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A NOTE ON ADMISSIBLE SOLUTIONS OF 1D SCALARCONSERVATION LAWS AND 2D HAMILTON{JACOBI EQUATIONSLUIGI AMBROSIO AND CAMILLO DE LELLISAbstra
t. Let 
 � R2 be an open set and f 2 C2(R) with f 00 > 0. In this note we provethat entropy solutions of Dtu+Dxf(u) = 0 belong to SBVlo
(
). As a 
orollary we provethe same property for gradients of vis
osity solutions of planar Hamilton{Ja
obi PDEs withuniformly 
onvex hamiltonians. 1. Introdu
tionIn this paper we 
onsider entropy solutions of the s
alar 
onservation lawDtu+Dx[f(u)℄ = 0 in 
 (1.1)and vis
osity solutions of the planar Hamilton{Ja
obi PDEH(rv) = 0 in 
, (1.2)where H and f are C2 and lo
ally uniformly 
onvex. In these 
ases it is known that u andrv belong to BV (
0) for every open set 
0 �� 
, i.e. that the distributions Du and Druare ve
tor (resp. matrix) valued Radon measures. The rough pi
ture that one has in mindwhen des
ribing su
h solutions is the one of pie
ewise C1 fun
tions with dis
ontinuities ofjump type. The spa
e of BV fun
tions enjoys good fun
tional analyti
 properties, but thebehaviour of a generi
 BV fun
tion 
an be indeed very far from the pi
ture above.Following [3℄, given w 2 BV (Rm ;Rk ) we de
ompose Dw into three mutually singularmeasures: Dw = Daw + D
w + Djw. Daw is the part of the measure whi
h is absolutely
ontinuous with respe
t to the Lebesgue measure L m. Djw is 
alled jump part and it is
on
entrated on the re
ti�able m � 1 dimensional set J where the fun
tion u has jumpdis
ontinuities (in an appropriate measure{theoreti
 sense: see Se
tion 2). D
w is 
alled theCantor part, it is singular with respe
t toL m and it satis�es D
w(E) = 0 for every Borel setE with H m�1(E) < 1. When m = 1, Djw 
onsists of a 
ountable sum of weighted Dira
masses, whereas D
w is the non{atomi
 singular part of the measure. A typi
al example ofD
w is the derivative of the Cantor{Vitali ternary fun
tion (see for instan
e Example 1.67of [3℄).In [5℄ the authors introdu
ed the spa
e of spe
ial fun
tions of bounded variations, denotedby SBV , whi
h 
onsists of the fun
tions w 2 BV su
h that D
w = 0. This spa
e playedan important role in the last years, in 
onne
tion with problems 
oming from the theoryof image segmentation and with variational problems in fra
ture me
hani
s (see [3℄ and thereferen
es quoted therein for a detailed presentation of this subje
t).1



2 LUIGI AMBROSIO AND CAMILLO DE LELLISIt is natural to ask whether entropy solutions of (1.1) and gradients of vis
osity solutionsof (1.2) are lo
ally SBV and, as far as we know, this question has never been addressed inthe literature. Our interest is in part motivated by some measure{theoreti
 questions arisenin [2℄.In the following remark we single out a 
anoni
al representative in the equivalen
e 
lassof u for whi
h more pre
ise informations, of pointwise tipe, are available.Remark 1.1. Let u 2 L1(
) be a weak solution of (1.1) and assume ℄t1; t2[�J � 
 for someopen set J � R. Using the equation one 
an prove that for every � 2℄t1; t2[ the fun
tionsf"(x) = R �+"� u(x; t)dt have a unique limit f in L1(J) weak� for " # 0 (see for instan
eTheorem 4.1.1 of [4℄). Therefore from now on we �x the 
onvention that u(�; �) = f(�).The following is the main result of this note.Theorem 1.2. Let u 2 L1(
) be an entropy solution of (1.1) with f 2 C2(R) lo
allyuniformly 
onvex. Then there exists S � R at most 
ountable su
h that 8� 2 R n S thefollowing holds: u(�; �) 2 SBVlo
(
� ) with 
� := fx 2 R : (�; x) 2 
g. (1.3)From this theorem, using the sli
ing theory of BV fun
tions, we obtain:Corollary 1.3. Let f 2 C2(R) be lo
ally uniformly 
onvex and let u 2 L1(
) be an entropysolution of (1.1). Then u 2 SBVlo
(
).Eventually, via a lo
al 
hange of 
oordinates we apply the previous result to the Hamilton{Ja
obi 
ase:Corollary 1.4. Let H 2 C2(R2) be lo
ally uniformly 
onvex and let u 2 W 1;1(
) be avis
osity solution of H(ru) = 0. Then ru 2 SBVlo
(
).As we show in Remark 3.3, Theorem 1.2 is optimal. Also the regularity results obtainedin the two 
orollaries seem to be optimal, in view of the fa
t that sho
ks do o

ur and thatthe gradients of vis
osity solutions of Hamilton-Ja
obi PDEs 
an jump along hypersurfa
es.Our result applies in parti
ular to the distan
e fun
tion dist(x;K), whi
h solves the eikonalequation jruj2� 1 = 0 in the vis
osity sense in 
 = R2 nK. In this 
onne
tion, we mentionthe paper [8℄, where the authors establish among other things the SBV regularity in anyspa
e dimension, but under some regularity assumptions on K.It would be interesting to extend these results to(a) BV admissible solutions of genuinely nonlinear systems of 
onservation laws in 1spa
e dimension;(b) Vis
osity solutions of uniformly 
onvex Hamilton{Ja
obi PDEs in higher dimensions.The proof of Theorem 1.2 uses at the very end a variational prin
iple, due to Hopf and Lax.However, it might be that 
ombining part of this proof with the theory of 
hara
teristi
s forsystems of 
onservation laws (as developed in [4℄) one 
ould be able to extended Theorem 1.2at least to the 
ase (a).



ON ADMISSIBLE SOLUTIONS OF 1D SCALAR CONSERVATION LAWS 32. Preliminaries2.1. BV and SBV spa
es. In what follows L d and H n denote respe
tively the Lebesguemeasure on Rd and the n{th dimensional Hausdor� measure on Eu
lidean spa
es. A setJ � Rd is said 
ountably H n{re
ti�able (or brie
y re
ti�able) if there exist 
ountably manyn{dimensional Lips
hitz graphs �i su
h that H n(J n S�i) = 0. Given a Borel measure �and a Borel set A we denote by � A the measure given by � A(C) = �(A \ C).The approximate dis
ontinuity set Sw � 
 of a lo
ally summable fun
tion w : 
 � Rd !Rm and the approximate limit are de�ned as follows: x =2 Sw if and only if there existsz 2 Rm satisfying limr#0 r�d ZBr(x) jw(y)� zj dy = 0:The ve
tor z, if it exists, is unique and denoted by ~w(x), the approximate limit of w at x.It is easy to 
he
k that the set Sw is Borel and that ~w is a Borel fun
tion in its domain(see x3.6 of [3℄ for the details). By Lebesgue di�erentiation theorem the set Sw is Lebesguenegligible and ~w = w L d-a.e. in 
 n Sw.In a similar way one 
an de�ne the approximate jump set Jw � Sw, by requiring theexisten
e of a; b 2 Rm with a 6= b and of a unit ve
tor � su
h thatlimr#0 r�d ZB+r (x;�) jw(y)� aj dy = 0; limr#0 r�d ZB�r (x;�) jw(y)� bj dy = 0;where (B+r (x; �) := fy 2 Br(x) : hy � x; �i > 0g ;B�r (x; �) := fy 2 Br(x) : hy � x; �i < 0g : (2.1)The triplet (a; b; �), if it exists, is unique up to a permutation of a and b and a 
hange of signof �. We denote it by (w+(x); w�(x); �(x)), where w�(x) are 
alled approximate one-sidedlimits of w at x. It is easy to 
he
k that the set Jw is Borel and that w� and � 
an be 
hosento be Borel fun
tions in their domain (see again x3.6 of [3℄ for details).The following stru
ture theorem, essentially due to Federer and Vol'pert, holds (see forinstan
e Theorem 3.77 and Proposition 3.92 of [3℄):Theorem 2.1. Let w 2 BV (
). Then H d�1(Sw n Jw) = 0 and Jw is a 
ountably H d�1{re
ti�able set. If we denote by Daw the absolutely 
ontinuous part of Dw and by Dsw thesingular part, then Dsw 
an be written as Djw +D
w, whereDjw = (w+ � w�)
 �JwH d�1 Jw ; (2.2)D
w(E) = 0 for any Borel set E with H d�1(E) <1. (2.3)When 
 � R we have the following re�nement (see for instan
e Theorem 3.28 of [3℄):Proposition 2.2. Let w 2 BV (
) and let 
 � R. Then Sw = Jw, ~w is 
ontinuous on
 n Jw and ~w has 
lassi
al left and right limits (whi
h 
oin
ide with w�(x)) at any x 2 Jw.



4 LUIGI AMBROSIO AND CAMILLO DE LELLISTherefore Djw = Xx2Jw(w+(x)� w�(x))Æx :2.2. Hopf{Lax formula and 
hara
teristi
s. Let f 2 C2 be lo
ally uniformly 
onvex,u0 2 L1(R) and let u 2 L1(R+ � R) be the entropy solution of the Cau
hy problem8<: Dtu+Dx[f(u)℄ = 0u(0; �) = u0 : (2.4)Then u 
an be 
omputed by using a variational prin
iple, the so-
alled Hopf{Lax formula.In parti
ular we have the following well-known theorem.Theorem 2.3 (Hopf{Lax formula). Let u0 2 L1(R), let f : R ! R be C2 and lo
allyuniformly 
onvex and set v0(y) := Z y�1 u0(s) ds y 2 R :Let v(t; x) := min�tf ��x� yt � + v0(y) : y 2 R� : (2.5)Then the following statements hold:(i) For any t > 0 there exists a 
ountable set St su
h that the minimum is attained at aunique point y(t; x) for any x =2 St.(ii) The map x 7! y(t; x) is nonde
reasing in its domain, its jump set is St and v(t; �) isdi�erentiable at any x =2 St, withf 0(vx(t; x)) = x� y(t; x)t : (2.6)In parti
ular vx(t; �) is 
ontinuous on R n St.(iii) There exists a 
onstant C su
h thatvx(t; x + y) � vx(t; x) + Ct y whenever y � 0 and x; x+ y =2 St. (2.7)This is 
alled Oleinik E{
ondition.(iv) v is a Lips
hitz map and u := vx is the unique entropy solution of (1.1) with theinitial 
ondition u(0; �) = u0.(v) If tn ! t > 0, then vx(tn; �)! vx(t; �) in L1lo
.Proof. For a proof of point (i), of the fa
t that x 7! y(t; x) is nonde
reasing, and of the fa
tthat St is the set of dis
ontinuities of y(t; �) we refer for instan
e to Theorem 1 of x3.4.2 of[6℄. For (iii) and (iv) we refer to Theorem 2 of x3.4.2, to the �rst lemma of x3.4.3 and toTheorem 3 of the same se
tion of [6℄.



ON ADMISSIBLE SOLUTIONS OF 1D SCALAR CONSERVATION LAWS 5(ii) It remains to prove that v(t; �) is di�rentiable on R n St and that (2.6) hold. Sin
ev is Lips
hitz, v(t; �) is di�erentiable almost everywhere. In Theorem 1 of x3.4.2 of [6℄ it isshown that (2.6) holds for a.e. x. Sin
e f 0 2 C1 and f 00 > 0, if we de�new(x) := f 0�1�x� y(t; x)t �we 
on
lude that the dis
ontinuity set of w is pre
isely St and that w(z) = vx(t; z) forL 1{a.e. x. Fix a point z =2 St and note thatjv(�)� v(z)� (� � z)w(z)j � ����Z �z �w(�)� w(z)� d����� = o(j� � zj):We 
on
lude that v(t; �) is di�erentiable at z and that its derivative is equal to w(z).(v) Note that vx is lo
ally uniformly bounded, and thus it suÆ
es to prove that vx(tn; �)!vx(t; �) pointwise almost everywhere. Fix x 62 St and let y� be a 
luster point of the sequen
efy(tn; x)g. The variational prin
iple yields that y� is a minimizer for the right hand side of(2.5). Sin
e y(t; x) is the unique minimizer of this fun
tion, we 
on
lude that y� = y(t; x).Therefore y(tn; x) ! y(t; x) for every x 62 St. From (2.6) we get the same 
onvergen
e forvx(tn; �). This 
on
ludes the proof. �We 
an use the Hopf{Lax variational prin
iple to de�ne ba
kward 
hara
teristi
s emanat-ing from points (t; x) with x 2 R n St. We refer to Chapters X and XI of [4℄ for a di�erentand more general approa
h to the theory of 
hara
teristi
s, based on di�erential in
lusions.De�nition 2.4 (Chara
teristi
s). Let x =2 St. The segment joining (t; x) with (0; y(t; x))will be 
alled (ba
kward minimal) 
hara
teristi
 emanating from (t; x). These segments,when parametrized with 
onstant speed on the interval [0; t℄, are minimizers of the variationalproblem related to the Hopf{Lax formulamin�Z t0 f �( _
(s)) ds+ v0(
(0)) : 
 2 C1 ([0; t℄;R) ; 
(t) = x� :Indeed, the stri
t 
onvexity of f � for
es the minimizers to be straight lines and for
es a
onstant speed parameterization.The monotoni
ity of y(t; �) immediately implies that 
hara
teristi
s emanating from pointsx; y =2 St with x 6= y do not interse
t in the open upper half plane. It turns out that theminimality of 
hara
teristi
s easily implies that two di�erent 
hara
teristi
s starting even atdi�erent times are either one 
ontained in the other or do not interse
t (see Figure 1).Proposition 2.5 (No-
rossing of 
hara
teristi
s). Let t > 0 and x0 =2 St. Let also s 2℄0; t℄and x00 =2 Ss. Then the 
hara
teristi
 emanating from (t; x) and the one emanating from(s; x0) do not interse
t in the upper half plane f� > 0g, unless the �rst 
ontains the se
ond.



6 LUIGI AMBROSIO AND CAMILLO DE LELLISProof. By the previous remarks we 
an assume with no loss of generality that s 2℄0; t[.Assume by 
ontradi
tion that there is an interse
tion at (s�; x�) with s� 2℄0; s℄. Let
(�) := 8><>:y00 + �s� (x� � y00) if � 2 [0; s�℄;x000 + � � s�t� s� (x0 � x�) if � 2 [s�; t℄ :The de�nition of v givesv(t; x0) � Z t0 f �( _
) d� + v0(y00) = s�f ��x� � y00s� �+ (t� s�)f ��x0 � x�t� s� � + v0(y00) ;with a stri
t inequality if (x0 � x�)=(t � s�) and (x� � y00)=s� are not equal. On the otherhand, the minimality of the segment joining (s�; x�) to (0; y00) givess�f ��x� � y00s� � + v0(y00) = v(s�; x�)and the so-
alled dynami
 programming prin
iple (see for instan
e [6℄) givesv(t; x0) = (t� s�)f ��x0 � x�t� s� �+ v(s�; x�) :As a 
onsequen
e equality must hold and the two segments are parallel. �


x

t (s; x00) (t; x0)
Figure 1. The \
rossing" of two 
hara
teristi
s would give a minimizer 
 (inthe Hopf{Lax variational prin
iple) whi
h is not a straight line.3. Proof of Theorem 1.2De�nition 3.1 (Chara
teristi
 
ones). The ba
kward 
hara
teristi
 
one Cx;� emanatingfrom x 2 S� is de�ned as the open triangle having(�; x) ; (y�(�; x); 0) ; (y+(�; x); 0)



ON ADMISSIBLE SOLUTIONS OF 1D SCALAR CONSERVATION LAWS 7as verti
es. Noti
e that due to the no 
rossing of 
hara
teristi
s two 
ones C�;x and Ct;y areeither one 
ontained in the other or disjoint. We de�ne alsoC� := [x2S� C�;x : (3.1)We remark that the two \diagonal" segments whi
h de�ne the 
hara
teristi
 
one 
oin
idewith the minimal and maximal ba
kward 
hara
teristi
s as de�ned in [4℄.3.1. Proof of Theorem 1.2. Step 1 Preliminary remarks.Let us �x (�; �) 2 
 and r su
h that Br(�; �) � 
. Thanks to the �nite speed of propaga-tion, there exists a positive � su
h that the values of u in the ball B�(�; �) depend only onthe values of u on the segment ft = � � 2�g \Br(�; �). Thus, if we denote by w the entropysolution of the Cau
hy problem8<: Dtw +Dx[f(w)℄ = 0 for t > � � 2�w(� � 2�; x) = u(� � 2�; x)1 Br(�;�)(� � 2�; x) for every x 2 R ;we get that w = u on B�(�; �). Moreover, note that w(t; �) 2 BV for every t > � � 2�. Thusit suÆ
es to prove the theorem under the additional assumptions that 
 = ft > 0g and thatu(0; �) is a bounded 
ompa
tly supported BV fun
tion.Under this assumption we know that u = vx, where v is given by the Hopf{Lax formula(2.5). Moreover, from Theorem 2.3(v) and Remark 1.1, for every t > 0 we have u(t; �) =vx(t; �). Sin
e u(0; �) is 
ompa
tly supported we know that for every 
onstant T there exist
onstants R and 
1 su
h that the support of u(t; �) is 
ontained in fjxj � Rg and the totalvariation of Du(t; �) is bounded by a 
onstant 
1 for t 2 [0; T ℄.For ea
h t we denote by �t the Cantor part of the measure Dxu(t; �) and by �t the jumppart. Using this notation, (1.3) is equivalent to prove that�t = 0 ex
ept for an at most 
ountable set of t's. (3.2)Oleinik's estimate (2.7) implies that the singular measures �t and �t are both nonpositiveand that the left and right limits u�(t; x) of u(t; �) are well de�ned. Re
all also that thesemi-monotoni
ity of u(t; �) givesu+(t; x)� u�(t; y) = Du(t; �)([x; y℄) whenever x < y. (3.3)Step 2 De�nition of a fun
tional F (t).Let y(t; �) be the nonde
reasing map in Theorem 2.3, de�ned out of St. We de�ne theopen intervals It;x :=℄y�(t; x); y+(t; x)[ ; It := [x2St It;x:From (2.6) it follows immediately thatL 1(It;x) � �
2�t(fxg) ; (3.4)for some 
onstant 
2 depending only on kuk1 and on kf 00kL1([�kuk1;kuk1℄).



8 LUIGI AMBROSIO AND CAMILLO DE LELLISWe set F (t) := L 1(It) = Xx2StL 1(It;x) ;where the se
ond equality follows from the no-
rossing property of 
hara
teristi
s. From(3.4) we 
on
ludeF (t) � �
2�t(R) � 
2jDu(t; �)j(R) � 
1
2 8t 2 [0; T ℄ : (3.5)Let us prove now that Is � It whenever s � t. Indeed, if x 2 Ss the no-
rossing property of
hara
teristi
s gives that Is;x has an empty interse
tion with the image of the nonde
reasingmap y(t; �), de�ned on R n St. Therefore Is;x must be 
ontained in one of the pie
ewisedisjoint jump intervals It;y, y 2 St. Hen
e, taking into a

ount (3.5), we obtain thatF is a nonde
reasing bounded fun
tion in [0; T ℄. (3.6)As usual we denote by F (t+) the right limit of F at t. Next we will prove that for any integerk we have �0 � T=k > 0 and ��0(R) � �1=k =) F (�+0 ) � F (�0) + 
3 ; (3.7)where 
3 is a stri
tly positive 
onstant whi
h depends on kuk1, T , k and f . Clearly (3.6)and (3.7) imply that all sets �� 2 [T=k; T [ �� �� (R) � �1=k	are �nite. Thus the 
laim of the theorem is redu
ed to prove (3.7).Step 3 Proof of (3.7). Re
alling the de�nition of C� given in (3.1), we need the followingLemma 3.2. Let �0 > 0. Then, for ��0-a.e. x there exists � > 0 su
h thatf�0g�℄x� �; x+ �[� C� :We �rst show how to 
on
lude (3.7) from the lemma. We �x � > �0 � T=k and, to simplifythe notation, we use � and � in pla
e of ��0 and ��0 , and denote by � the full distributionalderivative of u(�0; �). Denote by E the set of x's for whi
h Lemma 3.2 applies and su
h thatlim�#0 � + j� � �j([x� �; x+ �℄)��([x� �; x+ �℄) = 0: (3.8)Besi
ovit
h di�erentiation theorem gives that �(R nE) = 0 and (3.3) giveslim�#0 u�(�0; x� �)� u+(�0; x + �)��([x� �; x+ �℄) = 1 8x 2 E : (3.9)For every x 2 E and for every � > 0 su
h that x� � =2 S�0 we denote by Jx;� the interval℄y(�0; x� �); y(�0; x+ �)[, i.e. (see (2.6))Jx;� = �x� � � �0f 0(u(�0; x� �)); x+ � � �0f 0(u(�0; x+ �))� :



ON ADMISSIBLE SOLUTIONS OF 1D SCALAR CONSERVATION LAWS 9From (3.9) and the fa
t that � is a nonpositive measure, it follows that for � suÆ
ientlysmall we have f 0(u(�0; x+ �)) � f 0(u(�0; x� �)). Hen
e we 
an writeL 1(Jx;�) = 2� + �0hf 0(u(�0; x+ �))� f 0(u(�0; x� �))i� 2� + Tk minjtj�kuk1 f 00(t)h(u(�0; x+ �)� u(�0; x� �)i :Hen
e, from (3.9) we 
on
ludeL 1(Jx;�) � �
4�([x� �; x+ �℄) ; (3.10)for � suÆ
iently small, where 
4 is a positive 
onstant depending only on T , k and f .Due to the no-
rossing property of 
hara
teristi
s (see Figure 2) we have that Jx;� 
anonly interse
t the intervals I�0;y emanating from a point y in [x� �; x+ �℄, so that re
alling(3.4) we obtainL 1(Jx;� \ I�0) = Xy2S�0\[x��;x+�℄ L 1(I�0;y) � �
2�([x� �; x+ �℄) :
(�0; x+ �)minimal 
hara
teristi
s
rossing between(�0; x� �)(�0; y)

I�0;y Jx;�Figure 2. y 62 [x� �; x+ �℄ and Jx;� \ I�0;y 6= ; would violate the no-
rossing property.From (3.8) and (3.10) it follows that for any x 2 E we haveL 1(Jx;� n I�0) � �
42 �([x� �; x+ �℄) (3.11)provided � is small enough. Using Besi
ovit
h 
overing lemma, we 
an 
over �{a.e. E withpairwise disjoint intervalsKj = [xj��i; xj+�j℄ su
h that (3.11) and the 
on
lusion of Lemma3.2 both hold for x = xj and � = �j. Note that the intervals Jxj ;�j are pairwise disjoint as



10 LUIGI AMBROSIO AND CAMILLO DE LELLISwell (again due to the no-
rossing property of 
hara
teristi
s) and that, thanks to Lemma3.2, they belong to I� . Hen
e, re
alling that ��(R) � k, we getF (�)� F (�0) � Xj L 1(Jxj ;�j n I�0) � �Xj 
42 �([xj � �j; xj + �j℄)� �
42 �(E) = �
42 �(R) � 
42k =: 
3 :This gives the 
laim (3.7), and redu
es the theorem to Lemma 3.2.Proof of Lemma 3.2. We will prove that the 
on
lusion of the lemma holds for any x whi
hsatis�es the following 
onditions:x =2 S�0 and lim�#0 u(�0; x)� u(�0; x� �)� = �1: (3.12)By Besi
ovit
h di�erentiation theorem on intervals, the measure ��0 is 
on
entrated on E.Hen
e, in what follows, we �x � > �0 and x su
h that (3.12) holds and our goal is to provethat for � small enough f�0g�℄x� �; x+ �[� C� .Let us de�ne w(�; �) = u(t+ �0; x+ �). Clearly Dtw+Dx[f(w)℄ = 0. Hen
e it is suÆ
ientto prove the following statement:Assume w is a bounded solution of Dtw +Dx[f(w)℄ = 0 on R+ � R , su
h that w(0; �) is a
ompa
tly supported BV fun
tion. Assume that the following two 
onditions hold:0 =2 Sw(0;�) and lim�#0 w(0; 0)� w(0;��)� = �1 : (3.13)Then 0 2 I� for any � > 0.We argue by 
ontradi
tion. If the 
laimed statement is not true, then 0 =2 I� for some �and therefore for any n 2 N we 
an �nd xn =2 S� su
h that zn = y(�; xn) 2℄� 1n ; 1n [. Re
allthat zn is the unique minimum of the fun
tion� 7! Ln(�) := �g�xn � �� �+ Z ��1w(0; s) ds ;with g := f �. Sin
e the slopes (xn�zn)=� are uniformly bounded, jxnj is uniformly boundedas well, and hen
e we 
an assume that a subsequen
e of fxng, not relabeled, 
onverges tox 2 R . Then 0 is a minimizer (not ne
essarily unique) of the fun
tion� 7! L(�) := �g�x� �� �+ Z ��1w(0; s) ds :Sin
e by (3.13) w(0; �) is 
ontinuous at 0, we have that L is di�erentiable at 0, and sin
e 0is a minimizer we have 0 = L0(0) = �g0 �x� � + w(0; 0) : (3.14)



ON ADMISSIBLE SOLUTIONS OF 1D SCALAR CONSERVATION LAWS 11We will show that if � > 0 is suÆ
iently small we have L(��) < L(0), 
ontradi
ting theminimality of 0. Re
all that g is C2. So for some 
onstant D we have�����g �x� �� �g�x + �� � + �g0 �x� ����� � D�2 :Hen
e we 
an write �g �x� �� �g�x+ �� � � ��g0 �x� ��D�2 : (3.15)In order to estimate L(0)� L(��) it remains to boundZ 0�1w(0; �) d� � Z ���1 w(0; �) d� = Z 0�� w(0; �) d�= �w(0; 0) + Z 0��(w(0; �)� w(0; 0)) d� : (3.16)Let us �x now a large 
onstant E. Noti
e that (3.13) givesZ 0�� w(0; �)� w(0; 0) d� � E Z 0�� �� d� = E2 �2 (3.17)for � > 0 small enough. From (3.15) and (3.16) we getL(0)� L(��) � � hw(0; 0)� g0 �x� �i+ �E2 �D� �2 (3.18)for � > 0 small enough. Re
alling (3.14) we �nally getL(0)� L(��) � �E2 �D� �2 : (3.19)Note that D is a �xed 
onstant, whereas E 
an be 
hosen arbitrarily large, provided � issuÆ
iently small. Hen
e, this means that for � suÆ
iently small L(0) > L(��). �Proof of Corollary 1.3. The sli
ing theory of BV fun
tions shows that the Cantor part of the2-dimensional measure Dxu is the integral with respe
t to t of the Cantor parts of Du(t; �)(see Theorem 3.108 of [3℄ for a pre
ise statement). Therefore Theorem 1.2 implies that themeasure Dxu has no Cantor part. Using the 
hain rule of Vol'pert (see Theorem 3.96 of [3℄)and equation (1.1), we get that Dtu has no Cantor part as well. Thus, we �nally infer thatu 2 SBVlo
(
). �Remark 3.3. It is not diÆ
ult to show that Theorem 1.2 is optimal. Indeed, let v : R ! [0; 1℄be any 
ontinuous non{in
reasing fun
tion whi
h does not belong to SBVlo
(R). For anyx 2 R let rx be the straight line whi
h passes through (1; x) and has slope (1; v(x)). Sin
ev is non{in
reasing, for any pair frx; rygx6=y we have rx \ ry \ ft � 1g = ;. Therefore,there exists a unique fun
tion ~u 2 W 1;1lo
 (℄ � 1; 1[�R) whi
h is 
onstantly equal to v(x)on every rx. From the 
lassi
al method of 
hara
teristi
s it follows that ~u is a solution ofDt~u+Dx(~u2=2) = 0.



12 LUIGI AMBROSIO AND CAMILLO DE LELLISSet u0(x) := ~u(0; x) and let u be the entropy solution of8><>: Dtu+Dx �u22 � = 0u(0; �) = u0 : (3.20)Sin
e ~u is lo
ally Lips
hitz, ~u is an entropy solution of (3.20) in ft < 1g. Therefore we
on
lude that ~u = u on ℄0; 1[�R and that u(1; �) = v 62 SBVlo
(R). By the �nite speed ofpropagation, if we 
hoose M large enough and we de�ne u0 := u01[�M;M ℄, the 
orrespondingentropy solution u has u(1; �) 62 SBVlo
.Arguing in a similar way, for every m > 0 we 
an �nd um0 2 BV (R) su
h that� kum0 kBV � m and the support of um0 is 
ontained in [�m;m℄;� If um is the entropy solution of (3.20) with initial data um0 , then there exists � 2℄0; m[su
h that um(�; �) 62 SBV ([�m;m℄).Let C > 2 and fmig be a de
reasing sequen
e of positive numbers su
h that Pmi <1. Set�j := CXi�j mi û0(x) := Xj umj0 (x� �j)and let û be the 
orresponding entropy solution of (3.20). By the �nite speed of propagation,there exists a C > 0 su
h that û(t; x) = umj (t; x) for every (t; x) 2℄0; mj[�℄�j �mj; �j +mj[and for every j. Therefore we 
on
lude that ft 2℄0; 1[: û(t; �) 62 SBVlo
g is in�nite.4. Proof of Corollary 1.4We �rst re
all the de�nition of semi
on
ave fun
tions.De�nition 4.1. Let � : 
 � R2 ! R. We say that � is semi
on
ave if there exists 
 2 Rsu
h that �(x)� 
jxj2 is a 
on
ave fun
tion.The proof is based on Theorem 1.2 and on the following lemma 
on
erning di�erentiabilitypoints of semi
on
ave fun
tions.Lemma 4.2. Let � : 
 � R2 ! R be a semi
on
ave fun
tion and let � be the set of itsdi�erentiability points. Then(i) 
 n � is 
ountably H 1-re
ti�able;(ii) r� is 
ontinuous on �.Proof. Without loosing our generality we assume that � is 
on
ave and 
 is 
onvex. State-ment (i) is well-known in any Eu
lidean spa
e, and a simple proof of it is given in [1℄, withreferen
es to more pre
ise results. Statement (ii) 
an be obtained noti
ing that at di�eren-tiability points the subdi�erential��(x) := �p 2 R2 : �(y) � �(x) + hp; y � xi 8y 2 R2	
ontains onlyr�(x). On the other hand, the graph of the subdi�erential f(x; p) : p 2 ��(x)gis 
learly 
losed in 
� R2 and this immediately leads to the stated 
ontinuity property. �
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 �� 
 and re
all that, sin
e H is stri
tly 
onvex, u is semi
on-
ave in ~
 (see for instan
e [7℄). Without loosing our generality we 
an assume that 0 is aregular value of H, otherwise fH = 0g 
onsists of one point and the statement is trivial.Denoting by � the set of points where u is di�erentiable, we will prove that there existsan open set A � ~
 \ � su
h that ru 2 SBV (A). This impliesjD
ruj(~
) = jD
ruj(~
 n A) � jD
ruj(~
 n�)and sin
e, by Lemma 4.2(i), the set ~
 n � is 
ountably H d�1-re
ti�able, we obtain from(2.3) that jD
ruj = 0 in ~
, i.e. ru 2 SBV (~
;R2). In order to obtain an open set A withthe stated properties it suÆ
es to show that for any x 2 ~
 \ � there exists r > 0 su
h thatru 2 SBV (Br(x);R2).Fix x 2 ~
 \ �; from Lemma 4.2(ii) it follows thatlimr#0 kru� vkL1(Br(x)) = 0 with v := ru(x): (4.1)Sin
e 0 is a regular value of H we 
an �x a system of 
oordinates (z; y) on R2 su
h that�H�z (v) > 0 �H�y (v) = 0 :We let � be suÆ
iently small, so that there exists h 2 C2(R) su
h thatfH = 0g \B�(v) = f(�h(y); y)g \ B�(v) :Then h0(y) = �H�y (�h(y); y)�H�z (�h(y); y) ; h0(0) = 0 ; h00(0) = �2H�y2 (v)�H�z (v) > 0 :So we 
an assume in addition that h is stri
tly 
onvex on [��; �℄.We use (4.1) to �nd r > 0 su
h that the (essential) range of rujBr(x) is 
ontained in B�(v).Therefore �zu+ h(�yu) = 0 L 2-a.e. in Br(x). (4.2)Hen
e, if we de�ne w := �yu we get:Dzw +Dy[h(w)℄ = Dy�zu+Dy[h(�yu)℄ = Dy��zu+ h(�yu)	 = 0in the sense of distributions. Moreover, from semi
on
avity of u we get that there existsC > 0 su
h that Dyw = Dyyu � CL 2. This means that w satis�es Oleinik's E-
ondition,and hen
e is an entropy solution of Dzw + Dy[h(w)℄ = 0. From Corollary 1.3 we 
on
ludethat �yu = w 2 SBV (Br(x)). Applying Vol'pert's 
hain rule (see Theorem 3.96 of [3℄), from(4.2) we 
on
lude that �zu = �h(�yu) 2 SBV (Br(x)). �A
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