

Composit ion with Guarantees for High -integrity

Embedded Software Components Assembly

CHESS Toolset User Guide

Table of Contents
Table of Contents .. 2

Introduction ... 3

Tool Status ... 3

Version 3.0 ... 3

Missing Features .. 3

Working with Views and Diagrams .. 8

Component View ... 8

Functional view .. 8

Extra Functional View .. 11

Deployment View .. 12

Class diagram ... 12

Composite Structure diagram ... 12

DependabilityView .. 12

Requirement View ... 12

Requirement Diagram ... 12

Working with the instances ... 12

Working with the CHESS palettes .. 13

Working with the model validation ... 13

Working with the 42Analyzer tool ... 13

Working the VSL editor to edit stereotype attributes ... 14

Allocating multiple SW instances to HW (Proposal for CHESS v3.1) ... 14

Supported Automations .. 16

Tips .. 17

Introduction
This guide summarizes the status of the CHESS tools (supported and missing features) and gives some hints

about its usage.

Tool Status

Version 3.0
Added Ada infrastructural code generation (UPD)

Added C++ functional code generation (MDH)

Added extended data type support.

See Missing Features section.

Missing Features
[MF1] Support to collaborative work

The Control-Uncontrol feature coming with Eclipse is not currently working due to some

bugs/limitations. Moreover its usage in the context of the CHESS toolset has to be deeper

investigated.

[MF2] Stereotypes for comments not automatically added

Stereotypes CHRtSpecification, Assign, FPTC, FPTCSpecification are not automatically applied on

Comments when created with the corresponding tool in the palette (Papyrus bug)

[MF3] PSM readable

The PSM generated by the schedulability analysis should be made (easily) readable to the

modelers.

Table 1. TAS Identified issues within WP6 iteration #2 – Summary and EDT responses

Issue Status Comment EDT responses

all Views

It is impossible to delete a diagram in

the model explorer view of the CHESS

toolset

Open?

Not able to reproduce this

behavior.

Data types: there is the need to model

the following data types:

 Constants

 Arrays

 Structures

 Ranges

closed

In order to keep the Data types

at PIM level aligned with PSM

level, the approach is to re-

uses PSM data type solution

based on MARTE when it

exists, and to make new

propositions for other types

Supported in v3.0

 … (constants, arrays …).

Component View

How could we model the “event”

based communication between

components (flow ports?)

open

Solutions to express this at

PIM level will be assessed

before CHESS 3.0 toolset.

TBD

Operations directly attached to

components (without using ports)
??

This is not the approach of

CHESS. CHESS development

process separate the modeling

and the decoration activities.

The periodic/sporadic nature

of operation is chosen late in

the process. This means all the

operations defined during

modeling phase have to be put

in interfaces. However a

compromise could be assessed

consisting in back propagating

decoration activities on

instances to component

types…

TBD

Extra-functional View

Decoration contents is not exported

during the export of diagrams as

images.

open

Papyrus issue

Deployment View

State-based Dependability Analysis

Schedulability Analysis

Users should be aware of the possible

range for task priorities (for instance,

[1..256]).

open

This data could be configured,

possibly using a configuration

file ?

TBD

Safety Analysis

Table 2. Telecom Identified issues within WP6 iteration #2 – Summary and EDT response

Issue Status Comment EDT responses

Component View

Call operation exception Solved

Identified in v2.0.

Issue not present in

v2.1.

Probably Papyrus (solved)

exception

Updating operations in interfaces

Partially solved

Occurs in v2.0 (on

models created with

v1.2).

Not present in new

models created with

v2.0.

 ‘Build instance’ command “no text” status

Partially solved

Occurs in v2.0 (on

models created with

v1.2).

Not present in new

models created with

v2.0.

Extra-functional View

Missing <<Propagation>> stereotype

Partially solved

Occurs in v2.0 (on

models created with

v1.2).

Not present in new

models created with

v2.0.

Issue with backward

compatibility: can be fixed

with little modification on

the XMI model file.

Attribute value change is not shown in the

diagram.
Not solved

Present in v2.0 and

v2.1.

Papyrus issue.

Deployment View

Flow port type structure Not solved Ongoing discussion TBD

Modeling memory Not solved
Present in v2.0 and

v2.1

TBD

Saving the model Unknown

Not tested in v2.1

Present in v2.0

Workaround for

v2.0

Not able to reproduce this

behavior.

Assignment of SW instanced on HW Not solved Ongoing discussion TBD

State-based Dependability Analysis

Missing <<ChGaResourcePlatform>> stereotype Solved Not present in v2.1

‘Build instance’ command resets attribute values Not solved
Present in v2.0 and

v2.1

TBD

Error model definition Unknown

Not tested in v2.1.

Present in v2.0

Ongoing discussion

TBD

Schedulability Analysis

Exporting model from CHESS 2.0 to CHESS 2.1 Solved -

Strange analysis results Not solved Ongoing discussion

'relativePriority' attribute is not optional Not solved
Present in v2.0 and

v2.1

TBD

'Check model for schedulability analysis tool’

option doesn't cover all error cases
Not solved

Present in v2.0 and

v2.1

TBD

'Build instance' command sometimes fails Unknown
Not tested in v2.1.

Present in v2.0

It should be related to

model created with old

profile versions

Safety Analysis

Safety analysis modeling in CHESS Not solved Present in v2.0

TBD. Not easy to introduce

needed permissions without

preserving the proper

separation of concern (for

example editing of SA

dependency in the extra

functional view).

Problem with profile application URIs Partially solved

Workaround for

v2.0

Should be solved in

upcoming releases

Table 3. Railway Identified issues within WP6 iteration #2 – Summary

Issue Status Comment EDT responses

Component View

Extra-functional View

Deployment View

State-based Dependability Analysis

Dependability analysis does not support the

ability to specify multiple

"targetDepComponent".

Present in v2.0 and

v2.1

Solved in 3.0

Created an error model for

BoardSystemHardware Component but it can

not be used because the analysis has

produced abnormal results (see bug

:[#13610])

Not solved
Present in v2.0 and

v2.1

Schedulability Analysis

With CHESS 2.0 the schedulability analysis

does not work if there are hardware

components defined in the model but not

used in the analysis performed (see bug

:[#13609])

Solved in 2.1 Present in v2.0

Safety Analysis

Working with Views and Diagrams

Component View

Functional view

Use Case Diagram

To model system use cases (used by FTA/FMECA)

Class Diagram

To model Packages, data types, Interfaces, ComponentTypes, ComponentImplementations, Operations,

Properties.

About Modeling Data Types

Primitives Types are supported, they can be created through the CHESS FunctView palette.

In a given Component Constants can be modeled by selected the ‘read-only’ attribute of the given

Property.

Default value can be specified by setting the ‘default value’ attribute of the property, for instance by using

an OpaqueExpression (see figure below).

Data ranges can be modeled by using standard Constraint having Interval element as ‘specification’

attribute. The ‘context’ of the Constraint as to reference the property to bound (see figure below for an

example).

Another possibility for data ranges would be using IntervalType from MARTE VSL but currently it is not

properly implemented in Papyrus.

In alternative MARTE::VSL::DataTypes::BoundedSubtype stereotype can be used

Arrays can be modeled by using CollectionType from MARTE VSL.

Structures can be modeled by using TupleType from MARTE VSL.

Composite Structure Diagram

For a given ComponentImpl, to model:

 provided/required ClientServerPort

 ComponentImplementation instances and connectors (also Component can be used in place of

ComponentImplementation as context of the Composite Structure Diagram)

Composite Structure diagrams in this view are also used by the tool to automatically build the software

InstanceSpecifications, with the proper extra-functional information attached (Build Instance

command).

State Machine Diagram

For a given ComponentImplementation, to model functional behavior for ComponentImplementation.

Supports ALF.

They can be used to generate functional code (currently C++ generation).

Activity Diagram

For a given Operation, to model:

 intra ComponentImplementation bindings, i.e. the called Operations (information used by

Schedulability Analysis from UPD)

 operation behavior (full definition of available constructs coming soon), used by deployment

analysis

Extra Functional View

Use Case Diagram

To model stereotypes for FTA/FMECA.

Class diagram

To model stereotypes for StateBased, FailurePropagation, FMECA/FTA … (other analysis coming soon)

Composite Structure Diagram

To model real time , state based analysis, failure propagation, FTA/FMECA information… (other analysis

coming soon)

 From the main CHESS menu in the toolbar: CHESS->Filters->CHRtSPecification->Show/Hide

to manage CHRtSpecification visibility for the current diagram.

Right click on a ComponentImplementation instance, select Filters->CHRtSPecification->Show/Hide

to manage CHRtSpecification visibility for the current instance.

State Machine Diagram

For a given ComponentImpl, to model dependability ErrorModel.

Activity diagram

Not used

Deployment View

Class diagram

To model hardware components (only the ones needed by the predictability analysis).

Composite Structure diagram

For a given hardware component, to model:

 packages

 data flow ports

 hardware components

 hardware components instances and connectors.

 Allocation of software to hardware (InstanceSpecifications generated through the Build Instance

command have to be referred for the allocation).

CompositeStructure diagram in this view are also used by the tool to automatically build the hardware

InstanceSpecifications, with the proper extra-functional information attached, through the Build Instance

command invocation.

DependabilityView

Class diagram

To model dependability concerns for hardware components.

Composite Structure diagram

To model dependability concerns for hardware components instances.

StateMachine

To model dependability ErrorModel for hardware components.

Requirement View

Requirement Diagram

To model requirements and traceability between architectural elements (e.g. ComponentImplementation)

and requirements.

Working with the instances
Hardware and Software (i.e. ComponentImplementation) Instances in CHESS can be modeled through the

Composite Structure Diagram, i.e. through Properties.

Due to UML limitation about the entities-instances available in the Composite Structure Diagram, all the

information appearing in the Composite Structure Diagram need to be properly represented in the model

by using UML InstanceSpecifications in order to be properly used by model transformations.

The CHESS toolset allow to automatically derive the InstanceSpecifications set by starting from a Composite

Structure Diagram. In particular each Property and Connector are mapped into a dedicate

InstanceSpecification, while Ports are mapped into Slot. Extra functional information is attached to

InstanceSpecifications and Slots.

To invoke the Build Instance command:

 -open the Composite Structure Diagram where the instance (as Properties) have been modeled

 -from the CHESS Toolbar menu select Build Instances entry

 -the InstanceSpecifications/Slots are generated in a dedicated package

Multiple Composite Structure Diagrams are supported in the ComponentView, in particular one

diagram for each ComponentImplementation. In this way the hierarchy of ComponentImplementation

can be modeled by using a hierarchy of Composite Structure Diagram. In this way just invoke the Build

Instance command from the root Composiste diagram: the tool automatically builds the instances

hierarchy while navigating the diagrams.

 Only one Composite Structure Diagram for a given HW/SW component is supported.

Working with the CHESS palettes
CHESS toolset implements the proper palettes to work with the current view and diagram.

At any time the tool shows the proper palette by considering the current view and diagram.

Working with the model validation
From the Papyrus Model Browser select the Model or the entity from which perform the validation and

choose:

 Validation->Validate CHESS model: performs checks starting from the selected entity and all the

owned ones.

 Validation->Check model for Thales code generation tool: checks specific preconditions required by

Thales code generation tool

 Validation->Check model for (UPD) schedulability analysis tool: checks specific preconditions as

required by the (UPD) schedulability analysis.

 Validation of preconditions for the other analysis coming soon.

Working with the 42Analyzer tool
(A advanced tutorial is available)

Select a composite structure diagram where ComponentImplementation instances have been designed and

decorated with real time information.

Right click on the main Component which is the context of the current Composite Structure diagram and

select “CHESS : 42 analyzer” command: a report about tasks and protected resources is generated in a

dedicated panel.

Working the VSL editor to edit stereotype attributes
Stereotype attributes can be set by using the Profile tab in the Properties view. Moreover stereotype

attributes can be set by using a VSL editor: this is particularly useful to edit complex stereotype attributes

(e.g. typed as records), like the ones inherited by MARTE (e.g. NFP_xxx, OccKind).

Select the stereotyped entity in the diagram for which the attributes need to be filled.

Right click and select “Open Textual Editor for Stereotype Applications”: the textual editor is opened in a

dedicated panel.

The list of applied stereotypes is shown in the editor, for instance:

<<StereoX>>

Attr1 = <value here> ,

… ,

AttrN = <value here>

<<StereoY>>

…..

For each stereotype a list of attributes can appear by default. If the desired attribute is not visible:

put the cursor just under the stereotype, or after the comma which follows an existing stereotype’s

attribute, then use CTRL+space to make appear the list of available attributes for the current

stereotype. Select the desidered attribute.

To edit the X attribute:

If the X attribute is already visible simple type the value directly after ‘=’. Put the cursor after ‘=’

and use the CRTL+space to get editor assistance.

Allocating multiple SW instances to HW (Proposal for CHESS v3.1)
CHESS allows to specify SW to HW deployment by using the Assign MARTE feature. Moreover CHESS

supports modeling of SW multiple instances, i.e. instances having the same Component has classifier/type.

While working with the composite structure diagram to model SW component instances, it is possible to

directly instantiate multiple instances of the same Component just creating different Properties, where all

the Properties share the same Component as type. Then the Build Instance command can be used to

create the corresponding instanceSpecifications which in turns can be referred by the Assign.from field for

deployment on the hardware.

This is one way to address the deployment of multiple instances and it can be useful and usable only if the

number of multiple instances is reasonably low. If this is not the case, e.g. having hundreds of instances of

the same component to represent, then it is possible to use the multiplicity attribute of the Property in the

composiste structure diagram. In this case the Build Instance command does not generate all the

corresponding multiple entities but just a single InstanceSpecification representing all the set. So,

concerning the deployment, the aforementioned InstanceSpecification can be referred by the Assign.from

field, then it is possible to use NfpConstraint to specify the proper (sub-)set of instances to be allocated on

the same hardware.

Figure below shows how this can be modeled with an example: suppose to have a Property of type CompA

with multiplicities 200

Then if we want to model the scenario where instances from 0 to 99 are deployment on a processor and

instances from 100 to 199 are deployed on a different processor, then we can use the NfpConstraint like in

the following figure.

Note that for CHESS model created with CHESS tool v<3.0 it is required to manually apply the

MARTE::MARTE::Foundations::NFPs profile to the DeploymentView Package in order to be able to create

the NFPConstraint element.

Currently the Assign.impliedConstraint attribute cannot be set in Papyrus 0.8.1, so Link can be used to

associate the NFPConstraint to the given Assign.

Supported Automations
[Auto1] Action:

a port providing an interface is added to a ComponentType.

Effect:

the operations listed in the Interface are automatically added in the ComponentType. These new

operations are not automatically showed in the diagram (see [tip 1]).

a InterfaceRealization link from the ComponentType to the Interface is added in the model (if not

already defined).

[Auto2] Action:

a port requiring an interface is added to a ComponentType.

Effect:

A Dependency link from the ComponentType to the Interface is added in the model (if not already

defined)

[Auto3] Action:

a Realization is traced from a ComponentImplementation to a ComponentType.

Effect:

The operations and ports owned by the ComponentType are replicated in the

ComponentImplemenation. These new entities are not automatically showed in the diagram (see

[tip1]).

[Auto4] Action:

a Parameter is added/changed/removed to/in/from an Operation owned by an Interface.

Effect:

The same kind of Parameter is added/changed/removed to/in/from the corresponding Operation

owned in the ComponentType and ComponentImplementation which realize the given Interface.

[Auto5] Action:

a port is removed from a ComponentType.

Effect:

The corresponding port is removed from all the realizing ComponentImplementation.

[Auto6] Action:

an Operation is added on an Interface.

Effect:

A corresponding Operation is added on each ComponentType and ComponentImplementation

realizing the Interface.

Tips
[Tip 1] Show information stored in the model in a given diagram (if allowed by the CHESS profile):

-drag and drop the information from the model browser into the diagram (e.g. to show existing

Components in a Class diagram) or diagram entity (e.g. to show a Component’s Operation in a Class

diagram)

-right click on the diagram entity, then select Show/Hide Contents: the properties that can be

showed/hided for the current diagram entity are listed for selection.

[Tip 2] Show default Papyrus palette.

 Warning: this action should be performed to overcome possible limits/bugs of the

implemented CHESS palettes support coming with the current CHESS editor release. Please contact

the EDT team to notify the existing problem.

-right click on the palette, deselect the Papyrus standard palette.

-right click on the palette, select the Papyrus standard palette: the palette is showed.

[Tip 3] The CHESS SuperUser.

 Warning: this action should be performed to overcome possible limits/bugs of the

implemented CHESS view support. Please contact the EDT team to notify the existing problem.

Click the CHESS SuperUser button located in the CHESS toolbar to skip all the checks

concerning working with views.

