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The Dirichlet problem in unbounded domains.

In this section we consider the Dirichlet problem in the complementary of a set Ω ⊂ Rn, which is
assumed to be a bounded open set with Lipschitz boundary.

Definition. A open set Ω ⊆ Rn has Lipschitz boundary if at every x ∈ ∂Ω there exists a neigh-
bourhood U of x, a open bounded set D ⊆ Rn−1 and a Lipschitz function ϕ : D → R such that (up
to a suitable orthogonal transformation of coordinates)

∂Ω ∩ U = {(x, ϕ(x)) |x ∈ D}.

Remark. If Ω is a open set with Lipschitz boundary, then at every point of the boundary of Ω the
exterior and interior cone condition is satisfied. So, every point in ∂Ω is regular for the Laplacian
(both for the Dirichlet problem in the set Ω and for the Dirichlet problem in the set Rn \ Ω.

Theorem 1. Assume n ≥ 3. Let Ω ⊂ Rn be a bounded open set with Lipschitz boundary and
g ∈ C(∂Ω). Then there exists a unique solution u ∈ C∞(Rn\Ω)∩C(Rn\Ω) of the exterion Dirichlet
problem 

−∆u = 0 x ∈ Rn \ Ω
u(x) = g(x) x ∈ ∂Ω

lim|x|→+∞ u(x) = 0.

. (1)

Moreover there exists c > 0 such that,

|u(x)| ≤ c

|x|n−2
.

Proof. We divide the proof in various steps.
For simplicity we assume that Rn \ Ω is connected. If it is not true, all the arguments can be

carried out on every connected component of Rn \ Ω.
Uniqueness. Assume u, v are two solutions to (1), then w = u − v is a continuous function

in Rn \ Ω such that w = 0 on ∂Ω and lim|x|→+∞ w(x) = 0. Then by Weierstrass theorem, either
w ≡ 0 or w admits a positive maximum and/or a negative minimum in Rn \Ω. But w is harmonic
in Rn \ Ω, and then by strong maximum principle, the only possibility is that w ≡ 0.

Esistence of a solution.
Let r > 0 such that B(0, r) ⊃ Ω. For every R > r, let uR ∈ C∞(B(0, R) \ Ω) ∩ C(B(0, R) \ Ω)

be the solution of the approximating problem
−∆uR = 0 x ∈ B(0, R) \ Ω
uR(x) = g(x) x ∈ ∂Ω

uR(x) = 0 x ∈ ∂B(0, R).

(2)

Note that this solution exists by Perron-Wiener theorems (all the boundary points of Rn \ Ω are
regular for the Laplacian) and it is unique by Maximum principle. Extend the function uR to a
function uR : Rn \Ω → R by putting uR(y) = 0 if |y| > R. So uR ∈ C∞(B(0, R) \Ω) ∩ C(Rn \Ω).

Observe that by weak maximum principle we have that ∥uR∥∞ = ∥g∥∞ so (uR)R>r is a
equibounded family of continuous functions, harmonic in sets B(0, R) \ Ω.

Moreover, by Cauchy estimates on harmonic functions, for every compact K ⊆ Rn \ Ω, there
exists C = CK such that supK |DuR| ≤ C∥g∥∞, for any R such that K ⊂ B(0, R).

Then, by Ascoli Arzelà theorem and a standard diagonalization procedure, we can extract from
uR a subsequence (which we will continue to denote as uR) converging locally uniformly in Rn \Ω
to a function u ∈ C(Rn \ Ω). We can extend continuously u up to ∂Ω putting u = g.
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Finally, u is harmonic in Rn \ Ω. In fact, fix x ∈ Rn \ Ω and a open neighbourhood U of x in
Rn \Ω, then there exists R0 such that for all R > R0, U ⊂ B(0, R). In U , every function uR with
R > R0 is harmonic, and then also u is harmonic in U since it is the uniform limit of harmonic
functions.

In conclusion, u ∈ C∞(Rn \ Ω) ∩ C(Rn \ Ω) solves{
−∆u = 0 x ∈ Rn \ Ω
u(x) = g(x) x ∈ ∂Ω.

Behaviour at ∞. It remains to check that the function u we have constructed vanishes at infinity.
Consider r0 as before and R > 0. Observe that

wr,R =
rn−2

|x|n−2

Rn−2 − |x|n−2

Rn−2 − rn−2
(3)

is the solution of the Dirichlet problem
−∆wr,R = 0 r < |x| < R

wr,R(x) = 1 |x| = r

wr,R(x) = 0 |x| = R.

(4)

(Exercise: check it!).
By weak Maximum principle (applied in the set r ≤ |x| ≤ R), we get that

|uR(x)| ≤ ∥g∥∞wr,R(x) = ∥g∥∞
rn−2

|x|n−2

Rn−2 − |x|n−2

Rn−2 − rn−2
r ≤ |x| ≤ R.

Passing to the limit R → +∞ in this inequality (along the converging subsequence uR obtained
in the previous step), we get

|u(x)| ≤ ∥g∥∞
rn−2

|x|n−2
∀ |x| ≥ r

which concludes the proof.

Remark. The solution u of (1) with boundary data g ≡ 1 is called (conductor) potential of Ω
and the capacity of Ω is defined as

cap(Ω) = lim
|x|→+∞

u(x)|x|n−2

n(n− 2)ωn
.

Capacity can also be characterized as follows

cap(Ω) = inf
u∈A

ˆ
Rn\Ω

|Du|2dx

where A = {u ∈ C1(Rn \ Ω) | u(x) = 1 if x ∈ ∂Ω and lim|x|→+∞ u(x) = 0}.
Note that if u ∈ A is a minimum and Ω has C1 boundary, then

cap(Ω) =

ˆ
Rn\Ω

|Du|2dx = −
ˆ
∂Ω

∂u

∂n
dS

where n is the exterior normal to Ω (check it!)
The definition of capacity can be extended to domains with non smooth boundaries (by ap-

proximation arguments) and is useful to characterize the ∆-regular points of the boundary (see
the Wiener criterion, e.g. [Gilbarg, Trudinger]).
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We consider now the case of R2.

Theorem 2. Let Ω ⊂ R2 be a bounded open set with Lipschitz boundary and g ∈ C(∂Ω). Then
there exists a unique solution u ∈ C∞(Rn \ Ω) ∩ C(Rn \ Ω) of the exterion Dirichlet problem

−∆u = 0 x ∈ Rn \ Ω
u(x) = g(x) x ∈ ∂Ω

lim|x|→+∞
u(x)
log |x| = 0.

. (5)

Moreover u is bounded.

Remark. For n = 2 we weaken the condition to vanish at infinity, by requiring just the condition
to grow less than logarithmically. In particular this implies that there exists a unique bounded
solution to (5). In Rn with n ≥ 3, we cannot expect a similar result to hold. Observe e.g. that both
u(x) = rn−2|x|2−n and v(x) ≡ 1 are bounded solutions of the Dirichlet problem in the exterior of
the ball of radius r {

−∆u = 0 |x| > r

u(x) = 1 |x| = r.
.

Proof. As for the existence of a solution to{
−∆u = 0 x ∈ Rn \ Ω
u(x) = g(x) x ∈ ∂Ω.

the proof is exactly the same as in the proof of Theorem 1. Moreover |u(x)| ≤ ∥g∥∞ for every
x ∈ Rn \ Ω. So u is bounded.

So, it remains to prove the uniqueness. Assume u, v are two solutions to (5). Then w = u− v

is harmonic in Rn \ Ω, w = 0 on ∂Ω and lim|x|→+∞
w(x)
log |x| = 0.

Take x0 ∈ Ω and r > 0 such that B(x0, r) ⊂⊂ Ω. Observe that also

lim
|x|→+∞

w(x)

log |x− x0| − log r
= 0.

Exploiting this last property we get that for every ε > 0 there exists M > 0 such that Ω ⊂ B(0,M)
and

|w(x)| ≤ ε log

(
|x− x0|

r

)
∀|x| ≥ M.

Note that the function ε log
(

|x−x0|
r

)
is harmonic in R2\Ω and moreover on ∂Ω, ε log

(
|x−x0|

r

)
> 0

(by our choice of r). Then, by weak Maximum principle (applied to the set B(0,M) \ Ω) we get
that

|w(x)| ≤ ε log

(
|x− x0|

r

)
∀x ∈ R2 \ Ω.

We conclude by the arbitrariness of ε that w = 0.
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