IV APPELLO DI ANALISI MATEMATICA 1

Ing. Aerospaziale, dell'Energia e Meccanica (V Canale) ${\rm A.A.\ 2011/2012,\ 10\ Settembre\ 2012}$

Cogno	OME E NOME: .						••••					
Matrio	COLA:											
		1	2	3	4	5	6					
											·	
ESERC	IZIO 1. [6 punt	ti] Si con	sideri l'e	quazione	differenzi	ale linear	re					
		•										
				$y' = \left(1 - \frac{1}{2}\right)^2$	$+\frac{y}{2+\cos x}$	$\left(\frac{1}{8x}\right) \cdot \text{sen}$	x.					(1)
(i)	(i) Determinare l'integrale generale (l'insieme delle soluzioni) $x \mapsto \varphi_c(x), c \in \mathbb{R}$, dell'equazione differenziale lineare omogenea associata a (1) (riportando i passaggi principali)											
	$\varphi_c(x) =$											
(ii)	Determinare l'in (riportando i pa				delle sol	uzioni) x	$\mapsto \psi_c(x)$	$c \in \mathbb{R}$	k, dell'e	quazion	e compl	leta (1)
	$\psi_c(x) =$											
(iii)	Determinare la	soluzione	$e \ x \mapsto \psi($	(x) del pro	oblema d	i Cauchy	$\begin{cases} y' = (y') \\ y(\pi) = (y') \end{cases}$	$(1+\frac{1}{2})$	$\frac{y}{+\cos x}$	· sena	c,	

 $\psi(x) =$

ESERCIZIO 2. [9 punti] Si consideri la funzione definita da

$$f(x) = \frac{1 + \cos x}{1 - |\cos x|}$$

(i) Determinare il dominio della funzione.

$$Dom(f) =$$

- (ii) Determinare eventuali asintoti verticali, orizzontali ed obliqui.
- (iii) Calcolare la derivata prima della funzione

$$f'(x) =$$

e stabilire in quali intervalli la funzione è monotona crescente, ed in quali intervalli è monotona decrescente.

- (iv) Determinare eventuali punti di massimo o di minimo relativo ed assoluto di f.
- (v) Determinare l'immagine di f:

$$Im(f) =$$

e tracciare il grafico probabile della funzione.

ESERCIZIO 3. [6 punti] Si consideri la funzione definita da $f(x) = \int_1^{\left(e^{|x-1|}-1\right)} \frac{1}{\ln(1+t)} dt$.

(i) Determinare il dominio della funzione e calcolare la derivata prima

$$f'(x) =$$

- (ii) Studiare il segno della derivata stabilendo in quali intervalli la funzione è monotona crescente ed in quali intervalli è monotona decrescente.
- (iii) Stabilire se la funzione ammette asintoti, e determinare eventuali punti di massimo o di minimo.

ESERCIZIO 4. [6 punti] Studiare la convergenza dell'integrale improprio

$$\int_0^{\pi/2} \frac{x^{\alpha}}{\ln(\cos x)} \, dx$$

al variare del parametro $\alpha \in \mathbb{R}$, specificando i criteri usati e le argomentazioni principali.

ESERCIZIO 5. [5 punti] Studiare il limite

$$\ell_{\alpha} \doteq \lim_{x \to 0} \frac{\operatorname{sen}\left(\frac{1}{x}\right) \cdot \ln(\cos x)}{x^{\alpha}}.$$

al variare del parametro $\alpha \in \mathbb{R},$ specificando le argomentazioni principali.

(Per i valori α in cui esiste)

$$\ell_{\alpha} =$$

ESERCIZIO 6. [4 punti] Studiare la convergenza semplice ed assoluta della serie

$$\sum_{n=1}^{\infty} (-1)^n \left(e^{\frac{2}{n+1}} - e^{\frac{2}{n}} \right)$$

specificando i criteri usati e le argomentazioni principali.