I APPELLO DI ANALISI MATEMATICA LB

Ing. Informatica

(DOCENTE: FABIO ANCONA)

A.A. 2001/2002, 19 Marzo 2002

d32275

Cognome e Nome:				
MATRICOLA:				
Data preferita per l	A PROVA	A ORALE):	
Ī		l 0		 il

1	2	3	4
В	С	A	С

N.B. Per ogni esercizio della prima parte indicare nella corrispondente casella numerata la lettera della risposta scelta. Ogni risposta corretta vale 3 punti, ogni risposta sbagliata vale -1/2, ogni risposta non data vale 0 punti. L'esercizio finale vale 4 punti.

ESERCIZIO 1. Sia $\mathbf{x}_{\mathbf{B}}(\alpha) = (x_B(\alpha), y_B(\alpha))$ il baricentro della curva omogenea (densità $\rho = \text{costante}$) di equazione (in coordinate polari) $\rho = \alpha(1 + \cos \theta), \ \theta \in [-\pi, \pi], \ \text{dove} \ \alpha > 0, \ \text{e}$ sia $\ell(\alpha)$ la sua lunghezza. Allora si ha:

- A) $\ell(\alpha) + x_B(\alpha) = 8\alpha$.
- B) $\ell(\alpha) \cdot y_B(\alpha) = 0$.
- C) $\ell(\alpha) x_B(\alpha) = 12\alpha$.
- D) $\frac{\ell(\alpha)}{y_B(\alpha)} = 16\alpha$.

ESERCIZIO 2. Il flusso Φ del campo vettoriale $\vec{f}(x, y, z) = (z, x^2y, y^2z)$ uscente attraverso la superficie (regolare chiusa) ∂S frontiera del solido

$$S = \{(x, y, z) \in \mathbf{R}^3 : 2\sqrt{x^2 + y^2} \le z \le 1 + x^2 + y^2\}$$

vale:

- $\mathrm{A)} \ \ \Phi = \frac{\pi}{25}.$
- B) $\Phi = \frac{1}{30}$
- C) $\Phi = \frac{\pi}{30}$.
- D) $\Phi = 0$.

ESERCIZIO 3. Sia $x \mapsto y(x)$, $x \in \mathbb{R}$, la soluzione del problema di Cauchy

$$egin{cases} \ddot{y}+7\dot{y}+6y=48\,e^{2t} \ y(0)=lpha, & lpha,\,eta\in\mathbf{R}\,. \ \dot{y}(0)=eta\,, \end{cases}$$

Trovare tutti gli $\alpha, \beta \in \mathbf{R}$ per cui si ha

$$\lim_{t \to -\infty} t \, e^{6t} \, y(t) = +\infty.$$

- A) $6 < \alpha + \beta$.
- B) $6 \ge \alpha + \beta$.
- C) $\alpha > 6$.
- D) Nessuna delle altre risposte è corretta.

ESERCIZIO 4. Si consideri il campo vettoriale

$$ec{f}(x,y) = \left(rac{x}{\sqrt{x^2 + y^2} \left(1 + \sqrt{x^2 + y^2}
ight)}, \,\, rac{y}{\sqrt{x^2 + y^2} \left(1 + \sqrt{x^2 + y^2}
ight)}
ight)$$

nel suo naturale dominio di definizione D. Si ha:

- A) Il campo \vec{f} non è irrotazionale.
- B) il campo \vec{f} non è conservativo perchè il dominio D non è semplicemente connesso.
- C) Il lavoro L di \vec{f} lungo la curva parametrica γ di equazioni

$$x(t) = 2\cos t, \ y(t) = 2\sin t, \ t \in [0, \pi/2],$$

vale 0.

D) Il lavoro L di \vec{f} lungo la poligonale orientata $A\vec{B}C$, dove

$$A = (2,0), \quad B = (2/\sqrt{2}, 2/\sqrt{2}), \quad C = (0,2),$$

è diverso da 0.

ESERCIZIO 5. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ la funzione definita da $f(x,y) = x^4 + y^4 - 4xy$.

- (i) Determinare i punti critici di f e studiarne la natura.
- (ii) L'immagine $f(\mathbf{R}^2)$ è:
- (iii) Considerato l'insieme

$$E = \{(x, y) \in \mathbf{R}^2 : y^2 < x < 1, \quad |y| < 1\},$$

determinare l'immagine f(E):