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OPTIMA AND EQUILIBRIA FOR A MODEL OF TRAFFIC FLOW*
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Abstract. The paper is concerned with the Lighthill-Whitham model of traffic flow, where the
density of cars is described by a scalar conservation law. A cost functional is introduced, depending
on the departure and arrival times of each driver. Under natural assumptions, we prove the existence
of a unique globally optimal solution, minimizing the total cost to all drivers. This solution contains
no shocks and can be explicitly described. We also prove the existence of a Nash equilibrium solution,
where no driver can lower his individual cost by changing his own departure time. A characterization
of the Nash solution is provided, establishing its uniqueness. Some explicit examples are worked out,
comparing the costs of the optimal and the equilibrium solutions. The analysis also yields a strategy
for optimal toll pricing.
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1. Introduction. The aim of this paper is to analyze globally optimal solutions
and Nash equilibrium solutions for a specific problem of traffic flow. Car drivers
starting from a location A (a residential neighborhood) need to reach a destination
B (a working place) all at a given time T. There is a cost for starting early and a
cost for arriving late. Clearly, these costs can also account for the total time spent in
the car. Denoting by 74 and 7, respectively the departure and arrival times, the total
cost to an individual driver is

(1.1) ¥ = o(ra) + ¢(ra = T).
An appropriate choice of the penalty functions here is

0 if s<0,
(1.2) ols) = —s. b) = 3

as if s>0.

If L is the length of the highway connecting A with B, and v is the speed of cars,
then 7, = 74 + % It is now easy to compute the optimal departure time for each
driver:

Tgpt - argmsin {‘P(S) + (8 + % B T>} .

The trouble is that, if everyone adopts the same optimal strategy and departs at
exactly the same time, a big traffic jam is created and this strategy is not optimal
anymore. To resolve this issue, one needs to look at a better model, taking into
account the fact that the speed of cars depends on the traffic density.
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Call p = p(t,x) the density of cars at time ¢ at the point = along the highway.
The Lighthill-Witham-Richards model [15, 16] describes the evolution of p in terms
of the conservation law

(13) pi+ o) = 0.

Here the decreasing function v = v(p) describes the velocity of cars depending on the
density. A common choice is

(1.4) v(p) = a1 In %, 0<p<as.
The choice
(1.5) v(p) = (1— %)voa 0<p < po,

is also meaningful. It yields the same qualitative properties and explicit solution
formulas.

An optimization problem can now be formulated as follows. A planner needs to
schedule departures in such a way that the combined total cost is as small as possible.
Let

(1.6) p(t, A)v(p(t, A)) = ult)

be the departure rate from A, i.e., how many drivers enter the highway per unit time.
Notice that the boundary condition (1.6) at x = A is meaningful provided that the
characteristic speed 0,(pv(p)) is positive. As in the examples (1.4)—(1.5), we shall
assume that the map p — pv(p) is concave down, attaining a positive maximum at
a point p* > 0. We regard ¢ — () as a control function. In other words, u(-) is a
measurable function that can be assigned at will, subject only to the constraint

(1.7) a(t) € [0,M], M = max pu(p).

Clearly, the incoming flux cannot be larger than the maximum flux allowed by the
conservation law (1.3). The condition that all drivers eventually have to depart can
be written as a constraint,

(1.8) / at)dt = r,

where r is the total number of drivers.
Let p = p(t,x) be the solution of conservation law (1.3), defined for (¢,z) €
R x [A, B], with boundary data (1.6) assigned at x = A, and let

u(t,x) = p(t,z)v(p(t,x)), t>0, ze€[A DB,

be the corresponding flux. The total cost is then measured by

(1.9) J(u) = /tp(t)u(t,A)dt+/w(t—T)u(t,B)dt.

It is convenient to switch the roles of the variables t, z, replacing the boundary
value problem (1.3)—(1.6) with a Cauchy problem for the conservation law describing
the flux u = pv(p), namely

(1.10) ugy + f(u)r = 0,
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Fic. 1. Left: the function p — pv(p) describing the flur of cars. Middle: the function f,
tmplicitly defined by f(pv(p)) = p and extended according to (2.9). Right: the Legendre transform
I
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Fia. 2. Left: when p < p*, the characteristic speed is positive, and characteristics starting
from the boundary, where x = A, flow inside the domain. Right: when p > p*, as time increases,
characteristics exit from the domain.

(1.11) u(t,0) = a(t).

The function u — f(u) = p is defined as a partial inverse of the function p — pv(p) =
u (see Figure 1), assuming that
0 <u< M= glgg{pv(p), 0 < p<pr = argmgxpv(p).

Remark 1. Here we are making an important modeling assumption. Namely, the
car density never exceeds p*; hence the characteristic speed is positive: a% (pv(p)) > 0.
As time increases, this means that characteristics move from the boundary (where
x = A) toward the interior of the domain. Notice that this assumption is consistent
with a causality principle (Figure 2). By assigning the values of the incoming flux of
cars at time 7, if p < p* we influence the values of the solution at future times ¢ > 7.
However, if p > p*, this boundary data would influence the values of the solution in
the past, at times ¢t < 7.

A solution to (1.10)—(1.11) can be explicitly determined using the Lax formula
[13]. Adjusting the variables so that T" = 0 and [A, B] = [0, L], the optimization
problem can be written as

(1.12) minimize: J(u) = /gp(t) u(t,0)dt + /w(t) u(t,L)dt
over all solutions whose initial data @ satisfy the constraints (1.7)—(1.8).

Under natural assumptions on the cost functions ¢, ¥, we will show that, for every
given k > 0, this optimization problem has a unique solution. The corresponding
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density p = p(t,z) in (1.3) admits a simple mathematical description. It has compact
support and contains no shocks.

In the absence of a higher authority who can force each driver to depart at a
specific time, however, this solution is not likely to occur in practice. Indeed, it yields
different costs to different drivers, depending on their starting times. In other words,
the globally optimal solution is not a Nash equilibrium. As we shall define more
precisely in section 3, a Nash equilibrium is a solution where no driver can lower his
individual cost by choosing a different departure time.

To construct a Nash solution, one needs to modify the model, allowing for arbi-
trarily large departure rates. We thus assume that, if drivers arrive at the beginning
of the highway at a rate @(t) > M larger than the maximum flux defined at (1.7),
they join a queue. The length of this queue ¢(¢) > 0 and the flux of cars entering the
highway are determined as follows:

e Either q(t) =0 or ¢(t) = Lq(t) = u(t) — M.
o Instead of (1.11), the conservation law (1.10) is solved with initial condition

u(t,04) = p(t,0+)v(p(t,0+)) = {ué\f) i 3828?

Remarkably, it turns out that the Lax formula provides the correct solution also for
this more general model, without requiring any modification. Indeed, let

t
Ult,x) = / u(r,z)dr
— 00
be the total number of drivers that have crossed the point x along the highway at
some time < ¢. Let Q(¢) denote the number of drivers that have started their journey
at a time < ¢ (joining the queue if there is any, at the entrance of the highway). Then
the function U provides a solution to the Cauchy problem

(1.13) U, + f(U,) = 0, U(t0) = U(t) = inf {Q(T)—l—M(t—T); Tgt}.

Interpreting U = U (¢, z) as the value function for an auxiliary optimization problem,
for every = > 0 the solution of (1.13) is provided by

t—
(1.14) Ult,z) = inf{a:f*( T) +Q(T)},
™ x
where f* is the Legendre transform of f.
Our analysis shows that, for every x > 0, there exists a unique right-continuous,
nondecreasing function ¢t — Q(t), with

(1.15) Q(—0) = 0, Q(+0) = &,

such that the solution of (1.13) yields a Nash equilibrium. This implies that all drivers
face exactly the same cost, regardless of the time at which they decide to join the
queue.

The remainder of the paper is organized as follows. Section 2 deals with an
optimization problem for a scalar conservation law, where the cost depends only on
the initial and terminal profiles of the solution. Rather than (1.10), we write the
conservation law in the more familiar form

(1.16) us + f(u)y = 0, zeR, tel0,T].
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Of course, switching the variables ¢ and z is purely for notational convenience. Under
suitable assumptions on the cost functional, we prove the existence of a unique globally
optimal solution u = wu(t, x). By deriving a set of necessary conditions for optimality,
the optimal solution can be accurately described.

In section 3 we state a precise concept of the Nash equilibrium solution, writing
the conservation law (1.16) in the integrated form

(1.17) U+ f(U,) = 0, U0,2) = Q(x).

For each k > 0 we show that there exists a unique initial condition @ satisfying (1.15)
which yields a Nash equilibrium. Using the Lax formula, this solution can also be
described in detail.

In section 4 we show how the previous results apply to the original traffic problem.
As an example, the globally optimal solution and the Nash equilibrium solution are
explicitly computed, in the case where the cost functions are given by (1.2) and the
flux function is determined by (1.5).

We observe that, by introducing an additional time-dependent cost ¢(¢) at the
entrance of the highway (at a toll booth), one can easily transform the globally optimal
solution into a Nash equilibrium. This provides a natural strategy for optimal toll
pricing.

For a basic introduction to scalar conservation laws and the Lax formula, we refer
the reader to the books of Evans [6] or Smoller [17]. An extension of the Lax formula
to initial-boundary value problems was derived in [14]. Optimality conditions for weak
solutions of hyperbolic conservation laws, also in the presence of shocks, were obtained
in [3, 4, 18, 19]. However, since the present problem requires only an optimal choice
of the initial data for a scalar conservation law, our derivation of necessary conditions
will be self-contained, relying on a direct application of the Lax formula.

Various optimization problems for traffic flow, based on the Lighthill-Whitham
conservation law model, have been considered in [9, 10, 11, 12]. Global optima and
equilibria for a different kind of transport problem were recently studied in [5], also
providing results on the asymptotic stability of Nash equilibria. For an introduction
to differential games and for recent applications to traffic flow on networks, we refer
the reader to [2, 7] and [8], respectively.

2. Optimal solutions to a conservation law. Consider the scalar conserva-
tion law

(2.1) ut + f(u)y = 0.

Given a time T" > 0 and a constant £ > 0, consider the following optimization problem.
Among all the initial data

(2.2) u(0,z) = u(x)

satisfying the constraints
(2.3) 0 < a(x) < M, /ﬂ(x) dr = &,
find one which minimizes the cost functional

(2.4) J(a) = /cp(x)ﬂ(x) dx+/¢(ﬂc)u(T,x) dx.
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Here u(T,-) is the value at time ¢ = T of the unique entropy admissible solution to
the Cauchy problem (2.1)—(2.2).

In order to prove the existence of an optimal solution and derive a set of necessary
conditions for optimality, the following assumptions will be used.

(A1) The flux function f : [0,M] — R is continuous, increasing, and strictly
convex. It is twice continuously differentiable on the open interval ]0, M| and satisfies

(2.5) f(0) =0, f"(u) >b>0 for 0<u< M.

(A2) The cost functions ¢, are locally Lipschitz continuous and satisfy

(26) ¢ <0, w420, lim () =+oo, lim (p(e) + () = +oo.

Tr—r+00

By the assumption (A1) the map uw — f’(u) is strictly increasing on the open
interval )0, M[. Hence it admits one-sided limits f’(0+), f'(M—), possibly with
f'(M—) = +oco. The inverse function g = (f’)~! is thus well defined on the closed
(possibly unbounded) interval

(2.7) 1= [f0+), f'(M-)].
In other words, for each A € I we define
(2.8) gN) =u ifandonlyif  f'(u) = A

Notice that I is the set of all possible characteristic speeds, as u ranges in [0, M]. Tt
is convenient to extend f to a function f: R — R U {+o0}, by setting

F(0+)u if u<0,

(2.9) flu) = {f(M)+f’(M—)(u—M) if w> M.

In the case where f'(M—) = 400, it is understood that f(u) = +o0o0 whenever u > M.
Let

(2.10) f(p) = max{pu— f(u)}

be the Legendre transform of f. Notice that f*(p) = +oo if p < f/(0+) or p >
f'(M—). Calling v = u(p) the point where the maximum in (2.10) is attained, we
have

(2.11) dipf*oa) — u(p) € [0, M]

The unique entropy-admissible solution to the Cauchy problem (2.1)-(2.2) can
now be obtained by the Lax formulas

Y

(2.12)  y(t,z) = argmin {tf* <"”—;y) + /_OO a(s)ds; — — Ye 1},
(213)  w(tz)=g (w) :

t

One can show that, for all except countably many points = € R, the expression on
the right-hand side of (2.12) attains its global minimum at a single point y(¢,z). In
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case the minimum is attained at several points, we denote by y~ (t,z) and y* (¢, ),
respectively, the smallest and the largest of such points. One has

yt(t,21) < y (t,22) whenever 1 < xs.
Moreover, under the assumption f”(u) > b, the Oleinik estimates hold:

X9 — I

bt

(2.14) u(t,xe) —u(t,ze) < forallt >0, z1 < z2.

LEMMA 1. Let the flur function f satisfy the assumptions (Al). Let u = u(t,x)
be a solution whose initial condition u(0,x) = a(z) satisfies (2.3). Then for any given
T > 0 the following holds:

(i) There exists R large enough such that

(2.15) r—R < y(T,z) < z for all x € R.

(ii) Given any € > 0, there exists 6 > 0 such that, for every solution 4 whose
ingtial data satisfy ||u(0,-) — @(0,-)||L <4, one has

(2.16) |g (T, z), 57 (T, x)] C [y*(T,x—a)—s, yﬂT,x—i—a)—i—a} for all z € R.

Here §* is defined in the same way as y*, replacing u with .

Proof. (i) By construction, % € I C [0,00[. If the set of characteristic
speeds I is bounded, it suffices to take R =T - f/(M). Notice that in this case (2.15)
remains valid even without the assumption [ u(0,z)dz = k.

Next, assume that f'(u) — +o0o asu — M—. Observing that f*(p) > pM—f(M),
we have the estimate

By) = Tf (%)—/ als)ds > T(””;yM—ﬂM))—/y a(s) ds.

— 0o — 0o

Hence

x

B(y) - D(x) > (x—y)M—Tf(M)—/ a(s)ds > 0

as soon as

Tf(M)—FH.

r—y > R = i

Hence the minimum in (2.12) can be attained at the point y only if (2.15) holds.

(ii) Assuming that the conclusion does not hold, we shall derive a contradiction.
Let @y, : R+ [0, M] be a sequence of initial data with ||@, — @||p1 — 0. Assume that
there exists a sequence of points x,, such that

(2.17) yi(T,w,) > y" (T, 2, +¢)+¢

for every n > 1. Here y; refers to the initial data @,, while y™ refers to the initial
data @. (The case where y,, (T, z,) < y*(T,z, + €) — € is entirely similar.)
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By the optimality of y™ (T, z,, + ¢) and y,} (T, z,,), we obtain

— (T y 1 (T,xn+e)
T <x”+€ yT( ’x””)) +/ u(s) ds

— 00

—yH(T Yy (Tyzn)
< Tf (““ ;f"( ’x")) +/ u(s) ds,
Tf* <—$” y’;,( ’x”)) +/ tin(s) ds

ot y (T2 +e)

For notational convenience, from now on we shall write

— 00

Ure = YT (T, 20 +e), yn = yi (T.an).
The above inequalities imply

* xn+5—yf{7€ % xn—y;i_,a
oy Ty (T g (e

R _ ot y;i'
LT (Ty) 1y (%) < [ (ats) - malo)ds
Yn,e

By the assumption (A1), the flux function f is increasing and strictly convex on [0, M],
C?on 0, M[. Hence f* is differentiable, and its derivative (f*)’ = (f’)~! is also strictly
increasing. Introducing the notation z, = (zn — y,;0)/T, zne = (zn — y;i.)/T, the
inequality (2.18) can be written as

Zn.ete/T Znte/T v
(2.19) T/ () (s) ds—T/ (f)'(s)ds < / (u(s) — un(s)) ds.

The fact that (f*)’ is strictly increasing implies that

ate/T b+e/T
[ e [ ares 2
a b

for some constant § > 0 and all a,b € [f(0+), R/T] with b > a + €.

By (2.17), for every n > 1 we have z, + ¢/T < z, .. Hence the left-hand side of
(2.19) remains > § for every n, while the right-hand side goes to zero. This achieves
a contradiction. d

2.1. Existence of an optimal solution. The goal of this section is to prove
the existence of an optimal solution to the minimization problem described at (2.1)-
(2.4). As a preliminary, we show that, under the assumptions (A1)—(A2), the initial
data « which provides the optimum should have bounded support.

LEMMA 2. Let the assumptions (A1)—(A2) hold. Then there exists a constant
Ry > 0 with the following property. If u(x) is any initial data satisfying (2.3), then
there exists a second initial data @' satisfying (2.3), supported inside the interval
[—R2, Ro], and such that the corresponding costs in (2.4) satisfy

(2.20) J@h < J(a).

The above inequality is strict, unless @ already vanishes outside [—Ra, Ra).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/31/13 to 147.162.22.203. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

2392 ALBERTO BRESSAN AND KE HAN

Proof. Choose a radius R; > 0 such that 2M R; = k. Let R be the constant
introduced at (2.15), and choose a radius Ry > Ry + 2R large enough so that
2.21 max @(x) + max r) < min r)+ min ).
(2.21) nax p(z) we[thRﬁR]%b( ) IwIZstD( ) ‘I‘ZRer( )
Such a radius certainly exists, because the left-hand side of (2.21) is a fixed number,
while by (2.6) the right-hand side becomes arbitrarily large as Ry — +00.

Now let 4(-) be an initial data satistying (2.3). By the choice of R;, there exists
a function a! which also satisfies (2.3) and such that

al(z) > u(z) if |z| < Ry,
(2.22) a'(z) = u(z) if Ri < |z| < Ra,
af(z) =0 if |x| > Ra.

We claim that (2.20) holds. Indeed, observe that, by finite propagation speed, for all
t € [0,T] we have

uf(t, ) > u(t,x if |z L
(2.23) { <tv§ uto) i lal <Fit R

(t,x) if |z| > R — R,

(2.24)

:/ u(zx) de.
lz|>R2
Recalling (2.21), from (2.23)—(2.24) we thus obtain

J(u') — J(u)
_ z) (@ (z) — u(z)) dz Mt (T 2) — w(T. ) de
_/1<R1 A = +/1<R1+R¢( )( (T, 2) = u(T, ))d

- /1232 p(@)(u(z) — ul(2)) dz - /|I|2R2_R'/’($) (U(T7 z) —ul (T, a:)) dx

< | max p(z) + max x / u(z)dx
<|w|<R1 (,0( ) we[thRﬁR]w( )> |z|>Ra ( )

- <Iw1|n>i%2 plo) + mgllng(m)> . /1>R2 ule) dz
<0.

Observe that the above inequality is strict, except in the case where u! = 4. a

THEOREM 1. Let the assumptions (Al)—(A2) hold. Then, for any given T,k > 0,
there exists an initial data @ satisfying the constraint (2.3) and such that the corre-
sponding entropy weak solution u = u(t,z) to the conservation law (2.1) minimizes
the cost functional (2.4).

Proof. Let (@n)n>1 be a minimizing sequence. Because of Lemma 2, it is not
restrictive to assume that all functions %, vanish outside the interval [—Rq, Ro]. By
taking a subsequence, we can assume the weak convergence i, — @ for some u € L.
Since all functions @,, satisfy the constraints (2.3), we clearly have

a(z) € [0,M], /ﬂ(s) ds = K, a(z) = 0 for |z| > Rs.
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Because of the Oleinik-type estimates (2.14), for every t > 0 the functions wu,(t,-)
have uniformly bounded variation. In turn, this implies that the maps ¢ — u,(t, )
are uniformly Lipschitz continuous from [4, 7] into L*(R) for any fixed § > 0. Using
a version of Helly’s compactness theorem (see, for example, Theorem 2.4 in [1]), by
taking a further subsequence we can achieve the convergence

(2.25) lun(t, ) —u(t, )lLr@w — O forall 0 <t <T,

for some limit function u = u(t,x). Here the map t — u(t,-) € L'(R) is Lipschitz
continuous restricted to any subinterval [0, 7], with § > 0. The fact that v is the
unique entropy weak solution to the Cauchy problem (2.1)-(2.2) can be proved by
checking that the Lax identity (2.12)-(2.13) is satisfied. This is clear, because the
weak convergence of the initial data @, — @ implies the uniform convergence of the
integral functions

To(z) = / dn(s)ds — T(x) = / (s) ds.
Moreover, (2.25) yields the convergence U, (t,x) — U(¢, ), uniformly in z, for every
fixed ¢t > 0.
The weak convergence 4, — @, together with the strong convergence ||u, (T, ) —
u(T,-)|lLr @) — 0 and the uniform boundedness of the supports, yields

n—00

lim </ o(x) Un(z) dx—f—/w(x)un(T, x) dx) = /cp(x)ﬂ(x) dx+/¢(x)u(T, x) dz.

Hence u is an optimal solution. O

2.2. Necessary conditions for optimality. Let © = u(t,z) be an optimal
solution of the conservation law (2.1), providing a minimum to the functional (2.4),
subject to the constraints (2.3) on the initial data. The aim of this section is to provide
a detailed description of u, deriving a set of necessary conditions for optimality.

For each y € R consider the maximal and minimal backward characteristics
through (T, y). Recall that, by (A1), the characteristic speed f’(u) is a strictly in-
creasing function of u. Hence (T, -) has locally bounded variation, satisfies a one-
sided Lipschitz condition, and has at most countably many downward jumps. Calling
u(T,z+) < u(T,z—) the right and left limits of u(7, -) at the point x, we then define

y () = o =Tf"(u(T,2-)), - +
(2.26) y+($) =z —Tf(u(T,z+)), I(x) = [y~ (z), y"(2)].
Notice that ¥,y ™ are the initial points of the minimal and maximal backward char-
acteristics through the point (7', z). We recall that y is called a Lebesgue point for
the function @ if

y+p
lim _/ la(s) — ay)|ds = 0.
y—p
Since @ € L(R), the above limit holds at almost every y € R.

Remark 2. If y is a Lebesgue point for u, then y € I(x) for a unique point z.
In other words, y cannot be the center of a rarefaction wave. Indeed, assume, on the
contrary, that y € I(x1) N I(x2) for some z1 < z3. Then

_ y
y = argmin {Tf* (a:Ty) +/ u(s)ds} for all x € [z1, z2].

— 00
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For every p > 0 small this implies

[z (2 g () - e

P
T
/y:“(s)ds =T (#) ~Tf (T_y) = T L,

T1—y wl—(y—p)y 52E[xz—(yﬂh()) xz—y}

for some &; € {

T °’ T T T
Then
1 y+p 1 y+p 1 Y
1 / () — a(y)|ds > / als) — a(y) ds — - / als) — aly) ds
p Yy—p p Yy p Yy—p

> (e - (e = () () - o (27Y).

which is impossible if y is a Lebesgue point.

We now derive a necessary condition valid at all Lebesgue points of .

LEMMA 3. Let u = u(t,z) be an optimal solution of (2.1), with initial data
u(0,-) = @ satisfying the constraints (2.3), and providing a minimum to the functional
(2.4). Assume that the flux function f satisfies the assumptions (A1) and that the cost
functions v, are continuous.

If y1,y2 are Lebesgue points of u = u(0,-), with

y1 € I(r), u(y1) > 0,
(2.27) {y2 & I(x), {u<y2> < M,
then
(2.28) o(y1) +¥(r1) < o(y2) + V().

Proof. Since y1,ys are Lebesgue points of u, by Remark 2, the points 1 < x2
in (2.27) are uniquely determined. Assuming that (2.28) fails, we will derive a con-
tradiction. Indeed, we will construct a new initial data @' which is slightly smaller
than @ in a neighborhood of y; and slightly larger than @ in a neighborhood of ¥,
thus yielding a lower total cost.

1. Choose § > 0 such that

2.29 max + max xr) < min + min ).
( ) \y*y1|§5<p(y) |$*$1\§5¢( ) |y*y2\§5(p(y) \1*12|§5w( )

2. Choose points T, z3 where @ is continuous and such that
(230) m—d<z] <m<m+<zT1+0, Ta—0<T2— <2 <ar:§r < T2 + 6.
Notice that the continuity of @ at a:li implies that the corresponding points,
y(zy) <y <ylay), y(w5) < y2 < y(a3),
are uniquely defined. Consider the points

yr =max{y(zy), y1 — 0} < yi, Yy =max{y(zy), y2 — 6} < ya,
yi =min{y(z]), y1 +6} > 1, yo =min{y(z3), y2 + 6} > va.
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3. By the assumption (2.27), for every e > 0 sufficiently small we can construct
a second initial condition @' such that

at(y) = aly) if yély, vV, 93],
af(y) < aly) if yely, vl
af(y) > a(y) if yelyy, vsl,

4. By (2.30), using part (ii) of Lemma 1, we can choose € > 0 sufficiently small
such that the corresponding solutions u, u’ of (2.1) satisfy

ul(T,7) = u(T, x) forall x ¢ [z1—9, 1+ U[r2 =9, 22+ 0],
ul(T,2) < u(T, ) forall = € [z —9, z1+ ],
ul (T, 2) > u(T, x) forall = € [z2—6, 2+ 4]
x1+0 zo2+0
/ [u(T, z) —ul (T, x)] de = / [uT(T, x) —u(T, x)} dx = e.
11—5 I2—5

By the strict inequality (2.29), the above relations imply that J(u) < J (@), con-
tradicting the optimality of @. 0

The following theorem yields a precise description of the optimal solution.

THEOREM 2. In addition to (A1)-(A2), assume that f'(u) — +o00 as u — M—.
Then, for every k > 0, the optimization problem described at (2.1)—(2.4) has a unique
solution u = u(t,z). In addition, one has the following:

(I) No shocks are present, hence u is continuous for t > 0. Moreover,

(2.31) sup u(t,z) < M.
t€[0,T], z€R

(IT) For some constant ¢ = c(k), this optimal solution admits the following char-
acterization.
For every x € R, let y.(x) be the unique point such that

(2.32) p(ye(z)) +(z) = c

Then, along the segment with endpoints (0,y.(x)), (T,x), the function u is defined
according to the following:
(i) If %C(w) = f'(v) for some v > 0, then

T —
(2.33) u <t, %x + Tt yc(x)) =v for all t€]0,T).

(ii) If 2% < £(0+), then

(2.34) u (t, %a: + ? yc(a:)> =0 for all t €]0,T].

Proof. Step 1. Assume that the optimal solution contains a shock. Call Z the
position of this shock at time t = T', and let

u = u(T,z—) > ut = u(T,7+)
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be the left and right limits of w(7,-) at this point. Notice that these limits exist, be-
cause u(T, -) has bounded variation. Computing the minimal and maximal backward
characteristics through the point (T, z), we find

y. =y (0,z) = 2 -Tf'(u”), yt =yt (0,3) = z-Tf(uh).
Consider any two points y1,y2 € [y, y "], say with y1 < ya. Since ¢(y1) > p(y2), we

must have either u(y;) =0 or @(y2) = M. In the opposite case Lemma 3 would yield
a contradiction. We thus conclude that there exists a point ¢ € [y~,y™] such that

u(y) =0 if y~ <y <,
(2.35) {u(y) =M if E<y<yt.

We claim that (2.35) also leads to a contradiction. Indeed, if £ > y~, then

Tf*<$;€>+/_;u(s)ds < Tf* <x}y_)+/_y;u(s)ds.

This contradicts the optimality of ¢~ in the Lax representation (2.12). On the other
hand, if £ = y~, since both y~ and ™ yield the minimum in (2.12), we have

0=Tf* <x}y_> —/_yo;u(s)ds—Tf* <x_Ty+> —I—/_iu(s)ds

(z—y™)/T ) N
—T / () (p) dp + M(y* —y).
(z—y—)/T

(2.36)

Since (f*)'(p) = w if and only if f/'(u) = p, the assumption f’(u) — +o0o0 as u — M—
implies that (f*) (p) < M for all p > f/(0+). Hence the right-hand side of (2.36) is
strictly negative, and equality cannot hold. This contradiction shows that the optimal
solution cannot contain shocks.

Step 2. To prove (2.31), observe that by Lemma 2 the solution u has compact
support. To fix the ideas, let @ = u(0, -) be supported inside [—Ry, R;], and let u(T,-)
be supported inside [—Rg, Rz]. Since lim,_,p— f'(u) = 400, we can choose a value
h < M such that f'(h) > (R1 + R2)/T.

We claim that @(z) < h for all z. Otherwise, choose a point z such that @(zg) >
h. Then, since no shocks are present, computing the solution by the method of
characteristics, we find

u(t, xo—i—tf'(ﬁ(xo))) = a(xo).

Consider the point zp = xg + T f'(u(xp)). Since z¢ > — Ry, the choice of h implies
xr > Ro. We thus have w(T,xr) = u(xg) > h > 0, contradicting the fact that the
support of u(7, -) should be contained in [~ R, Rs]. This proves our claim, and hence
(2.31).

Step 3. Since no shocks are present, the solution u is continuous for ¢ > 0. As a
consequence, backward characteristics are uniquely defined. In particular, at ¢t = T,
for each x € R the minimizer y = y(7,z) in the Lax representation (2.12) is unique.
We recall that y(T,z) is the initial point on the characteristic line which ends at
(T, x).
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Step 4. By Lemma 3 and (2.31), there exists a unique constant ¢ such that the
following holds. If y = y(T, x) is a Lebesgue point for the initial data @, with @(y) > 0,
then

(2.37) e(y) +v(x) = c

Consider the map = — y.(z) implicitly defined by (2.32). Since the function ¢ is
strictly decreasing, the value y.(z) is well defined, provided that ¢(+00) + ¥(z) < c.
For notational convenience, we set y.(x) = 400 if p(+00) + ¥(z) > ¢. From the
assumption ¢’ > 0 it follows that the map = — y.(z) is nondecreasing,.

Step 5. Assume that y.(z) is a Lebesgue point of 4 and @(y.(x)) > 0. Then (2.32)
and (2.37) together yield

P(ye(x)) +(z) = ¢ = (YT, z)) + ().

Since ¢ is strictly decreasing, this yields
(2.38) be(@) = y(T,2) = = — T (u(T, ).
Therefore, along the (characteristic) segment with endpoints (0,y.(x)), (T,x) and
slope f'(v), v = 4(y.) = u(T, z), the function v = u(t, z) is determined by (2.33).

Step 6. Observe that the second identity in (2.38) always holds, because the
solution u = u(¢, z) is continuous for ¢ > 0, and backward characteristics are unique.
In this step we prove that the first equality in (2.38) remains valid as long as %C(m) >

f'(0+), even if y.(z) is not a Lebesgue point of .
Indeed, if y(T, z) < yc(x), let § € ly(T, x),yc(x)] be a Lebesgue point of 4. Then

g=y(T,z)  for some z =g+ Tf (u(y)) > =
Since

T—7 x—y(x) ,
> >
T T /

it is clear that u(g) > 0. By Step 5, we have § = y(T,%) = y.(&). Since Z > x but
7 < ye(x), recalling that ¢ is strictly decreasing, we obtain

e(T,2)) +¥(2) = oWe(@)) + ey(T,7) < @(yc(x)) + ¥(z),

contradicting the fact that all terms in the above expression are equal to c.
On the other hand, if y(T', ) > y.(z), let § € |y.(z), y(T,z) [ be a Lebesgue point
of 4. Then

(0+),

g = y(T,%) for some & = g+ Tf (u(T,7)) < z.
Since u(0,§) < M, using Lemma 3 and the assumptions ¢’ < 0, ¢’ > 0, we obtain

¢ < o)+ (@) < oye(x)) + (),
again reaching a contradiction.
We thus conclude that, if 2= — f/(y) > f/(0+), then (2.33) holds.

Step 7. Next, consider the case where 177#(1) < f'(0+4). We claim that for all Z €
[z, ye(x) + Tf'(0+)];

(2.39) j_yIET’j> — Fu(T,7) = f(0+).
Indeed, if f'(u(T,Z)) > f'(0+), then
y(T,z) = z—-Tf'(w(T,I)) < ye(z), ey(T,z)) +¥(x) > c
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As in the previous steps, we can then find a Lebesgue point § € Jy(T, Z), y.(z)[ such
that

(2.40) o(§) + (@) > ¢ % > F(04).

Then § = y(T, %) for some point & satisfying

i-§ _ 27 ,
T > 7 > f(0+).

T > T,
Hence @(y) > 0. We thus have

c = o@)+v@) > ply(z)) +v(x),

reaching a contradiction. This proves our claim.

Since f’ is strictly increasing, from (2.39) it follows that u(7T,Z) = 0 for all T €
[, ye(z) + T f'(04)]; hence (2.34) holds.

Step 8. In this final step, we prove the uniqueness of the optimal solution.

Observe that, for each value of the constant ¢ € R, the properties (2.33)—(2.34)
yield a unique solution v = wu(t,x) of the conservation law (2.1). This solution is
continuous for ¢ > 0, while the initial condition u(0,-) = @(¢)(-) contains at most
countably many upward jumps (producing centered rarefaction waves).

Assume that, for some x > 0, there exist two optimal solutions, say ui,us. If
u1 # ug, these solutions will satisfy (2.33)—(2.34) with different constants, say ¢; < ca.
We show that this leads to a contradiction.

Since ¢ is strictly decreasing, for every & € R there exist unique values y., () <
Ye, () such that

P(Yer (7)) +9(2) = e, P(Yes (7)) + 9(2) = ca

For every x such that %l(w) > f’(0+), by the previous analysis the values of u; (T, )
and uq (T, z) are implicitly defined:

f (i (T,2)) = =2 @) 2= yT”(“”) = f'(us(T,2)).

Since f’ is strictly increasing, for every = € R this provides the implication

u(T,z) > 0 = ui (T, x) < uz(T, x).

Therefore, by conservation of the total mass we conclude

/ul(O,x)dx = /ul(T,x)dx < /uQ(T,x)dx = /uQ(O,x)d;U.

This contradicts the assumption that all integrals are = k, thus proving unique-
ness. d

Remark 3. The optimality conditions derived in Theorem 2 apply to traffic flow
as well as to other models such as supply-chains. All the analysis based on the Lax
formula is valid for scalar conservation laws, as long as the flux function is convex and
depends only on the density of the conserved quantity.

On the other hand, this technique cannot be used when the flux depends also on
the variables t, z, or in connection with second-order traffic models which are described
by a system of conservation laws. To analyze these more complex situations, necessary
conditions for optimality can still be obtained in the form of a Pontryagin maximum
principle [3, 4], but only within a class of piecewise regular solutions.
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3. The Nash equilibrium. The aim of this section is to give a precise definition
of the Nash equilibrium solution for the above problem of traffic flow and to prove its
existence and uniqueness.

Introducing the integral function

Ult,z) = /w u(t, s) ds,

the conservation law (2.1) can be equivalently written as a Hamilton—Jacobi equation
(3.1) Ui+ f(U;) =0.

Throughout the following, f denotes the flux function extended to the entire real line
as in (2.9), while f* is the corresponding Legendre transform, defined at (2.10). For
our application to traffic flow, one should keep in mind that the z variable denotes
time, while ¢ € [0, T] denotes a point along the highway. Hence U(t, z) measures the
total number of cars that have crossed the point ¢ along the highway during the time
interval | — oo, x].

As initial data we shall consider any bounded nondecreasing function Q : R — R,
with

(3.2) Q(—o0) =0, Q(+0) = k.

Here Q(x) denotes the total number of cars that have entered the queue at the entrance
of the highway up to time z. Notice that @ is continuous except for countably
many times x. To fix the ideas, we shall consider the right-continuous version where
Q(x) = Q(x+) coincides with its right limit at every 2. When needed, we shall denote
by Q(z—) = lim,_,,— Q(y) the left limit of @ at x.

For a given Q(-), consider the Lipschitz continuous function

(3.3) U@) = inf {Q) + M@ —y); y<a}<Q@).

Notice that Q(x) — U(x) measures the length of the queue at time x, while U(x)
denotes the total number of drivers that have actually departed (after clearing the
queue) up to time z.

For t > 0, the entropy-admissible solution to the Cauchy problem (3.1), (3.3) is
provided by the Lax formula:

Ul(t,z) = min {tf* <$ — y) +T(y); ye R}

t
= min {tf* <¥> +Qy—); y€ R}-

Observe that the last two expressions in (3.4) are equal because (f*)'(p) < M for all
p and (f*)'(p) — M as p — +oo. Moreover, U(0+,2) = U(x).

To visualize the profile of this solution at time ¢t = T, it is convenient to introduce
the function

(3.5) h(s) = —T f* (%5) .

(3.4)

Observe that h is a concave function. Setting u = T/ f’(0), one has
(3.6) h(s) = —c0 for s> —p, h'(—up) =0, Er_n R (s) = M.
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FiG. 3. Constructing the profile x — U(T,x) using the Lar formula. Since h' < M, the
supremum in (3.7) does not change if Q(-) is replaced by U(-).

From (3.4) it now follows (see Figure 3) that

(37 UTa) =min {T() - hly—2)} = min {Qy=) —h(y—)}.

Y

In other words, U(T,x) is the amount by which we can shift the graph of h(- — x)
upward before hitting the graph of Q(-) (or, equivalently, the graph of U). From this
construction it is clear that the map x — U(T), z) is nondecreasing. For solutions with
different initial data one has the comparison property

(3.8) Qy) < @(y) forall yeR = UT,x)< [7(T7 z) forall z eR.

Given an initial data Q(-) as in (3.2), for § € [0, k[ we define the points x7(f3),
24(B), and x%(3) by setting

z9(B) = sup{z € R; Q(z) < B},
(3.9) z(B) = sup{z € R; U(0+,2) < B},
z*(B) =sup{z € R; U(T,z) < S}.

In the application to traffic flow, § is a Lagrangian variable labeling a particular
driver. In this case, () accounts for the time where this driver joins the queue,
24(B) is the actual departure time, and 2%(j3) is the arrival time.

Remark 4. For all except countably many f3, the points xz9(3) and x¢(3) are
uniquely determined by the identities

(3.10) Q(2(8)—) < B < Qx°(8)), U(?(8)) = B.

Moreover (see Figure 4), for almost every /3 the arrival time z% is determined as

(3.11) x*(B) = inf {x; Qly) = B+h(y—2z) forally< x}

More generally, for a driver that departs at time x, we define the arrival time as

(3.12) A(x) = max {w +u, sup xa(ﬂ)} .
B<Q(x)
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Q(x)

x1B) x*(B) X

F1a. 4. Given the function Q(-), let B8 € [0, Q(+00)] label a particular driver. The starting time
z9(B) is then determined by the intersection of the graph of Q with the line Q = (3. The arrival
time x%(B) is determined as follows: shift the graph of the function x — B + h(z) horizontally until
it lies entirely below the graph of Q. In the figure, the size |P' — P| of this shift yields precisely the
arrival time x®(8).

In other words, if there is no traffic at all, then the total time needed for the trip is

[length of the highway] T

[maximum speed] ~ f/(0)°

On the other hand, if the driver starting at time x encounters traffic, his arrival time
will simply be the supremum among the arrival times of all cars that departed earlier.
DEFINITION. We say that a bounded, nondecreasing initial data Q(-) satisfying
(3.2) yields a Nash solution of the Cauchy problem (3.1)—(3.3) with initial and terminal
cost functions @, if there exists a constant ¢ such that the following hold:
(i) For almost every 5 € [0, k] one has

(3.13) p(x(B)) + ¥(x*(B)) = c.
(ii) For all z € R
(3.14) p(z) + P(Az)) = ¢

In connection with the traffic model, condition (i) states that all drivers bear the
same cost ¢. Condition (ii) says that, regardless of the starting time xz, no one can
achieve a cost < c.

THEOREM 3. Let the flux function f and the initial and terminal cost functions
p, Y satisfy assumptions (A1)—(A2). Moreover, assume that f'(u) — 400 as u —
M—.

Then, for every k > 0, the Cauchy problem (3.1), (3.3) admits a unique Nash
equilibrium solution, with initial data Q(-) satisfying (3.2).

Proof. The result will be proved in several steps. The overall strategy is to show
the following:

(i) For each ¢ € R there exists a unique Nash equilibrium having cost ¢. This is
determined by some initial data Q(-) having total mass k(c) = Q(+00).

(ii) For some minimum cost ¢y, the map ¢ +— x(c) is a strictly increasing, contin-

uous map from [cp, +oo[ onto [0, +oof.
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Step 1. For a fixed constant ¢, let Q. be the family of all bounded, nondecreasing
initial data Q(-) such that Q(—o00) = 0 and such that the corresponding solution
U=U(t, ) in (3.4) satisfies

(3.15) e(x?(B)) + v(x*(B)) < ¢ for almost every 8 € [0, Q(+00)].

We claim that the maximum number of drivers,
(3.16) r(e) = sup {Q(+00); Qe Q.}.

is finite. Indeed, by assumption (A2), there exists a bounded interval [z~,zT] such
that

p(x) >c¢ forall x < z™, wlx) +(z) >c for all z > 2.

By (3.15), this implies that, for every Q € Q., the corresponding function U in (3.3)
must be constant on | — oo, 2] and on [z, +00[. We thus obtain the bound

“+o0 zt
k(c) = U(+o0) = / U, (z)dr < / Uy(z)de < M(z™ —27).

— 00

Step 2. In the remainder of the proof we show that the initial data
(3.17) Q') =sw {Q@); Qe Q.

yields a Nash equilibrium solution U* = U*(¢, x).

To begin with, we check that, if Q1,Q2 € Q., then the function Qsz(x) =
max{Q1(z),Q2(x)} also lies in Q.. Indeed, let 8 € [0, k(c)] and, to fix the ideas,
assume

23(8) = min {21(8), 23(8) } = 21(8),
with obvious meaning of notation. Then

25(8) < min {2§(8), a5(8)} < =1(8).
Since ¢’ < 0 and ¥’ > 0, this yields

p(3(8)) + ¥(25(8)) < @(1(8)) + ¥ (21(8)) < c.

Therefore, Q3 € Q. as well.

Using this property of the set Q., we can construct a sequence functions @,(-) €
Q. such that, for every = € R, the sequence @Q,,(x) increases monotonically to Q*(x).
Since all functions @, are constant outside a bounded interval, we clearly have
QR*(—o0) = 0, @*(+00) = k(c). We claim that Q* € Q.. Indeed, by monotonic-
ity and pointwise convergence we have z% () — x(3) for almost every g € [0, k(c)].
Therefore, x%(8) — x%(8) for almost every 8. The continuity of ¢ and ¥ now yields

o(x1(B)) + v(xf(B)) <c for almost every 3 € [0, k(c)].

Therefore, Q* € Q..
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Step 3. In this step we show that the solution U* of (3.1) with initial data Q* is
a Nash equilibrium.

To prove (3.13) we argue by contradiction. Suppose there exists some g such that
the points zf(8), x%(8) are well defined (as in (3.10)—(3.11), with @, U replaced by
Q*,U*), but

P21 (B) + ¢ (5 (B) < e

By the continuity of ¢, we can choose £ > 0 small enough so that

(3.18) pi(B) —e) + ¥(xi(B) < c

Consider the perturbed initial data

8 it e @B -= a2
Q) = {Q* () otherwise.

We claim that @ € Q.. Indeed, since @ > @Q*, the corresponding solutions satisfy
U(T,z) > U*(T,x) for every x. For any 5’ € [0, k(c)], two cases can arise, as follows.
Case 1. z1(B') ¢ [z1(B) — e, 21(8)]. In this case one has

21(8") = =4 (B), U(B') <L (B).
Therefore, recalling that ¢ < 0 while ¢/ > 0, we obtain
e(@1(8) + (@ (8) < e(l(8) + v(@(8) < e
Case 2. z1(f') € [#1(B) — ¢, x¥(B)]. In this case, by (3.18), one has
2(8) =2 21(B) — e, (B < ai(B),
P(z1(8") +(@°(8) < p(2d(B) —e) +¥(2(8)) < c.

We conclude that Q € Q.. Since Q(z) > Q*(x) for 21 — e < x < x?, this contradicts
the definition (3.17). Hence Q* satisfies the condition (3.13).

It remains to prove that (3.14) also holds. Let « € R be given. Again we consider
two cases.

Case 1. There exists a sequence of values §,, — Q(x) satisfying (3.13) such that
29(8) — x. In this case we have z%(8,) — A(x). By the continuity of ¢,, the
inequality (3.14) is then an immediate consequence of (3.13).

Case 2. Q(y) = Po is a constant for all y in a neighborhood of z. In this case, if

(3.19) Alw) = inf a"(8),

we can still conclude
P(@) + H(AW@) = lim (w@1(8) +$((8)) =

It thus remains to examine the case where (3.19) does not hold. Assume that
(3.14) fails. Then there exists § > 0 such that

Alx)+6 < ﬂir}.jfﬁx“(ﬁ), o(x) +9¥(y) <c forall y € [A(z), A(z) + J].
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Introduce the constant n = —h(—p — 0) and consider the function
G Q*(y) ify <o,
Yy) = .
max {Q*(y), fo+n}  ify>e,

We claim that Q € Q.. Indeed, the choice of 7 yields

B < Bo = T1(B) = xi(B),  T(B) = x%(P),
Bo<B<Bo+tn = 21(B) = z, z%(B) < A(x) + 6,
Bo < B = T1(B) = xi(B),  T(B) = x%(B).

The above construction shows that, if (3.14) fails, then Q* is not maximal. This
completes the proof that Q* provides a Nash equilibrium solution.

Step 4. In this step we prove that, for any given ¢ € R, the Nash equilibrium
solution corresponding to the cost ¢ is unique.

For each « € R, denote by z(z) the point such that

(3.20) o(z(z)) +¥(z) = e

Notice that z(z) is uniquely defined, because ¢ is strictly decreasing. If now @ is an
initial data yielding a Nash solution U = U(t, ) with cost ¢, recalling the definitions
(3.9), one has

(3.21) z4(B) = z(z*(B)) for almost every 3 € [0, Q(400)].

Remark 5. Since the map S — x%(f) is strictly increasing, if @ has a jump at a
point z, then ¥ must be constant on the nontrivial interval [z*(Q(zo—)), z*(Q(zo+))]-
If we assume that the cost 1 is strictly increasing, then the distribution @(-) which
yields a Nash equilibrium must be continuous.

Consider two initial data Q1(x) and Q2(x), yielding two Nash equilibrium solu-
tions corresponding to the same cost ¢. Since ¢(s) — +00 as § — —o0, there exists
2~ € R such that Q1(x) = Q2(z) = 0 for all x < = + 1. The uniqueness property
will be proved by showing that, for every € > 0,

(3.22) Qa(x) — Qi(x) <e(x—a7) forall z > ™.

Indeed, if (3.22) fails, there exists a first point z such that

(3.23) Q2(2—) < Qi(z—)+e(x—z7) for all = < o,

and, moreover, either

(3.24) Q2(xo—) = Qi(zo—) +e (w0 —27),

or else Q2 has a jump at xg and

(3.25)  Q2(z0—) < Qi(wo—)+e (w0 —27), Q2(z0+) = Q1(zo+) e (o —27).

A contradiction is derived as follows. Let 8 = @Q1(xo—). Choose a point (£, 8') where
the graph of the function y — B + h(y — 2§(8)) touches the closure of the graph of
Q1. This means

B=B+hE—-21(8) = Qi€-).

We consider three cases.
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Q %
2
Ql
Bre(E—~x"
//j Q B
’ Bl/ﬁ
& X, 3 E=x, X

2

Fic. 5. The construction used to prove uniqueness. Left: Case 1. Right: Case 2.

Case 1. Equations (3.23)—(3.24) hold, with £ < z¢ (see Figure 5, left).

Consider the higher level 8” = 3+ ¢&(¢ —27), and observe that x$(8”) > x¢(3).
Since the map x — z(z) defined at (3.20) is nondecreasing, this implies z(2§(5")) >
z(x$(B)) = €. Therefore

Qa(z0—) < Q2(2(25(8")—) =B +e(§ —a7)
<B+e(zo—z27)=Q1(xo—)+e (mg—x7),

in contradiction with (3.24).

Case 2. Equations (3.23)—(3.24) hold, with £ = z¢ (see Figure 5, right).

If Q2(xo—) = B+e(xo —x™), consider the line through the point (xg, 5+ e(zo —
x7)) with slope &, namely

V() =B +elx—=7).
By (3.23) it follows that
Q2(z) < Q1(z) +e(z —27) < ~v(x) for all z € [z7, zol.
Observing that the function h(-) is continuously differentiable with

W ()

= if > —pu,
R (z) >

0
0 if < —p,
the above inequality implies
258 +e(xo—x7)) > A1(z0) = zo + .
Indeed, setting B2 = Q2(zo—), the contact point & defined by
Q2(&2—) = P2 + h(&2 — 25(B2))

must satisfy & < xp. By continuity, we can find 8° < 8 + e(x¢g — z7) such that
x%(8") > Aj(xo). This implies

Q2(r0—) < Q2(2(25(8))—) = < B+e(wo —z7),

providing a contradiction.
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Bl
B 1
/ Q,
Byt 7 .
XO i2 E] X0
F1G. 6. The construction used to prove uniqueness, in Case 3. Here Py = (B1, z§(B1)),
Py = (B, x(B8')). Since B’ > 1 +n, one has x§(B1) < z§(8’).
Case 3. Inequalities (3.23) and (3.25) hold.
In this case (see Figure 6), define
A1 = Qi(xo—), 7= sup {Q2(9C)—Q1(9C)} <e(zo—z).
x<xo
Since
Q2(x) < Q1(x) +1n for all z < x,
we have
z5(8+n) = 21(B) for all 5 < Q1(zo+).

Hence, for the distribution @)1, the arrival time of a driver starting at a time x > 0
satisfies

lim Aj(x) <z5(81 +n).

T—To+
Choosing 3’ such that

Br+n < B < Qaxot),
we achieve the strict inequality

(3.26) lim A (z) < z5(B1+ ).

T—xo+

The assumption that )2 is a Nash solution implies

z(23(8")) = .
Thanks to (3.26), we can find x > zg such that

o) +Y(A1(x)) < @(xo) +P(25(8")) = c.

Hence (3.14) fails, contradicting the assumption that @)1 is a Nash equilibrium.
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Putting together all cases, we thus obtain the uniqueness of the Nash equilibrium
solution, for every fixed cost c.

Step 5. By the previous steps, for each value ¢, there exists a unique Nash
equilibrium solution with total mass Q(+00) = k(c) for some nondecreasing function
k(+). It is clear that x(c) = 0 for all ¢ sufficiently large and negative, while x(c) —
+o00 as ¢ = +oo. Calling ¢ = inf{c; ~k(c) > 0}, by the characterization of Nash
solution (3.17) and by the continuity of the cost functions ¢, it follows that x(-) is
strictly increasing on [cg, +00[. To complete the proof, it remains to show that (-)
is continuous, and hence that it maps [cg, +00[ onto [0, +o0].

Observing that, for every c

Qc = ﬂ Qc’ = m Qc+l/na

c'>c n>1
it is clear that the map ¢ — r(c) is right continuous. To show that

(3.27) x(c) = sup k(c'),

c’'<c

we proceed as follows. Let € > 0 be given. Choose an initial data @ € Q. such that
Q(+) = k(c). Consider the Lipschitz continuous function U as in (3.3) and, for
some fixed € > 0, define

U.(z) = (1 —e)U(x).

Let U, U, be the corresponding solutions of (3.1), given by the formula (3.4). Observe
that for almost every 5 € [0, x(c)] we have

(3.28)  zU(B) =inf{z; U(x) > 8} =24((1 —e)B) = inf{z; U (z) > (1 —e)8}.
We claim that for almost every 8 € [0, k(c)] one has the strict inequality
(3.29) 2%(B) = inf{x; U(T,z) > B} > 22((1 —¢)8) = inf{z; U*(T,z) > (1 —e)5}.
Indeed, for almost every 3 € [0, x(c)] there exists a unique point () such that
(3.30) U(=(8) =8, Ua(a(8)) > 0.
For any (8 as above, consider the arrival time
x*(B) = inf{x; B+h(y—x) <U(y) forally < x}

By the second relation in (3.30), any point (¢, 8') where the graph of 8+ h(- —2(8))
touches the graph of U must satisfy

¢ <z9(p), B < B
Moreover, for y < z%(3), one has
(1 —e)B+h(y —2*(8)) <U(x) — U (x(B)).

Therefore (see Figure 7), for y < 2¢(3), the graph of y = (1 —¢)B + h(y —2%(5)) has
strictly positive distance from the graph of y — U.(y). By the definition of x2, this
yields the strict inequality (3.29).
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U

B+he —x* (B))

d a
() x (B)
F1a. 7. Proving the strict inequality x2((1 — €)B) < 2%(B). For y < x%(B), the graph of the

function y — (1 —¢)B + h(y — z*(B)) lies strictly below the graph of Ue. Here the thick dotted
polygonal denotes the graph of y +— U(x) — eU(x%(B)).

For notational convenience, in the following we write 8. = (1— ¢)f. In connection
with the new initial data U, we claim that

(3.31) o(xd(Be)) + Y(xl(Be)) < ¢ for almost every . € [0, (1 — e)x(c)].

Indeed, since

(3.32) 22(B:) = 2%(8), z*(B) < z*(B),

two cases can arise.
Case 1. (2%(B:)) < ¥(xz*(B)). Then we immediately conclude

p(d(Be)) + (22(Be)) < (x1(B)) + ¥ (z*(B)) < c.

Case 2. P(x2(Be)) = Y(x*(8)). In this case we observe that, since v is continu-
ous and nondecreasing, there can be at most countably many disjoint open intervals
Jag, be[ such that 1 is constant on each closed interval J; = [ag, b¢], £ > 1. Recalling
that ¢ is strictly decreasing, for each ¢ there can be at most one point y, such that

e(ye) +Y(ar) = c.

Since the map B + x%(f) is strictly increasing, there can be at most one value 3
such that z¢(8,) = ye.

If now (x2(fB:)) = P (x*(8)), then the two points x*(8), x2(8.) must lie in the
same interval .J; for some £ > 1. Hence, either 8 = Sy, or else p(x4(3))+(2%(B)) < c.
The first possibility can occur only for countably many values of 8. The second
alternative leads to

p(xd(Be)) + ¥(xZ(Be)) < p(x(B)) + ¥(x(B)) <c.

This proves our claim (3.31).
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Based on the previous analysis, we can now choose ¢ > 0 such that the set

Bos={Bel0, (- )n(O)]s @(al(B) +b(a(8) > ¢~}
has measure
meas(B._s) < €.

The new initial data

/ B . (y) dy,
{y<z; U(y)¢Bc-s}

satisfies
U’ e 0., U’ (+00) > (1 — &)T(+00) — .
Since € > 0 was arbitrary, this proves

k(c) = sup k(c).
c'<c

Therefore the map ¢ — k(c) is continuous, and hence surjective. This completes the
proof. |

4. Application to traffic flow. In order to apply the previous results to our
specific problem of traffic flow, it suffices to switch the variables ¢, x, and check that
the flux function f, defined as a partial inverse of the map p — pv(p), satisfies assump-
tions (Al). Under natural hypotheses on the velocity v = v(p), this is straightforward
(see Figure 1). Indeed, define

p" = argmax pv(p), M =p*v(p*) = max pv(p).
Assume that the second derivative of the flux of cars satisfies
20'(p) + pv"(p) <y <0 for all p € [0, p*].

Then the map p — pwv(p) is strictly increasing and concave on [0, p*]. The inverse
function f : [0, M] — [0, p*] is strictly increasing, is uniformly convex, and satisfies
f'(u) = 400 as u — M—. Hence all the assumptions used in Theorems 1-3 hold.

In the next sections we explicitly compute the globally optimal solution and the
Nash equilibrium solution for the traffic flow problem, in the case where the velocity
function v and the cost functions @, are given by

(4.1) v(p) = (1 — ﬁ) vp, p(t) = —t, P(t) = {?2 ﬁ i ; 87

4.1. The globally optimal solution. Consider the Cauchy problem

(4.2) {ux—kf(u)t = 0, teR, ze€l0,L],

u(t,0) = a(t),
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’CO 0 ‘El t

Fic. 8. The globally optimal solution.

where u = pv(p) and f(u) = p is the inverse of the flux function in (1.3). We thus
have

_ 14 « _ PO _ Povo

U—on(l—%)v p = 9 M = VR
f(u)—p—%(l— 1—%), pe [0, M),

[ P — ()M s) = M — LD

T AM T (/M) T 16Ms2

Observe that the speed of cars is < vg. Hence the time needed to get to destination
is > L/vg. Setting

L L , L\| L 1
w9 gl B} mme (F) =54

it is clear that the total number of cars that can incur a cost < ¢ is zero.
Using Theorem 2, we now describe the globally optimal solution (2.33)—(2.34),
corresponding to a cost ¢ > L/vy > ¢o (see Figure 8). Define the times

. . L\’ 1 L, [1 L
(44) 1=-c, T=supt;—t+(t+—) <cp=-——+4/-+c——.
Vo

Then the flux function v = u(t, x) for the optimal solution is as follows (see Figure 8).
With each terminal time s € [y + U—LO, T+ U—LO] we can associate a unique initial time

a3 o= {ar, 50
so that
(4.6) p(t9(s)) +(s) = c

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/31/13 to 147.162.22.203. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

OPTIMA AND EQUILIBRIA FOR A MODEL OF TRAFFIC FLOW 2411

At all points along the segment joining (79(s), 0) with (s, L), the flux function v is

given by
_ n—1 (35— Tq(s)
so that f/(u) coincides with the slope of this segment. On the other hand,
. x
u(t,z) =0 it t—— ¢ [r0,71].
vo

Notice that the triangle with vertices (79, 0), (70 + %, L), (0,L) is the domain of a
centered rarefaction wave. The initial data @ = u(¢,0) is determined by

u(ri(s)) = ()" (%ZH) = M- 1(2);2)\/[ <S—SL2+C>2'

Recalling that t = 79(s) = s — ¢, we obtain

2 2
Po L ;
M — ft
(4.7) a(t) = 16M (\/c—l—t—t) if ¢ € [ro, ],
0 if t%[T(),Tl].

Notice that the total flux

i Pt L\
k(c) = M — dt
( ) »/7:0(0) 16M (Vc+t_t)

is a continuous, increasing function of c.

Remark 6. A globally optimal solution can be characterized by the identity (4.6),
where 79(s) and s represent the initial and terminal time along a characteristic. On
the other hand, a Nash equilibrium solution can still be characterized by the identity
(4.6), but with 79(s) and s now being the initial and terminal times along a particle
trajectory, i.e., the departure and arrival times of individual drivers. These are not
at all the same. Indeed, characteristic curves for the conservation law in (4.2) satisfy
the equation

dt
4.8 — = f
(48) =),
while particle trajectories satisfy
dt 1
(4.9) S (O for 0<u< M.

de v pulp)  w
The left-hand sides of (4.8) and (4.9) coincide only in the limit as v — 0.

4.2. The Nash equilibrium solution. We now construct a Nash equilibrium
solution, where all drivers incur the same cost ¢. The initial data will be described by
the function ¢t — Q(t), counting the number of drivers that have started their journey
(possibly joining the queue at the entrance of the highway, if there is any) within
time ¢.
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X

i {
T4 'C]

Fic. 9. The Nash equilibrium solution. Here 179 and T1 are the times defined at (4.4), while
d
T4 =T7%(ts).

Fix any cost ¢ > L/vg, and let 79, 71 be as in (4.4). Moreover, let s — 79(s) be
the map in (4.5). Let @ = @(¢, x) be the solution to the Riemann problem

} o B _ 0 if t< 7,
(4.10) Uy + f(@)e =0, a(t,0) = {M if t>m.
Let
0
(4.11) 8o = / a(t, L) dt > 0

be the total flux of this solution through the point x = L, for ¢ < 0. In other words,
this is the total number of cars which arrive at destination before time ¢ = 0.
The Nash equilibrium solution has the following properties (see Figure 9):
e Before time 7y, no cars enter the queue.
e Exactly at time 79, a number dy of cars arrive and instantly form a queue at
the entrance of the highway.
e The last of the cars which entered the queue at ¢ = 79 departs at time
Ty = 70 + (0o/M) and arrives at its destination exactly at time ¢ = 0.
e The queue shrinks to zero at some time 73. When this happens, a shock is
formed, moving along some curve S.
e After time 73, cars keep coming to the entrance of the highway, and depart
instantly until time 77. No driver begins his journey after time 7.
To explicitly compute this solution, we first consider the problem

2 .

P U 0 if t < 79,
4.12 +(pvo—2) =0, £,0) =
(4.12) Pt (po " )m p(t,0) {p0/2 1>,
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Calling p the solution of this Riemann problem and setting @ = pv(p), we find

~ £0o L,O() 1 ~ L2p0 1
4.13 t,L)=—— — t,L)=M — —
( ) p( l ) 2 200 t_TQ’ U( l ) 4 (t—T0)2
for t > 79 4+ (L/vp), while
- _ L
pt,L)=1a(t,L)=0 for t<7m+—.
vy
This yields
0 2
L L
(4.14) 8o = / (s, L)ds = ——L0 2P0 _ ppg.
T0+(L/,U0) 4’U07'0 2

For t > 79, the value of Q(t) is computed using the equation

QU%D—%=A%@JM6

By (4.5) this yields

Vife
(4.15) Q®:%+A A€, L) d,

where @ was computed at (4.13). At time 73 such that
(4.16) Q(73) — M(73 — 79) = 0,

the queue is depleted and a shock is formed in the solution. Call tg the time where
this shock hits the boundary = L, and set 74 = 79(ts). Then for t € [rg, 74] the
function Q(-) is still given by the explicit formula (4.15). On the other hand, for
T4 <t < 71, the value of ) can be computed from the equation

(4.17) Q(t)=U(t+c L),

where U is the solution of (1.13). Since for v > 0 the characteristic speed f’(u) is
strictly larger than the particle speed f(u)/u, the right-hand side of (4.17) can be
computed in terms of the values of the initial data @ on a strictly smaller interval,
say [10,t — €].

4.3. Some numerical results. We first numerically compute a Nash equilib-
rium solution for the problem (4.1)—(4.2), with the following parameter values:

1
4.18 L=1 =y =2 M=—=1 — =

( ) ) Po Vo ) 4 ) v 2

We start by choosing a common cost ¢ = 2.7 for each driver. Numerically, we find
that this corresponds to a total flux k = k(c¢) = 3.80758. The initial profile (4.15) is
given by

0 if t< —2.7,

(419) Q) = LT+ VIF 2T+ -

if —2.7<t<Ty,

1
(VEt27+27)
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while Q(t) = Q(71) is constant for ¢ > 71. Using (4.16), we find that the queue is
depleted at time 73 = 0.9698. For t € [r9, 74|, the rate at which cars actually depart
(after clearing the queue at the entrance of the highway) is given by

1 it te[-2.7,0.9698],
(4.20) u(t,0) =

1 1
(1- if ¢ €]0.9698, 74).
2Vt + 2.7 ( A( t+2.7+2.7)2) if ¢ €] 7l

We use an upwind method to solve the conservation law and locate the position of
the shock at the terminal point £ = 1. A numerical simulation shows that tg = 2.055,
and therefore 74 = t% — 2.7 = 1.5230. The last driver begins his journey at time

(4.21) T = sup {t; —t+ <t _ %)2 < 2.7} = 1.5652.

The total cost of this Nash equilibrium solution is computed as

(4.22) JgNash — /—tdQ(t) + /1/)(15) ~u(1, t) dt = 7.42913 + 2.8570 = 10.28613.
Next, we compute the globally optimal solution for the same parameter values as

in (4.18) and the same total flux K = 3.80758 found for the Nash solution. Numerically,

we find that the solution is described by (4.7) with ¢ = 2.80226.
The initial flux for the globally optimal solution is

(4.23)
1—1 ( L )2 if t€[-2.80226, 1.5976]
u(t,0) = a(t) = 4\ \/2.80226 +t —t T ’
0 if t¢ [—2.80226, 1.5976)].

The flux at the terminal point of the highway L = 1 can be explicitly computed as

2
1 1
1= <7) if t e [-2.30226, 0],
€1) D) = 411 t+2.801226 2
R if 2.0076].
1 (t—t2+2.80226> if ¢ €]0,2.0076]

The costs at « = 0 (for starting early) and at « = L (for arriving late) are computed
by

1.5976 2.0976
(4.25) / —t- u(t, 0) dt = 3.03525, / tzu(t, L) dt = 2.53612.
—2.80226 0

The total cost for this globally optimal solution is J™" = 5.57137. Notice that this is
much smaller than the total cost JV%" = 10.28613 for the Nash equilibrium solution.

It is interesting to compare the optimal solution in Figure 8 with the “bang-
bang” solution, where the flux of cars entering the highway at x = 0 is either zero
or maximum. Choosing the same parameters as in (4.18), and the same total flux
Kk = 3.80758, the initial condition is now

bb o 1 if te [7‘2,7‘3], o i -
(4.26)  u®(t,0) = {0 ] T3 = Tod o2 = 2 + 380758,
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The solution u®® with initial data (4.26) consists of a single centered rarefaction wave,
bounded by a shock. In particular, the flux of cars at the end of the road, where

x = L, is given by
1/ 1\’ 1
1—- if ¢ -t
4(t—72> ' €{T2+2’ S]’

0 ift¢|:7'2+1,ts:|.

(4.27) ubt(t, L) =
2

Here tg denotes the position of the shock at x = L. This value can be easily computed
using the conservation of the total flux: [’ (¢,2)dt = & for every z € [0, L]. This
yields

1
tg = To + 5 + 4.255.

The optimal choice of 75 is found to be
7+3.8076 T+5+4.255
Ty = argmin / —t-ldt+/ t2 - ubb(L,t) dt p = —2.78836,
o T 0

yielding a total cost J* = 5.86767. As expected, this is bigger than the cost J™* =
5.57137 of the optimal solution.

4.4. Optimal toll pricing. As shown by the previous computations, the Nash
equilibrium solution can be highly inefficient, yielding a total cost which is much higher
than the globally optimal cost. A major goal of game theory is to devise incentives
for the individual players, so that the Nash solution becomes more efficient, i.e., close
to the globally optimal solution.

In connection with traffic flow, a natural problem is the following. Assume that,
by charging a (time-dependent) toll p(t) at the entrance of the highway, we wish to
collect a total revenue R. What is the best way to choose the additional cost function
p()?

Notice that, if a flat rate p(t) = p is imposed, each driver should thus be asked to
pay p = R/k, where k is the total number of cars entering the highway. This choice,
however, would not have any influence on the overall traffic pattern: replacing the
starting cost o (t) with ¢(t) + p does not change the Nash equilibrium solution.

On the other hand, by imposing a time-dependent toll p(-), a more efficient traffic
pattern can be achieved. This leads to the problem of finding a function p(t) > 0
which minimizes the total cost to all drivers,

(4.28) /(cp(t) + p(t)) u(t,0) dt + /¢(t) u(t, L) dt,
subject to
(4.29) /u(t, 0)dt = &, /p(t) u(t,0)dt = R.

Here u = u(t, x) is the car flux, in the Nash equilibrium solution corresponding to the
new starting cost @(t) = p(t) + p(t) and the same arrival cost 1(t). Notice that, by
Theorem 3, the Nash solution is uniquely determined by the choice of p(-).
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o i
-2.8022 -2.4273 -2.0523 -1.6773 -1.3023 -0.9273 -0.5523 ~ -0.1773 0.1977 0.5727 0.9477 1.3227
Departure time

F1G. 10. The cost to each driver as a function of the departure time t, in a globally optimal
solution. By imposing the additional cost ¢(t) = cmax — c(t) at a toll booth at the entrance of the
highway, the globally optimal solution becomes a Nash equilibrium.

If the desired revenue R > 0 is sufficiently large, this problem has a simple
solution (see Figure 10). Indeed, let u = u*(¢,x) be the globally optimal solution to
the problem (2.1)—(2.4). Let 7(t) be the arrival time of the driver who departs at
time ¢, and let ¢(t) = p(t) + (7%(t)) be his total cost. Call

Cmax = Max {c(t) ;o u*(t,0) > O}

the maximum cost among all drivers, in this globally optimal solution. Consider the
toll fee p(t) = cr — ¢(t), choosing the constant cg so that

/(CR —c(t))u*(t,0)dt = R.
It
R> / (Cona — () (1, 0) d,

then one can readily check that cg > cpax, and the flux function u* provides a
Nash solution for the traffic low problem where the starting cost ¢ is replaced by
&(t) = p(t) + p(t). Tt is now clear that p(-) is the optimal pricing strategy, because it
induces the most efficient traffic flow pattern, namely u*.
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