V APPELLO DI ANALISI MATEMATICA LB

Ing. Informatica

(DOCENTE: FABIO ANCONA)

A.A. 2001/2002, 9 Settembre 2002

d32275

Cognome e	Nome:	 	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	
Matricola:		 				

1	2	3	4
C	A	В	С

N.B. Per ogni esercizio della prima parte indicare nella corrispondente casella numerata la lettera della risposta scelta. Ogni risposta corretta vale 3 punti, ogni risposta sbagliata vale -1/2, ogni risposta non data vale 0 punti. L'esercizio finale vale 5 punti così suddivisi: i), ii) e iv) valgono un punto, mentre iii) vale due punti.

ESERCIZIO 1. Sia $E=\{(x,y,z)\in\mathbf{R}^3: x^2+y^2+z^2\leq 4\}, \ \mathrm{e}\ f:D\to\mathbf{R}\ \mathrm{definita}\ \mathrm{da}\ f(x,y,z)=|x|.$ Calcolare $I\doteq\int_D f(x,y,z)\,dxdydz$.

- A) $I = \pi^3$.
- B) $I = 8\pi^2$.
- C) $I = 8\pi$.
- D) Nessuna delle altre risposte è corretta.

ESERCIZIO 2. Sia $D=\{(x,y)\in \mathbf{R}^2: x^2+y^2>0\}$, e $f:D\to \mathbf{R}$ definita da $f(x,y)=\frac{1}{\left(e^{(x^2+y^2)}-1\right)^{\alpha}},\ \alpha\in \mathbf{R}$. Determinare tutti gli $\alpha\in \mathbf{R}$ per cui f risulta integrabile (in senso generalizzato) su D:

- A) $0 < \alpha < 1$.
- B) $\alpha > 1$.
- C) $\alpha < 0$.
- D) Nessuna delle altre risposte è corretta.

ESERCIZIO 3. Sia $x \mapsto y(x), x \in \mathbb{R}$, la soluzione del problema di Cauchy

$$\begin{cases} \ddot{y} + 4y = \cos(3x) \\ y(0) = \frac{3}{5}, \\ \dot{y}(0) = \pi. \end{cases}$$

Allora si ha:

- A) $y(\pi) + \dot{y}(\pi) = 0$.
- B) $y(\pi) + \dot{y}(\pi) = 1 + \pi$.
- C) $y(\pi) + \dot{y}(\pi) = 1$.
- D) Nessuna delle altre risposte è corretta.

ESERCIZIO 4. Sia γ l'asteroide di equazione $x(t) = \cos^3(t), \ y(t) = \sin^3(t), \ t \in [0, 2\pi],$ e si calcoli l'integrale curvilineo (di prima specie) $I \doteq \int_{\gamma} (x+y) \ ds$. Si ha

- A) $I = \pi$.
- B) I = 1.
- C) I = 0.
- D) Nessuna delle altre risposte è corretta.

ESERCIZIO 5. Sia $A = \{(x, y, z) : x^2 + y^2 + 27 \le 3z^2, 0 \le z \le 6\}$, e $f : A \to \mathbf{R}$ la funzione definita da $f(x, y, z) = z e^{xy}$.

- (i) Determinare i punti critici di f interni ad A.
- (ii) Determinare la frontiera ∂A dell'insieme A:

 $\partial A =$

(iii) Calcolare gli estremi di f:

$$\inf_A f =$$

(iv) Calcolare l'immagine di f:

$$f(A) =$$