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1
The Equations of Motion

In this chapter we develop the basic equations of fluid mechanics. These
equations are derived from the conservation laws of mass, momentum, and
energy. We begin with the simplest assumptions, leading to Euler’s equa-
tions for a perfect fluid. These assumptions are relaxed in the third sec-
tion to allow for viscous effects that arise from the molecular transport of
momentum. Throughout the book we emphasize the intuitive and mathe-
matical aspects of vorticity; this job is begun in the second section of this
chapter.

1.1 Euler’s Equations

Let D be a region in two- or three-dimensional space filled with a fluid.
Our object is to describe the motion of such a fluid. Let x ∈ D be a point
in D and consider the particle of fluid moving through x at time t. Relative
to standard Euclidean coordinates in space, we write x = (x, y, z). Imagine
a particle (think of a particle of dust suspended) in the fluid; this particle
traverses a well-defined trajectory. Let u(x, t) denote the velocity of the
particle of fluid that is moving through x at time t. Thus, for each fixed
time, u is a vector field on D, as in Figure 1.1.1. We call u the (spatial)
velocity field of the fluid.

For each time t, assume that the fluid has a well-defined mass density
ρ(x, t). Thus, if W is any subregion of D, the mass of fluid in W at time t
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D

trajectory of fluid particle

u(x,t)x

Figure 1.1.1. Fluid particles flowing in a region D.

is given by

m(W, t) =
∫

W
ρ(x, t) dV,

where dV is the volume element in the plane or in space.

In what follows we shall assume that the functions u and ρ (and others to
be introduced later) are smooth enough so that the standard operations of
calculus may be performed on them. This assumption is open to criticism
and indeed we shall come back and analyze it in detail later.

The assumption that ρ exists is a continuum assumption . Clearly, it
does not hold if the molecular structure of matter is taken into account.
For most macroscopic phenomena occurring in nature, it is believed that
this assumption is extremely accurate.

Our derivation of the equations is based on three basic principles:

i mass is neither created nor destroyed ;

ii the rate of change of momentum of a portion of the fluid equals the
force applied to it (Newton’s second law);

iii energy is neither created nor destroyed.

Let us treat these three principles in turn.

i Conservation of Mass

Let W be a fixed subregion of D (W does not change with time). The rate
of change of mass in W is

d

dt
m(W, t) =

d

dt

∫

W
ρ(x, t) dV =

∫

W

∂ρ

∂t
(x, t) dV.
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Let ∂W denote the boundary of W , assumed to be smooth; let n denote
the unit outward normal defined at points of ∂W ; and let dA denote the
area element on ∂W . The volume flow rate across ∂W per unit area is u · n
and the mass flow rate per unit area is ρu · n (see Figure 1.1.2).

portion of the
boundary of W

u

n

Figure 1.1.2. The mass crossing the boundary ∂W per unit time equals the
surface integral of ρu · n over ∂W.

The principle of conservation of mass can be more precisely stated as
follows: The rate of increase of mass in W equals the rate at which mass is
crossing ∂W in the inward direction; i.e.,

d

dt

∫

W
ρ dV = −

∫

∂W
ρu · n dA.

This is the integral form of the law of conservation of mass. By
the divergence theorem, this statement is equivalent to

∫

W

[
∂ρ

∂t
+ div(ρu)

]
dV = 0.

Because this is to hold for all W , it is equivalent to

∂ρ

∂t
+ div(ρu) = 0.

The last equation is the differential form of the law of conservation
of mass, also known as the continuity equation.

If ρ and u are not smooth enough to justify the steps that lead to the
differential form of the law of conservation of mass, then the integral form
is the one to use.
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ii Balance of Momentum

Let x(t) = (x(t), y(t), z(t)) be the path followed by a fluid particle, so that
the velocity field is given by

u(x(t), y(t), z(t), t) = (ẋ(t), ẏ(t), ż(t)),

that is,

u(x(t), t) =
dx
dt

(t).

This and the calculation following explicitly use standard Euclidean co-
ordinates in space (delete z for plane flow).1

The acceleration of a fluid particle is given by

a(t) =
d2

dt2
x(t) =

d

dt
u(x(t), y(t), z(t), t).

By the chain rule, this becomes

a(t) =
∂u
∂x

ẋ +
∂u
∂y

ẏ +
∂u
∂z

ż +
∂u
∂t

.

Using the notation

ux =
∂u
∂x

, ut =
∂u
∂t

, etc.,

and
u(x, y, z, t) = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t)),

we obtain
a(t) = uux + vuy + wuz + ut,

which we also write as

a(t) = ∂tu + u ·∇u,

where
∂tu =

∂u
∂t

and u ·∇ = u
∂

∂x
+ v

∂

∂y
+ w

∂

∂z
.

1Care must be used if other coordinate systems (such as spherical or cylindrical) are
employed. Other coordinate systems can be handled in two ways: first, one can proceed
more intrinsically by developing intrinsic (i.e., coordinate free) formulas that are valid in
any coordinate system, or, second, one can do all the derivations in Euclidean coordinates
and transform final results to other coordinate systems at the end by using the chain
rule. The second approach is clearly faster, although intellectually less satisfying. See
Abraham, Marsden and Ratiu [1988] (listed in the front matter) for information on the
former approach. For reasons of economy we shall do most of our calculations in standard
Euclidean coordinates.
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We call
D

Dt
= ∂t + u ·∇

the material derivative ; it takes into account the fact that the fluid is
moving and that the positions of fluid particles change with time. Indeed,
if f(x, y, z, t) is any function of position and time (scalar or vector), then
by the chain rule,

d

dt
f(x(t), y(t), z(t), t) = ∂tf + u ·∇f =

Df

Dt
(x(t), y(t), z(t), t).

For any continuum, forces acting on a piece of material are of two types.
First, there are forces of stress, whereby the piece of material is acted on
by forces across its surface by the rest of the continuum. Second, there are
external, or body, forces such as gravity or a magnetic field, which exert
a force per unit volume on the continuum. The clear isolation of surface
forces of stress in a continuum is usually attributed to Cauchy.

Later, we shall examine stresses more generally, but for now let us define
an ideal fluid as one with the following property: For any motion of the
fluid there is a function p(x, t) called the pressure such that if S is a
surface in the fluid with a chosen unit normal n, the force of stress exerted
across the surface S per unit area at x ∈ S at time t is p(x, t)n; i.e.,

force across S per unit area = p(x, t)n.

Note that the force is in the direction n and that the force acts orthogonally
to the surface S; that is, there are no tangential forces (see Figure 1.1.3).

force across   S = pn

n

S

Figure 1.1.3. Pressure forces across a surface S.

Of course, the concept of an ideal fluid as a mathematical definition is
not subject to dispute. However, the physical relevance of the notion (or
mathematical theorems we deduce from it) must be checked by experiment.
As we shall see later, ideal fluids exclude many interesting real physical
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phenomena, but nevertheless form a crucial component of a more complete
theory.

Intuitively, the absence of tangential forces implies that there is no way
for rotation to start in a fluid, nor, if it is there at the beginning, to stop.
This idea will be amplified in the next section. However, even here we can
detect physical trouble for ideal fluids because of the abundance of rotation
in real fluids (near the oars of a rowboat, in tornadoes, etc.).

If W is a region in the fluid at a particular instant of time t, the total
force exerted on the fluid inside W by means of stress on its boundary is

S∂W = {force on W} = −
∫

∂W
pn dA

(negative because n points outward). If e is any fixed vector in space, the
divergence theorem gives

e · S∂W = −
∫

∂W
pe · n dA = −

∫

W
div(pe) dV = −

∫

W
(grad p) · e dV.

Thus,

S∂W = −
∫

W
grad p dV.

If b(x, t) denotes the given body force per unit mass, the total body
force is

B =
∫

W
ρb dV.

Thus, on any piece of fluid material,

force per unit volume = −grad p + ρb.

By Newton’s second law (force = mass × acceleration) we are led to the
differential form of the law of balance of momentum :

ρ
Du
Dt

= − grad p + ρb. (BM1)

Next we shall derive an integral form of balance of momentum in two
ways. We derive it first as a deduction from the differential form and second
from basic principles.

From balance of momentum in differential form, we have

ρ
∂u
∂t

= −ρ(u ·∇)u −∇p + ρb

and so, using the equation of continuity,

∂

∂t
(ρu) = −div(ρu)u − ρ(u ·∇)u −∇p + ρb.
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If e is any fixed vector in space, one checks that

e · ∂

∂t
(ρu) = −div(ρu)u · e − ρ(u ·∇)u · e − (∇p) · e + ρb · e

= −div(pe + ρu(u · e)) + ρb · e.

Therefore, if W is a fixed volume in space, the rate of change of momentum
in direction e in W is

e · d

dt

∫

W
ρu dV = −

∫

∂W
(pe + ρu(e · u)) · n dA +

∫

W
ρb · e dV

by the divergence theorem. Thus, the integral form of balance of momentum
becomes:

d

dt

∫

W
ρu dV = −

∫

∂W
(pn + ρu(u · n)) dA +

∫

W
ρb dV. (BM2)

The quantity pn+ρu(u·n) is the momentum flux per unit area crossing
∂W , where n is the unit outward normal to ∂W .

This derivation of the integral balance law for momentum proceeded via
the differential law. With an eye to assuming as little differentiability as
possible, it is useful to proceed to the integral law directly and, as with con-
servation of mass, derive the differential form from it. To do this carefully
requires us to introduce some useful notions.

As earlier, let D denote the region in which the fluid is moving. Let x ∈ D
and let us write ϕ(x, t) for the trajectory followed by the particle that is at
point x at time t = 0. We will assume ϕ is smooth enough so the following
manipulations are legitimate and for fixed t, ϕ is an invertible mapping.
Let ϕt denote the map x %→ ϕ(x, t); that is, with fixed t, this map advances
each fluid particle from its position at time t = 0 to its position at time t.
Here, of course, the subscript does not denote differentiation. We call ϕ the
fluid flow map. If W is a region in D, then ϕt(W ) = Wt is the volume
W moving with the fluid . See Figure 1.1.4.

The “primitive” integral form of balance of momentum states that

d

dt

∫

Wt

ρu dV = S∂Wt +
∫

Wt

ρb dV, (BM3)

that is, the rate of change of momentum of a moving piece of fluid equals
the total force (surface stresses plus body forces) acting on it.

These two forms of balance of momentum (BM1) and (BM3) are equiv-
alent . To prove this, we use the change of variables theorem to write

d

dt

∫

Wt

ρu dV =
d

dt

∫

W
(ρu)(ϕ(x, t), t)J(x, t) dV,
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D

W

Wt

moving fluid

t  = 0
t

Figure 1.1.4. Wt is the image of W as particles of fluid in W flow for time t.

where J(x, t) is the Jacobian determinant of the map ϕt. Because the vol-
ume is fixed at its initial position, we may differentiate under the integral
sign. Note that

∂

∂t
(ρu)(ϕ(x, t), t) =

(
D

Dt
ρu

)
(ϕ(x, t), t)

is the material derivative, as was shown earlier. (If you prefer, this equality
says that D/Dt is differentiation following the fluid.) Next, we learn how
to differentiate J(x, t).

Lemma

∂

∂t
J(x, t) = J(x, t)[div u(ϕ(x, t), t)].

Proof Write the components of ϕ as ξ(x, t), η(x, t), and ζ(x, t). First, ob-
serve that

∂

∂t
ϕ(x, t) = u(ϕ(x, t), t),

by definition of the velocity field of the fluid.
The determinant J can be differentiated by recalling that the determi-

nant of a matrix is multilinear in the columns (or rows). Thus, holding x



1.1 Euler’s Equations 9

fixed throughout, we have

∂

∂t
J =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂t

∂ξ

∂x

∂η

∂x

∂ζ

∂x

∂

∂t

∂ξ

∂y

∂η

∂y

∂ζ

∂y

∂

∂t

∂ξ

∂z

∂η

∂z

∂ζ

∂z

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂ξ

∂x

∂

∂t

∂η

∂x

∂ζ

∂x

∂ξ

∂y

∂

∂t

∂η

∂y

∂ζ

∂y

∂ξ

∂z

∂

∂t

∂η

∂z

∂ζ

∂z

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∂ξ

∂x

∂η

∂x

∂

∂t

∂ζ

∂x

∂ξ

∂y

∂η

∂y

∂

∂t

∂ζ

∂y

∂ξ

∂z

∂η

∂z

∂

∂t

∂ζ

∂z

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Now write

∂

∂t

∂ξ

∂x
=

∂

∂x

∂ξ

∂t
=

∂

∂x
u(ϕ(x, t), t),

∂

∂t

∂ξ

∂y
=

∂

∂y

∂ξ

∂t
=

∂

∂y
u(ϕ(x, t), t),

...

∂

∂t

∂ζ

∂z
=

∂

∂z

∂ζ

∂t
=

∂

∂z
w(ϕ(x, t), t).

The components u, v, and w of u in this expression are functions of x, y,
and z through ϕ(x, t); therefore,

∂

∂x
u(ϕ(x, t), t) =

∂u

∂ξ

∂ξ

∂x
+

∂u

∂η

∂η

∂x
+

∂u

∂ζ

∂ζ

∂x
,

...

∂

∂z
w(ϕ(x, t), t) =

∂w

∂ξ

∂ξ

∂z
+

∂w

∂η

∂η

∂z
+

∂w

∂ζ

∂ζ

∂z
.

When these are substituted into the above expression for ∂J/∂t, one gets
for the respective terms

∂u

∂x
J +

∂v

∂y
J +

∂w

∂z
J = (div u)J. !



10 1 The Equations of Motion

From this lemma, we get

d

dt

∫

Wt

ρu dV =
∫

W

{(
D

Dt
ρu

)
(ϕ(x, t), t) + (ρu)(div u)(ϕ(x, t), t)

}

× J(x, t) dV

=
∫

Wt

{
D

Dt
(ρu) + (ρ div u)u

}
dV,

where the change of variables theorem was again used. By conservation of
mass,

D

Dt
ρ + ρ div u =

∂ρ

∂t
+ div(ρu) = 0,

and thus
d

dt

∫

Wt

ρu dV =
∫

Wt

ρ
Du
Dt

dV.

In fact, this argument proves the following theorem.

Transport Theorem For any function f of x and t, we have

d

dt

∫

Wt

ρf dV =
∫

Wt

ρ
Df

Dt
dV.

In a similar way, one can derive a form of the transport theorem without
a mass density factor included, namely,

d

dt

∫

Wt

f dV =
∫

Wt

(
∂f

∂t
+ div(fu)

)
dV.

If W , and hence, Wt, is arbitrary and the integrands are continuous, we
have proved that the “primitive” integral form of balance of momentum is
equivalent to the differential form (BM1). Hence, all three forms of balance
of momentum—(BM1), (BM2), and (BM3)—are mutually equivalent. As
an exercise, the reader should derive the two integral forms of balance of
momentum directly from each other.

The lemma ∂J/∂t = (div u) J is also useful in understanding incompress-
ibility. In terms of the notation introduced earlier, we call a flow incom-
pressible if for any fluid subregion W ,

volume(Wt) =
∫

Wt

dV = constant in t.
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Thus, incompressibility is equivalent to

0 =
d

dt

∫

Wt

dV =
d

dt

∫

W
J dV =

∫

W
(div u)J dV =

∫

Wt

(div u) dV

for all moving regions Wt. Thus, the following are equivalent:

(i) the fluid is incompressible;

(ii) div u = 0;

(iii) J ≡ 1.

From the equation of continuity

∂ρ

∂t
+ div(ρu) = 0, i.e.,

Dρ

Dt
+ ρ div u = 0,

and the fact that ρ > 0, we see that a fluid is incompressible if and only if
Dρ/Dt = 0, that is, the mass density is constant following the fluid . If the
fluid is homogeneous, that is, ρ = constant in space, it also follows that the
flow is incompressible if and only if ρ is constant in time. Problems involving
inhomogeneous incompressible flow occur, for example, in oceanography.

We shall now “solve” the equation of continuity by expressing ρ in terms
of its value at t = 0, the flow map ϕ(x, t), and its Jacobian J(x, t). Indeed,
set f = 1 in the transport theorem and conclude the equivalent condition
for mass conservation,

d

dt

∫

Wt

ρ dV = 0

and thus, ∫

Wt

ρ(x, t)dV =
∫

W0

ρ(x, 0) dV.

Changing variables, we obtain
∫

W0

ρ(ϕ(x, t), t)J(x, t) dV =
∫

W0

ρ(x, 0) dV.

Because W0 is arbitrary, we get

ρ(ϕ(x, t), t)J(x, t) = ρ(x, 0)

as another form of mass conservation. As a corollary, a fluid that is homoge-
neous at t = 0 but is compressible will generally not remain homogeneous.
However, the fluid will remain homogeneous if it is incompressible. The
example ϕ((x, y, z), t) = ((1 + t)x, y, z) has J((x, y, z), t) = 1 + t so the
flow is not incompressible, yet for ρ((x, y, z), t) = 1/(1 + t), one has mass
conservation and homogeneity for all time.
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iii Conservation of Energy

So far we have developed the equations

ρ
Du
Dt

= − grad p + ρb (balance of momentum)

and
Dρ

Dt
+ ρ div u = 0 (conservation of mass).

These are four equations if we work in 3-dimensional space (or n + 1 equa-
tions if we work in n-dimensional space), because the equation for Du/Dt
is a vector equation composed of three scalar equations. However, we have
five functions: u, ρ, and p. Thus, one might suspect that to specify the fluid
motion completely, one more equation is needed. This is in fact true, and
conservation of energy will supply the necessary equation in fluid mechan-
ics. This situation is more complicated for general continua, and issues of
general thermodynamics would need to be discussed for a complete treat-
ment. We shall confine ourselves to two special cases here, and later we
shall treat another case for an ideal gas.

For fluid moving in a domain D, with velocity field u, the kinetic energy
contained in a region W ⊂ D is

Ekinetic =
1
2

∫

W
ρ∥u∥2 dV

where ∥u∥2 = (u2 + v2 + w2 ) is the square length of the vector function u.
We assume that the total energy of the fluid can be written as

Etotal = Ekinetic + Einternal

where Einternal is the internal energy , which is energy we cannot “see”
on a macroscopic scale, and derives from sources such as intermolecular
potentials and internal molecular vibrations. If energy is pumped into the
fluid or if we allow the fluid to do work, Etotal will change.

The rate of change of kinetic energy of a moving portion Wt of fluid is
calculated using the transport theorem as follows:

d

dt
Ekinetic =

d

dt

[
1
2

∫

Wt

ρ∥u∥2 dV

]

=
1
2

∫

Wt

ρ
D∥u∥2

Dt
dV

=
∫

Wt

ρ

(
u ·

(
∂u
∂t

+ (u ·∇)u
))

dV.
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Here we have used the following Euclidean coordinate calculation

1
2

D

Dt
∥u∥2 =

1
2

∂

∂t
(u2 + v2 + w2 ) +

1
2

(
u

∂

∂x
(u2 + v2 + w2 )

+ v
∂

∂y
(u2 + v2 + w2 ) + w

∂

∂z
(u2 + v2 + w2 )

)

= u
∂u

∂t
+ v

∂v

∂t
+ w

∂w

∂t
+ u

(
u

∂u

∂x
+ v

∂v

∂x
+ w

∂w

∂x

)

+ v

(
u

∂u

∂y
+ v

∂v

∂y
+ w

∂w

∂y

)
+ w

(
u

∂u

∂z
+ v

∂v

∂z
+ w

∂w

∂z

)

= u · ∂u
∂t

+ u · (u ·∇)u).

A general discussion of energy conservation requires more thermodynam-
ics than we shall need. We limit ourselves here to two examples of energy
conservation; a third will be given in Chapter 3.

1 Incompressible Flows

Here we assume all the energy is kinetic and that the rate of change of
kinetic energy in a portion of fluid equals the rate at which the pressure
and body forces do work:

d

dt
Ekinetic = −

∫

∂Wt

pu · n dA +
∫

Wt

ρu · b dV.

By the divergence theorem and our previous formulas, this becomes
∫

Wt

ρ

{
u ·

(
∂u
∂t

+ u ·∇u
)}

dV = −
∫

Wt

(div(pu) − ρu · b) dV

= −
∫

Wt

(u ·∇p − ρu · b) dV

because div u = 0. The preceding equation is also a consequence of balance
of momentum. This argument, in addition, shows that if we assume E =
Ekinetic, then the fluid must be incompressible (unless p = 0). In summary,
in this incompressible case, the Euler equations are:

ρ
Du
Dt

= − grad p + ρb

Dρ

Dt
= 0

div u = 0

with the boundary conditions

u · n = 0 on ∂D.
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2 Isentropic Fluids

A compressible flow will be called isentropic if there is a function w, called
the enthalpy , such that

gradw =
1
ρ

grad p.

This terminology comes from thermodynamics. We shall not need a detailed
discussion of thermodynamics concepts in this book, and so it is omitted,
except for a brief discussion of entropy in Chapter 3 in the context of ideal
gases. For the readers’ convenience, we just make a few general comments.

In thermodynamics one has the following basic quantities, each of which
is a function of x, t depending on a given flow:

p = pressure

ρ = density

T = temperature

s = entropy

w = enthalpy (per unit mass)
ϵ = w − (p/ρ) = internal energy (per unit mass).

These quantities are related by the First Law of Thermodynamics,
which we accept as a basic principle:2

dw = T ds +
1
ρ

dp (TD1)

The first law is a statement of conservation of energy; a statement equiva-
lent to (TD1) is, as is readily verified,

dϵ = T ds +
p

ρ2
dρ. (TD2)

If the pressure is a function of ρ only, then the flow is clearly isentropic
with s as a constant (hence the name isentropic) and

w =
∫ ρ p′(λ)

λ
dλ,

which is the integrated version of dw = dp/ρ (see TD1). As above, the
internal energy ϵ = w− (p/ρ) then satisfies dϵ = (pdρ)/ρ2 (see TD2) or, as
a function of ρ,

p = ρ2 ∂ε

∂p
, or ϵ =

∫ ρ p(λ)
λ2

dλ.

2A. Sommerfeld [1964] Thermodynamics and Statistical Mechanics, reprinted by Aca-
demic Press, Chapters 1 and 4.
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For isentropic flows with p a function of ρ, the integral form of energy
balance reads as follows: The rate of change of energy in a portion of fluid
equals the rate at which work is done on it :

d

dt
Etotal =

d

dt

∫

Wt

(
1
2 ρ∥u∥2 + ρϵ

)
dV

=
∫

Wt

ρu · b dV −
∫

∂Wt

pu · n dA.
(BE)

This follows from balance of momentum using our earlier expression for
(d/dt)Ekinetic, the transport theorem, and p = ρ2∂ϵ/∂ρ. Alternatively, one
can start with the assumption that p is a function of ρ and then (BE)
and balance of mass and momentum implies that p = ρ2∂ϵ/∂ρ , which is
equivalent to dw = dp/ρ, as we have seen.3

Euler’s equations for isentropic flow are thus

∂u
∂t

+ (u ·∇)u = −∇w + b,

∂ρ

∂t
+ div(ρu) = 0

in D, and
u · n = 0

on ∂D (or u · n = V · n if ∂D is moving with velocity V).
Later, we will see that in general these equations lead to a well-posed

initial value problem only if p′(ρ) > 0. This agrees with the common expe-
rience that increasing the surrounding pressure on a volume of fluid causes
a decrease in occupied volume and hence an increase in density.

Gases can often be viewed as isentropic, with

p = Aργ ,

where A and γ are constants and γ ≥ 1. Here,

w =
∫ ρ γAsγ−1

s
ds =

γAργ−1

γ − 1
and ϵ =

Aργ−1

γ − 1
.

Cases 1 and 2 above are rather opposite. For instance, if ρ = ρ0 is a
constant for an incompressible fluid, then clearly p cannot be an invertible
function of ρ. However, the case ρ = constant may be regarded as a limiting
case p′(ρ) → ∞. In case 2, p is an explicit function of ρ (and therefore

3One can carry this even further and use balance of energy and its invariance under
Euclidean motions to derive balance of momentum and mass, a result of Green and
Naghdi. See Marsden and Hughes [1994] for a proof and extensions of the result that
include formulas such as p = p2∂ε/∂p amongst the consequences as well.



16 1 The Equations of Motion

depends on u through the coupling of ρ and u in the equation of continuity);
in case 1, p is implicitly determined by the condition divu = 0. We shall
discuss these points again later.

Finally, notice that in neither case 1 or 2 is the possibility of a loss of
kinetic energy due to friction taken into account. This will be discussed at
length in §1.3.

Given a fluid flow with velocity field u(x, t), a streamline at a fixed
time is an integral curve of u; that is, if x(s) is a streamline at the instant
t, it is a curve parametrized by a variable, say s, that satisfies

dx
ds

= u(x(s), t), t fixed.

We define a fixed trajectory to be the curve traced out by a particle
as time progresses, as explained at the beginning of this section. Thus, a
trajectory is a solution of the differential equation

dx
dt

= u(x(t), t)

with suitable initial conditions. If u is independent of t (i.e., ∂tu = 0),
streamlines and trajectories coincide. In this case, the flow is called sta-
tionary.

Bernoulli’s Theorem In stationary isentropic flows and in the absence
of external forces, the quantity

1
2 ∥u∥

2 + w

is constant along streamlines. The same holds for homogeneous (ρ = con-
stant in space = ρ0 ) incompressible flow with w replaced by p/ρ0 . The
conclusions remain true if a force b is present and is conservative; i.e.,
b = −∇ϕ for some function ϕ, with w replaced by w + ϕ.

Proof From the table of vector identities at the back of the book, one
has

1
2 ∇(∥u∥2 ) = (u ·∇)u + u × (∇× u).

Because the flow is steady, the equations of motion give

(u ·∇)u = −∇w

and so
∇

(
1
2 ∥u∥

2 + w
)

= u × (∇× u).
Let x(s) be a streamline. Then

1
2

(
∥u∥2 + w

) ∣∣x(s2)

x(s1)
=

∫ x(s2)

x(s1)
∇

(
1
2 ∥u∥

2 + w
)
· x′(s) ds

=
∫ x(s2)

x(s1)
(u × (∇× u)) · x′(s) ds = 0
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because x′(s) = u(x(s)) is orthogonal to u × (∇× u). !

See Exercise 1.1-3 at the end of this section for another view of why the
combination 1

2 ∥u∥
2 + w is the correct quantity in Bernoulli’s theorem.

We conclude this section with an example that shows the limitations of
the assumptions we have made so far.

Example Consider a fluid-filled channel, as in Figure 1.1.5.

Figure 1.1.5. Fluid flow in a channel.

Suppose that the pressure p1 at x = 0 is larger than that at x = L
so the fluid is pushed from left to right. We seek a solution of Euler’s
incompressible homogeneous equations in the form

u(x, y, t) = (u(x, t), 0) and p(x, y, t) = p(x).

Incompressibility implies ∂xu = 0. Thus, Euler’s equations become ρ0∂tu =
−∂xp. This implies that ∂2

xp = 0, and so

p(x) = p1 −
(

p1 − p2

L

)
x.

Substitution into ρ0∂tu = −∂xp and integration yields

u =
p1 − p2

ρ0L
t + constant.

This solution suggests that the velocity in channel flow with a constant
pressure gradient increases indefinitely. Of course, this cannot be the case
in a real flow; however, in our modeling, we have not yet taken friction into
account. The situation will be remedied in §1.3. "

Exercises

⋄ Exercise 1.1-1 Prove the following properties of the material derivative
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(i)
D

Dt
(f + g) =

Df

Dt
+

Dg

Dt
,

(ii)
D

Dt
(f · g) = f

Dg

Dt
+ g

Df

Dt
(Leibniz or product rule),

(iii)
D

Dt
(h ◦ g) = (h′ ◦ g)

Dg

Dt
(chain rule).

⋄ Exercise 1.1-2 Use the transport theorem to establish the following
formula of Reynolds:

d

dt

∫

Wt

f(x, t) dV =
∫

Wt

∂f

∂t
(x, t) dV +

∫

∂Wt

fu · n dA.

Interpret the result physically.

⋄ Exercise 1.1-3 Consider isentropic flow without any body force. Show
that for a fixed volume W in space (not moving with the flow).

d

dt

∫

W

(
1
2 ρ∥u∥2 + ρϵ

)
dV = −

∫

∂W
ρ

(
1
2 ∥u∥

2 + w
)
u · n dA.

Use this to justify the term energy flux vector for the vector function
ρu

(
1
2 ∥u∥

2 + w
)

and compare with Bernoulli’s theorem.

1.2 Rotation and Vorticity

If the velocity field of a fluid is u = (u, v, w), then its curl,

ξ = ∇× u = (∂yw − ∂zv, ∂zu − ∂xw, ∂xv − ∂yu)

is called the vorticity field of the flow.
We shall now demonstrate that in a small neighborhood of each point

of the fluid, u is the sum of a (rigid) translation, a deformation (defined
later), and a (rigid) rotation with rotation vector ξ/2. This is in fact a
general statement about vector fields u on R 3 ; the specific features of fluid
mechanics are irrelevant for this discussion. Let x be a point in R 3 , and let
y = x + h be a nearby point. What we shall prove is that

u(y) = u(x) + D(x) · h + 1
2 ξ(x) × h + O(h2 ), (1.2.1)

where D(x) is a symmetric 3 × 3 matrix and h2 = ∥h∥2 is the squared
length of h. We shall discuss the meaning of the several terms later.

Proof of Formula (1.2.1) Let

∇u =

⎡

⎣
∂xu ∂yu ∂zu
∂xv ∂yv ∂zv
∂xw ∂yw ∂zw

⎤

⎦



1.2 Rotation and Vorticity 19

denote the Jacobian matrix of u. By Taylor’s theorem,

u(y) = u(x) + ∇u(x) · h + O(h2 ), (1.2.2)

where ∇u(x) · h is a matrix multiplication, with h regarded as a column
vector. Let

D = 1
2

[
∇u + (∇u)T

]
,

where T denotes the transpose, and

S = 1
2

[
∇u − (∇u)T

]
.

Thus,
∇u = D + S. (1.2.3)

It is easy to check that the coordinate expression for S is

S =
1
2

⎡

⎣
0 −ξ3 ξ2

ξ3 0 −ξ1

−ξ2 ξ1 0

⎤

⎦

and that
S · h = 1

2 ξ × h, (1.2.4)

where ξ = (ξ1, ξ2 , ξ3 ). Substitution of (1.2.3) and (1.2.4) into (1.2.2) yields
(1.2.1). !

Because D is a symmetric matrix,

D(x) · h = gradh ψ(x,h),

where ψ is the quadratic form associated with D; i.e.,

ψ(x,h) = 1
2 ⟨D(x) · h,h⟩,

where ⟨ , ⟩ is the inner product of R 3 . We call D the deformation tensor.
We now discuss its physical interpretation. Because D is symmetric, there
is, for x fixed, an orthonormal basis ẽ1, ẽ2 , ẽ3 in which D is diagonal:

D =

⎡

⎣
d1 0 0
0 d2 0
0 0 d3

⎤

⎦ .

Keep x fixed and consider the original vector field as a function of y. The
motion of the fluid is described by the equations

dy
dt

= u(y).

If we ignore all terms in (1.2.1) except D · h, we find

dy
dt

= D · h, i.e.,
dh
dt

= D · h.
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This vector equation is equivalent to three linear differential equations that
separate in the basis ẽ1, ẽ2 , ẽ3 :

dh̃i

dt
= dih̃i, i = 1, 2, 3.

The rate of change of a unit length along the ẽi axis at t = 0 is thus di.
The vector field D · h is thus merely expanding or contracting along each
of the axes ẽi—hence, the name “deformation.” The rate of change of the
volume of a box with sides of length h̃1, h̃2 , h̃3 parallel to the ẽ1, ẽ2 , ẽ3 axes
is

d

dt
(h̃1h̃2 h̃3 ) =

[
dh̃1

dt

]
h̃2 h̃3 + h̃1

[
dh̃2

dt

]
h̃3 + h̃1h̃2

[
dh̃3

dt

]

= (d1 + d2 + d3 )(h̃1h̃2 h̃3 ).

However, the trace of a matrix is invariant under orthogonal transforma-
tions. Hence,

d1 + d2 + d3 = trace of D = trace of 1
2

(
(∇u) + (∇u)T

)
= div u.

This confirms the fact proved in §1.1 that volume elements change at a rate
proportional to divu. Of course, the constant vector field u(x) in formula
(1.2.1) induces a flow that is merely a translation by u(x). The other term,
1
2 ξ(x) × h, induces a flow

dh
dt

= 1
2 ξ(x) × h, (x fixed).

The solution of this linear differential equation is, by elementary vector
calculus,

h(t) = R(t, ξ(x))h(0),

where R(t, ξ(x)) is the matrix that represents a rotation through an angle
t about the axis ξ(x) (in the oriented sense). Because rigid motion leaves
volumes invariant, the divergence of 1

2 ξ(x) × h is zero, as may also be
checked by noting that S has zero trace. This completes our derivation and
discussion of the decomposition (1.2.1).

We remarked in §1.1 that our assumptions so far have precluded any
tangential forces, and thus any mechanism for starting or stopping rota-
tion. Thus, intuitively, we might expect rotation to be conserved. Because
rotation is intimately related to the vorticity as we have just shown, we can
expect the vorticity to be involved. We shall now prove that this is so.

Let C be a simple closed contour in the fluid at t = 0. Let Ct be the
contour carried along by the flow. In other words,

Ct = ϕt(C),
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Ct

C

D

Figure 1.2.1. Kelvin’s circulation theorem.

where ϕt is the fluid flow map discussed in §1.1 (see Figure 1.2.1).
The circulation around Ct is defined to be the line integral

ΓCt =
∮

Ct

u · ds.

Kelvin’s Circulation Theorem For isentropic flow without external
forces, the circulation, ΓCt is constant in time.

For example, we note that if the fluid moves in such a way that Ct

shrinks in size, then the “angular” velocity around Ct increases. The proof
of Kelvin’s circulation theorem is based on a version of the transport the-
orem for curves.

Lemma Let u be the velocity field of a flow and C a closed loop, with Ct

= ϕt(C) the loop transported by the flow (Figure 1.2.1). Then

d

dt

∫

Ct

u · ds =
∫

Ct

Du
Dt

ds. (1.2.5)

Proof Let x(s) be a parametrization of the loop C, 0 ≤ s ≤ 1. Then a
parameterization of Ct is ϕ(x(s), t), 0 ≤ s ≤ 1. Thus, by definition of the
line integral and the material derivative,

d

dt

∫

Ct

u · ds =
d

dt

∫ 1

0
u(ϕ(x(s), t), t) · ∂

∂s
ϕ(x(s), t) ds

=
∫ 1

0

Du
Dt

(ϕ(x(s), t), t) · ∂

∂s
ϕ(x(s), t) ds

+
∫ 1

0
u(ϕ(x(s), t), t) · ∂

∂t

∂

∂s
ϕ(x(s), t) ds.
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Because ∂ϕ/∂t = u, the second term equals

∫ 1

0
u(ϕ(x(s), t), t) · ∂

∂s
u(ϕ(x(s), t), t) ds

=
1
2

∫ 1

0

∂

∂s
(u · u)(ϕ(x(s), t), t) ds = 0

(since Ct is closed). The first term equals
∫

Ct

Du
Dt

ds,

so the lemma is proved. !

Proof of the Circulation Theorem Using the lemma and the fact that
Du/Dt = −∇w (the flow is isentropic and without external forces), we find

d

dt
ΓCt =

d

dt

∫

Ct

u ds =
∫

Ct

Du
Dt

ds

= −
∫

Ct

∇w · ds = 0 (since Ct is closed). !

We now use Stokes’ theorem, which will bring in the vorticity. If Σ is
a surface whose boundary is an oriented closed oriented contour C, then
Stokes’ theorem yields (see Figure 1.2.2)

ΓC =
∫

C
u · ds =

∫∫

Σ
(∇× u) · n dA =

∫∫

Σ
ξ · dA.

dA = n dA

C

Σ

Figure 1.2.2. The circulation around C is the integral of the vorticity over Σ.

Thus, as a corollary of the circulation theorem, we can conclude that the
flux of vorticity across a surface moving with the fluid is constant in time.
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u

x

ξ

S

vortex sheet

flow

x

ξ

L

vortex line

Figure 1.2.3. Vortex sheets and lines remain so under the flow.

By definition, a vortex sheet (or vortex line) is a surface S (or a
curve L) that is tangent to the vorticity vector ξ at each of its points
(Figure 1.2.3).

Proposition If a surface (or curve) moves with the flow of an isentropic
fluid and is a vortex sheet (or line) at t = 0, then it remains so for all
time.

Proof Let n be the unit normal to S, so that at t = 0, ξ · n = 0 by
hypothesis. By the circulation theorem, the flux of ξ across any portion
S̃ ⊂ S at a later time is also zero, i.e.,

∫∫

S̃t

ξ · n dA = 0.

It follows that ξ · n = 0 identically on St, so S remains a vortex sheet.
One can show (using the implicit function theorem) that if ξ(x) ̸= 0,

then, locally, a vortex line is the intersection of two vortex sheets. !

Next, we show that the vorticity (per unit mass), that is, ω = ξ/ρ, is
propagated by the flow (see Figure 1.2.4). This fact can also be used to
give another proof of the preceding theorem. We assume we are in three
dimensions; the two-dimensional case will be discussed later.

Proposition For isentropic flow (in the absence of external forces) with
ξ = ∇× u and ω = ξ/ρ, we have

Dω

Dt
− (ω ·∇)u = 0 (1.2.6)
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ω at time 0

x

ω is dragged by the flow

ϕ(x,t�)

ω at time t

Figure 1.2.4. The vorticity is transported by the Jacobian matrix of the flow
map.

and
ω(ϕ(x, t), t) = ∇ϕt(x) · ω(x, 0), (1.2.7)

where ϕt is the flow map (see §1.1) and ∇ϕt is its Jacobian matrix.

Proof Start with the following vector identity (see the table of vector
identities at the back of the book)

1
2 ∇(u · u) = u × curlu + (u ·∇)u.

Substituting this into the equations of motion yields

∂u
∂t

+ 1
2 ∇(u · u) − u × curlu = −∇w.

Taking the curl and using the identity ∇×∇f = 0 gives

∂ξ

∂t
− curl(u × ξ) = 0.

Using the identity (also from the back of the book)

curl(F × G) = F div G − G div F + (G ·∇)F − (F ·∇)G

for the curl of a vector product, gives

∂ξ

∂t
− [ (u(∇ · ξ) − ξ(∇ · u) + ξ ·∇)u − (u ·∇)ξ ] = 0,

that is,
Dξ

Dt
− (ξ ·∇)u + ξ(∇ · u) = 0, (1.2.8)

since ξ is divergence free. Also,

Dω

Dt
=

D

Dt

(
ξ

ρ

)
=

1
ρ

Dξ

Dt
+

ξ

ρ
(∇ · u) (1.2.9)

by the continuity equation. Substitution of (1.2.8) into (1.2.9) yields (1.2.6).
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To prove (1.2.7), let

F(x, t) = ω(ϕ(x, t), t) and G(x, t) = ∇ϕt(x) · ω(x, 0).

By (1.2.6), ∂F/∂t = (F ·∇)u. On the other hand, by the chain rule:

∂G
∂t

= ∇
[
∂ϕ

∂t
(x, t)

]
· ω(x, 0) = ∇(u(ϕ(x, t), t)) · ω(x, 0)

= (∇u) ·∇ϕt(x) · ω(x, 0) = (G ·∇)u

Thus, F and G satisfy the same linear first-order differential equation.
Because they coincide at t = 0 and solutions are unique, they are equal. !

The reader may wish to compare (1.2.7) with the formula

ρ(x, 0) = ρ(ϕ(x, t), t)J(x, t) (1.2.10)

proved in §1.1.
As an exercise, we invite the reader to prove the preservation of vortex

sheets and lines by the flow using (1.2.7) and (1.2.10).

For two-dimensional flow, where u = (u, v, 0), ξ has only one component;
ξ = (0, 0, ξ). The circulation theorem now states that if Σt is any region in
the plane that is moving with the fluid, then

∫

Σt

ξ dA = constant in time. (1.2.11)

In fact, one can say more using (1.2.7). In two dimensions, (1.2.7) specializes
to

ξ

ρ
(ϕ(x, t), t) =

ξ

ρ
(x, 0), (1.2.7)′

that is, ξ/ρ is propagated as a scalar by the flow. Employing (1.2.10) and
the change of variables theorem gives (1.2.11) as a special case.

In three-dimensional flows, the relation (1.2.7) allows rather complicated
behavior. We shall now discuss the three-dimensional geometry a bit fur-
ther.

A vortex tube consists of a two-dimensional surface S that is nowhere
tangent to ξ, with vortex lines drawn through each point of the bounding
curve C of S. These vortex lines are integral curves of ξ and are extended
as far as possible in each direction. See Figure 1.2.5.

In fluid mechanics it is customary to be sloppy about this definition and
make tacit assumptions to the effect that the tube really “looks like” a tube.
More precisely, we assume S is diffeomorphic to a disc (i.e., related to a
disc by a one-to-one invertible differentiable transformation) and that the
resulting tube is diffeomorphic to the product of the disc and the real line.
This tacitly assumes that ξ has no zeros (of course, ξ could have zeros!).
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S

vortex line

C

Figure 1.2.5. A vortex tube consists of vortex lines drawn through points of C.

Helmholtz’s Theorem Assume the fluid is isentropic. Then

(a) If C1 and C2 are any two curves encircling the vortex tube, then
∫

C1

u · ds =
∫

C2

u · ds.

This common value is called the strength of the vortex tube.

(b) The strength of the vortex tube is constant in time, as the tube moves
with the fluid.

Proof (a) Let C1 and C2 be oriented as in Figure 1.2.6.

S

C 

C

S

V  = region enclosed

2

2

S1

1

Figure 1.2.6. A vortex tube enclosed between two curves, C1 and C2.

The lateral surface of the vortex tube enclosed between C1 and C2 is
denoted by S, and the end faces with boundaries C1 and C2 are denoted
by S1 and S2 , respectively. Since ξ is tangent to the lateral surface, S is a
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vortex sheet. Let V denote the region of the vortex tube between C1 and
C2 and Σ = S ∪ S1 ∪ S2 denote the boundary of V . By Gauss’ theorem,

0 =
∫

V
∇ · ξ dx =

∫

Σ
ξ · dA =

∫

S1∪S2

ξ · dA +
∫

S
ξ · dA.

By Stokes’ theorem
∫

C1

u · ds =
∫

S1

ξ · dA and
∫

C2

u · ds = −
∫

S2

ξ · dA,

so (a) holds. Part (b) now follows from Kelvin’s circulation theorem. !

Observe that if a vortex tube gets stretched and its cross-sectional area
decreases, then the magnitude of ξ must increase. Thus, the stretching of
vortex tubes can increase vorticity, but it cannot create it.

A vortex tube with nonzero strength cannot “end” in the interior of the
fluid. It either forms a ring (such as the smoke from a cigarette), extends to
infinity, or is attached to a solid boundary. The usual argument supporting
this statement goes like this: suppose the tube ended at a certain cross
section S, inside the fluid. Because the tube cannot be extended, we must
have ξ = 0 on C1. Thus, the strength is zero—a contradiction.

This “proof” is hopelessly incomplete. First of all, why should a vortex
tube end in a nice regular way on a surface? Why can’t it split in two, as
in Figure 1.2.7? There is no a priori reason why this sort of thing cannot
happen unless we merely exclude it by tacit assumption.4 . In particular,
note that the assertion often made that a vortex line cannot end in the
fluid is clearly false if we allow ξ to have zeros and probably is false even
if ξ has no zeros (an orbit of a vector field can wander around forever
without accumulating at an endpoint—as with a line with irrational slope
on a torus)

Thus, our assertion about vortex tubes “ending” is correct if we interpret
“ending” properly. But the reader is cautioned that this may not be all that
can happen, and that this time-honored statement is not at all a proved
theorem.

The difference between the two-dimensional and three-dimensional con-
servation laws for vorticity is very important. The conservation of vorticity
(1.2.7)′ in two dimensions is a helpful tool in establishing a rigorous theory
of existence and uniqueness of the Euler (and later Navier–Stokes) equa-
tions. The lack of the same kind of conservation in three dimensions is a
major obstacle to the rigorous understanding of crucial properties of the
solutions of the equations of fluid dynamics. The main point here is to get
existence theorems for all time. At the moment, it is known only in two
dimension that all time smooth solutions exist.

4H. Lamb [1895] Mathematical Theory of the Motion of Fluids, Cambridge Univ.
Press, p. 149.
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this vortex line ends at P

S

a zero of ξ

C1C
C2

P

Figure 1.2.7. Can this be a vortex tube generated by S? Is the circulation around
C1 equal to that around C2?

Our last main goal in this section is to develop the vorticity equation
somewhat further for the important special case of incompressible flow. For
two-dimensional homogeneous incompressible flow, the vorticity equa-
tion is

Dξ

Dt
= ∂tξ + (u ·∇)ξ = 0, (1.2.12)

where ξ = ξ(x, y, t) = ∂xv−∂yu is the (scalar) vorticity field of the flow and
u, v are the components of u. Assume that the flow is contained in some
plane domain D with a fixed boundary ∂D, with the boundary condition

u · n = 0 on ∂D, (1.2.13)

where n is the unit outward normal to ∂D. Let us assume D is simply
connected (i.e., has no “holes”). Then, by incompressibility, ∂xu = −∂yv,
and so from vector calculus there is a scalar function ψ(x, y, t) on D unique
up to an additive constant such that

u = ∂yψ and v = −∂xψ. (1.2.14)

The function ψ is the stream function for fixed t; streamlines lie on level
curves of ψ. Indeed, let (x(s), y(s)) be a streamline, so x′ = u(x, y) and
y′ = v(x, y). Then

d

ds
ψ(x(s), y(s), t) = ∂xψ · x′ + ∂yψ · y′ = −vu + uv = 0.

In particular, by (1.2.13), ∂D lies on a level curve of ψ, and we can adjust
the constant so that

ψ(x, y, t) = 0 for (x, y) ∈ ∂D.

This convention and (1.2.14) determine ψ uniquely. (∂D need not be a
whole streamline, but can be composed of streamlines separated by zeros
of u, that is, by stagnation points.) The scalar vorticity is now given by

ξ = ∂xv − ∂yu = −∂2
xψ − ∂2

yψ = −∆ψ,
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where ∆ = ∂2
x + ∂2

y is the Laplace operator in the plane.
We can summarize the equations for ξ for two-dimensional incompressible

flow as follows:

Dξ
Dt ≡ ∂tξ + (u ·∇)ξ = 0,

∆ψ = −ξ,

with
ψ = 0 on ∂D,

and with
u = ∂yψ and v = −∂xψ.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.2.15)

These equations completely determine the flow. Note that given ξ, the
function ψ is determined by ∆ψ = −ξ and the boundary conditions, and
hence u by the last equations in (1.2.15). Thus, ξ completely determines
∂tξ and hence the evolution of ξ and, through it, ψ and u.

Another remark is useful:

(u ·∇)ξ = u∂xξ + v∂yξ = (∂yψ)(∂xξ) − (∂xψ)(∂yξ)

= det
[

∂xξ ∂yξ
∂xψ ∂yψ

]
= J(ξ, ψ),

the Jacobian of ξ and ψ. Thus, the flow is stationary (time independent) if
and only if ξ and ψ are functionally dependent. (If functional dependence
holds at one instant it will hold for all time as a consequence.)

Example Suppose at t = 0 the stream function ψ(x, y) is a function
only of the radial distance r = (x2 + y2 )1/2 . Thus, the streamlines are
concentric circles. Write ψ(x, y) = ψ(r) and assume ψr > 0. The velocity
vector is given by

u = ∂yψ = ∂rψ∂yr =
y

r
∂rψ, (1.2.16)

v = −∂xψ = −∂rψ∂xr = −x

r
∂rψ, (1.2.17)

that is, u is tangent to the circle of radius r with magnitude |∂rψ| and
oriented clockwise if ψr > 0 and counterclockwise if ψr < 0. Next, observe
that

ξ = −∆ψ = −1
r

∂

∂r

(
r
∂ψ

∂r

)
,

a function of r alone. Because ψr ̸= 0, r is a function of ψ so ξ is also
a function of ψ. Thus, J(ξ, ψ) = 0. Hence, motion in concentric circles
with u defined as above is a solution of the two-dimensional stationary
incompressible equations of ideal flow.
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For three-dimensional incompressible ideal flow, the analogue of (1.2.15)
is

Dξ

Dt
− (ξ ·∇)u = 0,

∆A = −ξ, div A = 0,

u = ∇× A.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
(1.2.18)

Here we used ∇ ·u = 0 to write u = ∇×A, where div A = 0. (This requires
not that D be simply connected, but that it not have any “solid holes” in
it; for instance, if D is convex, this will hold.) Then

ξ = curlu = curl(curlA) = −∆A + ∇(div A) = −∆A.

One of the troubles with (1.2.18) is that given ξ, the vector field A is not
uniquely determined (we cannot impose boundary condition such as A = 0
on ∂D because A need not be constant on ∂D as was the case with ψ). "

Exercises

⋄ Exercise 1.2-1 Derive a formula akin to the transport theorem and
Kelvin’s circulation theorem for

d

dt

∫

St

v · n dA,

where St is a moving surface and v is a vector field.

⋄ Exercise 1.2-2 Couette flow. Let Ω be the region between two concen-
tric cylinders of radii R1 and R2 , where R1 < R2 . Define v in cylindrical
coordinates by

vr = 0, vz = 0,

and
vθ =

A

r
+ Br,

where
A = −R2

1R
2
2 (ω2 − ω1)

R2
2 − R1

2

and B = −R2
1 ω1 − R2

2 ω2

R2
2 − R2

1

.

Show that

(i) v is a stationary solution of Euler’s equations with ρ = 1;

(ii) ω = ∇× v = (0, 0, 2B);

(iii) the deformation tensor is

D = − A

r2

[
0 1
1 0

]

and discuss its physical meaning;
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(iv) the angular velocity of the flow on the two cylinders is ω1 and ω2 .

1.3 The Navier–Stokes Equations

In §1.1 we defined an ideal fluid as one in which forces across a surface were
normal to that surface. We now consider more general fluids. To understand
the need for the generalization beyond the examples already given, consider
the situation shown in Figure 1.3.1. Here the velocity field u is parallel to
a surface S but jumps in magnitude either suddenly or rapidly as we cross
S. If the forces are all normal to S, there will be no transfer of momentum
between the fluid volumes denoted by B and B′ in Figure 1.3.1. However, if
we remember the kinetic theory of matter, we see that this is actually un-
reasonable. Faster molecules from above S will diffuse across S and impart
momentum to the fluid below, and, likewise, slower molecules from below
S will diffuse across S to slow down the fluid above S. For reasonably fast
changes in velocity over short distance, this effect is important.5

B

B'

S

u

u

Figure 1.3.1. Faster molecules in B′ can diffuse across S and impart momentum
to B.

We thus change our previous definition. Instead of assuming that

force on S per unit area = −p(x, t)n,

where n is the normal to S, we now assume that

force on S per unit area = −p(x, t)n + σ(x, t) · n, (1.3.1)

where σ is a matrix called the stress tensor, about which some assump-
tions will have to be made. The new feature is that σ·n need not be parallel
to n. The separation of the forces into pressure and other forces in (1.3.1)
is somewhat ambiguous because σ ·n may contain a component parallel to
n. This issue will be resolved later when we give a more definite functional
form to σ.

5For more information, see J. Jeans [1867] An Introduction to the Kinetic Theory of
Gases, Cambridge Univ. Press.



32 1 The Equations of Motion

As before, Newton’s second law states that the rate of change of any
moving portion of fluid Wt equals the force acting on it (balance of mo-
mentum):

d

dt

∫

Wt

ρu dV = −
∫

∂Wt

(p · n − σ · n) dA

(compare (BM3) in §1.1). Thus, we see that σ modifies the transport
of momentum across the boundary of Wt. We will choose σ so that it
approximates in a reasonable way the transport of momentum by molecular
motion.

One can legitimately ask why the force (1.3.1) acting on S should be a
linear function of n. In fact, if one just assumes the force is a continuous
function of n, then, using balance of momentum, one can prove it is linear
in n. This result is called Cauchy’s Theorem .6

Our assumptions on σ are as follows:

1. σ depends linearly on the velocity gradients ∇u that is, σ is related
to ∇u by some linear transformation at each point.

2. σ is invariant under rigid body rotations, that is, if U is an orthogonal
matrix,

σ(U ·∇u · U−1) = U · σ(∇u) · U−1.

This is reasonable, because when a fluid undergoes a rigid body ro-
tation, there should be no diffusion of momentum.

3. σ is symmetric. This property can be deduced as a consequence of
balance of angular momentum.7

Since σ is symmetric, if follows from properties 1 and 2 that σ can depend
only on the symmetric part of ∇u; that is, on the deformation D. Because
σ is a linear function of D, σ and D commute and so can be simultaneously
diagonalized. Thus, the eigenvalues of σ are linear functions of those of D.
By property 2, they must also be symmetric because we can choose U to
permute two eigenvalues of D (by rotating through an angle π/2 about an
eigenvector), and this must permute the corresponding eigenvalues of σ.
The only linear functions that are symmetric in this sense are of the form

σi = λ(d1 + d2 + d3 ) + 2µdi, i = 1, 2, 3,

where σi are the eigenvalues of σ, and di are those of D. This defines the
constants λ and µ. Recalling that d1 +d2 +d3 = div u, we can use property
2 to transform σi back to the usual basis and deduce that

σ = λ(div u)I + 2µD, (1.3.2)

6For a proof and further references, see, for example, Marsden and Hughes [1994].
7Op. cit.
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where I is the identity. We can rewrite this by putting all the trace in one
term:

σ = 2µ[D − 1
3 (div u)I] + ζ(div u)I (1.3.2)′

where µ is the first coefficient of viscosity , and ζ = λ + 2
3 µ is the

second coefficient of viscosity.
If we employ the transport theorem and the divergence theorem, as we

did in connection with (BM3), balance of momentum yields the Navier–
Stokes equations,

ρ
Du
Dt

= −∇p + (λ + µ)∇(div u) + µ∆u (1.3.3)

where
∆u =

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
u

is the Laplacian of u. Together with the equation of continuity and an
energy equation, (1.3.3) completely describes the flow of a compressible
viscous fluid.

In the case of incompressible homogeneous flow ρ = ρ0 = constant, the
complete set of equations becomes the Navier–Stokes equations for
incompressible flow,

Du
Dt

= − grad p′ + ν∆u

div u = 0
(1.3.4)

where ν = µ/ρ0 is the coefficient of kinematic viscosity , and p′ = p/ρ0 .
These equations are supplemented by boundary conditions. For Euler’s

equations for ideal flow we use u · n = 0, that is, fluid does not cross the
boundary but may move tangentially to the boundary. For the Navier–
Stokes equations, the extra term ν∆u raises the number of derivatives
of u involved from one to two. For both experimental and mathematical
reasons, this is accompanied by an increase in the number of boundary
conditions. For instance, on a solid wall at rest we add the condition that
the tangential velocity also be zero (the “no-slip condition”), so the full
boundary conditions are simply

u = 0 on solid walls at rest.

The mathematical need for extra boundary conditions hinges on their
role in proving that the equations are well posed; that is, that a unique
solution exists and depends continuously on the initial data. In three di-
mensions, it is known that smooth solutions to the incompressible equations
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exist for a short time and depend continuously on the initial data.8 It is a
major open problem in fluid mechanics to prove or disprove that solutions
of the incompressible equations exist for all time. In two dimensions, solu-
tions are known to exist for all time, for both viscous and inviscid flow9 . In
any case, adding the tangential boundary condition is crucial for viscous
flow.

The physical need for the extra boundary conditions comes from sim-
ple experiments involving flow past a solid wall. For example, if dye is
injected into flow down a pipe and is carefully watched near the bound-
ary, one sees that the velocity approaches zero at the boundary to a high
degree of precision. The no-slip condition is also reasonable if one contem-
plates the physical mechanism responsible for the viscous terms, namely,
molecular diffusion. Our opening example indicates that molecular inter-
action between the solid wall with zero tangential velocity (or zero average
velocity on the molecular level) should impart the same condition to the
immediately adjacent fluid.

Another crucial feature of the boundary condition u = 0 is that it pro-
vides a mechanism by which a boundary can produce vorticity in the fluid.
We shall describe this in some detail in Chapter 2.

Next, we shall discuss some scaling properties of the Navier–Stokes equa-
tions with the aim of introducing a parameter (the Reynolds number) that
measures the effect of viscosity on the flow.

For a given problem, let L be a characteristic length and U a char-
acteristic velocity . These numbers are chosen in a somewhat arbitrary
way. For example, if we consider flow past a sphere, L could be either the
radius or the diameter of the sphere, and U could be the magnitude of the
fluid velocity at infinity. L and U are merely reasonable length and velocity
scales typical of the flow at hand. Their choice then determines a time scale
by T = L/U .

We can measure x,u, and t as fractions of these scales, by changing
variables and introducing the following dimensionless quantities

u′ =
u
U

, x′ =
x
L

, and t′ =
t

T
.

The x component of the (homogeneous) incompressible Navier–Stokes
equation is

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ0

∂p

∂x
+ ν

[
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

]
.

8For a review of much of what is known, see O. A. Ladyzhenskaya [1969] The Mathe-
matical Theory of Viscous Incompressible Flow , Gordon and Breach. See also R. Temam
[1977] Navier–Stokes Equations, North Holland.

9Op. cit. and W. Wolibner, Math. Zeit. 37 [1933], 698–726; V. Judovich, Mat. Sb.
N.S. 64 [1964], 562–588; and T. Kato, Arch. Rational Mech. Anal. 25 [1967], 188–200.
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The change of variables produces

∂(u′U)
∂t′

∂t′

∂t
+ Uu′ ∂(u′U)

∂x′
∂x′

∂x
+ Uv′

∂(u′U)
∂y′

∂y′

∂y
+ Uw′ ∂(u′U)

∂z′
∂w′

∂z

= − 1
ρ0

∂p

∂x′
∂x′

∂x
+ ν

[
∂2 (u′U)
∂(Lx′)2

+
∂2 (u′U)
∂(Ly′)2

+
∂2 (u′U)
∂(Lz′)2

]
,

[
U 2

L

] [
∂u′

∂t′
+ u′ ∂u′

∂x′ + v′
∂u′

∂y′ + w′ ∂u′

∂z′

]

= −
[
U 2

L

]
∂(p/(ρ0U 2 ))

∂x′ +
[

U

L2

]
ν

[
∂2u′

∂x′2 +
∂2u′

∂y′2 +
∂2u′

∂z′2

]
.

Similar equations hold for the y and z components. If we combine all
three components and divide out by U 2/L, we obtain

∂u′

∂t′
+ (u′ ·∇′)u′ = − gradp′ +

ν

LU
∆′u′, (1.3.5)

where p′ = p/(ρ0U 2 ). Incompressibility still reads

div u′ = 0.

The equations (1.3.5) are the Navier–Stokes equations in dimensionless
variables. We define the Reynolds number R to be the dimensionless
number

R =
LU

ν
.

For example, consider two flows past two spheres centered at the origin
but with differing radii, one with a fluid where U∞ = 10 km/hr past a
sphere of radius 10 m and the other with the same fluid but with U∞ =
100 km/hr and radius = 1 m. If we choose L to be the radius and U to
be the velocity U∞ at infinity, then the Reynolds number is the same for
each flow. The equations satisfied by the dimensionless variables are thus
identical for the two flows.

Two flows with the same geometry and the same Reynolds number are
called similar . More precisely, let u1 and u2 be two flows on regions D1

and D2 that are related by a scale factor λ so that L1 = λL2 . Let choices
of U1 and U2 be made for each flow, and let the viscosities be ν1 and ν2

respectively. If

R1 = R2 , i.e.,
L1U1

ν1
=

L2U2

ν2
,

then the dimensionless velocity fields u′
1 and u′

2 satisfy exactly the same
equation on the same region. Thus, we can conclude that u1 may be ob-
tained from a suitably rescaled solution u2 ; in other words, u1 and u2 are
similar.
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This idea of the similarity of flows is used in the design of experimental
models. For example, suppose we are contemplating a new design for an
aircraft wing and we wish to know the behavior of a fluid flow around it.
Rather than build the wing itself, it may be faster and more economical to
perform the initial tests on a scaled-down version. We design our model so
that it has the same geometry as the full-scale wing and we choose values
for the undisturbed velocity, coefficient of viscosity, and so on, such that
the Reynolds number for the flow in our experiment matches that of the
actual flow. We can then expect the results of our experiment to be relevant
to the actual flow over the full-scale wing.

We shall be especially interested in cases where R is large. We stress
that one cannot say that if ν is small, then viscous effects are unimportant,
because such a comment fails to consider the other dimensions of the prob-
lem, that is, “ν is small” is not a physically meaningful statement unless
some scaling is chosen, but “1/R is small” is a meaningful statement.

As with incompressible ideal flow, the pressure p in incompressible vis-
cous flow is determined through the equation divu = 0. We now shall
explore the role of the pressure in incompressible flow in more depth. Let
D be a region in space (or in the plane) with smooth boundary ∂D.

We shall use the following decomposition theorem.

Helmholtz–Hodge Decomposition Theorem A vector field w on D
can be uniquely decomposed in the form

w = u + grad p, (1.3.6)

where u has zero divergence and is parallel to ∂D; that is, u ·n = 0 on ∂D.

Proof First of all, we establish the orthogonality relation
∫

D
u · grad p dV = 0.

Indeed, by the identity

div(pu) = (div u)p + u · grad p,

the divergence theorem, and div u = 0, we get
∫

D
u · grad p dV =

∫

D
div(pu) dV =

∫

∂D
pu · n dA = 0,

because u · n = 0 on ∂D. We use this orthogonality to prove uniqueness.
Suppose the w = u1 + grad p1 = u2 + grad p2 . Then

0 = u1 − u2 + grad(p1 − p2 ).



1.3 The Navier–Stokes Equations 37

Taking the inner product with u1 − u2 and integrating, we get

0 =
∫

D

{
∥u1 − u2∥2 + (u1 − u2 ) · grad(p1 − p2 )

}
dV =

∫

D
∥u1 − u2∥2 dV

by the orthogonality relation. It follows that u1 = u2 , and so, grad p1 =
grad p2 (which is the same thing as p1 = p2 + constant).

If w = u + grad p, notice that div w = div grad p = ∆p and that w ·n =
n · grad p. We use this remark to prove existence. Indeed, given w, let p be
defined by the solution to the Neumann problem

∆p = div w in D, with
∂p

∂n
= w · n on ∂D.

It is known10 that the solution to this problem exists and is unique up to
the addition of a constant to p. With this choice of p, define u = w−grad p.
Then, clearly u has the desired properties div u = 0, and also u · n = 0 by
construction of p. !

The situation is shown schematically in Figure 1.3.2.

gradient fields

vector fields that are divergence
free and parallel to the boundary

Figure 1.3.2. Decomposing a vector field into a divergence-free and gradient
part.

It is natural to introduce the operator P, an orthogonal projection op-
erator, which maps w onto its divergence-free part u. By the preceding
theorem, P is well defined. Notice that by construction P is a linear opera-
tor and that

w = Pw + grad p. (1.3.7)

Also notice that
Pu = u

10See R. Courant and D. Hilbert [1953], Methods of Mathematical Physics, Wiley.
The equation ∆p = f, ∂p/∂n = g has a solution unique up to a constant if and only if∫

D fdV =
∫

∂D g dA. The divergence theorem ensures that this condition is satisfied in
our case.
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provided divu = 0 and u · n = 0, and that

P(grad p) = 0.

Now we apply these ideas to the incompressible Navier–Stokes equations
(1.3.5). If we apply the operator P to both sides, we obtain

P(∂tu + grad p) = P
(
−(u ·∇)u +

1
R

∆u
)

.

Because u is divergence-free and vanishes on the boundary, the same is
true of ∂tu (if u is smooth enough). Thus, by (1.3.7), P∂tu = ∂tu. Because
P(grad p) = 0, we get

∂tu = P
(
−u ·∇u +

1
R

∆u
)

. (1.3.8)

Although ∆u is divergence free, it need not be parallel to the boundary
and so we cannot simply write P∆u = 0. This form (1.3.8) of the Navier–
Stokes equations eliminates the pressure and expresses ∂tu in terms of u
alone. The pressure can then be recovered as the gradient part of

−u ·∇u +
1
R

∆u.

This form (1.3.8) of the equations is not only of theoretical interest, shed-
ding light on the role of the pressure, but is of practical interest for numer-
ical algorithms.11

The pressure in compressible flows is conceptually different than in in-
compressible flows just as it was in ideal flow. If we think of viscous flow as
ideal flow with viscous effects added on, it is not unreasonable to assume
that p is still a function of ρ.

A note of caution is appropriate here. The expressions for p(ρ) used
in practical situations are often borrowed from the science of equilibrium
thermodynamics. It is not obvious that p as defined here (through equation
(1.3.1)) is identical to p as defined in that other science. Not all quantities
called p are equal. The use of expressions from equilibrium thermodynamics
requires an additional physical justification, which is indeed often available,
but which should not be forgotten.

According to the analysis given earlier, the pressure p in incompressible
flow is determined by the equation of continuity divu = 0. To see why this

11See, for instance, A. J. Chorin, Math. Comp. 23 [1969], 341-353 for algorithms,
and D. Ebin and J. E. Marsden, Ann. of Math. 92 [1970], 102–163 for a theoretical
investigation of the projection operator and the use of material coordinates.
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is physically reasonable, consider a compressible flow with p = p(ρ), where
p′(ρ) > 0. If fluid flows into a given fixed volume V , the density in V will
increase, and if p′(ρ) > 0, then p in V will also increase. If either the change
in ρ is large enough or p′(ρ) is large enough, −grad p at the boundary of
V will begin to point away from V , and through the term −grad p in the
equation for ∂tu, this will cause the fluid to flow away from V . Thus, the
pressure controls and moderates the variations in density. If the density is
to remain invariant, this must be accomplished by an appropriate p, that
is, div u = 0 determines p.

In the Navier–Stokes equations for a viscous incompressible fluid, namely,

∂tu + (u ·∇)u = −∇p +
1
R

∆u,

we call
1
R

∆u, the diffusion or dissipation term,

and
(u ·∇)u, the inertia or convective term.

The equations say that u is convected subject to pressure forces and, at the
same time, is dissipated. Suppose R is very small. If we write the equations
in the form ∂tu = P(−u ·∇u + 1

R∆u), we see that they are approximated
by

∂tu = P
(

1
R

∆u
)

,

that is,

∂tu = − grad p +
1
R

∆u and div u = 0,

which are the Stokes’ equations for incompressible flow. These are lin-
ear equations of “parabolic” type. For small R (i.e., slow velocity, large
viscosity, or small bodies), the solution of the Stokes equation provides a
good approximation to the solution of the Navier–Stokes equations. Later,
we shall mostly be interested in flows with the large R; for these the in-
ertial term is important and in some sense is dominant. We hesitate and
say “in some sense” because no matter how small (1/R)∆u may be, it still
produces a large effect, namely, the change in boundary conditions from
u · n = 0 when (1/R)∆u is absent to u = 0 when it is present.

There is a major difference between the ideal and viscous flow with regard
to the energy of the fluid. The viscous terms provide a mechanism by
which macroscopic energy can be converted into internal energy. General
principles of thermodynamics state that this energy transfer is one-way. In
particular, for incompressible flow, we should have

d

dt
Ekinetic ≤ 0. (1.3.9)
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We calculate (d/dt)Ekinetic for incompressible viscous flow using the
transport theorem, as we did in §1.1. We get

d

dt
Ekinetic =

d

dt
1
2

∫

D
ρ∥u∥2dV =

∫

D
ρu · Du

Dt
dV

=
∫

D

(
−u ·∇p +

1
R

u · ∆u
)

dV,

by (1.3.3) and divu = 0. Because u is orthogonal to grad p, we get

d

dt
Ekinetic =

1
R

∫

D
u · ∆u dV.

The vector identity div(fV) = f div V + V ·∇f gives

∇ · (u∇u + v∇v + w∇w)
= ∇u ·∇u + ∇v ·∇v + ∇w ·∇w + u∆u + v∆v + w∆w.

This equation, the divergence theorem, and the boundary condition u = 0
on ∂D enable us to simplify the expression for (d/dt)Ekinetic to

d

dt
Ekinetic = −µ

∫

D
∥∇u∥2 dV, (1.3.10)

where ∥∇u∥2 = ∇u ·∇u = ∥∇u∥2 + ∥∇v∥2 + ∥∇w∥2 . Notice that (1.3.9)
and (1.3.10) are compatible exactly when µ ≥ 0 (or, equivalently, ν ≥ 0 or
0 < R ≤ ∞). In other words, there is no such thing as “negative viscosity.”

A similar analysis for compressible flow and making use of (1.3.2)’ leads
to the inequalities

µ ≥ 0 and λ + 2
3 µ ≥ 0

and with σ given by (1.3.2).12
At the end of §1.1 we noted that ideal flow in a channel leads to unrea-

sonable results. We now reconsider this example with viscous effects.

Example Consider stationary viscous incompressible flow between two
stationary plates located at y = 0 and y = 1, as shown in Figure 1.3.3. We
seek a solution for which u(x, y) = (u(x, y), 0) and p is only a function of
x, with p1 = p(0), p2 = p(L), and p1 > p2 , so the fluid is “pushed” in the
positive x direction. The incompressible Navier–Stokes equations are

∂xu = 0 (incompressibility)

and

0 = −u ∂xu − ∂xp +
1
R

[
∂2

xu + ∂2
yu

]

12See, for example, S. Chapman and T. G. Cowling, The Mathematical Theory of
Non-uniform Gases, Cambridge University Press, 1958.



1.3 The Navier–Stokes Equations 41

with boundary conditions u(x, 0) = u(x, 1) = 0. Because ∂xu = 0, u is only
a function of y and thus, writing u(x, y) = u(y), we obtain

p′ =
1
R

u′′.

flow direction

pressure = p pressure = p
x

y

x �= Lx �= 0

y �= 0

y �= 1
fixed wall

fixed wall
21

Figure 1.3.3. Flow between two parallel plates; the fluid is pushed from left to
right and correspondingly, p1 > p2.

Because each side depends on different variables,

p′ = constant,
1
R

u′′ = constant.

Integration gives

p(x) = p1 −
∆p

L
x, ∆p = p1 − p2 ,

and

u(y) = y(1 − y)R
∆p

2L
.

Notice that the velocity profile is a parabola (Figure 1.3.4).
The presence of viscosity allows the pressure forces to be balanced by

the term 1
Ru′′(y) and allows the fluid to achieve a stationary state. We saw

that this was not possible for ideal flow. "

Next we consider the vorticity equation for (homogeneous) viscous in-
compressible flow. In the two-dimensional case we proved in §1.2 (see
equation (1.2.12)) that for isentropic ideal plane flow, Dξ/Dt = 0. The
derivation is readily modified to cover viscous incompressible flow; the re-
sult is

Dξ

Dt
=

1
R

∆ξ. (1.3.11)

This shows that the vorticity is diffused by viscosity as well as being tran-
ported by the flow. Introduce the stream function ψ(x, y, t) by means of
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x

y

u(y)

y = 1

Figure 1.3.4. Viscous flow between two plates.

(1.2.15)2 and (1.2.15)3 as before. We saw that we could impose the bound-
ary condition ψ = 0 on ∂D. Now, however, the no-slip condition u = 0 on
∂D implies that

∂xψ = 0 = ∂yψ on ∂D

by (1.2.15)3 . Because ψ = 0 on ∂D implies that the tangential derivative
of ψ on ∂D vanishes, we get the extra boundary condition

∂ψ

∂n
= 0 on ∂D

This extra condition should be somewhat mystifying; certainly we cannot
impose it when we solve ∆ψ = −ξ, ψ = 0 on ∂D, because this problem
already has a solution. Thus, it is not clear how to get the system

Dξ

Dt
=

1
R

∆ξ,

∆ψ = −ξ, ψ = 0 on ∂D,

u = ∂yψ, v = −∂xψ

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1.3.12)

to work. We shall study this problem in §2.2.

For three-dimensional viscous incompressible flow, the vorticity equation
is

Dξ

Dt
− (ξ ·∇)u =

1
R

∆ξ. (1.3.13)

Thus, vorticity is convected, stretched, and diffused. (The left-hand side of
(1.3.13) is called the Lie derivative . It is this combination, rather than
each term separately , that makes coordinate independent sense.) Here the
problems with getting a system like (1.3.12) are even worse; even in the
isentropic case we had trouble with (1.2.16) because of boundary condi-
tions.

For viscous flow, circulation is no longer a constant of the motion. One
might suspect from (1.3.13) that if ξ = 0 at t = 0, then ξ = 0 for all time.
However, this is not true: viscous flow allows for the generation of vorticity.
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This is possible because of the difference in boundary conditions between
ideal and viscous flows. The mechanism of vorticity generation is related
to the difficulties with the boundary conditions in equations (1.3.12) and
will be discussed in §2.2.

For many of our discussions we have made the assumption of incompress-
ibility. We now give a heuristic analysis of when such an assumption will be
reasonable and when, instead, the compressible equations should be used.
We shall do this in the context of isentropic stationary flows for simplicity.
Assume that we have an equation of state

p = p(ρ), p′(ρ) > 0.

Define
c =

√
p′(ρ).

For reasons that will become clear later, c is called the sound speed of
the fluid. Thus, we have

c2dρ = dp. (1.3.14)

Let u = ∥u∥ be the flow speed. One calls M = u/c the (local) Mach
number of the flow; it is a function of position in the flow. From Bernoulli’s
theorem proved in §1.1,

u2

2
+

∫
dp

ρ(p)
= constant on streamlines. (1.3.15)

Also, differentiating the continuity equation in the form (1.2.10) along
streamlines gives

0 = Jdρ + ρ dJ, (1.3.16)

where J is the Jacobian of the flow map. Combining (1.3.14), (1.3.15), and
(1.3.16) we get

dJ

J
= −M

du

c
.

The flow will be approximately incompressible if J changes only by a small
amount along streamlines. Thus, a steady flow can be viewed as incom-
pressible if the flow speed is much less than the sound speed,

u ≪ c, i.e., M ≪ 1,

or if changes in the speed along streamlines are very small compared to the
sound speed.

For example, for equations of state of the kind associated with ideal
gases,

p = Aργ , γ > 1,



44 1 The Equations of Motion

we have

c =
√

γp

ρ

so the flow will be approximately incompressible if γ is very large.
For nonsteady flow one also needs to know that

l

τ
≪ c,

where l is a characteristic length and τ is a characteristic time over which
the flow picture changes appreciably.13 The presence of viscosity does not
alter these conclusions significantly.

Exercises

⋄ Exercise 1.3-1 Find a stationary viscous incompressible flow in a circular
pipe with radius a > 0 and with pressure gradient ∇p.

⋄ Exercise 1.3-2 Show that the incompressible Navier–Stokes equations
in cylindrical coordinates are

(i) ρ

(
Dvr

Dt
− v2

θ

r

)
= ρfr −

∂p

∂r
+ µ

(
∆vr −

vr

r2
− 2

r2

∂vθ

∂θ

)
.

(ii) ρ

(
Dvθ

Dt
+

vrvθ

r

)
= ρfθ −

1∂p

r∂θ
+ µ

(
∆vθ +

2∂v2

r2∂θ
− vθ

r2

)
.

(iii) ρ
Dvz

Dt
= ρfz −

∂p

∂z
+ µ∆vz,

where ∆ =
1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂2

∂θ2
+

∂2

∂z2

and
D

Dt
=

∂

∂t
+ vr

∂

∂r
+

vθ

r

∂

∂θ
+ vz

∂

∂z
.

⋄ Exercise 1.3-3 Flow in an infinite pipe.

(i) Poiseuille flow . Work in cylindrical coordinates with a pipe of ra-
dius a aligned along the z-axis. The no-slip boundary condition is

13Theoretical work on the limit c → ∞ is given by D. Ebin, Ann. Math. 141 [1977],
105, and S. Klainerman and A. Majda, Comm. Pure Appl. Math., 35 [1982], 629. Algo-
rithms for solving the equations for incompressible flow by exploiting the regularity of
the limit c → ∞ can be found in A. J. Chorin, J. Comp. Phys.12 [1967], 1.
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v = 0 when r = a. Assume the solution takes the form p = Cz, C
constant, vz = vz(r), and vr = vθ = 0. Using Exercise 1.3-2, obtain

C = µ∆vz = µ

(
1
r

∂

∂r

(
r
∂vz

∂r

))
.

Integration yields

vz = − C

4µ
r2 + A log r + B,

where A, B are constants. Because we require that the solution be
bounded, A must be 0, because log r → −∞ as r → 0. Use the
no-slip condition to determine B and obtain

vz =
C

4µ
(a2 − r2 ).

(ii) Show that the mass flow rate Q =
∫

s ρvz dA through the pipe is
Q = ρπCa4/8µ. This is the so-called fourth-power law.

(iii) Determine the pressure on the walls.

⋄ Exercise 1.3-4 Compute the solution to the problem of stationary vis-
cous flow between two concentric cylinders and determine the pressure on
the walls. (Hint: Proceed as above, but retain the log term.)
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2
Potential Flow
and Slightly Viscous Flow

The goal of this chapter is to present a deeper study of the relationship
between viscous and nonviscous flows. We begin with a more detailed study
of inviscid irrotational flows, that is, potential flows. Then we go on to
study boundary layers, where the main difference between slightly viscous
and inviscid flows originates.

This is further developed in the third section using probabilistic methods.
For most of this chapter we will study incompressible flows. A detailed
study of some special compressible flows is the subject of Chapter 3.

2.1 Potential Flow

Throughout this section, all flows are understood to be ideal (i.e., invis-
cid); in other words, either incompressible and nonviscous or isentropic
and nonviscous. Although we allow both, our main emphasis will be on the
incompressible case.

A flow with zero vorticity is called irrotational . For ideal flow, this
holds for all time if it holds at one time by the results of §1.2. An inviscid,
irrotational flow is called a potential flow . A domain D is called simply
connected if any continuous closed curve in D can be continuously shrunk
to a point without leaving D. For example, in space, the exterior of a solid
sphere is simply connected, whereas in the plane the exterior of a solid disc
is not simply connected.
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For irrotational flow in a simply connected region D, there is a scalar
function ϕ(x, t) on D called the velocity potential such that for each t,
u = gradϕ. In particular, it follows that the circulation around any closed
curve C in D is zero. Using the identity

(u ·∇)u = 1
2 ∇

(
∥u∥2

)
− u × (∇× u), (2.1.1)

we can write the equations for isentropic potential flow in the form

∂tu + 1
2 ∇(∥u∥2 ) = − gradw,

where w is the enthalpy, as in §1.1. Substituting u = gradϕ, we obtain

grad
(
∂tϕ + 1

2 ∥u∥
2 + w

)
= 0,

and thus
∂tϕ + 1

2 ∥u∥
2 + w = constant in space. (2.1.2)

In particular, if the flow is stationary,

1
2 ∥u∥

2 + w = constant in space.

For the last equation to hold, simple connectivity of D is unnecessary. The
version of Bernoulli’s theorem given in §1.1 concluded that 1

2 ∥u∥
2 + w

was constant on streamlines. The stronger conclusion here results from the
additional irrotational hypothesis, ξ = 0. For homogeneous incompressible
ideal flow, note that w = p/ρ0 from the definition of w.

For potential flow in nonsimply connected domains, it can occur that the
circulation ΓC around a closed curve C is nonzero. For instance, consider

u =
(

−y

x2 + y2
,

x

x2 + y2

)

outside the origin. If the contour C can be deformed within D to another
contour C ′, then ΓC = ΓC′ ; see Figure 2.1.1.

The reason is that basically C ∪C ′ forms the boundary of a surface Σ in
D. Stokes’ theorem then gives

∫

Σ
ξ · dA =

∫

C
u · ds −

∫

C′
u · ds = ΓC − ΓC′

and because ξ = 0 in D, we get ΓC = ΓC′ . (A more careful argument
proving the invariance of ΓC under deformation is given in books on com-
plex variables.) Notice that from §1.2, the circulation around a curve is
constant in time. Thus, the circulation around an obstacle in the plane is
well-defined and is constant in time.

Next, consider incompressible potential flow in a simply connected do-
main D. From u = gradϕ and div u = 0, we have

∆ϕ = 0.
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C

C'

Σ

Figure 2.1.1. The circulations about C and C′ are equal if the flow is potential
in Σ.

Let the velocity of ∂D be specified as V, so

u · n = V · n.

Thus, ϕ solves the Neumann problem:

∆ϕ = 0,
∂ϕ

∂n
= V · n. (2.1.3)

If ϕ is a solution, then u = gradϕ is a solution of the stationary homoge-
neous Euler equations, i.e.,

ρ(u ·∇)u = − grad p,

div u = 0,

u · n = V · n on ∂D,

(2.1.4)

where p = −ρ∥u∥2/2. This follows from the identity (2.1.1). Therefore,
solutions of (2.1.3) are in one-to-one correspondence with irrotational so-
lutions of (2.1.4) (with ϕ determined only up to an additive constant) on
simply connected regions. This observation leads to the following.

Theorem Let D be a simply connected, bounded region with prescribed
velocity V on ∂D. Then

i there is exactly one potential homogeneous incompressible flow (sat-
isfying (2.1.4)) in D if and only if

∫
∂D V · n dA = 0;

ii this flow is the minimizer of the kinetic energy function

Ekinetic =
1
2

∫

D
ρ ∥u∥2 dV,

among all divergence-free vector fields u′ on D satisfying u′ ·n = V·n.
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Proof

i The Neumann problem (2.1.3) has a solution if and only if the obvious
necessary condition

∫
∂D V ·n dA = 0 holds, as was mentioned earlier.

We can demonstrate the uniqueness of u directly as follows: Let u
and u′ be two solutions, and let v = u − u′, ψ = ϕ − ϕ′. Then
∆ψ = 0, ∂ψ/∂n = 0, and v = gradψ. Hence,

∫

D
div(ψv) dV =

∫

D
v · gradψ dV +

∫

D
ψ div v dV =

∫

D
v · v dV.

On the other hand,
∫

D
div(ψv) dV =

∫

∂D
ψv · n dA = 0.

Thus,
∫

D ∥v∥2dV = 0 and v = 0, that is, u = u′.

ii Let u solve (2.1.4) and let u′ be divergence free and u′ = n = V · n.
Let v = u − u′; then div v = 0 and v · n = 0 on ∂D. Therefore,

Ekinetic − E′
kinetic = 1

2

∫

D
ρ(∥u∥2 − ∥u′∥2 ) dV

= − 1
2

∫

D
ρ∥u − u′∥2dV +

∫

D
ρ(u − u′) · u dV

≤
∫

D
ρv · gradϕ dV = 0.

The last equality follows by the orthogonality relation proved in §1.3.
Thus,

Ekinetic ≤ E′
kinetic

as claimed. !

Notice, in particular, that the only incompressible potential flow in a
bounded region with fixed boundary is the trivial flow u = 0. For un-
bounded regions this is not true without a careful specification of what
can happen at infinity; the above uniqueness proof is valid only if the inte-
gration by parts (i.e., use of the divergence theorem) can be justified. For
example, in polar coordinates in the plane,

ϕ(r, θ) =
(

r +
1
r

)
cos θ

solves (2.1.3) with ∂ϕ/∂n = 0 on the unit circle and on the x-axis. It
represents a nontrivial irrotational potential flow on the simply connected
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streamlinesD

y

x

Figure 2.1.2. Potential flow in the upper half-plane outside the unit circle.

region D shown in Figure 2.1.2. This flow may be arrived at by the methods
of complex variables to which we will now turn.

Incompressible potential flow is very special, but is a key building block
for understanding complicated flows. For plane flows the methods of com-
plex variables are useful tools.

Let D be a region in the plane and suppose u = (u, v) is incompressible,
that is,

∂u

∂x
+

∂v

∂y
= 0 (2.1.5)

and is irrotational, that is,

∂u

∂y
− ∂v

∂x
= 0. (2.1.6)

Let
F = u − iv, (2.1.7)

which is called the complex velocity. Equations (2.1.5) and (2.1.6) are ex-
actly the Cauchy-Riemann equations for F , and so F is an analytic function
on D. Conversely, given any analytic function F , u = Re F and v = −Im F
define an incompressible (stationary) potential flow.

If F has a primitive, F = dW/dz, then we call W the complex poten-
tial . (If one allows multivalued functions, W will always exist, but such
a convention could cause confusion.) Write W = ϕ + iψ. Then (2.1.7) is
equivalent to

u = ∂xϕ = ∂yψ and v = ∂yϕ = −∂xψ,

that is, u = gradϕ and ψ is the stream function. In what follows, however,
we do not and must not assume a (single-valued) W exists.

Consider a flow in the exterior of an obstacle B (Figure 2.1.3).
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n

D

B

Figure 2.1.3. Flow around an obstacle.

The force on the body equals the force exerted on ∂B by the pressure,
that is,

F = −
∫

∂B
pn ds, (2.1.8)

which means that for any fixed vector a,

F · a = −
∫

∂B
pn · a ds.

Formula (2.1.8) was already discussed at length in §1.1. We next prove a
theorem that gives a convenient expression for F .

Blasius’ Theorem For incompressible potential flow exterior to a body
B (with rigid boundary) and complex velocity F , the force F on the body is
given by

F =
−iρ

2

[∫

∂B
F 2 dz

]
(2.1.9)

where the overbar denotes complex conjugation and where the vector F
is identified with a complex number in the standard way ; i.e., (x, y) is
identified with z = x + iy.

Proof If dz = dx + i dy represents an infinitesimal displacement along
the boundary curve C = ∂B, then (1/i)dz = dy − i dx represents a normal
displacement. Thus, by (2.1.8)

F = −
∫

C
p dy + i

∫

C
p dx = i

∫

C
p(dx + i dy).

As we observed in (2.1.4),

p =
−ρ(u2 + v2 )

2
, and therefore F =

−iρ

2

∫

C
(u2 + v2 ) dz.



2.1 Potential Flow 53

On the other hand, F 2 = (u − iv)2 = u2 − v2 − 2iuv, and because u is
parallel to the boundary, we get u dy = v dx. Thus,

F 2dz = (u2 − v2 − 2iuv)(dx + i dy) = (u2 + v2 )(dx − i dy),

and because u2 + v2 is real, F 2 dz = (u2 + v2 ) dz. !

This formula will be used to prove the following (Figure 2.1.4):

U U

U

B

F

Figure 2.1.4. The Kutta–Joukowski theorem gives the force exerted on B.

Kutta–Joukowski Theorem Consider incompressible potential flow ex-
terior to a region B. Let the velocity field approach the constant value
(U, V ) = U at infinity. Then the force exerted on B is given by

F = −ρΓC∥U∥n, (2.1.10)

where ΓC is the circulation around B and n is a unit vector orthogonal
to U.

Proof By assumption, the complex velocity F is an analytic function
outside the body B. It may therefore, be expanded in a Laurent series.
Because F tends to a constant U at infinity, no positive powers of z can
occur in the expansion. In other words, F has the form

F = a0 +
a1

z
+

a2

z2
+

a3

z3
+ · · ·

valid outside any disc centered at the origin and containing B. Because U
is the velocity at infinity, a0 = U − iV . By Cauchy’s theorem,

∫

C
F dz = 2πa1i,

where C = ∂B. (The integral is unchanged if we change C to a circle of
large radius.) However,

∫

C
F dz =

∫

C
(u − iv)(dx + i dy) =

∫

C
u dx + v dy =

∫

C
u · ds = ΓC
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because u dy = v dx, i.e., u is parallel to ∂B. Therefore,

a1 =
ΓC

2πi
.

Squaring F gives the Laurent expansion

F 2 = a2
0 +

2a0a1

z
+

2a0a2 + a2
1

z2
+ · · · .

By Blasius’ theorem and Cauchy’s theorem,

F = − iρ

2

∫

C
F 2 dz = − iρ

2
· (2πi · 2a0a1) = ρΓC(V − iU)

which proves the theorem. !

Notice that the force exerted on the body B by the flow is normal to the
direction of flow and is proportional to the circulation around the body. In
any case, the body experiences no drag (i.e., no force opposing the flow)
in contradiction with our intuition and with experiment. The difficulty,
of course, stems from the fact that we have neglected viscosity. (We shall
remedy this in the succeeding two sections.) Even worse, if ΓC = 0, there is
no net force on the body at all, a fact hard to reconcile with our intuition
even for ideal flow. This result is called d’Alembert’s paradox.

Example 1 For a complex number α = U − iV , let W (z) = αz. Thus,
F (x) = α, so the velocity field is u = (U, V ). This is two-dimensional flow
moving with constant velocity in the direction (U, V ). "

Example 2 Let B be the disc of radius a > 0 centered at the origin in
the complex plane, and let

W (z) = U

(
z +

a2

z

)
(2.1.11)

for a positive constant U . The complex velocity is

F (z) = W ′(z) = U

(
1 − a2

z2

)
, (2.1.12)

which approaches U at ∞. The velocity potential ϕ and the stream function
ψ are determined by W = ϕ + iψ . To verify that the flow is tangent to
the circle |z| = a, we need only to show that ψ = constant when |z| = a.
In fact, for |z|2 = zz̄ = a2 , we have from (2.1.1),

W (z) = U(z + z̄),

so W is real on |z| = a, that is, ψ = 0 on |z| = a. The flow is shown in
Figure 2.1.5.
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x

y

A

B

C

D

ϕ = constantψ = constant

velocity = u

B

Figure 2.1.5. Potential flow around a disc.

From (2.1.12) with z = aeiθ, that is, z on ∂B, we find

F (z) = U

(
1 − a2

a2e2 iθ

)
= U(1 − cos 2θ + i sin 2θ).

Thus, the velocity is zero at A and C; that is, A and C are stagnation points.
The velocity reaches a maximum at B and D. By Bernoulli’s theorem, we
can write

p = −ρ

2
∥u∥2 + constant;

thus, the pressure at A and C is maximum and is a minimum at B and D.
The disc has zero circulation because F = W ′ and W is single-valued.

If W is any analytic function defined in the whole plane, then

W̃ (z) = W (z) + W

(
a2

z

)
, |z| ≥ a

is a potential describing a flow exterior to the disc of radius a > 0, but
possibly with a more complicated behavior at infinity. This is proved along
the same lines as in the argument just presented. "

Example 3 In §1.2 we proved that choosing ψ to be an arbitrary in-
creasing function of r alone yields a flow that is incompressible and has
vorticity ξ = −∆ψ. If we can arrange for ψ to be the imaginary part of an
analytic function, then the flow will be irrotational as well. The function

W (z) =
Γ

2πi
log z (2.1.13)
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has this property, because log z = log |z| + i arg z. Of course, W (z) is not
single-valued, but the complex velocity

F (z) =
Γ

2πiz
(2.1.14)

is analytic and single-valued outside z = 0. The circulation is indeed Γ.
Note that the velocity field is zero at infinity. For incompressible potential
flow about a disc of radius a centered at z0 , we need only choose

W (z) =
Γ

2πi
log(z − z0 ).

The boundary conditions are satisfied because ψ is constant on any circle
centered at z0 (see Figure 2.1.6). The incompressible potential flow with

W (z) =
Γ

2πi
log(z − z0 )

will be called a potential vortex at z0 . "

ψ = constant

ϕ = constant

a
z 0

B

Figure 2.1.6. Potential vortex flow centered at z0.

Example 4 We combine Examples 2 and 3 by forming

W (z) = U

(
z +

a2

z

)
+

Γ
2πi

log z, (2.1.15)

where |z| ≥ a. Because ψ is constant on the boundary for each flow sep-
arately, it is also true for W given by (2.1.15). Thus, we get an incom-
pressible potential flow on the exterior of the disc |z| ≤ a with circulation
Γ around the disc. The velocity field is (U, 0) at infinity (therefore, the
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Kutta–Joukowski theorem applies). On the surface of the disc the velocity
u = gradϕ is tangent to the disc and is given in magnitude by

velocity =
1
r

∂ϕ

∂θ

∣∣∣∣
r=a

.

Here ϕ = ReW , so that

ϕ(r, θ) = U cos θ

(
r +

a2

r

)
+

Γθ

2π
,

and thus
velocity =

1
a

∂ϕ

∂θ

∣∣∣∣
r=a

= −2U sin θ +
Γ

2πa
.

If |Γ| < 4πa U , there are two stagnation points A and C defined by

sin θ =
Γ

4πaU

on the boundary, where the pressure is highest. See Figure 2.1.7.

A

B

C
D

U
Γ

Jerry’s Books

Figure 2.1.7. Flow around a disc with circulation.

This example helps to explain the Kutta–Joukowski theorem; note that
the vertical lift may be attributed to the higher pressure at A and C. The
symmetry in the y-axis means that there is no drag. "

D’Alembert’s Paradox in Three Dimensions In the case of steady
incompressible potential flow around an obstacle in three dimensions with
constant velocity U at infinity, not only can there be no drag, there can be
no lift either.
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The difference with the two-dimensional case is explained by the fact
that the exterior of a body in three-space is simply connected, whereas this
is not true in two dimensions. We will not present the detailed proof of
d’Alembert’s paradox here, but we can give the idea.

Recall that the solution of ∆ϕ = −ρ in space is

ϕ(x) =
1
4π

∫
ρ(y)

∥x − y∥ dV (y),

that is, ϕ is the potential due to a charge distribution ρ. Notice that if ρ is
concentrated in a finite region, then

ϕ(x) = O

(
1
r

)
,

where r = ∥x∥, that is,

|ϕ(x)| ≤ constant
r

for large r. In fact, as we know physically, ϕ(x) ≈Q/4πr for r large, where
Q =

∫
ρ(y) dV (y) is the total charge. If Q = 0, then ϕ(x) = O(1/r2 )

because the first term in the expansion in powers of 1/r is now missing.
For an incompressible potential flow there will be a potential ϕ, that is,

u = gradϕ (because the exterior of the body is simply connected). The
potential satisfies

∆ϕ = 0, ∇ϕ = U at ∞,

and
∂ϕ

∂n
= 0 on the boundary of the obstacle.

The solution here can then be shown to satisfy

ϕ(x) = U · x + O

(
1
r

)

as in the potential case above. However, there is an integral condition anal-
ogous to Q = 0, namely, the net outflow at ∞ should be zero. This means

ϕ(x) = U · x + O

(
1
r2

)
.

Hence,
u = U + O(r−3 ). (2.1.16)

Because p = −ρv2/2, we also have p = p0 + O(r−3 ). (To see that this is
true, write ∥u∥2 = U 2 + (u − U) · (u + U)). The force on the body B is

F = −
∫

∂B
pn dA.
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Let Σ be a surface containing B. Because u · n = 0 on ∂B and the flow
is steady, equation (BM3) from §1.1 applied to the region between B and
Σ shows that

F = −
∫

Σ
(ρ(u · n)u + pn) dA.

We are free to choose Σ to be a sphere of large radius R enclosing the
obstacle. Then

F = −
∫

Σ
(p0n + ρ(U · n)U) dA + (area Σ) · O(R−3 )

= 0 + O(R−1) → 0 as R → ∞.

Hence, F = 0.
One may verify d’Alembert’s paradox directly for flow past a sphere of

radius a > 0. In this case

ϕ = − a3

2r2
U · n + x · U,

where n = x
∥x∥ , and

u = − a3

2r2
[3n(U · n) − U] + U,

where U is the velocity at infinity. We leave the detailed verification to the
reader.1 "

Next we will discuss a possible mechanism, ultimately to be justified by
the presence of viscosity, by which one can avoid d’Alembert’s paradox. An
effort to resolve the paradox is of course prompted by the fact that real
bodies in fluids do experience drag.

By an almost potential flow , we mean a flow in which vorticity is
concentrated in some thin layers of fluid; the flow is potential outside these
thin layers, but there is a mechanism for producing vorticity near bound-
aries. For example, one can postulate that the flow past the obstacle shown
in Figure 2.1.8 produces an almost potential flow with vorticity produced
at the boundary and concentrated on two streamlines emanating from the
body.

We image different potential flows in the two regions separated by these
streamlines with the velocity field discontinuous across them. For such a
model, the Kutta–Joukowski theorem does not apply and the drag may be
different from zero. There are a number of situations in engineering where
real flows can be usefully idealized as “nearly potential.” These situations
arise in particular when one considers “streamlined” bodies, that is, bodies

1See L. Landau and E. Lifschitz [1959] Fluid Mechanics, Pergamon, p. 34 for more
information.
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potential flow

potential
flow

ξ ≠ 0

ξ ≠ 0

Figure 2.1.8. Almost potential flow has vorticity concentrated on two curves.

so shaped as to reduce their drag. The discussion of such bodies, their
design, and the validity of potential approximation to the flow around them
are outside the scope of this book.

Next we shall examine a model of incompressible inviscid flow inspired
by the idea of an almost potential flow and Example 3.

We imagine the vorticity in a fluid is concentrated in N vortices (i.e.,
points at which the vorticity field is singular), located at x1,x2 , . . . ,xN in
the plane (Figure 2.1.9). The stream function of the jth vortex, ignoring
the other vortices for a moment, is by Example 3,

ψj(x) = −Γj

2π
log ∥x − xj∥. (2.1.17)

x2 x1

x3
x4

Figure 2.1.9. The flow generated by point vortices in the plane.

As the fluid moves according to Euler’s equations, the circulations Γj as-
sociated with each vortex will remain constant. The vorticity field produced
by the jth vortex can be written as

ξj = −∆ψj = Γjδ(x − xj),

where δ is the Dirac δ function. This equation arises from the fact, which
we just accept, that the Green’s function for the Laplacian in the plane
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is
G(x,x′) =

1
2π

log ∥x − x′∥,

that is, G satisfies
∆xG(x,x′) = δ(x − x′).

The solution of ∆ψ = −ξ is then given by the superposition

ψ(x) = −
∫

ξ(x′)G(x − x′) dx′

which in our case reduces to ψ(x) =
∑N

j=1 ψj(x), where

ψj(x) = − 1
2π

Γj log ∥x − xj∥.

The velocity field induced by the jth vortex (again ignoring the other
vortices) is given by

uj = (∂yψj ,−∂xψj) =
(
−Γj

2π

(
y − yj

r2

)
,
Γj

2π

(
x − xj

r2

))
, (2.1.18)

where r = ∥x − xj∥. Let the vortices all move according to the velocity
field

u(x, t) =
N∑

j=1

uj(x, t),

where uj is given by (2.1.18) except we now allow, as we must, the centers
of the vortices xj , j = 1, . . . , N to move. Each one ought to move as if
convected by the net velocity field of the other vortices. Therefore, by
(2.1.18), xj moves according to the equations

dxj

dt
= − 1

2π

∑

i ̸=j

Γi(yj − yi)
r2
ij

and
dyj

dt
=

1
2π

∑

i ̸=j

Γi(xj − xi)
r2
ij

, (2.1.19)

where rij = ∥xi − xj∥.
Let us summarize the construction of the flows we are considering: choose

constants Γ1, . . . ,ΓN and initial points x1 = (x1, y1), . . . ,xN = (xN , yN )
in the plane. Let these points move according to the equations (2.1.19).
Define uj by (2.1.18) and let

u(x, t) = −
N∑

j=1

uj(x, t).

This construction produces formal solutions of Euler’s equation (“formal”
because the meaning of δ-function solutions of nonlinear equations is not
obvious). These solutions have the property that the circulation theorem
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is satisfied. If C is a contour containing l vortices at x1,x2 , . . . ,xl , then
ΓC = −

∑l
i=1 Γi and ΓC is invariant under the flow. However, the relation-

ship between these solutions and bona fide solutions of Euler’s equations is
not readily apparent. Such a relationship can, however, be established rig-
orously and such vortex systems do contain significant information about
the solutions of Euler’s equations under a wide variety of conditions.2

An important property of the equations is that they form a Hamilto-
nian system . Define

H = − 1
4π

∑

i ̸=j

ΓiΓj log ∥xi − xj∥. (2.1.20)

First of all, it is easy to check that (2.1.19) is equivalent to

Γj
dxj

dt
=

∂H

∂yj
, Γj

dyj

dt
= − ∂H

∂xj
, (2.1.21)

where j = 1, . . . , N (there is no sum on j). Introduce the new variables

x′
i =

√
|Γi|xi, y′

i =
√
|Γi| sgn(Γi)yi, i = 1, . . . , N,

where sgn(Γi) is 1 if Γi > 0, and is −1 otherwise. Then (2.1.19) is equivalent
to the following system of Hamiltonian equations

dx′
i

dt
=

∂H

∂y′
i

,
dy′

i

dt
= −∂H

∂x′
i

, i = 1, . . . , N, (2.1.22)

with Hamiltonian H and generalized coordinates (x′
i, y

′
i). As in elementary

mechanics,
dH

dt
=

N∑

i=1

∂H

∂x′
i

dx′
i

dt
+

N∑

i=1

∂H

∂y′
i

dy′
i

dt
= 0,

that is, H is a constant of the motion. A consequence of this fact is that if
the vortices all have the same sign they cannot collide. If ∥xi−xj∥ ̸= 0, i ̸= j
at t = 0, then this remains so for all time because if ∥xi − xj∥ → 0, H
becomes infinite.

This Hamiltonian system is of importance in understanding how vorticity
evolves and organizes itself.3

2See C. Anderson and C. Greengard, On Vortex Methods, SIAM J. Sci. Statist. Com-
put. 22 [1985], 413.

3The Euler equations themselves form a Hamiltonian system (this is explained, along
with references, in R. Abraham and J. E. Marsden, Foundations of Mechanics, 2nd
Edition [1978]), and the Hamiltonian nature of the vortex approximation is consistent
with this. See also J. E. Marsden and A. Weinstein, Coadjoint orbits, vortices and
Clebsch variables for incompressible fluids, Physica 7D [1983], 305–323.
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Let us now generalize the situation and imagine our N vortices moving in
a domain D with boundary ∂D. We can go through the same construction
as before, but we have to modify the flow uj of the jth vortex in such a
way that u · n = 0, that is, the boundary conditions appropriate to the
Euler equations hold. We can arrange this by adding a potential flow vj to
uj such that uj ·n = −vj ·n on ∂D. In other words, we choose the stream
function ψj for the jth vortex to solve

∆ψj = −ξj = −Γjδ(x − xj) with
∂ψj

∂n
= 0 on ∂D.

This is equivalent to requiring ψj(x) = −ΓjG(x,xj) where G is the Green’s
function for the Neumann problem for the region D. This procedure will
appropriately modify the function (1/2π) log ∥x−xj∥ and allow the analysis
to go through as before.

For example, suppose D is the upper half-plane y ≥ 0. Then we get G
by the reflection principle:

G(x,xj) =
1
2π

(log ∥x − xj∥ + log ∥x − x̂j∥) ,

where x̂j = (xj ,−yj) is the reflection of xj across the x-axis (see Fig-
ure 2.1.10). For the Neumann-Green’s functions for other regions the reader
may consult textbooks on partial differential equations.

x

y
(x,y�)

(xi ,–yi�)

(xi ,yi�) motion
of the
vortex D �: y  > 0

Γ

–Γ

Figure 2.1.10. The stream function at (x, y) is the superposition of those due to
vortices with opposite circulations located at (xi, yi) and (xi,−yi).
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Consider again Euler’s equations in the form

∆ψ = −ξ, u = ∂yψ, v = −∂xψ,
Dξ

Dt
= 0.

One can write
ψ = −

∫
ξ(x′)G(x,x′) dx′,

where G(x,x′) = 1
2 π log ∥x − x′∥, and set u = ∂yψ, v = −∂xψ. The re-

sulting equations resemble the equations just derived for a system of point
vortices. The integral for ψ here resembles the formula for ψ in the point
vortex system somewhat as an integral resembles one of its Riemann sum
approximations. This suggests that an ideal incompressible flow can be ap-
proximated by the motion of a system of point vortices. There are in fact
theorems along these lines.4 Vortex systems provide both a useful heuris-
tic tool in the analysis of the general properties of the solutions of Euler’s
equations, and a useful starting point for the construction of practical al-
gorithms for solving these equations in specific situations.

One can ask if there is a similar construction in three dimensions. First of
all, one can seek an analogue of the superposition of stream functions from
point potential vortices. Given u satisfying div u = 0, there is a vector field
A such that div A = 0 and such that u = curlA, and therefore ∆A = −ξ.
In three dimensions, Green’s function for the Laplacian is given by

G(x,x′) = − 1
4π

1
∥x − x′∥ , x ̸= x′.

Then we can represent A in terms of ξ by

A = − 1
4π

∫
ξ(x′)

s
dV (x′),

where s = ∥x − x′∥, and where dV (x′) is the usual volume element in
space. It is easy to check that A defined by the above integral satisfies the
normalization condition divA = 0. Thus, because u = curlA, we obtain

u(x) =
1
4π

∫
s × ξ′

s3
dV (x′),

where s = x − x and ξ′ = ξ(x′). Suppose that we have a vortex line C
in space with circulation Γ (see Figure 2.1.11) and we assume that the

4The discrete vortex method is discussed in L. Onsager, Nuovo Cimento 6 (Suppl.)
[1949], 229; A. J. Chorin, J. Fluid Mech. 57 [1973], 781; and A. J. Chorin, SIAM J. Sci.
Statist. Comput. 1 [1980], 1. Convergence of solutions of the discrete vortex equations
to solutions of Euler’s equations as N → ∞ is discussed in O. H. Hald, SIAM J. Nu-
mer. Anal. 16 [1979], 726; T. Beale and A. Majda, Math. Comp. 39 [1982], 1–28, 29–52;
and K. Gustafson and J. Sethian, Vortex Flows, SIAM Publications, 1991.
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vorticity field ξ is concentrated on C only, that is, the flow is potential
outside the filament C. Then u(x) can be written as

u(x) =
1
4π

∫

C

s × Γ ds
s3

where ds is the line element on C.

Figure 2.1.11. The flow induced by a vortex filament.

Exercises

⋄ Exercise 2.1-1 If f : D → D′ is a conformal transformation (an analytic
function that is one to one and onto), it can be used to transform one
complex potential to another. Use f(z) = z+a2/z (which takes the exterior
of the disc of radius a in the upper half-plane to the upper half-plane) and
the complex potential in the upper half-plane to generate formula (2.1.11).

⋄ Exercise 2.1-2 Let F (z) = z2 be a complex potential in the first quad-
rant. Sketch some streamlines and the curves φ = constant, ψ = constant,
where F = φ + iψ . What is the force exerted on the walls?

⋄ Exercise 2.1-3 Use conformal maps to find a formula for potential flow
over the plate in Figure 2.1.12. What is the force exerted on this plate?

⋄ Exercise 2.1-4 Let a spherical object move through a fluid in R 3 . For
slow velocities, assume Stokes’ equations apply. Take the point of view
that the object is stationary and the fluid streams by. The setup for the
boundary value problem is as follows: given U = (U, 0, 0), U constant, find
u and p such that Stokes’ equation holds in the region exterior to a sphere
of radius R, u = 0 on the boundary of the sphere and u = U at infinity. The
solution to this problem (in spherical coordinates centered in the object)
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x

y

(0,L)

Figure 2.1.12. Flow over a vertical plate.

is called Stokes’ Flow:

u = −3
4
R

U + n(U · n)
r

− 1
4
R3 U − 3n(U · n)

r3
+ U,

p = p0 −
3
2
ν

U · n
r2

R, (2.1.23)

where p0 is constant and n = r/r .

(a) Verify this solution.

(b) Show that the drag is 6πRνU and there is no lift.

(c) Show there is net outflow at infinity (an infinite wake).

⋄ Exercise 2.1-5 Because of the difficulties in Exercise 2.1-4, Oseen in
1910 suggested that Stokes’ equations be replaced by

−ν∆u + (U ·∇)u = −1
ρ

grad p,

with div u = 0, where u represents the true velocity minus U. This amounts
to linearizing the Navier–Stokes equations about U, whereas Stokes’ equa-
tions may be viewed as a linearization about 0. One would thus conjecture
that Oseen’s equations are good where the flow is close to the free stream
velocity U (away from the sphere) and that Stokes’ equations are good
where the velocity is 0 (near the sphere). The solution of Oseen’s equa-
tions in the region exterior to a sphere in R 3 can be found in Lamb’s book.
Show that drag on the sphere for the Oseen solution is F = 6πRUν(1+ 3

8 R),
where R = UR/ν is the Reynolds number. Thus, there is a difference of
the order R in the Stokes and Oseen drag forces.

Notes on Exercise 2.1-4 and Exercise 2.1-5: If D is bounded with
smooth boundary, then there exists at most one solution to Stokes’ equa-
tions. See Ladyzhenskaya’s book listed in the Preface. In the exterior of a
bounded region in R 3 there exists a unique solution to Stokes’ equations.
The situation in R 2 is different; in fact, we have the following strange sit-
uation:
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Stokes’ Paradox There is no solution to Stokes’ equations in R 2 in the
region exterior to a disc (with reasonable boundary conditions).5

Stokes’ paradox does not apply to the Oseen or Navier–Stokes equations
in R 2 or R 3 . However, Filon in 1927 pointed out that for other reasons
Oseen’s equations also lead to unacceptable results. The example he gives
is a skewed ellipse in a free stream. Computation of the moment exerted on
the ellipse reveals that it is infinite! This is not so surprising in view of the
fact that Oseen’s equations represent linearization about the free stream.
One cannot expect them to give good results around the obstacle because
the equations contain errors there of order U 2 .

2.2 Boundary Layers

Consider the Navier–Stokes equations

∂tu + (u ·▽)u = − grad p +
1
R

△ u,

div u = 0,

u = 0 on ∂D,

⎫
⎪⎬

⎪⎭
(2.2.1)

and assume the Reynolds number R is large. We ask how different a flow
governed by (2.2.1) is from one governed by the Euler equations for incom-
pressible ideal flow:

∂tu + (u ·▽)u = − grad p,

div u = 0,

u · n = 0 on ∂D.

⎫
⎪⎬

⎪⎭
(2.2.2)

Imagine that both flows coincide at t = 0 and, say, are irrotational, that
is, ξ = 0. Thus, under (2.2.2) the flow stays irrotational, and thus is a
potential flow. However, we claim that the presence of the (small) viscosity
term (1/R) △ u and the difference in the boundary conditions have the
following effects:

1. The flow governed by (2.2.2) is drastically modified near the wall in
a region with thickness proportional to 1/

√
R.

2. The region in which the flow is modified may separate from the
boundary.

3. This separation will act as a source of vorticity.

5See Birkhoff’s book, and J. Heywood, Arch. Rational Mech. Anal. 37 [1970], 48–60,
and Acta Math. 129 [1972], 11–34.
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1. ∇(f + g) = ∇f + ∇g

2. ∇(cf) = c∇f , for a constant c

3. ∇(fg) = f∇g + g∇f

4. ∇
(

f

g

)
=

g∇f − f∇
g2

5. div(F + G) = div F + div G

6. curl(F + G) = curlF + curlG

7. ∇(F · G) = (F ·∇)G + (G ·∇)F + F × curlG + G × curlF

8. div(fF) = f div F + F ·∇f

9. div(F × G) = G · curlF − F · curlG

10. div curlF = 0

11. curl(fF) = f curlF + ∇f × F

12. curl(F × G) = F div G − G div F + (G ·∇)F − (F ·∇)G

13. curl curlF = grad div F −∇2F

14. curl∇f = 0

15. ∇(F · F) = 2(F ·∇)F + 2F × (curlF)

16. ∇2 (fg) = f∇2g + g∇2f + 2(∇f ·∇g)

17. div(∇f ×∇g) = 0

18. ∇ · (f∇g − g∇f) = f∇2g − g∇2f

19. H · (F × G) = G · (H × F) = F · (G × H)

20. H · ((F ×∇) × G) = ((H ·∇)G) · F − (H · F)(∇ · G)

21. F × (G × H) = (F · H)G − H(F · G)

Notes.

In identity 7, V = (F·∇)G has components Vi = F·(∇Gi), for i = 1, 2, 3,
where G = (G1, G2 , G3 ).

In identity 13, the vector field ∇2F has components ∇2Fi, where F =
(F1, F2 , F3 ).

In identity 20, (F×∇)×G means ∇ is to operate only on G in the following
way: To calculate (F × ∇) × G, we define (F × ∇) × G = U × G
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where we define U = F ×∇ by:

U = F ×∇ =

∣∣∣∣∣∣∣∣∣

i j k

F1 F2 F3

∂

∂x

∂

∂y

∂

∂z

∣∣∣∣∣∣∣∣∣

.
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acceleration of a fluid particle, 4
algorithm, 94
almost potential flow, 59
asymptotically stable, 97
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differential form, 6
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Bernoulli’s theorem, 16, 48, 55, 71
bifurcation, 99, 100
Blasius’ theorem, 52
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force, 6
force on, 52

boundary
condition, 34, 41
layer, 67, 68

approximation, 76
equation, 75
separation, 79
thickness, 71
vorticity in, 76

layer separation, 71

burning, 152

Cauchy’s theorem, 32
centered

rarefaction wave, 114
wave, 137, 138, 158

central limit theorem, 84
channel flow, 17
Chapman–Jouguet points, 154
characteristic, 103, 105, 108

intersecting, 106, 108
length, 35
linearly degenerate, 150
velocity, 35

chemical energy, 151
circulation, 21, 48, 57
coefficients of viscosity, 33
combustion, 103, 152

front, 152
wave, 145

complex
potential, 51
variables methods, 51
velocity, 51, 53

compressible
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flow, 14, 33, 103
compressive shock, 131, 134
concave up, 146
conformal transformation, 65
connected

state, 115
wave, 115

conservation
law, 122, 129, 145
of energy, 12
of mass, 2, 12
of vorticity, 28

consistency of an algorithm, 94
constant state, 111
contact discontinuity, 124
continuity equation, 3
continuum assumption, 2
convective term, 40
convergence of an algorithm, 94
convex characterisitics, 151
Couette flow, 31
Courant–Friedrichs–Lewy condition,

141
cylindrical coordinates, 45

d’Alembert’s paradox, 54
in 3d, 58

decompostion theorem, 37
deflagration branch, 154
deformation, 18

tensor, 19, 31
degenerate

linearly, 151
density, 1, 14
derivative

material, 5
detonation branch, 154
differential

form, 120
form of mass conservation, 3

diffusion, 39
discontinuity, 121, 146, 148

separating, 148
disjoint, 82

event, 82

dissipation term, 39
divergence

free part, 38
space-time, 119

downstream, 93
drag, 54, 57, 60, 66

form, 80
skin, 80

dynamics, 96

endothermic, 152
energy, 12

equation, 118
flux, 18
internal, 12, 117
kinetic, 12
per unit volume, 117

enthalpy, 14
entropy, 14, 118, 158

condition, 127, 130, 133, 157
equation

continuity, 3
differential form, 120
Euler, 13, 15
heat, 84
Hugoniot, 125
Navier–Stokes, 34
of state, 44
Prandtl, 75
Stokes’, 40
vorticity, 24
weak form, 120

error function, 70
Euler equation, 13, 15, 49, 78, 94,

96
event, 82

disjoint, 82
exothermic, 152
expectation, 82, 143

field
velocity, 1
vorticity, 18

filament, 65
Filon’s paradox, 67
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first
coefficient of viscosity, 33
law of thermodynamics, 14,

118
fixed point, 97
flat plate, 69
flow, 14

almost potential, 59
around a disk, 55
around a half circle, 51
around an obstacle, 52
between plates, 41
between two plates, 42
compressible, 14, 33
Couette, 31
gas, 103
homogeneous, 11, 48
ideal, 48
in a channel, 17
in a pipe, 45
in the half-plane, 69
in the upper half-plane, 51
incompressible, 10
induced by a vortex filament,

65
irrotational, 47
isentropic, 14, 15
map, 7, 95
over a plate, 66
past a sphere, 59
Poiseuille, 45
potential, 47, 48
potential around a disk, 55
potential vortex, 56
stationary, 29, 49
supplementary region half-plane,

51
fluid

flow map, 7
ideal, 5
particle, 4
velocity, 1
viscous, 33

flux, 7
of vorticity, 22

force, 5, 53
on a body, 52

form drag, 80
fourth power law, 46
front, 124
function

error, 70
Green’s, 61, 86

gamma
law gas, 114, 118, 125, 131,

139
simple wave, 111

gas
dynamics, 103, 111
flow, 103
ideal, 118, 125, 131, 139

Gaussian, 84
generation of vorticity, 43
geometric entropy condition, 135
Glimm’s existence proof, 145
global stability, 97
gradient part, 38
Green’s function, 61, 63, 64, 86

half-plane flow, 69
Hamiltonian system, 62
heat equation, 84, 86
Helmholtz

decomposition theorem, 37
theorem, 26, 37

Hodge theorem, 37
hodograph transformation, 110
homogeneous, 11

flow, 48
Hopf bifurcation theorem, 99
Hugoniot

curve, 126, 153
equation, 125, 139
function, 125, 153

hyperbolic, 104

ideal
flow, 48
fluid, 5, 31
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gas, 44, 118, 125, 131, 139
ignition temperature, 152
incompressible, 11

approximately, 44
flow, 10, 13, 34

independent, 82
random variables, 83

integral
form, 120
form of balance of momen-

tum, 7
form of mass conservation, 3

intensity of a vortex sheet, 88
internal energy, 12, 40, 117
invariant

Riemann, 109
irrotational, 47
isentropic

flow, 14, 15
fluids, 14
gas flow, 122

Jacobian, 8
matrix, 24

jump, 122
discontinuity, 121, 122
relations, 124

Kelvin’s circulation theorem, 21
kinematic viscosity, 34
kinetic energy, 12, 40, 49
Kutta–Joukowski theorem, 53

law
conservation, 129, 145
of large numbers, 83

layer
boundary, 67, 71

leading edge, 93
left

-centered wave, 138
state, 115

length
characteristic, 35

Liapunov stability theorem, 97

Lie derivative, 43
Lie–Trotter product formula, 95
line

vortex, 22
linearly degenerate, 150, 151

Mach number, 44
mass

conservation, 11
density, 1
flow rate, 46

matching solutions, 78
material derivative, 5, 18
mean, 82
mechanical jump relations, 124
momentum

balance of, 6
flux, 7

moving with the fluid, 7

Navier–Stokes equation, 31, 33, 38,
67, 77, 94, 95

Neumann problem, 37, 49, 63
Newton’s second law, 2, 6
no-slip condition, 34, 43
noncompressive shock, 133
nonconvex, 151
nonlinear dynamics, 96

obstacle, 58
flow around, 52

Oleinik’s condition, 149, 154
orthogonal projection, 38
oscillations, 100
Oseen’s equation, 66

paradox
d’Alembert, 54, 58
Filon, 67
Stokes, 67

pipe flow, 45
piston, 111
plate, 80

flow between, 41
flow over, 66, 69
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flow past, 87
point vortices, 60
Poiseuille flow, 45
potential

complex, 51
flow, 47, 48, 51, 56, 58

almost, 59
flow around a disk, 55
velocity, 48
vortex, 56
vortex flow, 56

Prandtl
boundary layer equation, 73,

75
equation, 78, 94
relation, 132, 151

pressure, 5, 14
probability, 82

density function, 83
theory, 82

product formula, 95
projection operator, 38

quasilinear, 104

random
choice method, 144, 159
variable, 82, 141

Gaussian, 84
walk, 85, 88, 96

Rankine–Hugoniot relations, 124
rarefaction

fan, 148
shock, 127, 129
wave, 114

Rayleigh lines, 154
reaction

endothermic, 152
exothermic, 152
front, 152

reversibility, 136
Reynolds number, 36, 96
Riemann

invariant, 109, 110, 113

problem, 103, 137, 139, 144,
158, 159

right
-centered wave, 138
state, 115

rigid rotation, 18
rotation, 18

sample space, 82
scaling argument, 81
second

coefficient of viscosity, 33
law, 118

separate characteristics, 130
separated, 150
separation

boundary, 68, 71, 79
shadow of a vortex sheet, 90
sheet

vortex, 22
shock, 117, 124

back, 124
compressive, 131, 133
front, 124
noncompressive, 133
rarefaction, 127, 129
separating, 130
tube problem, 137

similar flows, 36
simple wave, 111
simply connected, 47
skin drag, 80
slightly viscous flow, 47
slip line, 124, 138, 140
sound speed, 44, 104, 131
space-time divergence, 119
spatial velocity field, 1
speed

discontinuity, 147
sphere

flow past, 59, 66
stability, 96
stable point, 97
stagnation point, 29, 55
standard deviation, 83
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state, 111, 136, 137
connected, 115
equation of, 44

stationary, 49
flow, 16, 58
flow criterion, 29

steady flow, 58
Stokes

equation, 40, 67, 96
flow, 66
paradox, 67

stream function, 29, 43, 54, 80
streamline, 16, 29, 44
strength of a vortex tube, 26
stress tensor, 32
stretched, 27
strong

deflagration, 154
detonation, 154

subsonic, 131, 157
supersonic, 131
symmetry, 101

tangential
boundary condition, 34
forces, 5

Tchebysheff’s inequality, 84
temperature, 14, 152
test functions, 119
theorem

Bernoulli’s, 16
Blasius’, 52
Cauchy’s, 32
central limit, 84
Helmholtz, 26
Helmholtz–Hodge, 37
Kelvin circulation, 21
Kutta–Joukowski, 53
transport, 10

thermodynamics, 14, 118
first law, 14, 118

thickness
boundary layer, 71, 73

total force, 8
trajectory, 16

transfer of momentum, 31
transformation

hodograph, 110
translation, 18
transport theorem, 10, 18, 117
tube

vortex, 26

upper half-plane
flow in, 51

variance, 83, 143
variation, 129
velocity

characteristic, 35
complex, 51
field, 1
potential, 48, 51
profile, 42

viscosity, 129
coefficients, 33
kinematic, 34

viscous fluid, 33
vortex, 61

filament, 65
line, 22
potential, 56
sheet, 22, 82, 87
sheet intensity, 88
tube, 26
tube, strength of, 26

vortices
point, 60

vorticity, 18, 63
conservation, 28
creation operator, 96
equation, 28
generation of, 43
in boundary layer, 76
transport, 23

wave
centered, 137
connected, 115
left-centered, 138
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rarefaction, 114
right-centered, 138
simple, 111

weak
deflagration, 154
detonation, 154
solution, 118, 119


