I APPELLO DI ANALISI MATEMATICA 1

Ing. Aerospaziale, dell'Energia e Meccanica (I Canale) A.A. 2012/2013, 30 Gennaio 2013 Tema 1

Cognome e Nome:									
Matricola:	• • • • • • • • • • • • • • • • • • • •								
	1	2	3	4	5	6			
N.B. Gli esercizi n. 4,	5,6 son	o relativ	i alla S	SECON	DA P	ROVA F	PARZL	ALE.	
ESERCIZIO 1. [4.5 pu	<i>unti</i>] Calc	olare il li	mite						
	$\ell \doteq$	$\lim_{n\to\infty} n^3$	$\ln \left(\left(1 - \frac{1}{2} \right) \right)$	$+\frac{1}{n}\Big)^{\frac{1}{2n}}$	$+\cos\left(\frac{1}{n}\right)$	$\left(\frac{1}{2}\right) + e^{-n} -$	1].		
Determinare lo sviluppo a	sintotico	di ln (($1 + \frac{1}{n} \Big)^{\frac{1}{2n}}$	$\left(\frac{1}{2}\right) + \cos\left(\frac{1}{2}\right)$	$\left(\frac{1}{n}\right) + e^{-c}$	$^{n}-1$ (form	nendo le a	argomentazioni	principali):
(Se esiste)		•							
		$\ell =$							

al variare del parametro $\alpha \in \mathbb{R}$, specificando i criteri usati e le argomentazioni principali.

 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^{\alpha} e^{(2-\alpha)n}}$

ESERCIZIO 2. [4.5 punti] Studiare il carattere (la convergenza) della serie

ESERCIZIO 3.	[9 punti]	Si consideri la funzione definita da	$f(x) = \arctan x$	$\left(e^{\frac{1}{x}}\right)$	-x.
--------------	-----------	--------------------------------------	--------------------	--------------------------------	-----

(i) Determinare il dominio della funzione.

$$Dom(f) =$$

- (ii) Determinare eventuali asintoti verticali, orizzontali, obliqui
- (iii) Calcolare la derivata prima della funzione

$$f'(x) =$$

e stabilire in quali intervalli la funzione è monotona crescente, ed in quali intervalli è monotona decrescente.

- (iv) Determinare eventuali punti di massimo o di minimo relativo ed assoluto di f.
- (v) Determinare l'immagine di f: Im(f) = e tracciare il grafico probabile della funzione.

(vi) Determinare quanti zeri ha la funzione f (quante soluzioni ha l'equazione f(x)=0):

ESERCIZIO 4. [6 punti] Si consideri la funzione definita da $f(x) = \int_{e^{-x}}^{e^x} (\ln t)^3 dt$.

(i) Calcolare la derivata prima della funzione

$$f'(x) =$$

(ii) Calcolare il limite $\ell \doteq \lim_{x \to 0} \frac{f(x)}{x^5}$ (fornendo le argomentazioni principali).

(Se esiste)

 $\ell =$

ESERCIZIO 5. [6 punti] Si consideri l'equazione differenziale lineare

$$\dot{y} = \frac{y \operatorname{sen} x}{1 + \cos^2 x} + 3 e^{-\arctan(\cos x)} \,. \tag{1}$$

(i) Determinare l'integrale generale (l'insieme delle soluzioni) $x \mapsto \varphi_c(x), c \in \mathbb{R}$, dell'equazione differenziale lineare omogenea associata a (1)

$$\varphi_c(x) =$$

(ii) Determinare l'integrale generale (l'insieme delle soluzioni) $x \mapsto \psi_c(x), c \in \mathbb{R}$, dell'equazione completa (1)

$$\psi_c(x) =$$

(iii) Determinare la soluzione $x \mapsto \psi(x)$ del problema di Cauchy

$$\begin{cases} \dot{y} = \frac{y \operatorname{sen} x}{1 + \cos^2 x} + 3 e^{-\arctan(\cos x)}, \\ y(\pi/2) = 2\pi, \end{cases}$$

$$\psi(x) =$$

 ${\bf ESERCIZIO}$ 6. [6 punti] Studiare la convergenza dell'integrale improprio

$$\int_0^1 \frac{\ln(1-x^2)}{x^\alpha \sqrt{1-x}}$$

al variare del parametro $\alpha \in \mathbb{R}$, specificando i criteri usati e le argomentazioni principali.