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Abstract. We consider the initial value problem with boundary control for a scalar nonlinear
conservation law

ut + [f(u)]x = 0, u(0, x) = 0, u(·, 0) = ũ ∈ U ,(∗)

on the domain Ω = {(t, x) ∈ R2 : t ≥ 0, x ≥ 0}. Here u = u(t, x) is the state variable, U is a set
of bounded boundary data regarded as controls, and f is assumed to be strictly convex. We give a
characterization of the set of attainable profiles at a fixed time T > 0 and at a fixed point x̄ > 0:

A (T,U) = {u(T, ·) : u is a solution of (∗)},
A (x̄,U) = {u(·, x̄) : u is a solution of (∗)},

U = L∞(R+).

Moreover we prove that A (T,U) and A (x̄,U) are compact subsets of L1 and L1
loc, respectively,

whenever U is a set of controls which pointwise satisfy closed convex constraints, together with some
additional integral inequalities.
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1. Introduction. The paper is concerned with the initial boundary value prob-
lem for a scalar nonlinear conservation law in one space dimension:

ut + [f(u)]x = 0,(1.1)
u(0, x) = 0, t, x ≥ 0,(1.2)
u(t, 0) = ũ(t),(1.3)

where u = u(t, x) is the state variable, ũ is a measurable bounded boundary data,
and f is assumed to be a strictly convex function. Following [14] we shall consider
only weak entropic solutions of (1.1)–(1.2) which satisfy the boundary condition (1.3)
in a weak sense.

Here we study the system (1.1)–(1.3) from the point of view of control theory [8],
regarding the boundary data ũ as a control. Given a set U ⊂ L∞(R+) of admissible
controls, we study the set of attainable profiles at a fixed time T

A (T,U) =
{
u(T, ·) : u is a solution to (1.1)–(1.3) with ũ ∈ U

}
.

We will give a precise characterization of the attainable set when U = L∞(R+) by us-
ing the theory of generalized characteristics developed by Dafermos [5]. Applications
to calculus of variations and problems of optimization motivate the study of topolog-
ical properties of A (T,U). Here closure and compactness of the attainable set will
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be established in connection with classes of boundary controls which are measurable
selections of a bounded multifunction with closed convex values and satisfy certain
integral inequalities. In the proof of such results a key role will be played by the weak?

compactness of the set of fluxes {f(ũ) : u ∈ U} of admissible boundary controls.
Results concerning the set of attainable profiles at a fixed point in space x̄ > 0,

A (x̄,U) =
{
u(·, x̄) : u is a solution to (1.1)–(1.3) with ũ ∈ U

}
,

can be derived by similar arguments.
The compactness of the attainable sets allows us to prove the existence of solutions

for a class of optimization problems, where the cost functional depends on the profiles
of the solutions at some time T or at a fixed point x̄. In section 5 we apply these
results to a model of traffic flow where one wants to minimize the average time spent
by cars travelling through a given stretch of highway. The controller acts by varying
the density of cars entering the highway.

2. Preliminaries and statements of main results.

2.1. Formulation of the problem. On the domain Ω = {(t, x) ∈ R2 : t ≥
0, x ≥ 0} consider the mixed initial boundary value hyperbolic problem

ut + [f(u)]x = 0,(2.1)
u(0, x) = ū(x), t, x ≥ 0,(2.2)
u(t, 0) = ũ(t),(2.3)

where ũ ∈ L∞(R+), ū ∈ L∞(R+)∩L1(R+), and f : R→ R is a twice continuously dif-
ferentiable strictly convex function. Denote b(x) = (f ′)−1(x) whenever x ∈ Range (f ′)
and b(0) = −∞ if 0 /∈ Range (f ′).

We recall that problems of this type do not possess classical solutions since dis-
continuities arise in finite time even if the initial and boundary data are smooth (see
[4], [15]). Hence it is natural to consider weak solutions in the sense of distributions
satisfying the usual entropy conditions [11], [13]

u(t, x−) ≥ u(t, x+), t, x > 0.(2.4)

As pointed out in [3], [6], and [14], in general the Dirichlet condition (2.3) may not
be fulfilled pointwise a.e.; thus following [14] we require that an entropic solution u to
(2.1)–(2.3) satisfies the above condition in a weaker sense which is motivated by the
classical vanishing viscosity method (see [3], [14], and Definition 1). In [3] an entropic
solution to (2.1)–(2.3) is obtained as the limit of solutions of suitable approximating
parabolic problems, while in [14] Le Floch generalizes a result of Lax for the Cauchy
problem for the scalar conservation law (see [12]), expressing a solution in terms of
the pointwise minimum of a function y 7→ Ψ(t, x, y) for any (t, x) ∈ R+×R+ (see also
Remark 2.1). Concerning uniqueness, in [14] an L1-semigroup property in the class
of piecewise regular solutions is established (see Remark 2.2).

As observed in [14], any solution of (2.1)–(2.3) with boundary data ũ such that
f ′(ũ(t)) < 0 on a subset I of R+ of positive measure can be obtained with the
boundary data

ũ′(t) =

{
b(0) if t ∈ I,
ũ(t) otherwise.
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Hence it is not restrictive to assume that the characteristics at the boundary are always
entering the domain, i.e., f ′(ũ(t)) ≥ 0 for a.e. t: this hypothesis will be adopted in
the rest of the paper. We recall here the definition of the solution to (2.1)–(2.3) as
stated in [14].

DEFINITION 1. A function u ∈ L1(Ω;R) is a solution of (2.1)–(2.3) if
(i) it is a weak entropic solution of (2.1) in the interior of Ω;
(ii) there exists a set E ⊂ R+ with zero measure such that

lim
t→0+

t/∈E

∫ x

0
u(t, ξ) dξ =

∫ x

0
ū(ξ) dξ, x ≥ 0;(2.5)

(iii) the boundary condition is satisfied in the following weak sense: there exist a
set F ⊂ R+ with zero measure and two functions Υ : R+ → R and µ : R+ → {−1, 0, 1}
such that

lim
x→0+

x/∈F

∫ t

0
f(u(s, x)) ds =

∫ t

0
Υ(s) ds, t ≥ 0,(2.6)

lim
x→0+

x/∈F

sgn f ′(u(t, x)) = µ(t), a.e. t ≥ 0,(2.7)

and {
Υ(t) = f(ũ(t)) if µ(t) ≥ 0,
Υ(t) ≥ f(ũ(t)) if µ(t) = −1

a.e. t > 0.(2.8)

Remark 2.1. In [14] Le Floch proves that under the above assumptions there
exists a solution u to (2.1)–(2.3), having right and left limits in t and x at every point
in the interior of Ω and such that for any fixed t ≥ 0 u(t, ·) has at most countably
many discontinuities. Moreover it satisfies the bounds

‖u(·, ·)‖∞ ≤ max {‖ū(·)‖∞, ‖ũ(·)‖∞} ,

min
{
f(u) : |u| ≤ ‖ũ‖∞, ‖ū(·)‖∞

}
≤ Υ(t) ≤ max

{
‖f(ū(·))‖∞, ‖f(ũ)(·)‖∞

}
(2.9)

for a.e. t > 0. Such a solution admits the following explicit representation inside the
domain:

u(t, x) = b

(
x− y(t, x)

t

)
, t > 0, x > 0,(2.10)

where y(t, x) denotes a point of minimum value for the function

y 7→ ΨΥ(t, x, y) =


∫ y

0
ū(s) ds+ t g

(
x− y
t

)
if y ≥ 0,

−
∫ τ

0
Υ(s) ds+ (t− τ) g

(
x

t− τ

)
if y ≤ 0,

(2.11)

with g denoting the Legendre transform of a superlinear convex map f̃ which coincides
with f on the closed ball {u ∈ R : |u| ≤ ‖ũ‖∞} and τ satisfying

x− y
t

=
x

t− τ , y ≤ 0.
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Notice that in [11] it is shown that for any given t ∈ [0, T ] the function y 7→ ΨΥ(t, x, y)
attains its minimum at a single point for all but at most countably many x > 0.
Furthermore the existence of the traces at x = 0 in the sense of (2.6)–(2.7) for the
functions f(u), sgn f ′(u) holds in general for any map u admitting a representation
as in (2.10) with ΨΥ defined by (2.11) in connection with some L∞ function Υ.

Remark 2.2. Regarding uniqueness in [14], the following L1-semigroup property is
established: if u and v are piecewise continuously differentiable solutions of (2.1)–(2.3)
associated with initial and boundary data ū, ũ and v̄, ṽ, respectively (ũ, ṽ ≥ b(0)),
then

∫ +∞

0
|u(t, x)− v(t, x)| dx ≤

∫ +∞

0
|ū(x)− v̄(x)| dx+

∫ t

0
|f(ũ(s))− f(ṽ(s))| ds

(2.12)

holds for any t > 0. This property can be extended to all the solutions associated with
an L∞ boundary condition (for details see the Appendix), and hence any solution to
(2.1)–(2.3) admits a representation of the form (2.10) for a.e. (t, x) ∈ int Ω.

In this paper we are interested only in solution of (2.1)–(2.3) with null initial data
ū. From now on we will adopt the semigroup notation Stũ for the unique solution of
(1.1)–(1.3) at time t. We shall be concerned with basic properties of the attainable
sets for (1.1)–(1.2):

A (T,U) .= {ST ũ : ũ ∈ U} ,(2.13)

A (x̄,U) .=
{
S(·)ũ(x̄) : ũ ∈ U

}
,(2.14)

which consist of all profiles that can be attained at a fixed time T > 0 and at a fixed
point x̄ > 0 by solutions of (1.1)–(1.2) with boundary data that varies inside a given
class U ⊆ L∞ of admissible boundary controls. In particular we give a characterization
of

A(T ) .=
{
ST ū : ũ ∈ L∞(R+), ũ ≥ b(0)

}
,(2.15)

A(x̄) .=
{
S(·)ũ(x̄) : ũ ∈ L∞(R+), ũ ≥ b(0)

}
,(2.16)

and we establish the compactness of (2.13), (2.14) in connection with a special class
of admissible boundary controls.

2.2. Statements of the main results. We present here the statements of the
main results. Throughout the following,

D−w(x) = lim inf
h→0

w(x+ h)− w(x)
h

, D+w(x) = lim sup
h→0

w(x+ h)− w(x)
h

will denote, respectively, the lower and upper Dini derivatives of a function w at x.
THEOREM 1. In connection with problem (1.1)–(1.2), for any fixed T > 0, A(T )

is the set of all bounded functions w which satisfy the following conditions:

w(x) 6= 0 =⇒ f ′(w(x)) ≥ x

T
,(2.17)

w(x−) 6= 0 and w(y) = 0 ∀ y > x =⇒ f ′(w(x−)) >
x

T
,(2.18)

D+w(x) ≤ f ′(w(x))
xf ′′(w(x))

(2.19)

for every x > 0.
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Remark 2.3. By definition an element w̃ ∈ A(T ) ⊆ L∞(R+) is an equivalence
class of essentially bounded measurable functions. Hence the above characterization
must be interpreted in the sense that w̃ ∈ A(T ) iff there exists a representative w in
the class w̃ satisfying (2.17)–(2.19).

Notice that if a bounded function w satisfies (2.17), then there exists a > 0 such
that w(x) = 0 if x ≥ a. Therefore, the boundedness of w together with (2.17), (2.19)
imply that w has finite total increasing variation (and hence finite total variation as
well) on subsets of R+ bounded away from the origin. Thus we may assume that w
admits left limit in any point and (2.18) makes sense. Moreover from (2.19) it follows
that w(x−) > w(x+) at every point of discontinuity.

Remark 2.4. Having in mind the extension of the above result to attainable sets
for classes of admissible boundary controls in L1(R+) (see [1]), it is useful to rewrite
condition (2.19) in the following form:

w(y) ≤ w(x) +
∫ y

x

f ′(w(ξ))
ξf ′′(w(ξ))

dξ ∀ x, y > 0, y ≥ x,(2.19′)

which is shown to be equivalent to (2.19) at the end of section 3.
THEOREM 2. In connection with problem (1.1)–(1.2), for any fixed x̄ > 0, A(x̄)

is the set of all bounded functions ρ which satisfy the following conditions:

ρ(t) 6= 0 =⇒ f ′(ρ(t)) ≥ x̄

t
,(2.20)

ρ(τ+) 6= 0 and ρ(t) = 0 ∀ t < τ =⇒ f ′(ρ(τ+)) >
x̄

τ
,(2.21)

D−ρ(t) ≥ f ′(ρ(t))
tf ′′(ρ(t))

(2.22)

for every t > 0.
The proof of Theorem 1 is given in section 3; the proof of Theorem 2 is entirely

similar so it is omitted.
In order to achieve the closure of the attainable sets for (1.1)–(1.2) we need to

restrict the class of admissible boundary controls by means of a suitable multifunc-
tion G.

THEOREM 3. Let G : R+ ↪→ [b(0),+∞) be a measurable uniformly bounded
multifunction with convex closed values, qi : R+ × R → R, i = 1, . . . , N , measurable
maps convex w.r.t. the second variable, gi : R+ → R, i = 1, . . . , N , measurable maps
and let J be a possibly empty subset of R+. Denote

U =
{
ũ ∈ L∞(R+) : ũ(t) ∈ G(t), for a.e. t,∫ t

0
qi
(
s, f(ũ(s))

)
ds ≤ gi(t) ∀ t ∈ J, ∀ i = 1, . . . , N

}
.

(2.23)

Then A (T,U), T > 0, and A (x̄,U), x̄ > 0 are compact subsets of L1(R+) and
L1

loc(R+), respectively.
The proof of Theorem 3 is given in section 4. (For references on the multifunction

G see [2].)
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Remark 2.5. The convexity assumption on the multifunction G cannot be relaxed
in order to ensure the closure of the attainable set, as shown by the following example.

Example. Consider the problem (1.1)–(1.2) associated with the Burgers equation

ut +
(
u2

2

)
x

= 0,(2.24)

and assume that the admissible boundary controls are all the measurable functions
taking values in {0, 2}. We claim that the corresponding attainable set at time T = 1
is not closed in the topology of L1. Indeed, define

ũν(t) =


2 if

k

2ν
≤ t ≤ k + 1

2ν
k even,

0 if
k

2ν
≤ t ≤ k + 1

2ν
k odd,

0 ≤ k ≤ 2ν − 1.(2.25)

Observe that f(ũν) converges weakly in L1 to f(ũ), with ũ(t) ≡
√

2. Hence by the
same arguments of section 4 it can be shown that S(·)ũ

ν(·) converges in the L1-norm
to a solution of (2.24), (1.2), (1.3) with boundary data ũ: then

S1ũ(x) =

{√
2 if 0 < x <

√
2/2,

0 otherwise.
(2.26)

It can be easily seen that such a profile cannot be obtained with a boundary data ũ′

which takes values in {0, 2}. Indeed, by tracing the backward generalized character-
istics [5] and recalling (2.8), one gets

ũ′(t) =
√

2 ∀ t ∈ [1/2, 1].(2.27)

Remark 2.6. The convexity assumption on the functions qi cannot be relaxed too.
Indeed, consider the Burgers equation (2.24) with admissible boundary data ũ taking
values in [0, 2] and satisfying the inequality∫ 1

1/2
ũ(s) ds ≤ 1

2
,(2.28)

which is an integral constraint of the type given in (2.23) with

q(s, v) .=

{
0 if 0 ≤ s < 1/2,
sgn(v)

√
2|v| otherwise.

Observe that the same sequence defined by (2.25) fulfills such a constraint. On the
other hand, from (2.27) it follows that the profile in (2.26) cannot be attained by
using any boundary control satisfying (2.28).

As stated in the introduction, the compactness of the attainable sets guarantees
the existence of optimal controls for a class of minimization problems.

COROLLARY 1. Let F1 : L1(R+) → R, F2 : L1([0, τ ]) → R, τ > 0, be lower
semicontinuous functionals and let U be defined as in (2.23). Then for every fixed
T, x̄ > 0 the optimal control problems

min
ũ∈U

F1 (ST ũ(·)) , min
ũ∈U

F2
(
S(·)ũ(x̄)

)
admit a solution.
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3. Proof of Theorem 1. The proof will be divided into two steps:
Step 1. Show that any element ST ũ ∈ L∞(R+) of the attainable set satisfies

(2.17)–(2.19).
Step 2. Show that if w ∈ BV([α,+∞)) ∀ α > 0 is a bounded function satisfying

(2.17)–(2.19), then there exists ũ ∈ L∞([0, T ]), ũ ≥ b(0) such that ST ũ = w.

3.1. Step 1. A technical result will be proved first.
LEMMA 3.1. Let w : R→ R, x > 0, be a bounded right continuous function having

right and left limits in any point. Then ϕ : x 7→ f ′(w(x))
x is nonincreasing iff (2.19)

holds.
Proof. Observe that nonincreasing monotonicity of ϕ is equivalent to

D+ϕ(x) ≤ 0 ∀ x > 0.(3.1)

Suppose first that x > 0 is a point of continuity for w. Hence f ′′ > 0,

lim sup
h→0

ϕ(x+ h)− ϕ(x)
h

= lim sup
h→0

[
f ′(w(x+ h))− f ′(w(x))

(w(x+ h)− w(x))
w(x+ h)− w(x)

(x+ h)h
− f ′(w(x))
x(x+ h)

]

=
f ′′(w(x))

x
lim sup
h→0

w(x+ h)− w(x)
h

− f ′(w(x))
x2 ,

(3.2)

which shows that (3.1) and (2.19) are equivalent.
In the case when w is not continuous at x, assume (3.1) holds: then w(x−) > w(x).

Indeed, if it is false, then f ′(w(x−)) < f ′(w(x)) by convexity of f ; hence there exists
y < x such that ϕ(y) < ϕ(x) which contradicts the monotonicity assumption on ϕ.
There follows that

D+w(x) = lim sup
h→0+

w(x+ h)− w(x)
h

;

thus (2.19) follows taking in (3.2) the lim sup as h → 0+. Conversely, if (2.19) holds
then still w(x−) > w(x). Since w and hence ϕ are right continuous it follows that
ϕ(x−) > ϕ(x), due to the monotonicity of f ′. Thus it is sufficient to prove (3.1)
for h → 0+. This follows immediately from (3.2) using the same arguments as
before.

Recalling Remark 2.1 we can choose a representative function w of ST ũ which
is right continuous. Assume that f ′(w(x)) < x/T and let ξ(·) denote the maximal
backward generalized characteristic through (T, x). Observe that ξ(·) is a genuine
characteristic (see [5, Theorem 3.2]) and hence, by Theorem 3.3 in [5], S(·)ũ(ξ(·)) = v

a.e. on [0, T ] for some constant v such that ξ̇ = f ′(v). Since Theorem 4.1 in [5]
implies v(0) = w(x), it follows that ξ(t) = x+f ′(w(x))(t−T ) for all t ∈ [0, T ]. Hence
ξ(0) = x− Tf ′(w(x)) > 0, which implies w(x) = S0ũ(ξ(0)) = 0 thus proving (2.17).

Next, suppose that there exists x > 0 such that f ′(w(x−)) ≤ x/T . If w(x−) = 0
there’s nothing to prove. Otherwise f ′(w(x−)) = x/T . If w(x+) = w(x−), again
there’s nothing to prove, otherwise, from arguments similar to the previous ones and
since genuine characteristics do not intersect in the interior of Ω, it follows that w(y) =
0 ∀y > x and hence w(x−) > 0. Observe now that the values of the solution in the
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interior of the funnel confined between minimal and maximal backward characteristics
through (T, x) depend only on the values of the solution at t = 0. Thus Stũ(x) = 0
for any 0 < t < T and x > f ′(w(x−))t. There follows that the minimal characteristic
is not genuine, which gives a contradiction, proving (2.18).

To prove (2.19) by Lemma 3.1 it is sufficient to show that the function ϕ : x 7→
f ′(w(x))/x is nonincreasing. Let 0 < x1 < x2 be given and trace the maximal
backward characteristics ξ1(·), ξ2(·) through (T, x1) and (T, x2), respectively. By the
same arguments as above they have the form

ξi(t) = xi + f ′(w(xi))(t− T ), i = 1, 2(3.3)

as long as they exist. Assume that f ′(w(x1)) < f ′(w(x2)) (otherwise the result is
obvious) and let τ ∈ R be such that ξ1(τ) = ξ2(τ) where, with an abuse of notation,
ξi(·) denote the functions in (3.3) defined for all t ∈ R. Since ξ1 and ξ2 are genuine
characteristics and hence do not intersect in the interior of Ω (see [5]), we deduce
that ξi(τ) ≤ 0. Otherwise it should be τ < 0 which implies, by arguments as above,
f ′(w(x1)) = f ′(w(x2)) = f ′(0). Therefore,

1 +
f ′(w(x1))

x1
(τ − T ) =

ξ1(τ)
x1

≤ ξ2(τ)
x2

= 1 +
f ′(w(x2))

x2
(τ − T )

showing ϕ(x1) ≥ ϕ(x2).

3.2. Step 2. Choose w ∈ L∞(R+) satisfying (2.17)–(2.19). By Remark 2.3 we
can assume that w is right continuous. Observe first that if w ≡ 0 then the boundary
control

ũ ≡
{

0 if f ′(0) ≥ 0,
b(0) if f ′(0) < 0

clearly produces the null solution. Next we prove the result in the case when w is
made up of two constant states.

PROPOSITION 3.1. Let ω, r > 0 be given with f ′(ω) > r/T . Then there exists
ũ ∈ L∞([0, T ]), ũ ≥ b(0), such that

ST ũ(x) =

{
ω if x < r,

0 otherwise.
(3.4)

Proof. If c .= [f(ω)− f(0)] /ω ≥ r/T , set t1 = T − r ω/ [f(ω)− f(0)] ≥ 0. Then

ũ(t) =


ω if t1 < t < T,

0 if 0 < t < t1 and f ′(0) ≥ 0,
b(0) if 0 < t < t1 and f ′(0) < 0

produces the solution

Stũ(x) =

ω if 0 < x < r +
f(ω)− f(0)

ω
(t− T ),

0 otherwise

which satisfy (3.4).
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FIG. 1.

Now assume c < r/T and call t2 = T − r/f ′(ω) > 0. For any t̄ ∈ [0, t2) and v ≥ ω
define the function φt̄,v : [0, T ]→ [ω,+∞) by setting

φt̄,v(t) =


v if 0 ≤ t < t̄,

b

[
f ′(v) +

t− t̄
t2 − t̄

(f ′(ω)− f ′(v))
]

if t̄ ≤ t < t2,

ω if t ≥ t2.

(3.5)

If v ≥ ω satisfies f(v) > f(0), since t 7→ φt̄,v(t) is decreasing on [0, t2] it can be easily
seen that S(·)φt̄,v has a single shock curve t 7→ η(φt̄,v)(t) departing from the origin
such that Stφt̄,v(x) = 0 for x > η(φt̄,v)(t) as long as η(φt̄,v)(·) exists (see Figure 1).

We claim that there exist ω0, ω1 > ω and 0 ≤ τ0, τ1 < t2 such that η(φτ0,ω0)(·)
and η(φτ1,ω1)(·) are defined on [0, T ] and

η(φτ0,ω0)(T ) < r ≤ η(φτ1,ω1)(T ).(3.6)

First we prove the existence of τ1 and ω1. To this end we show that there exist v > ω
and s ∈ (0, T ) such that

f(v)− f(0)
v

s > r + |c|(T − s),(3.7)

0 < s− 1
f ′(v)

f(v)− f(0)
v

s < t2.(3.8)

Indeed, if limv→+∞ f ′(v) = +∞ then choose s = t2/2 and v > ω satisfying (3.7).
Otherwise, f ′(ω) > r/T and hence

r

T
< lim
v→+∞

f ′(v) = lim
v→+∞

f(v)− f(0)
v

,(3.9)

there exists v̄ > ω such that T [f(v̄)− f(0)] /v̄ > r. Then, using the continuity of the
map

t 7→ f(v̄)− f(0)
v̄

t− r − |c|(T − t),
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we find some s ∈ (0, T ) satisfying (3.7) with v = v̄. But (3.9) and the convexity of f
guarantee that there exists v ≥ v̄ satisfying (3.7)–(3.8) as well. Now set

ω1 = v, τ1 = s− 1
f ′(v)

f(v)− f(0)
v

s.(3.10)

It follows that

η(φτ1,ω1)(T ) =
∫ s

0
η̇(φτ1,ω1)(t) dt+

∫ T

s

η̇(φτ1,ω1)(t) dt

≥ f(ω1)− f(0)
ω1

s+ c(T − s)

> r + (|c|+ c)(T − s) ≥ r.

(3.11)

Now we set τ0 = 0 and prove the existence of ω0. If c > 0, take ω0 = ω. Otherwise
set

v̄ = sup {v ≥ ω : STφ0,v ≡ 0} .(3.12)

By the previous analysis, v̄ < +∞. Moreover, since the map v 7→ φ0,v is continuous
from [ω,+∞) into L∞([0, T ]) w.r.t. the L1-norm, from Remark 2.2 it follows that
STφ0,v̄ ≡ 0. If v > v̄, then η(φ0,v)(·) is defined on [0, T ] and η(φ0,v)(T ) > 0. Indeed, if
not, then there exists τ < T such that η(φ0,v)(τ) = 0. There follows that Sτφ0,v ≡ 0
and that f(φ0,v(t)) ≤ f(φ0,v(τ)) < f(0) ∀t ≥ τ . Hence Stφ0,v ≡ 0 ∀t ≥ τ , which
contradicts (3.12). Moreover, if 0 < x < η(φ0,v)(T ), then STφ0,v(x) ≥ ω. In fact,
due to (2.18), the minimal backward characteristic through (T, η(φ0,v)(T )) reaches
the t-axis in positive time. Since genuine characteristics do not intersect, all maximal
backward characteristics through (T, x), 0 < x < η(φ0,v)(T ), intersect the t-axis.
Since φ0,v(t) ≥ ω for any t ∈ [0, T ], by arguments similar to the ones used in Step
1 we deduce that STφ0,v(x) ≥ ω. There exists δ > 0 such that if v̄ < v < v̄ + δ
then η(φ0,v)(T ) < r. Indeed assume by contradiction that there exists a decreasing
sequence (vn)n∈N converging to v̄ such that η(φ0,vn)(T ) ≥ r ∀n. Then

‖STφ0,v̄ − STφ0,vn‖L1 ≥
∫ r

0
|STφ0,vn(x)| dx ≥ ωr,

which contradicts the continuity of the map v 7→ STφ0,v, proving the existence of ω0
with the required property. Consider now the continuous map φ : [0, 1]→ L∞([0, T ])
defined by

φ(λ) = λφτ1,ω1 + (1− λ)φτ0,ω0 .(3.13)

Set η(φ(λ))(T ) = 0 if STφ(λ) ≡ 0. Then from the continuity of λ 7→ STφ(λ), it
follows that the map λ 7→ η(φ(λ))(T ) is continuous. Indeed, by the previous analysis,
STφ(λ)(x) ≥ ω whenever x < η(φ(λ))(T ). Hence

|η(φ(λ1))(T )− η(φ(λ2))(T )| ≤ 1
ω

∣∣∣∣∣
∫ η(φ(λ2))(T )

η(φ(λ1))(T )
|STφ(λ1)(x)− STφ(λ2)(x)| dx

∣∣∣∣∣
≤ 1
ω
‖STφ(λ1)− STφ(λ2)‖

L1 ,
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which approaches zero as λ1−λ2 → 0. It follows that there exists λ̄ ∈ [0, 1] such that
η(φ(λ̄))(T ) = r. We claim that STφ(λ̄) satisfies (3.4). Indeed if x < r let t 7→ θ(t)
be the maximal backward characteristic through (T, x). Then by (2.17) there exists
τ ≥ 0 such that θ(τ) = 0. Actually τ ≥ t2. If not, then

θ̇(t) = f ′(STφ(λ̄)(x)) =
x

T − τ <
r

T − t2
= f ′(ω),

which gives a contradiction since f ′ is increasing and STφ(λ̄)(x) ≥ ω. Thus τ ≥ t2,
from which it follows that STφ(λ̄)(x) = ω.

Throughout the following we denote by ψ(ω, r) ∈ L∞([0, T ]) a boundary control
such that STψ(ω, r) satisfies (3.4). In order to prove Step 2 in the general case we
shall adopt the following procedure.

1. For every x > 0 we trace the lines θ−x , θ
+
x through (T, x) with slope f ′(w(x−))

and f ′(w(x+)), respectively. These will be the minimal and maximal backward char-
acteristics through (T, x) of the candidate solution. Due to (2.17), if w(x) 6= 0
they reach the t-axis in positive time. Assumption (2.19) guarantees that the lines
{θ±x : x > 0} do not intersect each other in the interior of Ω.

2. Since a solution is constant along minimal and maximal backward characteris-
tics [5], for every t ∈ [0, T ] for which there exists x > 0 such that θ±x (t) = 0, we define
ũ(t) = w(x). The set of the remaining t is a disjoint union of open intervals. On any
of such intervals ũ is defined so as to produce a compression wave which generates a
discontinuity at time T .

3. By using the fact that a solution is constant along genuine characteristics, we
define a function u : (0, T ) × R+ → R, which is candidate, to be S(·)ũ and we prove
that u is a weak entropic solution of (1.1)–(1.2) in the interior of Ω.

4. We show that u satisfies the boundary condition related to the boundary
control ũ in the sense of Definition 1 (iii) and that u(T−, ·) = w.

1. For each x > 0 consider the lines

θ−x : t 7→ x+ f ′(w(x−))(t− T ),(3.14)

θ+
x : t 7→ x+ f ′(w(x))(t− T ),(3.15)

defined for t ≤ T . By Remark 2.3 and convexity of f one has θ−x (t) ≤ θ+
x (t) ∀ t. We

claim that for any 0 < x < y the lines θ±x and θ±y do not intersect in the interior of
Ω. By the previous argument it suffices to prove that θ+

x (t) > θ−y (t) in the interior of
Ω. If f ′(w(x)) ≥ f ′(w(y−)) the claim is obvious. Otherwise since w(x) 6= w(y−), one
of the two is nonzero. Hence due to (2.17) one of the two holds: f ′(w(x)) ≥ x/T or
f ′(w(y−)) ≥ x/T . Let τ < T be such that θ+

x (τ) = θ−y (τ) .= ξ. Then τ ≥ 0 or ξ ≤ 0.
Actually ξ ≤ 0. Indeed, let ϕ be as in Lemma 3.1. Then ϕ(y−) ≤ ϕ(x). Hence

ξ

x
= 1 + ϕ(x)(τ − T ) ≤ 1 + ϕ(y−)(τ − T ) =

ξ

y

and since x < y it follows that ξ ≤ 0, which proves the claim.
2. Define

x0
.= inf {x > 0 : w(y) = 0 ∀ y ≥ x} .(3.16)

To get a boundary control ũ that produces a solution of (1.1)–(1.3) that attains w,
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we consider the following partition of the interval [0, T ] (see Figure 2):

I1
.=
{
t ∈ [0, T ] : ∃! x > 0 : θ−x (t) = 0 or θ+

x (t) = 0
}
,(3.17)

I2
.=
{
t ∈ [0, T ] : ∃ 0 < x < y : θ+

x (t) = θ−y (t) = 0
}
,(3.18)

I3
.=
{
t ∈ [0, T ] : 6 ∃ x > 0 : θ−x (t) = 0 or θ+

x (t) = 0,

∃ t′ ∈ (0, t) ∩ [I1 ∪ I2] , ∃ t′′ ∈ (t, T ) ∩ [I1 ∪ I2]
}
,(3.19)

I4
.=
{
t ∈ [0, T ] : ∀t′ ≥ t 6 ∃ x > 0 : θ−x (t′) = 0 or θ+

x (t′) = 0
}
,(3.20)

I5
.=
{
t ∈ [0, T ] : ∀t′ ≤ t 6 ∃ x > 0 : θ−x (t′) = 0 or θ+

x (t′) = 0
}
.(3.21)

Here any of these sets could be empty. The above sets, whenever nonempty, satisfy
the following properties:

(i) I2 contains at most countably many points;
(ii) I3 is the disjoint union of at most countably many open intervals (Iν)ν∈N of

the form

Iν = (τ1
ν , τ

2
ν ), θ+

xν (τ1
ν ) = θ−xν (τ2

ν ) = 0 ∃ xν > 0,(3.22)

where xν is a point of discontinuity for w.
(iii) I4 is an interval of the form I4 = (τ4, T ] with τ4 ∈ I1 ∪ I2.
(iv) I5 is an interval of the form I5 = [0, τ5) with θ−x0

(τ5) = 0.
To show (i) it is sufficient to observe that, since the lines {θ±x }x>0 do not intersect

in the interior of Ω, for each t ∈ I2 the set

Jt
.=
{
x > 0 : θ−x (t) = 0 or θ+

x (t) = 0
}

(3.23)

is an interval and Js ∩ Jt = ∅ for any s, t ∈ I2, s 6= t.
Regarding (ii)–(iv), we first show that I3 ∪ I4 ∪ I5 is open in [0, T ]. Indeed, let

t ∈ I3 ∪ I4 ∪ I5 and assume by contradiction that (tν)ν∈N ⊆ I1 ∪ I2 is a sequence
converging to t. Then there exists a sequence (yν)ν∈N ⊆ R+ such that θ±yν (tν) = 0.
By eventually taking a subsequence, we shall assume θ+

yν (tν) = 0, the other case being
entirely similar. Since w is bounded, from (2.17) it follows that (yν)ν∈N is bounded, so
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it admits a converging subsequence which is still denoted by (yν)ν∈N. Call ȳ its limit
point. Again, up to a subsequence we can assume that f ′(w(yν)) → f ′(w(ȳ)). Then
0 = θ+

yν (tν) → θ+
ȳ (t), which gives a contradiction. Observe now that inf I4 ∈ I1 ∪ I2.

Indeed, if inf I4 = 0, then it belongs to I1 ∪ I2 by (2.17) since w 6≡ 0. Otherwise,
since I3 ∪ I4 ∪ I5 is open, if inf I4 /∈ I1 ∪ I2, then there exists t′ < inf I4 such that
(t′, inf I4) ⊆ I3 ∪ I4 ∪ I5 which clearly gives a contradiction. Since by definition I4 is
an interval and sup I4 = T , this suffices to prove (iii).

Concerning (iv), in a similar way it can be proved that τ5 = sup I5 ∈ I1 ∪ I2. Set

z
.= sup

{
x > 0 : θ−x (τ5) = 0 or θ+

x (τ5) = 0
}
.(3.24)

Let y > z and suppose that w(y) 6= 0. Then by (2.17) and (3.21), θy(τ5) = 0, which
contradicts (3.24). Thus it must be z ≥ x0. If z > x0, then 0 = θ±z (τ5) = z+f ′(0)(τ5−
T ). Hence there exists y > z and t ∈ (0, τ5) such that θ±y (t) = y + f ′(0)(t − T ) = 0,
which gives a contradiction by the definition of I5. Thus z = x0 and hence θ−x0

(τ5) = 0
proving (iv).

Regarding (ii), since inf I4, sup I5 /∈ I3, I3 is open; hence it is a disjoint union of
at most countably many open intervals Iν = (τ1

ν , τ
2
ν ). Moreover τ1

ν , τ
2
ν ∈ I1 ∪ I2 since

I3 ∪ I4 ∪ I5 is open. Call

x1
ν
.= inf

{
x > 0 : θ−x (τ1

ν ) = 0 or θ+
x (τ1

ν ) = 0
}
,

x2
ν
.= sup

{
x > 0 : θ−x (τ2

ν ) = 0 or θ+
x (τ2

ν ) = 0
}
.

Then x1
ν = x2

ν
.= xν . In fact x2

ν ≤ x1
ν since the lines {θ±x }x>0 do not intersect in the

interior of Ω. If x2
ν < x1

ν , then choose y ∈ (x2
ν , x

1
ν). Then there exists τ ∈ (τ1

ν , τ
2
ν )

such that θ±y (τ) = 0, which is a contradiction. Since by (2.19) w satisfies (2.8), the
conclusion of (ii) follows immediately.

Now we are ready to define the boundary data which produces the given profile:

ũ(t) =



w(x−) if t ∈ I1, θ−x (t) = 0,
w(x) if t ∈ I1, θ+

x (t) = 0,
w ((supJt)−) if t ∈ I2,

b

(
xν
T − t

)
if t ∈ Iν ⊆ I3,

b(0) if t ∈ I4,
ψ(w(x0−), x0)(t) if t ∈ I5.

(3.25)

Notice that if t ∈ Iν ⊆ I3, then

f ′(w(xν)) <
xν
T − t < f ′(w(xν−)),

and hence xν/(T − t) ∈ Range f ′. Moreover, if I4 6= ∅, then b(0) > −∞. Indeed,
fix ε > 0. Then for any x ∈ (0, ε(t − τ4)) we have 0 < f ′(w(x)) ≤ ε. In fact let
ξ > 0 be such that θ±ξ (τ4) = 0. If f ′(w(x)) > ε, then there exists τ > τ4 such that
θ±ζ (τ) = 0, thus contradicting (3.20). If f ′(w(x)) ≤ 0, then θ±ζ and θ±ξ would intersect
in the interior of Ω. Hence limx→0+ f ′(w(x)) = 0. Due to the boundedness of w, this
implies 0 ∈ Range f ′. Thus (3.25) is well defined.

3. For each s ∈ Iν ⊆ I3 define the line

θs : t 7→ f ′(ũ(s))(t− s) =
xν

T − s (t− s), s < t < T,(3.26)
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which is entirely contained in the open set
{

(t, x) : s < t < T, θ−xν (t) < x < θ+
xν (t)

}
.

Observe that any of the θs cannot intersect one of the θ±x in the interior of Ω, otherwise
θ±x would intersect θ−xν or θ+

xν too. Denote (see Figure 3)

A1
.=
{

(τ, ξ) ∈ int Ω : ξ ≤ θ−x0
(τ)
}
,

A2
.=
{

(τ, ξ) ∈ int Ω : ξ > θ−x0
(τ))

}
.

(3.27)

We claim that for any (τ, ξ) ∈ A1 there exists a unique line through (τ, ξ) belonging
to the family Θ .= {θ±x : x > 0}∪{θs : s ∈ I3}. The uniqueness of such a line follows
from the previous remark and from the fact that the lines of each family {θ±x : x > 0}
and {θs : s ∈ I3} do not intersect in the interior of Ω. Regarding the existence observe
that if ξ 6= θ±x (τ) for any x > 0, then there exists s ∈ I3 such that θs(τ) = ξ. Indeed,
the set

B(τ) .=
{

0 < x < θ−x0
(τ) : 6 ∃ y > 0 : θ±y (τ) = x

}
(3.28)

is open. In fact, let x ∈ B(τ) and assume by contradiction that there exists in
(0, θ−x0

(τ)) a sequence xν = θ±yν (τ), yν > 0, converging to x. By eventually taking a
subsequence, we shall assume that xν = θ+

yν (τ), the other case being entirely similar.
Since w is bounded, from (2.17) it follows that (yν)ν∈N is bounded. Therefore, there
exists a subsequence, which we still denote by (yν)ν∈N, converging to some ȳ > 0 and
such that f ′(w(yν)) → f ′(w(ȳ)). Then θ+

yν (τ) → θ+
ȳ (τ) and hence x = θ+

ȳ (τ) which
gives a contradiction.

Now, let (ξ1, ξ2) be the connected component of B(τ) containing ξ. Then as above
there exists y > 0 such that θ−y (τ) = ξ1 and θ+

y (τ) = ξ2. Let t1 > t2 be such that
θ−y (t1) = θ+

y (t2) = 0. Then clearly it must be (t2, t1) = Iν , y = xν , and

xν − ξ
T − τ =

xν
T − s = θ̇s

for some ν ∈ N and s ∈ (t2, t1). Thus by (3.26) one has θs(τ) = ξ.



304 FABIO ANCONA AND ANDREA MARSON

Consider now the function u : (0, T )× R+ → R defined by

u(τ, ξ) =



w(x) if (τ, ξ) ∈ A1, θ
+
x (τ) = ξ ∃ x > 0,

w(x−) if (τ, ξ) ∈ A1, θ
−
x (τ) = ξ ∃ x > 0,

ũ(s) if (τ, ξ) ∈ A1, θs(τ) = ξ ∃ s ∈ I3,
Sτψ(w(x0−), x0)(ξ) if (τ, ξ) ∈ A2, w(x0−) > 0,
0 if (τ, ξ) ∈ A2, w(x0−) = 0.

(3.29)

We claim that, for every (τ, ξ) ∈ A1, u(τ, ·) is continuous on (0, θ−x0
(τ)] and u(·, ξ)

is continuous on [τ, T ). We only give the proof of the first property, the second one
being derived in an entirely similar way. To this end we first show that u(τ, ·) satisfies
the following properties on (0, θ−x0

(τ)] :
(a) if there exists x > 0 such that θ−x (τ) = ξ, then u(τ, ·) is left continuous at ξ;
(b) if there exists x > 0 such that θ+

x (τ) = ξ, then u(τ, ·) is right continuous at ξ;
(c) if ξ ∈ B(τ), then u(τ, ·) is continuous at ξ.
Observe first that if ζ ∈ B(τ), so that θ−xν (τ) < ζ < θ+

xν (τ) for some ν ∈ N and
ζ = θs(τ) for some s ∈ Iν , then

f ′(w(xν)) = θ̇+
xν =

xν
T − τ1

ν

<
xν

T − s <
xν

T − τ2
ν

= θ̇−xν = f ′(w(xν−)).

Hence, since f ′ is strictly increasing,

w(xν) < u(τ, ζ) < w(xν−).(3.30)

We now prove (a). Let x, ξ > 0 be such that θ−x (τ) = ξ. Then, by (3.29) u(τ, ξ) =
w(x−). Fix ε > 0 and choose δ > 0 such that

|w(y)− w(x−)| ≤ ε ∀y ∈ (x− δ, x).(3.31)

Let ξδ = θ+
x−δ(τ). By point 1, ξδ < ξ. Then, for every ζ ∈ (ξδ, ξ),

|u(τ, ζ)− u(τ, ξ)| ≤ ε.(3.32)

Indeed, using again point 1, if ζ = θ±y (τ) for some y > 0 then y ∈ (x − δ, x) and
hence (3.32) follows from (3.31). Otherwise ζ ∈ B(τ) and (3.30) holds for some
xν ∈ (x− δ, x). Again (3.32) follows from (3.31).

The proof of (b) is entirely similar and (c) follows with an analogous argument
by using the continuity of ũ on I3 instead of the existence of right and left limits of
w.

Using (a), (b), and (c) we now derive the continuity of u(τ, ·) on (0, θ−x0
(τ)]. Indeed

if ξ = θ−x (τ) = θ+
x (τ) for some x > 0 or ξ ∈ B(τ) the conclusion is obvious. Otherwise,

assume ξ = θ−xν (τ) < θ+
xν (τ) for some ν ∈ N. Since ζ ∈ B(τ) for any ζ ∈ (ξ, θ+

xν (τ)) it
follows

lim
ζ→ξ+

u(τ, ζ) = lim
ζ→ξ+

b

(
xν − ζ
T − τ

)
= b

(
xν − ξ
T − τ

)
= b(f ′(w(xν−))) = u(τ, ξ);

i.e., u(τ, ·) is right continuous at ξ, and hence continuous as well by (a). In a similar
way it can be shown that if ξ = θ+

x (τ) > θ−x (τ), then u(τ, ·) is continuous at ξ.
In order to prove that u is a weak entropic solution of (1.1) in the region A1, we

now show that u is locally Lipschitz continuous. As above we prove only that, for
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every τ ∈ (0, T ), u(τ, ·) is locally Lipschitz continuous on (0, θ−x0
(τ)). Observe first

that, with the same arguments of Step 1, from the definition of u it follows

D+
ξ u(τ, ξ) ≤ f ′(u(τ, ξ))

ξf ′′(u(τ, ξ))

for any 0 < ξ < θ−x0
(τ). Hence, to derive the Lipschitz continuity of u(τ, ·) it suffices

to show that locally there exists a constant C1 ≤ 0 such that

D−ξ u(τ, ξ) ≥ C1 ∀ ξ ∈ (0, θ−x0
(τ)).(3.33)

If D−ξ u(τ, ξ) ≥ 0, there is nothing to prove. Otherwise let τ < T ′ < T be fixed. Since
by construction

u(t, ξ + f ′(u(τ, ξ)))(t− τ) = u(τ, ξ) ∀ t ∈ [τ, T ], (τ, ξ) ∈ A1,(3.34)

for every ζ ∈ (0, θ−x0
(τ)) there exists a unique z = z(ζ) ∈ (0, θ−x0

(T ′)) such that

ζ = z + f ′ (u(T ′, z)) (τ − T ′), u(T ′, z) = u(τ, ζ).

Observe that

D−ξ u(τ, ξ) = lim inf
z→z(ξ)

u(T ′, z)− u(T ′, z(ξ))
(z − z(ξ)) + [f ′(u(T ′, z))− f ′(u(T ′, z(ξ)))] (τ − T ′)

= lim inf
z→z(ξ)

(
z − z(ξ)

u(T ′, z)− u(T ′, z(ξ))
+
f ′(u(T ′, z))− f ′(u(T ′, z(ξ)))

u(T ′, z)− u(T ′, z(ξ))
(τ − T ′)

)−1

.

(3.35)

Choose a sequence (zν)ν∈N converging to z(ξ) such that

D−ξ u(τ, ξ)

= lim
ν→+∞

(
zν − z(ξ)

u(T ′, zν)− u(T ′, z(ξ))
+
f ′(u(T ′, zν))− f ′(u(T ′, z(ξ)))

u(T ′, zν)− u(T ′, z(ξ))
(τ − T ′)

)−1

.

(3.36)

By the continuity of u(T ′, ·),

lim
ν→+∞

f ′(u(T ′, zν))− f ′(u(T ′, z(ξ)))
u(T ′, zν)− u(T ′, z(ξ))

= f ′′(u(T ′, z(ξ)))

and hence

lim
ν→+∞

zν − z(ξ)
u(T ′, zν)− u(T ′, z(ξ))

does exist. Call ` its value. We observe that ` ≤ 0. In fact, assume by contradiction
that ` > 0. For ν sufficiently large

u(T ′, zν)− u(T ′, z(ξ))
zν − z(ξ)

> 0.(3.37)
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Let ξν = zν + f ′(u(T ′, zν))(τ −T ′). Hence ξν → ξ as ν → +∞. Since f ′ is increasing,
(3.34) and (3.37) imply

u(τ, ξν)− u(τ, ξ)
ξν − ξ

=
u(T ′, zν)− u(T ′, z(ξ))

ξν − ξ
> 0,

which contradicts the assumption on D−ξ u(τ, ξ). By (3.36)

D−ξ u(τ, ξ) ≥ 1
f ′′ (u(T ′, z(ξ)))(τ − T ′) ,

proving (3.33).
Since u is locally Lipschitz continuous, then it is a.e. differentiable on A1 and

by construction it satisfies ut + f ′(u)ux = 0 a.e. Moreover by definition it is a weak
entropic solution to (1.1) in A2. Now observe that, for any t ∈ [0, T ], u(t, θ−x0

(t)−) =
w(x0−) since u(t, ·) is left continuous at θ−x0

(t). On the other hand, if w(x0−) > 0
then one has w(x0−) = Stψ(w(x0−), x0)(θ−x0

(t)−) = Stψ(w(x0−), x0)(θ−x0
(t)+) since

θx−0
is a minimal backward characteristic of S(·)ψ(w(x0−), x0). If w(x0−) = 0 then

u(t, θ−x0
(t)+) = 0. Thus u(t, θ−x0

(t)−) = u(t, θ−x0
(t)+) for any t ∈ (0, T ). It follows

that u is a weak entropic solution to (1.1) in the interior of Ω. Furthermore it clearly
fulfills (1.2) in the sense of (ii) in Definition 1.

4. We claim that for any t ∈ I1 ∪ I3 ∪ I4,

lim
x→0+

u(t, x) = ũ(t).(3.38)

If t ∈ I1∪ I3 (3.38) follows by using the same arguments at point 3. Let t ∈ I4 and fix
ε > 0. For any x ∈ (0, ε(t − τ4)) we have 0 < f ′(u(t, x)) ≤ ε. Indeed fix ξ > 0 such
that θ±ξ (τ4) = 0. By construction s ∈ I3 does not exist such that θs(t) = x. Hence
x = θ±ζ (t) for some ζ > 0 and f ′(u(t, x)) = f ′(w(ζ±)). If f ′(u(t, x)) > ε, then there
exists τ > τ4 such that θ±ζ (τ) = 0, thus contradicting (3.20). If f ′(u(t, x)) ≤ 0, then
θ±ζ and θ±ξ would intersect in the interior of Ω. Hence limx→0+ f ′(u(t, x)) = 0, so that
(3.38) holds. Moreover since f ′(ũ(t)) > 0 for every t ∈ I1 ∪ I3, it follows that

lim
x→0+

sgn f ′(u(t, x)) = 1 ∀ t ∈ I1 ∪ I3 ∪ I4.(3.39)

Thus if t ∈ I1 ∪ I3 ∪ I4, then u satisfies the boundary condition related to ũ in the
sense of Definition 1. If t ∈ I5 such a boundary condition is fulfilled by construction.
Hence u solves (1.1)–(1.3) with ũ as in (3.25). Now we show that

lim
t→T−

∫ +∞

0
|u(t, x)− w(x)| dx = 0.(3.40)

Let (tν)ν∈N be an arbitrary increasing sequence converging to T . Then∫ +∞

0
|u(tν , x)− w(x)| dx =

∫ x0

0
|u(tν , x)− w(x)| dx+

∫ +∞

x0

|u(tν , x)| dx.(3.41)

Let us estimate each term in the right-hand side of (3.41). Concerning the first term
we show that

lim
ν→+∞

u(tν , x) = w(x) ∀ x ∈ (0, x0).(3.42)
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In fact, let ε > 0 be given and fix δ > 0 such that |w(y) − w(x)| ≤ ε whenever
x ≤ y < x + δ. Let τ < T be such that θ−x+δ(τ) = x (such a τ does exist since
f ′(w(x)) ≥ x/T ). We claim that if tν > τ then |u(tν , x)− w(x)| ≤ ε. Assume first
x ∈ B(tν). Then θ−xk(ν)

(tν) < x < θ+
xk(ν)

(tν) for some k(ν) ∈ N, with x ≤ xk(ν) < x+ δ

since θ+
x , θ

±
xk(ν)

, and θ−x+δ do not intersect each other in the interior of Ω. Hence
from the above remark and (3.30) it follows |u(tν , x)− w(x)| ≤ ε. Suppose now that
x /∈ B(tν). Then with arguments similar to the previous ones we get that x = θ±y (tν)
with x ≤ y < x+ δ and u(tν , x) = w(y±). The conclusion follows easily.

Furthermore there exists C2 > 0 such that |u(tν , x) − w(x)| ≤ C2 for any x ∈
(0, x0). Hence by the dominated convergence theorem we get

lim
ν→+∞

∫ x0

0
|u(tν , x)− w(x)| dx = 0.(3.43)

Concerning the second term in the right-hand side of (3.41), observe first that if
w(x0−) = 0, then f ′(0) ≥ x/T , due to (2.17). Hence u(tν , x) = 0 for any x ≥ x0 since
x0 +f ′(0)(tν−T ) ≤ x0. Otherwise, t 7→ Stψ(w(x0−), x0) is continuous as a map from
[0, T ] into L1(R+) and STψ(w(x0−), x0)(y) = 0 whenever y ≥ x0. By combining this
with (3.41) and (3.43) and by the arbitrary choice of (tν)ν∈N, we obtain (3.40).

3.3. Proof of Remark 2.4. As in Remark 2.3 the boundedness of w together
with (2.19′) imply that w has finite total increasing variation (and hence total increas-
ing variation as well) on sets bounded away from the origin. Thus we can assume that
w has left and right limits at every point and is right continuous. Moreover (2.19′)
implies that w(x−) ≥ w(x). Next observe that (2.19′) holds iff the function

γ : x 7→ w(x)−
∫ x

c

f ′(w(ξ))
ξf ′′(w(ξ))

dξ, c > 0,(3.44)

is nonincreasing on R+ and hence iff

D+γ(x) ≤ 0 ∀ x > 0.(3.45)

Now we show that

D+γ(x) = D+w(x)− f ′(w(x))
xf ′′(w(x))

.(3.46)

If x > 0 is a point of continuity for w then

D+γ(x) = lim sup
h→0

[
w(x+ h)− w(x)

h
− 1
h

∫ x+h

x

f ′(w(ξ))
ξf ′′(w(ξ))

dξ

]

= D+w(x)− f ′(w(x))
xf ′′(w(x))

.

Otherwise since w is right continuous and w(x−) > w(x),

lim sup
h→0+

[
w(x+ h)− w(x)

h
− 1
h

∫ x+h

x

f ′(w(ξ))
ξf ′′(w(ξ))

dξ

]
= D+w(x)− f ′(w(x))

xf ′′(w(x))
,

lim sup
h→0−

[
w(x+ h)− w(x)

h
− 1
h

∫ x+h

x

f ′(w(ξ))
ξf ′′(w(ξ))

dξ

]
= −∞,

which imply (3.46).
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4. Proof of Theorem 3. We will give the proof of the statement concerning
A (T,U), the one concerning A (x̄,U) being entirely similar. Let (ũν)ν∈N ⊂ U . Then,
being G bounded, by (2.9) and (2.17) there exist C,α > 0 such that

|Stũν(x)| ≤
{
C if x < α

0 if x ≥ α
∀ t ∈ [0, T ] ∀ ν ∈ N.(4.1)

Hence (ST ũν)ν∈N , (S(·)ũν)ν∈N are weak? relatively compact in L∞(R+), L∞(Ω),
respectively, so that we can assume

ST ũν
∗
⇀ w in L∞(R+),(4.2)

S(·)ũν
∗
⇀ u in L∞(Ω),(4.3)

for some functions w ∈ L∞(R+), u ∈ L∞(Ω). We shall prove that w ∈ A (T,U) and
that there exists a subsequence of (ST ũν)ν∈N converging to w in L1(R+). By (4.1)
and Remark 2.3 for every a > 0 there exists Ca > 0 such that

TV {Stũν ; [a,+∞)} ≤ Ca ∀ t ∈ [0, T ] ∀ ν.(4.4)

Moreover there exists L > 0 such that if 0 < a′ < a, then∫ +∞

a

|Stũν(x)− Ssũν(x)| dx ≤ L|t− s|Ca′ ∀ t, s > 0 ∀ ν.(4.5)

By Helly’s theorem for any fixed a > 0 there exists a subsequence
(
Stũνj

)
j∈N which

converges to some function va(t, ·) in L1
loc([a,+∞)) for every t ∈ [0, T ]. But (4.3)

implies that such a function must coincide with u and hence by using (4.1), for every
t ∈ [0, T ], the original sequence (Stũν)ν∈N converges to u(t, ·) in L1(R+). In particular,
from the convergence of (ST ũν)ν∈N to u(T, ·) and (4.2) it follows that u(T, ·) = w.
Thus to complete the proof it remains to show that u is a solution of (1.1)–(1.3)
corresponding to a boundary data ũ ∈ U .

By (4.1) and the regularity of f it can be assumed that, for every t ∈ [0, T ],
the sequence (f(Stũν))ν∈N converges in L1(R+) to f(u(t, ·)). It follows that, for any
nonnegative C1 function φ with compact support in [0, T ]×(0,+∞) and for any k ∈ R,
we obtain∫ ∫ {

|u− k|φt +
(
f(u)− f(k)

)
sgn (u− k)φx

}
dxdt

= lim
ν→+∞

∫ ∫ {
|Stũν − k|φt +

(
f(Stũν)− f(k)

)
sgn (Stũν − k)φx

}
dxdt

≥ 0.

(4.6)

Hence u is a weak entropic solution of (1.1)–(1.2) in the interior of Ω.
Next we show that the traces of the functions f(u), sgn f ′(u) at x = 0 exist

in the sense of (2.6)–(2.7). By Remark 2.1 it is sufficient to prove that u admits
in the interior of Ω the representation (2.10). Let Υν , ν ∈ N, be the traces of
f(S(·)ũν), ν ∈ N. By Remarks 2.1–2.2, for every given t ∈ [0, T ] and for any ν ∈ N,
Stũν(x) = b ((x− yν(t, x))/t) for a.e. x > 0 with yν(t, x) denoting the unique point
where the function y 7→ ΨΥν (t, x, y) defined by (2.11) attains its minimum. Since by
(2.9) and (4.1) Υν are uniformly bounded, there exists a subsequence still denoted



ON THE ATTAINABLE SET FOR SCALAR CONSERVATION LAWS 309

(Υν)ν∈N which converges weak? in L∞ to some function Υ ∈ L∞([0, T ]). Thus for
every (t, x) ∈ int Ω the sequence of maps (ΨΥν (t, x, ·))ν∈N converges uniformly to
ΨΥ(t, x, ·) and hence for all t ∈ [0, T ] and for a.e. x > 0 the corresponding minimum
points yν(t, x) being unique (see Remark 2.1) converge to the minimum point y(t, x)
of ΨΥ(t, x, ·) proving that u satisfies (2.10).

Observe now that f(ũν) are uniformly bounded, and hence it can be assumed
that

f(ũν) ∗⇀ Φ in L∞([0, T ])

for some function Φ ∈ L∞([0, T ]). Since f(ũν(t)) ∈ f(G(t)) and by (2.8) f(ũν(t)) ≤
Υν(t) for a.e. t, being f convex and G convex closed valued it follows that Φ(t) ∈
f(G(t)) and Φ(t) ≤ Υ(t) for a.e. t. Hence there exists a measurable selection ũ from
G such that

Φ(t) = f(ũ(t)), f(ũ(t)) ∈ f(G(t)), f(ũ(t)) ≤ Υ(t) for a.e. t > 0.

Since, for any t ∈ J , on bounded subsets of L∞ the functionals y 7→
∫ t

0 qi(s, y(s)) ds,
i = 1, . . . , N , are sequentially lower semicontinuous w.r.t. weak convergence on L1

(see Theorem 3 in [10]), it follows that ũ ∈ U . Therefore, to prove that u fulfills (iii)
in Definition 1, it remains to show that Υ(t) = f(ũ(t)) whenever µ(t) ≥ 0, with µ
denoting the trace of sgn f ′(u) at x = 0 as defined in (2.7). Assume that µ(t) = 0.
Then there exists δ > 0 such that f ′(u(t, x)) = 0 whenever x ∈ (0, δ) \ F , so that
Υ(t) = f(b(0)) = f(ũ(t)).

Now consider the set

P .= {t ∈ [0, T ] : µ(t) = 1}(4.7)

and assume that P has positive measure. Let µν be the trace of sgn f ′(S(·)ũν) as
defined in (2.7). We claim that

lim inf
ν→+∞

µν(t) ≥ 0 for a.e. t ∈ P.(4.8)

Indeed, suppose that (4.8) does not hold. Then there exists P ′ ⊆ P with positive
measure such that for every t ∈ P ′ there is a subsequence (µνk(t))k∈N of (µν(t))ν∈N
such that µνk(t) = −1 for all k. This means that, for any such t, f ′(Stũνk(x)) < 0
for x sufficiently close to zero. Hence by (2.17), since genuine characteristics do not
intersect in the interior of the domain, it follows that Stũνk(x) = 0 for every x > 0
and hence f ′(0) < 0. Fix R > 0 and define

R .= {(t, x) ∈ P ′ × [0, R] : f ′(u(t, x)) > 0} .(4.9)

Clearly meas(R) > 0. Let 0 < ε < meas(R)/2. By Egoroff’s theorem there ex-
ists R′ ⊂ R such that meas(R \ R′) < ε and S(·)ũν converges uniformly to u on
R′. Therefore, if (t, x) ∈ R′, for ν sufficiently large Stũν(x) ≥ b(0) which gives
a contradiction since f ′(0) < 0 implies 0 < b(0) by the convexity of f . Hence
limν→∞ (f(ũν)(t)−Υν(t)) = 0 for a.e. t ∈ P. Since f(ũν) ∗

⇀ f(ũ) and Υν
∗
⇀ Υ

in L∞, we get f(ũ)(t) = Υ(t) for a.e. t ∈ P.

5. An application. When modelling traffic phenomena in first approximation
we find it is reasonable to treat a flow of traffic on a highway as a continuum with
an observable density u(t, x) equal to the number of cars per unit length and a flux
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f(t, x) equal to the number of cars crossing the point x per unit time. Making the
assumption that at each point x the flux f is a function only of the density u at x
leads to the conservation law (see [9])

ut + [uυ(u)]x = 0,(5.1)

where υ(u) represents the velocity of the cars as a function of their density. In
practice one often takes υ(u) = a1 ln(a2/u) for suitable constants a1 and a2. Consider
the problem of minimizing the mean time which occurs in driving through a stretch
of the highway between an entry at a point x = 0 and an exit at a point x = x̄ by
controlling the density ũ(t) of cars entering the highway at time t equal to the value
of u at the boundary x = 0. Suppose that at time t = 0 no cars are on the stretch
of highway [0, x̄]. Let g(t) be the number of cars arriving at x = 0 per unit of time.
We may assume that g is a continuous function with compact support. Let um be
the maximum density, i.e., the value for which the cars are bumper to bumper. Then
there are quite natural assumptions that can be made on the boundary data ũ:

(i) the net flux of cars entering the stretch of highway must be equal to the total
number of cars arriving at the entry:∫ +∞

0
ũ(s)υ(ũ(s)) ds =

∫ +∞

0
g(s) ds;(5.2)

(ii) at any time t > 0 the total number of cars which have entered the highway
until that moment must be less than or equal to the total number of cars that have
arrived at the entry in the same period of time:∫ t

0
ũ(s)υ(ũ(s)) ds ≤

∫ t

0
g(s) ds;(5.3)

(iii) the maximum number of cars entering the highway must be less than or equal
to the maximum density of cars allowed on the highway:

ũ(t) ∈ [0, um];(5.4)

(iv) after a period of time sufficiently large no cars enter the highway:

ũ(t) = 0, t > τ, ∃τ > 0.(5.5)

Then if (t, x) 7→ Stũ(x) denotes the solution to (5.1), (1.2), (1.3), we will be
interested in minimizing the difference between the average incoming time of cars at
x = x̄ and at x = 0:(∫ +∞

0
t Stũ(x̄)υ (Stũ(x̄)) dt−

∫ +∞

0
t g(t) dt

)(∫ +∞

0
g(t) dt

)−1

,(5.6)

which clearly is equivalent to the minimization problem

min
ũ∈U

∫ +∞

0
t Stũ(x̄)υ (Stũ(x̄)) dt,(5.7)

where the admissible set U consists of all L∞ functions ũ satisfying (5.2)–(5.5) for a.e.
t > 0. Here we have a strictly concave flux f(u) = uυ(u). Since it is not restrictive to
consider boundary data with characteristics entering the domain R+ × R+, one can
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assume that ũ ∈ [0, b(0)] ⊆ [0, um] for a.e. t > 0 and for any admissible boundary
data ũ. Moreover by the basic structure of a solution to (1.1)–(1.3), from (5.5) it
follows that Stũ(x̄) = 0 for a.e. t > τ + x̄ b(0)/f(b(0)) .= τ ′. Therefore problem (5.7)
can be restated

min
ũ∈U

∫ τ ′

0
t Stũ(x̄)υ

(
Stũ(x̄)

)
dt,(5.8)

where U is a set of the form (2.23), q being the identity map and G the multifunction

G(t) =

{
[0, b(0)] if t ≤ τ ′,
{0} otherwise,

with an additional constraint given by (5.2). Observe that the compactness of the
attainable set A (x̄,U) still holds in connection with such an admissible set of bound-
ary controls as it follows from the proof of Theorem 3. Thus, since the map u 7→∫ τ ′

0 t u(t)υ(u(t)) dt is continuous as a functional from {u ∈ L∞([0, τ ′]) : ||u||∞ ≤
b(0) } into R w.r.t. the L1-norm, by Corollary 1 problem (5.8), admits a solution.

6. Appendix. Here we extend the L1-contraction property (2.12) established in
[14] for piecewise continuously differentiable solutions of the mixed initial boundary
value problem (2.1)–(2.3) to the class of all solutions associated with every initial and
boundary data in the domain

D .=
{

(ū, ũ) ∈ L∞(R+) ∩ L1(R+)× L∞(R+) : ũ(t) ≥ b(0) a.e. t
}
.

In the following we denote Tt : L∞ → L∞, t > 0, the translation operator, i.e.,
Ttũ(s) .= ũ(t+ s) ∀s > 0.

THEOREM 4. Let f : R → R be a continuously differentiable strictly convex
function. Then there exists a continuous map S : R+ × D → L∞(R+) with the
following properties:

(i) S0(ū, ũ) = ū, Ss+t(ū, ũ) = Ss
(
St(ū, ũ), Ttũ

)
∀s, t > 0;

(ii) ‖St(ū, ũ)− St(v̄, ṽ)‖
L1(R+)

≤ ‖ū− v̄‖
L1(R+)

+ ‖f(ũ)− f(ṽ)‖
L1([0,t])

∀t > 0;
(iii) each trajectory t → St(ū, ũ) yields the unique solution (in the sense of

Definition 1) to the initial boundary value problem (2.1)–(2.3).
Proof. For any given R > 0 consider the set

DR
.=
{

(ū, ũ) ∈ D : ‖ũ‖∞ ≤ R
}

endowed with the product topology of L1(R+)× L1
loc(R+). Then to prove Theorem

4 it suffices to show that for any R > 0 there exists a continuous map S : R+×DR →
L∞(R+) satisfying (i), (ii), (iii).

Let D̂R be the set of couples (ū, ũ) ∈ DR of piecewise constant functions (with
finite number of discontinuities). Observe first that any solution of (2.1)–(2.3) asso-
ciated with initial and boundary data in D̂R is piecewise continuously differentiable.
Then for every (ū, ũ) ∈ D̂R let Ŝt(ū, ũ) be the value at time t of the solution to (2.1)–
(2.3) which, by Remark 2.2, is unique, admits a representation of the form (2.10),
and satisfies the L1 contraction property (ii). Since D̂R is a dense subset of DR the
continuous flow Ŝ : R+ × D̂R → DR can be uniquely extended by continuity to a
continuous map S : R+ × DR → DR satisfying (ii) as well. Thus the proof will be
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completed if we show that t→ St(ū, ũ) admits a representation of the form (2.10) for
every (ū, ũ) ∈ DR.

Let (ūν)ν∈N , (ũν)ν∈N, (ūν , ũν) ∈ DR, be two sequences of piecewise constant
functions such that

ūν → ū in L1(R+),(6.1)

f(ũν)→ f(ũ) in L1
loc(R+).(6.2)

Then by previous arguments, for every fixed t > 0, one has

St(ūν , ũν)(x) = b

(
x− yν(t, x)

t

)
for a.e. x > 0, yν(t, x) denoting the unique minimum point for the function
y 7→ ΨΥν (t, x, y) defined by (2.11) in connection with the trace Υν at x = 0 of
f
(
S(·)(ūν , ũν)

)
. Observe that by (2.9) Υν are uniformly bounded. Thus there exists

a subsequence still denoted (Υν)ν∈N which converges weak? in L∞ to some function
Υ ∈ L∞(R+). Therefore, for every x > 0 the sequence of maps (ΨΥν (t, x, ·))ν∈N con-
verges uniformly to ΨΥ(t, x, ·). This implies that for a.e. x > 0 the corresponding min-
imum points yν(t, x) being unique (see Remark 2.1) converge to the minimum point
y(t, x) of ΨΥ(t, x, ·) and hence

(
b ((x− yν(t, x))/t)

)
ν∈N converges to b ((x− y(t, x))/t)

for a.e. x > 0 proving that St(ū, ũ) satisfies (2.10).
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