
The Scalar Conservation Law

ut + f(u)x = 0 u = conserved quantity, f(u) = flux

d

dt

Z

b

a

u(t, x) dx =

Z

b

a

u
t

(t, x) dx = �
Z

b

a

f
�

u(t, x)
�

x

dx

= f
�

u(t, a)
�

� f
�

u(t, b)
�

= [inflow at a]� [outflow at b]

b

f(u(a)) f(u(b))

u

xa
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Weak solutions

conservation equation: ut + f(u)x = 0

quasilinear form: ut + f 0(u)ux = 0

Conservation equation remains meaningful for u = u(t, x) discontinuous,
in distributional sense:

Z Z

�

u�
t

+ f (u)�
x

 

dxdt = 0 for all � 2 C1

c

Need only : u, f (u) locally integrable
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Convergence of weak solutions

ut + f(u)x = 0

Assume: u
n

is a solution, for every n � 1,

u
n

! u, f (u
n

) ! f (u) in L1

loc

then

Z Z

�

u�
t

+ f (u)�
x

 

dxdt = lim
n!1

Z Z

�

u
n

�
t

+ f (u
n

)�
x

 

dxdt = 0

for all � 2 C1

c

(no need to check convergence of derivatives)
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Scalar Equation with Linear Flux

u
t

+ f (u)
x

= 0 f (u) = �u

u
t

+ �u
x

= 0 u(0, x) = �(x)

Explicit solution: u(t, x) = �(x � �t)

traveling wave with speed f 0(u) = �

u(t)

tλ

u(0)
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The method of characteristics

u
t

+ f 0(u)u
x

= 0 u(0, x) = �(x)

For each x
0

, consider the straight line

t 7! x(t, x
0

) = x
0

+ tf 0(�(x
0

))

Set u = �(x
0

) along this line, so that ẋ(t) = f 0(u(t, x(t)). As long as
characteristics do not cross, this yields a solution:

0 =
d

dt
u(t, x(t)) = u

t

+ ẋu
x

= u
t

+ f 0(u)u
x

0

x
0

t

x

x(t,x  )
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Loss of Regularity

u
t

+ f 0(u)u
x

= 0

Assume: characteristic speed f 0(u) is not constant

x

u(t)u(0)

’

’
u

f (u)

t f (u)

Global solutions only in a space of discontinuous functions

u(t, ·) 2 BV
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Shocks

ut + f(u)x = 0

_

x

u
+

u

u(t, x) =

⇢

u� if x < �t
u+ if x > �t

is a weak solution if and only if

� · [u+ � u�] = f (u+)� f (u�) Rankine - Hugoniot equations

[speed of the shock] ⇥ [jump in the state] = [jump in the flux]
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Derivation of the Rankine - Hugoniot equation

Z Z

⇢

u�
t

+ f (u)�
x

�

dxdt = 0 for all � 2 C1

c

v
.
=

✓

u� , f (u)�

◆

t

x

n

n
+

Ω−

=λx t

u = u+

u = u
Supp φ

Ω+

−
−

0 =

Z Z

⌦

+[⌦

�
div v dxdt =

Z

@⌦+

n+ · v ds +
Z

@⌦�
n� · v ds

=

Z

⇥

�u+ � f (u+)
⇤

�(t,�t) dt +

Z

⇥

� �u� + f (u�)
⇤

�(t,�t) dt

=

Z



�(u+ � u�)� (f (u+)� f (u�))

�

�(t,�t) dt
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Geometric interpretation

� (u+�u�) = f (u+)� f (u�) =

Z

1

0

f 0
�

✓u++(1�✓)u�
�

· (u+�u�) d✓

The Rankine-Hugoniot conditions hold if and only if the speed of the shock is

� =
f (u+)� f (u�)

u+ � u�
=

Z

1

0

f 0
�

✓u+ + (1� ✓)u�
�

d✓

= [average characteristic speed]
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scalar conservation law: u
t

+ f (u)
x

= 0

uu+ u−

−

f (u)’

λ

+

x

u

u

f

� =
f (u+)� f (u�)

u+ � u�
=

1

u+ � u�

Z

u

+

u

�
f 0(s) ds

[speed of the shock] = [slope of secant line through u�, u+ on the graph of f ]

= [average of the characteristic speeds between u� and u+]
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Points of approximate jump

The function u = u(t, x) has an approximate jump at a point (⌧, ⇠) if there
exists states u� 6= u+ and a speed � such that, calling

U(t, x)
.
=

⇢

u� if x < �t,
u+ if x > �t,

there holds

lim
⇢!0+

1

⇢2

Z ⌧+⇢

⌧�⇢

Z ⇠+⇢

⇠�⇢

�

�

�

�

�

u(t, x)� U(t � ⌧, x � ⇠)

�

�

�

�

�

dxdt = 0

λ
.
x = 

x

t
−

u

+
uτ

ξ

Theorem. If u is a weak solution to a conservation law then the
Rankine-Hugoniot equations hold at each point of approximate jump.
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Weak solutions can be non-unique

Example: a Cauchy problem for Burgers’ equation

u
t

+ (u2/2)
x

= 0 u(0, x) =

⇢

1 if x � 0
0 if x < 0

Each ↵ 2 [0, 1] yields a weak solution

u↵(t, x) =

8

<

:

0 if x < ↵t/2
↵ if ↵t/2  x < (1 + ↵)t/2
1 if x � (1 + ↵)t/2

u = α

u = 1

xx0

α

1

0

u = 0

α
t

x=     t /2

Alberto Bressan (Penn State) Scalar Conservation Laws 16 / 117



Stability conditions for shocks

Perturb the shock with left and right states u�, u+ by inserting an intermediate
state u⇤ 2 [u�, u+]

Initial shock is stable ()

[speed of jump behind] � [speed of jump ahead]

f (u⇤)� f (u�)

u⇤ � u�
� f (u+)� f (u⇤)

u+ � u⇤

_

*

xx

+u

u*

u

u

u

u+_
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speed of a shock = slope of a secant line to the graph of f

__

f

*uu+
u u+ uu*

f

Stability conditions:

• when u� < u+ the graph of f should remain above the secant line

• when u� > u+, the graph of f should remain below the secant line
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The Lax admissibility condition

admissible

t

x

t

x

not  admissible

A shock connecting the states u�, u+, travelling with speed � = f (u

+

)�f (u

�
)

u

+�u

� is
admissible if

f 0(u�) � � � f 0(u+)

i.e. characteristics do not move out from the shock from either side
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Existence of solutions

Cauchy problem: u
t

+ f (u)
x

= 0 , u(0, x) = ū(x)

Polygonal approximations of the flux function (Dafermos, 1972)

Choose a piecewise a�ne function f
n

such that

f
n

(u) = f (u) u = j · 2�n , j 2 ZZ

Approximate the initial data with a function ū
n

: R 7! 2�n · ZZ

n
f

f’

x

u
_

u
_

n

f

u

n
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Front tracking approximations

piecewise constant approximate solutions: u
n

(t, x)

(u
n

)
t

+ f
n

(u
n

)
x

= 0 u
n

(0, x) = ū
n

(x)

xx

n
u

t

Tot.Var .(u
n

(t, ·))  Tot.Var .(ū
n

)  Tot.Var .(ū)

=) as n ! 1, a subsequence converges in L1

loc

([0,T ]⇥ R)
to a weak solution u = u(t, x)
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A contractive semigroup of entropy weak solutions

u
t

+ f (u)
x

= 0

Two initial data in L1(R): u
1

(0, x) = ū
1

(x), u
2

(0, x) = ū
2

(x)

L1 - distance between solutions does not increase in time:

ku
1

(t, ·)� u
2

(t, ·)kL1(R)  kū
1

� ū
2

kL1(R)

(not true for the Lp distance, p > 1)

Alberto Bressan (Penn State) Scalar Conservation Laws 22 / 117



The L1 distance between continuous solutions remains constant

f (u)
1u (0)

u (0)

u (t)1

u (t)

2

2

’
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The L1 distance decreases when a shock in one solution crosses the graph
of the other solution

x

x

f (u)’

u (t)

u (0)
1

u (0)
2

u (t)
1

2

x

x
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A related Hamilton-Jacobi equation

u
t

+ f (u)
x

= 0 u(0, x) = ū(x)

U(t, x) =

Z

x

�1
u(t, y) dy

U
t

+ f (U
x

) = 0 U(0, x) = U(x) =

Z

x

�1
ū(y) dy

f convex =)

U = U(t, x) is the value function for an optimization problem

Alberto Bressan (Penn State) Scalar Conservation Laws 25 / 117



Legendre transform

u 7! f (u) 2 R [ {+1} convex

f ⇤(p)
.
= max

u

{pu � f (u)}

u

f(u)

p u

f (p)*

p
η00
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A representation formula

U
t

+ f (U
x

) = 0 U(0, x) = U(x)

U(t, x) = inf
z(·)

⇢

Z

t

0

f ⇤(ż(s)) ds + U(z(0)) ; z(t) = x

�

= min
y2R

n

t f ⇤
⇣x � y

t

⌘

+ U(y)
o

x

t (t,x)

y

z( )
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A geometric construction

U
t

+ f (U
x

) = 0 U(0, x) = U(x)

define h(s)
.
= �T f ⇤

⇣�s

T

⌘

*f

0

h

U(T,x)

U(x)
_

x

U(T , x) = inf
y

n

U(y)� h(y � x)
o
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The Lax formula

Cauchy problem:

⇢

u
t

+ f (u)
x

= 0 ,
u(0, x) = ū(x)

For each t > 0, and all but at most countably many values of x 2 R, there
exists a unique y(t, x) s.t.

y(t, x) = argmin
y2R

n

t f ⇤
⇣x � y

t

⌘

+

Z

y

�1
ū(s) ds

o

the solution to the Cauchy problem is

u(t, x) = (f 0)�1

⇣x � y(t, x)

t

⌘

(1)
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ω

f(u)

t

x

(t,x)

y(t,x)u

y(t, x) = argmin
y2R

n

t f ⇤
⇣x � y

t

⌘

+

Z

y

�1
ū(s) ds

o

define the characteristic speed ⇠
.
=

x � y(t, x)

t

if f 0(!) = ⇠ then u(t, x) = !
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Initial-Boundary value problem

u
t

+ f (u)
x

= 0

⇢

u(0, x) = ū(x) x > 0
u(t, 0) = b(t) t > 0

x

t

P. Le Floch, Explicit formula for scalar non-linear conservation laws with

boundary condition, Math. Models Appl. Sci. (1988)
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Systems of Conservation Laws

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

@

@t
u
1

+
@

@x
f
1

(u
1

, . . . , u
n

) = 0,

· · ·

@

@t
u
n

+
@

@x
f
n

(u
1

, . . . , u
n

) = 0

u
t

+ f (u)
x

= 0

u = (u
1

, . . . , u
n

) 2 Rn conserved quantities

f = (f
1

, . . . , f
n

) : Rn 7! Rn fluxes
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Hyperbolic Systems

u
t

+ f (u)
x

= 0 u = u(t, x) 2 Rn

u
t

+ A(u)u
x

= 0 A(u) = Df (u)

The system is strictly hyperbolic if each n ⇥ n matrix A(u) has real distinct
eigenvalues

�
1

(u) < �
2

(u) < · · · < �
n

(u)

right eigenvectors r
1

(u), . . . , r
n

(u) (column vectors)
left eigenvectors l

1

(u), . . . , l
n

(u) (row vectors)

Ar
i

= �
i

r
i

l
i

A = �
i

l
i

Choose bases so that l
i

· r
j

=

⇢

1 if i = j
0 if i 6= j
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A linear hyperbolic system

u
t

+ Au
x

= 0 u(0, x) = �(x)

�
1

< · · · < �
n

eigenvalues r
1

, . . . , r
n

eigenvectors

Explicit solution: linear superposition of travelling waves

u(t, x) =
X

i

�
i

(x � �
i

t)r
i

�
i

(s) = l
i

· �(s)

u

2u

1

Alberto Bressan (Penn State) Scalar Conservation Laws 34 / 117



Nonlinear e↵ects - 1

u
t

+ A(u)u
x

= 0

eigenvalues depend on u =) waves change shape

x

u(0)
u(t)
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Nonlinear e↵ects - 2

eigenvectors depend on u =) nontrivial wave interactions

tt

x x

linear nonlinear

Alberto Bressan (Penn State) Scalar Conservation Laws 36 / 117



Global solutions to the Cauchy problem

u
t

+ f (u)
x

= 0 u(0, x) = ū(x)

• Construct a sequence of approximate solutions u
m

• Show that (a subsequence) converges: u
m

! u in L1

loc

=) u is a weak solution

ν
u u

u

1 2

Need: a-priori bound on the total variation (J. Glimm, 1965)
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Building block: the Riemann Problem

u
t

+ f (u)
x

= 0 u(0, x) =

⇢

u� if x < 0
u+ if x > 0

B. Riemann 1860: 2⇥ 2 system of isentropic gas dynamics

P. Lax 1957: n ⇥ n systems (+ special assumptions)

T. P. Liu 1975 n ⇥ n systems (generic case)

S. Bianchini 2003 (vanishing viscosity limit for general hyperbolic systems,
possibly non-conservative)

invariant w.r.t. symmetry: u✓(t, x)
.
= u(✓t, ✓x) ✓ > 0
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Riemann Problem for Linear Systems

u
t

+ Au
x

= 0 u(0, x) =

⇢

u� if x < 0
u+ if x > 0

1

2

x / t = λ
3

x0

t

= uω
0

−

3
ω = u

+

ω
ω

1
2

x / t = λ

x / t = λ

u+ � u� =
n

X

j=1

c
j

r
j

(sum of eigenvectors of A)

intermediate states : !
i

.
= u� +

X

ji

c
j

r
j

i-th jump: !
i

� !
i�1

= c
i

r
i

travels with speed �
i
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General solution of the Riemann problem: concatenation of elementary
waves

x

ω
0

= u −

ω
1

2
ω

3
ω = u

+

t

0
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Construction of a sequence of approximate solutions

Glimm scheme: piecing together solutions of Riemann problems
on a fixed grid in the t-x plane

x

θ = 1/3
2

θ = 1/2
1

2 ∆

t

x ∆x

2∆ t

∆ t

0 4

* * *

**
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Front tracking scheme: piecing together piecewise constant solutions of
Riemann problems at points where fronts interact

x

t

0

t
1

t
3

t
4

t2

σ’

xα

x
β

σ
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Existence of solutions

u
t

+ f (u)
x

= 0, u(0, x) = ū(x)

Theorem (Glimm 1965).

Assume:
• system is strictly hyperbolic (+ some technical assumptions)

Then there exists � > 0 such that, for every initial condition ū 2 L1(R; Rn) with

Tot.Var.(ū)  �,

the Cauchy problem has an entropy admissible weak solution u = u(t, x)
defined for all t � 0.
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Uniqueness and continuous dependence on the initial data

u
t

+ f (u)
x

= 0 u(0, x) = ū(x)

Theorem (A.B.- R.Colombo, B.Piccoli, T.P.Liu, T.Yang, 1994-1998).

For every initial data ū with small total variation, the front tracking
approximations converge to a unique limit solution u : [0,1[ 7! L1(R).

The flow map (ū, t) 7! u(t, ·) .
= S

t

ū is a uniformly Lipschitz semigroup:

S
0

ū = ū, S
s

(S
t

ū) = S
s+t

ū

�

�S
t

ū � S
s

v̄
�

�

L1

 L ·
�

kū � v̄kL1 + |t � s|
�

for all ū, v̄ , s, t � 0

Theorem (A.B.- P. LeFloch, M.Lewicka, P.Goatin, 1996-1998).

Any entropy weak solution to the Cauchy problem coincides with the limit of
front tracking approximations, hence it is unique
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Vanishing viscosity approximations

Claim: weak solutions of the hyperbolic system

u
t

+ f (u)
x

= 0

can be obtained as limits of solutions to the parabolic system

u"
t

+ f (u")
x

= " u"
xx

letting the viscosity " ! 0+

x

u

u

ε
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Theorem (S. Bianchini, A. Bressan, Annals of Math. 2005)

Consider a strictly hyperbolic system with viscosity

u
t

+ A(u)u
x

= " u
xx

u(0, x) = ū(x) . (CP)

If Tot.Var.{ū} is su�ciently small, then (CP) admits a unique
solution u"(t, ·) = S"

t

ū, defined for all t � 0. Moreover

Tot.Var.
�

S"
t

ū
 

 C Tot.Var.{ū} , (BV bounds)

�

�S"
t

ū � S"
t

v̄
�

�

L1

 L kū � v̄kL1 (L1 stability)

(Convergence) If A(u) = Df (u), then as " ! 0, the viscous solutions u"

converge to the unique entropy weak solution of the system of conservation laws

u
t

+ f (u)
x

= 0
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Main open problems

Global existence of solutions to hyperbolic systems
for initial data ū with large total variation

Existence of entropy weak solutions
for systems in several space dimensions
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