x, shown in Fig. 6.5 instead. The
velocity components relative to these coordinates are

B _B
2 2

up == (x1+x3), u, (x1+x3),
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Fig. 6.5. The two coordinate systems.

and if, as is being claimed, the relationship (6.9) is isotropic, then
it must take exactly the same form relative to the new axes, i.e.

du; ou,
T’ = — +2 -, T' = — +2 —,
11 P Nax{ 22 P "ax;
ou, Ju;
Tho=u(52+24).
=H ox; Ox,

The purpose of the present calculation is to check that this does,
indeed, lead to the same expression (6.14) for the stress on the
boundary. Thus

Ti=—-p+up, T3 =—p — up, T,=0.
Now
t;=Tin;,

where n; are the components of the unit normal to the boundary
relative to the new axes. This gives

4 ’ 4 ’ 4 1 ! 4
ti=Tuyn, + Tpn,= -\/5 (Tiy+Th),
whence

1 1
(=75 (P+uB =5 (—p—up)
and finally
[ = \/% (6~ )= up (6.15)

as before. As it happens, in this (crazy) formulation of the
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problem the ‘shear stress’ Ty, is actually zero, and eqn (6.15)
originates wholly from the terms 2u du;/9x; and 2u du,/9x,.

The general deformation of a fluid element

We now look more deeply at (ii), and at this point it is useful to
define the rate-of-strain tensor

du; Ju;
}(S2+22), 6.16
2( ox; Ox; (6.16)

in which case the constitutive relation for an incompressible
Newtonian viscous fluid is

In the foregoing discussion we have provided some evidence that
e;; vanishes if there is no deformation of fluid elements. We now
explore this notion further.

Let the fluid velocity at some fixed point be up. By Taylor’s
theorem the velocity at a point Q a small distance s from P is,
to first order in s,

uog=up+ (s Vu, (6.18)

the derivatives in this expression being evaluated at P. We are
interested in how uy depends, locally, on s, and the key to this
lies in rewriting eqn (6.18) as

ug=up+3(VAu)Aas+3V(es.s)), (6.19)

where V A u and e; are evaluated at P (Exercise 6.7). Here V;
denotes the operator e, 3/3s,, i.e. the V operator with respect to
the variable s.

Now, the term (VA u)As is of the form ‘QAx’ and

Fig. 6.6. Definition sketch for eqn (6.18).
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represents a local rigid-body rotation with angular velocity
3(V A u). Thus the vorticity V A u (or, more precisely, one half of
it) acts as a measure of the extent to which a fluid element is
spinning, just as we observed in §1.4 in a strictly 2-D context.

To see that the term 3V,(e;s;s;) represents a pure straining
motion, i.e. one involving stretching/squashing in mutually
perpendicular directions but no overall rotation, note first that it
denotes a vector field which is everywhere normal to surfaces of
constant e;s;s;. To picture these surfaces consider first a simple
2-D example in which

u=(ax;, —ax,, 0). (6.20)
In this case
a 0 O
e,=| 0 —a O
0O 0 O

(which is untypical, in that e; is the same, no matter which xp we
choose), and

(44 0 0 51
€;iSiS; = (sl AP S3) 0 —a O A3
0 0 0/ \s;

= a(si— 53).

Thus the cross-sections of surfaces of constant e;s;s; are, in this
case, as in Fig. 6.7. More generally, we note that as e; is

7/

/

/
/
— > V4

/
/
/
/
/

/

Fig. 6.7. Surfaces of constant e;s;s; in a pure straining motion.
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symmetric principal axes can always be found with respect to
which it is diagonal, and with respect to those axes the quantity
e;s;S; 18
et + 585" + ea3s 5.

Together with the incompressibility condition (eq; + e3, + €33 =0)
this implies that surfaces of constant e;s;s; are hyperboloids, and
the associated motions are accordingly simple 3-D equivalents of
the kind shown in Fig. 6.7.

Thus eqn (6.19) does indeed decompose the flow in the
neighbourhood of any point P into a pure translation (first term),
a rotary flow involving no deformation (second term) and a flow
involving deformation but no rotation (third term).

Finding the components of the stress vector ¢ in cylindrical or
spherical polar coordinates

If we are solving a flow problem in cylindrical or spherical polar
coordinates we need a quick and effective way of calculating the
stress vector ¢f.

Consider, for example, the flow

u=ug(r)eg

between two rotating cylinders, as in eqn (2.31). One way of
obtaining the stress ¢ at any point on the inner cylinder is to use
the expression (6.13), as in Exercise 6.4. This method is quite
effective, although the calculation of (n - V)u requires careful
attention to how the unit base vectors change with position, as
Exercise 6.9 shows.

An alternative way of obtaining t,, say, is to pick some
particular point of the inner cylinder and set up Cartesian axes
coincident with the unit vectors e,, ey, and e, at that point. Then
we want t,, 1.e.

t, = Tyn; = Tr1n, + Trn, + Tyns,
for which
tg = Tgrn,. + ngne + ngnz (6.21)

is no more than an alternative notation. In the present instance
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n =e,, and on using eqn (6.17):
to =Ty, = T, =2ue,q.

To find e, we may turn to eqn (A.36), and as u, =0 on the

cylinder we obtain
(s
e ”’ dr y )
as in Exercise 6.4.

This is effective, but it requires some understanding of where
expressions such as eqn (A.36) come from. To this end, note that

2e,y =201, = 37“?+g;‘—;= (er-V)(u - €) + (€2 V)(u - &)
=[(e, - V)u]-e,+[(ey-V)u]- ey, (6.22)

the final step following because (in marked contrast to e,, €, e,)
the unit vectors e,, e,, and e, are all constant. Thus

2e,0 =[(e, - V)u]-eq +[(es - V)u] - e,

o)
= [a—r (u,e, + ugeg + uzez)] - ey

10
+ [;é—e (u,e, + ugeg + uzez)] - e,. (6.23)

Now, the unit vectors e, and e, change with 6 according to eqn
(A.29), so

5 8u9+1[8u, N +8u9 +8uz ]
- — - u —_— —-u —_— .
erB ar r a 0 er reB a 6 eO Oer a 0 ez er
_8u9+18u,_£¢_q
or raob r
_ri(@)+lau’
T ar\r rae’

which is the last of the expressions (A.36).
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6.5. Viscous dissipation of energy

Consider the kinetic energy
T= j pu?dVv (6.24)

of a dyed blob of fluid V with surface S. The rate of change of T
is

(see eqn (6.6b)), and by virtue of Cauchy’s equation (6.4) we
may rewrite this as

dT oT;
T _ ,.,.dv+J 21 gy, 6.25
: jvpug e (6.25)
Now,
au,
f dV fé——(u,T},)dV f
and

[—(ul u) dv = f Uu; ,]n] ds = jut dS

where we have used eqn (6.3) and the divergence theorem
(A.13). Furthermore,

ou du, ou; ou; Ju,
i) (22
! Ox; ! 8x " ox; T, c’9x, ox;

as (i) summation over i =1,2,3 and j=1, 2, 3 is understood,
and (ii)) T; is symmetric. Using the relation (6.9) for an
incompressible Newtonian viscous fluid, together with V- u =0,

we see that
du; du; Jdu;\*
e <_+_,) = 2ue?
/ ax,- ZM ax,- ax,' ue,

(see eqn (6.16)). Thus

_=f pu-ng+Jt-udS—2uf e;dVv. (6.26)
v s 4
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The first term on the right-hand side represents the rate of
decrease of potential energy of the ‘dyed’ fluid, while the second
term represents the rate at which the surrounding fluid is doing
work on the dyed fluid via the surface stresses £. Not all this goes
into increasing the kinetic energy of the dyed fluid; viscous
stresses within the blob are evidently dissipating energy at a rate

2ue;; (6.27)
per unit volume which, written out in full, is
2u(es; + e, + €33 + 2e3; + 2e3; + 2e3,).

This viscous dissipation of energy is zero only if e; =0 for all i
and j, i.e. if there is no deformation of fluid elements.

Exercises

6.1. We may deduce from eqns (6.7) and (6.9) that
l;,=—pn; + un,-(% + %>
ox; Oox;
Show that this identical to
t=—pn+u[2(n-Viu+nn(VAu)l,

by expanding this expression using the suffix notation and the
summation convention.

6.2. Use eqn (6.13) and various vector identities to show that the net
force exerted on a finite blob of fluid by the surrounding fluid is

ftdS=f (=Vp + u V’u) dv,
S v

where S is the surface of the blob and V the region occupied by the blob.
Deduce that if the blob is small the net force on it, excluding gravity, is
—Vp + u V?u per unit volume, in agreement with eqn (6.10).

6.3. Verify that in the case of a simple shear flow
u=[u(y),0,0]
eqn (6.13) reduces, when n = (0, 1, 0), to
du
[ 0]
d [“ dy p
6.4. Show that in the case of a purely rotary flow

u=uy(r)ey



218 The Navier—Stokes equations

eqn (6.13) reduces, when n =e,, to

- (%)
t=—pe, +ur—\{— e,
dr\r

and note that the second term vanishes in the case of uniform rotation,
ue < r, for there is then no deformation of fluid elements.

Use this result to calculate the torque exerted on the inner cylinder by
the flow (2.31) and (2.32).

6.5. Use Reynolds’s transport theorem (6.6a) to provide an alternative
derivation of the conservation of mass equation

Dp
L oV-u=0
D PYH

(cf. Exercise 1.1). Then use this equation to deduce eqn (6.6b) from eqn
(6.6a).

6.6. Show that the terms u(du;/dx; + du;/ 3x;) of the stress tensor (6.9)
are zero for the uniformly rotating flow u = Q A x,  being a constant
vector.

6.7. Expand eqn (6.19) using the suffix notation and summation
convention:

uo=u +l[(e A@)AS'Fe i(e ss)]
Q P 2 i ax,' kask yidj

etc., to show that eqn (6.19) is equivalent to eqn (6.18).

6.8. Separate the shear flow u = (Bx,, 0, 0) of Fig. 1.4 into its local (i)
translation, (ii) rotation, and (iii) pure straining parts, using eqn (6.19).
Find the directions of the principal axes of e;, and verify that this
decomposition of the flow can be represented schematically as in Fig.
6.8.

/// .‘\\\ \ //A\\\/ —' /’—‘-‘\\ —’
, \\ // \ // \\
! 1 + \ — N
\ / ! ] b
/ \ / \ !
\\\ -7 AN 7 N S
~t-w PR { +—"~1-7 —

Fig. 6.8. The decomposition of a uniform shear flow.
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6.9. Consider a 2-D viscous flow
u=u,r, Q)e,,

as might occur in a converging or diverging channel (see, e.g. Exercise
7.6). Use both methods described at the end of §6.4 to show that the
stress exerted by the fluid in 6 >0 on that in 8 <0 is

uou, ( Zuu,)
—_ — + — + .
d r 00 € p r €o

[Note that the normal component of stress is not due to the pressure p
alone.]

6.10. Verify by direct calculation the expression for ey, in the spherical
polar formulae (A.44).

6.11. If T,-’,-’ is a linear function of e,,, e,,, etc., then we may write
TD

ij = Cijki€ri-

It is shown in books on tensor analysis (e.g. Bourne and Kendall 1977,
§8.3) that the most general fourth-order isotropic tensor is of the form

Cij = A‘Sij‘skl + B 6ik6jl + Cé, ik s
where A, B, and C are scalars. Use this to show that
T‘]D = lekk(s,-j + 2#8,—,,

where A and u are scalars.
Show that if p is defined, as in §6.4, so that

p=-—3T,
then

ou, 8u,>

T,=—(p+3uv-: 6,-+< —
,=—(p +35uV-u)d, ”ax, o,

which reduces to eqn (6.9) when the fluid is incompressible.

[With a compressible fluid some care is needed in distinguishing
between the mechanical pressure, defined above, and the thermo-
dynamic pressure (see Batchelor 1967, p. 154).]

6.12. Observe that if a flow u is 1irrotational, the viscous term is zero in
the equation of motion (6.12).
Consider now the flow

Qa?

u= €, r=a,

driven by a rotating cylinder at r =a, as in Exercise 2.8. “The flow is
irrotational in r = a; therefore the viscous term is zero; therefore the
viscous forces are zero; and so the torque on the cylinder is zero.’” But it
is not. What is wrong with the argument?
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6.13. Let x =x(X, t) denote some fluid motion, as in Exercises 1.7,
5.18, and 5.21, and let J denote the determinant

ox, Jx; Ix;
X, 90X, 09X,
J= ox, Ox, 0Ox,
X, JX, 0dX,
Ox; Ox; 0Ox;
X, 09X, JX,
Establish Euler’s identity
DJ/Dt=JV - u,

and use this to give a proof of Reynolds’s transport theorem (6.6a).

6.14. If we apply the principle of moment of momentum (§6.1) to a
finite ‘dyed’ blob of some continuous medium occupying a region V(¢)
we obtaint

d
— xApudV = xAtdS+f x A pgdV.

dt V() S(2) V()

Use Reynolds’s transport theorem, together with eqns (6.7) and (6.8), to
write this in the form

aT;
f x.e, A— e, dV = xie. A T;nje; dS
V) i s(0)

where summation over 1, 2, 3 is implied for i, j, and k. Re-cast this
equation into the form

€ NE T, dV =0,

V()
and hence deduce that, subject to the proviso in the footnote,

T' = ];i)

y

i.e. the stress tensor must be symmetric, whatever the nature of the
deformable medium in question. (This famous requirement, to which eqn
(6.9) conforms, is due to Cauchy.)

T There is a proviso here, namely that the net torque on the blob is due simply to
the moment of the stresses ¢ on its surface and the moment of the body force g
per unit mass. This is very generally the case, but there are exotic exceptions, as
when the medium consists of a suspension of ferromagnetic particles, each being
subject to the torque of an applied magnetic field (see Chap. 8 of Rosensweig
1985).
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A.1. Vector identities

(@anb)rc=(a-c)b—(b-c)a, (A.1)

VAVe=0, V-(VAF)=0, (A.2,A.3)

V-(¢pF)=¢pV:-F+F -V¢, (A.4)

VA(PF)=@¢VAF + (V) AF, (A.5)

VA(FAG)=(G-V)F—(F-V)G+F(V-G)—G(V-F),

(A.6)

V-(FAG)=G-(VAF)—F - (VAG), (A.7)
VIF-G)=FA(VAG)+GA(VAF)+(F-V)G+ (G- V)F,

(A.8)

(F-VYF=(VAF)AF+V(3F?, (A.9)

VZF =V(V-F)—VA(VAF). (A.10)

A.2. Two properties of the gradient operator V

Let ¢(x) be some scalar function of x, and let d¢p/ds be its rate
of change, with distance s, in the direction of some unit vector ¢.
Then

do/ds =¢- V. (A.11)

For this very reason, the line integral of V¢ along some curve
C is equal to the difference in ¢ between the two end-points of
the curve:

LV‘” - dr = [¢]c- (A.12)
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A.3. The divergence theorem

Let the region V be bounded by a simple closed surface S with
unit outward normal n. Then

fF-nds=fv-de. (A.13)
S |4

In suffix notation, and using the summation convention, this
takes the form

oF,
fﬁ}n,-dS=j —Idv.
s v OX;

There are many identities which may be derived from the
divergence theorem. The identity

f ¢n dS =f Vo dVv (A.14)
S v
is particularly valuable, and may be written
9¢
dS = [ —dV. .
f ¢n] ax‘ (A 15)
The following are immediate consequences:
IF,-n,-dS=J %4, f n; dS = f ”dV
S Vax,-
(A.16, A.17)
0
f u,-vjnj dsS = .[ - (u,-’Uj) dv. (A.18)
S Vaxj

Other identities derivable from the divergence theorem
include:

[FAndS=—fV/\FdV, Jn-Vd)dS:szdeV,
s v S v
(A.19, A.20)

Y o 2 .
f ¢, dS = f (V2 + V¢ - Vy)dV, (A.21)

L("’?’—w )ds f(¢v2 —yV?¢)dV. (A.22)
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A.4. Stokes’s theorem

Let C be a simple closed curve spanned by a surface S with unit
normal n. Then

F-dx=| (VAF)-ndS, (A.23)
Jreae=]

where the line integral is taken in an appropriate sense, according
to that of n (see Fig. A.1).

Green’s theorem in the plane may be viewed as a special case of
Stokes’s theorem, with F = [u(x, y), v(x, y), 0]. If C is a simple
closed curve in the x-y plane, and S denotes the region enclosed
by C, then

ov Ju
+ d _f(___> d_ .4
fudx v y—s dx dy (A2)

A useful identity derivable from Stokes’s theorem is

fc ¢ dr=— fs (Vo) A n dS. (A.25)

A.5. Orthogonal curvilinear coordinates

Let u, v, and w denote a set of orthogonal curvilinear
coordinates, and let e,, e, and e, denote unit vectors parallel to
the coordinate lines and in the directions of increase of u, v, and
w respectively. Then

e,.=e,Ne,, etc.,

Fig. A.1.
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and
ox = h, due, + h, dve, + h; dwe,,,
where
= |ox/du|, etc.

Furthermore,

1 8¢ 1 8¢ 1 o¢

\% .+ — —— .
= T o ®  haw™ (A.26)

V-F= hhl2h3[a (h2hsF) + (th)+ (thw)]

(A.27)
h.e, h,e, hse,

1 3 & 4
VAF= 2. A2
N TRk, | ou v ow (A.28)

h\F, hyF, hsF,
For cylindrical polar coordinates (Fig. A.2)

u=r, v=20, w=2z,
h,=1. h,=r, hy,=1.
For spherical polar coordinates (Fig. A.3)
u=r, v=20, w= ¢,

h,=1, h,=r, h;=rsin 6.

A.6. Cylindrical polar coordinates

Cylindrical polar coordinates (7, 6, z) are such that
X, =rcos 6, X, =rsin 6, X3=2,
as in Fig. A.2. Clearly,

Ox = Ore, +r 50ey + Oze,
and
e,=cos Oe; +sin Oe,, eg = —sin O e, + cos O e,, e, =e;.

The unit vectors do not change with r or z, but

de, 0 Cé€p de,

3 % 59 9

=0. (A.29)
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__..____.___.._.__.__....’

Fig. A.2 Cylindrical polar coordinates.

Also,
8¢ 18¢ 8¢
Vo="Ze +-—reg+ e, A.30
¢ are' raee" aze ( )
10 10F, OF,
V-F=-—(rF)+-=—2+22, A31
rar(r') r 890 Az (A.31)
e, reg e,
1|0 o o
VAF=-|— — —, A.32
"= e 88 Bz (A-32)
F, rF, EF
18/ 8 1 &2 &
el 2,17 7
rar\ar) T 2362 a2 ( )
o o
woveuylitel 8 (A.34)

ar ra0 oz
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The Navier—Stokes equations in cylindrical polar coordinates
are:

du us 16p ( u, 2 du,
“+(u-Vu,——=———+ V2,——'————>
ot (- Vu r p Or W T T 250 )
Jug U,Ug 1 9p (2 2 du, uo)
o - Vyup+ 20— -~ P vy, + 2 Yo
g Vet = = e T Vet a e 2)
(A.35)
e, 10
uz+(u V)uz=———p+vV2uz,
ot p oz
10 10ug Ju,
=2 ru) +- 2 2,
o™t 50 T S,

The components of the rate-of-strain tensor are given by:
u, 10ug u, du,
= e _——_——_— —_— —_—
or’ % ro0 r’ oz’
10u, OJu, du, Jdu,

2eg, = -—=+—2, 26, =—H+—2,
¢:= 50" 8z’ T 5z or

err eZ z

(A.36)

r

2e,6 = 7‘3 (ue) + 1 Oy
or

roo’

Fig. A.3. Spherical polar coordinates.
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A.7. Spherical polar coordinates

Spherical polar coordinates (7, 6, ¢) are such that
x;=rsin 6 cos ¢, X, =r sin @ sin ¢, X3 =rcos 0,
as in Fig. A.3. Clearly,

Ox = Ore, + rdbeq + r sin 6 S¢e,
and
e, =sin 0 cos ¢ e, + sin 0 sin ¢ e, + cos O e;,

eo = cos 0 cos ¢ e, + cos 0 sin ¢ e, — sin 6 e;,
e, = —sin ¢ e; +cos ¢ e,.
The unit vectors do not change with r, but
de,/30 = ey, Jey /30 = —e,, de, /36 =0,
de,/3¢ =sin O ey, deg/ 3¢ = cos O ey, (A.37)

dey, /3¢ = —sin O e, — cos 0 ey.

Also,
od 19d 1 9P
VO=—e +-——e + — :
or € r 06 €7 sin 0 9¢ €o (A-38)
120 1 1 OF,
V.-F= 2F) + 0) + —2 .
Zar(' Dt e eae(F" S0+ neap: A
e, rey rsinfe,
1 o 3 o
VAF =+ =~ 23 a5 | (A40)

r'sin@ |or 260 o¢p
F, rFy rsinOF,

Vz_l_8_<28>+ ! a(sm08)+ L&
r’o dr/ r*sin 696 80/  r*sin’0 5¢*’

(A.41)

3 ug 0 u, 0
V=u—+——+ : :
“ i "Or r 30 rsinB3¢ (A-42)
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The Navier—Stokes equations in spherical polar coordinates
are:

- -—;% ¥ V[Vzu' - 2:;'_ r’ s?n 6 889 (o 5in 6) = 75 s?n 6 ?91::]’
%—+ (u-V)u + u’:“’ _ 4 CrOt d
o6 " 50 et e g |
%? (- V), + u,,;u, ueu¢rcot 0
B pr slin 0 gz - V[V2u¢ = s?n 0 Zl;+ rzzcs(n)rjzg ZI:;_ r sui‘:;ze]’
;li-éa; (r’u,) + - siln 08;36 (ug sin ) + - siln 62—’;‘: =0. (A.43)

The components of the rate-of-strain tensor are given by:

_ou, 1 du, u,

or’ e""zrae r’

err

1 Jdu, u, ugcoth

0" sn0dp  r r
sin@ 3 [ u, ) 1 Odug
= + , A.44
0, 50 (sin 0) " rsin 6 8¢ (A.44)

1 Odu, o (uy,
264,, = ; +r— (_),
rsin 0 9¢ or\r

9 (ug 10u
2e,0 = —(—>+— "
€re 'ar r r 00




Hints and answers for exercises

Chapter 1

1.1 The rate of flow of mass out of S is [ pu - n dS, and this must be
equal to —[, (8p/3t) dV, the rate at which mass is decreasing in the
region enclosed by S.

Use (A.4).

Dp/Dt =0 does not mean that p is a constant; it means that p is
conserved by each individual fluid element, and this makes sense, as
each element conserves both its mass and (if V - u = 0) its volume.

1.2. The flow is not irrotational, as V A u = (0, 0, 2Q), so the theorem
following eqn (1.17) does not apply. The flow is steady, so the Bernoulli
streamline theorem applies, but there is then no telling how p might vary
from one streamline to another.

Free surface: z = (Q%/2g)(x* + y?) + constant.

1.3. The preceding exercise implies

plp=3Q*r*—gz+c¢, forr<a.
For r >a the flow is irrotational, so the Bernoulli theorem following
eqn (1.17) gives

—=—3——gz+c¢C, forr >a.

Continuity of p at r = a implies that ¢, — ¢, = Q% etc.

1.4. Take the Euler equation in the form (1.14), multiply by p, take
the dot product of both sides with u, and then use eqn (A.4) to obtain

aﬁt(%puz) ==V-[(p' + z2pu’)u].

Then integrate both sides over V and use the divergence theorem.
1.5. Much as in §1.5, but use eqn (A.5) in dealing with

1
VA(—V )
P P
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Fig. H.1.

Use conservation of mass to replace V - u, when it appears, by
1Dp

pDt’

If p=p(p), then Vp =p'(p) Vp, so Vp A Vp =0.
1.6. Consider the circulation round the closed circuit ABCADEFDA
in Fig. H.1, which does not enclose the wing, and thereby show that

f u-dx= u - dx.
ABCA DFED

1.7. See Fig. 4.1 for the streamlines.

No, because Dc/Dt = 0.

The results are true in general because holding X (as opposed to x)
constant corresponds to restricting attention to a particular fluid
element. i

c(X, Y, t)=BX?Y, and this gives a slightly different perspective on
why it is that ¢ does not change with time for a particular fluid element.

1.8 The streamlines are

kt
y =— x + constant, Z = constant,
Ug

obtained by integrating eqn (1.5) at fixed time ¢.
A particle path is obtained by integrating

(see Exercise 1.7), so
x=ugt+FK(X), y=3%*+FEX), z=FEX).

The arbitrary functions of X, Y, and Z are determined by the condition
that x =X when ¢t =0, so

X =ugt+ X, y =31k +Y, z=2.
Eliminating ¢ gives the particle paths.
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Chapter 2

2.1. (i) 4 x 107; (ii) 10%; (iii) 0.003; (iv) 10~°.
The boundary layer thickness is of order 1 mm.

2.2.

1
(ll’ R V’)ll’ —_ _ler +§Vr2u:, Vr . ll’ =O,

subject to
=0 onx*+y?=1; u'—(1,0,0) asx*+y?>owx,

Solving this will give u’ as some specific function (or functions—the
solution may not be unique) of x' and R. Thus, in particular, the
direction of u' depends, at a given x'=x/a, not on v, a, or U
individually but only on R = Ua/v.

(The same argument may evidently be used for flow past a body of

any shape.)
2.3. (i) Seek a solution to the Navier—Stokes equations of the form
u=[u(y), 0, 0], taking care that: (1) V- u =0; (2) all three components
of the momentum equation (2.3) are satisfied; and (3) u(y) satisfies the
no-slip condition on y = +h.

(ii) Likewise, assuming u = [0, 0, u.(r)], and using eqn (2.22). The
condition that u, is finite at » = 0 is needed.

2.4. Extend the single-layer analysis in the text to show that dp/dx =0
in both layers. The interface conditions are

du,  du,
ay  "ay

uy=u,, I aty =h,,

because the tangential stress exerted on the lower layer by the upper
layer is u, du,/dy, that exerted on the upper layer by the lower layer is
—u, du,/dy, and the two must be equal and opposite.

The upper layer is not accelerating, and there is no tangential stress
on it from above, so the tangential stress on it from below must exactly
cancel the net gravitational force on it in the x-direction, which is
proportional to its mass. The (equal and opposite) tangential stress on
the lower layer thus depends on A,, but not on v,.

2.5. The boundary conditions are homogeneous, but the equation is
not, so write u = uy(y) + u,(y, t), where

uo(y) = (P/2u)(h* - y°)

is the steady solution satisfying the boundary conditions (but not the
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initial conditions), as in Exercise 2.3. Then solve the resulting problem
for u,(y, t) as in the text.

] N
u _£ I:hz—yz—hz 2 4(—1) e—(N+5)2n2w/h2 COS(N+ %)%]

2u o (N + L1y’ a?
2.6. When voh/v<<1, e ""=1—-uv,y/vetc., so
) y
= U(l ——).
. h

When voh/v>>1, e " is extremely small, and so too is e "’
throughout most of the range 0 <y <h, though not within a distance of
order v/v, of the lower boundary y = 0. In this boundary layer

u==UyUe "

2.8. There will at first be a thin boundary layer of negative vorticity on
r=a, and this will gradually diffuse outwards until, as t—>, the
vorticity tends to zero at any finite r, however large.

On the outer cylinder r = b there will at first be a boundary layer with
positive vorticity. This vorticity will diffuse inwards, gradually cancelling
the outward-diffusing negative vorticity, so that w — 0 as t— o.

2.9. The result for u, comes directly from V-u=0. The general
solution of the equation is
A B

Ug = + R—1°
r r

provided that R #2. When R > 2 a free parameter is left in the solution,
so there are in fact infinitely many flows satisfying the conditions.

2.10. We have
f"+ (171 —l)f' =0
2 7’ y

which is a first-order equation for f'.
The vorticity is concentrated in the (expanding) region r < O(vt)?, and
it decreases with time (as t™') at r =0.

2.11. If u=uqy(r, z)eq, the r- and z-components of the Navier—Stokes
equations (2.22) together imply that uy(r, z) is independent of z, but
this is incompatible with the no-slip boundary conditions on z =0 and
z=h.

2.12 Multiply both sides by ru,, integrate both sides between r = 0 and
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r = a, and then use integration by parts to obtain

d (", , . f“ (8u9)2 J“uf,
dtfo sUgr dr = vor 3 dr v0 rdr.

The second term is less than or equal to zero; the third term needs to be
compared with

2vt/a?

E—0 as t— x because Ee is a decreasing function of ¢.

2.14. Substitute into the Navier—Stokes equations, integrate the
y-component with respect to y, and deduce that dp/dx is a function of x
only. Turn to the x-component, deduce that x~' 9p/dx is a constant,
because the rest of the equation is a function of y alone, etc.

p = —3pa®x*— pva(f' + if?) + constant.

2.15. The supposition that the main, inviscid flow is not much
disturbed requires the existence of a thin boundary layer on the plate in
order to satisfy the no-slip condition. But the mainstream flow speed ay
at the edge of such a boundary layer would decrease rapidly with
distance along the plate from the leading edge. By Bernoulli’s theorem
there would therefore be a substantial increase in pressure p along the
plate in the flow direction (as is evident from Fig. 2.13), and, as
explained in §2.1, this is exactly the circumstance in which boundary-
layer separation occurs.

Chapter 3

3.1. The new boundary condition is 3¢/3dy =0 on y=—h. The
analysis is valid only if 7 << A and n << h. The particle paths are ellipses
that become flatter with depth.

3.2. The condition that p,=p, at the interface gives, on using eqn
(3.19) in each layer and linearizing:
5} o¢

p1%+pngn=pz§%+ngn ony =0.
Seek suitable solutions of 3*¢ /x> + &*¢/dy*> =0 in each layer, ensuring
that ¢,— 0 as y > —» and ¢,— 0 as y — o (at which stage |k| enters the
analysis).
3.3. By the argument of §3.4, p,—p,=T3n/ox* at y =n(x, t). In
each layer, seek solutions of Laplace’s equation of the form ¢ =
f(x)g(y)sin(wt + €); the conditions 3¢/3x =0 at x =0 and at x = a help
to determine f(x).
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At the time ¢t at which two characteristics from x, and x, + éx, cross,
the value of x is the same, so the relevant time ¢ is that at which
(9x/3x,), = 0.

3.20 The first term represents the rate of working by pressure forces on
the cross-section; the second and third represent the rates at which
kinetic and potential energy are being swept through the cross-section.

To obtain the first result use the fact that the pressure is hydrostatic,
i.e. p=—pg(y —h,), because the flow is uniform. To obtain the second
result, consider the difference in energy fluxes and use eqns (3.124) and
(3.125).

3.21. Write down the Euler momentum equation (1.12) with g =0, use
eqn (A.9) to rewrite the (u - V)u term, and then write p =cp?, where ¢
is a constant, etc.

3.22. Write p =cp”, where c is a constant, and eliminate p. It can then
be helpful to establish the relationship

which also holds if 3/9x is replaced by 3/at.
The final part involves adding and subtracting the equations for u
and a.

3.23. Use eqn (3.136), writing u = F(&), where E=x—[3(y + Du +
ao)t. Therefore

Ou _ F'(§)
dx 1+i(y+1)F'(E)

(cf. eqn (3.115)),

and, of course, F(&)=3U[1—tanh(E/L)], by virtue of the initial
conditions.

3.24. After one integration

(a0~ V)f +i(y + Df*=3vf"+¢,

where c is a constant. Now f —0 as E—>, so 5vf'— —c as E—>, and
the only way this is compatible with f —0 as §— » is by ¢ being zero.
Similar considerations as & — — give the shock speed V.

Chapter 4

4.1. (i) Use Stokes’s theorem (A.23).
(il) Use Green’s theorem in the plane (A.24), with u in place of v
and —v in place of w.
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4.2. Treat similarly to the line vortex flow (4.18).
No contradiction: does du/3x + dv/3dy = 0—on which Exercise 4.1(ii)
depends—hold everywhere for a line source flow?

w= 2% log(z —d) + 2% log(z + d).

On wall x =0, v= Qy/n(y*+ d*) and p + ;pv* = constant.
4.3. Use eqn (4.11) to obtain ¢, and then eqn (4.12) to obtain the

complex potential of the flow when the cylinder is absent, w=
1A(z — c¢)*. Then use the circle theorem (4.29).

a’ a’
v =Ay[x{l +x2+y2} _C](l —x2+y2)

(so ¥ =0 on x*>+ y*=a?, as desired).
F. = =2apA’ca?, E,=0.
4.5. ON = xOF, — yOF, = R[(x +iy)(SF, + i6F,)].

4.7. Note that Z =X +1Y = 2a cos 6 on the plate.
f1,[(1 =5)/(1 +5)]2 ds can be evaluated by putting s = cos 2y.
For the torque, re-work the calculation for the ellipse in §4.10, but
with
- a® . il
=U( —|a+_ la)__l .
w ze S € 21082
The terms involving I’ do give a contribution to the integral, but this
disappears when the real part is taken.

4.8. Note as a check, or as part of the argument in obtaining Fig. 4.16,
that dZ/dz =0 (but d°Z/dz*+#0) at z = a, so that angles between two
line elements through z = a are doubled by the mapping, as in Fig. H.3
(see §4.6).

a’ cosec’f ] il

7 Ziacot § ——log(z —ia cot B),

WZ=U[ -1 tp+
(2) z—iacotf o

where
z=1Z + (2% - ad):i
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4.9. (i) The image sources are at z = +2nib, n=1,2,3.... To sum,
use the argument leading to eqn (5.29), and the identity quoted there.

nz/2b __ —nz/Zb)-

w= Q log(e

2n €

(i) Write Z = R'® =e***¥ to find the corresponding fluid region in
the Z-plane. The choice @ = &/b opens that region up so that there is
just a barrier along the negative real Z-axis, which does not affect the
flow caused by the line source at Z = 1. But there is a subtlety. In the
z-plane there is a volume flux Q/2 in both positive and negative
x-directions. As x— to_ then, the flow becomes uniform with velocity
(£Q/4b, 0). What happens, under the given mapping, to the uniform
flow at large negative x?

4.10. Apply the x-component of eqn (4.70) to the region ABCDA in
Fig. 4.0, showing that the right-hand side is zero, while the left-hand
side is (p, — p,)d — F,, where p, is the pressure far upstream and p, the
pressure far downstream. Then apply Bernoulli’s streamline theorem
and use eqn (4.73).

No: the Kutta—Joukowski theorem is for a single aerofoil, and in any
case F,— 0 as d — » (and v,— 0) for fixed I

Chapter 5

5.1. u=(0x/dt), =(aasins, 0, 0). (Note that holding s constant is
exactly like holding X constant in Exercise 1.7.)
The integrand u - dx/ds is time-dependent, as expected, but I'=

—na’a.
5.2.
o ox ou ox o\ /ox
5033, 3) GG
Now, (du/at), is the acceleration of a fluid element, otherwise written
Du/Dt (cf. Exercise 1.7). Also,

GG G)GE).-G);

and

which integrates to zero, as u is a single-valued function of position.
[Note that the partial derivatives commute only because x is viewed
consistently as a function of s and ¢. Suppose the original 3/3¢ had been
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the ‘normal’ one in this text, namely 3/3¢ holding x constant. Then,

typically,
3).5)*G)G)
ot/ \as/, \os/\ot/,

because the right-hand side is zero, because (dx/3t), is trivially zero, but
the left-hand side is typically not zero. The reason that these differential
operators do not commute is that in each case the dependent variable is
being viewed as a function of x and ¢ during one differentiation but as a
function of s and ¢ during the other.]

5.3. See note (c) following the proof of the theorem in §5.1.

5.4. After Stokes’s theorem use (A.5), and note that if p = f(p) then
Vp =f'(p) Vp. The unnecessary assumption is the same as that in
Exercise 5.3. Alternative:

1
- ;f '(p) Vp =Vh,
where

h(p)= - f (@) der

Then dI'/dt = [h]- =0, as p is a single-valued function of position.
In the thin vortex tube argument replace conservation of volume by
(the more generally valid) conservation of mass.

5.5. Apply the divergence theorem to @ =V A u, the region V being a
portion of the vortex tube of finite length.

5.6. Proceed as in Exercise 5.2 until

d¢ f ! [(aa) ox au]
— = —)+—+a-—|ds.
de J, L\at/, OSs os
Then take the right-hand side of the desired result, recognizing that

da /a3t there means (3a/adt),, and write it using the suffix notation and
the summation convention as

[ LG+ (en 32 mu] -

Expand the triple vector product, and note that
(ca/dt), =(3a/dt), + (u - Va,

because both sides of this expression denote the rate of change of a
following a particular fluid particle (cf. Exercise 5.2).
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5.7. Note that o = w(R, z, t)e,, so that

w O
@ Vu=p3s [ux(R, z, t)er + (R, z, t)e.] = 3’%‘ ey,

by virtue of eqn (A.29), allowing for the difference in notation.

5.8. Let the vortex be at z;, =x, +iy,. The image system consists of
three vortices at z;, —z;, and —z,. Proceed as with eqn (5.27) to obtain

dx, ,dy1=_ir‘[_ 1 1 +1];

Zy— 2] 21 + 21 221

& d 2=
hence
dy,/dx, = —(y/x,)’> etc.

To understand the behaviour of the trailing vortices, view the whole
of y=0 in the above problem as occupied by fluid, with a single
boundary at y = 0.

5.9. See eqn (3.19).

5.10. The net force on the wall is zero.

If the vortex were somehow fixed at (d, 0), the 3¢/t term would be
absent and there would be a net force pI'’’/4ad on the wall, directed
towards the vortex.

5.12.
i - = 1.2
w(z)= gy [log(z — z,) — log(z — z,) — log(z — z;,) + log(z — Z,)] — 3az>.

5.13. Let P=&,+ €, and Q = &, — &,, and deduce that
P=-iP, Q=-ii0.
Then write P = P; + 1P, and solve for P; and P,.
5.14. Let the n vortices be at
z,, = ae>™", m=0,1,...,n—-1.
The complex potential due to all these vortices is
il

W=—o log(z" —a"),

and that due to all except the one at z = a can be written

il [ z (z>2 (z n-1
w=——Ilogl1+Z+ (=) +... + —) ]
2n a a a

5.15. For last part, multiply the equation by I', and sum from 1 to n.
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5.16.

Then use Euler’s equation (1.12), the vorticity equation (5.7), and the
fact that V- (V A u) =0 to show that

I%(u-(u))=V- [(—%—x+%u2)m].

Then use the divergence theorem.

5.17. Bring V- [(o A u) A VA] into play using eqn (A.7), expand the
triple vector product using eqn (A.1), then use eqn (A.4).

Having said this, the problem lends itself to a much more
straightforward approach using suffix notation and the summation
convention:

2((0 al)_Dw,-al_*_w(é_*_ui)a_A
Dt "ax,. Dt ox; ‘\or kaxk ox;

B-7L SO VO ..
o ot i ox, dx;’

! Ox; ox, @ a—x,

where we have used the vorticity equation in its form (5.7). By reversing
the order of partial differentiation in the final term, and then changing
the dummy suffices, it may be written w;u; A/ ox; ox;, with summation
understood, of course, overi=1,2,3 and j =1, 2, 3. Thus

o (02) =05 (5) + o1 (w35
Dt\ 'ox,/ ox,\ot Tox, \ " ox,)’

which is the result.

5.18. The flow has two elements: a uniform rotation, angular velocity
Qe™, which steadily increases with time as a result of a secondary flow of
the kind in Fig. 5.17 which keeps stretching the vortex lines (if o > 0).

5.19. The condition that u, be finite at r =0 is needed.
5.20. The suitable vector identities are eqns (A.9) and (A.10).

521. X,, X,, and X; are three scalar quantities that are (rather
trivially) conserved by an individual fluid element, and X; =x; at t =0,
so Ertel’s theorem gives

oX;

W, —— = Wy
! ox; '

These are three linear algebraic equations for w,, w,, and w,. They can
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be solved by writing

w0y T = g9, OXi e _ | Ok
“ax, ’ox; X, ' ox

= ;0 = Wy,

where we have used the chain rule in the second step (note that
summation over i =1, 2, 3 is understood).

5.22. Let x;=x;{X(s), t} denote the current position of the particle
that was, at t =0, a distance s along the initial curve. Then

(%) _(ax,-) dX; ox;, wy
os t aIYl t ds aX; |‘”0| |(!)0| .

5.23.
T=1p [ (V6)- (V9) 4V =1p [ [V- (8 V9) - oV - (Vo) 4V,

by eqn (A.4), and then use the divergence theorem.

5.24. Suppose there are two different irrotational flows, i.e. u, = V¢,
and u, = V¢,, where

V26,=0 inV, 3¢,/on=f onS;
V2¢2 =0 in V, a¢2/an =f on S.

Consider the problem for ¢’ = ¢, — ¢,, and use Exercise 5.23 to show
that V¢’ must be zero, whereupon u, = u,, contradicting the original
supposition.

5.25. Let V¢ be the unique irrotational flow satisfying the boundary
condition, and write any other incompressible flow doing so as
u=V¢ +u’', where, consequently,

Veu' =0 inV, and u'-n=0 onsS.

Then expand T =3p [ (V¢ +u’)’dV, and use eqn (A.4) and the
divergence theorem.
5.26. If z denotes distance downstream from the centre of the sphere,
then ¢ ~ Uz as r—> >, i.e. ¢ ~ Urcos 6 as r—>». The other boundary
condition is d¢/dr =0 on r = a. By trying ¢ = f(r)cos 6—or by a more
formal application of the method of separation of variables—obtain

3

¢ = U(r + %)cos 6.

To find the pressure distribution on the sphere, use Bernoulli’s
theorem.
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5.27. Use Exercise 5.23 to find the kinetic energy, T = ;MU?, where
M =3%ma’p is the mass of fluid displaced by the sphere. Then use the
argument leading to eqn (4.77).

5.28. The boundary conditions are

19¢
-——=3Q t0=1Qt,
r 30 roa

and trying an appropriate separable solution gives
¢ = —(Qr? cos 20)/(2 sin 2Qt).

The streamlines are xy =constant. At 6 = £Qt use Exercise 5.9 to
obtain

p 1 22[ 3 ]
I t t__Q ____2 .
= constant — 3Q2°r SN2

5.29. The last result in Exercise 5.23 assumes that ¢ is a single-valued
function of position, which is guaranteed only in a simply connected
region. Here, ¢ =T'6/27. Remedy: make the region simply connected
by a cut (Fig. H.4), and apply the last result of Exercise 5.23 to the
surface ABCDEFA, which encloses a simply connected region V. Check
your answer by using the second result in Exercise 5.23, which is a more
straightforward method.

Fig. H.4.
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Chapter 6
6.1.
ou
nman(end
nA(VAu)=nn\e Aax,-
Ju ou
= (n . a—x)e,- —~(n-e) o,
Ju; e
= n] ax: e,' - n,-a—x'. (u,e,-)
Oy g e etc
=n—e€—n—e; .o
Tox, " o

where in the last term we have switched the dummy suffices i and j,
summation being understood over bothi=1,2,3 and j =1, 2, 3.

6.2. The vector identities needed are eqns (A.14), (A.19), (A.20), and
(A.10).

6.4. The torque is
4rp(Q, — Q,)rr

r;—nr:

25
f riter; d6 =
0

per unit length in the z-direction. It is positive if ,> Q,, as we would
expect.

6.5. Put G =p in eqn (6.6a).
6.7.

d
a_sk (e,-,-S,-S,-) = e,'i(é,'ks]' + S,-(S,-k)

= ey;S; + €us;.
But e, = e,;, so this is equal to 2e,;s; etc.
6.8.
u, = up + 3(Bs,, —Ps1, 0) + 3(Bs,, Bsy, 0).

The principal axes of e; are (everywhere) at an angle of m/4 to the
coordinate axes, which is why T, turned out to be zero in the analysis
leading to eqn (6.15). (More usually, the principal axes will vary with
the position of the point P.)

6.10.
2e5, = [(€6 - V)u] - €, + [(e, - VIu] - €5 etc.,
using eqns (A.37) and (A.38).



374 Hints and answers for exercises

6.11. Direct substitution gives T}, = Ad e + Be, + Ce;;, and e, = e;; by
eqn (6.16). In the second part, note that e; =V - 4 and §; =3.

6.12. In the momentum equation, the term u V’u or —u VA (VA u)
represents the net viscous force on a small fluid element (cf. eqn (2.11)).
While this is zero for an irrotational flow, it does not follow at all that
‘the viscous forces are zero’. There will typically be viscous stresses all
around a fluid element, even if the resultant force is zero; these stresses
will be zero all around the element only if it is not being deformed, and
that is certainly not the case here (see Fig. 1.5).

6.13. DJ/Dt=(8J/3t)x, and differentiating the determinant gives the
sum of three determinants, in each of which only one row is
differentiated. The top row of the first of these is

G 5. (G)sx
Ot/ x 38X, \Ot/x3X, \ot/x0X,’

and on changing the order of partial differentiation this is

Ju, Ju,; OJu,
X, 90X, 98X,

On using the chain rule this can be written

Ju, ox; Ju, 9x; Ju, Ox;
ox; X, OIx; X, 0x;8X,’

where summation over i =1, 2, 3 is understood in each case. The i=1
terms give a contribution J du,/3dx, to this first determinant. The terms
i =2, 3 give no contribution to it, because in each case two rows of the
resulting determinant are multiples of one another.

To prove Reynolds’s transport theorem,

d d
— GdV =— G dx, dx, dx
dt Jy dt Jy e
d
=— GJ dX,dX,dX,
dt Jy (o

o
=f [(8_G> J+G<—J) :IXmddeX3 etc.,
vy L\ Ot / ot/ x

the Jacobian determinant J entering when we make a change of
variables, V(0) denoting the region initially occupied by the ‘dyed’ blob.
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Index

acceleration of fluid particle 4
aerofoil
drag 59, 143, 151
flow round 20, 60, 139
generation of circulation round 23,
158
lift 21, 59, 120, 143
stall 30
attached vortices 180, 194
axisymmetric flow
irrotational 174, 199
stream function 173
viscous 223, 253

baroclinic instability 335
barotropic flow 192
Bernoulli equation
for compressible flow 118
for steady irrotational flow 10
for unsteady irrotational flow 66,
193
Bernoulli streamline theorem 9
biharmonic equation 230, 254
Blasius’s theorem 140
bluff-body flows 28, 150, 180, 262,
264, 290
body force 8
bore 97, 100
boundary conditions
for inviscid fluid 199
for viscous fluid 26, 30, 265
at free surface 65, 67
boundary layer 26
adverse pressure gradient 29, 261,
263
approximation 260, 266
converging channel 275
equations 260, 266, 268
flat plate 271
instability 275, 290, 340

Prandtl’s paper 260
reversed flow 179, 262, 287, 293
rotating fluid 278
separation 28, 122, 150, 160, 169,
180, 261, 287
similarity solutions 271, 275, 292
thickness 32, 50, 268
triple-deck 288
bubble, slow flow past 253
buoyancy (or Brunt—Viisili)
frequency 87, 115, 344
buoyancy force
internal gravity waves 86
thermal instability 305
vorticity generation 86, 305
Burgers vortex 187
Burgers’ equation 107

capillary waves 76
catastrophe theory 332
Cauchy-Lagrange theorem 161
Cauchy-Riemann equations 124
Cauchy’s vorticity formula 198
cavitation 265
centrifugal instability 313
channel flow 51, 324
chaos 334
characteristics, method of 91
circle theorem 129
circular cylinder
flow due to rotation of 53
flow past
development from rest 178, 262
irrotational 28, 130
low Reynolds number 226, 253
high Reynolds number 28, 150,
178, 190, 289
spin-down within 45, 165
vortex pair behind 180, 194
vortex street behind 180, 184, 194



392 Index

circular flow 12, 43

circulation
definition 19
generated by vortex shedding 158
Kelvin’s theorem 157

Kutta—Joukowski condition 20, 140

related to lift 21, 120, 143, 147

related to velocity potential 122

related to vorticity 19

round a line vortex 126

round an aerofoil 19, 121, 139
clap-and-fling lift mechanism 159
coefficient of viscosity 26
complex potential for 2D flow

defined 125

examples 125

flow past aerofoil 139

flow past circular cylinder 141

line vortices 126, 178, 183, 193

relation to flow speed 125
compressible flow

Bernoulli equation for 118

equations 79

past thin aerofoil 59

shock waves 62, 103

sound waves 58, 79

unsteady 1D 102

viscous 107
conformal mapping 134
conservation of mass 23
conservative force 9
constitutive equations 202, 207
continuity equation

see under conservation of mass
continuum hypothesis, breakdown

of 63

convective derivative

see under D/Dt
converging channel, flow in

at low Reynolds number 255

at high Reynolds number 275
Coriolis force 279
corner eddies 229
Couette flow

in channel 52

between rotating cylinders 44, 313
creeping flow

see under slow flow

D/Dt 4
d’Alembert’s paradox 147
dam break problem 92

deformation of fluid element 13, 212
density 6
density variations
conservation of mass 23, 79
effect of gravity on 86, 111, 115, 306
differentiation ‘following the fluid’, see
under D/Dt
diffusion
of vorticity 33, 37, 46, 48, 179, 187
of heat 36, 307, 345
of salt 345
diffusivity, thermal 307
dimensionless parameters 31, 51, 59,
101, 305, 311, 317, 331
dispersion 56, 64, 69, 108
dissipation of energy due to
viscosity 54, 216, 341
divergence theorem 349
diverging channel, flow in 278, 296
double diffusive convection 345
doubly-connected region 19, 122
drag
coefficient 150
crisis 290
at high Reynolds number 150, 261,
274
at low Reynolds number 226, 253
in ideal flow 59, 149
in supersonic flow 61
on streamlined bodies 151, 274
due to waves 61
draining plate 256
‘dyed’ fluid 6

Ekman layer 280
elliptic cylinder, flow round 136, 142
energy

cascade 341

dissipation 54, 216, 341

equation 24, 306

and group velocity 70, 74, 114

Kelvin’s theorem on minimum 199

loss in hydraulic jump 100
entropy

defined 79

change across a shock 104
equation of state 307
equations of motion

Cauchy 205

Euler (inviscid) 8

Navier-Stokes (viscous) 30, 207

in cylindrical polar
coordinates 42, 353



in spherical polar coordinates 355
relative to a rotating frame 279
Ertel’s theorem 196
Euler’s equations 8
Euler’s principle of linear
momentum 202
Euler’s principle of moment of
momentum 202

Falkner-Skan equation 292
Feigenbaum number 337
fish, mechanical 235
flat plate
boundary layer 49, 261, 271, 340
drag 274
irrotational flow round 137
force
on an accelerating body 149, 200
buoyancy 86, 115, 305
calculated by Blasius’s theorem 140
centrifugal 164, 318
Coriolis 279
pressure 6, 208, 219
viscous 26, 35, 209, 219
see also under drag, lift
free streamline theory 289
free surface, conditions at 39, 65, 67,
245
Froude number 101

gas, perfect 79
gravity waves, see under water waves
group velocity 56, 69

Hagen-Poiseuille flow, see under
Poiseuille flow

heat conduction 36, 307

Hele-Shaw cell 241

helicity 196

helium, superfluid properties of 185

Helmholtz’s vortex theorems 162

hexagonal convection cells 312

Hill’s spherical vortex 175

homentropic flow 102, 118

hydraulic jump 63, 100

hydrostatic pressure distribution 9

hysteresis 332, 345

ideal fluid 6
images, method of 128, 171

Index 393

incompressible fluid
equation 7
conditions for behaviour as 7, 58
induced drag on a lifting body 23
inertia term 31
inertial waves (in rotating fluid) 116
inner and outer solutions 270
see also under matched asymptotic
expansions
insect flight, clap-and-fling
mechanism 159
instability
baroclinic 335
Bénard 313
boundary layer 290, 340
centrifugal 313
and chaos 334
double diffusive 345
jet 295
Kelvin—-Helmholtz 113, 303
line vortex arrays 184
low Reynolds number 341
pipe flow 300
Rayleigh’s criterion for circular
flow 318
Rayleigh’s inflection point
theorem 323
Rayleigh-Taylor 112
Saffman-Taylor 342
shear flow 320
stratified shear flow 344
subcritical 301, 325, 345
due to surface tension variations 313
thermal 305
thermohaline 345
and turbulence 334
vortex arrays 184
vortex rings 172
interface waves 111
internal gravity waves 86
irrotational flow
axisymmetric 174, 199
defined 10
kinetic energy 199
minimum energy of 199
past a
aerofoil 138
circular cylinder 130
elliptical cylinder 136
flat plate 137
sphere 174
persistence of 161
pressure in 10, 66, 193



394 Index

irrotational flow (cont.)
produced impulsively 179, 199
uniqueness of 199
unsteady 66, 149, 193
velocity potential of 122
isentropic flow 79
isotropic medium 209

Jeffrey-Hamel flow 297

jet 293

Joukowski
condition at trailing edge 20, 140
theorem 143
transformation 136

journal bearing 249

Karman vortex street 180
Kelvin

circulation theorem 157

letter to Helmholtz 168

minimum energy theorem 199
kinematic condition at free surface 65
kinematic viscosity 26, 28
kinetic energy of irrotational flow 199
Korteweg-de-Vries equation 108
Kutta—Joukowski hypothesis 20, 140
Kutta—Joukowski lift theorem 21, 143

Lagrangian description of flow 25,
191, 197, 198
Lanchester, F. W. 22, 120, 265
Landau equation 346
Laplace’s equation 125, 162
leading edge suction 153
length scale, characteristic 31
lift
on aerofoil 21, 120, 145, 153
defined 20
on a cylinder with circulation 133
linear stability theory 303
line source 151
line vortex, see under vortex
local motion analysed 13, 209, 212
Lorenz equations 335
lubrication theory 248

Mach lines 59, 85
Mach number 59
and Froude number 101

marginal stability 304, 316, 324
mass-conservation equation 23, 79
matched asymptotic expansions 227

see also under inner and outer

solutions

material derivative, see under D/Dt
mean free path 63
micro-organisms, swimming 33, 235
Milne-Thomson circle theorem 129
minimum energy theorem 199
moment of forces

on an aerofoil 141, 154

and moment of momentum 202
momentum equation

in integral form 145

inviscid 8

viscous 30, 208

Navier—Stokes equations 30, 208
in cylindrical polar coordinates 42,
353
derivation 34, 207
simple solutions of 33
in spherical polar coordinates 355
Newtonian viscous fluid 26, 207
non-Newtonian fluids 26
non-uniqueness
of irrotational flow in multiply-
connected regions 19, 130
of steady viscous flow 278, 297, 330
normal stresses 208
no-slip condition 30, 265

Orr-Sommerfeld equation 323
oscillating plate 52

particle paths
and streamlines 4, 25
in water waves 69
pendulum, chaotic motion of 338
perfect gas 79
period doubling 336
phase function 72
pipe flow 51, 300
piston problem 102
Poiseuille flow 51, 300
polystyrene beads 3
potential flow, see under irrotational
flow
Prandtl-Batchelor theorem 189



Prandtl number 313
Prandtl’s paper 260
predictability 336
pressure 6, 208
pressure gradient
adverse 29, 287
hydrostatic 9
principal axes 214

quantized vortices 185
quarter-chord point 155

radiation condition 82
Rankine vortex 15, 24
Rankine—Hugoniot relations 104
rate of change following the fluid 4
rate of strain tensor 212
components in curvilinear
coordinates 214, 353, 355
Rayleigh criterion (circular flow) 318
Rayleigh’s inflection point
theorem 323
Rayleigh number 311
Rayleigh problem 35
Rayleigh—Taylor instability 112
resistance, see under drag
reversed flow near solid boundary 29,
179, 251, 287
reversibility 33, 234
Reynolds number
definition 31
and dynamic similarity 51
flow at low 32, 221
flow at high 31, 49, 150, 190, 260,
300
and instability 300
physical significance 31
typical values 50
Reynolds’s transport theorem 206
Richardson number 305
ripple tank 113
rolls, convection 312
rotating cylinders, flow between 44,
313, 330
rotating fluid
between discs 54, 251, 278, 298
at low Reynolds number 32, 234,
249, 252
slow relative motion in 279
spin-down of 164, 284
waves in 116

Index 395
Russell, J. S. 63

salt fingers 345
secondary flow 54, 165, 252, 281, 285,
298
separation of boundary layer, see
under boundary layer
shallow water, waves on 79, 89, 108,
119
shear stress 26, 210
ship waves 57
shock wave 62
caused by a piston 103
conditions across 104
oblique 104
thickness of 63, 107
similarity solution 36, 247, 258, 261,
271, 275, 292
simple shearing motion 27, 34
sink, see under source
slider bearing 248
slope, flow down 38, 245
slow flow equations 221, 233
slowly-varying waves 72
smoke ring 168
solid boundary, conditions at
for inviscid fluid 199
for viscous fluid 26, 30, 330
solitary wave 64, 108
soliton 110
sound barrier 61
sound, speed of 58, 81
sound waves
of infinitesimal amplitude 79
of finite amplitude 61, 102, 107
source, line 151
source, point 152
specific heat 79, 307
sphere, flow due to a moving
irrotational 199
at high Reynolds number 290
at low Reynolds number 223
spherical vortex, Hill’s 175
spin-down 45, 164, 284
spreading drop 257
stability of viscous flow 326
see also under instability
stagnation point, flow near 48, 55,
126, 291
stall 30
steady flow, definition of 2
steepening
of sound waves 62, 103



396 Index

steepening (cont.)

of water waves 63, 98
Stokes flow, see under slow flow

equations
Stokes’s law for drag on a moving
sphere 226

Stokes’s stream function 173, 223
Stokes’s theorem 350
Stokes waves, see under water waves
stratified fluid

interfacial waves 58, 111

internal gravity waves 86

shear flow instability 344
stream function

in 2D flow 123

in axisymmetric flow 173
streamlined body 151
streamlines

definition 3

and particle paths 4, 25

and the stream function 124
strength of vortex tube 163
stress 26, 203
stress tensor 203

for Newtonian viscous fluid 207, 209

symmetry of 207, 220
stress vector 203
for Newtonian viscous fluid 209
subcritical and supercritical flow 101
subsonic and supersonic flow 59, 105
suction, delaying separation by 263
suction, flow along channel with 52
suffix notation and summation
convention 204, 233
superfluid dynamics 185
surface tension 57, 74, 112, 305, 313
surface waves, see under water waves
swimming, at low Reynolds
number 234

tap, dripping 338
Taylor, G. 1. 234, 342
Taylor-Goldstein equation 344
Taylor-Proudman theorem 280
Taylor shock 63
Taylor vortices 314, 319, 333, 338
teacup, spin-down in 45, 164, 284
tensor

isotropic 209, 219

stress 203
terminal velocity 226
thermal conduction 36, 79, 307

thermal convection 305
thin film flow 222, 238
tornado 164
torque 141, 143, 202, 218, 252
trailing edge
Kutta—Joukowski condition 20, 140
separation at 1, 158, 288
transition to turbulence
boundary layer 290, 340
chaos 339
jet 295
pipe flow 300
thermal convection 312
wake 150, 180
transonic flow 105
triple-deck 288
turbulence
in hydraulic jump 100
nature of 341
see also under transition to
turbulence
turbulent spot 340
two-dimensional flow, definition 2

uniqueness
of irrotational flow 199
of steady viscous flow 330
see also under non-uniqueness

velocity potential 122
viscosity
coefficient of 26, 207
kinematic 26
measured values 28
and Reynolds number 31
viscous dissipation of energy 54, 216
volume flux 40
vortex
atoms 169
Burgers 187
elliptical 185
Hill’s spherical 175
line vortex 12, 125
near corner 193
near wall 193
viscous diffusion of 46
merging 186
pair 177
Rankine 15
rings 168
collision 171
instability 172



shedding 1, 150, 159, 181, 288
sheet 38, 290
starting 1, 159, 288
street 180, 194
stretching 164, 187
surface 163
Taylor problem 314, 319, 333, 338
theorems 162
trailing 22
vortex line
definition 162
moves with an inviscid fluid 162
vortex tube 162
vorticity
convection and diffusion 48, 187
definition 10
equation
in axisymmetric flow 167
in general flow 17
in 2D flow 17
viscous 48, 187
generated at a solid boundary 37,
46, 179, 261
generation by buoyancy forces 86,
305
intensification by stretching of
vortex lines 164, 166, 187, 285

Index 397

meter 14

physical interpretation 11, 212

shed into wake 28, 150, 181, 261,
295

theorems for an inviscid fluid 162

in turbulent flow 341

viscous diffusion of 33, 37, 48, 187

wake
circular cylinder 28, 150, 181, 262,
289
streamlined body 29, 151, 295
water waves
dispersion 56, 69
energy 114
finite amplitude, in shallow water 89
finite depth 78
group velocity 56, 73
at interface between two fluids 111
particle paths 69
surface tension effects on 74
wave drag 61
wave packet 57, 69
Whitehead’s paradox 226



