VI APPELLO DI ANALISI MATEMATICA LB

Ing. Informatica (G-Z)

(DOCENTE: FABIO ANCONA)

A.A. 2003/2004, 10 dicembre 2004

c53171

Cognome e	Nome:	 	 •••••	 •••••
MATRICOLA:		 •••••		

1	2	3	4	5	6
В	С	C	D	D	С

N.B. Per ogni esercizio della prima parte indicare nella corrispondente casella numerata (della tabella riassuntiva in alto) la lettera della risposta scelta. Ogni risposta corretta vale 4 punti, ogni risposta sbagliata vale -1/2, ogni risposta non data vale 0 punti. Gli esercizi n. 7-8 valgono 8 punti.

ESERCIZIO 1. Data una funzione derivabile $f: D \doteq \{(x,y) \in \mathbb{R}^2 : y \neq x + \frac{1}{x}\} \to \mathbb{R}$, con derivate parziali ovunque nulle, e tale che f(0,0) = 0, stabilire quale delle affermazioni seguenti è corretta.

$$\boxed{\mathbf{A}} \quad f(x,y) = 0 \qquad \forall \ (x,y) \in D.$$

$$f(x,y)=0 \qquad orall \; (x,y)\in \mathbb{R}^2 \quad ext{t.c.} \quad xy\leq 0 \, .$$

$$oxed{\mathbb{C}} \qquad f(x,y) = 0 \qquad orall \; (x,y) \in \mathbb{R}^2 \quad ext{t.c.} \quad xy \geq 0 \, .$$

ESERCIZIO 2. Studiare il carattere della serie

$$\sum_{n=1}^{+\infty} \frac{\ln\left(1+\frac{1}{n}\right)^2}{n^{\alpha}}, \quad \alpha \in \mathbb{R},$$

e stabilire quale delle seguenti affermazioni è corretta.

- A Per ogni $\alpha \in]0, 1[$ la serie non è convergente.
- B Esiste $\alpha \leq 0$ per cui la serie è convergente.
- $oxed{\mathbb{X}}$ La serie è convergente per ogni $\alpha > 0$.
- D Nessuna delle altre risposte è corretta.

ESERCIZIO 3. Data la funzione $f(x,y) = \sqrt{25 - x^2 - y^2}$, e la curva parametrica $\vec{r}(t) = (3e^t, 4e^t)$, t < 0, si consideri la funzione composta $\phi(t) = f(\vec{r}(t))$, t < 0, e se ne calcoli la derivata. Stabilire quale delle affermazioni seguenti è corretta.

$$\prod_{t \to -\infty} \phi'(t) = -\infty.$$

$$oxed{\mathsf{B}} \quad \exists \ t < 0 \quad ext{per cui si ha} \quad \phi'(t) = 0 \,.$$

$$\boxed{\mathbf{X}} \quad \lim_{t \to 0^-} \phi'(t) = -\infty \ .$$

$$\boxed{\mathrm{D}} \quad \phi'(t) \geq 0 \quad \mathrm{per \ ogni} \quad t < 0 \ .$$

ESERCIZIO 4. Si consideri la regione

$$D \doteq \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1, x \ge 0, y \le \sqrt{3}x \},$$

e si calcoli l'integrale

$$I \doteq \iint_D \frac{x}{1 + x^2 + y^2} \, dx dy \, .$$

Si ha.

$$\boxed{\mathbf{A}} \quad I = \frac{3\sqrt{3}}{4} \, \pi \, .$$

$$\boxed{\mathrm{B}}$$
 $I=0$.

$$\boxed{\rm C} \qquad I = -\sqrt{3} \, \pi^2 \, .$$

ESERCIZIO 5. Sia $x \mapsto \varphi(x)$ la soluzione del problema di Cauchy

$$\begin{cases} \dot{y} = \frac{xy}{\ln y}, \\ y(1) = e^2. \end{cases}$$

Stabilire quale delle seguenti affermazioni è corretta.

$$\boxed{\mathbf{A}} \quad \lim_{x \to -\infty} \varphi(x) = 0.$$

$$oxed{B}$$
 φ è una funzione limitata.

$$C$$
 φ non è definita su tutto \mathbb{R} .

$$\lim_{x \to -\infty} \varphi(x) = +\infty.$$

ESERCIZIO 6. Determinare per quali valori $\alpha \in \mathbb{R}$ è convergente l'integrale generalizzato

$$\int_0^{+\infty} \frac{e^{-x}\cos(x^2)}{x^{\alpha}} \ dx \, .$$

A Per ogni
$$\alpha \in \left]1, \frac{5}{2}\right[.$$

B Per ogni
$$\alpha > \frac{1}{2}$$
.

$$\boxed{\mathbf{X}} \quad \text{Per ogni} \quad \alpha < 1.$$

ESERCIZIO 7. Si consideri la curva parametrica $\vec{r}:[0,\ 1+\pi+e^\pi]\to\mathbb{R}^2$ definita da

$$\vec{r}(t) = \begin{cases} \left(e^t \cos t, \ e^t \sin t\right) & \text{se} \quad t \in [0, \pi], \\ \left(t - \pi - e^\pi, \ 0\right) & \text{se} \quad t \in \left]\pi, \ 1 + \pi + e^\pi\right]. \end{cases}$$

(i) Determinare eventuali punti di discontinuità di \vec{r} e stabilire se è una curva chiusa.

 \vec{r} è una curva continua e chiusa.

(ii) Determinare eventuali punti di intersezione della curva \vec{r} con gli assi cartesiani e tracciare la traiettoria probabile della curva.

asse
$$x: x \in [-e^{\pi}, 1]$$
.

asse
$$y: y = 0, y = e^{\frac{\pi}{2}}.$$

(iii) Determinare i punti regolari della curva \vec{r} .

I punti non regolari di \vec{r} sono:

$$\vec{r}(0) = \vec{r}(1 + \pi + e^{\pi}) = (1, 0), \quad \vec{r}(\pi) = (-e^{\pi}, 0).$$

(iv) Nel caso \vec{r} sia una curva chiusa, calcolare l'area $A(\vec{r})$ della regione delimitata da \vec{r} .

$$A(\vec{r}) = \frac{e^{2\pi} - 1}{4}.$$

ESERCIZIO 8. Si consideri la funzione definita da $f(x,y) = \ln(1-xy)$.

(i) Determinare eventuali punti critici di f.

Unico punto critico: (0,0).

(ii) Determinare la natura dei punti critici di f .

Punto di sella: (0,0).

(iii) Determinare l'immagine della restrizione di f alla circonferenza unitaria $S_1=\{(x,y)\in {\bf R}^2\ :\ x^2+y^2=1\}\,.$

$$f(S_1) = \left[\lnrac{1}{2},\,\lnrac{3}{2}
ight].$$

(iv) Determinare l'immagine di f.

$$\operatorname{Im}(f) = \mathbb{R}$$
 .