SPAZI COMPATTI

D'ora in poi tutti gli spazi topologici sono di Hausdorff.

Definizione 1 Uno spazio topologico (X, τ) si dice **sequenzialmente** compatto, o compatto per successioni, se ogni successione di punti di X ammette una sottosuccessione convergente in X.

Proposizione 2 Sia (X, d) uno spazio metrico. Se esso è sequenzialmente compatto allora è completo.

Definizione 3 Sia (X, d) uno spazio metrico.

Un sottoinsieme $E \subseteq X$ si dice **totalmente limitato** se per ogni $\varepsilon > 0$, E può essere ricoperto da un numero finito di palle di raggio ε , cioè esistono $x_1, \ldots, x_{n(\varepsilon)} \in X$ tali che:

$$E \subseteq \bigcup_{j=1}^{n(\varepsilon)} B(x_j, \varepsilon]$$

Osservazioni.

- Le palle si possono prendere indifferentemente aperte o chiuse.
- I centri delle palle si possono prendere in E.
- Un sottoinsieme di un insieme totalmente limitato è totalmente limitato.
- Ogni sottoinsieme totalmente limitato è limitato.
- Il concetto di totalmente limitato è invariante per metriche Lipschitzequivalenti.

Proposizione 4 Ogni sottoinsieme limitato di \mathbb{K}^n è totalmente limitato.

Dimostrazione. Dimostriamolo dapprima per \mathbb{R} .

Sia $E \subseteq \mathbb{R}$. Se E è limitato, allora $E \subseteq [a, b]$.

Se $\varepsilon > 0$ prendiamo come centri delle ε -palle i punti della suddivisione:

$$D = \{x_0 = a, x_1 = a + \varepsilon, \dots, x_m = a + m\varepsilon\}$$
 con m parte intera di $\frac{b-a}{\varepsilon}$

Si osservi che D ha maglia al più ε .

In \mathbb{R}^n usiamo la metrica di $\|\cdot\|_{\infty}$.

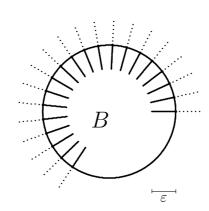
Se E è limitato, allora $E \subseteq \prod_{i=1}^{n} [a_i, b_i]$.

Dato $\varepsilon > 0$, prendiamo una suddivisione D_i di ogni intervallo $[a_i, b_i]$ con maglia al più ε . I centri delle ε -palle (cubi) sono tutti i punti dell'insieme finito $\prod_{i=1}^{n} D_i$.

Infine \mathbb{C}^n è isomorfo a \mathbb{R}^{2n} tramite un'isometria. \square

Esempio. Sia $B = \{x \in \mathbb{R}^2 : |x| \le 1\}.$

Con la metrica del riccio, B è limitato ma non totalmente limitato.



Definizione 5 Sia X uno spazio topologico.

Un **ricoprimento aperto** di X è una famiglia $\{U_{\lambda} : \lambda \in \Lambda\}$ di aperti di X che ricopre X, cioè tale che:

$$X = \bigcup_{\lambda \in \Lambda} U_{\lambda}$$

Un sottoricoprimento di $\{U_{\lambda}: \lambda \in \Lambda\}$

è una sottofamiglia $\{U_{\lambda}: \lambda \in M\}$, $M \subseteq \Lambda$, che è ancora un ricoprimento.

Osservazione. La nozione di ricoprimento aperto si può dare anche per un sottospazio Y di X: si dice ricoprimento aperto di Y una famiglia di aperti di X la cui unione contiene Y.

Esempio.

- In \mathbb{R} , per ogni $n \in \mathbb{Z}$ sia $U_n =]n, n + \frac{3}{2}[$. La famiglia $\mathcal{U} = \{U_n : n \in \mathbb{Z}\}$ è un ricoprimento aperto di \mathbb{R} ; essa non ammette sottoricoprimenti propri. La famiglia $\{B(q, \frac{3}{4}[: q \in \mathbb{Q}\} \text{ è un ricoprimento aperto che ha } \mathcal{U} \text{ come sottoricoprimento.}$
- Sia B il disco unitario di \mathbb{R}^2 con la metrica d del riccio. Sia $\mathcal{U} = \{B_d(u, 1[: u = 0 \text{ oppure } |u| = 1\}.$ Tale \mathcal{U} è un ricoprimento aperto di B privo di sottoricoprimenti propri. Qual è il cardinale di \mathcal{U} ?
- Sia X un insieme con metrica discreta. La famiglia dei singoletti $\mathcal{U} = \{\{x\} : x \in X\}$ è un ricoprimento aperto.

Esercizio. Costruire un ricoprimento infinito della retta di Sorgenfrey costituito da aperti propri a due a due disgiunti.

Esercizio. È possibile costruire un ricoprimento aperto non banale di \mathbb{R} formato da aperti a due a due disgiunti? No!

Risoluzione. Sia A uno di tali aperti e sia $a \in A$.

Sia J l'unione di tutti gli intervalli aperti contenenti a e contenuti in A. L'insieme J è un intervallo aperto perché è unione di intervalli aperti con un punto in comune.

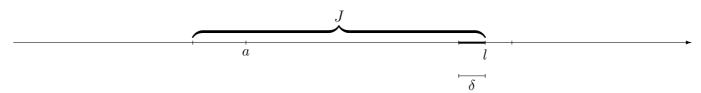
Ovviamente $J \subseteq A$ e quindi $J \neq \mathbb{R}$.

Perciò J è limitato da almeno una parte, ad esempio superiormente.

Sia $l = \sup J$. Allora $l \notin A$, altrimenti $[l, l + \varepsilon] \subseteq A$ e dunque $[a, l + \varepsilon] \subseteq J$ e l non sarebbe più il sup di J.

Di conseguenza esiste un elemento B del ricoprimento tale che $l \in B$. Essendo B aperto, esso contiene un intervallo aperto $]l - \delta, l + \delta[$.

Si ottiene dunque $B \cap J \supseteq]l - \delta, l \neq \emptyset$, da cui $B \cap A \neq \emptyset$.



Osservazione. Una dimostrazione analoga mostra che ogni intervallo di \mathbb{R} è **connesso**, cioè non è unione di (almeno) due insiemi aperti non vuoti a due a due disgiunti.

Definizione 6 Uno spazio topologico si dice **compatto** se ogni ricoprimento aperto ammette un sottoricoprimento finito.

Questa definizione si applica anche ai sottospazi.

Esempi.

- ullet Uno spazio discreto è compatto \iff è finito.
- In uno spazio topologico supponiamo di avere una successione convergente $(x_n)_{n\in\mathbb{N}}$ e sia a il suo limite. Allora il sottospazio

$$S = \{x_j : j \in \mathbb{N}\} \cup \{a\}$$

è compatto.

- Qualunque sottoinsieme illimitato di \mathbb{R} non è compatto (se è superiormente illimitato, considerare tutte le semirette aperte decrescenti).
- Nella retta di Sorgenfrey l'intervallo [0, 1] non è compatto.

Proposizione 7 Ogni sottospazio chiuso di uno spazio (sequenzialmente) compatto è (sequenzialmente) compatto.

Esercizio. Siano X uno spazio di Hausdorff, $K \subseteq X$ un sottospazio compatto, $p \in X \setminus K$.

Esistono un intorno aperto V di p e un aperto A contenente K tali che $V \cap A = \emptyset$.

Risoluzione. Per ogni $x \in K$ esistono un intorno aperto V_x di p e un intorno aperto U_x di x tali che $V_x \cap U_x = \emptyset$.

La famiglia $\mathcal{U} = \{U_x : x \in K\}$ è un ricoprimento aperto di K che ammette un sottoricoprimento finito $\{U_{x_1}, \ldots, U_{x_n}\}$.

Gli aperti richiesti sono:

$$V = V_{x_1} \cap \ldots \cap V_{x_n} \qquad A = U_{x_1} \cup \ldots \cup U_{x_n}$$

Esercizio. In uno spazio di Hausdorff, due insiemi compatti disgiunti sono contenuti in aperti disgiunti.

Attenzione (per ora non si può giustificare):

esistono spazi sequenzialmente compatti che non sono compatti; esistono spazi compatti che non sono sequenzialmente compatti.

Negli spazi metrici le due definizioni coincidono.

Lemma 8 Uno spazio metrico (X,d) non è totalmente limitato \iff esistono $\varepsilon > 0$ e un insieme infinito numerabile $\{x_j : j \in \mathbb{N}\}$ tale che

$$d(x_j, x_k) \ge \varepsilon$$
 per ogni coppia di indici distinti j, k.

Dimostrazione. Sufficienza. Se esiste un tale insieme, una palla aperta di raggio $\frac{\varepsilon}{2}$ può contenere al più un punto x_j . Pertanto non esiste un ricoprimento finito di palle di raggio $\frac{\varepsilon}{2}$.

Necessità. Sia $\varepsilon > 0$ tale che la famiglia $\{B(x, \varepsilon [: x \in X)\}$ non ammette sottoricoprimenti finiti. Costruiamo l'insieme richiesto per induzione.

Sia $x_0 \in X$;

esiste $x_1 \in X \setminus B(x_0, \varepsilon)$.

Se x_0, x_1, \ldots, x_j sono stati presi in modo che

$$x_k \not\in \bigcup_{h < k} B(x_h, \varepsilon) \quad \forall k \le j$$

si scelga $x_{j+1} \in X \setminus \bigcup_{k \leq j} B(x_k, \varepsilon[. \square$

Teorema 9 (Teorema fondamentale) Sia(X,d) uno spazio metrico. Sono equivalenti:

- i) X è sequenzialmente compatto.
- ii) X è completo e totalmente limitato.
- $iii) X \ e \ compatto.$

Dimostrazione. $[i \Rightarrow ii]$ Ogni successione ammette una sottosuccessione convergente.

Allora ogni successione di Cauchy ha una sotto successione convergente e quindi converge: pertanto X è completo. Se X non fosse totalmente limitato, per il lemma esisterebbero $\varepsilon > 0$ e un insieme infinito $S = \{x_j : j \in \mathbb{N}\}$ tale che la distanza di due punti distinti di S è almeno ε . Consideriamo la successione $(x_j)_{j \in \mathbb{N}}$. Ogni suo sottoinsieme con più di un punto ha diametro almeno ε , in particolare le m-code delle sue sottosuccessioni. Pertanto essa non ha sottosuccessioni di Cauchy (in particolare, convergenti), in contraddizione con l'ipotesi.

 $ii \Rightarrow iii$ Supponiamo per assurdo che esista un ricoprimento aperto \mathcal{U} di X che non ammette sottoricoprimenti finiti.

Diciamo che:

 $E \subseteq X$ ha la proprietà \mathcal{P} se:

E non è contenuto

 $nell'unione\ di\ nessuna\ sottofamiglia\ finita\ di\ {\cal U}.$

Usiamo più volte l'ipotesi che X (e ogni suo sottospazio) è totalmente limitato.

Esiste un numero finito di palle di raggio 1 la cui unione copre X: pertanto esiste una palla di raggio 1, diciamo $B_1 = B(x_1, 1[$, che ha la proprietà \mathcal{P} .

Esiste un numero finito di palle di raggio $\frac{1}{2}$, con centri in B_1 , la cui unione copre B_1 : allora esiste $B_2 = B(x_2, \frac{1}{2}[$, con $x_2 \in B_1$ tale che $B_1 \cap B_2$ ha la proprietà \mathcal{P} .

Procedendo per induzione, si costruisce una successione $B_j = B(x_j, \frac{1}{j}[$ con $x_j \in B_1 \cap B_2 \cap \ldots \cap B_{j-1}$ tale che $B_1 \cap B_2 \cap \ldots \cap B_j$ ha la proprietà \mathcal{P} per ogni $j \geq 1$.

Dato che la m-coda della successione $(x_j)_{j\in\mathbb{N}}$ è contenuta in B_{m-1} , essa ha diametro $\leq \frac{2}{m-1}$; pertanto la successione $(x_j)_{j\in\mathbb{N}}$ è di Cauchy, e dunque convergente a un punto $p\in X$.

Esiste un aperto $U \in \mathcal{U}$ tale che $p \in U$.

Sia $\delta > 0$ tale che $B(p, \delta) \subseteq U$.

Per definizione di limite, esiste \bar{j} tale che $x_j \in B(p, \frac{\delta}{2}[$ per ogni $j \geq \bar{j}.$

Sia $k \geq \bar{j}$ tale che $\frac{1}{k} < \frac{\delta}{2}$.

Allora (la \star di seguito vale perché $x_k \in B(p, \frac{\delta}{2}[)$:

$$B_k = B(x_k, \frac{1}{k} \subseteq B(x_k, \frac{\delta}{2} \subseteq B(p, \delta \subseteq U))$$

in contraddizione con il fatto che $B_1 \cap B_2 \cap \ldots \cap B_k$ ha la proprietà \mathcal{P} .

$$compatti - 7$$

 $\overline{iii} \Rightarrow i$ Sia $(x_i)_{i \in \mathbb{N}}$ una successione di punti di X.

Siccome X è metrico, dobbiamo dimostrare che esiste un punto $p \in X$ tale che la successione data sta frequentemente in ogni intorno di p.

Se per assurdo ciò non fosse, per ogni $x \in X$ esisterebbe un intorno aperto V_x di x tale che

 $x_i \in V_x$ solo per un numero finito di indici j.

Il ricoprimento aperto

$$\mathcal{V} = \{V_x : \ x \in X\}$$

ammette un sottoricoprimento finito, diciamo $\{V_{\xi_1}, \ldots, V_{\xi_m}\}.$

Ma allora $X=V_{\xi_1}\cup\ldots\cup V_{\xi_m}$ contiene elementi della successione solo per un numero finito di indici, assurdo. \square

Definizione 10 Sia $\mathcal{F} = \{F_{\lambda} : \lambda \in \Lambda\}$ una famiglia non vuota di sottoinsiemi di X.

Si dice che F ha la proprietà dell'intersezione finita o fip se

$$F_{\lambda_1} \cap \ldots \cap F_{\lambda_k} \neq \emptyset$$
 per ogni insieme finito $\{\lambda_1, \ldots, \lambda_k\} \subseteq \Lambda$.

Proposizione 11 Uno spazio topologico è compatto \iff ogni famiglia di chiusi con la fip ha intersezione non vuota.

Dimostrazione.

$$X \setminus \bigcap_{\lambda} F_{\lambda} = \bigcup_{\lambda} (X \setminus F_{\lambda})$$

Proposizione 12 I sottospazi compatti di uno spazio di Hausdorff sono chiusi.

Dimostrazione. Ricordare che in uno spazio di Hausdorff ogni punto è intersezione dei propri intorni chiusi.

Una dimostrazione alternativa si ottiene usando il penultimo esercizio di pag. 5.

Siano X uno spazio di Hausdorff e Y un suo sottospazio compatto: allora Y è chiuso.

Se X è metrico, allora Y, essendo totalmente limitato, risulta anche limitato. Se Y è un sottospazio di \mathbb{K}^n , è vero anche il viceversa.

Teorema 13 Un sottospazio Y di \mathbb{K}^n è compatto \iff Y è chiuso e limitato.

Dimostrazione. Necessità. Abbiamo visto che è vera in qualsiasi spazio metrico.

Sufficienza. Y è completo perché sottospazio chiuso di uno spazio completo. Y è totalmente limitato perché sottospazio limitato di \mathbb{K}^n .

Pertanto Y è compatto per il teorema fondamentale. \square

Conseguenze:

- ullet Ogni sottoinsieme compatto di $\mathbb R$ ha massimo e minimo assoluto.
- Le palle chiuse di \mathbb{K}^n sono compatte (in particolare la palla unitaria).

Proposizione 14 In uno spazio normato X di dimensione infinita la palla unitaria non è totalmente limitata (e quindi non è compatta).

(Dimostrazione omessa)

Teorema 15 Uno spazio metrico Y è compatto se e solo se per ogni sottoinsieme infinito $E \subseteq Y$ esiste almeno un punto p di Y che è di accumulazione per E (cioè $E' \neq \emptyset$).

Spazi compatti e prodotto

Teorema 16 (Kuratowski) Siano X uno spazio compatto e Y uno spazio di Hausdorff.

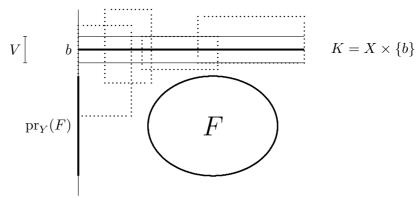
La proiezione $\operatorname{pr}_Y: X \times Y \longrightarrow Y \ \grave{e} \ chiusa.$

Dimostrazione. Siano F un chiuso di $X \times Y$ e $b \notin \operatorname{pr}_Y(F)$.

Allora $K = X \times \{b\}$ è un compatto di $X \times Y$ disgiunto da F.

Poiché F è chiuso, per ogni $(x, b) \in K$ esistono un intorno aperto U_x di x e un intorno V_x di b tali che $(U_x \times V_x) \cap F = \emptyset$.

Il ricoprimento $\{U_x : x \in X\}$ di X ammette un sottoricoprimento finito $\{U_{x_1}, \ldots, U_{x_n}\}.$



Sia $V = V_{x_1} \cap \ldots \cap V_{x_n}$. Si ha:

$$X \times V = \left(\bigcup_{i=1}^{n} U_{x_i}\right) \times V = \bigcup_{i=1}^{n} (U_{x_i} \times V)$$

Poiché ogni termine di quest'ultima unione è disgiunto da F, si ottiene $(X \times V) \cap F = \emptyset$ e dunque $V \cap \operatorname{pr}_Y(F) = \emptyset$. In conclusione, $Y \setminus \operatorname{pr}_Y(F)$ è aperto. \square

Teorema 17 (Tychonoff) Siano X e Y spazi (sequenzialmente) compatti.

Allora $X \times Y$ è (sequenzialmente) compatto.

Dimostrazione. Caso sequenzialmente compatto: v. libro.

Caso compatto.

Sia \mathcal{F} una famiglia di chiusi di $X \times Y$ con la fip e sia \mathcal{G} la famiglia costituita da tutte le intersezioni finite di elementi di \mathcal{F} . Allora \mathcal{G} è una famiglia di chiusi non vuoti chiusa per l'intersezione finita, cioè contenente le intersezioni di tutte le sue sottofamiglie finite.

Essendo Y compatto, la sottofamiglia di $\mathcal{P}(X)$ costituita da

$$\operatorname{pr}_X(\mathcal{G}) = \{ \operatorname{pr}_X(G) : G \in \mathcal{G} \}$$

è una famiglia di chiusi (perché?) di X con la fip. Infatti:

$$\operatorname{pr}_X(G_1) \cap \operatorname{pr}_X(G_2) \supseteq \operatorname{pr}_X(G_1 \cap G_2) \neq \emptyset$$

Essendo X compatto, la famiglia $\operatorname{pr}_X(\mathcal{G})$ ha intersezione non vuota. Sia $a \in \bigcap \operatorname{pr}_X(\mathcal{G})$.

Consideriamo in $\{a\} \times Y$ la famiglia delle a-sezioni di \mathcal{G} , cioè:

$$\mathcal{G}_a = \{ G \cap (\{a\} \times Y) : G \in \mathcal{G} \}$$

Essa è una famiglia di chiusi di $\{a\} \times Y$ con la fip. Infatti, se $G_1, G_2 \in \mathcal{G}$ si ha:

$$(G_1 \cap (\{a\} \times Y)) \cap (G_2 \cap (\{a\} \times Y)) = (G_1 \cap G_2) \cap (\{a\} \times Y)$$

che è non vuoto perché $G_1 \cap G_2 \in \mathcal{G}$ e quindi $a \in \operatorname{pr}_X(G_1 \cap G_2)$. Poiché $\{a\} \times Y$ è compatto, si ottiene $\bigcap \mathcal{G}_a \neq \emptyset$ e dunque:

$$\bigcap \mathcal{F} = \bigcap \mathcal{G} \supseteq \bigcap \mathcal{G}_a
eq \emptyset$$

Esercizio. Dimostrare che il prodotto di due spazi metrici totalmente limitati è totalmente limitato nella metrica prodotto.

Senza usare il teorema di Tychonoff, dedurre che il prodotto di due spazi metrici compatti è compatto.

Spazi compatti e funzioni continue

L'immagine continua di uno spazio compatto è uno spazio compatto, cioè:

Teorema 18 Se X e Y sono spazi di Hausdorff, con X compatto, e $f: X \to Y$ è continua, allora f(X) è compatto.

Dimostrazione. Sia \mathcal{V} un ricoprimento aperto di f(X).

L'antiimmagine di \mathcal{V} , cioè la famiglia

$$\{f^{\leftarrow}(V):\ V\in\mathcal{V}\}$$

ammette un sottoricoprimento finito, diciamo:

$$\{f^{\leftarrow}(V_1),\ldots,f^{\leftarrow}(V_k)\}$$

Poiché

$$X \subseteq f^{\leftarrow}(V_1) \cup \ldots \cup f^{\leftarrow}(V_k) = f^{\leftarrow}(V_1 \cup \ldots \cup V_k),$$

si ottiene $f(X) \subseteq V_1 \cup \ldots \cup V_k$. \square

Lasciamo come esercizio la dimostrazione di:

Teorema 19 L'immagine continua di uno spazio sequenzialmente compatto è uno spazio sequenzialmente compatto.

Corollario 20 (Teorema di Weierstrass) Ogni funzione continua a valori reali definita su un compatto non vuoto ha minimo e massimo assoluti.

Dimostrazione. L'immagine è compatta, quindi chiusa e limitata in \mathbb{R} . \square

Osservazione. In precedenza abbiamo usato questo teorema, applicandolo ai chiusi e limitati di \mathbb{K}^n , per dimostrare che un isomorfismo lineare con dominio \mathbb{K}^n ha inverso continuo.

Corollario 21 Siano X e Y spazi di Hausdorff con X compatto. Sia $f: X \to Y$ una funzione continua. Allora f è chiusa.

Se f è biiettiva, allora f^{-1} risulta continua.

Morale: una biiezione continua con dominio compatto è un omeomorfismo.

Se σ e τ sono due topologie su un insieme X, si dice che σ è **meno fine** di τ , e si scrive $\sigma \leq \tau$, se ogni aperto in σ è aperto anche in τ .

Tale relazione \leq è di ordine parziale e quindi ha senso parlare di elementi minimali e di elementi massimali.

Corollario 22 Su un insieme X le topologie compatte sono minimali fra le topologie di Hausdorff, cioè se τ è compatta e $\sigma \leq \tau$, allora $\sigma = \tau$.

Dimostrazione. L'identità $(X, \tau) \longrightarrow (X, \sigma)$ è continua perché $\sigma \leq \tau$. Allora essa è un omeomorfismo e quindi gli aperti in τ sono aperti in σ . \square

Esercizio. Considerare C([0,1]) con la topologia della convergenza uniforme (indotta da $\|\cdot\|_{\infty}$). Dare un esempio di una successione limitata di funzioni che non ha sottosuccessioni convergenti.

Esercizio. Sia S la retta di Sorgenfrey.

- i) Dimostrare che $F \subseteq S$ è chiuso \iff per ogni sottoinsieme $E \subseteq F$ che sia non vuoto e inferiormente limitato si ha inf $E \in F$.
- ii) Sia $K \subseteq S$. Se K ammette una successione strettamente crescente di punti, allora K non è compatto.
- iii) Dimostrare che un sottoinsieme K di S è compatto \iff per ogni sottoinsieme non vuoto $E \subseteq K$, esistono sia inf E sia max E e appartengono a K.

Esercizio. Siano X e Y spazi di Hausdorff con Y compatto, $f: X \to Y$ una funzione. Si supponga che il grafico di f

$$G(f) = \{(x, y) : y = f(x)\}$$

sia un sottoinsieme chiuso di $X \times Y$.

Dimostrare che f è continua.

Sugg. Sia C chiuso di Y. Allora:

$$f^{\leftarrow}(C) = \operatorname{pr}_X((X \times C) \cap G(f))$$