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We prove an uniqueness and existence theorem for the entropy weak solution af non-linear hyperbolic
censervation laws ol the [orm
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with initial data and boundary condition. The scalar function u=u(x, ), x>0, (>0, 15 the unknown; the
[unetion f=/{u} is assumed 1o be striclly convex. We also study the weighted Burgers' equittion: xR
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0t 0x 2.

We give an explicit formula, which generalizes a vesult of Lax. In particular, & [ree boundary problem for
the flux f(u{.,.)) ai the boundary is solved by introducing a variational inequality. The uniqueness result is
obtained by extending a semigroup property duc to Keyfitz.

1. Imtroduction

We consider scalar non-linear hyperbolic conservation Iaws of the Jorm

0 0 .
B T ={}, .
a;l‘+axf(l') (1.1)
where the scalar function u=u(x, ), x>0, t>0, is the unknown. The flux [unction
f=f{u) is assumed to be strictly convex (with lim f(u)/|u|= + o).

| = o

This paper is concerned with the mixed pr()blchm associated with equation {1.1): we
are looking for a solution u=u(x,) of (1.1), satisfying initial data and a boundary
condition. But, it is well known® °, that conservation laws ol the type (1.1) do not
possess classical solutions, even when the iitial data are smooth: discontinuitics
appear in finite ime. Hence, we consider only weak solutions of (1.1), that is solutions
in the sense of distributions. And, for the sake of uniqueness, we have to add an
entropy condition that selects the physical (or entropy) solution among all the
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solutions in the sense of distributions. For a flux function f(.) convex, the entropy
condition is writien as*’

u(x—hzu(x+0,¢), x>0,(>0. (1.2

The main difficulty for an existence and uniqueness theory for equation (1.1} s to
have a good formulation of the boundary condition. Namely, whereas we [ix an initial
condition as

(X, Fh=u,(x), x>0, (1.3)

with a given function uy(. ), we really cannot impose such a condition at the boundary,
The boundary condition is necessarily linked to the entropy condition. We will
establish that the functions f(u{.,.)) and sgn f"(u(.,.)) possess traces at the boundary
in a weak sense. And, we will follow ideas of Bardos, Leroux and Nedelec! (see
equation 2.3).

To obtain an existence result concerning the entropy weak solution of the con-

servation laws (1.1} with initial data and boundary condition, we extend the explicit
representation derived by Lax,* for conservation laws of the form (1.1} without
boundary data, that is that the variable x described B

Furthermore, for the sake of uniqueness, we establish an L'-semigroup property in
the class ol piecewise regular solutions, which generalizes a previous result of Keyfitz.?
[Mu(.,.)and o{.,.) are entropy weak solutions associated with (integrable) initial data
tgl-) and vg(.) and (bounded) boundary dala (. ) and §,(.) (sec cquation (2.3)}, we
show that

v

‘ |eig{x) — vg(x)ldx 1‘-_[ | [ (@) —f(Fg(shldx, >0,
(1.4

j lue(x, £) = v(x, )] dng
{

} a

where we suppose—it is not a restriction—that [*(iiy(.)) and J'(B,(.)) are positive
functions.

Note that we have (o solve a fiee boundary problen: an explicit formula is derived
for the flux f(u(.,.)) at the boundary by using a variational inequality. This inequality
determines at point x=0and times ¢ >0 il the value (0 +, ) is, in particular, incoming
or outgoing (see Theorem 2.3).

Then, in Seclion 3, we study an interesting model weighted equation, the weigiied
Burgers’ equation, which appears for problems with spherical or cylindrical
symmetry:1©

E)(‘°‘ ('t})-i«a Sl =0, x>0,¢>0 (1.5
a[.\u_\, ax'\ 5 =0, x>0,t>0. .5)

We show that a straightforward change of unknown function leads to an exact
solution of this equation, by using the previous results of Section 2.

We refer to Reference 6 for an explicit formula for weighted conservation laws with
singularity. A different approach can be found in the recent paper of Schonbek,®
which uses the classical viscosity method and the theory of compensated compactness
to obtain an existence result for conservation laws with singularity.
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2. Sealar conservation laws in the half-space

2.1 Formudation of the problem

Let f=f(u) be a continuously differentiable strictly convex function and take u(.)
=/"{.) and B{.)=a"'(.). Lel uy=1uy(x) be the initial data and Ho=tpft) be the
boundary condition (whose regularity will be specified).

Consider the following scalar mixed non-linear hyperbolic problem with the
unknown u==u(x, 1)

8 o ) ) )
M li+~a-;‘/(lt)—0, u=u(x, 1), x>0, 1>0; (2.1
u(x,0)=1y(x), ae. x>0, (2.2)
u(0,0)=a,(t) and a(i,{(t)) =0, l
or a(u(0,t)<0 and (7, <0, {2.3)
or a0, <0, alipy(N=0 and [0, ) =f(F,0), ae >0 J
ulx—0,0zu{x+0,¢), x>0, >0 (2.4)

In this section, we give a uniqueness and existence result for this problem, based on an
explicit formula and an L'-contraction semigroup properly. In particular, we show
that the boundary condition (2.3) is correct [or the equation {2.1).

For motivations about the boundary condition (2.3), refer Lo the paper of Bardos,
Leroux and Nedelec,' who have obtained the lormulation (by studying the classical
viscosity method for general quasi-linear first-order hyperbolic equations in several
space variables) as follows:

sup {sgn(u(0, ) — k) { f{n(0,0)— (k) } =0, ae >0,
ke HulQ, ;7 (1))
with [{u(0, 0); dg ()= [min {u(0,t); ity (1) }; max {u(0, 1) dig(1)} ]. 1t is not difficull to see
that this condition is equivalent to (2.3) when the flux function f(.) is strictly convex.
Moreover, it is not a restriction to suppose that the boundary data ii,(.) is always
incoming, that is a(,(.)) = 0. Under this assumption, the boundary condition (2.3) can
be rewritten as

u(0, () =iry{t),
or (2.3}
a(n(O,0)<0 and  f((0, 1) =/ 0,{0)), ae (>0

Henceforth, the boundary data will now be assumed to be always incoming and the
formulation (2.3"), equivalent to (2.3), will be used.

2.2 Existence, uniqueness and explicit representation

Theorem 2.1. (Existence). Assume that the function f{.) satisfies  lim  f(u)/ |u]= + oo
[uf = +
and that the iitial data wy(.) and the houndary duta f,(.) (with ()= b)) wre
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measurable and bounded. Then, there exists a function u(.,.}, piecewise continiious
having left and right limits at each point with respect to the variables x and 1 and
possessing at the points x=0 and t=0 bounded measurable traces, which satisfies the
properties (2.1)2.4). Moreover, the solution u(.,.} is bounded as follows:

e < sup g (s ot Hio b (2.5)

Here, the traces of the function u(.,.), at t=0 and at x=0, exist in the following
weak sensc: there exist two sets & and # with zero measure such that

lim J u(ﬁ,t)démf uo(E)de, N 20; (2.6)
r—0_ J0o Qo
1éd

f ¢
lim [./'(u(.\',s))ds——-‘[ Yis)ds, =0, (2.74)
-0 Jo o]
Ni.F

where we will denole by Y(.} the trace of the {unction f(u(.,.)) at x==0. Moreover, the
function sgn a(u(.,.)) admits a measurable trace ¢(.) at x=0

lim sgna{ul(x, ) =¢ft), ae t=0. {2.7b)
x-0"
xé.7

And, with this notation, the boundary condition (2.3} is

{m) = [(@,(t) and e()=+1,

Y()=/(a,(t) and elt)=-—1, a.e.l>0.j 2.3)

Remark 2.1, With suitable regularity of the data, one can prove that the solution u(., )
given by Theorem 2.1 is more regular. And, with such assumptions, the previous
properties {2.6) and (2.7} are equivalent to (2.2) and (2.3) respectively.

The uniqueness result concerning the problem (2.1)-(2.4) is specificd by a semigroup
property in L'-space.

Theorem 2.2. (Uniqueness). Let u(.,.) and v(.,.) be piecewise continuously differentiable
solutions of the problem (2.1)~(2.4), associated with integrable initial data uy () and vy(.)
and hounded boundary data ity(.) and 64(.), respectively. Then, for 01, <1,, we have

+r + oo
J liefx, (oY —vix, t2 )l d_\‘éf [tr{x, £ )= v(x, 1 )] dx

0 0
+J | f(Galt) —S(Fo(e)] d. 28
Finally, let g=g(v) be the Legendre transform of the function f(.).
y(r)zsujp (to—f(u)), vel (2.9)
el

One can show that it is convex and

g (. )=h(.); gla@))=a)o—f(v), veR {2.99
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Then, for every bounded measurable funclion Y=Y{1), the [unction G == G{x, 1; y), x >0,
t>0, yeR, is defined as {ollows:

¥ —

. . xX—y
J upt&)dé+1g (“‘“;““““)7 rz0,
0

~J Y(E)ds+{t—1)g (——\—> =40,
0 f—1

where, [or cach non-positive number y, the number 1 1s given by

Gx, t; p)= {2.10a)

x—y X

= (2.10b)

Note that = belongs to the interval [0; +f. Note also that the formula (2.10a) has a sense
with x=0 and yz0, which does not depend on the function Y(.).

Then, the solution w=u(u,{) given by Theorem 2.1 admits the following explicit
representation.

Theorem 2.3. (Explicit {ormula).

A. Characterization of the boundary-flux Y(.).

(A1) For uny positive number ¢, let y=y(t) be a point which minimizes the function:
[0 +oo[3ye GO 1 p)

(A2) Let m=mlt), t >0, be the unique continuons function, almost ecerywhere differ-
entiable such that

m0+)=0+,
{aq{m(f)*”f(l_lo(l)’+_/'(b(-:-:}’p—)->>}X-{rp——m([}}-}(), Yp 20, ae t>0 !
(211

(A3) The function Y=Y{t) is defined by

d : —y{t
T(I)=]—lm(l)+_/(b( ':( }>), a1 >0, (2.12)
¢
B. Explicit representation inside. We have
X—p{x, ¢
ulx,1)=b (\——JI—(LJ) x>0, >0, (2.13)

where the point p(x,1) realizces the wminimum value of the function G(x,1;.) defined by
(2.10) with Y{.} given by (2.12).

Moreover, by using this explicit formula, we can specily the entropy condition (2.4
for a solution w=u(x,1} given by Theorem 2.1.
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Proposition 2.1. (Entropy condition). There exists a positive constant k, depending only
on fugll,, and a(.}such that

<y, 120, 0<xy <Xy, (2.14a)
Xy— X (—1{x,1)
with ©=1t{x,1} given by
x—ylx,t R
'g( ——)=M, x>0, >0 (2.14b)
X —1(x, 1)

Al the boundary {(x=0), the difficulty stems from the lact that the value w==u(0,1)
can be either incoming, that is sgn{a{u{0,2))}= +1 or oulgoing, that is san{a(u(0, 1))
= — 1. According as the valuc is incoming or outgoing, the boundary condition (2.3} is
different: so, there is a free boundary problem al v =0, Here, we resolve this problem by
introducing the function m{.) that satisfies the variational inequality (2.11). Note that
the inequality (2.11) is equivalent to the assertion

m(r)>0 and %m(t):f(ﬁo(r,))_f(b (_';:_(Q)), )
. . - (2.119
m(t)=0 and %"](t)>-f(170(1))—f(b ("J.(I))) ae 10,

The plan of the proofs of the previous results is the following one: first, the explicit
formula with boundary condition (Theorem 2.3) is derived; then we prove that this
[ormula leads to a solution of the problem (2.1)-(2.4) (Theorem 2.1}, which satisfies the
property (2.14) (Proposition 2.1); finally, we show the IL'-semigroup property
(Theorem 2.2) (compare with Relerences 2 and 3).

2.3. First step: derivation of the explicit Sformula

Here we will suppose that the hypotheses of Theorem 2.1 are satisfied. Let u(.,.) be
a (sufficiently regular) solution of (2.1}-(2.4) and consider the function U=U({, s)
given by

U(.‘;’,s):J u(x,s)dx, £&>0, s=>0.

By integration of the equation (2.1) on the interval [0; &], we obtain
0= U, s} 4+ (Ue(E, 5D — Y1),
with Y¢s)=/((0,5). But, the flux function being convex, we have for i and 7in R
Sz [(8)+a(@)(@—o).
So, taking 1= U,(¢,s), we deduce the [ollowing inequality
L USE s)+a(B) UglE, s)SaB)a—f(0)+ X6, (2.15)

for all positive numbers £ and s and by any real number v.
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2.3.1. Explicit formula inside the domain. Lel x, t be positive. For ¢ befonging to I, we
distinguish between (wo cases:

(a) Il —oo <a(Fy<x/1, then we integrate the inequality (2.135) along the line joining
the point (y,0)=(x—ta(7),0) to the pomt (x,r). Thus, we have
t
Utx, 1)Uy, O <r(a(d)i—f(7)) + j Y(s)ds.
0

Using the property of (2.9) of the Legendre transformation g(.) defined in
{2.9), and since

X—y

H

a{i}=

we deduce
a(i)i— f(5) =g (x";y).

But, when a(#) describes the interval 1205 x/t], the point y describes [0, e[
hence, the following inequality holds:

U, x)—f Y(s)dssr 1o (§)dE +1g (3:—)) (2.16)
0

Q

for any non-negative number y.
(b) IT'a(i) = x/t >0, then we integrate the inequality {2.15) along the fine joining the
point (0, 7)=(0,—{x/a(p)) to the point (x,). Thus, we have
!

U, )= U0, 0) <{t ~ t){a(5) 5 — (7)) + f Y(s)ds.

r

When a(5) describes the interval [x/t; + wof, the point T describes [0; ¢]. so the
following inequality holds:

U(x,r)-f Y(s)ds < —Jr Yishds+(—1) g (Jm) (2.17)

o] o f— T‘
for any t belonging te [0; 1.

Now, we define the function G(.,.,..) by (2.10). And, using {2.16) and (2.17), we
conclude that the following inequality holds;

Ulx, 1}~ f Y{s)ds<G(x, 1 y), {2.18)
Q

for all positive numbers x and ¢ and any real W

Finally, we see that, for the value of y lor which 7 equals u(x, ¢}, the inequality holds
in (2.18) along the whole line over which we integrate to obtain (2.16) or (2.17), and
thus the equality also holds in (2.18). Hence, from that fact, we deduce thal the vitlue

u(x,t} is oblained by minimizing the function G(x,t;.). So, we have obtained the
formula B of Theorem 2.3.
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2.3.2. Explicit formula at the boundary. Lel ¢ be positive; the previous inequalities
(2.16) and (2.17) hold when x equals zero:

0 [ up(&)dé +1tg (:E—E)“}‘J Y(s)yds, Vyz0, {2.16")
o () 0

and
T

0<(t—-1)g(0)-+ J Y{sjyds, Vrell[. (217

By the same arguments as previously in subsection 2.3.1, we know that the values
u(0, 1}, 1 >0, are obtained by minimizing the right members of incqualities {2.16'y and
(2.17'). Moreover, nate that the equality holds in (2.17) with t=1; and il the value is
outgoing, that is a(u(0,1)) <0, we necessarily have

u((),r}zb(_'r(f)),

with y(1) minimizing: y20—-G(0,6 ).

Let us define the function m=mf(t) by
in(f)rj Y{s)ds+min G(0,1;3), 1>0. (2.19)
I} yr20

And, for each positive number t, take a point y(1)z0 minimizing the function:
y 200 G(0,1; y). Then, the functions y{.) and ni{.) satisfy the following properties:

Proposition 2.2. The function y=y(i) is non-decreasing {thus, it is ‘well-defined’ almost
ecerywhere). The function m(.) is non-negative, continuous, almost everywhere dif-
ferentiable, equal to zero at 1=0, and its derivative is

d i W)
T mi)=Y{)—/ (h (w;w-)), (2.20}

Sor almost ecery munber 1.

Before proving this result, we now deduce the formuia A from the equalities (2.19)
and (2.20) and the boundary condition (2.3). For any >0, we distinguish two cases:

I, 1f m(1)>0, then, because of the definition (2.19), the equality does not hold
(2.16'); thus, a{u(0, 1)) is positive and by virtue of the condition {2.3), we deduce
u(Q, )=1i,(r), and so

E% mie)=f(ig 1) )—_/‘(b (3{-(_’)—)) (2.20)

2. 1 m(t)=0, then, the function m{.) being non-negalive, we have

d
a;m([);O.

That is (using (2.20))

Y=/ (b (l%—r—)D (2.

b
2
[
R
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Again, distinguish between two cases:

(@) 10 (d/de) m{e) =0, then the inequality is strict in (2.22), and we deduce [rom
(2.3} that

u(0, £} =11, (1);

and again we obtain (2.21).

(b) I (d/dt) m{t)=0, then with (2.22) we have

‘ﬂg:f(b("fm))

and, using the boundary condition (2.3"), we conclude that

d . A, =y
e ni{t)— f{tg () + f (b (-—-_";—w))}ﬂ

So the variational inequality {2.11} is proved; and (2.12) resulls from (2.20).

So, we have obtained the formula A of Theorem 2.3.

Proof of Proposition 2.2. We show that the function y(.) is non-decreasing, so it is
continuous everywhere except eventually at a few points belonging to a countable set.
Thus, for almost every ¢ positive, the minimum in (2.19) holds for a unique point
y=y(t), and this function is ‘well-defined’ almost everywhere.

Take 0<t, <t,, and denote by

yi=yl;) and  y,=y(;)

To prove y, <y,, it is suflicient to show that
GO, 155 1)<G(0, 155 9)

for any number p in [0; y, [. This inequality results from
GO, 123 y1)+ G013 )< GO, £2; )+ G0, 45 1y),

which is equivalent Lo
o= )—g(=2) o L)y E
) Ii ) [1 ‘ tl l"_—
: < .
=\ [ =n AN e
f £ Ly ta

But the points —y/t,, —y,/t,, —y/t, and —y,/t, satisly

-y =Y =y _ -y, -y -y -
= E] 2 ;: >._~‘s

¥ —¥
> i< .1‘
£y Iy Iy tz 5 L Iy £y

So that (2.23) is Jensen’s inequalily (it expresses the strict convexity of g(.))

By virtue of the inequality (2.16"), the function m(.) is non-negative. Moreover, the
continuity of m(.} is a classical fact, because the function G(0,1; y) is regular.
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In (2.19), the first term [}, Y(s)ds tends to zero with £, and the second is

min G{0, £; Vi< G0, 1; t)mf 1 (E)dE +tg(— 1),

yz0 0

which also tends to zero. The function m(.) being non-negative, we conclude

m m(ty=0+.
=0+
Let ¢ be given positive and such that the function y(.) is continuous at r. We now
compute (d/de) m(e). (At a point of discontinuity, consider p(t—0) or p(r+0) and also
(d/dty m{t—0) and (d/dt) m(r+0), and the same results are valid). In (2.19), the first
term is diflerentiable and its derivative is Y(t) which is the first term of the right
member of (2.20}, so it is sufficient to show that

gum=%[qu+myu+h»m6uxnﬂnnéj(b(_fm)) (2.24)

tends 1o zero with i. Namely, we have first

{

Q('h)é% [G(O, £+, y(1))— GO, £; y(t) ] 'Lf(b (_J’(")D;

clearly, the right member of this inequality tends to

oG —y{t)

" (O,I,J(f))-rf(b (m“mt ))

=y —yONY©O o (—YONY
()b (290, (1 (220}

Secondly, we have

Q(h);% [GO;t+h, y(+1)— GO, v+ )] +S (b (—f(t)));

and the right member of this inequality tends to

oG = PO\
"&"(Oalvj(t)}-}_f(b( P ))"‘Os

by using the continuity of y(.} at .

2.4. Second step: existence of a solution

Under the assumptions of Theorem 2.1, we now show that the formulac A and B of
Theorem 2.3 define a function u(.,.) and we specily its regularity; then we prove that
this function is a solution of the problem (2.1}{2.4).

2.4.1. Existence of a function given by the explicit formula. In cach formula A or B the
existence of (at least) a point y(t) (respectively yp(x,1)) minimizing the function:
20— G(0, t; y) (respectively G(x, t;.)) results from the [acts that the function g(.)is
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v
and the initial data are bounded (so {1/ | y]) J (&) dE remains bounded for large v}
0
Thus, for defining a function u(.,.) by A and B, it suffices to remark thal

Proposition 2.3. There exists one and only one positive function m=m(t), confinuous aud
having a bounded measurable derivative, which verifies the variational inequality (2.1 1)
Moreover, we have

—y(t)
i

. d {. . .
JhO) <+ m(f)+f(b ( )) smax{ || f(uol Dila, I Siol- Mo -

The proof is classical; we omit it.

We recall that the function y = y(t), given by (A1), is non-decrecasing (see Proposition
2.2), and thus piccewise continuous.

Finally, in order to-prove that the point y(x, ) minimizing the function G(x,1;.) is
unique almost everywhere in x,t, we verily that, {or ¢ positive, the lunction y(.,1) is
piecewise continuous. Henceforth, the function u(.,.) given by A and B, is defined
almost everywhere. These facts result immediately from the following proposition.

Proposition 2.4, Let t be positive and take x,(1)=0 a solution of

y(xalt), 1)=0.
Then,

Xaltl): ey 0; o
1. The function: JExolt + oo [0; +cof
Ll > y(x,0),

is non-decreasing;

2. The function:

{[0; xo(t)]— [0s¢f

x} T(x, t),
is non-increasing.

Here, the point t(x,t) is defined by the relation {2.14b).
Proof of Proposition 2.4, First, we take xpy <y, <x, and we show that for all y
belonging to [0; p, [, with y, =y(x,, 1), we have

Glxa, by ) <Glx,, £y (2.25)
then, we can deduce that y(x,, 1) = y(x,, ). Namely, the inequality (2.25) results from

Gxao, by )G 6 <G(x,, )+ Glx Ly )

which is equivalent to the following one:

Xqm Xp—y Xy—y X —¥
y(‘[")ﬂj( ‘['><g<'t'>+y(*~*—~‘[")- (2.

)
[
o
-



This is exactly Jensen's inequalily:

. kB Y YT h . STV X —
g ; g ; g ; g ;

<
Xp—§y  Xp) Ny Y Xy

t t { i

Secondly, we take 0<x, <x,<x,; and we show that, for all helonging to J7,:¢]
with 7, =1(x,t), we have

Gix,t;1,)<Glx,, 1) C(227)

Here, we write, for example, G(x, &; t,) instead of G(x,,t;p(xy,8). Then, we can
deduce that

T{xl,l)>f(.\'2,£).
Namely, the inequality (2.27) is a result of
Glx, 6t )+ G, bT)<Glx, 1)+ G5, 657 )

which is equivalent to

(t-1,)g (:{El)w—r)g (E)<(r—f)g(fr)+u_r,)g (iil),

that is
g —~g g —g
t— t— {— t—
! LA i v (2.28)
t—t -1 t—1, t—1,

which is exactly Jensen’s inequality.
Moreover, we specify the regularity of the function u(.,.) as [ollows:
Proposition 2.5.

1. Let x be positive and take t,= 0 a solution of y(x,t5)=0. Then, the function y(x,.)
is non-decreasing (respectively non-increasing) for te[0; ty] (respectively te[tg;
+ oo ]).

2. The function u(.,.), given by A and B, is piecewise continuous having left and right
limits at any point with respect to the variables x and t. Furthermore, it isa bounded
Sunction that satisfies {2.5).

Proof of Proposition 2.5. The first part is analogous to the proof of Proposition 2.4, by
using the following inequality:

x—y Xy X—y x—)y
— i e ( ——
7\ Ay o\ I\ =
< s

x—=) X—V xX-—-y X—V
£ t 5 t

with O<t, <f,, 0<xand Oy <y,.




28)

X,.)
[fg;
fght
uled

The piecewise regularity of the function u(.,.) immediately results from the
monotonicity properties of the [unction y(...} and from (2.13). To obtain the major-
ization (2.5), let (x,¢;y) be a point such that

()

Then, for any number y' such that

2 SUp (“”0” oy “ﬂ{) il m )

=

J-_ )’ .
x—} ‘>

Xy
t * ’

f

we show the inequality
G(x, 1 ¥) >, G, £ ). (2.30)

From this fact, we immediately conclude that (2.5} holds because of the minimization
property of the point y(x,!).

Namely, we now prove (2.30}, when y and y’ are, [or example, positive (when y or ¥
are negative, the computation is similar):

Gu¢u0—4HXJUOZJ'“d@d¢+f(”(y;y)”g(x7y)>
) .

X—y
> =y =y x fugll o 4t b( {- >4X

=|y’—y](—ull0 b(l}l) );0_

2.4.2. Existence of a solution of the problem. First u(.,.) is a solution of the con-
servation law (2.1) in the sense of distributions. We define the functions Qg (...}, uy(.,.}
and fy{.,.), for N>0, by

X—y x—y

t [

23 +

+ 14

exp{—=NG(x,t;y)} dy— [ exp{—NG(x,5;1)} dr.

o0

QN(X’ I) = j\

0

T | Y ) P VTR
“N “Ay _Q(x’ [) o 2 I ““\p [4 '\’ l‘!.“)J _‘l
! X
WJ b (w—) exp{—NG(x, ;1)) dr],
o \t-—r1
and
ey (Y |~ NG, )} d
X = Xy = Ry !
AR TENT T I T o e

—j f(b (;:w;)) exp {——NG(.\',I;T)}dI‘.
o _

(We write G(x,1; ) instead of G{x,;y), with y given by {2.10b)). For any positive
numbers x and ¢, the points y(x, ) or t{x,t) minimize the function G(x,1;.), 50 that we
have, in the sensc of distribulions,

uy(es)=rulon ) SuCo )= (),



when N — + co. Moreover, by differentiation, one can show (as in Reference 5) that the
distributions uy(.,.} and f,(.,.) satisly

WUN

A f/“'_o

And this equation leads to (2.1) when N-» + co.

Secondly, the initial condition (2.2) is satisfied in the weak sense (2.6). To begin with,
we fix a poinl x,; we take

o{f)= sup Iy(x,0—x|, >0,

Dy
and we prove that

lim a(t)=0. (2.31)

(-0

et 6 be positive. For all positive numbers x and y, such that |[x—y| =0, O0<x<x,,
J<y<y(xg, 1), for any ¢ in ]0; I[, we have

(x—y
s 9\

G(_\:r;y)=[ ug(E)d& -+ [x — y| —5=
Jo X—y
Thus
ylxo. 1} L
Glx, t;y)?/J‘ ltg(E) dE+ 0 inf QSZQ (2.32)
0 [Elz2d G
t

But the right member of (2.32) tends to infinity uniformly in x, y, when ¢ tends to zero.
Furthermore, by the monotonicity of the [unction y(.,. }(see Propositions 2.4 and 2.5),
the inequality (2.32) holds with y= y(x, ). Hence, from the minimizalion property of
yix, o), we deduce (2.31).

We now estimate G{xg,#; y(xo,1) when ¢ tends to zero (and the [ollowing in-
equalities hold only for sufficiently small t). On the other hand, we majorize:

Rt
Gxg, 13 y{xo, ) < G(xy, I;X}“—-j () d +1g(0) (2.33)
]
and the right member of (2.33) tends to | 3° uo(€)d&, when ¢ tends to zero. On the other
hand, by taking

m=inf g{.),

and by denoting by 5(d) the oscillation of the uniformly continuous funclion
x>0- [uglE)dE, over an interval of length § >0 (remark that 17(9) tends to zero with
the parameter ¢ >0), we minorize:

Lo

Glxg, t; ylxg, f))zj to{&) dE -~ (6 (e)) 4 mt (2.34)

0

I



it the

with,

ction
with

(2.34)
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And by virtue of (2.31), the right member of (2.34} tends to [ uo(&)dé, when ¢ lends to
Zero. -

But G(xg, 8 ¥(xg, 1)) tends to [3° u(&, t)d& when ¢ tends to zero (see (2.18)), and since
the functions and u(.,.) y{.,.) are defined only almost everywhere, we conclude with
(2.33) and (2.34) that there exists a set & of zero measure such that the property (2.6)
holds.

Thirdly, the boundary condition (2.3} is satisfied. By arguments similar to the
previous ones used for proving (2.6}, we deduce that there exists a sct of null measure
Z such that the property (2.7) is salisfied. And, because of the monotonicity of the
function y({.,.), the [unction x+sgn a{u(x, ), admits a limit at the point x =0, &(1), for
almost every £>0. Hencelorth, the function Y(.) being given by the variational
inequality {2.11), we now can prove, for almost cvery t>0, the condition (2.3)
rewritien as follows (see (2.3")):

Y()=f(a,(t) and e()= lim sgna(u(x,)=1,

x—+0+

or > (2.35)

Y()=f(i(t)) and &)= lim sgna(uix,t)=—1.

x=+0+

To this purpose, we define the function M =M(x, 1) by
Mix, .£)=J.I T{s)ds+mi2 Glx, 5 y), x=0, t>0.
0 y=
Because of the regularity of the function: y 20— G(x, t; v), for x =0, 1 >0, this [unction
M(.,.) is continuous {x20,  >0), and we have
MO, t)=mf(), >0 (2.36)

Namely, using (2.12}, we obtain

" dm o — y(s) .
MAO, 1) = TS (syds+ | f[P ds+min G0, ¢ y).
o Gl 0 ¥ y=0

Hence we have

MO, y=m{1}-+ J‘rf(b(:—f—(i)))ds + min GO, £; ¥).

0 ] yz0

But, by virtue of Proposition 2.2, the [unction

0 < t—min GO, £; y),

y=0

is differentiable and its derivative is

42)

So, we deduce (2.36).




Now, in order to prove (2.35), the following two cases need to be considered for
almost every t positive (since the {unction mi(.) is continuous):

[. () > 0 Using the variational inequality (2.11), we have

ac—i} m(n) = f {0y —f (b (,:%Q))

Hence, by (2.12)
Y(ty=/flig(0))

and, the boundary condition is, in that case, satisfied. Moreover, using {2.36), we
can conclude that M(0, ) is positive, and thus c(f) is positive.

R

C{t)=0, Vi e[t — & (+&], with > 0: From (2.11) and (2.12) we deduce that

.f(b (ifffl)) > Gio{1) 2.3

and (since m(.) equals zero in a ncighbourhood of 1}

T(r)———_/‘(b ( i ))

Moreover, using the continuity of M(., ) and the monotonicity of y(., ), we
arrive at

lim afuix, ) <0
x -0+

Namely, to prove this fact, we remark that y(0, 1) is obtained by minimizing the
function:

Rayi—af Y(s)ds 4 G(O, t; ).
a
But, for y < 0, it is equal to

!

Jr Y(s)ds + JT —Y(s)ds + {r — 1)g(0) =j IY(s)— f(b(O)} ds

0 0 T

which is always positive by virtue of Proposition 2.3, For y 2 0, its minimal value
is M(0, 1)=m(t) (see (2.36)). Thus, y(0, ¢) is positive, and so e{r} is ncgative. And the
boundary condition (2.35) is satisfied.

Fourthly, the emtropy condition (2.4} is satisfied. More precisely, we now prove the
property (2.14). Define k by

c=sup {b'(2)/1z] < al & Nutgll o) al £ HHollw)};

and for any positive t, take x,(1) a solution of yx,(z), t)=0. Then, for 0 x; < x5, WE
distinguish between the following cases:

{a) 1f xy < x, < X, the function y(., t} is non-decreasing, by virtue of Proposition
2.4: thus, we have y(xy) < y{x) < p(x,)




[

ve

he

we

on

and

W

uix, t)zb(w)

t

(B 0)
t

Bb(xz_y(—\'z’ I)) -~ k(-\'z‘r‘-\'l)

i

(x;—x,)

=ulx,, 1) —K
(%, 1) ,

So we obtain

u(xz,t)-ﬁu(xl,t}sﬁ. (2.38)

xl_xl I

(b) I 0 < x; <Xy < X, the function (., {) being non-increasing by virtue of Pro-
position 2.4; we deduce that

T(xl! t) —2 T(x?J {) =2 T(xos t)s

o X s S
s, t)_b(t—r(xl, t)) g b(f — ¥, r.))

b( Xz )-Hk (x2—xy) .
t—1t{x,, t) t—1(x5, 1)

and

W

So we obtain

u(x,, )—ulxy, t) < k ‘ (2.39)
X=Xy t—1(xz, 1)
(c) O x; x5 X2, by virtue of (2.38), we have on the one hand
ke
“(x}:: I) - “(x{]’ f) “<- }- (-\"2 - xO)’
and on the other hand by virtue of (2.39)
k ¢
u(xg, t) — ulxy, 1) gm (-‘50_3\'1)'—'? (xo—x)-
So we deduce that
u(xy, 1) —u(x;, 1) gi_c_ (2.40)

7.5, Third step: Uniqueness of the solution

We here prove Theorem 2.2. Let ul.,) and v{.,.) be piecewise C' solutions of
(2.1)-(2.4), associated with integrable initial data ug(.) and vg(.) and bounded bound-
ary data fio(.) and og(.), respectively. We will suppose that iig(.) = b(0) and do(.) = b(0)
(and so we will use (2.37).



We only indicate the proof by comparing with the one given by Keyfitz? {sce also
Reference 5). Because the single new fact happens along the boundary al x=0, the
arguments in Reflerence 2 immediately lead to the inequality

d + w0
5 J [{x, )—uvl{x, O]dx < p(t), >0, (2.41)
0

with the function u(.) given by
ple)=sgn(u(0, ) — o0, 0} /0, )~ f(0{0, )}, ¢>0. (2.42)
We are now going to prove that u(.) satisfies |
My <o () = [ (Te(),  t> 0. (2.43)

Hence, the semigroup property (2.8) will be derived from (2.41) and (2.43) by
integration. _
Using the boundary condition (2.3'), we distinguish between four cases: (¢ > 0).

LI (0, ) = diy(1) and v(0, t) = y(t), the equality holds in (2.43):
p(e) =1 f(trg () — f(Do (D).
I (0, 1} # i1,(1) and (0, 1)=75y(t), then we have with (2.3)
a@Q, 1) <0, fu(0, 1) = f (i (1)).
Hence, we deduce that
#l8) =f{w(0, 1)) = f11(0, 1)) =/ (Fo(£)) — f (0, 1))
= {@o(0) = Ttio(e) } + { o (e)) ~ e O()}
S 0o(0) — Sty (0) < [ [@on) — f(B(0)]-

&S]

3. 1T u(0, )=1ig(t) and v(0, 1) # Gy{r), we prove (2.43) as in the previous case 2.

4. 10, 1) 5 dg(t) and (0, 1) 5% 5y (), then we necessarily have with (2.3)

aw(@, <0 and a(v(0,0))<0.
Thus
< 0.

Remark 2.2,

1. For the proof of (2.8) without the asswumption of the piecewise regularity of the
solutions, see Reference 1.

2. if the boundary data are not assumed to be more than B0), then the second term in
(2.8} is replaced by

k Jrl Ity (s) — Ty(s)|ds,

with
k=sup{Ja(w)/iw| < sup{|ao() .., | F10)
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3. Study of the weighted Burgers’ equation

3.1 Preliminary

The mixed problem associated with the weighted Burgers’ equation (1.5} is now
solved by using a change of function that reduces this equation to the classicai
Burgers’ equation.

First, we specily the result concerning the classical Burgers’ equation. Let uy(.) and
tip(.) be bounded measurable functions with fig(.) 2 0 (it is not a restriction). And
consider the following problem with the unknown ul.,.)

;—tu-l-ai (Ew;—z)z(), x>0, >0, (3.1)
u(x, O)=ny{x), a.e. x>0, (3.2)
u(O, )=ip(t) or w0, )<< —iy(t), ae. >0, {3.3)
ux—0,0)2ux+0,1, x>0, >0 (3.4)

By virtue of Theorems 2.1-2.3, the unique weak solution of this problem (3.1)-(3.4) is
given as follows:

Propositien 3.1

A. Characterization of the boundary flux u(C, )2.

{Al) y=y(t) minimizes the function
2

0 \<_y~+f up(H)dE +1-, >0,

2
o 2

(A2) The function m=m{t) = 0 satisfies m{0)=0 and

-~ A ; 2
{E}j; m{t) - E%(Lf_{- :‘ui(_%m} x{@—-mt}} 20, =0, >0 (3.5)
(A3) The function 1(0,.)* is given by
] ,_d y()?
~ R et , 35
7 u(0, 1) T mt) + TR t>0 (3.5

B. The explicit representation inside.

X—y{x, ¢
u(x, t):——L?Lw)-, x>0, >0,

where y= y{x, t) minimizes the function

v =)
o (E)dE + qf}), iy >0,
O .
yeR— . (3.6)
T N et A
mj 5”(0’5) ds —FWT)I——, ifp<0.




3.2, Existence and unigueness
Let wg=ug(x) and w=w(t} be such that
Nupg()e LU0, o), xPuo()e L0, o), w()eL™(0, w), w()=0,

where o is an arbitrary real, and consider the following problem (3.7)+3.10) with the
unknown u=u(x, t)e i

0 o x, 1)
T L C L A T SN (3.7)
ar 0x 2
u{x, 0)=uy(x), ae. x > 0. - (3.8)
o> -2
lim  (x¥u(x, 1))=w(t),
x—0+
or
lim (x*u(x, ) < —wlt), ae. >0 (3.9
x— 0+
o< —2:
lim  (x*u(x, )= —w(1),
or ‘ J
lim (xulx, 1)) = w(t), ae >0
x— 4+ w
wx—0, 002 u(x+0,1), x>0, (>0 (3.10)

In this section, we briefly indicate the results for this problem.

Theorem 3.1. There exists one function u=u{x, t), piecewise continuous, such that the
_af2

Suwnction X**u(x, 1) has a trace ar x=0, and which satisfies the properties (3.7-(3.10)
Moreover, it satisfies

Xu(., e L7((0, o) x (0, o))
and
{t—=x"ul, e L=((0, o), L0, w)).

He have the semigroup property: if ul.,.) and v(.,.) are solutions of (3.7)-{3.10), with
initial data ug(.), vy(.) and boundary data w.), z{.), then for 0 <t, <t,

fast—2
o

J‘ ' fre(x, t5) — wl(x, 15)x*dx SJ e, £} v(x, £,)]x*dx

8] 0

+ Jta Iw(s) — z(s)|ds. (3.11)

1
if =2

o

I‘T. [te(x, 1) —vlx, )| x*dx < j lteix, £, )—o(x, £,)|x*dx. (3.12)
4O

0




vith the

(3.9)

(3.10)

har the
)-3.10)

0), with

(3.11)
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Proof of the Theorem 3.1. We deduce these resuits [rom those of section 2 by making,
m equation (3.7), a change of function that reduces it to equation (3.1). An explicit
formula for the solution will be possible (see below). We distinguish two cases.

First: o # —2. We consider the following change of function:

vlx,, =axu(x, 1), x,=x% a=

+1#0. (3.13)

R

It does not modily the notion of weak solution.

Aboul the classical notion of entropic solution (see equation (3.10)), it is also
obvious that it does not modify (3.10) when « is assumed positive, that is 2> — 2. And,
a is negative, note that

o(x; + 0, 1)=ax¥*u(x =0, 1)

and  u(x; =0, )=ax¥}(x+0, ).

Hence, [rom the inequality (3.10), we deduce an analogous inequality for the function
o(.,.)

Using (3.13} with a solution w=un{x, ¢} of (3.7), we obtain

0 1oV
a—!U(.\'l,[)‘*‘;ié"}-l—(.‘Cl,f)zzO, X1>O, t>0. (314)

But, this equation is exactly the classicial Burgers equation in a half~space (see
equation (3.1}}.

Second: = —2. Take
X,
o =00 ¢ g (3.15)
X

then the equation (3.7) can be rewritten as

¢

—u(x, )+ =
ot s
Equation (3.106) 1s exactly Burgers’ equation and, hence, we do not have Lo give any
boundary condition in this case.

0 )
25";”(-‘1,1)':& x,elR, >0 (3.16)

3.3, Explicit representation

Now, using the change of [unctions (3.13) or (3.15), we deduce from Proposition 3.1
the explicit representation of the solution u(.,.) given by Theorem 3.1.
First case: o> — 2. (In particular, it includes the ‘physical’ cases: 2=0, | or 2.}

A. Characterization of the flux at x=0.
(A1} y=y(t) minimizes the function

y» ,2(:
)’?Oﬁ{ ug{&yérdd + ) (a=§+ 'I), ae (>0.
( .

2a%¢”



(A2) m=m(r) = 0 satisfies m(0) =0 and

a , tZ i 2a
Yo =20, {a—t— ni(t) — n(z) —i—J?(_L)2 }x {op—m(n)} =0
x, t)? 0

B. The explicit representation inside.

— 1F
_"“Tg? x>0, >0,

u(x, t)=
arx

where y=y(x, 1} minimizes the following function:

o . 2t a

yeﬂ&r——rJ

Second case: x= —2. We have
X X
u(x, ty= ?log—, x>0, >0,
y

where y=y(x, 1) minimizes the function

¥ 2
O<yp<oo— f (<) d¢ ] (log )
o ¢ 2t

Third case: o < —72.

A. Characterization of the flux at x= + oo,

(Al} y= p(t) minimizes the function

¥y Za
O<ys + oo —>J~ uo(é)é“d&'+—~i-, ae, (>0,
o 2a*t
(A2) mzm(r) =0, m(0)=0 and we have
Ve Iw m(ty — v ([)- — -%)—“} x {@p—m(t)} =

(A3) lim (\i’(l,;f)_) i(t)-i—y() ae t>0.

2 3
X 4+ oo 2

-

B. Explicit representation inside.

.\:H . },ﬂ
arxs U’

tix, t)=

r ¥ 1 T N2
fuﬂ((:)sﬂdmm(* J ) ify>0,

el u(x, 5)2 I /x"—yp\2
— X0 lds+-— fy<0
L xlir(r)i+ (X 2 ) S+2E( a ) -

ae. >0,

a.e f>0.
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where y = y{x, t) minimizes the function

r

o 1 ‘_aﬂ_ I 2 .
"”J uo(s”)i“déer(\ ! ) if pe]0;+ o],
y 2t a

ye[—o0; o0 ]— <

y 0 =F t(x, s)° Efx—y" 3\
- lim | x®— ]Jds+ — , il w0, Of
L x4+w( 2 ) Zt( a ) Hyel-eo, 0L

w

Moreover, we can specify the entropy condition (3.10) as follows: there exists k>0
such that, for 0 < x, < x,, we have

Haz#—2
(x%"u(xq, ) —x2"u(x,, 1)) k
a === <

X3 —x3° Tt—1(x,, 1)

with ©(x,, 1)=max(0, 1) and teR given by

X _x—y(x, t)

t—t {
fo=—2
w(xy, 1) ulxy, 0
XA x1 !L

e &
log x, —logx; 1
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