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Maximum principle for parabolic operators
Let 2 C R™ be a open set , T'> 0 and L be the following linear elliptic operator in Qp = Q x (0,T")
k(x, t)ug(w, t)+Lu(z, t) := k(x, t)u(x, t)—tr a(z,t) D3u(z, t)+b(x, t)-Dyu(z, t) (z,t) € Ox(0,T),

where D2u(z,t) = (Ua;a; (2,1))ij=1,....n and Dyu(x,t) = (ug,(7,1))i=1,....n are the hessian and the
gradient with respect to the = coordinates.
We assume the following general conditions on the coefficients of L.

Assumption 1. a : Qp — S5, is a bounded continuous function, where S,, is the space of
symmetric n X n matrices).

b:Qr — R™ is a bounded continuous function.

k: Qr — R is a bounded continuous function.

Moreover we assume that ku; + L(u) is a parabolic operator according to this definition.

Definition. The operator u;+ Lu is parabolic if there exists kg > 0 such that for every (z,t) € Qr,
k(xz,t) > ko > 0, and for every (z,t) € Qr a(x,t) is a n x n symmetric positive semidefinite matrix
(i.e. all the eigenvalues of a(x) are real and nonnegative).

Moreover we consider the following function.

Assumption 2. ¢: Q) — R is a bounded function .

Remark. Note that we are not asking that ¢ is a nonnegative (neither continuous) function.
For parabolic problem, there is a relevant part of the boundary, called the parabolic boundary.

Definition. [parabolic boundary| Let Q7 = € x (0,7'). Then the parabolic boundary is 0*Qr =
O x [0,TTUQ x {0}.

The previous assumptions will hold throughout this part.

Weak maximum principle for parabolic operators

In this section we will consider parabolic operators of the form k(z,t)u; + Lu + ¢(z,t)u where
(z,t) € Qp which satisfy, besides the standing assumptions, also the following.

Assumption 3. For all (z,t) € Qp such that ¢(z,t) = 0 there exist g > 0 and § > 0 such that
all(yvs) > p V(y, S) € B((l‘7t),5) (1)

We assume the solutions to the parabolic problem are classical, in the sense that belong to the
following set

C*H Q) ={u:Qr = R | u(-,t) €C*(Q) u(x,-) €C0,T) Yo eQ,tec(0,T)}.

Theorem 1 (Weak maximum principle). Let Q be a bounded open set and u € C*(Qr) NC(Qr)
such that k(x,t)us + Lu + c(x,t)u < 0, where L, k and ¢ are as above. Assume moreover that
c>0.

o Ifc=0, then maxg, u = maxp+q, U,

o if c#0, then maxg u < maxg-q, ut, where u™ (y) := max(u(y),0).



Proof. Let ¢ = 0. A parabolic operator is in particular a degenerate elliptic operator. So under our

assumptions, weak maximum principle holds. This implies that maxg v = maxaqo, u. Assume by

contradiction that u(y, s) < maxqy (7} u for every (y, s) € QrN9*Qr. Take 0 < ¢ << T and define

ve(x,t) = u(x,t) —et. So v. — w uniformly in Qr as € — 0. Let (z.,t.) such that v.(zc,t.) =

Maxg, (o 1) Ve- Then, by uniform convergence, (z.,t.) converge, up to a subsequence, as € — 0,

to a point (z,¢) such that u(z, t) = maxg, , 77 u. By our assumption, necessarily (z,t) € Qx {T'}.
We compute (ve); = uy — €, Dyve = Dyue and D2v. = D2u. So

k(x,t)(ve)s + Loe(x,t) = k(x, t)up + Lu(z,t) — ek(z,t) < —ekg < 0. (2)

Moreover, since (zc,te) — (z,t) € Q@ x {T'} and t. < T, we have that for € sufficiently small z. is
in the interior of . This implies Dyv.(7¢,t.) = 0 and D2v.(x.,t.) < 0. Moreover by maximality
(ve)e(ze,te) > 0. So, using the fact that the operator is parabolic,

k(ze,te)(ve)e(we, te) + Lve(ze, 1) > 0. (3)

But this is in contradiction with (2).
If ¢ £ 0, then the same arguments apply. We assume by contradiction that u(y,s) <
maxq (7} u for every (y,s) € Q7 N 0*Qr and that maxgy 7y u > 0. In place of (2) we get

k(x,t)(ve)t+Lve(z, t)+c(x, t)ve (z,t) = k(x, t)ur+Lu(x, t)+c(z, t)u(z, t)—ck(x, t)—cte(z,t) < —eko < 0
and in place of (3)

k(xe,te)(Ve)e(@e, te) + Lva (e, te) + c(xe, te)ve > (e, te)ve(xe,te) >0
since ve (we,te) — u(w,t) > 0. O
Remark. It is possible to state also the weak minimum principle (exercise).

The main consequence of the weak maximum principle is the comparison principle, in which
it is only needed to assume that ¢ is bounded (not necessarily nonnegative).

Corollary 1 (Weak comparison principle). Let u,v € C**(Qr) N C(Qr) such that ku, + Lu +
c(x)u <0, and kv, + Lv + cv > 0 in Q, where L and c satisfies the same assumptions as above.
If u <wvin 9*Qr, then u < v in Qp.

Proof. Let w = u — v, then kw; + Lw 4+ cw < 0 in Qp and w < 0 on 9*Q. If ¢(z,t) < 0 at some
inf ¢
point, define v(z,t) = e~ o ‘w(z, ).

We get,

__infc 1 f
0> e %o " (kwy + Lw + cw) = kv, + Lo + (C_lr’; ck)v.
0

Recalling that k(x,t) > ko > 0 for every xz,t and that inf ¢ < 0, we obtain that

infe

c(z,t) —

k(z,t) > c(z,t) —infe >0 Va,t.
0
So v is a subsolution of the parabolic operator kv; + Lv 4+ ¢v where the coefficient ¢ is bounded
and nonnegative.
So by the weak maximum principle maxg v < 0, then also maxg, w < 0, which gives the
conclusion. O

The comparison principle implies as usual a uniqueness result (which can be stated for un-
bounded intervals of time).



Corollary 2 (Uniqueness for the Cauchy-Dirichlet problem). Let 2 be a bounded open set, then
the Cauchy-Dirichlet problem

kuy + Lu + c(z, t)u = f(x,t) (z,t) € Q x (0, +00)
(D) U(I,t) = g(l‘,t) reINte (0,+OO)
u(z,0) = up(x) reQ

admits at most one solution u € C**(Q x (0,+00) NC(2 x [0, +00)).

Proof. Tf uy, ug are two solutions, then w = u; —us satisfies kw;+Lw—+cw = 0in Qx (0, T) for every
T > 0 and w = 0 on 0*Qr. By the weak maximum and minimum principle maxg, (o,7] |lw] = 0,
which gives the conclusion, by the arbitrariness of T'. O

Proposition 1 (Continuous dependance estimates). Let f € C(Qr), ug € C(Q) and g € C(OQ x
(0,T) such that g(x,0) = uo(x).
Let u € C*1(Qr) NC(Qr) the solution to the Cauchy-Dirichlet problem

kuy + Lu + c(z, t)u = f(x,t) (z,t) € Q x (0, +00)
(D) § u(z,t) = g(z,t) z€dNte (0,400)
u(x,0) = uo(x) x € Q.

e /1]
max [u| < [|uolloc + |9llec + 77T
Q ko
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Proof. Define w(z,t) = u(z,t) — [|uolloo — [|g]lcc — ”QL‘X’ t. Then

[1£ oo
ko

< fl@,t) = || fllec <0

since ¢(x,t) > 0 and k:(agt)% > || flloo. Moreover w(z,t) < 0 for (z,t) € 0*Qr. So, by weak
maximum principle we have that

k(x, t)wi+ Lw+c(x, t)w = k(z, t)us—k(z,t)

+Lutc(z, tyu—c(z, t)([luolloo +lIglloo+=7"=1) <
0

[l
k

¥ f
) < ol + lglle + 121224 < ol + gl + 117

for every (x,t) € Q. The other inequality is obtained similarly using weak minimum principle. [

Strong maximum principle for parabolic operators

In this section we will consider uniformly parabolic operators, according to the following definition.

Definition. Let ku; + Lu be a parabolic operator. Then it is uniformly elliptic in Qp if there
exists A > 0 such that
a(z, )¢ > NP Y(x,t) € Qr VE € R™

Remark. Note that a uniformly parabolic operator is a degenerate elliptic operator (not uniformly
elliptic!)

Also for parabolic operators, there is a strong maximum principle, that we are not going to
prove (the proof is based on Harnack inequality for uniformly parabolic operators and can be
found in Evans, PDEs).

Theorem 2 (Strong maximum principle). Let Q be a connected set and u € C**(Q7) N C(Qr)
such that k(z,t)us + Lu+ c(z)u < 0, where L, k and c are as above. Assume moreover that ¢ > 0.



o Ifc =0, and there exists (v,t) € Qr such that M = maxg_u = u(x,t), then u(y,s) = M
for all y € Q and all s € [0,1];

e ifc # 0, and there exists (z,t) € Qp such that M = maxg, u = u(w,t) > 0, then u(y,s) = M
for ally € Q and all s € [0,1].

Remark. We can state as follows this maximum principle: if v attains a maximum (a nonnegative
maximum if ¢ # 0) at some interior point, then u is contant at all earlier times



