The Scalar Conservation Law

\[u_t + f(u)_x = 0 \]

\(u = \) conserved quantity, \(f(u) = \) flux

\[
\frac{d}{dt} \int_a^b u(t,x) \, dx = \int_a^b u_t(t,x) \, dx = - \int_a^b f(u(t,x))_x \, dx
\]

\[= f(u(t,a)) - f(u(t,b)) = [\text{inflow at } a] - [\text{outflow at } b] \]

Diagram: A graph showing the function \(u \) with points \(a \) and \(b \), and the values \(f(u(a)) \) and \(f(u(b)) \). The function \(f(u) \) is also shown as the flux at these points.
Weak solutions

Conservation equation: \(u_t + f(u)_x = 0 \)

Quasilinear form: \(u_t + f'(u)u_x = 0 \)

Conservation equation remains meaningful for \(u = u(t,x) \) discontinuous, in distributional sense:

\[
\int \int \left\{ u\phi_t + f(u)\phi_x \right\} \, dx\,dt = 0 \quad \text{for all} \quad \phi \in C^1_c
\]

Need only: \(u, f(u) \) locally integrable
Convergence of weak solutions

\[u_t + f(u)_x = 0 \]

Assume: \(u_n \) is a solution, for every \(n \geq 1 \),

\[u_n \to u, \quad f(u_n) \to f(u) \quad \text{in} \quad L^1_{loc} \]

then

\[
\int \int \left\{ u \phi_t + f(u) \phi_x \right\} \, dxdt = \lim_{n \to \infty} \int \int \left\{ u_n \phi_t + f(u_n) \phi_x \right\} \, dxdt = 0
\]

for all \(\phi \in C^1_c \)

(no need to check convergence of derivatives)
Scalar Equation with Linear Flux

\[u_t + f(u)_x = 0 \quad f(u) = \lambda u \]

\[u_t + \lambda u_x = 0 \quad u(0, x) = \phi(x) \]

Explicit solution: \[u(t, x) = \phi(x - \lambda t) \]

traveling wave with speed \(f'(u) = \lambda \)
The method of characteristics

\[u_t + f'(u)u_x = 0 \quad u(0, x) = \phi(x) \]

For each \(x_0 \), consider the straight line

\[t \mapsto x(t, x_0) = x_0 + tf'(\phi(x_0)) \]

Set \(u = \phi(x_0) \) along this line, so that \(\dot{x}(t) = f'(u(t, x(t))) \). As long as characteristics do not cross, this yields a solution:

\[0 = \frac{d}{dt} u(t, x(t)) = u_t + \dot{x} u_x = u_t + f'(u)u_x \]
Loss of Regularity

\[u_t + f'(u)u_x = 0 \]

Assume: characteristic speed \(f'(u) \) is not constant

Global solutions only in a space of discontinuous functions

\[u(t, \cdot) \in BV \]
\[
\begin{align*}
 u_t + f(u)_x &= 0 \\
 u(t, x) &= \begin{cases}
 u^- & \text{if } x < \lambda t \\
 u^+ & \text{if } x > \lambda t
 \end{cases}
\end{align*}
\]

is a weak solution if and only if

\[
\lambda \cdot [u^+ - u^-] = f(u^+) - f(u^-) \quad \text{Rankine - Hugoniot equations}
\]

\[
\text{[speed of the shock] } \times \text{[jump in the state]} = \text{[jump in the flux]}
\]
Derivation of the Rankine - Hugoniot equation

\[\int \int \left\{ u \phi_t + f(u) \phi_x \right\} \, dx \, dt = 0 \quad \text{for all} \quad \phi \in C^1_c \]

\[\mathbf{v} = \left(u \phi, \ f(u) \phi \right) \]

\[0 = \int \int_{\Omega^+ \cup \Omega^-} \text{div} \ \mathbf{v} \, dx \, dt = \int_{\partial \Omega^+} \mathbf{n}^+ \cdot \mathbf{v} \, ds + \int_{\partial \Omega^-} \mathbf{n}^- \cdot \mathbf{v} \, ds \]

\[= \int \left[\lambda u^+ - f(u^+) \right] \phi(t, \lambda t) \, dt + \int \left[- \lambda u^- + f(u^-) \right] \phi(t, \lambda t) \, dt \]

\[= \int \left[\lambda (u^+ - u^-) - (f(u^+) - f(u^-)) \right] \phi(t, \lambda t) \, dt \]
Geometric interpretation

\[\lambda (u^+ - u^-) = f(u^+) - f(u^-) = \int_0^1 f'(\theta u^+ + (1-\theta)u^-) \cdot (u^+ - u^-) \, d\theta \]

The Rankine-Hugoniot conditions hold if and only if the speed of the shock is

\[\lambda = \frac{f(u^+) - f(u^-)}{u^+ - u^-} = \int_0^1 f'(\theta u^+ + (1-\theta)u^-) \, d\theta \]

= [average characteristic speed]
scalar conservation law: \[u_t + f(u)_x = 0 \]

\[\lambda = \frac{f(u^+) - f(u^-)}{u^+ - u^-} = \frac{1}{u^+ - u^-} \int_{u^-}^{u^+} f'(s) \, ds \]

[speed of the shock] = [slope of secant line through \(u^- \), \(u^+ \) on the graph of \(f \)]

= [average of the characteristic speeds between \(u^- \) and \(u^+ \)]
Points of approximate jump

The function $u = u(t, x)$ has an **approximate jump** at a point (τ, ξ) if there exists states $u^- \neq u^+$ and a speed λ such that, calling

$$U(t, x) \equiv \begin{cases} u^- & \text{if } x < \lambda t, \\ u^+ & \text{if } x > \lambda t, \end{cases}$$

there holds

$$\lim_{\rho \to 0^+} \frac{1}{\rho^2} \int_{\tau-\rho}^{\tau+\rho} \int_{\xi-\rho}^{\xi+\rho} \left| u(t, x) - U(t - \tau, x - \xi) \right| \, dx \, dt = 0$$

Theorem. If u is a weak solution to a conservation law then the Rankine-Hugoniot equations hold at each point of approximate jump.
Weak solutions can be non-unique

Example: a Cauchy problem for Burgers’ equation

\[u_t + (u^2/2)_x = 0 \quad u(0, x) = \begin{cases}
1 & \text{if } x \geq 0 \\
0 & \text{if } x < 0
\end{cases} \]

Each \(\alpha \in [0, 1] \) yields a weak solution

\[u_\alpha(t, x) = \begin{cases}
0 & \text{if } x < \alpha t/2 \\
\alpha & \text{if } \alpha t/2 \leq x < (1 + \alpha)t/2 \\
1 & \text{if } x \geq (1 + \alpha)t/2
\end{cases} \]
Stability conditions for shocks

Perturb the shock with left and right states u^-, u^+ by inserting an intermediate state $u^* \in [u^-, u^+]$

Initial shock is stable \iff

\[\text{[speed of jump behind]} \geq \text{[speed of jump ahead]} \]

\[\frac{f(u^*) - f(u^-)}{u^* - u^-} \geq \frac{f(u^+) - f(u^*)}{u^+ - u^*} \]
speed of a shock = slope of a secant line to the graph of f

Stability conditions:

- when $u^- < u^+$ the graph of f should remain above the secant line
- when $u^- > u^+$, the graph of f should remain below the secant line
The Lax admissibility condition

A shock connecting the states u^-, u^+, travelling with speed \(\lambda = \frac{f(u^+)-f(u^-)}{u^+-u^-} \) is **admissible** if

\[
 f'(u^-) \geq \lambda \geq f'(u^+)
\]

i.e. characteristics do not move out from the shock from either side.
Existence of solutions

Cauchy problem: \(u_t + f(u)_x = 0 \), \(u(0, x) = \bar{u}(x) \)

Polygonal approximations of the flux function (Dafermos, 1972)

Choose a piecewise affine function \(f_n \) such that

\[
 f_n(u) = f(u) \quad u = j \cdot 2^{-n} , \quad j \in \mathbb{Z}
\]

Approximate the initial data with a function \(\bar{u}_n : \mathbb{R} \mapsto 2^{-n} \cdot \mathbb{Z} \)
piecewise constant approximate solutions: $u_n(t, x)$

\[
(u_n)_t + f_n(u_n)_x = 0 \quad \text{and} \quad u_n(0, x) = \bar{u}_n(x)
\]

\[
\text{Tot. Var.}(u_n(t, \cdot)) \leq \text{Tot. Var.}(\bar{u}_n) \leq \text{Tot. Var.}(\bar{u})
\]

\implies as $n \to \infty$, a subsequence converges in $L^1_{\text{loc}}([0, T] \times \mathbb{R})$ to a weak solution $u = u(t, x)$
A contractive semigroup of entropy weak solutions

\[u_t + f(u)_x = 0 \]

Two initial data in \(L^1(\mathbb{R}) \): \[u_1(0,x) = \bar{u}_1(x), \quad u_2(0,x) = \bar{u}_2(x) \]

\(L^1 \) - distance between solutions does not increase in time:

\[\| u_1(t,\cdot) - u_2(t,\cdot) \|_{L^1(\mathbb{R})} \leq \| \bar{u}_1 - \bar{u}_2 \|_{L^1(\mathbb{R})} \]

(not true for the \(L^p \) distance, \(p > 1 \))
The L^1 distance between continuous solutions remains constant.
The L^1 distance decreases when a shock in one solution crosses the graph of the other solution.
A related Hamilton-Jacobi equation

\[u_t + f(u)_x = 0 \quad u(0, x) = \bar{u}(x) \]

\[U(t, x) = \int_{-\infty}^{x} u(t, y) \, dy \]

\[U_t + f(U_x) = 0 \quad U(0, x) = \bar{U}(x) = \int_{-\infty}^{x} \bar{u}(y) \, dy \]

\(f \) convex \quad \implies \quad U = U(t, x) \text{ is the value function for an optimization problem}
Legendre transform

\[u \mapsto f(u) \in \mathbb{R} \cup \{+\infty\} \quad \text{convex} \]

\[f^*(p) \overset{\text{def}}{=} \max_u \{pu - f(u)\} \]

\[f^*(p) \]

\[f(u) \]

\[(0, 0) \]

\[(\eta, 0) \]

\[(0, \infty) \]

\[(\infty, 0) \]
A representation formula

\[U_t + f(U_x) = 0 \quad U(0,x) = \overline{U}(x) \]

\[U(t, x) = \inf_{z(\cdot)} \left\{ \int_0^t f^*(\dot{z}(s)) \, ds + \overline{U}(z(0)) ; \quad z(t) = x \right\} \]

\[= \min_{y \in \mathbb{R}} \left\{ t f^* \left(\frac{x - y}{t} \right) + \overline{U}(y) \right\} \]

\[\text{Alberto Bressan (Penn State)} \]
A geometric construction

\[U_t + f(U_x) = 0 \quad \text{and} \quad U(0, x) = \overline{U}(x) \]

define \(h(s) \equiv -T f^*(\frac{s}{T}) \)

\[U(T, x) = \inf_y \left\{ \overline{U}(y) - h(y - x) \right\} \]
The Lax formula

Cauchy problem: \[
\begin{align*}
&\quad u_t + f(u)_x = 0, \\
&\quad u(0, x) = \bar{u}(x)
\end{align*}
\]

For each \(t > 0 \), and all but at most countably many values of \(x \in \mathbb{R} \), there exists a unique \(y(t, x) \) s.t.

\[
y(t, x) = \arg \min_{y \in \mathbb{R}} \left\{ t f^* \left(\frac{x - y}{t} \right) + \int_{-\infty}^{y} \bar{u}(s) \, ds \right\}
\]

the solution to the Cauchy problem is

\[
u(t, x) = (f')^{-1} \left(\frac{x - y(t, x)}{t} \right) \quad (1)
\]
\[y(t, x) = \arg\min_{y \in \mathbb{R}} \left\{ t f^* \left(\frac{x - y}{t} \right) + \int_{-\infty}^{y} \bar{u}(s) \, ds \right\} \]

define the characteristic speed \(\xi = \frac{x - y(t, x)}{t} \)

if \(f'(\omega) = \xi \) then \(u(t, x) = \omega \)
Initial-Boundary value problem

\[u_t + f(u)_x = 0 \]

\(\begin{cases}
 u(0, x) = \bar{u}(x) & x > 0 \\
 u(t, 0) = b(t) & t > 0
\end{cases} \)

Systems of Conservation Laws

\[
\begin{align*}
\frac{\partial}{\partial t} u_1 + \frac{\partial}{\partial x} f_1(u_1, \ldots, u_n) &= 0, \\
\vdots \\
\frac{\partial}{\partial t} u_n + \frac{\partial}{\partial x} f_n(u_1, \ldots, u_n) &= 0
\end{align*}
\]

\[u_t + f(u)_x = 0\]

\[u = (u_1, \ldots, u_n) \in \mathbb{R}^n\] conserved quantities

\[f = (f_1, \ldots, f_n) : \mathbb{R}^n \rightarrow \mathbb{R}^n\] fluxes
Hyperbolic Systems

\[u_t + f(u)_x = 0 \quad \text{and} \quad u = u(t, x) \in \mathbb{R}^n \]

\[u_t + A(u)u_x = 0 \quad \text{and} \quad A(u) = Df(u) \]

The system is **strictly hyperbolic** if each \(n \times n \) matrix \(A(u) \) has real distinct eigenvalues

\[\lambda_1(u) < \lambda_2(u) < \cdots < \lambda_n(u) \]

right eigenvectors \(r_1(u), \ldots, r_n(u) \) (column vectors)

left eigenvectors \(l_1(u), \ldots, l_n(u) \) (row vectors)

\[Ar_i = \lambda_i r_i \quad \text{and} \quad l_i A = \lambda_i l_i \]

Choose bases so that \(l_i \cdot r_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \)
A linear hyperbolic system

\[u_t + Au_x = 0 \quad \text{and} \quad u(0, x) = \phi(x) \]

\[\lambda_1 < \cdots < \lambda_n \quad \text{eigenvalues} \quad r_1, \ldots, r_n \quad \text{eigenvectors} \]

Explicit solution: \textit{linear superposition of travelling waves}

\[u(t, x) = \sum_i \phi_i(x - \lambda_i t) r_i \quad \phi_i(s) = l_i \cdot \phi(s) \]
Nonlinear effects - 1

\[u_t + A(u)u_x = 0 \]

eigenvalues depend on \(u \) \(\implies \) waves change shape

Alberto Bressan (Penn State)
eigenvectors depend on u \implies$ nontrivial wave interactions
Global solutions to the Cauchy problem

\[u_t + f(u)_x = 0 \quad u(0, x) = \bar{u}(x) \]

- Construct a sequence of approximate solutions \(u_m \)

- Show that (a subsequence) converges: \(u_m \rightarrow u \) in \(L^1_{loc} \)

\[\implies u \text{ is a weak solution} \]

Need: a-priori bound on the total variation (J. Glimm, 1965)
Building block: the Riemann Problem

\[u_t + f(u)_x = 0 \]
\[u(0,x) = \begin{cases}
 u^- & \text{if } x < 0 \\
 u^+ & \text{if } x > 0
\end{cases} \]

B. Riemann 1860: 2 × 2 system of isentropic gas dynamics

P. Lax 1957: \(n \times n \) systems (+ special assumptions)

T. P. Liu 1975 \(n \times n \) systems (generic case)

S. Bianchini 2003 (vanishing viscosity limit for general hyperbolic systems, possibly non-conservative)

Invariant w.r.t. symmetry:

\[u^\theta(t,x) = u(\theta t, \theta x) \quad \theta > 0 \]
Riemann Problem for Linear Systems

\[u_t + Au_x = 0 \]
\[u(0, x) = \begin{cases}
 u^- & \text{if } x < 0 \\
 u^+ & \text{if } x > 0
\end{cases} \]

Intermediate states:

\[\omega_i = u^- + \sum_{j \leq i} c_j r_j \]

\[i\text{-th jump: } \omega_i - \omega_{i-1} = c_i r_i \text{ travels with speed } \lambda_i \]
General solution of the Riemann problem: concatenation of elementary waves

\[\omega_0 = u^- \quad \omega_1 \quad \omega_2 \quad \omega_3 = u^+ \]

Alberto Bressan (Penn State)
Construction of a sequence of approximate solutions

Glimm scheme: piecing together solutions of Riemann problems on a fixed grid in the t-x plane
Front tracking scheme: piecing together piecewise constant solutions of Riemann problems at points where fronts interact.
Existence of solutions

\[u_t + f(u)_x = 0, \quad u(0, x) = \bar{u}(x) \]

Theorem (Glimm 1965).

Assume:
• system is strictly hyperbolic (+ some technical assumptions)

Then there exists \(\delta > 0 \) such that, for every initial condition \(\bar{u} \in L^1(\mathbb{R}; \mathbb{R}^n) \) with

\[\text{Tot.Var.}(\bar{u}) \leq \delta, \]

the Cauchy problem has an entropy admissible weak solution \(u = u(t, x) \) defined for all \(t \geq 0 \).
Uniqueness and continuous dependence on the initial data

\[u_t + f(u)_x = 0 \quad u(0, x) = \bar{u}(x) \]

For every initial data \(\bar{u} \) with small total variation, the front tracking approximations converge to a unique limit solution \(u : [0, \infty[\mapsto L^1(\mathbb{R}) \).

The flow map \((\bar{u}, t) \mapsto u(t, \cdot) = S_t \bar{u} \) is a uniformly Lipschitz semigroup:

\[S_0 \bar{u} = \bar{u}, \quad S_s(S_t \bar{u}) = S_{s+t} \bar{u} \]

\[\| S_t \bar{u} - S_s \bar{v} \|_{L^1} \leq L \cdot (\| \bar{u} - \bar{v} \|_{L^1} + |t - s|) \quad \text{for all} \quad \bar{u}, \bar{v}, \quad s, t \geq 0 \]

Any entropy weak solution to the Cauchy problem coincides with the limit of front tracking approximations, hence it is unique.
Claim: weak solutions of the hyperbolic system

\[u_t + f(u)_x = 0 \]

can be obtained as limits of solutions to the parabolic system

\[u^\varepsilon_t + f(u^\varepsilon)_x = \varepsilon u^\varepsilon_{xx} \]

letting the viscosity \(\varepsilon \to 0^+ \)
Consider a strictly hyperbolic system with viscosity

\[u_t + A(u)u_x = \varepsilon u_{xx} \quad \text{and} \quad u(0, x) = \bar{u}(x). \] (CP)

If Tot.Var.\(\{\bar{u}\}\) is sufficiently small, then (CP) admits a unique solution \(u^\varepsilon(t, \cdot) = S_t^\varepsilon \bar{u}\), defined for all \(t \geq 0\). Moreover

\[\text{Tot.Var.}\{S_t^\varepsilon \bar{u}\} \leq C \text{Tot.Var.}\{\bar{u}\}, \] (BV bounds)

\[\|S_t^\varepsilon \bar{u} - S_t^\varepsilon \bar{v}\|_{L^1} \leq L \|\bar{u} - \bar{v}\|_{L^1} \] (L^1 stability)

(Convergence) If \(A(u) = Df(u)\), then as \(\varepsilon \to 0\), the viscous solutions \(u^\varepsilon\) converge to the unique entropy weak solution of the system of conservation laws

\[u_t + f(u)_x = 0 \]
Main open problems

- Global existence of solutions to hyperbolic systems for initial data \bar{u} with **large total variation**

- Existence of entropy weak solutions for systems in **several space dimensions**