
Part 3 - Optimization problems for tra�c flow

Car drivers starting from a location A (a residential neighborhood)
need to reach a destination B (a working place) at a given time T .

There is a cost '(⌧
d

) for departing early and a cost  (⌧
a

) for arriving
late.

A

   

ϕ(t)

tT

B

(t)ψ
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Elementary solution

L = length of the road, v = speed of cars

⌧
a

= ⌧
d

+
L

v

Optimal departure time:

⌧opt
d

= argmin
t

⇢

'(t) +  
⇣

t +
L

v

⌘

�

.

If everyone departs exactly at the same optimal time,
a tra�c jam is created and this strategy is not optimal anymore.
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An optimization problem for tra�c flow

Problem: choose the departure rate ū(t) in order to minimize the total
cost to all drivers.

u(t, x)
.
= ⇢(t, x) · v(⇢(t, x)) = flux of cars

minimize:

Z

'(t) · u(t, 0) dt +
Z

 (t)u(t, L) dt

for a solution of
8

<

:

⇢
t

+ [⇢ v(⇢)]
x

= 0 x 2 [0, L]

⇢(t, 0)v(⇢(t, 0)) = ū(t)

Choose the optimal departure rate ū(t), subject to the constraint
Z

ū(t) dt =  = [total number of drivers]
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Equivalent formulations

Boundary value problem for the density ⇢:

conservation law: ⇢
t

+ [⇢v(⇢)]
x

= 0, (t, x) 2 R⇥ [0, L]

control (on the boundary data): ⇢(t, 0)v(⇢(t, 0)) = ū(t)

Cauchy problem for the flux u:

conservation law: u

x

+ f (u)
t

= 0, u = ⇢ v(⇢) , f (u) = ⇢

control (on the initial data): u(t, 0) = ū(t)

Cost: J(u) =

Z
+1

�1
'(t)u(t, 0) dt +

Z
+1

�1
 (t)u(t, L) dt

Constraint:

Z
+1

�1
ū(t) dt = 
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The flux function and its Legendre transform

u

f (0)’ p

f (p)*

0

M
ρ v(  )ρ

ρ* ρ M

f(u)

u

*ρ

0 0

ρ

u = ⇢ v(⇢) , ⇢ = f (u)

Legendre transform: f ⇤(p)
.
= max

u

n

pu � f (u)
o

Solution to the conservation law is provided by the Lax formula

Alberto Bressan (Penn State) Scalar Conservation Laws 73 / 117



The globally optimal (Pareto) solution

minimize: J(u) =

Z

'(x) · u(0, x) dx +

Z

 (x) u(T , x) dx

subject to:

8

>

<

>

:

u
t

+ f (u)
x

= 0

u(0, x) = ū(x) ,

Z

ū(x) dx = 

(A1) The flux function f : [0,M] 7! R is continuous, increasing, and strictly convex. It
is twice continuously di↵erentiable on the open interval ]0, M[ and satisfies

f (0) = 0 , lim
u!M�

f

0(u) = +1, f

00(u) � b > 0 for 0 < u < M

(A2) The cost functions ', satisfy '0 < 0,  , 0 � 0,

lim
x!�1

'(x) = +1 , lim
x!+1

⇣
'(x) +  (x)

⌘
= +1
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Existence and characterization of the optimal solution

Theorem (A.B. and K. Han, 2011). Let (A1)-(A2) hold. Then, for any given T , ,
there exists a unique admissible initial data ū minimizing the cost J(·). In addition,

1 No shocks are present, hence u = u(t, x) is continuous for t > 0. Moreover

sup
t2[0,T ], x2R

u(t, x) < M

2 For some constant c = c(), this optimal solution admits the following
characterization: For every x 2 R, let y

c

(x) be the unique point such that

'(y
c

(x)) +  (x) = c

Then, the solution u = u(t, x) is constant along the segment with endpoints
(0, y

c

(x)), (T , x).

Indeed, either f 0(u) ⌘ x�y

c

(x)

T

, or u ⌘ 0
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Necessary conditions

y (x)

x

γ
x

t

0

T

x

c

ϕ(x) (x)ψ

0

f(u)

u

'(y
c

(x)) +  (x) = c

f 0(u) =
x � y

c

(x)

T
on the characteristic segment �

x
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An Example

Cost functions: '(t) = �t,  (t) =

(
0, if t  0

t

2, if t > 0

L = 1, u = ⇢(2� ⇢), M = 1,  = 3.80758

Bang-bang solution Pareto optimal solution

τ
1 t

x

L=1

τ
0 0

⌧
0

= �2.78836, ⌧
1

= 1.01924

total cost = 5.86767

τ
0 tτ10

x

L=1

⌧
0

= �2.8023, ⌧
1

= 1.5976

total cost = 5.5714
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Does everyone pay the same cost?
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Departure time vs. cost in the Pareto optimal solution
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The Nash equilibrium solution

A solution u = u(t, x) is a Nash equilibrium if no driver can reduce
his/her own cost by choosing a di↵erent departure time.
This implies that all drivers pay the same cost.

To find a Nash equilibrium, write the conservation law u
t

+ f (u)
x

= 0
in terms of a Hamilton-Jacobi equation

U
t

+ f (U
x

) = 0 U(0, x) = Q(x)

U(t, x)
.
=

Z

x

�1
u(t, y) dy
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A representation formula

U
t

+ f (U
x

) = 0 U(0, x) = Q(x)

U(T , x) = inf
z(·)

⇢

Z

T

0

f ⇤(ż(s)) ds + Q(z(0)) ; z(T ) = x

�

= min
y2R

n

T f ⇤
⇣x � y

T

⌘

+ Q(y)
o

xy

t
(T,x)

z( )

0
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No constraint can be imposed on the departing rate, so a queue can form at the
entrance of the highway.

x 7! Q(x) = number of drivers who have started their journey before time x
(joining the queue, if there is any).

Q(�1) = 0, Q(+1) = 

x 7! U(T , x) = number of drivers who have reached destination within time x

U(T , x) = min
y2R

n

T f ⇤
⇣x � y

T

⌘

+ Q(y)
o
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Characterization of a Nash equilibrium

#  of cars

time

β

q
x (  )β

κ

U(T,x)

x (  )
a

β

Q(x)

� 2 [0,] = Lagrangian variable labeling one particular driver

x

q(�) = time when driver � departs (possibly joining the queue)

x

a(�) = time when driver � arrives at destination
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Existence and Uniqueness of Nash equilibrium

Departure and arrival times are implicitly defined by

Q(xq(�)�)  �  Q(xq(�)+) , U(T , xa(�)) = �

Nash equilibrium =) '(xq(�)) +  (xa(�)) ⌘ c

Theorem (A.B. - K. Han, SIAM J. Math. Anal. 2012).

Let the flux f and cost functions ', satisfy the assumptions (A1)-(A2).
Then, for every  > 0, the Hamilton-Jacobi equation

U
t

+ f (U
x

) = 0

admits a unique Nash equilibrium solution with total mass 
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Sketch of the proof

1. For a given cost c , let Q�
c

be the set of all initial data Q(·) for which every
driver has a cost  c :

'(⌧q(�)) +  (⌧ a(�))  c for a.e. � 2 [0, Q(+1)] .

2. Claim: Q⇤(t)
.
= sup

n

Q(t) ; Q 2 Q�
c

o

is the initial data for a Nash equilibrium with common cost c .

*

t

Q(t)

Q (t)
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3. For each c , the Nash equilibrium solution where each driver has a cost = c is
unique. Define (c)

.
= total number of drivers in this solution.

4. There exists a minimum cost c
0

such that (c) = 0 for c  c
0

.

The map c 7! (c) is strictly increasing and continuous
from [c

0

, +1[ to [0, +1[ .

0

κ

κ (c)

cc
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Numerical results

L = 1, u(⇢) = ⇢(2� ⇢), M = 1,  = 3.80758, c = 2.7

τ
0

τ
0

τ
3

τ
3

τ
1

τ
4

τ
1

τ
4

τ
2

τ
2

x

t0

S

τ
q

S
t

(t)

t

t

M

flux

Q’(t)

0

Q(t) = 1.7 +

p
t + 2.7 + 1/(4(

p
t + 2.7 + 2.7))

Q

0
(t) =

⇣
1 � 1/(4(

p
t + 2.7 + 2.7)2)

⌘
/(2

p
t + 2.7)

⌧
0

= �2.7 ⌧
2

= �0.9074

⌧
3

= 0.9698 ⌧
4

= 1.52303

⌧
1

= 1.56525 t

S

= 2.0550

�
0

= 1.79259

total cost = 10.286
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Globally optimal solution vs. Nash equilibrium

x

0 density

flux

ρ

ρV(  )ρ

t

particle trajectories

characteristics

0 L

Globally optimal solution:
starting cost + arrival cost = constant for all characteristics

Nash equilibrium solution:
starting cost + arrival cost = constant for all car trajectories
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A comparison

Total cost of the Pareto optimal solution: Jopt = 5.5714

Total cost of the Nash equilibrium solution: JNash = 10.286

Price of anarchy: JNash � Jopt ⇡ 4.715

Can one eliminate this ine�ciency,
yet allowing freedom of choice to each driver ?

(goal of non-cooperative game theory: devise incentives)
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Optimal pricing

Scientific American, Dec. 2010: Ten World Changing Ideas

“Building more roads won’t eliminate tra�c. Smart pricing will.”

Suppose a fee b(t) is collected at a toll booth at the entrance of the highway,
depending on the departure time.

New departure cost: '̃(t) = '(t) + b(t)

Problem: We wish to collect a total revenue R .

How do we choose t 7! b(t) � 0 so that the Nash solution with departure
and arrival costs '̃, yields the minimum total cost to each driver?
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cost = p (τ
d
)

p(t) = cost to a driver starting at time t, in the globally optimal solution

Optimal pricing: b(t) = p
max

� p(t) + C

choosing the constant C so that [total revenue] = R .

b

ϕ

ψ

0 t

ϕ = ϕ +
~
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Continuous dependence of the Nash solution

'
1

(x), '
2

(x) costs for departing at time x

 
1

(x),  
2

(x) costs for arriving at time x

v
1

(⇢), v
2

(⇢) speeds of cars, when the density is ⇢ � 0

Q
1

(x), Q
2

(x) = number of cars that have departed up to time x , in the
corresponding Nash equilibrium solutions (with zero total cost to all drivers)

Theorem (A.B., C.J.Liu, and F.Yu, Quarterly Appl. Math. 2012)

Assume all cars depart and arrive within the interval [a, b], and the maximum
density is  ⇢⇤. Then

kQ
1

(x)� Q
2

(x)kL1

([a,b])

 C ·
✓

k'
1

� '
2

kL1
([a,b]) + k 

1

�  
2

kL1
([a,b]) + kv

1

� v
2

k1/2L1
([0,⇢⇤

])

!
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A min-max property of Nash equilibrium solutions

Fix:  = total number of drivers

For any departure distribution

t 7! Q(t) = number of drivers who have departed within time t

(possibly joining the queue at the entrance of the highway)

Define: �(Q)
.
= maximum cost, among all drivers

Theorem (A.B., C.J.Liu, and F.Yu, Quarterly Appl. Math. 2012)

The starting distribution Q⇤(·) for the Nash equilibrium solution yields a
global minimum of �.
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Tra�c Flow on a Network

Nodes: A
1

, . . . ,A
m

arcs: �
ij

L
ij

= length of the arc �
ij

A j

i

γ

A γ
ij

Γ

ji

A viable path � is a concatenation of viable arcs
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Network loading problem

Given the departure times of N drivers, and the paths �
1

, . . . , �
N

along which
they travel, describe the overall tra�c pattern.

A j

i

γ

A γ
ij

Γ

ji

Delay Model: If a drivers enters the arc �
ij

at time t,
he will exit form that arc at time t + D

ij

(n)

n = number of cars present along the arc �
ij

at time t
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Conservation law model

ρ

x

   

a b

= density of cars

Along the arc �
ij

, the density of cars satisfies the conservation law

⇢
t

+ [⇢v
ij

(⇢)]
x

= 0

v
ij

(⇢) = velocity of cars, depending on the density
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Boundary conditions at nodes

A

γ

γ

γ

i

1i

3

4

i

A

A

A

1

2

3

γ
2i

γ
i5

A
4

A
5

i

Need: junction conditions

given the flux from incoming arcs, determine the flux along outgoing arcs
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A queue at the entrance of each arc

Simplest model: a queue is formed at the entrance of each outgoing arc
if the flux is too large

queue

0

ρρ

flux

ρ

ij

max
F V  (  )ijij

γ
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A queue at the exit of each arc

An upper bound on the flow is imposed (by a crosslight) at the end of
each incoming arc.

A queue is formed, if the flux is too large (with possible spill-over)

queue
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Priority among di↵erent incoming roads

Cars from the incoming road having priority pass instantly through the
intersection

Cars from the access ramp wait in a queue

queue
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Tra�c Flow on a Network

n groups of drivers with di↵erent origins and destinations, and di↵erent costs

k-drivers:

8

<

:

depart from A
d(k)

and arrive to A
a(k)

departure cost: '
k

(t), arrival cost:  
k

(t).

a(1)

A

A

d(1)
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Tra�c Flow on a Network

a(2)

A
d(2)

A

drivers can use di↵erent paths �
1

, �
2

, . . . to reach destination

Does there exist a globally optimal solution, and a Nash equilibrium solution

for tra�c flow on a network ?
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Admissible departure rates

G
k

= total number of drivers in the k-th group, k = 1, . . . , n

�
p

= viable path (concatenation of viable arcs �
ij

), p = 1, . . . ,N

t 7! ū
k,p(t) = departure rate of k-drivers traveling along the path �

p

The set of departure rates {ū
k,p} is admissible if

ū
k,p(t) � 0 ,

X

p

Z 1

�1
ū
k,p(t) dt = G

k

k = 1, . . . , n

Let ⌧
p

(t) = arrival time for a driver starting at time t, traveling along �
p
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Main assumptions

(A1) Along each arc �
ij

the flux function ⇢ 7! ⇢ v
ij

(⇢) is twice continuously
di↵erentiable and concave down.

v
ij

(0) > 0, v
ij

(⇢
max

) = 0

(A2) The cost functions ', satisfy '0 < 0,  , 0 � 0,

lim
x!�1

'(x) = +1 , lim
x!+1

⇣

'(x) +  (x)
⌘

= +1
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Global optima and Nash equilibria on networks

An admissible family {ū
k,p} of departure rates is globally optimal if it

minimizes the sum of the total costs of all drivers

J(ū)
.
=

X

k,p

Z

⇣

'
k

(t) +  
k

(⌧
p

(t))
⌘

ū
k,p(t) dt

An admissible family {ū
k,p} of departure rates is a Nash equilibrium

solution if no driver of any group can lower his own total cost by changing
departure time or switching to a di↵erent path to reach destination.

Theorem. (A.B. - Ke Han, Networks & Heterogeneous Media, 2012).

On a general network of roads, there exists at least one globally optimal
solution, and at least one Nash equilibrium solution.

Alberto Bressan (Penn State) Scalar Conservation Laws 104 / 117



Two classical theorems in topology

Theorem (Luitzen Egbertus Jan Brouwer, 1912)

Let B ⇢ Rn be a closed ball.
Every continuous map f : B 7! B admits a fixed point.

_ 

x
_

B B

f

f(x) = x
_
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A variational inequality

K ⇢ Rn closed, bounded convex set, f : K 7! Rn continuous

Then there exists x⇤ 2 K such that

hx � x⇤ , f (x⇤)i  0 for all x 2 K

Either f (x⇤) = 0, or f (x⇤) is an outer normal vector to K at x⇤

f

K

x

f(x  )

x

*

*

x*

K

f

If f (x) is tangent, or points inward at every boundary point of K , then f (x⇤) = 0
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A constrained evolution

Trajectories of ẋ = f (x) are constrained to remain in K by a
frictionless barrier

f

K

f(x  )

x

*

*

f

−n

There exists a point x⇤ 2 K that does not move.
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Finite dimensional approximations

On a family K of admissible piecewise constant departure rates u = (u
k,p), define

an evolution equation
d

d✓
u =  (u)

u

(t) +   
k

ϕ

t

t

(t) = ϕ
k

k,p

k,p’u

k,p’
Φ

Φ
k,p

(t) = 

(t) +   

ψ (τ       )(t)pk

ψ (τ       )
k p’

(t)

tt
m l
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Existence of a Nash equilibrium on a network

The map  : K 7! RN is continuous and inward-pointing
hence it admits a zero:  (ū) = 0

The departure rates ū = (ū
k,p) represent a Galerkin approximation to a

Nash equilibrium

Letting the discretization step �t approach zero, taking subsequences:

departure rates: ū⌫
k,p(·) * ū

k,p(·) weakly

arrival times: ⌧⌫
p

(·) ! ⌧
p

(·) uniformly

The departure rates ū
k,p(·) provide a Nash equilibrium
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Work in progress

More general conditions at junctions (K. Han, B. Piccoli)

Necessary conditions for globally optimal solutions on networks
No queues ? No shocks ?
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Stability of Nash equilibrium ?

To justify the practical relevance of a Nash equilibrium, we need to

analyze a suitable dynamic model

check whether the rate of departures asymptotically converges to the
Nash equilibrium

Assume: drivers can change their departure time on a day-to-day basis, in order
to decrease their own cost (one group of drivers, one single road)

Introduce an additional variable ✓ counting the number of days on the calendar.

ū(t, ✓)
.
= rate of departures at time t, on day ✓

�(t, ✓)
.
= cost to a driver starting at time t, on day ✓
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A conservation law with non-local flux

Model 1: drivers gradually change their departure time, drifting toward
times where the cost is smaller.
If the rate of change is proportional to the gradient of the cost, this leads
to the conservation law

ū✓ + [�
t

ū]
t

= 0

Φ(t)

t

u
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An integral evolution equation

Model 2: drivers jump to di↵erent departure times having a lower cost.
If the rate of change is proportional to the di↵erence between the costs, this yields

d

d✓
ū(t) =

Z

ū(s)
h

�(s)� �(t)
i

+

ds �
Z

ū(t)
h

�(t)� �(s)
i

+

ds

Φ

tt

u

s s
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Numerical experiments (Wen Shen, 2011)

Question: as ✓ ! 1, does the departure rate u(t, ✓) approach the
unique Nash equilibrium?

Flux function: f (⇢) = ⇢ (2� ⇢)

Departure and arrival costs: '(t) = � t ,  (t) = et
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Numerical simulation: Model 1
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Numerical simulation: Model 2
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y(x)

0

x

L

xz(x)

main di�culty: non-local dependence

linearized equation:
d

d✓
Y (x) =

h

↵(x)
⇣

�(x)Y (x)� Y (z(x))
⌘i

x
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