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A NOTE ON ADMISSIBLE SOLUTIONS OF 1D SCALARCONSERVATION LAWS AND 2D HAMILTON{JACOBI EQUATIONSLUIGI AMBROSIO AND CAMILLO DE LELLISAbstrat. Let 
 � R2 be an open set and f 2 C2(R) with f 00 > 0. In this note we provethat entropy solutions of Dtu+Dxf(u) = 0 belong to SBVlo(
). As a orollary we provethe same property for gradients of visosity solutions of planar Hamilton{Jaobi PDEs withuniformly onvex hamiltonians. 1. IntrodutionIn this paper we onsider entropy solutions of the salar onservation lawDtu+Dx[f(u)℄ = 0 in 
 (1.1)and visosity solutions of the planar Hamilton{Jaobi PDEH(rv) = 0 in 
, (1.2)where H and f are C2 and loally uniformly onvex. In these ases it is known that u andrv belong to BV (
0) for every open set 
0 �� 
, i.e. that the distributions Du and Druare vetor (resp. matrix) valued Radon measures. The rough piture that one has in mindwhen desribing suh solutions is the one of pieewise C1 funtions with disontinuities ofjump type. The spae of BV funtions enjoys good funtional analyti properties, but thebehaviour of a generi BV funtion an be indeed very far from the piture above.Following [3℄, given w 2 BV (Rm ;Rk ) we deompose Dw into three mutually singularmeasures: Dw = Daw + Dw + Djw. Daw is the part of the measure whih is absolutelyontinuous with respet to the Lebesgue measure L m. Djw is alled jump part and it isonentrated on the reti�able m � 1 dimensional set J where the funtion u has jumpdisontinuities (in an appropriate measure{theoreti sense: see Setion 2). Dw is alled theCantor part, it is singular with respet toL m and it satis�es Dw(E) = 0 for every Borel setE with H m�1(E) < 1. When m = 1, Djw onsists of a ountable sum of weighted Diramasses, whereas Dw is the non{atomi singular part of the measure. A typial example ofDw is the derivative of the Cantor{Vitali ternary funtion (see for instane Example 1.67of [3℄).In [5℄ the authors introdued the spae of speial funtions of bounded variations, denotedby SBV , whih onsists of the funtions w 2 BV suh that Dw = 0. This spae playedan important role in the last years, in onnetion with problems oming from the theoryof image segmentation and with variational problems in frature mehanis (see [3℄ and thereferenes quoted therein for a detailed presentation of this subjet).1



2 LUIGI AMBROSIO AND CAMILLO DE LELLISIt is natural to ask whether entropy solutions of (1.1) and gradients of visosity solutionsof (1.2) are loally SBV and, as far as we know, this question has never been addressed inthe literature. Our interest is in part motivated by some measure{theoreti questions arisenin [2℄.In the following remark we single out a anonial representative in the equivalene lassof u for whih more preise informations, of pointwise tipe, are available.Remark 1.1. Let u 2 L1(
) be a weak solution of (1.1) and assume ℄t1; t2[�J � 
 for someopen set J � R. Using the equation one an prove that for every � 2℄t1; t2[ the funtionsf"(x) = R �+"� u(x; t)dt have a unique limit f in L1(J) weak� for " # 0 (see for instaneTheorem 4.1.1 of [4℄). Therefore from now on we �x the onvention that u(�; �) = f(�).The following is the main result of this note.Theorem 1.2. Let u 2 L1(
) be an entropy solution of (1.1) with f 2 C2(R) loallyuniformly onvex. Then there exists S � R at most ountable suh that 8� 2 R n S thefollowing holds: u(�; �) 2 SBVlo(
� ) with 
� := fx 2 R : (�; x) 2 
g. (1.3)From this theorem, using the sliing theory of BV funtions, we obtain:Corollary 1.3. Let f 2 C2(R) be loally uniformly onvex and let u 2 L1(
) be an entropysolution of (1.1). Then u 2 SBVlo(
).Eventually, via a loal hange of oordinates we apply the previous result to the Hamilton{Jaobi ase:Corollary 1.4. Let H 2 C2(R2) be loally uniformly onvex and let u 2 W 1;1(
) be avisosity solution of H(ru) = 0. Then ru 2 SBVlo(
).As we show in Remark 3.3, Theorem 1.2 is optimal. Also the regularity results obtainedin the two orollaries seem to be optimal, in view of the fat that shoks do our and thatthe gradients of visosity solutions of Hamilton-Jaobi PDEs an jump along hypersurfaes.Our result applies in partiular to the distane funtion dist(x;K), whih solves the eikonalequation jruj2� 1 = 0 in the visosity sense in 
 = R2 nK. In this onnetion, we mentionthe paper [8℄, where the authors establish among other things the SBV regularity in anyspae dimension, but under some regularity assumptions on K.It would be interesting to extend these results to(a) BV admissible solutions of genuinely nonlinear systems of onservation laws in 1spae dimension;(b) Visosity solutions of uniformly onvex Hamilton{Jaobi PDEs in higher dimensions.The proof of Theorem 1.2 uses at the very end a variational priniple, due to Hopf and Lax.However, it might be that ombining part of this proof with the theory of harateristis forsystems of onservation laws (as developed in [4℄) one ould be able to extended Theorem 1.2at least to the ase (a).



ON ADMISSIBLE SOLUTIONS OF 1D SCALAR CONSERVATION LAWS 32. Preliminaries2.1. BV and SBV spaes. In what follows L d and H n denote respetively the Lebesguemeasure on Rd and the n{th dimensional Hausdor� measure on Eulidean spaes. A setJ � Rd is said ountably H n{reti�able (or briey reti�able) if there exist ountably manyn{dimensional Lipshitz graphs �i suh that H n(J n S�i) = 0. Given a Borel measure �and a Borel set A we denote by � A the measure given by � A(C) = �(A \ C).The approximate disontinuity set Sw � 
 of a loally summable funtion w : 
 � Rd !Rm and the approximate limit are de�ned as follows: x =2 Sw if and only if there existsz 2 Rm satisfying limr#0 r�d ZBr(x) jw(y)� zj dy = 0:The vetor z, if it exists, is unique and denoted by ~w(x), the approximate limit of w at x.It is easy to hek that the set Sw is Borel and that ~w is a Borel funtion in its domain(see x3.6 of [3℄ for the details). By Lebesgue di�erentiation theorem the set Sw is Lebesguenegligible and ~w = w L d-a.e. in 
 n Sw.In a similar way one an de�ne the approximate jump set Jw � Sw, by requiring theexistene of a; b 2 Rm with a 6= b and of a unit vetor � suh thatlimr#0 r�d ZB+r (x;�) jw(y)� aj dy = 0; limr#0 r�d ZB�r (x;�) jw(y)� bj dy = 0;where (B+r (x; �) := fy 2 Br(x) : hy � x; �i > 0g ;B�r (x; �) := fy 2 Br(x) : hy � x; �i < 0g : (2.1)The triplet (a; b; �), if it exists, is unique up to a permutation of a and b and a hange of signof �. We denote it by (w+(x); w�(x); �(x)), where w�(x) are alled approximate one-sidedlimits of w at x. It is easy to hek that the set Jw is Borel and that w� and � an be hosento be Borel funtions in their domain (see again x3.6 of [3℄ for details).The following struture theorem, essentially due to Federer and Vol'pert, holds (see forinstane Theorem 3.77 and Proposition 3.92 of [3℄):Theorem 2.1. Let w 2 BV (
). Then H d�1(Sw n Jw) = 0 and Jw is a ountably H d�1{reti�able set. If we denote by Daw the absolutely ontinuous part of Dw and by Dsw thesingular part, then Dsw an be written as Djw +Dw, whereDjw = (w+ � w�)
 �JwH d�1 Jw ; (2.2)Dw(E) = 0 for any Borel set E with H d�1(E) <1. (2.3)When 
 � R we have the following re�nement (see for instane Theorem 3.28 of [3℄):Proposition 2.2. Let w 2 BV (
) and let 
 � R. Then Sw = Jw, ~w is ontinuous on
 n Jw and ~w has lassial left and right limits (whih oinide with w�(x)) at any x 2 Jw.



4 LUIGI AMBROSIO AND CAMILLO DE LELLISTherefore Djw = Xx2Jw(w+(x)� w�(x))Æx :2.2. Hopf{Lax formula and harateristis. Let f 2 C2 be loally uniformly onvex,u0 2 L1(R) and let u 2 L1(R+ � R) be the entropy solution of the Cauhy problem8<: Dtu+Dx[f(u)℄ = 0u(0; �) = u0 : (2.4)Then u an be omputed by using a variational priniple, the so-alled Hopf{Lax formula.In partiular we have the following well-known theorem.Theorem 2.3 (Hopf{Lax formula). Let u0 2 L1(R), let f : R ! R be C2 and loallyuniformly onvex and set v0(y) := Z y�1 u0(s) ds y 2 R :Let v(t; x) := min�tf ��x� yt � + v0(y) : y 2 R� : (2.5)Then the following statements hold:(i) For any t > 0 there exists a ountable set St suh that the minimum is attained at aunique point y(t; x) for any x =2 St.(ii) The map x 7! y(t; x) is nondereasing in its domain, its jump set is St and v(t; �) isdi�erentiable at any x =2 St, withf 0(vx(t; x)) = x� y(t; x)t : (2.6)In partiular vx(t; �) is ontinuous on R n St.(iii) There exists a onstant C suh thatvx(t; x + y) � vx(t; x) + Ct y whenever y � 0 and x; x+ y =2 St. (2.7)This is alled Oleinik E{ondition.(iv) v is a Lipshitz map and u := vx is the unique entropy solution of (1.1) with theinitial ondition u(0; �) = u0.(v) If tn ! t > 0, then vx(tn; �)! vx(t; �) in L1lo.Proof. For a proof of point (i), of the fat that x 7! y(t; x) is nondereasing, and of the fatthat St is the set of disontinuities of y(t; �) we refer for instane to Theorem 1 of x3.4.2 of[6℄. For (iii) and (iv) we refer to Theorem 2 of x3.4.2, to the �rst lemma of x3.4.3 and toTheorem 3 of the same setion of [6℄.



ON ADMISSIBLE SOLUTIONS OF 1D SCALAR CONSERVATION LAWS 5(ii) It remains to prove that v(t; �) is di�rentiable on R n St and that (2.6) hold. Sinev is Lipshitz, v(t; �) is di�erentiable almost everywhere. In Theorem 1 of x3.4.2 of [6℄ it isshown that (2.6) holds for a.e. x. Sine f 0 2 C1 and f 00 > 0, if we de�new(x) := f 0�1�x� y(t; x)t �we onlude that the disontinuity set of w is preisely St and that w(z) = vx(t; z) forL 1{a.e. x. Fix a point z =2 St and note thatjv(�)� v(z)� (� � z)w(z)j � ����Z �z �w(�)� w(z)� d����� = o(j� � zj):We onlude that v(t; �) is di�erentiable at z and that its derivative is equal to w(z).(v) Note that vx is loally uniformly bounded, and thus it suÆes to prove that vx(tn; �)!vx(t; �) pointwise almost everywhere. Fix x 62 St and let y� be a luster point of the sequenefy(tn; x)g. The variational priniple yields that y� is a minimizer for the right hand side of(2.5). Sine y(t; x) is the unique minimizer of this funtion, we onlude that y� = y(t; x).Therefore y(tn; x) ! y(t; x) for every x 62 St. From (2.6) we get the same onvergene forvx(tn; �). This onludes the proof. �We an use the Hopf{Lax variational priniple to de�ne bakward harateristis emanat-ing from points (t; x) with x 2 R n St. We refer to Chapters X and XI of [4℄ for a di�erentand more general approah to the theory of harateristis, based on di�erential inlusions.De�nition 2.4 (Charateristis). Let x =2 St. The segment joining (t; x) with (0; y(t; x))will be alled (bakward minimal) harateristi emanating from (t; x). These segments,when parametrized with onstant speed on the interval [0; t℄, are minimizers of the variationalproblem related to the Hopf{Lax formulamin�Z t0 f �( _(s)) ds+ v0((0)) :  2 C1 ([0; t℄;R) ; (t) = x� :Indeed, the strit onvexity of f � fores the minimizers to be straight lines and fores aonstant speed parameterization.The monotoniity of y(t; �) immediately implies that harateristis emanating from pointsx; y =2 St with x 6= y do not interset in the open upper half plane. It turns out that theminimality of harateristis easily implies that two di�erent harateristis starting even atdi�erent times are either one ontained in the other or do not interset (see Figure 1).Proposition 2.5 (No-rossing of harateristis). Let t > 0 and x0 =2 St. Let also s 2℄0; t℄and x00 =2 Ss. Then the harateristi emanating from (t; x) and the one emanating from(s; x0) do not interset in the upper half plane f� > 0g, unless the �rst ontains the seond.



6 LUIGI AMBROSIO AND CAMILLO DE LELLISProof. By the previous remarks we an assume with no loss of generality that s 2℄0; t[.Assume by ontradition that there is an intersetion at (s�; x�) with s� 2℄0; s℄. Let(�) := 8><>:y00 + �s� (x� � y00) if � 2 [0; s�℄;x000 + � � s�t� s� (x0 � x�) if � 2 [s�; t℄ :The de�nition of v givesv(t; x0) � Z t0 f �( _) d� + v0(y00) = s�f ��x� � y00s� �+ (t� s�)f ��x0 � x�t� s� � + v0(y00) ;with a strit inequality if (x0 � x�)=(t � s�) and (x� � y00)=s� are not equal. On the otherhand, the minimality of the segment joining (s�; x�) to (0; y00) givess�f ��x� � y00s� � + v0(y00) = v(s�; x�)and the so-alled dynami programming priniple (see for instane [6℄) givesv(t; x0) = (t� s�)f ��x0 � x�t� s� �+ v(s�; x�) :As a onsequene equality must hold and the two segments are parallel. �

x

t (s; x00) (t; x0)
Figure 1. The \rossing" of two harateristis would give a minimizer  (inthe Hopf{Lax variational priniple) whih is not a straight line.3. Proof of Theorem 1.2De�nition 3.1 (Charateristi ones). The bakward harateristi one Cx;� emanatingfrom x 2 S� is de�ned as the open triangle having(�; x) ; (y�(�; x); 0) ; (y+(�; x); 0)



ON ADMISSIBLE SOLUTIONS OF 1D SCALAR CONSERVATION LAWS 7as verties. Notie that due to the no rossing of harateristis two ones C�;x and Ct;y areeither one ontained in the other or disjoint. We de�ne alsoC� := [x2S� C�;x : (3.1)We remark that the two \diagonal" segments whih de�ne the harateristi one oinidewith the minimal and maximal bakward harateristis as de�ned in [4℄.3.1. Proof of Theorem 1.2. Step 1 Preliminary remarks.Let us �x (�; �) 2 
 and r suh that Br(�; �) � 
. Thanks to the �nite speed of propaga-tion, there exists a positive � suh that the values of u in the ball B�(�; �) depend only onthe values of u on the segment ft = � � 2�g \Br(�; �). Thus, if we denote by w the entropysolution of the Cauhy problem8<: Dtw +Dx[f(w)℄ = 0 for t > � � 2�w(� � 2�; x) = u(� � 2�; x)1 Br(�;�)(� � 2�; x) for every x 2 R ;we get that w = u on B�(�; �). Moreover, note that w(t; �) 2 BV for every t > � � 2�. Thusit suÆes to prove the theorem under the additional assumptions that 
 = ft > 0g and thatu(0; �) is a bounded ompatly supported BV funtion.Under this assumption we know that u = vx, where v is given by the Hopf{Lax formula(2.5). Moreover, from Theorem 2.3(v) and Remark 1.1, for every t > 0 we have u(t; �) =vx(t; �). Sine u(0; �) is ompatly supported we know that for every onstant T there existonstants R and 1 suh that the support of u(t; �) is ontained in fjxj � Rg and the totalvariation of Du(t; �) is bounded by a onstant 1 for t 2 [0; T ℄.For eah t we denote by �t the Cantor part of the measure Dxu(t; �) and by �t the jumppart. Using this notation, (1.3) is equivalent to prove that�t = 0 exept for an at most ountable set of t's. (3.2)Oleinik's estimate (2.7) implies that the singular measures �t and �t are both nonpositiveand that the left and right limits u�(t; x) of u(t; �) are well de�ned. Reall also that thesemi-monotoniity of u(t; �) givesu+(t; x)� u�(t; y) = Du(t; �)([x; y℄) whenever x < y. (3.3)Step 2 De�nition of a funtional F (t).Let y(t; �) be the nondereasing map in Theorem 2.3, de�ned out of St. We de�ne theopen intervals It;x :=℄y�(t; x); y+(t; x)[ ; It := [x2St It;x:From (2.6) it follows immediately thatL 1(It;x) � �2�t(fxg) ; (3.4)for some onstant 2 depending only on kuk1 and on kf 00kL1([�kuk1;kuk1℄).



8 LUIGI AMBROSIO AND CAMILLO DE LELLISWe set F (t) := L 1(It) = Xx2StL 1(It;x) ;where the seond equality follows from the no-rossing property of harateristis. From(3.4) we onludeF (t) � �2�t(R) � 2jDu(t; �)j(R) � 12 8t 2 [0; T ℄ : (3.5)Let us prove now that Is � It whenever s � t. Indeed, if x 2 Ss the no-rossing property ofharateristis gives that Is;x has an empty intersetion with the image of the nondereasingmap y(t; �), de�ned on R n St. Therefore Is;x must be ontained in one of the pieewisedisjoint jump intervals It;y, y 2 St. Hene, taking into aount (3.5), we obtain thatF is a nondereasing bounded funtion in [0; T ℄. (3.6)As usual we denote by F (t+) the right limit of F at t. Next we will prove that for any integerk we have �0 � T=k > 0 and ��0(R) � �1=k =) F (�+0 ) � F (�0) + 3 ; (3.7)where 3 is a stritly positive onstant whih depends on kuk1, T , k and f . Clearly (3.6)and (3.7) imply that all sets �� 2 [T=k; T [ �� �� (R) � �1=k	are �nite. Thus the laim of the theorem is redued to prove (3.7).Step 3 Proof of (3.7). Realling the de�nition of C� given in (3.1), we need the followingLemma 3.2. Let �0 > 0. Then, for ��0-a.e. x there exists � > 0 suh thatf�0g�℄x� �; x+ �[� C� :We �rst show how to onlude (3.7) from the lemma. We �x � > �0 � T=k and, to simplifythe notation, we use � and � in plae of ��0 and ��0 , and denote by � the full distributionalderivative of u(�0; �). Denote by E the set of x's for whih Lemma 3.2 applies and suh thatlim�#0 � + j� � �j([x� �; x+ �℄)��([x� �; x+ �℄) = 0: (3.8)Besiovith di�erentiation theorem gives that �(R nE) = 0 and (3.3) giveslim�#0 u�(�0; x� �)� u+(�0; x + �)��([x� �; x+ �℄) = 1 8x 2 E : (3.9)For every x 2 E and for every � > 0 suh that x� � =2 S�0 we denote by Jx;� the interval℄y(�0; x� �); y(�0; x+ �)[, i.e. (see (2.6))Jx;� = �x� � � �0f 0(u(�0; x� �)); x+ � � �0f 0(u(�0; x+ �))� :



ON ADMISSIBLE SOLUTIONS OF 1D SCALAR CONSERVATION LAWS 9From (3.9) and the fat that � is a nonpositive measure, it follows that for � suÆientlysmall we have f 0(u(�0; x+ �)) � f 0(u(�0; x� �)). Hene we an writeL 1(Jx;�) = 2� + �0hf 0(u(�0; x+ �))� f 0(u(�0; x� �))i� 2� + Tk minjtj�kuk1 f 00(t)h(u(�0; x+ �)� u(�0; x� �)i :Hene, from (3.9) we onludeL 1(Jx;�) � �4�([x� �; x+ �℄) ; (3.10)for � suÆiently small, where 4 is a positive onstant depending only on T , k and f .Due to the no-rossing property of harateristis (see Figure 2) we have that Jx;� anonly interset the intervals I�0;y emanating from a point y in [x� �; x+ �℄, so that realling(3.4) we obtainL 1(Jx;� \ I�0) = Xy2S�0\[x��;x+�℄ L 1(I�0;y) � �2�([x� �; x+ �℄) :
(�0; x+ �)minimal harateristisrossing between(�0; x� �)(�0; y)

I�0;y Jx;�Figure 2. y 62 [x� �; x+ �℄ and Jx;� \ I�0;y 6= ; would violate the no-rossing property.From (3.8) and (3.10) it follows that for any x 2 E we haveL 1(Jx;� n I�0) � �42 �([x� �; x+ �℄) (3.11)provided � is small enough. Using Besiovith overing lemma, we an over �{a.e. E withpairwise disjoint intervalsKj = [xj��i; xj+�j℄ suh that (3.11) and the onlusion of Lemma3.2 both hold for x = xj and � = �j. Note that the intervals Jxj ;�j are pairwise disjoint as



10 LUIGI AMBROSIO AND CAMILLO DE LELLISwell (again due to the no-rossing property of harateristis) and that, thanks to Lemma3.2, they belong to I� . Hene, realling that ��(R) � k, we getF (�)� F (�0) � Xj L 1(Jxj ;�j n I�0) � �Xj 42 �([xj � �j; xj + �j℄)� �42 �(E) = �42 �(R) � 42k =: 3 :This gives the laim (3.7), and redues the theorem to Lemma 3.2.Proof of Lemma 3.2. We will prove that the onlusion of the lemma holds for any x whihsatis�es the following onditions:x =2 S�0 and lim�#0 u(�0; x)� u(�0; x� �)� = �1: (3.12)By Besiovith di�erentiation theorem on intervals, the measure ��0 is onentrated on E.Hene, in what follows, we �x � > �0 and x suh that (3.12) holds and our goal is to provethat for � small enough f�0g�℄x� �; x+ �[� C� .Let us de�ne w(�; �) = u(t+ �0; x+ �). Clearly Dtw+Dx[f(w)℄ = 0. Hene it is suÆientto prove the following statement:Assume w is a bounded solution of Dtw +Dx[f(w)℄ = 0 on R+ � R , suh that w(0; �) is aompatly supported BV funtion. Assume that the following two onditions hold:0 =2 Sw(0;�) and lim�#0 w(0; 0)� w(0;��)� = �1 : (3.13)Then 0 2 I� for any � > 0.We argue by ontradition. If the laimed statement is not true, then 0 =2 I� for some �and therefore for any n 2 N we an �nd xn =2 S� suh that zn = y(�; xn) 2℄� 1n ; 1n [. Reallthat zn is the unique minimum of the funtion� 7! Ln(�) := �g�xn � �� �+ Z ��1w(0; s) ds ;with g := f �. Sine the slopes (xn�zn)=� are uniformly bounded, jxnj is uniformly boundedas well, and hene we an assume that a subsequene of fxng, not relabeled, onverges tox 2 R . Then 0 is a minimizer (not neessarily unique) of the funtion� 7! L(�) := �g�x� �� �+ Z ��1w(0; s) ds :Sine by (3.13) w(0; �) is ontinuous at 0, we have that L is di�erentiable at 0, and sine 0is a minimizer we have 0 = L0(0) = �g0 �x� � + w(0; 0) : (3.14)



ON ADMISSIBLE SOLUTIONS OF 1D SCALAR CONSERVATION LAWS 11We will show that if � > 0 is suÆiently small we have L(��) < L(0), ontraditing theminimality of 0. Reall that g is C2. So for some onstant D we have�����g �x� �� �g�x + �� � + �g0 �x� ����� � D�2 :Hene we an write �g �x� �� �g�x+ �� � � ��g0 �x� ��D�2 : (3.15)In order to estimate L(0)� L(��) it remains to boundZ 0�1w(0; �) d� � Z ���1 w(0; �) d� = Z 0�� w(0; �) d�= �w(0; 0) + Z 0��(w(0; �)� w(0; 0)) d� : (3.16)Let us �x now a large onstant E. Notie that (3.13) givesZ 0�� w(0; �)� w(0; 0) d� � E Z 0�� �� d� = E2 �2 (3.17)for � > 0 small enough. From (3.15) and (3.16) we getL(0)� L(��) � � hw(0; 0)� g0 �x� �i+ �E2 �D� �2 (3.18)for � > 0 small enough. Realling (3.14) we �nally getL(0)� L(��) � �E2 �D� �2 : (3.19)Note that D is a �xed onstant, whereas E an be hosen arbitrarily large, provided � issuÆiently small. Hene, this means that for � suÆiently small L(0) > L(��). �Proof of Corollary 1.3. The sliing theory of BV funtions shows that the Cantor part of the2-dimensional measure Dxu is the integral with respet to t of the Cantor parts of Du(t; �)(see Theorem 3.108 of [3℄ for a preise statement). Therefore Theorem 1.2 implies that themeasure Dxu has no Cantor part. Using the hain rule of Vol'pert (see Theorem 3.96 of [3℄)and equation (1.1), we get that Dtu has no Cantor part as well. Thus, we �nally infer thatu 2 SBVlo(
). �Remark 3.3. It is not diÆult to show that Theorem 1.2 is optimal. Indeed, let v : R ! [0; 1℄be any ontinuous non{inreasing funtion whih does not belong to SBVlo(R). For anyx 2 R let rx be the straight line whih passes through (1; x) and has slope (1; v(x)). Sinev is non{inreasing, for any pair frx; rygx6=y we have rx \ ry \ ft � 1g = ;. Therefore,there exists a unique funtion ~u 2 W 1;1lo (℄ � 1; 1[�R) whih is onstantly equal to v(x)on every rx. From the lassial method of harateristis it follows that ~u is a solution ofDt~u+Dx(~u2=2) = 0.



12 LUIGI AMBROSIO AND CAMILLO DE LELLISSet u0(x) := ~u(0; x) and let u be the entropy solution of8><>: Dtu+Dx �u22 � = 0u(0; �) = u0 : (3.20)Sine ~u is loally Lipshitz, ~u is an entropy solution of (3.20) in ft < 1g. Therefore weonlude that ~u = u on ℄0; 1[�R and that u(1; �) = v 62 SBVlo(R). By the �nite speed ofpropagation, if we hoose M large enough and we de�ne u0 := u01[�M;M ℄, the orrespondingentropy solution u has u(1; �) 62 SBVlo.Arguing in a similar way, for every m > 0 we an �nd um0 2 BV (R) suh that� kum0 kBV � m and the support of um0 is ontained in [�m;m℄;� If um is the entropy solution of (3.20) with initial data um0 , then there exists � 2℄0; m[suh that um(�; �) 62 SBV ([�m;m℄).Let C > 2 and fmig be a dereasing sequene of positive numbers suh that Pmi <1. Set�j := CXi�j mi û0(x) := Xj umj0 (x� �j)and let û be the orresponding entropy solution of (3.20). By the �nite speed of propagation,there exists a C > 0 suh that û(t; x) = umj (t; x) for every (t; x) 2℄0; mj[�℄�j �mj; �j +mj[and for every j. Therefore we onlude that ft 2℄0; 1[: û(t; �) 62 SBVlog is in�nite.4. Proof of Corollary 1.4We �rst reall the de�nition of semionave funtions.De�nition 4.1. Let � : 
 � R2 ! R. We say that � is semionave if there exists  2 Rsuh that �(x)� jxj2 is a onave funtion.The proof is based on Theorem 1.2 and on the following lemma onerning di�erentiabilitypoints of semionave funtions.Lemma 4.2. Let � : 
 � R2 ! R be a semionave funtion and let � be the set of itsdi�erentiability points. Then(i) 
 n � is ountably H 1-reti�able;(ii) r� is ontinuous on �.Proof. Without loosing our generality we assume that � is onave and 
 is onvex. State-ment (i) is well-known in any Eulidean spae, and a simple proof of it is given in [1℄, withreferenes to more preise results. Statement (ii) an be obtained notiing that at di�eren-tiability points the subdi�erential��(x) := �p 2 R2 : �(y) � �(x) + hp; y � xi 8y 2 R2	ontains onlyr�(x). On the other hand, the graph of the subdi�erential f(x; p) : p 2 ��(x)gis learly losed in 
� R2 and this immediately leads to the stated ontinuity property. �



ON ADMISSIBLE SOLUTIONS OF 1D SCALAR CONSERVATION LAWS 13Proof of Theorem 1.4. Let ~
 �� 
 and reall that, sine H is stritly onvex, u is semion-ave in ~
 (see for instane [7℄). Without loosing our generality we an assume that 0 is aregular value of H, otherwise fH = 0g onsists of one point and the statement is trivial.Denoting by � the set of points where u is di�erentiable, we will prove that there existsan open set A � ~
 \ � suh that ru 2 SBV (A). This impliesjDruj(~
) = jDruj(~
 n A) � jDruj(~
 n�)and sine, by Lemma 4.2(i), the set ~
 n � is ountably H d�1-reti�able, we obtain from(2.3) that jDruj = 0 in ~
, i.e. ru 2 SBV (~
;R2). In order to obtain an open set A withthe stated properties it suÆes to show that for any x 2 ~
 \ � there exists r > 0 suh thatru 2 SBV (Br(x);R2).Fix x 2 ~
 \ �; from Lemma 4.2(ii) it follows thatlimr#0 kru� vkL1(Br(x)) = 0 with v := ru(x): (4.1)Sine 0 is a regular value of H we an �x a system of oordinates (z; y) on R2 suh that�H�z (v) > 0 �H�y (v) = 0 :We let � be suÆiently small, so that there exists h 2 C2(R) suh thatfH = 0g \B�(v) = f(�h(y); y)g \ B�(v) :Then h0(y) = �H�y (�h(y); y)�H�z (�h(y); y) ; h0(0) = 0 ; h00(0) = �2H�y2 (v)�H�z (v) > 0 :So we an assume in addition that h is stritly onvex on [��; �℄.We use (4.1) to �nd r > 0 suh that the (essential) range of rujBr(x) is ontained in B�(v).Therefore �zu+ h(�yu) = 0 L 2-a.e. in Br(x). (4.2)Hene, if we de�ne w := �yu we get:Dzw +Dy[h(w)℄ = Dy�zu+Dy[h(�yu)℄ = Dy��zu+ h(�yu)	 = 0in the sense of distributions. Moreover, from semionavity of u we get that there existsC > 0 suh that Dyw = Dyyu � CL 2. This means that w satis�es Oleinik's E-ondition,and hene is an entropy solution of Dzw + Dy[h(w)℄ = 0. From Corollary 1.3 we onludethat �yu = w 2 SBV (Br(x)). Applying Vol'pert's hain rule (see Theorem 3.96 of [3℄), from(4.2) we onlude that �zu = �h(�yu) 2 SBV (Br(x)). �Aknowledgment. The �rst author gratefully aknowledges a onversation with A.Bres-san on the problems treated in this paper during the ICM onferene in Beijing 2002.
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