The Scalar Conservation Law

u+f(u)x =0 u = conserved quantity, f(u) = flux

jt/abu(t,x) dx = /abut(t,x)dx = —/abf(u(t,x))xdx

f(u(t,a)) — f(u(t,b)) = [inflow at a] — [outflow at b]

fu(a)) fu(b))

a b X
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Weak solutions

conservation equation: u+f(u)xy =0
quasilinear form:  u¢ +f(u)ux = 0

Conservation equation remains meaningful for u = u(t, x) discontinuous,
in distributional sense:

//{uqﬁt—i— f(u)gx} dxdt = 0 for all ¢ € CL
Need only : u, f(u) locally integrable
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Convergence of weak solutions

u+f(u)xy =0

Assume: u, is a solution, for every n > 1,

u, = u, f(un) = f(u) in L}

loc

then
//{uqSt—i—f(u)qSX} dxdt = n|l>nc1>o/ {u,,qbt—i—f(u,,)(bx} dxdt = 0
forall ¢ € C!

(no need to check convergence of derivatives)
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Scalar Equation with Linear Flux

ur+f(u)y =0 f(u) = Au

up+Aue =0 u(0,x) = ¢(x)
Explicit solution:  u(t,x) = ¢(x — At)
traveling wave with speed f'(u) = A

u(0) u(t)
At
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The method of characteristics

ur + ' ()ue = 0 u(0, x) = ¢(x)

For each xg, consider the straight line

t = x(t,x) = xo+ tf'(¢(x0))

Set u = ¢(xp) along this line, so that x(t) = f'(u(t,x(t)). As long as
characteristics do not cross, this yields a solution:

0 = Sultx(t) = et ku = et P

X(,X )

X
Xo

Alberto Bressan (Penn State) Scalar Conservation Laws 9 /117



Loss of Regularity

ur + f(u)ue = 0

Assume: characteristic speed f’(u) is not constant

f'(u) u(0) u(t)

Global solutions only in a space of discontinuous functions
u(t,-) € BV
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u+f(u)y =0 x

u- if X < At
u(t,x) = { ut if X > Mt

is a weak solution if and only if

A-[ut —u7] = f(u")—f(u”)  Rankine - Hugoniot equations

[speed of the shock] x [jump in the state] = [jump in the flux]
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Derivation of the Rankine - Hugoniot equation

//{u¢t+f(u)¢x} dxdt = 0  forall ¢ eC}

v = (uqﬁ, f(u)c;S)

0 = // div vdxdt = / n*-vder/ n_ -vds
QruQ- o0+ o0~

- /[Au+—f(u+)} ¢(t,At)dt+/[—Au*+f(u*)] (£, \E) dt

_ / {A(lﬁ —u) = (f(ut) - f(u))} o(t, \t) dt
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Geometric interpretation

AMut—u™) = fuh)—Ff(u™) = /01 f(Qut+(1-0)u")-(u"—u") do

The Rankine-Hugoniot conditions hold if and only if the speed of the shock is

O B Ry R

ut —u—

= [average characteristic speed)]
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scalar conservation law: ur+ f(u)x =0

/ _ A
: u " _
—
ut uL u X
f(ut) — f(u”) 1 .
A= g = u+—u_/7 f'(s) ds

[speed of the shock] = [slope of secant line through u™, u™ on the graph of f]

= [average of the characteristic speeds between u™ and ut]
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Points of approximate jump

The function u = u(t, x) has an approximate jump at a point (7,£) if there
exists states u~ # u™ and a speed \ such that, calling

. u~ if X < At,
u(t,x) = { ut if X > At,
there holds

T+p  p&tp
lim /
p—0+ p 13

—U(t—71, x=¢)

dxdt =0

Theorem. If u is a weak solution to a conservation law then the

Rankine-Hugoniot equations hold at each point of approximate jump.
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Weak solutions can be non-unique

Example: a Cauchy problem for Burgers' equation

1 if x>0
up + (1?/2)x = 0 u(0,x) = { 0 f X< 0
Each « € [0, 1] yields a weak solution
0 if x<at/2
ua(t,x) = o if  at/2<x<(l1+a)t/2
1 if x> (1+a)t/2
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Stability conditions for shocks

Perturb the shock with left and right states u™, u™ by inserting an intermediate
state u* € [u™, u™]

Initial shock is stable «<—-

[speed of jump behind] > [speed of jump ahead]

flur) —flu7) _ flu')—f(u)

u* —u- - ut —u*
ut u-
e
——
u™|
u¥ —>
= ’ +
U u™
X X
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speed of a shock = slope of a secant line to the graph of f

Stability conditions:
e when u™ < u™ the graph of f should remain above the secant line

e when u™ > u™, the graph of f should remain below the secant line
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The Lax admissibility condition

admissible not admissible
t t Y
X X
N _
A shock connecting the states u—, u™, travelling with speed \ = % is

admissible if
fllum) > X > f(uh)

i.e. characteristics do not move out from the shock from either side
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Existence of solutions

Cauchy problem: ur+f(u)x = 0, u(0,x) = o(x)
Polygonal approximations of the flux function (Dafermos, 1972)
Choose a piecewise affine function f, such that
fo(u) = f(u) u=j-27", j €eZ

Approximate the initial data with a function g, : R+—27". Z

=h
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Front tracking approximations

piecewise constant approximate solutions: u,(t, x)

(un)t + fo(un)x = 0 un(0, x) = Up(x)

Tot.Var.(us(t,-)) < Tot.Var.(i,) < Tot.Var.(z)

= as n— 0o, a subsequence converges in L. ([0, T] x R)
to a weak solution u = u(t, x)
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A contractive semigroup of entropy weak solutions

ur+f(u)y =0

Two initial data in L*(R): u1(0,x) = T1(x),  w2(0,x) = Ta(x)

L! - distance between solutions does not increase in time:

Jur(t, ) — wa(t, )o@y < 1o — Doflr)

(not true for the LP distance, p > 1)

Alberto Bressan (Penn State) Scalar Conservation Laws 22 /117



The L! distance between continuous solutions remains constant

f'(u)

u ()
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The L! distance decreases when a shock in one solution crosses the graph
of the other solution

f'(u) u,(0)
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A related Hamilton-Jacobi equation

ur+ f(u)x = 0 u(0,x) = o(x)

U+ F(Ug) = 0 U(0,%) = T(x) = / i(y) dy

f convex e

U = U(t,x) is the value function for an optimization problem
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Legendre transform

u— f(u) € RU{+o0} convex

fA(p) = max{pu—f(u)}

tp)

(=)
=4
o

Alberto Bressan (Penn State) Scalar Conservation Laws 26 / 117



A representation formula

Ue+ f(Uy) = 0 U0,x) = U(x)

U(t,x) = inf {/Otf*(z(s))ds+U(z(O)); z(t):X}

()
= mn{er () o)
t (tx)

y X
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A geometric construction

U+ f(Uy) = 0 U(0,x) = U(x)
define h(s) = —Tf*(lTs)
U(x)
U(T,x)
f*
0 X

U(T,x) = inf {U(y) — h(y — x)}
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The Lax formula

ur+ f(u)xy =
u(0,x) =

cl O

Cauchy problem: { )
’ (x)

For each t > 0, and all but at most countably many values of x € R, there
exists a unique y(t, x) s.t.

y(t, x) = arg}r/nin{tf*(%) +/y u(s) ds}

€R e

the solution to the Cauchy problem is

ot ) = (1) (22X 1)
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f(u) ‘\v (t,x)v.,‘;‘

o u y(tx) x

y(t, x) = argmin{tf*(xzy)—l—/y D(s)ds}

yeR — 0

x — y(t,x)

define the characteristic speed £ = ;

if fl(w)=¢ then u(t,x) =w
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Initial-Boundary value problem

. >

X

P. Le Floch, Explicit formula for scalar non-linear conservation laws with
boundary condition, Math. Models Appl. Sci. (1988)
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Systems of Conservation Laws

(0 0

T+ LA, u) =0,
5t g flun, - un) 0
0 0

a2 Un 7fn s+ Up =
i +8x (un up) 0

us + f(u)x =0
u=(u1,...,up) € R" conserved quantities

f=(f,....f) :R"— R" fluxes
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Hyperbolic Systems

ur+f(u)y =0 u=u(t,x) eR"
ur+ Alu)uy = 0 A(u) = Df(u)

The system is strictly hyperbolic if each n x n matrix A(u) has real distinct
eigenvalues
A(u) < Ao(u) < -+ < Ap(u)

right eigenvectors ri(u),...,ra(u)  (column vectors)
left eigenvectors  h(u),...,l,(u)  (row vectors)
Ar,- = )\,-r,- I,A = /\,'I,'
(1 f =]
Choose bases so that ;- r; = { 0 ey
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A linear hyperbolic system

us +Au, =0 u(0,x) = ¢(x)

A <o < Ay eigenvalues Myevoytn eigenvectors

Explicit solution: linear superposition of travelling waves

u(t,x) = Zd)i(x — \it)r; di(s) =1 - ¢(s)

R
N
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Nonlinear effects - 1

ur + A(u)ux =0

eigenvalues depend on u == waves change shape

u(0)
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Nonlinear effects - 2

eigenvectors depend on u == nontrivial wave interactions

linear nonlinear
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Global solutions to the Cauchy problem

u+f(u)x =0 u(0,x) = u(x)

e Construct a sequence of approximate solutions u,

e Show that (a subsequence) converges: un, — uin L} _

— u is a weak solution

1 u,

Need: a-priori bound on the total variation (J. Glimm, 1965)
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Building block: the Riemann Problem

ur+ f(u)x =0 u(0,x) = u; !f x<0
u if x>0

B. Riemann 1860: 2 x 2 system of isentropic gas dynamics
P. Lax 1957: n x nsystems (+ special assumptions)
T. P. Liu 1975 n x n systems (generic case)

S. Bianchini 2003 (vanishing viscosity limit for general hyperbolic systems,
possibly non-conservative)

invariant w.r.t. symmetry: u(t,x) = u(bt, 6x) 0>0
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Riemann Problem for Linear Systems

u- if x <0
ur+Au, = 0 u(0,x) = .
t x (0,x) ut if x>0
t x/t:k2
x/l:?ul x/t=2
® o, :
l 8
o =u" oy=u*
0 X
n
oy = o i
ut —uT = E Gjti (sum of eigenvectors of A)
Jj=1

intermediate states :  w; = u~ + Z i1
J<i
i-th jump: w; —wj_1 = ¢jr; travels with speed \;
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General solution of the Riemann problem: concatenation of elementary
waves
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Construction of a sequence of approximate solutions

Glimm scheme: piecing together solutions of Riemann problems
on a fixed grid in the t-x plane

t
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Front tracking scheme: piecing together piecewise constant solutions of
Riemann problems at points where fronts interact
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Existence of solutions

up+ f(u)x =0, u(0,x) = u(x)

Theorem (Glimm 1965).

Assume:
e system is strictly hyperbolic (4 some technical assumptions)

Then there exists 6 > 0 such that, for every initial condition & € L}(R; R") with
Tot.Var.(7) < 6,

the Cauchy problem has an entropy admissible weak solution u = u(t, x)
defined for all t > 0.
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Uniqueness and continuous dependence on the initial data

ur+f(u)y =0 u(0,x) = o(x)

Theorem (A.B.- R.Colombo, B.Piccoli, T.P.Liu, T.Yang, 1994-1998).

For every initial data u with small total variation, the front tracking
approximations converge to a unique limit solution u : [0, 0o[ — L(R).

The flow map (T, t) — u(t,-) = S;0 is a uniformly Lipschitz semigroup:

Sol._l = l_l7 Ss(stl_l) = Ss+tl_l

St — Ssv||, < L-(a—vlle+ [t —sl) forall @,v, s,t>0

Theorem (A.B.- P. LeFloch, M.Lewicka, P.Goatin, 1996-1998).

Any entropy weak solution to the Cauchy problem coincides with the limit of
front tracking approximations, hence it is unique
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Vanishing viscosity approximations

Claim: weak solutions of the hyperbolic system
ur+f(u)x =0

can be obtained as limits of solutions to the parabolic system

ui + f(uf)x = eu,

letting the viscosity ¢ — 0+
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Theorem (S. Bianchini, A. Bressan, Annals of Math. 2005)

Consider a strictly hyperbolic system with viscosity

Uy + A(U) Uy = € Uxy u(0,x) = o(x). (CP)

If Tot.Var.{@} is sufficiently small, then (CP) admits a unique
solution  u®(t,-) = S{u, defined for all t > 0. Moreover

Tot.Var.{S;u} < CTot.Var{u}, (BV bounds)

|Sia—Siv||, < Lla—vlu (L! stability)

(Convergence) If A(u) = Df(u), then as € — 0, the viscous solutions u®
converge to the unique entropy weak solution of the system of conservation laws

ur+f(u)xy =0
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Main open problems

@ Global existence of solutions to hyperbolic systems
for initial data o with large total variation

@ Existence of entropy weak solutions
for systems in several space dimensions
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