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A Short Course in Difference Methods

Computation will cure what ails you.

Clifford Truesdell, The Computer, Ruin of Science
and Threat to Mankind, 1980/1982

Although front tracking can be thought of as a numerical method, and
has indeed been shown to be excellent for one-dimensional conservation
laws, it is not part of the standard repertoire of numerical methods for
conservation laws. Traditionally, difference methods have been central to
the development of the theory of conservation laws, and the study of such
methods is very important in applications.

This chapter is intended to give a brief introduction to difference methods
for conservation laws. The emphasis throughout will be on methods and
general results rather than on particular examples. Although difference
methods and the concepts we discuss can be formulated for systems, we
will exclusively concentrate on scalar equations. This is parily because we
want to keep this chapter iniroductory, and partly due to the lack of general
results for difference methods applied to systems ol conservation laws.

3.1 Conservative Methods

We are interested in numerical methods for the sealar conservation law in
one dimension. (We will study multidimensional problems in Chapter 4.)




64 3. A Short Course in Difference Methods

Thus we consider

ug + flu}e =0, Ulemn = Ug- (3.1}

A difference method is created by replacing the derivatives by finite
differences, e.g.,

Au o Af{u)

At Ax

Here At and Ax are small positive numbers. We shall use the notation

U = u{jAs, nAty and U" = (U'jK, c U >U}}) ,

=0. (3.2)

where v now is our numerical approximation to the solution of {3.1}. Nor-
mally, since we are interested in the initial value problem (3.1), we know
the initial approximation

e

g

-K<ji<K,

and we want to use (3.2) to calculate U™ for n € N. We will not say much
about boundary conditions in this book. Often one assumes that the initial
data is periodic, i.e.,

Ulgr; =Ulkyy for0<j<2K,
which gives Ul = Uj., ;. Another commonly used device is to assume

that dpf{n} = 0 at the boundary of the computational domain. For a
numerical scheme this means that

f (UfK_j) =f({U’gk) and f (U}}_j) = f(Ug) forj>0.

For nonlinear equations, explicit methods are most common. These can be
written

Un-i—l = (Un, . Un—l) (33)
for some function G.

¢ Example 3.1 {A nonconservative method).
If f(u) = u?/2, then we can define an explicit method

At
et A (S (3.4)

el =g - '
J M Ax ? 7

I U is given by

0 for 7 <0,
pr={0 frg
1 for 7 >0,

then U = U? for all n. So the method produces a nicely converg-
ing sequence, but the limit is not a solution to the original problem.
The difference method (3.4) is based on a nonconservative formulation.
Henceforth, we will not discuss nonconservative schemes. &
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We call a difference method conservative if it can be written in the form

+1 _ 7L
Ut = Gy Ult) o)
=UP = MFUL,,  Ufy) —F (U o U 4)),
where
Al
A —_ "A_';'];.

The function F is referred to as the numerical flux. For brevity, we shall
often use the notation

G(U,j) =G (Uj—-I—pa e 1Uj+q) H
F(U,_]‘) = F(U}'_p,.,. }UJ‘_{_,’),
so that (3.5} reads
+1 _ LAY ; LAY R -
U =GUY ) =U] = AU 5) - F{UYG - 1))
Conservative methods have the property that U is conserved, since

i K
Yo UrttAz =Y UpAz — At(F (U™ K)~ F (U™ K —1)).
G=—if j=—K
If we set U:? equal fo the average of up over the jth grid cell, i.e.,
o 1 fUFDAE

iT A 10 up(z) dz,

and for the moment assume that £ (U™ K} = F ({I7*; - K — 1), then
]U“(w} dz = /’lln(!]})d{l,‘. (3.6)
A conservative method is said to be consistent if
Elu,...,u) = flu). (3.7)
In addition we demand that #' be Lipschitz continuous in all its variables.

& Example 3.2 (Some conservative methods).

The simplest conservative method is the upwind scheme

FUj) = 7T{U;)- (3.8)
Another comnmon method is the Laz—Friedrichs scheme, usually written
1 1
n-+3 J T
Uj - ‘2‘ (U?+1 +UJT'1~1) - ’2‘)\ (f( ;14—1) —f ( jl—l)) - (3'9)

In conservation form, this reads

> 1 it n l 1 n
U™ 3) = 55 (UF = Ufa) + 5 (F(UF) + £ (U7a))
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Also, two-step methods are used. One is the Richtmyer lwo-step Laz—
Wendroff scheme:
. i n | e n n
U5 =1 (5 (Uj+1 +Uj ) —A (f ( j+1) -7 (Uj ))) : (310)

Another two-step method is the MacCormack scheme:

Pia) = (£ 07 =2 Wh) = F O+ @)

The Godunov scheme is a generalization of the upwind method. Let iy
be the solution of the Riemann problem with initial data

ur for x <0
4j(2,0) = Ui‘ fOI‘“‘— :
'y forxz>0.

The numerical flux is given by _
F(U; §) = £ (i(0, At)). (3.12)

To avoid that waves from neighboring grid cells start to interact be-
fore the next time step, we cannot take too long time steps At. Since
the maximun speed is bounded by max |f'(u)|, we need to enforce the
requirement that

A f ()] < 1. (3.13)

The econdition (3.13) is called the Courané—Friedrichs-Lewy (CFL)
condition. If all characteristic speeds are nonnegative (nonpositive),
Godunov’s method reduces to the upwind (downwind) method.

The Lax-Friedrichs and Godunov schemes are both of first order in the
sense that the local truncation error is of order one. (We shall return
to this concept below.) However, both the Lax—Wendroff and MacCor-
mack methods are of second order. In general, higher-order methods are
good for smooth solutions, but also produce solutions that oscillate in
the vicinity of discontinuities. On the other hand, lower order methods
have “enocugh diffusion” to prevent oscillations. Therefore, one often uses
hybrid methods. These methods usually consist of a linear combination
of a lower- and a higher-order method. The numerical flux is then given

by
F{U; §) =8(U; NFLUs 3) + (L= (U3 5)) Far (U3 4), (3.14)

where Fy, denotes a lower-order numerical flux, and Fy a higher-order
numerical flux. The function 8{U; j) is close to zero, where U is smooth
and close to one near discontinuities. Needless to say, choosing appropri-
ate @’s is a discipline in #s own right. We have implemented a method
(calied fluzlim in Figure 3.1) that is a combination of the (second-order)
MacCormack method and the (first-order) Lax—Friedrichs scheme, and
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this scheme is compared with the “pure” methods in this figure. We,
somewhat arbitrarily used
1
b+ IAj.AmUl '
where A; A.I7 is an approximation to the second derivative of U with
respect to x,

8(U; ) =1

Uj+1 — 2UJ + Uj41
Ax? ’

AjagU =

Another approach is to try to generalize Godunov’s method by replacing
the piecewise constant data " by a smoother function. The simplest
such replacement is by a piecewise linear function. To obtain a proper
generalization one should then solve a “Riemann problem” with linear
initial data to the left and right. While this is difficult to do exactly, one
can use approximations instead. One such approximation leads to the
following method:

g 1 ! 7
F™ ) = 5 {g; + gir1) — E—XAUJ' )

Here AU = UL, — UL, and

1
g5 = FaF Py

237
where
W = MinMod (AU} |, AUP)
u?+1/2 - %f’ (U7 uj,
and

MinMod(a, b) 1= % (sign {a) + sign (b)) min (|}, {5} .

This method is labeled slopelim in the figures. Now we show how these
methods perform on ftwo test examples, In both examples the Hux
function is given by

7
T
-

The example is motivated by applications in oil recovery, where one offen
encounters flux functions that have a shape similar to that of f; that
is, f* > 0 and f’{u) = 0 at a single point w. The model is called the
Buckley-Leverett equation. The first example uses initial data

{1 for z < 0,

Jw) = {3.15)

ug{x) = {3.16)

0 for z > 0.
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Figure 3.1. Computed solutions at time ¢t = 1 for Aux function (3.15) and inisial
data (3.16).

In Figure 3.1 we show the computed solution at time ¢ = | for all meth-
ods, using 30 grid points in the interval [-0.1,1.6], and Az = 1.7/29,
At = 0.5Az. The second example uses initial data

{1 for @z € [0,1],

0 otherwise,

up(z) = (3.17)
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and 30 grid points in the interval [—0.1,2.6], Az = 2.7/29, Af = 0.5Az.
In Figure 3.2 we also show a reference solution computed by the apwind
method using 500 grid points. The most notable feature of the plots
in Figare 3.2 is the solutions computed by the second-order methods.
We shall show that if a sequence of solutions produced by a consistent,
conservative method converges, then the limit is a weak solution. The
exact solution to both these problems can be calculated by the method
of characteristics. ¢

The local truncation error of a numerical method La; is defined
(formally) as

Lax) = (S{At)u. — Sy (At)u) (z), (3.18)

where S(t) is the solution operator associated with (3.1); that is, u = S{t)ue
denotes the solution at time t, and Sy (t) is the formal solution operator
associated with the numerical method, i.e.,

Sn(At)u(z) = u(x) — A(F () - Flu; i —1)).

To make matters more concrete, assume that we are studying the upwind
method. Then

At
Sy (Atyu(z) = u(z) — o () = flulz - A2))).
We say that the method is of kth order if for all smooth solutions w(z, ),

[Lai(z)] = O (AtF)

as At — 0. That a method is of high order, k > 2, usually implies that it
is “good” for computing smooth solutions.

¢ Example 3.3 (Local truncation error).

We verify that the upwind method is of first order:

L) = o (ule, 04 A0) —ule) + £2( (@) - Flule - Az)))
)2

1
At(u+Atut }-( gy + oo —

(Aa)?

_/\(f"(u) (wumAfc_y Um‘i‘"')

) (~uzm+~--)2))

(L\t (e + flu)z) + (A;) g

AtA:L

(v f (1) + £ (u)uZ) 4. )
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Lice-Friedrichs method Upwind method
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Figure 3.2. Computed solutions at time ¢ = 1 for flux function (3.15} and initial
data {3.17).

= e f(e + 3 (B — A (), + O ((40))

Ax
= Ug + f(u)_r -+ —2‘ {A’U,tt — (f’(u)uy)l) + O ((At)Q) .
Assuming that u is a smooth solution of (3.1), we find that

U = ((fl(“))guz)zy
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and inserting this into the previous equation we obtain

Lai= gy g PWOS) - D) + O (A0, (319

Hence, the upwind method is of first order. The above computations were
purely formal, assuming sufficient smoothness for the Taylor expansion
to be valid. This means that Godunov’s scheme is also of first order,
Similarly, computations based on the Lax—Triedrichs scheme yield
L= e D (AP0 - 1)u) +O (aF). (320)
2
Consequently, the Lax—Friedrichs scheme is also of first ovder. From the

above computations it also emerges that the Lax—Friedrichs scheme is
second-order accurate on the equation

At 5
uy + flu)y = o3l (1= (Af (un®) “-'”):c . (3.21}
This is called the model equation for the Lax~Friedrichs scheme. In crder
for this to be well posed we must have that the coefficient of Ugz ON the
right-hand side is nonnegative. Hence

Aff(u)] < 1. (3.22)

This is a stabilify restriction on X, and is the Courant-FriedrichsLewy
(CFL) condition that we encountered in (3.13). The model equation for
the npwind method is

At
ot flue = oo (Flu) (1= Af (w)) ua)), (3.23)
In order for this equation to be well posed, we must have f/{u} > 0 and
Aff () < 1. ¢

From the above examples, we see that frst-order methods have model
equations with a diffusive term. Similarly, one finds that second-order meth-
ods have model equations with a dispersive right-hand side. Therefore, the
oscillations observed in the computations were to be expected.

From now on we let the function ua, be defined by

uad{z,t) = UJ, (z.t) € [1Az, (7 + 1)Az) x [nAt, (n + 1)A). (3.24)
Observe that

f’i-'»m(i', tydr = Az E UY, for nAt <t < (n+ 1)Af
7 7
We briefly mentioned in Example 3.2 the fact that if ua; converges, then the

limit is a wealk sclution. Precisely, we have the well-known Lax—Wendroff
theorem.

Theorem 3.4 (Lax—Wendroff theorem). Let ua; be computed from a
conservative and consistent method. Assume that TV (upy) is uniformly
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bounded in At. Consider a subsequence uay, such that Aty — 0, and as-
sume that ua;, converges i Li. s Aty — 0. Then the limii is a weak
solution fo (3.1).

Proof. The proof uses summation by parts. Let (2, t) be a test function.
By the definition of U}”'l?

S5 ptenta) (077 -0

n=0j=—oc
At o o
"—EZ EJ ?(Tj:fn) (F(Zj a])iF(( 1j_1)):
Y n=0j=-co

where z; = jAx and £, = nAt, and we choose T' = NAf such that ¢ =0
for ¢t > T. After a summation by parts we get

o0

LY 0 3 3 ot el U

j=—n0 Jj=—rmon=1

At N oo B "
AZ’—LZ Z {(10((1:_7'.;_1,1,1)——(P(fi?j,fn))l‘ (U ;j):U'

Y n=0j=—0s

Rearranging, we find thaf

AeA.~i i @(«Ej,fn)“i,ﬁ(ﬂfj.,tn,;) [ﬂ’
o At J

n=1 j=-oc
! @ (i1, ta) — 0 (%5, t0) R
F ( e (L")

[ee)

=—Ax > w0 Uy, (3.25)

j=—o0

This almost looks like a Riemann sum for the weak formulation of (3.1},
were it not for F. To conclude that the limif is a weak solution we must
show that .

N o0

Atdz Y S |FWUTH) - FU) (3.26)

n=1j=—o0

tends to zero as At — 0. Using consistency, we find that (3.26) equals

Atﬁtz Z [P (U7 Ug) = F (U UT)

n=1j=—o0
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wlich by the Lipschii.z continuity of F is less than

AfAIMZ Z Z Tk~ Jnl

n=1j=—0o¢ k=—p

N oo
( g—1)+ p(p~1)AtA1Mz Z IU” |

n=1j=—00

t\,[l—-

<P+ ) A M TV, (upay) T

where M is larger than the Lipschitz constant of F. Therefore, {3.26) i
small for small Az, and the limit is a weal sclution.

-y

We proved in Theorem 2.14 that the soluiion of & scalar conservation law in
one dimension possesses several properties. The corresponding properties
for conservative and consistent numerical schemes read as follows:

Definition 3.5. Let ua; be computed from a conservative and consistent
method.

o A method is said o be total variation stable' if the total variation of U®
is uniformly bounded, independently of Ax and At.

@

We say that a numerical method is total variation diminishing (TVD) if
TV (U < TV (UP) for elln € Ny.

A method is called monotonicity preserving if the initial dota is monotone
implies thet so is U™ for alln € N,

@

o A numerical methed is called L-contraetive if it 45 L -contractive [sic/],
e fuaddt) — va(ll; < ead0) — va(0)lf, for all ¢ > 0. Here vas
s another solution with initial data vg. Alternatively, we can of course

write this as

Z IU;1+I _ IC‘";_]i < Z iU]n = V-’n] , n € Ng.

i i

k-4

A method is seid {o be monotone if for initial data U° and V°, we have
Y] 0 N . I F1 : s I
U7y <V, jeZ = U<V jeZ,nel
The above notions are strongly interrelated, as the next theorem shows.
Theorem 3.6, For conservative and consistent methods the following hold:

(1) Any monotone method is L'-contractive, assuming ua,(0) —wva {0} €
LY(R).

(i) Any L'-conlractive method is TVD, assuming that T.V. (up) is finite.

(iit) Any TVD method is monotonicily preserving.

IThis definition is slightly different from the standard definition of T.V. stable
methods.




74 3. A Short Course in Difference Methods

Proof. {i) We apply the Crandali-Tartar lemma, Lemma 2,12, with Q@ = R,
and D equal to the set of all functions in L' that are piecewise constant
on the grid AzZ, and finally we let T(U/°) = U™ Since the method is
conservative (cl. {3.6)), we have that

SNur=Y U, or /T(UD) :[U“ = ]UO.
ki i :
Lemma 2.12 immediately implies that

luar — vadll, = A’LZ |Ur — VP < AIEZ o7 - VJGE
= {lua(0} — vac (O,

{i1) Assune now that the method is L'-contractive, i.e.,

Sl -y < Sl - v

2 M

Let V" be the numerical solution with initial data
Vi(} = Uzp+1-

Then by the translation invariance induced by (3.5), V* = UL, for all n.
Trurthermore,

oS

TV (U) = S UR Ut = S Ut - vt
i

1
j=—o0

< ooy - vl = VL),
i
{iif) Consider now a TVD method, and assume that we have monotone
initial data. Since T.V. (Ua) is finite, the limits
Up= lim UJ‘-) and Up = lim Uj?
F——oo Jj—roo
exist. Then T.V. (UU) = |Ur— U] If U' were not monotone, then
T.V. (Ui} >|Ug —Up| =T.V. (UO), which is a contradiction. O
We can summarize the above theorem as follows:
monoctune = Ll-contractive = TVD = monotonicity preserving.

Monotonicity is relatively easy to check for explicit methods, e.g., by
calculating the partial derivatives 8G/3U7 in (3.3).

¢ Example 3.7 (Lax—Friedrichs scheme).

Recall from Example 3.2 that the Lax—Friedrichs scheme is given by

1 i
U3t = 5 Ut V) = AU (U7) = £ (U7))
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Computing partial derivatives we obtain

oyl {L=Af1ugn/2 fork=j+1,
L = C{L+AFUPN/2  fork=j—1,
0

auy

otherwise,

and hence we see that the Lax—Friedrichs scheme is monotone as long
as the CFL condition

Al <1
is fulfilled. &

Theorem 3.8, Let ug € Lt (R) have bounded variation. Assume that up,
is computed with a method that is conservative, consistent, total variation
stable, and wniformly bounded; that is,

TV. (uae) < M and JJua:ll, < M,

where M is independent of Az and At

Let T' > 0. Then {uat)} has a subsequence that comverges for all
L € [0,T] to o weak solution u(t) in L _(R). Purthermore, the limit is
in C [0, T]; Ly, (R)).

Proof. We intend to apply Theorem A.8. It remains to show that
b
] fuai(e,t) —uale,s)] de < Clt—s|+o(1), as At -0, s,t€0,T)

Consistency of the scheme implies, for any fixed Az,

Upt — U] = M| PR §) - FUR - 1)

=AEU,, U — PO, o, U )
<AL (lUF_P - Uf-:vfli +oee EU;:‘—G - ]7'1-‘-(}‘1 ’) '
from which we conclude that
lear(tna) = var(- )] = Z Ut — vy As
j=—co

S Lip+ g+ 1TV {U"} At
< Lip + g+ 1) M AL,
where L is the Lipschiiz constant of . More generally,
luaeCstm) = uar(- ta)ll; < L(p+ g +1)M jn - mj At.
Now let 7,72 € {0, T, and choose 1,1, € {nAt |0 < n < T/At} such that

0<7—1; <Atforj=12
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By construction ua:(7i) = ua:(t;), and hence

fluae(- m) —uad(-, m2)l
< uum(',ﬁ} “'Uﬂt(',fl)nl + Hitm(',fl) ‘U-At(‘:EQ)lE]
-+ ”'um( - t2) —uae(- 172)“1
S{p+o+DIM | —tol <{p+q+ DL M|n — 7| +O(At).
Observe that this estimate is uniform in 71,72 € [0,T]. We conclude that
wap — 1 in C([0, T} L (Je, b))
for a sequence At — 0. The Lax—Wendroff theorem then says that this

limit is a weak solution. O

Aj this point it is convenient to introduce the concept of entropy pairs or
entropy/entropy flux pairs.? Recall that a pair of functions (5w}, ¢(u)) with
7 convex is called an entropy pair il

a' () = f"(why' (w). (3.27)
The reason for introducing this concept is that the entropy condition can

now be reformulated using (1, ¢). To see this, assume that u is a solution
of the viscous conservation law

Uy -+ f(u‘)m = Elge- (328}

Assume, or consult Appendix B, that this equation has a unique twice-
differentiable solution. Hence, multiplying by »'(u) yields (cf. (2.10))

() + g(u)e = e (Wtior = € (7 (w)ug), — en” () (ue)” -

If o' is bounded, and 7" > 0, then the first term on the right of the above
equation tends to zero as a distribution as € — @, while the second term is
nonpositive. Consequently, if the sclution of (3.1} is to be the limit of the
solutions of (3.28) as e — 0, the solution of {3.1) must satisfy (cf. (2.12})

7{w)s +g(u)e <0 (3.29)

as a distribusion. Choosing n{u) = |u — k| we recover the Kruzkov entropy
condition; see (2.17). We have demonstrated that that if a function satisfies
{2.46) for all %, then it satisfies (3.29) for all convex n and vice versa;
see Remark 2.1. Hence, the Kruzkov entropy condition is equivalent to
demanding (3.29) for all convex .

The analogue of an entropy pair for difference schemes reads as follows.
Write

aVlb=max(a,b)] and aAD= min(a,b),

2We have already encountered an entropy pair with n{u} = ju—kf and g(u) =
sign (u — k) {f(z} — f(k)) when we iniroduced the Kruzkov entropy condition in
Chapter 2.
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and observe the trivial identity
la—bl=avb—aAb.
Then we define the numerical entropy flur Q by
QU i) =FUV ki)~ FU Ak ),
or explicitly,
QWs—pn-- Uprr)

=FUjp V. Uiy VE) = F Uy Ak, U AK).

We have that ¢} is consistent with the usual entropy fux, i.e.,
Qu,...,u) = sign (u — k) (f(u) — £(K)).

Returning to monotone difference schemes, we have the following result.

Theorem 3.9. Under the assumptions of Theorem 2.8, the approzimate
solutions computed by o conservative, consistent, and monotone difference
method converge to the entropy solution as At — Q.

Proof. Theorem 3.8 allows us to conclude that ua; has a subsequeznce that
converges in C{[0, T}; L'([a, }])) o a weak solution. It remains to show that
the limit satisfies a discrete Kruzkov form. By a direct calculation we find
that

U7 = k| = MQ U™ ) - QU™ 4~ 1)) = QU™ v kij) = GU™ Ak ).
Using that UJT"H = G(U™; §) and that k = G(k; §), the monctonicity of the
scheme implies that

GU™VE 7)) 2 GU™ j) v Gk j) = GU™ 5) V &,
=GU" Ak j) 2 ~GU™ ) NGk §) = ~G(U™; §) A k.
Therefore,

o+ =k = [ -

FAQUNH) -QUYF-1) <0 (3.30)

Applying the technique used in proving the Lax—Wendroff theorem to (3.30)
gives that the limit u satisfies

/ (Jre — Kl s + sign (uw — &) (f(u) — F(8)) @) dudt > 0.

0

Note that we can also use the above theorem to conclude the existence of
weak entropy solutions to scalar conservation laws.
Now we shall examine the local truncation error of a general conservative,
consistent, and monotone methed. Since this can be writien
n+l __ T, Y 7t Tl
Uj =GU s])‘G(Uj—p—bw-: j+q)
I i n _ n n
"UJ ’\(F( J%qi""Upr) F( j—p—l""'Uqul))’
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we write
G=0G(u,. .. uprgr1) and F=Flu1, ..., Uppq)

‘We assume that F, and hence G, is three times continuously differentiable
with respect to all arguments, and write the derivatives with respect to the
ith argument as

P:G{ua, .y Uupygr1) and O F(ur,. .., Uppg)-

Weset ;F =0ifi =0o0ri=p+ ¢+ 1. Throughout this calculation, we
assume that the jth slot of G contains UP, so that Glur, ..., Uppgr1) =
u; — Al...). By consistency we have that

Glu,...,u)=u and Flu,...,u)= flu).
Using this we find that

ptq
S o (u,. . ,u) = flu), (3.31)
i=1
BZG = Si,j — A (6E_1F bt BIF) N (332)
and
O2,G = =X (07 44 F — 0L, F). (3.33)
Therefore,
pra+l P+l
z E)iG(u, e ,'UJ) = Z 6i,j =1. (334)
i=1 i=1
Furthermore,
pt+g+l g+l
D= NAGu, ) =Y (- )iy
i=1 i=1
— A — {1 Fu,. .. ) — &:F(u,. .., u))
b+
= =AY (4 1) — O F(u,... )
i=1
= —Af'(u). (3.39)
We also find that
P+l
> {i— k)G, )
k=1
g+l
=2 ) (=R (O e Flu,. o u) ~ 2P, .. u)
ik=1
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P+q

= =2 (1)~ (R +1))2 — (i - £)%) 82, F(u, . .., u)
t,h=1

=0 (3.36)

Having established this, we now let v = u{z,t) be a smooth solution of the
conservation law (3.1). We are interested in applying G to u(z, £), i.e., to
calculate

Glulz — phw,t)... u(z,t),...,ulz + ghz, ).
Set u; = ulz + (i —jlAx,t) fori = 1,...,p+ g+ 1. Then we find that

Glug, ... s Uptatl)

ptg+l
= G(uj, “ae ,Uj) + Z BiG(uj, e ,u]') (T.Li - ’H,j)
i=1 -
1 pt+ag+l
+5 Z G2:Gluy, . uy) (s — ) (g — uz) + O (Az?)
i,k=1
pigtl
=ule,t) +ug(z, Az Y (- )30 (s, .. uy)
i=1
1 ptg+1 .
2 . .
+ iumr(m»t)Aﬂ: Zl ('E“J)Zaic(uj:“wuj)
i=
1 v+l
+ §u§($,t)m2 37 li= )k — 5)02,C (s, uy) + O (AxP)
ih=1
p+a+1
= u(z, t) + ug{z, t)Ax Z (i~ 530G {ug, ... u;)
=1
pre+l
9 3 .
+ §A59 Zl (i — 1 (3G (g, . . . ug)ug (i, th,
i=
1 ptgtl
- 5/_\.3;211_,25(2,15) Z ((z -9 - — ik - J)) E)ikG‘(u}-, c )
ik
+ O (Az?).

Next we observe, since 87, = 82 ;G and using (3.36), that
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0= (i—k)*0},G =) ((i—3)— (k—4))0,G
ik ik

=) ({1 —§)7 =20 — GHE — NG+ (k= §Y0},G

ik ik

=23 ((i— )% = (i = )k - 1))0G.

ik

Consequently, the penultimate term in the Taylor expansion of G above is
zero, and we have that

Glule - pAz, 1), ..., ule + gAa,8)) = ulz, £) — Aif(u(z, 1)),
2
+ A—;— Z(z = 2 [eG(ula, b), . .. ulz, D], + O (Az%). (3.37)
Since w is a smooth solution of (3.1), we have already established that
At? ; 2 3
wla, 4+ AL = (e, t) = Atf (W + S [0 (w) um] + 0 (A).

Hence, we compute the local truncation error as

At pratt P Y 2 pi 2
L/_\.me Z (i —3Y8C, ..., u) = X u)? | us
i=1 T
Al
=57 [Blu)u.], + O (AL). (3.38)

Thus if § > 0, then the method is of first order. What we have done so far
is valid for any conservative and consistent method where the numerical

flux function is three times continuonsly differentiable. Next, we utilize that
8;G > 0, so that +/8;G is well-defined. This means thas

pFa+1
“Afuy= Y (- D)0G (..., u)
i=1 -

p+g+1

= > (i- VGG, wWVEG, . u).
i=]

Using the Cauchy—Schwarz inequality and (3.34) we find that

E p+ag+l pHa+l
N < S (-G ..., uw) Y 8G(u,...,u)
i=1 fe=1

pto+1
= > (-G, ... u).
i=1

Thus, f{u) > 0. Furthermore, the inequality is strict if more than one term
in the right-hand sum is different from zero. If 8;G(w, ..., u} = 0 except for
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i =k for some k, then G(uy, ..., uprqr1) = ug by (3.34). Hence the scheme
is a Hnear translation, and by consistency f(u) = cu, where ¢ = (5 — k).
Therefore, monotone methods for nonlinear conservation laws are at most
first-order accurate. This is indeed their main drawback. To recapitulate,
we have proved the following theorem:

Theorem 3.10. Assume that the numerical flux F is three times continu-
ously differentiable, and that the corresponding scheme is monotone. Then
the method is at most first-order accurate.

3.2 FError BEstimates

Let others bring order to chaos.
I would bring chaos to order instead.

Kurt Vonnegut, Breakfast of Champions (1973)

The concept of local error estimates is based on formal computations, and
indicates how the method performs in regions where the sotution is smooth.
Since the convergence of the methods discussed was in L!, it is reasonable
te ask how far the approximated solution is from the true sclution in this
space.

In this section we will consider functicns v that are maps ¢ +— u(z) from
[0, 00} to L, ,NBV(R) such that the one-sided limits u(f+) exist in L., and
for definiteness we assume that this map is right continuous. Furthermore,
we assume that

lutilloe < {0}, TV (u(2)) < T.V. (u(0)).

We denote this class of functions by K. From Theorem 2.14 we know that
solutions of scalar conservation laws are in the class K.

It is convenient to introduce moduli of continuity in time (see Ap-
pendix A)

v(u,a} = sup fult+7)—u{d)],, ¢>0,
Ir|<e

viu,0) = sup wiuv,0o).
0<t<T
From Theorem 2.14 we have that

v(u,0) < [o] | fliupT-V. {uo) (3.39)

for weak solutions of conservation laws.
Now let u(z,t) be any function in K, not necessarily a sclution of (3.1).
In order to measure how far u is from being a solution of {3.1) we insert u
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in the Kruzkov form (cf. (2.19))
T
Ar(iny k) = f f (o — | ¢ -+ alu, k) ) d ds (3.40)
0
« [ lote, 1) ~ (@ T) d ¢ [ fuofa) — 41 6(a,0)

1f % is a solution, then Ap > 0 for all constants & and all nonnegative test
functions ¢. We shall now use the special test function

Nz, 2, 5,8) = wey (5 — 8wz — 27,

= 2o(2)

and w(z) is an even C*° function satisfying

where

0<w<1, wz)=0 forl|z|>1, fw(n;)dn;zl.

Let v{a’, s'} be the unique weak solution of (3.1), and define

T
Ao (1, 0) :/ /AT {6, Q(-, 2", -, 8N, v{e', 5) da'ds’.
0
The comparison result reads as follows,

Theorem 3.11 (Kuznetsov’s lemma}. Let u(-,t) be a function in K,
and v be a solution of (3.1). If 0 < e¢ < T and e > 0, then

u(-, =) —o(-, D), < llug —voll, + T-V. (v0) (2¢ + ol flirip)
4+ wlu,eg) — Ag g {u, v), (3.41)
where ug = u(-,0) and vo = v(-,0).
Proof. We use special properties of the test function £, namely that
Qz,2’,8,8) =" 2,5,8) = Uz, o', 8, 5) = Q' 2, 8, 5) (3.42)
and
£, = -y, and Q.= -0y, (3.43)
Using (3.42) and (3.43), we find that

AE,ED(“:'U) "Aa 0 TJ 1.! / f Q (L‘ 7

+lv(=', Ty — ulw, 8)| ) dede’ ds

+[Of /fﬂ(:ﬁ,x',s, 0)( |vo(z’) — u(x, s)]|

+ |ug(z) — via', 5)] ) de da’ ds

W ez, T) — vz’ s)|
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= A (v, u) — A+ B.
Since v is a weak solution, A, . {v,u) > 0, and lLence
AL B - A {u,v).

Therefore, we would like to obtain a lower bound on A and an upper bound
on B, the lower bound on 4 invelving {ju(T"} - v(T)]|; and the upper bound
on B involving |lup — voil,. We start with the lower bound on A.
Let p. be defined by

pelu,v) = ]f wel(z — 2" Ju(z) — v(z"Y dode’. (3.44)

Then

T
A [ (T = ) (a0, 005) + ), o) .
Now by a use of the triangle inequality,
Julz,T) - viz', s)ll + u(z, s) — v(z, T)]
> |ulz, T — viz, T)| + [ufz, T) — vlz, T)|
— oz, T) — v(z', T)| - jufz, T) — u(z, s)|
— o{z", T) — v(a', 8)| — ez, T) — v(z', T)].
Hence
p=(u(T),v(8)) + pe(uls), v(T)) 2 2fu(T) — (T}, — 2o (w(1),v(T))
= 1(T) — uls)lly = Iw(T) — vi{s);.

Regarding the upper estimate on B, we similarly have that

T
B~ [y (5) o, o)) + peuls), vl ds,
0
and we also obtain
pe(uo, v{s)) + pelu(s), vo) < 2Hug — voll; + 2p:(vo, vo)
+ fluo — u(s)fy + llvo — v{s)]];-

Since v is a solution, it satisfies the TVD property, and hence
p(v{T),v(T)) = // welz) u(x + 2, 1) — v(z, T)| dzdx
< / we(z) sup (/ (e +2,T) — vz, T d:u) dz

—& lzi<e
=le} | wel2)TV. (w(T)) dz < || T.V. (zp),

—-E
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using (A.10). By the properties of w,

T T 1
/ we(T — s)ds = / we(s)ds = -
0 0 2

Applying (3.39) we obtain (recall that £ < T')
T
[ el = ) = w(s) s
l g
< / we (T = 8) (I' = 8)|| fliLipT.V. (vo) ds
0

1
< oll flun ™V (00)

and
4 1
|| @@l = ol ds < Geol Flas V- uo).
Similarly,
r 1
| walT = ) = o)y ds < o (o)
0
and

[ waloliun = (ol ds < Jv o).

If we collect all the above bounds, we should obtain the statement of the
theorem, O

Observe that in the special case where u is a solution of the conservation law
(3.1), we lmow that A. ., (u,v) > 0, and hence we obtain, when £,69 — 0,
the familiar stability result

flu -, T) —o(, Dy < fluo — o],

We shall now show in three cases how Kuznetsov’s lemma can be used to
give estimates on how fast a method converges to the entropy sclution of

(3.1).
¢ Example 3.12 (The smoothing method).

While not a preper numerical method, the smoothing method provides
an example of how the result of Kuznetsov may be used. The smoothing
method is a (semi)numerical method approximating the solution of (3.1)
as follows: Let ws(z) be a standard mollifier with support in [~4, 6}, and
let t, = nAt. Set u? = ug +ws. For 0 < ¢t < At define w! to be the
solution of {3.1) with initial data «%. If At is small enough, «! remains
differentiable for £ < At. In the interval [(n — 1}At, nAt), we define u™
to be the sclution of (3.1), with w™ {z, (n — DAL) = w1+ t,~) % w;s.
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The advantage of doing this is that «® will remain differentiable in
for all times, and the sclution in the strips If,,, tnt1) can be found by,
e.g., the method of characteristics. To show that «” is differentiable, we
calculate

[ st - )y

1 T.V.

< STV (u™ Htno1)) < M.

i} )

Let p(t) = maxg |ug(z,t)|. Using that u is a classical solution of (3.1),
we find by differentiating (3.1) with respect to z that

uz (s tn-1)] =

tat + f' (Wit + [ (w)ul = 0.
‘Write
1i{t} = uz(zo(t), £),
where 2¢(1) is the locatien of the maximum of ju,}. Then
1 () = vaa(20(t), ) wo(2) + ze{zo(f), £)

< ter(o(t),2) = —J" () (uswo(t), 1))

< enft)?,
since gy = 0 at an extremum of u,. Thus

W (t) < e (8), (3.45)

where ¢ = || f"|| .. The idea is now that (3.45) has a blowup at some
finite time, and we choose At less than this time. We shall be needing
a precise relation between the At and § and 1nust therefore investigate

(3.45) further. Solving (3.45) we obtain

p(tn) < TV {un)
e (tn) (E—tn) = 6 — cT.V. (ug) At’

lt) < 7

So if
<9
cTV. (ug)’

the method is well-defined. Choosing At = §/(2¢T.V. (1)) will do.

Since u is an exact solution in the strips [t tni1), we have

At (3.46)

[ ZESY
/ f (e — K| bt + qlas, k)bs) di i
tn

+f (]u(a:, tnt) — k| @z, tn) — [ulz, tni1—) — kl olz, t,,+3)) dzr > 0.
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Summing these inequalities, and setting k = v(y, s) where v is an exact
solution of (3.1), we cbtain

Ar(u, @, 0(p, 8)) > Z [ (2,9, ) (fule ) — vy, 5)
~ 0@, ta=) — v{y,3)] ) da,

where we use the test function Q(z,y.t,s) = we (t — s)welz — y).
Integrating this over y and s, and letting ¢p tend to zero, we get

N-1
B inf Ae,eg(16,2) 2 = 3 (pe(ultn+), v{ta)) — pelaeltn=), v(ta))).

Using this in Kuznetsov’s lemma, and letting ey — 0, we obtain

l(T) —w(T)]; < fluo — u0|[1 + 2TV, {ug) (3.47)
N—-1
+ Z (pe(u(tat), v{ta)) — pefu(ta=) v(ta)}])
n=0

where we have used that lim., 0¥ (4,20} = 0, which holds because u
is a solution of the conservation law in each strip [, £u41)-

To obtain a more explicit bound on the difference of v and v, we
investigaie p.(ws % v, v) — pe(u, v), where p. is defined by (3.44),

pelu s ws,v) = peu) < [[ flzm we(z — y)lz) ( Jule + 62) — ()
— |u{z) — v(u)|) dedydz
1
=5 [[] e et oz et
x (ule +82) — (y)| — fu(z) - o(y)]) dody dz,

which follows after writing [ff = 1 [ff+2% [[f and making the
substitution * — z — dz, 2 — —z in one of these integrals. Therefore,

pelie w5, ) — pul, v) < f]]l ey + 62) — wely)

w(z) fu(z + 62) — ulz)| dedy dz

< %T Awe) TV, (1) 62
52

3.2. Error Estimates 87

by the triangle inequality and a further substitution y — z — 7. Since
= 1T'/At, the last term in (3.47) is less than

NTV. (up) ‘g < (T.V. (ug))” QCTg,
using (3.46). Furthermore, we have that
£|u0 - “0”1 < STV, (up) .
Letting K = T.V. (ug) ¢, we find that

(D) = w(T)]l, < 2T.V. (ug) [o Fet K_Té] ,

using {3.47}. Minimizing with respect to £, we find that

u(T) — (T, < 2T.V. (up) (6 + 2V KT4). (3.48)
So, we have shown that the smoothing method is of order 3 in the
smoothing coefficient 4. ¢

¢ Example 3.13 {The method of vanishing viscosity).

Another (semi)numerical method for (3.1) is the method of vanishing
viscosity. Here we approximate the solution of (3.1) by the sclution of

w + f{u), = Ougs, >0, (3.49)

using the same initial data. Let u® denote the solution of (3.49). Due to
the dissipative term on the right-hand side, the solution of (3.49) remains
a classical (twice differentiable) solution for all £ > 0. Furthermore, the
solution operator for {3.49) is TVD. Hence a numerical method for (3.49)
will (presumably) not experience the same difficulties as a mumerical
method for (3.1). If (1,¢) is a convex entropy pair, we have, using the
differentiability of the solution, that

u)e + q(u)s = 87 (w)itge = 6 ((W)ay — 7 (w)ul) .

Multiplying by a nonnegative test function ¢ and integrating by parts,
we get

J[ et atwen) @iz s [ [ntrapeia
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where we have used the convexity of 7. Applying this with n = !u - u|
and g = F(u® 1) we can bound lim., o Accy (u®,u) as follows:

— lim A (1, )
—0

€0
T Owe(z —y) E)lu‘g(m,t)ﬁu(y,tﬂ
< :
_6]; /f‘ o } g dx dy dit

<5fT// Bz —y) | | Dub(z, 1)
~ Jo bz Oz

ngxﬁoﬁ)Tg

de dy di

< ATT.V. (ug) g

Now letting €5 — 0 in (3.41) we obtain

[ (T) = w(@)]], < min (zg + QTTCS) TV. (1) = 2T.V. (ug) V'T3.

So the method of vanishing viscosity also has order % ¢

¢ Example 3.14 (Monotone schemes).

We will here show that monotone schemes converge in L! to the solution
of (3.1) at a rate of (Af)/2. In particular, this applies to the Lax—
Friedrichs scheme.

Let ua, be defined by (3.24), where UZ is defined by (3.5), that is,

+1 n -
U]n ——U}lg/\( (Uj p?"'!U_’?-i-p') -‘F( ;‘l_.lfpa"':Ujﬂﬁlﬁ»p’))’
(3.50)
for a scheme that is assumed to be monotone; cf. Definition 3.5. In the

following we use the notation

ny = {07 — K|,

ap =f (U vE) - fFUFAE).
‘We find that

—Ap{uae, 9, k)

Tit+1 plats
- Z j f (nfdel(m,8) + qf o2, 5)) dsdz

n=0

-Z/ 1)1 m0d$+2/ d}xT)
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[ f T (B, tas) — Bl 1)) d

n=0"

Zj41 T4
f 773 Az, 0) dz —] Uji-vd)(m,T) dz
T

)
N-1

-E—Z /HH (zﬁ_l,s‘}— (’Lj,S))dS}

n=0 *in

Ej1
i) [ b ) o

ot

+ (g7 —a5-1) dzj, ) ds)

tn

N 1

n:0

by a summation by parts. Recall that we define the numerical entropy
flux by

QF = QW™j) = FU™V k) - FU™ Ak )

Monotonicity of the scheme implies, cf. {3.30), that
-t + MQF - Q) <0

For a nennegative test function ¢ we obtain

—hp{une, ¢, k)

N-1 _—
<X (@ - @ [ st
7 n=0 xj

trgl
+ g5 — q;'l—l)/ dlz;,8)ds
tn

Z IZV:I { Tit+2 Ej+1
- q @’}(rb; in ) dx — e, in dz
- 5y (/m +1, 4T fT CRAY )

n= di+1 xj
) n Fatt i
+{q; ~qj_])(/; oz, 8)ds — /\/ i, tnar)dz ||,
n -’1‘3

We also have that

1QF | <20 flliy Z Ul — U7,

m=—p

and

¢ =i < 2 fllep [UR - TR,
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which implies that

_AT('U'AI' 3 @: lk)
< 2l Z [( > 105w - U3)
7 m=-p

i+l

X f |¢J)(T + A"Eatn’%l) - ([{J(.T-',tu_(_})l dx

z;
Flur -]
tnt1 Tkl

X j Py, s)ds — )\/ Pl tag ) dz| |

in T;

Nexi, we subtract ¢{z;,f,) from the integrand in each of the latter two
integrals. Since At = AAx, the extra terms cancel, and we obtain

—Ar{uns, &, k) (3.51)
<SS S |(5 -0
j n=01 m=-p

Zj+1
X f [¢(x 4+ Az, tnga) — G, aga)| dz

i

tnt
+ U}~ U (/ﬂ |(as, 8) — ¢lag, ta)| ds

Tit1
2 [ ol ) - plesta) o ) .

Vg

Let v = v(x,t) denote the unique weak solution of (3.1), and let & =
v(x', 5"). Choose the test function as ¢(z, §) = we (¥ — ' )we, (5 — 5'), and
observe that

T
/ / lwe(z + Az — z') — welz — a")| we, (E, — &) dz' ds’
0o Jr
A
<AZTV. (we) < z—““

Similarly,

T At
f f welz; — 1) weg (5 = 8) — wey (i — 87)| da’ ds’ < 2—,
0 JR €0

whenever |s — t,} < At, and

Iy

we(m — 2 Yweg (Eny1 — &)
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—welw; — T Nwe, (b —

)| d' ds <2(At A‘”),

€0 €
Integrating (3.51) over (', s'} with 0 < &' < T we obtain

"AE,ED (uAt: ’U)

s v Az
<Al D {Z > Ufsm ~UF| A0

n=0 j m=-—p

+Z Un (AtAt—l—/\(A,B —%)A:L)

j2h}
< 4§|f[Er ;pT V. (UAt(G))
x Z

1 1
SETTYV. (ua(0)) (£ + =) At
&

Sy +1)2(Ab) (& )2+)\((Aw)2+AzAt

&g 1= £p

)

for some constant i, by using the estimate

1
> Z Uim — U] < 5e+p HD)ITV.(U).

j m=-p

Recalling Kuznetsov’s lemma
luae(T) = v(T); < fluae(0) - volly + T.V. (vo) (2 + eol| fffuip)
+ % (vr(ean o) + voluar, €0)) ~ Acy.
We have that
TV. (uasl-,1)) < TV (ua(-,0))
and
v (ua, e} < IG (At +e) TV, (uac( -, 0)).
Choose the initial approximation such that
Heeai(0) —voll, < AzT.V. (vg).
This implies
fleadT) —w(D)l
< TV. () (Az + 2¢ + &0 FllLip)
+ T.V. (uac,0)} (Kl(Af. +eg) + KTAt (% + %))

TAL TAL
<I(2TV (’U()}{Aﬂ-f-c-}‘—————l‘ 0-{7—-}
€n
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Minimizing with respect to £¢ and £, we obtain the final bound
luse(T) = w(T)ll, < KiT.V. () (At + 4\/TAt) . (3.52)

Thus, as promised, we have shown that monotone schemes are of order
(A2, ¢

If one uses Kuznetsov's lemma to estimate the error of a scheme, one
must estimate the modulus of continuity # (u, o) and the term A ¢ {u, v).
In other words, one must obtain regularity estimates on the epprovimation
u. Therefore, this approach gives a posteriori error estimates, and perhaps
the preper use for this approach should be in adaptive methods, in which it
would provide error control and govern mesh refinement. However, despite
this weaknass, Kuznetsov's theory is still actively used.

3.3 A Priori Error Estimates

We shall now describe an application of a variation of Kuznetsov's ap-
proach, in which we obtain an error estimate for the method of vanishing
viscosity, without using the regularity properties of the viscous approx-
imation. Of course, this application only motivates the approach, since
regularity of the solutions of parabolic equations is not diffieult to obtain
eisewhere. Nevertheless, it is interesting in its own right, since many dif-
ference methods have (3.53) as their model equation. We first state the
resulf.

Theorem 3.15. Let v(z,t) be a solution of (3.1) with initial value vy, and
let © solve the equation

1w + flu}e = (H{u)ua),, u(z, 0} = ug(z), (3.53)

in the classical sense, with §(u) > 0. Then

la(T) — w(T)ly < 2fjuo — voll, +4T.V. (vo) /8T,

where
6], = sup & (v{w—, 1), v(z+, t})
£€§0,T)
TER

and

~ b
&a, b) = ﬁf &(c) de.

This result is not surprising, and in some sense is weaker than the corre-
sponding result found by using Kuznetsov’s lemma. The new element here
is that the proof does not rely on any smoothness properties of the function
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u, and is therefore also considerably more complicated than the proof using
Kuznetsov’s lemma.

Proof. The proof consists in choosing new A’s, and using a special form of
the test function . Let w®™ be defined as

W (z) = 1 for |z| €1,
0 otherwise.

‘We will consider a family of smooth functions w such that w — w™. To keep
the notation simple we will not add another parameter to the functions w,
but rather write w — w™ when we approach the limit. Let

@, 0.4, 8) = we(® — Ylwe, (t — 5)
with we{z) = (1/a)w(z/e) as usual. In this notation
o= {0 G
In the fellowing we will use the entropy pair
nu, k) = [u— k[ and  q(u, k) =sign (u — &) (f(u) - f(£)),

and except where explicitly stated, we always let u = u(y, s) and v = v{z, ).
Let 5j,(u, &) and g,(x, k) be smooth approximations to n and g such that

To(w) > n(w) aso—0, go(u k)= j iz — K () — F(k) de.

I'or a test function ¢ define

Aflu, k) = /OT fﬁfr(u —k) (us + flu)y — (J(R)uy)y) wdyds

(which is clearly zero because of (3.53)) and

A (u,v) :fOTfA‘}{u,v(fc, t)) da dt.

Note that since u satisfies (3.53), AZ_ = 0 for every v. We now split AZ

£,E0

into two parts. Writing (cf. (2.10))
(st f () — (6(wrey )y )l (u — &)
= — K)o+ ((F(0) — 1B = By — (5ot  B)
=T {u — k)s + go(u, K)uuy — (6(w)uy)yng (u — &}
= 1o — k)s + o {u, k)y — (0(u)no(u — k) )y + 07 (u - k)é(u,)(uy)z
= ot — k)s + (g0 (u, k) — {u)na (w — k) )y + 0" (u = k)S(u)(u,)?,




94 3. A Short Course in Difference Methods

we may introduce

A (u,v) = / /f f?;‘,u—v o(u)(uy)zgodydsda:dt,

Ad(u,v)

- /T f fT/ (na(u — )5 4+ {go (2, v) — {uln, (v~ v)y)y) wdy ds dz dt,

such that AZ_ = A{ + AJ. Note that if §{u} > 0, we always have A > 0,

€,80

and hence A < 0. Then we have that

Ay :=limsup AJ <0.

g—0

To estimate Aq, we integrate by parts:
Aq(u, v)

- ]:_/]DT] (=nlw —v)ps — a(u, v)oy + V(u,v)py,) dydsdedt
+ ];f] n(u{T) — v)pls=r dyrl:r:dt—fonfn(uU — )plamo dy du dt

_ [:ff;/ (0t = 0)epr + F(aty 0) 0w — V{at, 0)epny) dy ds dxdt

T T
+ [ o) = oplertyisa- [ [ (a0 - v)ele-o dy ot
JO ]

where

U
V{u,v) :f §{s)n'(s —v)ds
i
Now define {the “dual of Ay™}

ST = st vyt
-/ [ w7 awayas

Then we can write

A'Z = —1\;

//f 2(u(T) — v)¢)|s=r dy da dt
/ [ (o =)o dy v

([)2
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v ' [[ = vi20) e awayas
v
— f:/f (n(o — vo)@) |izo dz dy ds

By
=1 —A;+ D.
‘We will need later that
O =Al+ Ay <AJL (3.54)
Let
¢
Qe (D) :/ We, (8) ds
0
and

e(t) = ful(t) —v{)f; = /1](15(:1:, ) — viz, 1)) da.
To continue estimating, we need the following proposition.

Proposition 3.16.

T T
® 2 Qe (T)e(T) = Qo (T)e0) + [ w7 = et~ [ wrgltetiy
0 0
— A8 (T (ol fllnip + £) T-V. {vg) -
Proof (of Proposition 3.16). We start by estimating ®;. First note that

n(uly, T) — v(z,1)) = |u(y, T} — v(x, t}]
> |uly, Ty — oy, T)
= vy, T} — vy, )] = vy, t) — v{z, )|
=nlu(y,T) —o(y,T))
=y, T) — vy, )] — oy, 1) — vlz,t)].

T
o2 [ [ [, 1) - o Tl dy o
]

T
- ] / oy, T) — vy, 2)| o dy da

/ /]'” Y1) — vz, )] @lsmr dy do dt

2 e (T)e(T) — Qe (T) (20l flluip + &) T-V. (0) -

Thus
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Here we have used that v is an exact solution. The estimate for ®4 is similar,
yielding

Py > 0y (T)e(0) — Qe (T) (eoll fllnip + ) T-V. (w0} -
To estimate ®3 we proceed in the same manner:

n(u(y, s) — v(z, T)) = nluly, s) — vly, s)) — |v(y, s) — v(z, s}
- iv(a:, S) - ’U(E)T)l -

This gives

T
Oy > fo weo (T — t)e(t) db — o (T) (0]l fhLip -+ €) T-V. (%),

while by the same reasoning, the estimate for ®4 reads

T
By > —/ weg(B)e(t) db — Qo {T) (|| [l Lipeo + ) T.V. (wg) .
0
The proof of Proposition 3.16 is complete. O
To procead further, we shall need the following Gronwall-type lemma:

Lemma 3.17. Let @ be a nonnegative function thal salisfles

Q22 (7)0(r) + fDT weolr — )8t dt < C QI () + fuTchf(t)B(t) dt, (3.55)

0

for aill 7 € [0, T} and some constant C. Then
6(r) < 2C.

Proof (of Lemme 3.17). If v < gg, then for £ € [0, 7}, wP (1) = wi(r~1) =
1/(2ep). In this case (3.55) immediately simplifies to 8(t) < C.
For 7 > g9, we can write (3.55) as

1 €0
HT§C+—-—~] weo(ty — wor{r — t}) 8(8) di.
()< 0t gy | (0 ezt - 0) )

For t € {0, gp] we have 6(t) < C, and this implies

1 ‘o
o) < C (1 + Tf (W) — w2 (r — 1) dt) <2
Qg (7)) Jo
This concludes the proof of the lemma. 1

Now we can continue the estimate of e(T}.

Proposition 3.18. We have that

AZ
B(T) S QE(Q) + 8 (E + EG”fEELip}T-V- {'U[]} 4+ 2 lim sup { 2{“’: U) i
w=w o) Qege (t)
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Proof (of Proposition 8.18). Starting with the inequality (3.54), using the
estimate for ® from Proposition 3.16, we have, after passing to the limit
w — w™, that

T T
Q2 (Me(T) + fo W (T —tye(t) dt < QZ(E)e(0) + /@ wi{tye(t) dt
+4Q2(8) (e + coll flLip) T-V. (w0}

0
+02(T) Hm_ sup Aiw,v)

(1 O (€[0,T] Qgg’(t) ’

We apply Lemma 3.17 with

C =4(e+ eol| fllLip) T.V. (vg) + lim_ sup A3(u,v)

+e{0
ww™ oy 22(t) ©

to complete the proof. O

To finish the proof of the theorem, it remains only to estimate

lim  sup As(u,v)
wow ey §{t)

We will use the following inequality:

‘V(u,uﬂ—V(u,v“} Sv--riv— /7 5(s) ds. (3.56)

pt —op-

Since v is an entropy solution to (3.1), we have that

T ;T
AL < —/ // /V(u,v}apzy dy ds dx dt. (3.57)
0 0 .

Since v is of bounded variation, it sullices fo study the case where v is
differentiable except on a countable number of curves z = z(t). We shall
bound A} in the case that we have one such curve; the generalization to
more than one is straightforward. Integrating (3.57) by parts, we obtain

T
A% S/ fﬁ’(y, s)dyds, (3.58)
0

where U is given by

T a(t)
Ty, 5) :/ ( Viu, v)y vatpy de
W —co
vi f =
+ 2= leyle=z + Vi, vl Utpy da ) dt.
o [rlamstn + V() vy do)
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As before, [a] denotes the jump in a, ie., {af = a(z(@)+,1) — alz()—,1).
Using {3.56}, we obtain

z{t}

T
*‘mﬂm[Wyh:zuﬂ-kjtZIMAlwyidz)dt

Let D be given by
T
D{a:,t):/ /!apy| dy ds.
Jo

A simple calculation shows that

T T
D(z,t) = éfo wey {t — 8) dsf|w'(y)| dy < é/o wey [t — 8) ds.

T 1 T T
/ sup D{z,t)dt < = / f ey (t — s}dsdt
0o = &Jo Jo

2 (T :
-2 /O (T = e, {£) di

< ZTQ(T).
. €
Inserting this in (3.59), and the result in (3.58), we find that

Consequently,

Aj(u, 0, T) < -i—TT.V. (vo) |61, Q(T).
Summing up, we have now shown that
e{T) < 2e(0) + 8 (e + eoll flip) T V. {wo) - LEITT.V. {vo) 1511,
We can set €p to zero, and minimize over £, obtaining
() — w(T), < 2o — voll, +ATV. (v0) BT},
The theorem is proved. O

The main idea behind this approach to getting a priori error estimates, is
to choose the “Kuznetsov-type” form A, ., such that

Aceo(u,v) =0

for every function », and then writing A, ., as a sum of a nonnegative and
a nonpositive part. Given a numerical scheme, the task is then to prove a
discrete analogue of the previous theorem.
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3.4 Measure-Valued Solutions

You try so hard, but you don't understand . ..
Bob Dylan, Ballad of a Thin Man (1965}

Monotone methods are at most first-order accurate. Consequently, one
musé work harder to show that higher-order methods converge to the en-
tropy solution. While this is possible in one space dimension, i.e., in the
above setting, it is much more difficult in several space dimensions. One
useful tool to aid the analysis of higher-order methods is the concept
of measure-valued solutions. This is a rather complicated concept, which
requires a background from analysis beyond this book. Therefore, the pre-
sentation in this section is brief, and is intended to give the reader a first
flavor, and an idea of what this method can accomplish.

Consider the case where a numerical scheme gives a sequence U2 that
is uniformly bounded in L*°(R x [0, co}), and with the L'-norm Lipschitz
continuous in time, but such that there is no bound on the total variation.
‘We can still infer the existence of & weak limit

Uap =,
but the problem is to show that
Fluas) = Flu).
Here, we have introduced the concept of weak-* L° convergence. A se-

quence {u,} that is bounded in L is said to converge weakly-+ to  if far
allv e LY,

/1Ln?1 dz — /uv dx, asn-— co.

Since uay is bounded, f (ua:) is also bounded and converges weakly, and
thus

f(u'At) - fT:

but f is in general not equal to f(u). We provide a simple example of the
problem.

$ Example 3.19.
Let u, = sin(nz) and f(u) = «2. Then
i
i/sm(m:)(p(z) de| < = ‘/cos{nm)g&'(m} dz
n

On the other hand, f{u,) = sin?(nz} = (1 — cos(2nx))/2, and hence a
similar estimate shows that

f(f(un) - %)ip(l) dx

C
< — —{asn— oo
7

< — 0 as n — oco.

¢
n
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3.5 Notes

The Lax—Friedrichs scheme was introduced by Lax in 1954; see [94]. Go-
dunov discussed what has later become the Godunov scheme in 1959 as a
method to study gas dynamics; see [60]. The Lax—Wendroff theorem, Theo-
rem 3.4, was first proved in [97]. Theorem 3.8 was proved by Oleinik in her
fundamental paper [110}; see also [£30]. Several of the fundamental results
concerning monotone schemes are due to Crandall and Majda [39], [38].
Theorem 3.10 is due to Harten, Hyman, and Lax; see {62].

The error analysis is based on the fundamental analysis by ICuznetsov,
[89], where one also can find a short discussion of the examples we have
analyzed, namely the smoothing method, the method of vanishing viscosity,
as well as monotone schemes. OQur presentation of the a priori estimates
follows the approach due to Cockburn and Gremaud; see {31] and [32],
where also applications to numerical methods are given.

The concept of measure-valued solutions is due to DiPerna, and the key
result, Corollary 3.2, can be found in [45], while Lemma 3.25 is to be
found in {44]. The proof of Lemma 3.25 and Remark 3.26 are due to .
Hanche-Olsen. Our presentation of the uniqueness of measure-valued solu-
tions, Theorem 3.24, is taken mainly from Szepessy, [134]. Theorem 3.27 is
due to Coquel and LeFloch, [35]; see also [36], where several exiensions are
discussed.

Fxercises

3.1 Show that the Lax—Wendroff and the MacCormack methods are of
second order.

3.2 The Engguist-Osher (or generalized upwind) method, see [46], is
a conservative difference scheme with a numerical flux defined as
follows:

F(U;§) = f*°(U;,Uj), where

v

ED(y p) = ) x(F'(s 5 min( [ .
10,0 = [ max(s'(2),0)d + [ min((5),00ds + £(0)

. Show that this method is consistent and monotone.
. Find the order of the scheme.
. Show that the Engquist-Osher flux fE© can be written

o = 5 (1w+10) - [ 10l as).

. If f{u) = w?/2, show that the numerical flux can be written

B ="l

ol

FEO(u,v) = é {max(u, 0)* + min(v, 0)?%).
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Generalize this simple expression fo the case where f(u) # 0
and limjy| o | f(u)f = co.
3.3 Why does the method

Uptt =up -~ Az (J (Ufsa) — 7 (U10)

not give a viable difference scheme?

3.4 We study a nonconservative method for Burgers’ equation. Assume
that U} € [0,1] for all j. Then the characteristic speed is nonnegative,
and we define

+1 _ 50 +1 T n
Uit =08 = AP UT - U2 ), n>0, (3.89)
where A = At/Az.

a. Show that this yields a monotone method, provided that a CFL,
condition holds.

b. Show thai this method is consistent and determine the frunca-
tion error.

3.5 Assume that f'(u) > 0 and that f”(u) > 2¢ > 0 for all u in the range
of 1y, We use the upwind method to generate approximate solutions

to

w4+ flu)e =0, ulz,0) = u(z); (3.90)
i.e., we set

Ut = UF = A (F(UF) = FUF-) -
Set

e - gr
Vi = 2 J=1
i Ax '

a. Show that

VI = (L AU D) V4 AP OV
At " n " :
2 (f (1j—1/2) (V] )+ f (75-3/2) (V;i‘)z) ’

where n;_1 9 is between U? and Ur,.

b. Next, assume inductively that

1

VI ; ]
77 (n+ 2)eAt’ for all j,

and set V™ = max(macx; VI, 0). Then show that

e e (i)
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c. Use this to show that
e VO
14 VoAt
d. Show that this implies that
70
UP — UP < Aafi— J)—
1+ VO0enit
fori > j.

e. Let u be the entropy solution of (3.90), and assume that 0 <
maxy uh(r) = M < oo, show that for almost every @, ¥, and ¢
we have that

w{z, 1) — uiy,t) < M
T—y = 1+4cMt’
This is the Oleinik entropy condition for convex scalar conser-
vation laws.

(3.91)

3.6 Assume that f is as in the previous exercise, and that wp is periodic
with period p.
a. Use uniqueness of the entropy solution to (3.90) to show that
the entropy solution u{z,#) is also periedic in x with period p.
b. Then use the Oleinik entropy condition {3.91) to deduce that

X Mp
sgpu(m, t) — lgfu(:c,t) < 1o oME

Thus lim;_, o u(z,t) = 4 for some constant @.
c. Use conservation to show that

T [P
4=~ / ug(z) de.
PJa

3.7 Assume that g(z) is a continuously differentiable lunction with period
2. Then we have that the Fourier representation

glz) = a—; + }: (ax cos(kz) + by sin(kz))
E=1

holds pointwise, where

1 2
1 2 e =5 g(z) cos(kz) dz,

ap = :f g(z)dz and ) 02w
e by, = 57?_/; g{z)sin(kz) dz,

for k& > 1.
a. Use this to show that
a
g(nz) > g
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b. Find a rvegular measure v such that for any continuousty
differentiable h,

h(sin{nz)) = /h(/\) dv(\).

Thus we have found an explicit form of the Young imeasure
associated with the sequence {sin{nz)}.

3.8 We shall consider a scalar conservation law with a “fractal” function
as the initial data. Define the set of piecewise linear functions
D= {p(z)=Az+ B |z € e, ], A B e R},
and the map

2D(z — a) + ¢la) forz € a,a+ L/3),
Flg) = —~D{z —a) + ¢le) forxzela+ L/3,a-+2L/3,
2D{z —b)+ @by forzela+2L/3,0)],
gb € D, where I = b —a and D = (¢(b) — ¢(a))/L. For a nonnegative
integer k introduce x; 1 as the characteristic function of the interval
Le =13/3% (G +1)/3%, 5 = 0,...,3%+1 —1. We define functions {vy.}
recursively as follows. Let

0 for & <0,

T for0<z<1,
vplz) =41 for1 <z <2,

33—z for2<ax<3,

0 for 3 < z.

Assume that v;; is linear on T and let

31
V= Y UikXiks (3.92)

g3
and define the next function viy; by
ak+1_y qk+2_q

Upp1 = Z Floja)xik = Y Ujet1Xii- (3.93]
j=0 i=0

In the lelt part of Figure 3.3 we show the effect of the map F, and
on the right we show vs(z) {which is piecewise linear on 3¢ = 729
segments).

a. Show that the sequence {w;},., is & Cauchy sequence in the
supremum norm, and hence we can define a continuous function
v by setiing

v{z) = kli_’n;o ().
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4

Multidimensional Scalar Conservation
Laws

Figure 3.3. Left: the construction of F(¢) from ¢. Right: vs{z).

b. Show that v is not of bounded variation, and determine the total
variation of vy.
¢. Show that

v(5/3%) = i (5/35),

for any integers j = 0,..., 38 ke N,
d. Assume that fisa C? function on [0,1] with 0 < f/(u) < 1. We
are interested in solving the conservation law

g+ fluly =0, wolz)=v(z).

To this end we shall use the upwind scheme defined by (3.8), ' ' .
with At = Az = 1/3%, and Our analysis has so far been confined to scalar conservation laws in one
’ dimension. Clearly, the multidimensional case is considerably more impor-

Just send me the thecrems,
then | shall find the proofs.!

Chrysippus told Cleanthes, 3th century B.C.

UJ(-) = v(jAx). tant. Luckily enough, the analysis in one dimension can be carried aver to
Show that ua{z,t) converges to an entropy solution of the higher dimensions by essentially treating each dimension separately. This
conservation law z;bove technique is called dimensional splitting. The final results are very much

the natural generalizations one would expect.

The same splitting techniques of dividing complicated differential equa-
tions into several simpler parts, can in fact be used to handle other
problems. These methods are generally denoted operator splifting methods
or fractional steps methods.

4.1 Dimensional Splitting Methods

We will in this section show how one can analyze scalar multidimensional
conservation laws by dimensional splitting, which amounts to solving cne

Lucky guy! Paraphrased from Diogenes Laertius, Lives of Eminent Philosophers, c.
A.D. 200,
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Stability for some non-strictly hyperbolic systems of conservation laws
(these are really only “quasi-systems”) has been proved by Winther and
Tveito [142] and Klingenberg and Risebro [84].

We end this chapter with a suitable quotation:

This is really easy:

|what you have| < jwhat you want|

+ |what you have — what you want|

Rinaldo Colombo, private communication

Exercises

7.1 Show that the solution of the Cauchy problem obtained by the front-
tracking construction of Chapter 6 is an entropy solution in the sense
of conditions A-C on pages 267-268.

7.2 The proof of Theorem 7.8 is detailed only in the genuinely nonlinear

case. Do the necessary estimates in the case of a linearly degenerate
wave family.

N

Appendix A

Total Variation, Compactness, etc.

I hate T.V. | hate it as much as peanuts.
But | can't stop eating peanuts.

Orson Welles, The New York Herald Tribune {1956)

A key concept in the theory of conservation laws is the notion of fotal
variation, T.V. (u), of a function u of one variable. We define

TV. (u) = SupZIu (zs) —ulzi-1)|- (A1)

The supremum in (A.1) is taken over all finite partitions {;} such that
2,1 < ;. The set of all functions with finite total variation on I we denote
by BV{[). Clearly, functions in BV () are bounded. We shall omit explicit
mention of the interval I if (we think that) this is not important, or if it is
clear which interval we are referring to.

For any finite partition {z;} we can write

Z [u (21} = u(z)| = Zmﬂx (w{@ip1) —u(2:),0)

— Z min {2z (i) — ulz),0)

= p+n.

Then the total variation of u can be written

TV.(u)=P+ N :=supp+supn. (A.2)
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We call P the positive, and N the negative variation, of u. If for the moment
we consider the finite interval I = [a, z], and partitions witha =2; < .-+ <
Tn, = x, we have that

P — % = u(z) - ula),

where we write pj and nl to indicate which interval we are considering,
Hence

vy < NT +ulz) — ula).
Taking the supremum on the left-hand side we obtain
Fy — N7 <ufz) —ufa).
Similarly, we have that NZ — PF < u{a) — u(x), and consequently
u(z) = P¥ — N7 +ufa). (A.3)

In other words, any function u(z) in BV can be written as a difference
between two increasing functions,*

u(w) = us (&) — u_(2), (A.4)

where u, (z) = u{a)+ FF and u_{z) = NZ. Let £; denote the points where
u is discontinuous. Then we have thai

E:m&ﬁd—mg—ﬂgTVﬁn<a%

and hence we see that there can be at most a countable set of points where

u(§+) # w(§-).
Equation (A.3) has the very useful consequence that if a function u in
BV is also differentiable, then

f W (@)| dz = TV (x). (A.5)

This equation holds, since

f{u'(m)l dz = f(‘;gpf + iN,f) dr =P+ N =T.V.(x).

dz
We can also relate the total variation with the shifted Ll-norm. Define
Au,g) = /|u(z + &) — u(z)| da. (A.6)

If Mu,€) is a (nonnegative) continuous function in ¢ with Au,0) = 0, we
say that it is a modulus of continuity for v. More generally, we will use the
name modulus of continuity for any continuous function A(u, €) vanishing at
g = 0% such that A(w, ) > |lu{- +&) - ull,, where || - ||, is the LP-norm. We

1'This decomposition is often called the Jordan decomposition of .
2This is nol an exponent, but a footnote! Clearly, A{u,€) is a modulus of continuity
if and only if AMu,e) =0 (1) as e — 0.
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&

will need a convenient characterization of total variation {in one variable},
which is described in the following lemma.

Lemma A.I. Let w be a function in L', If Mu,e)/|e| is bounded as o
function of £, then u is in BV and -

(A7)

Conversely, if u is in BV, then Mu, e}/ |z is bounded, and thus (A.7) holds.
In particular, we shall frequently use

Mu,e) < el V. (w) (A.8)
if u is in BV,

Proof. Assume first that « is a smooth function. Let {xl} be a partition of
the interval in question. Then
@y
< lim [
e—0 i

./Zi w'{z) da

Ti-1

w(x +e) — ulx)
€

() —ulzia)l = de.

Summing this over ¢ we get

T.V. (u) < liminf Mu.€)

g0 e]

for differentiable functions u{z)}. Let u be an arbitrary bounded function
in L!, and u;, be a sequence of smooth functions such that ug(z) — w(x)
for almost all z, and |Juy, — ul}; — 0. The triangle inequality shows that

A (g, €) = A ()] < 2wy —uff, = 0

Let {z;} be a partition of the interval. We can now choose v, such that
uy, (z;) = u(w;) for all i. Then .

i . Mur,€)
Z [ee{z:) —ulx; 1) < i]fsﬁ_'lng,

Therefore,

TV.(u) < liminf A(u,e).
s
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Furthermore, we have
f]u:L+E ) —u{z)) dm—Zf uw(x + ) — u(z)| de
= z;fo |u{z + je} — u(z + (5 — 1)e}| dz

= f:ZEu(ﬁ: +jg) —ule + (f — De)| dx

< fos TV. (u)

= [e| T.V. (u).

Thus we have proved the inequalities

Alu, €) < TV (u) < hmlnf Alu€) < limsup ———2 Mu,c) <TV.(u), (A9)
l<| |Ei e—0 lel
which imply the lemma. ]

Observe that we trivially have

AMu,e) := sup Au,0) < lef T.V. {u). (A.10)
li<lel
For functions in L? care has to be taken as to which points are used in the
supremum, since these functions in general are not defined pointwise. The
right choice here is to consider only points z; that are points of epprozimate
continuity® of u. Lemma A.1 remains valid.
We include a useful characterization of total variation.

Theorem A.2. Letu be e function in L'(I) where I is an interval. Assume
u € BV(I). Then

T.V. (u) = sup -/u(a:)d)m(’c) dz. (A11)
FeCH (I lel<1

Conversely, if the right-hend side of (A.11) s finite for an infegrable
Junction u, then u € BV(I) and {A.11) holds.

3A function v is said to be approximately continuous at x if there exists a measurable
set A such that lim; g |[z —r,2+ 7] A| /|lz —r,z+7]] = 1 (here |B| denotes the
measure of the set B), and u is continuous at x relative to A. (Every Lebesgue point
is a point of approximate continuity.) The supremum (A.1} is then called the essential
variation of the function. However, in the theory of conservation laws it is customary to
use the name total variation in this case, too, and we will follow this custom here.
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Proof. Assume that v has finite total variation on I. Let w be & nonnegative
function bounded by unity with support in [—1, 1] and unit integral. Definc

= ()

£
and

uf = we * U 4 (A.12)

Consider points £; < xg < -+ <z, in I. Then

ZEUE(?Ei) = u(w-1))]
/ Zlu xy—x) —ulz;y — x| dz

<TV. (). (A13)
Using (A.5) and (A.13) we obtain
[y @) s =130
= sup Z Juf (a3) — u (@)
<TV. Eu) .

Let ¢ € C3 with J¢| < 1. Then

ffmm%mm=—]wwwwmwm

< [10Y @)l do

< TV (u),

which proves the first part of the theorem.
Now let u be such that

[[Du| = sup f’u,('b)q5$((l,) dx < oo.
$€Cy
o<1

First we infer that
- [y @i de = [w@ee
- f (we # u)(2)¢ () do

= — fu(m)(ws % ¢)' (z) dz
< Dl
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Using that (see Exercise A.1)

Il = sup [ F@)d() de,
(fgééf

we conclude that
[y @) s < 1Dl (A1)

Next we show that u € L*. Choose a sequence u; € BV N C° such that
(see, e.g., [47, p. 172)

w; —wae., |Ju-ul, =0, j— oo {A.15)

and
f [uj(@)] dw — | Dull,  j — oo. (A.16)

For any y, z we have

4

u;{z) = u;(y) +/ ug{w) dz.

y
Averaging over some bounded interval J C I we obtain

1
jwl < 57 st v+ [ ) s (A.17)
which shows that the u; are uniformly bounded, and hence u € L*°. Thus
u®(z) — ulz)

as € — 0 at each point of approximate continuity of u. Using points of
approximate continuity z; < 9 < - - < z,, we conclude that

Sl = i) = i 3 (@) v (ai0)

< limsup j (Y ()] de
< [{Dull. (A-18)
O

For a function u of two variables (z,y) the total variation is defined by

TV.gy(u)= f’[ﬂV.z (u) (¥) dy + /T.V.y (u) (z) dz. (A.19)

The extension to functions of n variables is obvious.

Total variation is used to obtain compactness. The appropriate compact-
ness statement is Kolmogorov’s compactness theorem. We say that a subset
M of a complete metric space X is {strongly) compact if any infinite subset
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of it contains a {strongly) convergent sequence. A set is relatively compaci
if its closure is compact. A subset of a metric space is called totally bounded
if it is contained in a finite union of balls of radius £ for any € > 0 (we call
this finite union an e-net). Our starting theorem is the following resuit.

Theorem A.3. A subset M of a complete meiric space X is relatively
compact if end only if it is totally bounded.

Proof. Consider first the case where M is relatively compact. Assume tha$
there exists an ey for which there is no finite gg-net. For any element uy € A
there exists an clement ug € M such that [Jus — uaf] > €¢. Since the set
{11, 2} is not an gg-net, there has to be an uy € M such that [fu; — ua]| >
ey and Jlug — us|| = 9. Continuing inductively construct a sequence {u;}
such that

s —uill Z €0, 7#K,

which clearly cannot have a convergeni subsequence, which yields a con-
tradiction. Hence we conclude that there has to exist an e-net for every
£.

Assume now that we can find a finite z-net for M for every € > 0, and let
M, be an arbitrary infinite subset of M. Construct an e-net for M, with
e=1, say {ugl), . ,ug\l,z}. Now let 11/[1(]) he the set of shose » € M such
that ||u—u§.1) | < . At least one of Ilf[l(l), e M’{N‘) has to be infinite, since
M is infinite. Denote (one of) this by M, and the corresponding element
ug. On this set we construct an e-net with € = ﬁ Continuing inductively
we construct a nested sequence of subsets My.: C My for k € N such that
M), has an g-net with £ = 1/2*, say {ugk),. .. ,ug,“z } Tor arbitrary elements
u, v of My, we have ||u — vl] < |l — ug|+ lur — vi| € 1/2872. The sequence

{ue} with ugp € My is convergent, since

1
”uk+m - ukH g '27:.':1'?

proving that M contains a convergeni sequence. O

A result that simplifies our argument is the following.

Lemma A.4. Let M be a subset of a metric space X. Assume that for
each € > (0, there is a totally bounded set A such that dist(f, A) < € for
each f € M. Then M is totally bounded.

Proof Let A be such that dist(f, A) < € for each f € M. Since A is totaily
bounded, there exist points #1,...,2, in X such that A C U}, Be(x;),
where

Be(w) ={z € X | |z -yl <e}
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For any f € M there exists by assumption some a € A such that la — f|| <
e. Furthermore, ||a — z;|| < & for some j. Thus || f — =;|| < 2¢, which proves

M Q U ng(ﬁj).
F=1

Hence M is totally bounded. O

We can state and prove Kolomogorov’s compactness theorem.

Theorem A.5 (Kolmogorov’s compactness theorem). Let M be a
subset of LP(£1), p € [1, 0o}, for some open sei ¥ C R™. Then M is relatively
compact if and only if the following ithree conditions are fulfilled:

(i) M is bounded in LP{Q), i.e.,
sup [lu]], < co.
ueM
(i) We have
llu(- + &) - ull, < A(le])

for a modulus of continuity A thai is independent of v € M {we let u
equal zero outside Q).

(iit)

lim ludz)|® do = 0 uniformly for u € M.

70 Hae|lol 2 e}
Remark A.G6. In the case {2 is bounded, condiiion (iii) is clearly
superfluous.

Proof. We start by proving that conditions (i)-{iii)} are sufficient to show
that A is relatively compact. Let ¢ be a nonnegative and continuous
function such that v < 1, ¢(z) = 1 on |z| < 1, and ¢(z) = 0 when-
ever |z| > 2. Write p.(z) = w{z/r). From condition (iii) we sece that
[ipru — uff — 0 as 7 — oo. Using Lemma A.4 we see that it suffices to show
that M, = {¢,u | u € M} is totally bounded. Furthermore, we see that
M, satisfies (i) and (ii). In other words, we need to prove only that (i) and
(ii) together with the existence of some R so that v = 0 whenever u € M
and |z| > R imply that 3 is totally bounded. Let w, be a mollifier, that
is,

wely, 0swsl, [wds=1 w=gu(l).
Then

e =l = [ s welo) ~ala)l” do
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< [ [ e =y - wlo) dyllorlas

= E"qu‘pﬁwilﬁfg f luf{z — y) — w(x)|” dr dy

P

dx

[;@m—w~mm%am@

< Enp/q—P[EWHgf max A(]z) dy
8, |z1<e

= En+np/q—z>];w;|g |B1] lm[féx Al=1),
zl<e

where 1/p+1/g =1 and
Be = B.(0) = {z € R | ||z} < e}
Thus

s we = ull, < & oll, By ymae A, (4.20)

which together with (ii) proves uniform convergence ase — 0 for v € M.
Using Lemma A.4 we see that it suffices to show that N, = {usw, | u € M}
is totally bounded for any € > 0.

Hélder’s inequality yields

|+ we (@) < Yullllwell,,

so by (i), functions in N, are uniformly bounded. Another application of
Hélder's ineguality implies

e (@) — 1w (y)] = \ Juta =)~ aly = D) az

<l + 2 —y) — ull, el

which together with (ii) proves that N is equicontinuous. The Arzela-
Ascoli theorem implies that N is relatively compact, and hence totally
bounded in C(Bg-). Since the natural embedding of C{Bg..) into LF(R™)
is bounded, it follows that N, totally bounded in L?(R™) as well. Thus we
Liave proved that conditions (i)—(iii) imply that M is relatively compact.

To prove the converse, we assume that M is relatively compaci. Condi-
tion {i} is clear. Now let & > 0. Since M is relatively compact, we can find
functions ug,. .., uy, in LP(R™) such that

M C | Beluy).
7=1

TFurthermore, since Co(R™} is dense in LP(IR™), we may as well assume that
u; € Co(R"). Clearly, Jlus(- +vy) —usll, —» 0 as y — 0, and so there is
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some & > 0 such that Jlu;(+ +y) —u;|l, < & whenever {y} < 4. Ifu € M
and |y < J, then pick some j such that |ju —u; I}p < g, and obtain

lu- +2) = ull, < flul- +2) —w(- +2),
s +2) =gl + g
= 20wy —wll, + (- +2) —wyll,
S 36:
proving (ii).
When 7 is large enough, xp,u; = u; for all 7, and then, with the same
choice of j as above, we obtain
s — ufl, <l (n — 1wl + e — gl < 2l — ugll, < 2,
which proves (iii). O

Helly’s theorem is a simple coroliary of Kolmogorov’s compaciness
theorem.

Corollary A.7 (Helly’s theorem). Let {h‘s} be a sequence of functions
defined on an interval [a,b], and assume that this sequence satisfies

TV.(R)y <M, and |B <M,

where M is some consiant independent of §. Then there exists a subse-
quence h® that converges almost everywhere io some function h of bounded
variation.

Proof. 1t suffices to apply (A.8) (for p = 1} together with the bounded-
ness of the total variation to show that condition (ii) in Kolmogorov’s
compactness theorem is satisfied. i

‘We remark thai one can prove that the convergence in Helly's theorem is
at every point, not only almost everywhere; see Exercise A.2.

The application of Kolmogorov’s theorem in the context of conservation
laws relies on the following resuit.

Theorem A.B. Let u,: R™ x [0,00) — R be a family of functions such
that for each positive T,

lug(z, 8)] < Cp, {z,) e R" x [0,T)

for a constant Cy independent of 1. Assume in addition for all compact
B CR* and fort € [0,7] that

sup [ finfa+€,8) ~ tnfz, 0] da < vpr(lo
glsleivy B
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Jor & modulus of continuity v. Furthermore, assume for s and t in [0,T)
that

/ hy (2, 1) — uple, )] de Swpr(ft — i) as— 0,
B

Jor some modulus of continuity wp. Then there exists a sequence 1; — 0
such that for each t € [0,T] the function {uy,,(t)} converges to a function
u(t) in LL _(R™). The convergence is in C{{0,T]; LL (R™).

ioe loc

Proof. Kolmogorov's theorem implies that for each fixed t € [0,77] and for
any sequence 1y — 0 there exists a subsequence (still denoted by ;) 1 — 0

such that {u,, (£)} converges to a function w(t) in L (R™).

Consider now a dense countable subset & of the interval {0, T]. By pos-
sibly taking a further subsequence (which we still denote by {u,,}} we find
that

/ g, (2,8) —ulz,t)| dv — Oasm; — 0, fort € E.
B

Now let € > 0 be given. Then there exists a positive § such that wB'T(S) <g
for all § < ¢ Fix ¢ € [0, 7). We can find a t;, € F with [{; — ¢} < §. Thus

fB|u,~,(a:, 1) — uzlm, i) de Swprt— ) <eforij<n
and
-/B |u,?j1 (m,th) — gy, (:L',tk}| dz < e for ny,,n5, <nand ty, € B
The triangle inequality yiclds
j;? |ten,, (@, 8) — wny, (,1)] da
< fB iu,,n(:v,t} - u,,jl(.'x,t;c)f da:—%—fB |u,?j1 (z,tr) — tn,, (IL',f,k)| di
+L In.% (,15) — un,, (a:,t)! dz
< 3,

proving that for each ¢ € [0, T} we have that u,{f) — u(t) in L{,,(R"). The
bounded convergence theorem then shows that

sup f iz (,2) — u(z, )] dzdt — 0asn— 0,
tcfo, T} /B

thereby proving the theorem. O
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but with different flux functions. Let « and v be the weak solutions of
ue -+ flu)e =0, v +g(v)e =0 (2.62)
with initial data
u forz <0,
i, for z > 0.

u(z, 0} = v{z,0) = {

We assume that both f and g are continuous and piecewise linear with
a finite number of breakpoints. The solutions w and v of (2.62) will be
piecewise constant functions of x/t that are equal outside a finite interval
in x/t. We need to estimate the difference in £ between the two solutions.

Lemma 2.11. The following inequality holds:
i}
E”u —ol; <sup|f'(u) — g'(u)] fu —ul, (2.63)

where the supremuwm is over oll v between vy and u..

Proof. Assume that v < u,; the case w; > w, is similar. Consider first the
case where [ and g both are convex. Without loss of generality we may
assume that f and g have common breakpoints w; = wy < wy < -+ <
Wn = U, and let the speeds be denoted by

; e o ; — 3.
S |(w:‘,wj+1) =55 and g |(w,-,wj+1) = 5.
Then

n—1

/ 1) - @) du =3 sy — 8] (e — wy).

' F=1
Let o; be an ordering, that is, o; < ¢,41, of all the speeds {s;,§;}. Then
we may write

(@, Hee(o ity = Uit

'U(:IZ, t)lIE(th,a‘j+1£) = Vj41,

where both w;, and v;y; are from the set of all possible breakpoints,
namely {wy, we,...,wn}, and ¢y < ujp and v; < w540, Thus

lfa - 8) = w(, )l = £ fgan = v} (0541 — 05).

=1

‘We easily see that

D =20 = [ -l e

< sup | (u) — g/ ()] e — ]
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The case where f and g are not necessarily convex is more imvolved. We
will show that

fu ) = ()] du < [Mirw-doia oo

T

when the convex envelopes are taken on the interval fuy, u,]. To this end
we use the following general lemmas:

Lemma 2.12 (Crandall-Tartar). Let D be a subset of L1(£2), where 0
is some measure space. Assume that if ¢ and o are in D, then also ¢V =
max{¢, P} is in D. Assume furthermore that there is a map T': D — L1(Q)

such that
Lrw=[s sen

Then the following stolements, valid for all ¢,% € D, are equivalent:

(i) If ¢ <, then T(¢} < T{ah).

(i) fo (T(d) =T < [ {d— ), where ¢+ = $v 0.
(i) fo|7() — T < folp —bl.
Proof of Lemma 2.12. For completeness we include a proof of the lemma.
Assume (1). Then T{¢V4)—T(¢) > 0, which trivially implies T(¢)—T(1) <
T(¢V4)—T(+), and thus (T(d) — T({!}))‘F ST (pVveh) - T{e). Furthermore,

T(d) — T{yp) T T —~ = —7)) = —t

@@ et < [ @y -mw) = [ove-0 = [ @

proving (it}. Asswne now (if}. Then

f IT(6) — T = [ (T(8) — T)* + fﬂ (T($) - T(8))"

<f(¢—e/)) fn(w—w
= [16=ul,

which is (iii). It remains to prove that (iii) implies (i). Let ¢ < 4. For real
numbers we have 2z = (|z{ + x)/2. This implies

IGCE f I7(6) =T + 5 [ (766) - 7))
anlé—w!Jrfn(rﬁ—ﬁJ):ﬂ-

To apply this temma in our context, we let D be the set of all piecewise
constant functions on [, ). For any piecewise linear and continuous flux

(]




