PRIMA PROVA PARZIALE DI ANALISI MATEMATICA 1

Ing. Aerospaziale, dell'Energia e Meccanica (I Canale) A.A. 2012/2013, 23 Novembre 2012

Tema 2

Cognome e Nome:				
Matricola:				
	1	2	3	

ESERCIZIO 1. [4.5 punti] Studiare il carattere della serie

$$\sum_{n=1}^{\infty} \frac{n!}{n^{\alpha n} + \tan\left(\frac{1}{n}\right)}$$

al variare del parametro $\alpha \in \mathbb{R}$, specificando i criteri usati e le argomentazioni principali.

ESERCIZIO 2. [4.5 punti] Studiare il limite

$$\ell \doteq \lim_{x \to 0+} \left(\frac{2(1-\cos x)}{x^2} \right)^{\frac{1}{x^2}}.$$

(Si ricordino gli sviluppi asintotici: $\cos x = 1 - \frac{x^2}{2} + \frac{x^4}{24} + o(x^5)$, $\ln(1+y) = y - \frac{y^2}{2} + o(y^2)$, $e^y = 1 + y + \frac{y^2}{2} + o(y^2)$, per $y \to 0$).

Determinare lo sviluppo asintotico di $\ln\left(\frac{2(1-\cos x)}{x^2}\right)$ as $x\to 0+$:

(Se esiste)

ESERCIZIO 3. [10 punti] Si consideri la funzione definita da $f(x) = x^3(1 + \ln|x|)$. (i) Determinare il dominio della funzione.

$$Dom(f) =$$

- (ii) Determinare eventuali asintoti verticali, orizzontali, obliqui
- (iii) Calcolare la derivata prima della funzione

$$f'(x) =$$

e stabilire in quali intervalli la funzione è monotona crescente, ed in quali intervalli è monotona decrescente.

- (iv) Determinare eventuali punti di massimo o di minimo relativo ed assoluto di f.
- (v) Determinare l'immagine di f: Im(f) = e tracciare il grafico approssimativo della funzione.

(vi) Tracciare il grafico approssimativo della funzione $g(x) = \operatorname{sgn}(|x| - e^{-1}) \cdot f(x)$