and viscosity solutions of the planar Hamilton Jacobi PDE

where H and f are C? and locally uniformly convex. In these cases it is known that u and
Vv belong to BV (§') for every open set ' CC , i.e. that the distributions Du and DVu
are vector (resp. matrix) valued Radon measures. The rough picture that one has in mind
when describing such solutions is the one of piecewise C'' functions with discontinuities of
jump type. The space of BV functions enjoys good functional analytic properties, but the
behaviour of a generic BV function can be indeed very far from the picture above.

measures: Dw = D% + D°w + D’w. D%w is the part of the measure which is absolutely
continuous with respect to the Lebesgue measure .£™. D7w is called jump part and it is
concentrated on the rectifiable m — 1 dimensional set J where the function w has jump
discontinuities (in an appropriate measure theoretic sense: see Section 2). Dw is called the
Cantor part, it is singular with respect to .Z™ and it satisfies Dw(FE) = 0 for every Borel set

A NOTE ON ADMISSIBLE SOLUTIONS OF 1D SCALAR
CONSERVATION LAWS AND 2D HAMILTON-JACOBI EQUATIONS

LUIGI AMBROSIO AND CAMILLO DE LELLIS

ABSTRACT. Let 2 C R? be an open set and f € C%(R) with f” > 0. In this note we prove
that entropy solutions of Diu + D, f(u) = 0 belong to SBV,,.(2). As a corollary we prove
the same property for gradients of viscosity solutions of planar Hamilton—Jacobi PDEs with
uniformly convex hamiltonians.

1. INTRODUCTION
In this paper we consider entropy solutions of the scalar conservation law

Dyu+ Dy[f(u)] = 0 in Q) (1.1)

H(Vv) = 0  inQ, (1.2)

Following [3], given w € BV (R™,RF) we decompose Dw into three mutually singular

Jyolepgwe/siadednl susiwbagy/:dny - 1an1as wundald LINOAD

E with ™ '(E) < oo. When m = 1, Dw consists of a countable sum of weighted Dirac
masses, whereas Dw is the non—atomic singular part of the measure. A typical example of
Dew is the derivative of the Cantor—Vitali ternary function (see for instance Example 1.67

of [3]).

In [5] the authors introduced the space of special functions of bounded variations, denoted

by SBV, which consists of the functions w € BV such that D = 0. This space played
an important role in the last years, in connection with problems coming from the theory
of image segmentation and with variational problems in fracture mechanics (see [3] and the
references quoted therein for a detailed presentation of this subject).
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2 LUIGI AMBROSIO AND CAMILLO DE LELLIS

[t is natural to ask whether entropy solutions of (1.1) and gradients of viscosity solutions
of (1.2) are locally SBV and, as far as we know, this question has never been addressed in
the literature. Our interest is in part motivated by some measure—theoretic questions arisen
in [2].

In the following remark we single out a canonical representative in the equivalence class
of u for which more precise informations, of pointwise tipe, are available.

Remark 1.1. Let u € L®(R) be a weak solution of (1.1) and assume |t1,to[x.J C Q for some
open set J C R. Using the equation one can prove that for every T €|ty,ts] the functions
fe(x) = f:% u(z,t)dt have a unique limit f in L*°(J) weak* for ¢ | 0 (see for instance
Theorem 4.1.1 of [4]). Therefore from now on we fix the convention that u(r,-) = f(-).

The following is the main result of this note.

Theorem 1.2. Let u € L®(Q) be an entropy solution of (1.1) with f € C*(R) locally
uniformly conver. Then there exists S C R at most countable such that V7 € R\ S the
following holds:

u(7,-) € SBViee(€2;) with Q. =={rx € R: (r,x) € Q}. (1.3)
From this theorem, using the slicing theory of BV functions, we obtain:

Corollary 1.3. Let f € C*(R) be locally uniformly convex and let u € L°°(2) be an entropy
solution of (1.1). Then u € SBV,.(£2).

Eventually, via a local change of coordinates we apply the previous result to the Hamilton
Jacobi case:

Corollary 1.4. Let H € C?*(R?) be locally uniformly conver and let v € WH®(Q) be a
viscosity solution of H(Vu) = 0. Then Vu € SBV,,.().

As we show in Remark 3.3, Theorem 1.2 is optimal. Also the regularity results obtained
in the two corollaries seem to be optimal, in view of the fact that shocks do occur and that
the gradients of viscosity solutions of Hamilton-Jacobi PDEs can jump along hypersurfaces.
Our result applies in particular to the distance function dist(x, K'), which solves the eikonal
equation |Vu|? —1 = 0 in the viscosity sense in 2 = R? \ K. In this connection, we mention
the paper [8], where the authors establish among other things the SBV regularity in any
space dimension, but under some regularity assumptions on K.

It would be interesting to extend these results to

(a) BV admissible solutions of genuinely nonlinear systems of conservation laws in 1
space dimension;
(b) Viscosity solutions of uniformly convex Hamilton—Jacobi PDEs in higher dimensions.

The proof of Theorem 1.2 uses at the very end a variational principle, due to Hopf and Lax.
However, it might be that combining part of this proof with the theory of characteristics for
systems of conservation laws (as developed in [4]) one could be able to extended Theorem 1.2
at least to the case (a).
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2. PRELIMINARIES

2.1. BV and SBV spaces. In what follows .Z% and /" denote respectively the Lebesgue
measure on R? and the n—th dimensional Hausdorff measure on Euclidean spaces. A set
J C R? is said countably 7" —rectifiable (or briefly rectifiable) if there exist countably many
n dimensional Lipschitz graphs I'; such that 2" (J \ |JT';) = 0. Given a Borel measure p
and a Borel set A we denote by pL A the measure given by ulL A(C) = u(ANC).

The approzimate discontinuity set S,, C Q of a locally summable function w : ¢ R¢ —
R™ and the approzimate limit are defined as follows: = ¢ S, if and only if there exists
2z € R™ satisfying

limrd/ w(y) — z|dy = 0.
o By()

The vector z, if it exists, is unique and denoted by w(x), the approximate limit of w at .
It is easy to check that the set S, is Borel and that w is a Borel function in its domain
(see §3.6 of [3] for the details). By Lebesgue differentiation theorem the set S, is Lebesgue
negligible and @ = w Z%a.e. in Q\ S,,.

In a similar way one can define the approzimate jump set .J, C S,, by requiring the
existence of a, b € R™ with a # b and of a unit vector v such that

limrd/ w(y) —aldy =0, limrd/ w(y) —bldy =0,
Bir(a:,u) B, (z,v)

rl0 70

where

{B;(m,u) ={y € B,(w): {y —x,v) >0}, (2.1)

B (z,v) :={y € B.(z): (y —xz,v) <0}.
The triplet (a, b, v), if it exists, is unique up to a permutation of @ and b and a change of sign
of v. We denote it by (w'(z),w (z),v(z)), where w*(z) are called approzimate one-sided
limits of w at z. It is easy to check that the set .J,, is Borel and that w® and v can be chosen
to be Borel functions in their domain (see again §3.6 of [3] for details).

The following structure theorem, essentially due to Federer and Vol’pert, holds (see for
instance Theorem 3.77 and Proposition 3.92 of [3]):

Theorem 2.1. Let w € BV (). Then 7 1(S, \ Jo) = 0 and J, is a countably 91—
rectifiable set. If we denote by D®w the absolutely continuous part of Dw and by D*w the
singular part, then D*w can be written as Diw + Dw, where

Diw = (wh —w ) @uy, A" L J,, (2.2)
Dw(E) = 0 for any Borel set E with % '(F) < oo, (2.3)
When €2 C R we have the following refinement (see for instance Theorem 3.28 of [3]):

Proposition 2.2. Let w € BV(Q) and let Q@ C R. Then S, = Jy,, W is continuous on
Q\ Jy, and @ has classical left and right limits (which coincide with w*(x)) at any x € J,,.
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Therefore
Dl = Z (wH(x) —w ()0, .

:EEJw

2.2. Hopf-Lax formula and characteristics. Let f € C? be locally uniformly convex,
ug € L'(R) and let u € L®(R" x R) be the entropy solution of the Cauchy problem

Dyu+ D,[f(u)] = 0
(2.4)
u(0,-) = wuyg.

Then u can be computed by using a variational principle, the so-called Hopf Lax formula.
In particular we have the following well-known theorem.

Theorem 2.3 (Hopf Lax formula). Let uy € L'(R), let f : R — R be C? and locally
uniformly conver and set

vo(y) == /U ug(s) ds y e R

— 0o

Let
v(t, z) := min {tf* (%) +u(y): y € ]R} . (2.5)

Then the following statements hold:

(i) For any t > 0 there exists a countable set S; such that the minimum is attained at a
unique point y(t,z) for any x ¢ S;.

(ii) The map x — y(t, x) is nondecreasing in its domain, its jump set is Sy and v(t,-) is
differentiable at any x ¢ Sy, with

(o (t.)) = T2 (2.6)

In particular v, (t,-) is continuous on R\ S;.
(iii) There exists a constant C such that

C
v (t,x +y) <wult, )+ ~Y whenever y > 0 and x, v+ 1y ¢ S;. (2.7)

This is called Oleinik E condition.
(iv) v is a Lipschitz map and u = v, is the unique entropy solution of (1.1) with the
initial condition u(0, ) = uy.
(v) If t, =t >0, then vy(t,,-) — vy(t,-) in L,

loc*

Proof. For a proof of point (i), of the fact that z — y(¢, z) is nondecreasing, and of the fact
that S; is the set of discontinuities of y(¢,-) we refer for instance to Theorem 1 of §3.4.2 of
[6]. For (iii) and (iv) we refer to Theorem 2 of §3.4.2, to the first lemma of §3.4.3 and to
Theorem 3 of the same section of [6].
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(ii) It remains to prove that v(t,-) is diffrentiable on R \ S; and that (2.6) hold. Since
v is Lipschitz, v(t, -) is differentiable almost everywhere. In Theorem 1 of §3.4.2 of [6] it is
shown that (2.6) holds for a.e. z. Since f' € C' and f” > 0, if we define

w(z) = ! (L(“"))

t

we conclude that the discontinuity set of w is precisely S; and that w(z) = wv,(t, z) for
Z1-a.e. x. Fix a point z ¢ S; and note that

¢
(@) = o2 = €= uta)] < | [ (0l = () de] = oflc -2

We conclude that v(t,-) is differentiable at z and that its derivative is equal to w(z).

(v) Note that v, is locally uniformly bounded, and thus it suffices to prove that v, (t,, ) —
v, (t, -) pointwise almost everywhere. Fix 2 ¢ S; and let y* be a cluster point of the sequence
{y(t,,)}. The variational principle yields that y* is a minimizer for the right hand side of
(2.5). Since y(t,x) is the unique minimizer of this function, we conclude that y* = y(t, ).
Therefore y(t,,x) — y(t,x) for every x ¢ S;. From (2.6) we get the same convergence for
Uz (tn, ). This concludes the proof. O

We can use the Hopf-Lax variational principle to define backward characteristics emanat-
ing from points (¢,z) with z € R\ S;. We refer to Chapters X and XI of [4] for a different
and more general approach to the theory of characteristics, based on differential inclusions.

Definition 2.4 (Characteristics). Let x ¢ S;. The segment joining (t,x) with (0,y(t,))
will be called (backward minimal) characteristic emanating from (¢,x). These segments,
when parametrized with constant speed on the interval [0, t], are minimizers of the variational
problem related to the Hopf-Lax formula

mm{éf%w@ww+mwm»:vecwmimm,wwzx}.

Indeed, the strict convexity of f* forces the minimizers to be straight lines and forces a
constant speed parameterization.

The monotonicity of y(¢, -) immediately implies that characteristics emanating from points
x,y ¢ S, with z # y do not intersect in the open upper half plane. It turns out that the
minimality of characteristics easily implies that two different characteristics starting even at
different times are either one contained in the other or do not intersect (see Figure 1).

Proposition 2.5 (No-crossing of characteristics). Let t > 0 and xy ¢ S;. Let also s €]0, 1]
and zy ¢ Ss. Then the characteristic emanating from (t,x) and the one emanating from
(s,xg) do not intersect in the upper half plane {T > 0}, unless the first contains the second.
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Proof. By the previous remarks we can assume with no loss of generality that s €]0,¢].
Assume by contradiction that there is an intersection at (s,, z,) with s, €]0,s|. Let

vot —(o. -y ifTe0,s];

7)== 7 — s,
:rg—i—z S(xg—x*) if 7€ [s,,1].

— Sy

The definition of v gives

!

oltean) 2 [ 1)+ l) = s () s (BEE) o)

* T 9%

with a strict inequality if (zq — x,)/(t — s.) and (2. — yj)/s. are not equal. On the other
hand, the minimality of the segment joining (s., z.) to (0, yg) gives

/

sJ*C&%>+w@@=N&JJ

Sy

and the so-called dynamic programming principle (see for instance [6]) gives

To — Ty
v(t,xg) = (t— s.) f* ( : > + (84, )
b — S,
As a consequence equality must hold and the two segments are parallel. (]
t A
(t1 330)
/
(3: ‘TO)

v
i

F1GURE 1. The “crossing” of two characteristics would give a minimizer 7 (in
the Hopf-Lax variational principle) which is not a straight line.

3. PROOF OF THEOREM 1.2

Definition 3.1 (Characteristic cones). The backward characteristic cone C,, emanating
from x € S, is defined as the open triangle having

(ra), (v (1.2),0),  (y7(r,2),0)
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as vertices. Notice that due to the no crossing of characteristics two cones C, and Cy,, are
either one contained in the other or disjoint. We define also

Cr= ] Cra. (3.1)

eSS,

We remark that the two “diagonal” segments which define the characteristic cone coincide
with the minimal and maximal backward characteristics as defined in [4].

3.1. Proof of Theorem 1.2. Step 1 Preliminary remarks.

Let us fix (7,&) € Q and r such that B,(7,£) C Q. Thanks to the finite speed of propaga-
tion, there exists a positive p such that the values of u in the ball B,(7, ) depend only on
the values of u on the segment {t = 7 — 2p} N B,(7,&). Thus, if we denote by w the entropy
solution of the Cauchy problem

Dyw + D,[f(w)] = 0 fort>71—-2p

w(T —2p,x) = u(T — 2p,2)1 g, (re)(T — 2p, 7) for every x € R,

we get that w = u on B,(7,&). Moreover, note that w(t,-) € BV for every ¢t > 7 —2p. Thus
it suffices to prove the theorem under the additional assumptions that €2 = {¢t > 0} and that
u(0,-) is a bounded compactly supported BV function.

Under this assumption we know that v = v,, where v is given by the Hopf-Lax formula
(2.5). Moreover, from Theorem 2.3(v) and Remark 1.1, for every £ > 0 we have u(t,-) =
vg(t,-). Since u(0,-) is compactly supported we know that for every constant T" there exist
constants R and ¢; such that the support of u(t,-) is contained in {|z| < R} and the total
variation of Du(t,-) is bounded by a constant ¢, for ¢ € [0, 7).

For each ¢ we denote by u,; the Cantor part of the measure D,u(t,-) and by 14 the jump
part. Using this notation, (1.3) is equivalent to prove that

iy = 0 except for an at most countable set of ¢’s. (3.2)

Oleinik’s estimate (2.7) implies that the singular measures p; and v, are both nonpositive
and that the left and right limits u®(¢,7) of u(t,-) are well defined. Recall also that the
semi-monotonicity of u(t,-) gives

u(t,z) —u (t,y) = Du(t,-)([x,y]) whenever = < y. (3.3)

Step 2 Definition of a functional F(¢).
Let y(t,-) be the nondecreasing map in Theorem 2.3, defined out of S;. We define the
open intervals

[t,m 3:}?J7(t;$)=y+(t;$)[a [t = U ]t,rr,-
TESt
From (2.6) it follows immediately that

L (Iz) < —em({a}), (3.4)

for some constant ¢, depending only on ||ul[o and on || f'|] ree (= juflojulloc]) -
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We set
F(t) = 2Y(1) = Y L' (1),

TESt

where the second equality follows from the no-crossing property of characteristics. From
(3.4) we conclude

F(t) < —cu(R) < el Dul(t,)|(R) < ey Vi € [0,7]. (3.5)

Let us prove now that I, C I; whenever s < t. Indeed, if © € S, the no-crossing property of
characteristics gives that I, has an empty intersection with the image of the nondecreasing
map y(,-), defined on R\ S;. Therefore I, , must be contained in one of the piecewise
disjoint jump intervals [, ,, y € S;. Hence, taking into account (3.5), we obtain that

F'is a nondecreasing bounded function in [0, 7. (3.6)

As usual we denote by F'(¢*) the right limit of F" at ¢. Next we will prove that for any integer
k we have

70 > T/k >0 and p,(R) < —1/k = F(r) > F(r) +c3, (3.7)

where ¢3 is a strictly positive constant which depends on ||ul|, T, k and f. Clearly (3.6)
and (3.7) imply that all sets

{r € [T/k,T[ | 1s(R) < —1/k}
are finite. Thus the claim of the theorem is reduced to prove (3.7).
Step 3 Proof of (3.7). Recalling the definition of C given in (3.1), we need the following
Lemma 3.2. Let 7 > 0. Then, for p.,-a.e. x there exists n > 0 such that
{ro}x]z —n,x +n[C C;.

We first show how to conclude (3.7) from the lemma. We fix 7 > 7y > T'/k and, to simplify
the notation, we use p and v in place of u,, and v,,, and denote by o the full distributional
derivative of u(7, -). Denote by E the set of z’s for which Lemma 3.2 applies and such that

o —p(fr = n, @+ 0))
Besicovitch differentiation theorem gives that u(R \ £) = 0 and (3.3) gives

. u (10,2 —n) —ut (19,7 +n)
lim
nio —u([z —n, 2z +n))

For every x € E and for every 1 > 0 such that x £ 7 ¢ S, we denote by .J,, the interval
Jy(r0,2 —m),y(10, 2 +n)], L.e. (see (2.6))

=1 VzekE. (3.9)

Jfr,,n = ]-77 /i Tﬂf’(u(TOJ:E - 77)):'7“ +n - T[)f,(U(T(),.’E + 77))[
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From (3.9) and the fact that g is a nonpositive measure, it follows that for n sufficiently
small we have f'(u(ro,z +n)) < f'(u(r0,z — n)). Hence we can write

L) = 2+ 70| £ (ulmo,z+ ) = f (ulro,x = )]
T
> — mi " - - .
> 2t min J(0)|(u(ro. 2 + ) — ulro,x — )
Hence, from (3.9) we conclude
gl(']m,n) Z _64///(['7: -, + 77]) ) (310)

for 7 sufficiently small, where ¢, is a positive constant depending only on 7', k and f.

Due to the no-crossing property of characteristics (see Figure 2) we have that .J,, can
only intersect the intervals I, , emanating from a point y in [z — 1, x + 1}, so that recalling
(3.4) we obtain

LN Jpy N1y = Z LNy < —cov([z—n,2+17)]).

YES+oN[z—n,24+1]

crossing between
minimal characteristics

I

T0,Y

FIGURE 2. y & [¢ — n,z +n] and J,,, N I, # 0 would violate the no-crossing property.

From (3.8) and (3.10) it follows that for any z € E we have
¢
Lo\ L) = e+ ) (3.11)

provided 7 is small enough. Using Besicovitch covering lemma, we can cover p a.e. F with
pairwise disjoint intervals K; = [z, —n;, x;+m;] such that (3.11) and the conclusion of Lemma
3.2 both hold for x = z; and n = n;. Note that the intervals J,, ,. are pairwise disjoint as
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well (again due to the no-crossing property of characteristics) and that, thanks to Lemma
3.2, they belong to I.. Hence, recalling that —u(R) > k, we get

C
F(r) = F(r) 2 Y & (Joymy \ 1) 2 *254#([3?.7*77.7»”7.7+77_1])
J J
Cy Cy Cy
p——" = = > =iy,
> —5H(E) SHR) > o =i

This gives the claim (3.7), and reduces the theorem to Lemma 3.2.

Proof of Lemma 3.2. We will prove that the conclusion of the lemma holds for any x which
satisfies the following conditions:
U(TUJ 'Z‘) B u(TOJ T — 77)

r ¢S, and lim = —oc. 3.12
: i . (3.12)

By Besicovitch differentiation theorem on intervals, the measure p,, is concentrated on E.
Hence, in what follows, we fix 7 > 75 and z such that (3.12) holds and our goal is to prove
that for n small enough {7y} x|z — n,x 4+ n[C C,.

Let us define w(7, &) = u(t + 79, x +&). Clearly Dyw + D,[f(w)] = 0. Hence it is sufficient
to prove the following statement:

Assume w is a bounded solution of Dyw + D,[f(w)] = 0 on RY x R, such that w(0,-) is a
compactly supported BV function. Assume that the following two conditions hold:
w(0,0) — w(0, —n)

0¢ Sy, and lim = —0C. 3.13
¢ Su(o.) in p (3.13)

Then 0 € I, for any 7 > 0.

We argue by contradiction. If the claimed statement is not true, then 0 ¢ I for some 7
and therefore for any n € N we can find z, ¢ S; such that z, = y(r,2,) €] — -, 1[. Recall
that z, is the unique minimum of the function

_ £
& Ly(&) :=1g <:cn £> +/ w(0, s) ds,

T 00

with g := f*. Since the slopes (z, — z,)/7 are uniformly bounded, |x,| is uniformly bounded
as well, and hence we can assume that a subsequence of {z,}, not relabeled, converges to
x € R. Then 0 is a minimizer (not necessarily unique) of the function

£ L(E) :=Tg(”“"‘5)+/f w(0, 5) ds

T —0o0

Since by (3.13) w(0, -) is continuous at 0, we have that L is differentiable at 0, and since 0
is a minimizer we have

0= L'0) = 4 (;) +w(0,0). (3.14)
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We will show that if n > 0 is sufficiently small we have L(—n) < L(0), contradicting the
minimality of 0. Recall that g is C%. So for some constant D we have

o (2) o (FE0) o (2)

7'9( ) —7g (x:n> > —ng <E> — Dn”. (3.15)

In order to estimate L(0) — L(—n) it remains to bound

/Lw(“’odc‘,/:w(QO i = [ w0.0dc

< Dpf.

Hence we can write

R

n
= 0.0+ [ (0.0~ w(0,0)dC. (3.10
S
Let us fix now a large constant E. Notice that (3.13) gives
0 0
E

/ w(0,¢) — w(0,0)d¢ > E/ —Cd¢ = 5772 (3.17)

1] 1]

for n > 0 small enough. From (3.15) and (3.16) we get

L0) — L(—7) > 1 [11)(0, 0) ¢ (%)} n (g . D) 7 (3.18)

for n > 0 small enough. Recalling (3.14) we finally get

E
L(0) — L(-n) > <§ - D) n. (3.19)
Note that D is a fixed constant, whereas E can be chosen arbitrarily large, provided 7 is
sufficiently small. Hence, this means that for n sufficiently small L(0) > L(—n). O

Proof of Corollary 1.5. The slicing theory of BV functions shows that the Cantor part of the
2-dimensional measure D,u is the integral with respect to ¢ of the Cantor parts of Du(t,-)
(see Theorem 3.108 of [3] for a precise statement). Therefore Theorem 1.2 implies that the
measure D,u has no Cantor part. Using the chain rule of Vol'pert (see Theorem 3.96 of [3])
and equation (1.1), we get that D,u has no Cantor part as well. Thus, we finally infer that
u € SBV,.(Q). O

Remark 3.3. It is not difficult to show that Theorem 1.2 is optimal. Indeed, let v : R — [0, 1]
be any continuous non—increasing function which does not belong to SBV,.(R). For any
x € R let v, be the straight line which passes through (1,x) and has slope (1,v(z)). Since
v is non—increasing, for any pair {ry, vy }ez, we have v, N ry, N {t < 1} = 0. Therefore,
there exists a unique function @ € W,o°(] — oo, 1[xR) which is constantly equal to v(z)

loc
on every r,. From the classical method of characteristics it follows that @ is a solution of

Dyii + Dy (i?/2) = 0.
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Set ug(x) := u(0,2) and let u be the entropy solution of

D+ D, (%) = 0
(3.20)

u(0,+) = wpg.
Since u is locally Lipschitz, 4 is an entropy solution of (3.20) in {t < 1}. Therefore we
conclude that @ = u on |0, 1[xR and that u(1,) = v ¢ SBV},.(R). By the finite speed of
propagation, if we choose M large enough and we define Uy := ugli_pn, the corresponding
entropy solution @ has u(1,-) € SBV,..
Arguing in a similar way, for every m > 0 we can find uf’ € BV (R) such that
o |ul’|lpy < m and the support of ul' is contained in [—m,m];
e Ifu™ is the entropy solution of (3.20) with initial data uf’, then there exists T €]0, m|
such that u™(7,-) & SBV ([—m,m]).

Let C > 2 and {m;} be a decreasing sequence of positive numbers such that Y m; < co. Set

0 = C’Z m; tg(x) = Zugﬂj (x — o))

i<j j
and let @ be the corresponding entropy solution of (3.20). By the finite speed of propagation,
there exists a C' > 0 such that u(t,x) = u™i (t,z) for every (t,z) €]0,m;[x|o; —m;, o;+m;]
and for every j. Therefore we conclude that {t €]0,1[: a(t,-) & SBVj,.} is infinite.

4. PROOF OF COROLLARY 1.4
We first recall the definition of semiconcave functions.

Definition 4.1. Let o : QQ C R?2 — R. We say that o is semiconcave if there exists ¢ € R
such that a(x) — c|z|? is a concave function.

The proof is based on Theorem 1.2 and on the following lemma concerning differentiability
points of semiconcave functions.

Lemma 4.2. Let o : 2 C R?2 — R be a semiconcave function and let X be the set of its
differentiability points. Then

(i) Q\ X is countably F" -rectifiable;
(ii) Va is continuous on X.

Proof. Without loosing our generality we assume that « is concave and € is convex. State-
ment (i) is well-known in any Euclidean space, and a simple proof of it is given in [1], with
references to more precise results. Statement (ii) can be obtained noticing that at differen-
tiability points the subdifferential

dafz) ={peR : aly) <alz)+ (py —z) Yy e R}

contains only Va(z). On the other hand, the graph of the subdifferential {(z,p) : p € da(x)}
is clearly closed in Q x R? and this immediately leads to the stated continuity property. [
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Proof of Theorem 1.4. Let Q CC Q and recall that, since H is strictly convex, u is semicon-
cave in Q (see for instance [7]). Without loosing our generality we can assume that 0 is a
regular value of H, otherwise {H = 0} consists of one point and the statement is trivial.

Denoting by ¥ the set of points where wu is differentiable, we will prove that there exists
an open set A D QN Y such that Vu € SBV(A). This implies

|D°Vu|(Q) = |DVu|(Q\ A) < [DVul|(Q\X)

and since, by Lemma 4.2(~i), the set € \ X is countably % rectifiable, we obtain from
(2.3) that [D°Vu| = 0 in €, i.e. Vu € SBV(Q;R?). In order to obtain an open set A with

the stated properties it suffices to show that for any z € Q N'Y there exists 7 > 0 such that
Vu € SBV(B,(z); R?).

Fix z € QN Y; from Lemma 4.2(ii) it follows that
liﬁ)lHVu —U||lpo(Boz)) = 0 with v:= Vu(z). (4.1)

Since 0 is a regular value of H we can fix a system of coordinates (z,y) on R? such that

OH OH

We let p be sufficiently small, so that there exists h € C*(R) such that
{H=0}nB,(v) = {(=h(y),y)} N By(v).

Then
2L(h(y).y) 5 (0)
Wy = 2——"272 p)=0, K'0) = 2 > 0
G (=h(y).) 5 (v)

So we can assume in addition that h is strictly convex on [—p, p].
We use (4.1) to find r > 0 such that the (essential) range of Vu|p,(5) is contained in B,(v).
Therefore

d.u+h(0u) = 0 L*ae. in B.(z). (4.2)
Hence, if we define w := d,u we get:

D,w+ Dylh(w)] = Dyd,u+ Dy[h(0yu)] = Dy{d,u+ h(dyu)} = 0

in the sense of distributions. Moreover, from semiconcavity of u we get that there exists
C > 0 such that D,w = Dy,u < C.%?. This means that w satisfies Oleinik’s E-condition,
and hence is an entropy solution of D,w + D,[h(w)] = 0. From Corollary 1.3 we conclude
that 0,u = w € SBV(B,(x)). Applying Vol'pert’s chain rule (see Theorem 3.96 of [3]), from
(4.2) we conclude that d,u = —h(0,u) € SBV (B, (x)). O
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