6
The single conservation law

This chapter is concerned with the Cauchy problem for a scalar conservation law

u, 4 flu), =0, (6.1)

w0,y =u, (6.2}

assuming that f : R — R is locally Lipschitz continuous and that 77 ¢ Li.- Recalling
the analysis in the last section of Chapter 4, we define an entropy solution of (6.1)-(6.2)
as a continuous map u - {0, co) > L;DC(R) which satisfies (6.2) together with

] {lue — K@y + (f () — fR))sgnu — b)) dx dr = 0, (6.3)

for every & € R and every non-negative function ¢ € CHRY), whose compact support
is contained in the half plane where ¢ > 0. In (6.3) we implicitly assume that both  and
f () are locally integrable on the haif plane [0, cof xR, The inequality (6.3) means that

nlude +qu)e <0 (6.4)

for every entropy of the form n(u) = [t — k|, with entropy flux g(u) = (flu)y —
S sgnde — k). If the function u is bounded, choosing k < inf u(r, x), it follows from
(6.3) that i

f/{u(j}, —{.-f(u)r,b_\.] dxdt > 0

for every ¢ > O with support in the half plane where ¢ > 0. Choosing & > sup u(f, x)
we obtain the opposite inequality. Hence (6.3) implies that « is a distributional selution
of (6.1).

The existence of solutions to (6.1)~(6.2) will be proved by the method of wave-front
tracking. For given initial data i € L', we will construct a sequence (i, ).~ of piecewise
constant approximate solutions, with (0, -) — i. Asv — €0, 4 COMpaciness argument
will yield a subsequence (1.}, converging in LllaC to an entropy sclution.

The unigueness and continuous dependence will then be proved by showing that, for
any two bounded entropy solutions u, v of (6.1), one has

f}z.i(f,x)~v{r,x)ldx§]|u(0,x)—v(0,x)!dx

for every t > 0. In other words, the flow generated by a scalar conservation law is
contractive w.r.t. the L! distance. / j

L N a *‘mc

ot 5;3&% "jr (m-tjevvs\{av- }AW.Y\

i
dy .5‘?3!'?%15')

H
§

1 ,
s - conlyaclive \,ﬂ,‘,f'fw( ]

]

6.1 Piecewise constant approximations

Fix an integer v > 1 and let f, be the piecewise affine function which coincides with f
at all nodes 27 with j integer, i.e.

_ o 2—\:(-_‘_1}_5 .
fls) = %’— TG A+ R @)
ez, 27 + DL 65)

Let /i be a piecewise constant function with compact support, taking values inside the
discrete set 277 = {27 j; j integer}. We will show that the Cauchy problem

u; + [fo(w)le = 0 (6.6)

with initial data # admits a piecewise constant entropy-admissible Soluli.ora w=u (t, x),
stifl taking values within the discrete set 27VZ. As a preliminary, consider a Riemann
problem for (6.6), with initial data

wo, 0y =14 H¥=0 g 6.7

ut ifx >0,

The functions f*, f. constructed below are illustrated in Fig. 6.1.

CASE 1: 4~ < u™. Let f, be the largest convex function such that

fo(5) £ fuls) foralls € [, u™].
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Figure 6.1




Observe that f, is piecewise linear, being the convex hull of a piecewise linear function,
Ey convexity, 1ts' derivative f]is a piecewise constant non-decreasing function, say with
Jumps at the points wp = #~ < w; < --- < w, = uF. We define the increasing
sequence of shock speeds as

- Ffolwe) — fu(wé’—])

Wg — We_g

At £=1,...,q. (6.8)

‘We claim that the function

u- ifx < th,

o, x)= we if ek, <x <thpy (1<¢ <g-1), (6.9)

ut if thy < x,
provides a weak, entropy-admissible solution of the Riemann problem (6.6)-(6.7).
_Indeed, fix any constant k and any C' Function ¢ > 0 with compact support contained
in the half plane where ¢ > 0. We define the characteristic function
I ik e [we, we,
0 ifk ¢ fwe_y, wyd

From the above construction it follows that

Xfweflvwe](k) = [

f {leo — &l + (folw) — futkDsgnlow — k), } dx di

q
= ZZ f {Giwe — k| — Jwe 1 — kDAe — (fulwe) — fo(K))sgn(uwe — k)
=1
+ (folwe) — fulkDsen(we; — k)b, the) dr
q
=) f [we + wey — 2Kk + 26,00 — fi(we) — fi(we_)]
=]

* Kiwp oK) DG, L) dt
> 0.
Indeed, for k € [we_;, we] the definition of £, implies

2fulk) =2 2fulk) = [fulwe) + (k — wedke] + [f (weo1) + (k — we_)Ael.

CASE2: u™ > u™. Let f* be the smallest concave function such that
) > fu(s) foralls e [wh, u"].

iIhe derivative of f* is then a piecewise constant, non-increasing function, say with
Jumps at the points wg = ut < wy < --- < w, = u~. Letting the shock speeds A; be

as in (6.8), the function
u- ifx <th,,
o, x)=qw, Hihp <x <tk 1<f<g—1),
ut ifthy < x
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Figure 6.2

again provides an eniropy solution to the Riemann problem (6.6)-(6.7). Observe that,
in the above construction, ali values w, lie within the set 27VZ.

Next, consider the more general Cauchy problem (6.6)—(6.2), still assuming that
the initial condilion # is piecewise constant, taking values within the set 27"Z, Let
X < -+ < xy be the points where z has a jump. At each x;, consider the left and right
limits #(x;—), i1 (x;4) € 27°Z. Solving the corresponding Riemann problems, we thus
obtain a local solution u = u(¢, x), defined for 1 > 0 sufficiently small. This solution
can be profonged up to a first time 7, > 0 where two or more lines of discontinuity
(emerging from different Riemann problems at ¢ = 0) cross each other (Fig. 6.2). Since
the values of u(f, -) always remain within the set 27VZ, we can again solve the new
Riemann problems generated by the interactions, according to the above procedure.
The solution is then prolonged up to a time £ > #; where a second set of wave-front
interactions take place, and so on.

We claim that the total number of interactions is fnite, and hence that the solution
can be prolonged for all r > 0. Indeed, let

() < <&, () (r<T) (6.10)
be the Jocations of m discontinuities, which interace aif together at some time v. For
t < t,letup, iy, ..., iy be the constant values taken by  and consider the jumps

w — i = ult, &) —u(, 5@)-) i=1,...,m. {6.11})

Two cases can occur.

CASE I: All jumps in (6.11) have the same sign. In this case (Fig. 6.3), we claim that the
Riemann problem determined by the interaction is solved by a single jump, connecting
ug with u,,. To fix the ideas, assume up < %y < -+ < iy, the opposite case being
entirely similar. By construction, all the incoming fronts are entropy admissible so that

_ Folu) — fulwip)

My — Wi

&

fols) = STHEL p o+~ f(wy) foralls € [uiy, uil.
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Moreover, since all fronts §; meet at the same point, (6.10) clearly implies £y > -- - > £
From the above relations we deduce that !

§ —Hp Hy — 8
vl¥ 2 Y AN 2 'L—‘ °
fu(®) P— Solu) + — Solug) forall s € [ug, unl
Therefore, the single jump (ug, u,,), travellin g with speed
— fu(”m) - fu(“())

Uy — Hp

3
is entropy admissible, proving our claim.

We conclude that, in this case, the total variation of u(t, ) does not change as a

conseguence of the interaction. Moreover, the number of lines where 1 is discontinuous
decreases at least by 1.

CASE 2: At least two of the jumps in (6.11) have opposite signs. In this case, the total
number of wave-fronts may increase through the interaction, However since’ the total
strength of the outgoing fronts is given by |u,, — ug}, the total Variation, of the solution
must .decrease by at least 2 - 27", owing fo a cancellation effect.

‘ Figure 6.4 shows an example with two incoming fronts {i.e. m = 2} having opposite
signs. The Riemann problem determined by the interaction is solved by three outgoing

Mo -
0 1 Hp ity

Figure 6.3
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Figure 6.4

fronts, connecting the states up < u3 < Hs < ua. Observe ihat this configuration is
possible owing to the particular shape of the function f, with two inflection points.

Since the total variation of u(¢, -) is bounded when ¢ = 0 and never increases,
CASE 2 can occur only finitely many times, and hence also CASE 1. This proves that
the total number of interactions is finite. The above method of wave-front tracking (hus
defines a piecewise constant solution to (6.6)-(6.2), with jumps occurring along a finite
number of straight lines in the —x plane.

6.2 Global existence of BV solutions

Relying on a compactness argument, we prove here an intermediate result concerning
the global existence of entropy weak solutions, within a class of functicns with bounded
variation.

Theorem 6.1. Let f belocally Lipschitz continuous and letu € L! have bounded varia-
tion, Then the Cauchy problem (6.1)~{6.2) admits an entropy weak solution i = u @, x),
deﬁriedfor allt > 0, with

Tot. Var. {u(t, )} < Tot. Var. {&e},  Hu(t, Hpe < e forallt > 0. {6.12)

Proof. Call M = |}it|| . Recailing Lemma 2.2, we construct a sequence (Hy)om1 of
piecewise constant functions such that

(i) d,{x) € 27VE, forall x,

) iy —uflyy — 0,
(i) Tot. Var. {z,} < Tot., Var. {it},
{v) flitylipee < M.

For each v, let i, = u,(f, x) be the piecewise constant enfropy solution of the
conservation law (6.6) with initial data u,(0, ) = i, constructed by the froat tracking
algorithm in the previous section. Observe that from (iii) and (iv) it follows that

Tot. Var. {u, (¢, )} < Tot. Var. {it}, lup(r, x} < M, (6.13)
for all v, f, x. Let L be a Lipschitz constant such that
Hf(w) ~ fae')) < Liw — w'| forallw, w' e ]-M,M].

Clearly, L provides a Lipschitz constant also for all functions f,, on the interval
[—M, M].By (6.8), this implies that the speed of all discontinuities in (¢, -) is bounded
by L. Using the bound (6.13) on the total variation, for every ¢, ¢ = 0 one obtains

oty ) — iy ét', Mg < Llg — 1| - Tot. Var. {z}. (6.14)

We can thus apply Theorem 2.4 and deduce the existence of a subsequence (Hy);x1
which converges to some function u in L;OC([O, ool x ). Clearly (6.13) implies (6.12).
Observing that the convergence f, —> f is uniform on the interval [—M, M]
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and recalling that each u, is an entropy solution of (6.6) (with v replaced by u)
we obtain ,

]/{IH — kg + (f () — f(k))sgn(u — k)¢, } dx dt

= lim_ f f (et =kl + () — Fu(R)sgn(uy — K)o} dix d
>0,
for every C! function ¢ > 0 with compact support contained in the half plane where

zl > 0. This proves thaF u is an entropy weak solution of (6.1). Finally, (6.14) and property
(ii) of the approximating sequence imply that the initial condition (6.2) is attained. ]

6.3 Uniqueness

The goal of this section is to prove the classical theorem of Kruzhkov, providing an
estimate of the L! distance between any two bounded entropy-admissible solutions of
(6..1). In particular, we will show that the entropy solution of the Cauchy problem is
unique, within a class of L™ functions.

Theorem 6.2 (Kruzhkov), Let f : R > R be locally Lipschitz continnous. Let u, v be

entropy-admissible solutions of (6.1) defined for 1 > 0, and let M, L be constants such
that

fu@, x) <M, |, xH<M  foralls,x, (6.15)

[flw)y — fw) < Liw —w'| forallw, w e[—M, M). (6.16)

Then, for every R > Q and 1 Z: 79 > 0, one has

lee(r, x) — vlz, x)|dx < [t (70, x) — vy, x}| dx. (6.17)

Iel<R I¥l<R+E(r—15)

Progf. To help the reader, we first give an intuitive sketch of the main arguments.
Consider the trapezoid (Fig. 6.5)

R={¢,x) 0t <7, x| <R+ Lz — 1) (6.18)
i T
T; 1 : 1J'2
1 Q 1
] ]
; % : B}
-R R R+L(1:—TG)
Figure 6.5

If 4 is an entropy solution, we can apply the divergence theorem to the vector field
& = (n(), g()) on the domain 2. Using the inequality (6.4), we formally obtain

0= [ {n@) +q))dxde
Iy

R R4-L{t—T1p}
= f nu(r, x))dx — 7T, x)) dx
- —R—-L({t—1p)
+f[L n(uls, yi(0))) — qlu@, p())N}de +f{L nult, o (00 + g (e, ()N} dt.
0 To

(6.19)
As in Fig. 6.5, the lines

ity =—R—Lz—1), wm@O=R+L—1)

represent the two sides of £2. Observe that (6.19) is valid for every entropy 1(x) = |u—£kl,
with entropy flux q(u) = (f () — f(k))sgn{u — k). By the assumption (6.16), f is
Lipschitz continuous with constani L. As a consequence, the last two integrals on the
right hand side of (6.19) are both > 0. From (6.19) we thus obtain the inequality

f fu(r,x) —kldx < |t (zg, x) — k| dx, (6.20)

[HESS FER+L{t—10)

valid for every k € R. Observe that (6.20) gives precisely the estimate (6.17) that we
are looking for, in the special case where v(f, x) = k is a constant function.

Motivated by the previous analysis, the proof of the theorem will thus consist of two
pats:

(i) Show that the inequalily in (6.3) remains valid if the constant & is replaced by
any entropy solution v = v{f, x).

(ii) Make rigorous the formal derivation at (6.19).

To achieve (i), we fizst consider two entropy solutions i = u(s, x) and v = v(t, y)
acting on distinct independent variables. The corresponding entropy inequalities can
then be written on the product space B? x R?, with variables (s, x, t, y). At this stage,
the trick is to use test functions ¢ = ¢ (s, x, £, ¥) which concenirate most of the mass
along the diagonat where s = { and x = y. By taking the limit over a suitable sequence
of these test functions we shall obtain (6.27), providing the desired extension of (6.3).
To achieve (ii), we shall use (6.27) in connection with test functions which approximate
the characteristic function of the domain . We can now begin with the actual details of

the proof.

1. Let #, v be entropy solutions of (6.1). Given any constanis k, X’ € R and any smooth
function ¢ = ¢{s, x, £, ¥} > 0 with compact support contained in the set wheres, 7 > 0,
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by assumption one has

[ f (115, %) — ks (5, %, £, y) + sgne(s, 1) — ) (w(s, 5))
— fiNG (s, x, 8, ¥)ldxds > 0, {6.21)

f {lo(t, ) = Klg s, x, £, 3) +sgn(u(e, y) — K, »))

— FENDy (s, x, 1, Mdyde = 0, - (6.22)

.Set k = w(t, ¥) in (6.21) and integrate w.r.t. £, y. Then set k' = u(s, x) in (6.22) and
integrate w.rt, 5, x. Adding the two results, one obtains

f f f f (I, x) — v, PIbs + ) (5, %, 1, 3) + L (5, 3)) = F (s 9]
@ + @s)s, x, 0, lspnluls, x) — v, Y))dxdydsdt > 0. (6.23)

2. ' N'mv choose a sequence of functions (3, };>1, approximaiing the Dirac mass at the
origin. More precisely, let § : R +» [0, 1] be a C* function such that

oo

jé(z)dz=1, 8z)=0  forallz ¢[—1,1],
and define
Sty =hdhz),  aw(z)= f Su{s)ds. (6.24)

Consider any non-negative smooth function ¥ = (T, X) whose support ts a compact
subset of the open half plane where T > 0, and define

s (45 (50 (552).

A direct computation vields

e o (224 (50 (5.

(e + D)8, X, 1, y) = Yy (S;H’ : _;},>311 (%) 8 (x ; y).

For I sufficiently large, the support of ¢ is contained in the set where s > 0,7 = 0.
From (6.23} it thus follows that

fff/ & (S_;) ¥ (%”y) {'““’-‘) — v NIy (3 +eox +y)

2 2
s+t x4+
) y)} dxdydsdt

z 0. (6.25)

+ £ el, 30) = Fee(, y)] sgnuts, x) — v, y))wx(

[&]

3. We now compute the limit of the left hand side of (6.25) as A — oo. Using the
variables

_s+t

—t
T = =2

, §=
2 2

the inequality (6.25) becomes

f[[f{!u(T + 85X+ —uv(l -5, X -V (T, X)

[T +S, X+ - f(T -5, X-Y)]
csgn{(T+ S, X+ V) —w(T =S, X - 1)) -9, (T, X}}
S8 (S¥8(Y)dX dY dSdT = 0. (6.26)

. X=

Letting & — oo in (6.26) and renaming the variables T, X, we thus obtain

f[[lu(!.x) — v, D) (1, x) + [F (@, x)) — fuls, x)]
csgn(ult, xy — v(F, X)) (0, x)}dx dr = 0 (6.27)
for every C! function v with compact support contained in the half plane where 1 > (.

4, Now let0 < 1y < T and R > 0 be given, We construct a smooth approximation ¥
to the characteristic function of the trapezoid £ in (6.18), by setting

P, x) = lop(t — 1) — ot — )] - [ —e(Ix{ = R + Lz — 1))].

Recall that oy, was defined at (6.24), sothataj, = 8, > 0. Using (6.27) wilh this particular
test function ¥, one obtains

ff lae(r, x) — (e, X [t — 70) — 8k (¢t — O} [1 —eu{|x| — R = L(r — ()} dxdt

> f[ {%[}{u(r,x)) — flur, x))]sendu(t, x) — v(t, x)} + Liu{t, x) — v(t, I)I]
o (6 — 1) — o — D] 8a(jx| — R — L{r —t))ydx dr. {6.28)

By (6.15) and (6.16) we have {f(uy — f()| < L|u — v|. Moseover, (6.24) yields
ot — o) — ot — v) = 0, @), = &, = 0. Hence

f lee(e, x) = v {t, )8 (¢ — w0) — 8t = T)]- [l = ap{lx| = R—L{z — ))]dxdr = 0.
(6.29)
Recalling that the maps f +> u{t, -), £ = (1, -) are buth continuous from [0, cof into

L]]uc, we now let b — 00 in (6.29) and obtain (6.17), in the case where 0 < 7y < 7. By
continuity, (6.17) still holds if ip = r orif g = 0. £l
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Corollary 6.1 (Unigueness in L*). Let f : R ~ R be locally Lipschitz continnous.
If u, v are bounded entropy solutions of (6.1) such that |u(0, ) — v{0, Iy < oo, ther
foreveryt > 0 we have

fi:((r,x)mv(t,x)ldx < f (0, x) — v(0, x)| dx. (6.30)

For all initial data it € L™, the Caischy problem (6.1)~(6.2) has at most one bounded
entropy solution.

Proof. By assumption, there exist constants M, L for which (6.13) and (6.16) hold. For
every R, t > 0, by (6.17) one has

f |re(t, x) — v(t, x)|dx < f 0, x) — (0, x)| dx. (6.31)
Jxj<R |x{<R+Lt

Letting R — co in (6.31) we obtain (6.30), and hence the uniqueness of the
solution. 0

6.4 A contractive semigroup

By Theorem 6.1, a weak solution of (6.1) exists for every initial condition # & L'
with bounded variation. Since the L! distance between any two such solations does not
increase in time, the solution operator can be extended by continuity to a much larger
family of initial conditions. In particular, this yields the existence of a unique entrepy
solution to the Cauchy problem (6.1)-(6.2) for all initial data i € L! N L%, We recall
thai weak solutions are defined up to equivalence in L] . The results stated below are
thus understood to be valid after possibly changing the values of the solutions on a set
of measure zero.

Theorem 6.3. Let f : R — R be locally Lipschitz continuous. Then there exists a
continuous semigroup S : [}, 00y x LY+ L with the following properties

(i} Soft = u, S;{Sk) = ;i
(i} 1S = Sollp < |6 — vl
(iii) For each & € L' N L>, the trajectory + +— S, vields the unique
bounded, entropy-admissible, wealk solution of the corresponding Cauchy prob-
lem (6.1)-(6.2).

(iv) Ifi(x) < 9(x) forall x € B, then S;ii(x) < S,5(x) foreveryx € R, ¢t > 0.

Proof. For all initial data i € L' N BV, let S, be the value at time ¢ of the entropy
solution to (6.1) with initial condition @. The existence and uniqueness of such a solution
are guaranteed by Theorems 6.1 and 6.2. By continuity, we can now extend the domain
of the semigroup § to the entire space L! by seiting

St = lim S, (6.32)
Henv

the convergence taking place in the L' norm. Because of (6.30), the limit in {(6.32) is
well defined and satisfies (i) and (ii).

To prove (iii), let # € L! N L™ be given, say with |a(x)] < M for all x. Consider
a sequence of functions #, € BV with [lit,llp < M, i, — & in L}. Observe that the
corresponding solutions u, (¢, -} == 5,1, all take values inside the interval [-M, M]. By
the contractivity of the semigroup, for each v and every ¢ > ( we now have

IS0y — Spiellyr < ey — wellpa, HF(Sa) — FOSilip < L - iy — aflps,
(6.33)

where L is a Lipschitz constant for f on [~M, M]. Fix any k € R and any ! function
¢ > 0 with compact support contained in the half plane where ¢ > 0. Using (6.33) we
obtain

f {18e — klgpe + (f(Si) — f(k)) sgn(Spit — k) dx dt

— lim f f Sty — kg + (F(Siita) — £(K)) sgn(Syfty — k)b ) dx dt

=00
=0,

showing that each trajectory of the semigroup is an entropy-admissible solution of (6.1}.

Concerning (iv), by continuity it saffices to consider the case where both & and ¢
have bounded variation. In this case, the corresponding solutions of (6.1)~(6.2) can be
obtained as limits of the piecewise constant approximations consiructed in Section 6.1.
The proof is thus reduced 1o showing that for any given v > 1, if u, v are piecewise
constant solutions of (6.6) and u (0, x) < v(0, x} for all x, then

u(t,x) <uvlt,x) forallt >0, x e R. (6.34)

If (6.34) fails, by continuity there exists a largest time 7 such that (¢, x} < v{r, x) for
allx e Rand s < t. Since u are piecewise constant, on a small time interval [z, © 48] it
is obtained by piecing together the corresponding solutions of the Riemann problems at
every point of jump of u(z, -). The same of course holds for v. To derive a contradiction,
it thus suffices to prove a comparison result for sclutions of two Riemann problems.

We thus consider two Riemann data (u~, u™), (v™, v*") for the conservation law
(6.6). If max{u~,u*} < min{v™, v*}, it is obvious that the corresponding selutions
satisfy u(z, x) < v(t, x) for every x € R, t > 0. We thus need to consider two non-
trivial cases:

CASE 1:v~ < v <ut <vh.
CASE2:ut <vt <u <uv™.

In the first case, we observe that the piecewise constant solution u = u(z, x)
constructed at (6.9) can be characterized as follows:
. X . . X
w(t,x) =w iff fHlw) -~ w= min {fv(s) S .s} (6.35)
! sefue,nt] s
In other words, u(?, x) = w iff the line with slope A = x/1 supports the graph of f,
(restricted to the interval [, u¥ ] atthe point (w, f(w)). From (6.35) and the analogous




property of v it follows that
w{f, x) = arg min {fv(s) X -s} < arg min {f,,(s) _r s} = v(t, x).
sefn~,ut) t sefv—,vH] i
Similarly, in the second case we have

u(r, x) = arg max {f,,(s) _* As] < arg max {f,,(s} =2 -s} = (1, x).
sefut ] 1 sefot,v] t

In both cases we have obtained a contradiction with the maximality of . This establishes
(6.34), completing the proof of the theorem. (|

Problems
(1) Compute the unique entropy solution of the Riemann problem

-2 ifx <0,

i+ (0 = 3u). =0, 0,x) =
o (07 = 3u) #(0, ) {2 iy > 0.

(2) Let f : R — R be globally Lipschitz continuous with constant L, and let § be the
semigroup generated by (6.1). If ii € L! has support contained inside [«, 5], prove
that the support of S, is contained in the interval [a — Lf, b + Lf].

(3) Let f be locally Lipschitz continuous and consider the Riemann problem

_ . 0
u+ ifx <0, (6.36)

ut fx >0,

u; + ) =0, #(0,x) = {

withu~ < ut. Prove that the unique entropy solution of (6.36) has the form « (4, x)=
Yr{x/t), where

¥(A) =arg min  f(s) — As.
sefu—,ut]

Otherwise stated, (¢, x) = w € [u™, u™] iff the line with slope x/¢ supports the

epigraph of f, restricted to the interval {1, ], at the point (w, f(w)).

Hint: consider first the case where f is piecewise affine.

Consider initial data it € L™ which is periodic with period p. Let 1 = u(t, x} be

an entropy solution of the Cauchy problem (6.1)~(6.2). For every ¢ > 0, prove that

u{{, -) is periodie with period p. Moreover,

4

Z

P ”

fu(f,.r)dx = jﬁ(x)dx.

0 i
Find an example where, for 1 > 0,

P P
f]u(t,x)ldx <f|ﬁ(x)|dx.
0 o

(5) Let f € C? satisfy
FO = F© =0  f'w=c>0 forallu
Consider the initial condition

_o kx—a) if x € {a, b],
B =1, it x ¢ la, b,

for some constant & > 0. Prove that the entropy solution of (6.1)-(6.2) is given by

aly(t,x)y ifx ela, b(1)],

u(t,x) = {0 ifx ¢ [a, b(D)],

where y = y(¢, x) and b = b{(t) are implicitly defined by
y+if GO =x, yelabl,

B(1) bisy b
- _ k(b —a)
[ ult, x)dx = fu(y(t,x)) dx = ] (x)ydx = —
a a a
In addition, show that
AN
e —unx 1 s (637
X —x ct
Finally, prove the decay estimate
2|\
lutt, My = DL 4 >0 (6.39)

Hint: outside the shock at x = b{t), the function u satisfies
() + () Gy = ~f"(u)u§ < —C!li. (6.39)

Integrate (6.39) along the characteristics x(t) = xp+-1f (1 {xp)) o oblain u, (f, x) <
(ct)™". To prove {6.38) observe that, if u{s, x’) = A > O at some point x", then (6.37)
implies

h? -
C—’i'— < s, Mg < Nidllg- (6.40)

(6) Let f € C?satisfy f"(u) = ¢ > O for all » € R. Fix an integer v > 1 and define the
piecewise constant approximation f, as in (6.5). Let u, = u,{f, x) be a piecewise
constant solution of (6.6), taking values in the discrete set 27"Z. Lines x = x,(#)
where i, has an upward jump, i.e. u,{f, xo—) < uy{t, X+), are called rarefaction
fronts. Lines where u, has a downward jump are called shock fronts.

(i) Show that all rarefaction fronts have strength u, (f, X, +) — (£, X =) = 27"

(ii) Show that, if two or more fronts collide, at least one of them is a shock. From
the interaction, a single shock emerges (unless all fronts completely cancel each
other).




(iti) If two adjacent fronts x,, x.41 are both rarefactions, prove that their speeds
satisfy X4 — Xe > ¢+ 277,
(iv) From (iii} deduce the inequality

y—x

wp(f, y) —uy(t,x) <277 4 —r
ct

x<y t>0

(v) Letting v — oo in (6.41), prove that every entropy solution u of (6.1) satisfies

y—x

u(t, vy —u(t,x) < x <y, t>0.

(viy Using (6.42), show that the decay estimate (6.38) holds for every solation u of
(6.1), provided that 7 > ¢ > 0.

7
The Cauchy problem for systems

This chapter is concerned with the global existence of solutions to the Cauchy problem

4 fludy =0, (7.1)
w0, x) = i (x), (7.2)

under the assumptions

(&) The n x n system of conservation laws (7.1) is strictly hyperbolic, with smooth
coefficients, defined for u in an open set @ C R". Each characteristic field is either
genninely non-linear or linearly degencrate.

By possibly performing a translation in the u-coordinates, it is not restrictive io assume
that 2 coniains the origin. Given an initial condition & with sufficiently small total
variation, we will construct a weak, entropy-admissible solution u, defined forallr > 0.
We recall that a function u : [0, T] x R — R" is a weak solation to the Cauchy problem
(7.1)~(7.2) if the map # + u{¢, -} is continuous with values in Lfoc, the initial condition
{7.2) is satisfied and, for every C! function ¢ with compact support contained in the open
strip 10, T[ xIR, one has

T oo
f[ {8, ), x) 4 o (8, X} f(ult, x))} dx dt = 0. (1.3)
Q —oo

Given a convex entropy n for the system (7.1), with entropy flux g, we say that the
solution u is n-admissible if it satisfies the entropy inequality

7 g, <0

in the distributional sense. For every non-negative C' function ¢ with compact suppost
contained in the strip 10, T[ xR, we thus require

T co .
[f {2, (e, x)) + de (8, X)g e, ¥} dx dr 2 0. 14

0 -

Most of this chapter is devoted to ¢he proof of the following basic existence theorem.
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The characteristic function of a set K is defined as

) = 1 ifxek,
=0 itx g K

We say that a function f : @ — R"is locaily integrable, and write f € L}Dc, if, for
every compact set K C §, the product f - 3, of f with the characteristic function of
K is integrable. A sequence of functions {fy}y=1 converges to £ in L}, if the sequence
fu - Xy convergesto f - xp in L! for every compact set K.

Every f € LIIOC(SZ; R*) determines a distribution ¢ gf_grge_r();,dg_ﬁned as

Ap() = f Fep () dx  forall ¢ € D). (2.10)
Q

Ifo is a multi-index and A € D'{§2), then the derivative DY A isthe distribution defined as
(DAY () = (—1AD*p) forall ¢ € D). 2.11)

If a function f is N times continuously differentiable and |e| < N, then with the above
notation one has DAy = Apay.

Example 2.1. A case that will be frequently encountered in applications s the following
(Fig. 2.1). The open set € is contained in the plane R? with coordinates ¢, x. Inside €2
we are given a C! curve

[(t,x); x =y(®) a <t < b]

Figure 2.1
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and two functions g = g(¢, x), & = h(t, x) which are continuously differentiable for
x % y(#) bul possibly discontinuous on y. We wish to compute the distribution A
associated with the sum of distributional derivatives

Dig + Dok

At each point (¢, ¥ (¢)) consider the jumps

Ag{f} = lim f,x)— lim  g(t, x),
g{r} HNHJg( ) Hm_a( )

Ah(y = lim k@, x)— Hm hQ,x),
=y Ay —

assuming that the above limits exist foralla < ¢ < b. Given any ¢! function ¢ = ¢ (¢, x)
with compact support contained inside $2, we apply the divergence theorem to the vector
field v = (g, ¢h) on the domains

QF = {1, x) e Q,x>yO Q =[(,x)e s x <y}

Let da be the differential of the arc-length along the curve y and denote the derivative
w.rt time by an upper dot. Moreover, let n be the outer unit normal to the boundaries
of -, . By assumption, ¢ = 0 on 3%2; hence the only portion of these boundaries
where ¢ does not vanish is the line x = y (). On this line, an elementary calculation
yields n - do = #(—y, 1) dt. Therefore

A@) = — f f (g6, + hibs) dx di
Q

b
= ff{gr +hilpdxdt + f{Ah (t, y () — PO Aty N} (1, v 1)) dt.
Q o

(2.12)

2.4 Functions with bounded variation

Consider a (possibly unbounded) interval J < R and a map u : J — B" The total
variation of u is then defined as

j=1

N
Tot. Var. {u} = sup [ > e - u{xj‘;);}, (2.13)

where the supremum is taken over all N > 1 and all (N + 1)-tuples of points x; € J
such that xp < x; < - -+ < xy. If the right hand side of (2.13) is bounded, we say that i
has bounded variation, and write u € BY. Some clementary properties of 8V functions
are collected in the following lemmas.
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Lemma 2.1. Let u :la, b[— R" have bounded variation. Then, for every x eJa, bl,
the left and right limits

uix—) = yl_ig}l_ u{y), u(x+) = yli‘l-‘+ u(y)

are well defined. Moreover, u has at most countably many points of discontinuity.

Proof. Let x €1a, b[ be given and consider any strictly increasing sequence of points
x, tending to x. Since

Z |t (xp) — 1 (xp1)| < Tot. Var. {u} < co,

vt

the sequence r(x,} is Cauchy and converges to some limit & Observing that any
two such sequences x, —» X, X, —> X can be combined into a unique nen-decreasing
sequence, it is clear that the ahove limit is independent of the choice of the x,. Fhis
proves the existence of the left limit #(x—). The case of u{x-+) is entirely similar.

To prove the last statement, for each v > 1 we observe that the number of points
contained in the set

A, = {x ela, bl lu(x—y — u( + julx+) — w(x)} > l/u}

cannot be bigger than v - Tot. Var. {1r}. Hence the set of points where u is discontinuous,
being contained in the union of all A,, v = 1, is at most countable. a

Remark 2.1. By the above lemma, if u has bounded variation, we can redefine the value
of u at each jump point by setting u(x) = u (x-+). In particular, if we are only interested
in the L!-equivalence class of a BY function ¢, by possibly changing the values of 1 at
countably many points we can assume that # is right continuous.

Remark 2.2. Tfu : B > B" has bounded variation, the same arguments used in the
proof of Lemma 2.1 show that the limils 1{—00), #(co) are well defined.

Lemma2.2. Letu : B — R" be right continuous with bounded variation. Then, for
every £ > 0, there exisis a plecewise constant function v such that

Tot. Var. {v} < Tot.Var. {u}, v —stllgee < €. (2.14)

If, in addition,
0 [oe]
f l(x) — u(—oo)|dx + f Jee(x) — w(co)|dx < o0,
oo i

then one can find v with the additional property

i~ vilp < & ' (2.15)

Functions with bounded variation 13

Proof. Define the scalar function
N
U(x) = sup [ le!(xj) —u ) N 2L X < < <y :x},
=1

measuring the total variation of 1 on the interval ]—0co, x]. Observe that If is a right
continuous, non-decreasing function which satisfies

U(—o0c) == 0, U (oo) = Tot. Var. {u},

2.16
[u(y) — ()} < U(y) = Ux) forallx < y. ¢ )
Given & > O, let iV be the largest integer < Tot. Var. () and consider the poinis

Xp= —00, Xy =00, xj—fmin[x;U(x)zja], j=1,...,N—1L

DPefining

v(x) =ulx;)) ifx € [x;, Xl

by (2.16) the two estimates in (2.14) are both satisfied.
To prove (2.15) we observe that, under the addition al assumption of the lemma, one
can find p large enough so that

- [>5]
f le(x) — u(—o0)|dx + f [ (x) — uloc)| dx < %
oo p

We can riow construct a piccewise constant function o such that

~ £
15— ulfiee < —.

2p
Defining
u(x) if x € [—p, pl,
v{x) = {u{—o0) ifx < —p,
1t (co) if x = p,
one achieves the additional estimate (2.15). O

Lemma 2.3. Ifu : R = R" has bounded variation, for every £ > 0 one has

1 oo
P f [ie(x 4+ &) — u(x)} dx < Tot. Var. {u}. 2.1

~—00
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W [ .
W10 =1 . f 2 DL&(‘

= ex(v (‘13]'3]—5 ﬁ{k” *)
-0y

Proof. Ttis not restrictive to assume that # is] right continuous. A;\in the proof of Lemma

2.2, define the non-decreasing scalar function U (x) as the total var tionof u on ]—oo, x].
By (2.16) we then have ;

Because of (2.21), the function U/ maps € into [0, C] and is non-decreasing. For each
n > 1, consider the set of jump points

(o]

flu(x &) —ulx)| dx < [ [U(x+e)~U(x)]J£3 sy Spprodtmale W
vi

—00 —-co

T an Huw iw
= meas{(x, ek U@ <y <Ulx+ s)}]l Loate 4
}

:}i‘ {-\‘)“:.umi C ' {0‘6 \ “'\U.\ E Jr“ - {JC c R; lim U(_)’) — Hm U(}')Z l}
¥+ y—rx— I

where, of course, the variable y ranges over €. By the properties of U, the set J, can
contain at most Crn points. Therefore, the set J of points x € R where the right and left
limits of I/ are distinct is at most countable, and indeed

7=

nzl

U (o) o
‘51 GLS("iu's:
= f meas{x; U(x) <y <Ulx + eldy |8

U(—c0)
Tot Var ] 3. We now choose a further subsequence, say u,,, such that the jimit
= edy u(x) = lim u,(x) (2.22)
) p—rco

= g - Tot. Var. {u).

This establishes (2.17). O

exists for each x in the countable set J U @@, We claim that, for this subsequence, the
limit (2.22) exists for every x € R as well. Indeed, assume x ¢ J. Then for eachan > I,
since x ¢ Jy,, there exist rational points py < x < pp such that Up) —Ulp) <2/n.

Bounded sets of BV functions have a compactness property, siated in the following Using (2.21) and the fact that . (p1) — u(p1), we obtain

theorem, which will provide the key ingredient in the existence proof for weak solutions

" lim sup |uy (x) — wp(x)| < lim sup fry (x) — w{p1)| + lim sup lag (x) — e (pi)
to systems of conservation laws.

f.k—o00 hi— 00 k00

=72 limsup fu, (x) — u, (1} <2 limsup (Uu(pa) - Un{p)
oo

n-roa #

Theorem 2.3 (Helly). Consider a sequence of functions 1y R R" such that

Tot. Var. {u,} <€, @ <M  forallv,x, (2.18) 4
v =2{U(p) —U(p)) < .
for some constants C, M. Then there exists a function u and a subsequence uy such that i

Since » was arbitrary, our claim i d. This establi irs Juit

i () = () foreveryx € R, 2.19) itrary, our claim is prove is establishes the first part of the theorem.

pro0 4. For any given points xp < x| < -+ < Xy, We 110W have

Tot. Var. {u} = C, juxy <= M forall x. 220 y
N

> lulep) = x| = lim (Z by () — u#(x}-ﬁn;)
=1 i=1

i

Proof. 1. Forevery v > 1, let

< lim sup (Tot. Var. {,.}) < C.
00

N
Uy (x) = sup { Dl (xp) —up (DB N Z Lido <Xy <o < =x}
j=!

be the total variation of 1, on |- 00, x]. Observe that each U, is non-decreasing and This proves the first inequality in (2,20). The second is obvious. O

satisfies i 3 ;
Theorem 2.4, Consider a sequence of functions 1, : [0, co[ xR > R" with the fol-

0<Uyx) <C,  lu(y) — w2 < Us(p2) — Uuln) forall py £ x 2y < po. lowing properties:

(2.21)
o Tot. Var. {u,{t, V) < C, jut,x}i <M forallt, x, (2.23)
2. By a diagonal procedure, we constructa subsequence U, whose limit exists at every o
rational point: f fiy (1, X) — wy (s, x)dx < Lt — s} foralli,s 20, (2.24)
lim Uy (x) = U{x) xe@Q. o

vco
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Jor some constanis C, M, L. Then there exisis a subsequence iy which converges to some
function w in L ([0, 00) x R; R"). This limit function satisfies

f lu(t, x) —uls, x){dx < L]t — s forallt,s > 0. (2.25)
—00

The point values of the limit function u can be uniquely determined by requiring that

u(t, x) =u(t, x+) = Eim+u(t, y) forallt, x. (2.26)
yox

In this case, one has

Tot, Var. [u(t, )} = C, ju@t. x) <M forallt, x. 2.2

Proaf. Using Theorem 2.3 we constructa subsequence {u,} such thatu, (s, -} — i, )
pointwise and hence also in L]‘DC(R; "), at each rational time ¢ > 0. This limit function
clearly satisfies (2.25) and (2.27), restricted to ¢, 5 € (. By continuity, it can thus be
uniquely extended to a map £ > u(f, -) from [0, oo[ into LIIDE(R; R"Y, satisfying (2.25).
More precisely, for each t > 0 we consider a sequence of rational times ¢, — ¢ and
define

ult, )= lim w{b. )-
Hi—> 00
Because of (2.25), this limit exists and does not depend on the choice of the sequence.
Observing that

forallm>1, x e R,

Tot. Var. {u(ty, )} < C. lultm, )| =M

by possibly modifying the limit funetion 1 (¢, -) on a set of measure zero we achieve the
bounds (2.27).
Finally, we define

x+e
. 1
wit,x) = 3 / u(r, x)dx.
X
Observe that each 1 is uniformly Lipschitz continuous w.r.t. both variables ¢, x. Indeed
x+E
1 L
jeef (e, x) — (5, %) < " f [u(f, x) — uls, x)|dx < . it —sl,

x+h abeth

(f+

X x+£

M
[l (e, x) — ut(t, x + L < ) fult, Widy < - h.

m |

Moreover, for every £, x we have

i, x) = 1'11%}1 wi(, x) = ul, x+). (2.28)
e—>0+
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The function &, being the pointwise timit of continuous functions, is Borel-measurable.
For each ¢ > 0 the identity fi{f, x) = u (¢, x} holds at all but countably many points x.
By replacing u with #, all requirements in (2.25)-(2.27) are clearly satistied. O

2.5 BViunctions of two variabies

In the following, we denote y = (y1,..., ¥u) as the variable in B™, We say that a
(vector-valued) function u = u(y) has locally bounded variation if its distributional
derivatives Dy,u,i = 1,...,m, are measures. By definition this is the case if, for every
compact set K C R2, there exists a constant Cg such that

fi
H—dy
By

for each i and every ¢ € C! with support contained in K.
Functions of bounded variation possess much better regularity properties than arbi-
trary measurable functions. Some basic results in this direction will be presented below.

< Cgligllco (2.29)

Definition 2.1. We say that a function u has an approximate jump discontinuity at the
point ¥ if there exists vectors w* s p~ and a unit normal vector n € R™ such that,
setting

et ifyen<0,
Uly) = [ . (230)
ut ify-n>0,
the following holds:
o1 -
rl—lf(r]l+r—"7 f (@ + vy - U{ydy =0. (2.31)
by<r

Moreover, we say that u is apyproximately contimtous at the point ¥ if the above relations
hold with u+ = «™ (and n_arbitrary).

Observe that the #bove definitions depend only on the L' equivalence class of u.
Indeed, the limit {2, 31) is unaffected il the values of « are changed on a set ' C R”
of Lebesgue meysure zero. The standard example of an approximate jump point 1s the
following.

Example 2,2, Let i, f» : R” = R" be continuous. Let g : ™ > B be continuously
differentiable. Consider the function

L AGY ifg(y) =0,
u(y) = -
Ay if gly) = 0.

At a point § where g(7) = 0, call u™ = A(M), u™ = f(§). If T = u, then u is
continuous at 7, and hence also approximately continuous. On the other hand, if ut £ u”
and V() # 0, then u has an approximate jump at 3. Indeed, the it (2.31) holds by
choosing n as the unit vector in the direction of Vg(3}.
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The following theorem provides a useful description of the structure of BV functions
of two independent variables. A proof, valid alse for arbitrary space dimensions, can be
found in Evans and Gariepy {1992) or Ziemer (1 989).

Theorem 2.5, Let & be an open subset of B2 and let 1 : Q > R" be a BV function.
Then there exisis a set N C 2 whose one-dimensional Hausdorff measure is zero and
such that, at each point y ¢ N, the function u either is approximately contimious or has
an approximate jump discontinuity.

A class of BY functions of two variables, particularly important for applications to
conservation laws, is now considered.

Theorem 2.6. Let u :]a, b[ xR — R”" satisfy
Tot. Var. [u(t, )} <M 1 €la, b, (2.32)

[os]
f [, x) — uls, x)dx = Lt — s| s, tela bl (2.33)
—~o0
for some constants L, M. Then u is a BY function of the two variables 1, x. Moreover,

there exists a set N C 1a, bl of measure zero such that, forevery (z,§) €Ja, B[x R with
T ¢ N, calling

ut = lim u(r, x), ™ = lim u(t, x), (2.34)
x—+E+ x—E—

the following helds. There exists a finite speed A € R such that the function

Cum ifx < A,
U, x) = {u+ Y (2.35)
satisfies
roAtr
rl—if&;lif f fulr 1, E4+x) - U, x)|dxdr =0, (2.36)
2 ey
M
rilaa+£ f lu(t+r &E+x)—Ulr,x)ldx =0, (2.37)
-y

for every J* > 0.

Proof. To show that the distributional derivatives D,u, Dyu are measures, let ¢ € CCl be
any function with compact support contained in the strip la, b x R. We then have

ﬁmp,dxd: }i;%f[u(r,x)-¢(’+!"x;"f’("x) dx di

=0 h
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b o]
. 1
< [ { lufn S[I)J[) 7 lae(t, x) — ult — h, X)) a’x} Nl go i

= —a)L-|9lce.
Similarly,

ff ueh, dx dt

lim f/ ult, x) Pl x4 1) — P, %) dxdt
h—0 h

. w(t,x)—u(t,x —h) !
il,li%ff ; <, x)ydx dt
b

1
5[{Hmsupzf|u(1,x)—u(r,x—h)ld.\'} - il oo dt

h—0
< b —a)M - fdilgo.

By the two previous estimates, # is a BV function.

We can now apply Theorem 2.5 to the case where the variable (yi, ya} = (t,x)
ranges in B2, This yields the existence of a set N Cla, b] xR of one-dimensional
Hausdorff measure zero, such that # either is approximately continuous or has a jump
discontinuity at every point (z, £) ¢ A Calling

N = {550, x) ¢ N for some x € R}

the projection of A" on the -axis, it is clear that A has measure zero. Calling y = (, x)
the variable in B2, at every point § = (r, &) with © ¢ A the relations (2.30)-(2.31)
hold for some states #~, ¥ and some wunit normal n. [n particular, (2.31) implies that
(2.36) must hold for every A* > 0. If ut = u~, we can rivially define U as in (2.35),
choosing A = 0. In the case #* # u~, we claim that n in (2.30) is not paraitel to the
¢-axis. Indeed, assume that (2.36) holds with

wo <
Ug,x)y=43 , ' .
(t ) [u“‘ iff>0. (2.38)

By (2.33) the map ¢ > u(7, -) Is Lipschitz continuous w.r.t. the L! distance. We thus
have the estimate

roAtr
T 1
E =iimsup,7f f u(r +h,E+x) —ult = E+x)dxdh
ro0+ 1T
¢ —irr

1
< limSllp—ZfZLlld]l
ro0+

=1 ’ (2.39)
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On the other hand, by (2.36) it follows that
r k'

E*>hmmf——f f |Uh, xy — U(~h,x}ldx dh

r—0+ 12

—)ir
oAt
—E;msup—f f lu(t +h, &+ x)y—-Ulh,x)dxdh
r=0 A
=2lut —u"| A" (2.40}

Since A* can be arbitrarily large, from (2.39) and (2.40) we obtain a contradiction. Hence

the function If has the form (2.35) for some A € R and some states ™, u™.

To show that the right and left states 1™, 14~ are precisely given by (2.34), we
define

v, x) =ulr+t, E+x)— U, x),

E=ut —u(r E+)| + v —u(r, £-).
QObserve that

E+r
i
1113)1 - f jv(0, x)| dx = E. (2.41)
r—04 F
E—r

Moreover, the number L' = L + || |ut — u~| provides a Lipschitz constant for v,
namely

f |v(e, x) — v(s, x}dx < L'|t —s| foralls,:. (2.42)

By (2.36) and (2.41)~(2.42) it now follows that

0 = lim sup 2/jlv(r O dxde

04 R
B/ r
> lim sup 1 f (f w0, x)|dx — L'(t — r)) dt
r—>0+ 4 2
EZ
)7

Hence £ = 0, proving (2.34).
The proof of (2.37) relies again on the Lipschitz continuity of v. If (2.37) failed, we
could choose a constant § < L' such that

(}<5<hmsup— f u(t +r, & +x)— Ul x)ldx.
r—0-+
—*r
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From (2.36) and (2.42) it then follows that
0 = limsup —/ j Jlu(t, x)| dx dt
r—0+
—r )
. r . Ay
> limsup ~ f —( f lv(r, x)|dx — L'{r — r)) dr
r08 F r
/LY A
52
> ~r g
- 2L
giving a contradiction. Hence (2.37) must hold. O

Example 2.3. Consider the scalar function (Fig. 2.2)

) = 1 if0 < x < min{?, 1},
w(t, x) =
0 otherwise.

Then u satisfies the assumptions of Theorem 2.6 and hence is a BY function of the two
variables ¢, x. Observe that 1 is continuous (hence also approximately continuous) at all
points outside the two curves

c= {0, x) x =0} =0, x); x =minl?, D]

Moreover, # has an approximate jump discontinuity at all points of the curves yy, y2
except at the origin, where u is approximately continuous, and at the points P = (1, 1),
( = (=1, 1). In this case, the set of irregular points is &' = {P, @}, which has one-
dimensional Hausdorfl measure zero.

Figure 2.2




3 Mathematical prefiminaries

ermuna 2.10. Let the function g = g(t, x) be measurable in t and Lipschitz continuous
x so that

lgt,x) —g(t, I < Llx ~y| foralit,x,y.

it x1, X2 be two solutions of the differential equation (2.90), defined on a common
terval [y, T1. Then

Ix1(0) = x2(0)] < "7 1y (i) — ea(todt ¢ € [f, T (2.99)
particular, if x)(tg) = x3(fp} then the two solutions coincide.

oof. Indeed, the absolutely continuous function z(1) = |x (1) — x2(t}| satisfies
2(1) = [0{) — &(n)] < Lz().

plying Lemma 29 withee = L, 8 = 0, y = |x1{rp) — xa{fp)| we obtain (2.99). [

oblems

}Let @ ¢ A x X — X be as in Theorem 2.7. Let Xxp € X and let (h,),>) be a
sequence in A, converging to Ag. Prove that the sequence defined inductively by
Xppr = @{Ay, x,) converges to the unique point xq, such that @ (Ao, x0) = xp.

) Letu : R+ " have bounded variation. Consider a non-negative scalar function
¢ such that f #{y)dy = 1 and define the convolution

00

@ % u)(x) = f k(s — )P0 dy.

—00

Prove that Tot. Var. (¢ = u} < Tol. Var. (x).

» Letu : R > R" have bounded variation. Prove that, in addition to Lemma 2.3, the
following holds:

Tot. V'u {u} = bup f [ie(x + &) — u(x)] dx = hm [ Ju(x 4+ &) — ulx)| dx.
Letu : K+ R" be right continuous. Show that € BV iff

sup{ f w(x) - gue(x)dx;p € CY g (0)llpeo < 1} < o0 (2.100)

—00

Conversely, assume that a function u € L1 oo E; R") satisfies (2.100). Show that i
coincides a.e. with a right continuous BY functlon

(5) Lol lLéD\f Uf\ iK ) e | {D“) oosmy o= ¢ f—y
| uL(X+£ A ) - bL(K
b — T T J e D de) Problems 39
£-~70 gy P colant 5 fi f,gif o
(o shautld be aroued  with o -r«‘]'—“ R EYS GE e ey (2] ' A e abide oy b
S Mquied § \\ w;"_vA»_d N
(5) For each X € R, denote by ¢ = 5,% the unique strictly i mc1cdsmg solution of the,) * {
Cauchy problem l ond eaee eslal s
N s 'ro; ,:
i \\L‘!‘ ¢ St | v

=V, x(0) =3

oo ¥
Show that § is a continuous semigroup on R, ie. the map (¢, x) — Sx is welﬂ r :
defined and continuous on [0, co[ xR, and satisfies Spx = X, 5;85% = S;u¥.
In connection with the null solution w(¢) = 0, for any T > 0 cempute the two
quantities

A o @ R) = S0 )]
lw(t) — S;w(0)], f im inf T
o

¢
§ x.—:,r‘»'-“)\! {1 '“J N

Compare this result with the statement of Theorem 2.9.
(6) Let W ;: R" 1> R” be a C? mapping with Lipschitz-continuous second derivatives.
Assume that, for every xi, . .., x,, the following holds:

Wix),0,...,00) = W0, x2,0,...,00 = =W(0,...,0,x,) =0
Prove that, in a neighbourhood of the origin, one has the estimate

\p(xls ey xm) = O(l) . Z il'ijl-

i#j
!

Hint: observe that f(x1, ..., %) = [fG1,eeey k) = FGL ey %uen, 0] +
Flx1, ..., xy—1, 0). Use induction on n.

{7) Under the same assumptions as in Theorem 2.9, let v : [0, T} +— D be a piccewise
Lipschitz-continuous map, with jumps at the times 0 < f; < -+ <, < T. Prove
the estimate

!lv(f +h) — Spp)li

T
lo(T) — Spp(B)]f < L-[ {“ o h
0

m

LY ) — vl (2.101)

i=l

R T

@»‘ L . X If {* f{ ; (Q <_L R TL('L\ o L‘ i
|
P Lj \!-\\'. ZI‘{’ [ —~ iax ““ !Ltl l,- %'.i:"lx.{ll)‘li m}]&
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(3) Lot w e BY (R 1"

}Ti_f J( ft{(k-\! - u(x—ﬁ‘;\os‘x
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