Introduzione alle equazioni alle derivate parziali,
Laurea Magistrale in Matematica

The Dirichlet problem in unbounded domains.

In this section we consider the Dirichlet problem in the complementary of a set @ C R™, which is
assumed to be a bounded open set with Lipschitz boundary.

Definition. A open set  C R™ has Lipschitz boundary if at every x € OS2 there exists a neigh-
bourhood U of z, a open bounded set D C R"~! and a Lipschitz function ¢ : D — R such that (up
to a suitable orthogonal transformation of coordinates)

NU ={(z,¢(z)) |z € D}.

Remark. If © is a open set with Lipschitz boundary, then at every point of the boundary of Q2 the
exterior and interior cone condition is satisfied. So, every point in 92 is regular for the Laplacian
(both for the Dirichlet problem in the set Q and for the Dirichlet problem in the set R™ \ .

Theorem 1. Assume n > 3. Let Q0 C R™ be a bounded open set with Lipschitz boundary and
g € C(09). Then there exists a unique solution u € C*°(R"\Q)NC(R™\Q) of the exterion Dirichlet
problem
—Au=0 reR"\ Q
u(z) = g(x) TeN . (1)
lim| | 400 u(z) = 0.
Moreover there exists ¢ > 0 such that,

C
lu(z)| < E=E

Proof. We divide the proof in various steps.

For simplicity we assume that R™ \ § is connected. If it is not true, all the arguments can be
carried out on every connected component of R™ \ .

Uniqueness. Assume u,v are two solutions to (1), then w = u — v is a continuous function
in R™ \ © such that w = 0 on dQ and lim|,| o w(z) = 0. Then by Weierstrass theorem, either
w = 0 or w admits a positive maximum and/or a negative minimum in R™\ Q. But w is harmonic
in R™ \ ©, and then by strong maximum principle, the only possibility is that w = 0.

Esistence of a solution.

Let r > 0 such that B(0,7) D Q. For every R > r, let ug € C*(B(0,R) \ Q) NC(B(0,R) \ Q)
be the solution of the approximating problem

—Aup =0 z € B(0,R)\
ug(z) = g(x) =€ dQ (2)
ur(z) =0 x € 0B(0, R).

Note that this solution exists by Perron-Wiener theorems (all the boundary points of R™ \ Q are
regular for the Laplacian) and it is unique by Maximum principle. Extend the function ug to a
function ug : R™ \ Q — R by putting ug(y) = 0 if |y| > R. So ug € C*(B(0, R)\ Q) NC(R™\ Q).

Observe that by weak maximum principle we have that |Jug|lcc = [|g]lec S0 (ur)Rr>r is a
equibounded family of continuous functions, harmonic in sets B(0, R) \ €.

Moreover, by Cauchy estimates on harmonic functions, for every compact K C R™ \ Q, there
exists C' = Ck such that supg |Dur| < C||g||o, for any R such that K C B(0, R).

Then, by Ascoli Arzela theorem and a standard diagonalization procedure, we can extract from
up a subsequence (which we will continue to denote as ur) converging locally uniformly in R™\ Q
to a function u € C(R™ \ Q). We can extend continuously u up to 9 putting u = g.



Finally, u is harmonic in R™ \ €. In fact, fix 2 € R" \ Q and a open neighbourhood U of z in
R™\ Q, then there exists Ry such that for all R > Ry, U C B(0, R). In U, every function ug with

R > Ry is harmonic, and then also u is harmonic in U since it is the uniform limit of harmonic
functions.

In conclusion, u € C®(R™ \ Q) NC(R™ \ Q) solves

—Au=0 reR"\Q
u(z) =g(x) = e .

Behaviour at co. It remains to check that the function u we have constructed vanishes at infinity.
Consider rg as before and R > 0. Observe that

T,n72 Rn72 _ |x‘n72

rR — 3
Wr,R |z[n—2 Rn—2 — pn—2 (3)

is the solution of the Dirichlet problem

—Aw,g=0 r<lz|<R
wrr(r)=1 |z|=r (4)
wrr(z) =0 |z|=R.
(Exercise: check it!).

By weak Maximum principle (applied in the set r < |z| < R), we get that

7,,7172 Rn72 _ |x|n72
un(@)] < lglleotrn@) = loloorrs Ty TS lISR

Passing to the limit R — 400 in this inequality (along the converging subsequence upg obtained
in the previous s‘cep)7 we get

rn—2
lu(x)| < ||9||00W Vi[>

which concludes the proof.

O
Remark. The solution u of (1) with boundary data g = 1 is called (conductor) potential of 2
and the capacity of 2 is defined as

n—2
cap(Q) = lim w@)|z"

|z]—+o0 n(n — 2)wy

Capacity can also be characterized as follows

cap() = inf/ | Dul|?dx
u€A R"\Q

where A = {u € C*(R"\ Q) | u(x) =1 if 2 € 9N and lim,|_, ;o u(z) = 0}.

Note that if u € A is a minimum and € has C! boundary, then

cap(Q) :/R © |Dul*dz = —/8 @dS

Qan

where n is the exterior normal to € (check it!)

The definition of capacity can be extended to domains with non smooth boundaries (by ap-

proximation arguments) and is useful to characterize the A-regular points of the boundary (see
the Wiener criterion, e.g. [Gilbarg, Trudinger]).



We consider now the case of R2.

Theorem 2. Let Q C R? be a bounded open set with Lipschitz boundary and g € C(082). Then
there exists a unique solution u € C*(R™\ Q) NC(R™ \ Q) of the exterion Dirichlet problem

—Au=0 reR"\Q
u(z) = g(z) x € 0 . (5)
hm\m|~>+oo % =0.

Moreover u is bounded.

Remark. For n = 2 we weaken the condition to vanish at infinity, by requiring just the condition
to grow less than logarithmically. In particular this implies that there exists a unique bounded
solution to (5). In R™ with n > 3, we cannot expect a similar result to hold. Observe e.g. that both
w(x) = r""2|z|>~" and v(x) = 1 are bounded solutions of the Dirichlet problem in the exterior of
the ball of radius r

{—Au =0 |z|>r

u(z) =1 |z|=7r"
Proof. As for the existence of a solution to

—Au=0 reR"\Q
u(z) =g(x) = e .

the proof is exactly the same as in the proof of Theorem 1. Moreover |u(z)| < ||g]lco for every
x € R™\ Q. So u is bounded.
So, it remains to prove the uniqueness. Assume u, v are two solutions to (5). Then w = u — v

is harmonic in R" \ Q, w = 0 on 95 and lim g 400 %ﬁt)l =0.

Take o € Q and r > 0 such that B(zo,r) CC 2. Observe that also

w(z)

im =
|z|—=+oo log |z — x| — log r

Exploiting this last property we get that for every € > 0 there exists M > 0 such that Q C B(0, M)
and

w(@)] < elog (I"”') V]| > M.

|z—z0]
s

|z —z0]
s

>0

(by our choice of r). Then, by weak Maximum principle (applied to the set B(0, M) \ ) we get
that

Note that the function € log ( ) is harmonic in R?\ Q and moreover on 99, ¢ log (

|lw(z)] < elog <|x_$0|> Vo € R?\ Q.
r

We conclude by the arbitrariness of € that w = 0. 0



