IV APPELLO DI ANALISI MATEMATICA 1

Ing. Aerospaziale e Meccanica (I Canale) A.A. 2013/2014, 12 Settembre 2014

Cognome e Nome:							
Matricola:							
	1	2	3	4	5	6	
ESERCIZIO 1. [4.5 pt	unti] Calo	colare il l	imite $\ell \doteq \lim_{x \to 0}$	$\int_{0}^{\infty} \frac{\ln\left(e^{(x^{2}/\log n)}\right)}{(\text{send})^{n}}$	$\frac{(2)\cos x}{(x^2)^2}$	٠.	
Determinare lo sviluppo ε	sintotico	di $\ln \left(e^{-\frac{1}{2}} \right)$	$e^{(x^2/2)}\cos$	(xx) per	$x \to 0$	(fornendo le a	rgomentazioni principali):
(Se esiste)		$\ell =$					

ESERCIZIO 2. [4.5 punti] Studiare il carattere (la convergenza) della serie

$$\sum_{n=0}^{\infty} \alpha^n \left(\frac{1}{n!} - \frac{1}{(n+1)!} \right)$$

al variare del parametro $\alpha \in \mathbb{R},$ specificando i criteri usati e le argomentazioni principali.

ESERCIZIO 3. [9 punti] Si consideri la funzione definita da $f(x) = \frac{|1 - \ln x|}{x}$.

(i) Determinare il dominio della funzione.

$$Dom(f) =$$

- (ii) Determinare eventuali asintoti verticali, orizzontali, obliqui
- (iii) Calcolare la derivata prima della funzione

$$f'(x) =$$

e stabilire in quali intervalli la funzione è monotona crescente, ed in quali intervalli è monotona decrescente.

- (iv) Determinare eventuali punti di massimo o di minimo relativo ed assoluto di f
- (v) Determinare l'immagine di f: Im(f) = e tracciare il grafico probabile della funzione.

(vi) Determinare se esiste una retta di equazione $y = \alpha$, $\alpha \in \mathbb{R}$, che ha (esattamente) due punti di intersezione col grafico della funzione.

ESERCIZIO 4. [6 punti] Si consideri la funzione definita da $f(x) = \int_0^{2x^3 + x^2} e^{-1/t^2} dt$.

(i) Calcolare la derivata prima della funzione

$$f'(x) =$$

e determinare eventuali punti di massimo o minimo relativo di f (fornendo le motivazioni):

(ii) Determinare se esistono eventuali asintoti (verticali, orizzontali od obliqui) fornendo le motivazioni:

ESERCIZIO 5. [6 punti] Si consideri l'equazione differenziale lineare

$$y' = \frac{y}{\sqrt{x(1-x)}} + \sqrt{x} e^{2\arcsin(\sqrt{x})}, \qquad 0 < x < 1.$$
 (1)

(i) Determinare l'integrale generale (l'insieme delle soluzioni) $x \mapsto \varphi_c(x)$, $c \in \mathbb{R}$, dell'equazione differenziale lineare omogenea associata a (1)

$$\varphi_c(x) =$$

(ii) Determinare l'integrale generale (l'insieme delle soluzioni) $x \mapsto \psi_c(x), c \in \mathbb{R}$, dell'equazione completa (1)

$$\psi_c(x) =$$

(iii) Determinare la soluzione $x \mapsto \psi(x)$ del problema di Cauchy

$$\begin{cases} y' = \frac{y}{\sqrt{x(1-x)}} + \sqrt{x} e^{2\arcsin(\sqrt{x})}, & 0 < x < 1, \\ y(1/4) = (1/3)e^{\pi/3}, & \end{cases}$$

$$\psi(x) =$$

ESERCIZIO 6. [6 punti] Studiare la convergenza dell'integrale improprio

$$\int_{-1}^{1} \frac{(x^2 - 1)^{\alpha}}{(x+1)\ln|x|} \, dx$$

al variare del parametro $\alpha \in \mathbb{R}$, specificando i criteri usati e le argomentazioni principali.