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A delay model (T. Friesz et al., 1993)

X (t) = number of cars on a road at time t

If a new car enters at time t, it will exit at time t + D(X (t))

0

   

L

D(X ) = delay = total time needed to travel along the road

depends only on the total number of cars at the time of entrance
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An ODE model (D. Merchant and G. Nemhauser, 1978)

X (t) = total number of cars on a road at time t

u(t) = incoming flux g(X(t)) = outgoing flux

Ẋ (t) = u(t)� g(X (t)) conservation equation

u g(X)
X

0 L

L = length of road, ⇢ ⇡ X

L
= density of cars

g(X ) = ⇢ v(⇢) =
X

L
· v
⇣X

L

⌘
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L0

Models favored by engineers:

simple to use, do not require knowledge of PDEs (or even ODEs)

easy to compute, also on a large network of roads

become accurate when the road is partitioned into short subintervals

Alberto Bressan (Penn State) Scalar Conservation Laws 51 / 117



Microscopic models

i−1

   

x (t) x    (t)
i−1i

x    (t)
i+1

v v
i

x
i

(t) = position of the i-th car
v
i

(t) = velocity of the i-th car
i = 1, . . . ,N

Goal: describe the position and velocity of each car,
writing a large system of ODEs
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Car following models

i−1

   

x (t) x    (t)
i−1i

x    (t)
i+1

v v
i

Acceleration of i-th car depends on:

its speed: v
i

speed of car in front: v
i�1

distance from car in front: x
i�1

� x
i
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i = 1, . . . ,N
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Microscopic intelligent driver model (Helbing & al., 2002)

i-th driver

⇢

accelerates, up to the maximum speed v̄
decelerates, to keep a safe distance from the car in front

v̄ = maximum speed allowed on the road v
i

2 [0, v̄ ]

a = maximum acceleration

v̇
i

= a ·


1�
⇣v

i

v̄

⌘�
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s⇤(v
i

, �v
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s
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◆
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s
i

= x
i�1

� x
i

= actual gap from vehicle in front

s⇤
i

= desired gap
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Desired gap from the vehicle in front

i−1

   

x (t) x    (t)
i−1i
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v v
i

s⇤
i

= �
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v
i

v̄
+ Tv

i

+
v
i

�v
i

2
p
a b

= desired gap

�v
i

= v
i

� v
i�1

= speed di↵erence with car in front

�
0

= jam distance (bumper to bumper)

�
1

= velocity adjustment of jam distance

T = safe time headway

b = comfortable deceleration
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Equilibrium tra�c

Assume: all cars have the same speed, constant in time.
Choose �

0

= �
1

= 0, � = 1

v̇
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= a ·
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1� v
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v̄
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= 0

Equilibrium gap from vehicle in front

s
e

(v) = s⇤(v , 0) ·
h

1� v
i
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i�1/2

Equilibrium velocity: v
e

(s) =
s2

2v̄T 2

 

�1 +

r

4T 2v̄2

s2

!

=) v
e

= V
e

(⇢) ⇢ ⇡ s�1 = macroscopic density
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Statistical (kinetic) description

f = f (t, x ,V ) statistical distribution of position and velocity of vehicles

f (t, x ,V ) dxdV = number of vehicles which at time t
are in the phase domain [x , x + dx ]⇥ [V , V + dV ]

local density: ⇢(t, x) =

Z 1

0

f (t, x ,V ) dV

average velocity: v(t, x) =
1

⇢(t, x)

Z 1

0

V · f (t, x ,V ) dV
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Evolution of the distribution function

@f

@t
+ V

@f

@x
+ a(t, x)

@f

@V
= Q[f , ⇢]

a(t, x) = acceleration (may depend on the entire distribution f )

Q(f , ⇢) models a trend to equilibrium (as for BGK model in kinetic theory)

Q = c
r

(⇢) ·
⇣

f
e

(V , ⇢)� f (t, x ,V )
⌘

c
r

= relaxation rate
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A conservation law model (M. Lighthill and G. Witham, 1955)

ρ

x

   

a b

= density of cars

t= time, x= space variable along road, ⇢ = ⇢(t, x) = density of cars

flux: = [number of cars crossing the point x per unit time]

= [density] ⇥ [velocity] = ⇢ · v v = V (⇢)

⇢
t

+
⇥

⇢V (⇢)
⇤

x

= 0

Alberto Bressan (Penn State) Scalar Conservation Laws 59 / 117



Flux function

Assume: ⇢ 7! ⇢V (⇢) is concave

V 0(⇢) < 0 , 2V 0(⇢) + ⇢V 00(⇢) < 0

M
v(  )ρ

maxv

0 1 ρ 0 ρ1ρ*
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Characteristics vs. car trajectories

ρ

0 xdensity

flux

ρ

ρ

t

V(  )

[⇢V (⇢)]0 = V (⇢) + ⇢V 0(⇢) < V (⇢)

characteristic speed < speed of cars

Weak solutions can have upward shocks

x

ρ(t,x)
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Adding a viscosity ?

⇢
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e↵ective velocity of cars: v = V (⇢)� "
⇢
x

⇢

can be negative, at the beginning of a queue

x

ρ(t,x)
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Second order models

v = V (⇢) =) velocity is instantly adjusted to the density

Models with acceleration
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v
t
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a = acceleration
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0
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x

(Payne - Witham, 1971)

[relaxation] + [pressure term] p = ⇢� , � > 0
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C. Daganzo, Requiem for second-order fluid approximation to tra�c flow, 1995
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eingenvalues = characteristic speeds: v ±
p

p0(⇢)

x

domain of the perturbation

x(t) = car position

t

Wrong predictions: • negative speeds

• perturbations travel faster than the speed of cars
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A. Aw, M. Rascle, Resurrection of second-order models of tra�c flow, 2000

Idea: replace the partial derivative of the pressure @
x

p with the
convective derivative (@

t

+ v@
x

)p
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(Aw - Rascle)
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strictly hyperbolic for ⇢ > 0, positive speed: v + p(⇢) � 0

eigenvalues: �
1

= v � ⇢p0(⇢), �
2

= v
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Properties of the Aw-Rascle model

• system is strictly hyperbolic (away from vacuum)

• the density ⇢ and the velocity v remain bounded and non-negative

• characteristic speeds (= eigenvalues) are smaller than car speed
=) drivers are not influenced by what happens behind them.

• maximum speed of cars on an empty road depends on initial data
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An improved model (R. M. Colombo, 2002)

Aw - Rascle:

⇢
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q = v⇢+ ⇢p(⇢) = “momentum”

Colombo:
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= “maximum momentum”

=) velocity can vanish only when ⇢ = ⇢
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,
and remains uniformly bounded
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Concluding remarks

Number of vehicles on a road << number of molecules in a gas

microscopic models (solving an ODE for each car) are within
computational reach

kinetic models and macroscopic models are realistic on longer
stretches of road, for densities away from vacuum

optimization problems, dependence of solution on parameters, are
better understood by studying macroscopic models

Simple ODE models, delay models are popular among engineers.
Scalar conservation laws are OK.
Kinetic models, second order models, are a hard sell.
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