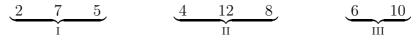
Λ.			\sim	\Box	\sim
А	lønritmi	6	Strutture	I Jatı	7
, ,	901161111	_	Structure	Duci	_

19 Giugno 2008

Cognome:	Nome:	Matricola:
----------	-------	------------

Ogni risposta deve essere adeguatamente motivata.

Domanda 1


Dare la definizione di albero binomiale e dimostrare che un albero binomiale di altezza n contiene 2^n elementi.

Domanda 2

Si consideri la struttura dati per insiemi disgiunti basata su foreste discussa a lezione, con unione per rango e compressione dei cammini. Se per ogni nodo x, height(x) indica l'altezza dell'albero radicato in x e con rank(x) il suo rango, si dimostri che $rank(x) \ge height(x)$.

Domanda 3

Si supponga di inserire in un B-albero di grado minimo 2, inizialmente vuoto, i seguenti elementi:

Specificare gli alberi ottenuti dopo l'inserimento degli elementi del I gruppo, del I e II gruppo, del I, II e III gruppo. Infine, indicare l'effetto della rimozione dell'elemento 10 dall'ultimo albero ottenuto.

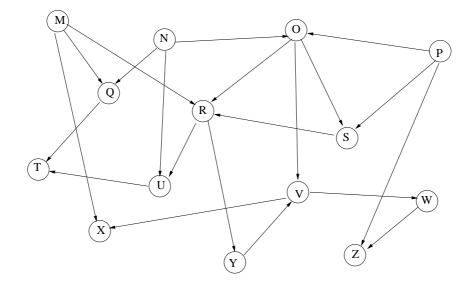
Cognome:	 Nome:	 Matricola:	
0.00	 	 	

Esercizio 1

Progettare una struttura dati per la gestione di un insieme dinamico di interi, con operazioni

- New(S) crea un insieme vuoto;
- Ins(S, x) inserisce l'elemento x nell'insieme S;
- Half(S) cancella da S i $\lceil |S|/2 \rceil$ elementi più piccoli.

Si richiede che una qualsiasi sequenza di n operazioni venga eseguita in tempo $O(n \log n)$.


- a. Specificare quali strutture dati di supporto si utilizzano e fornire lo pseudo-codice per la realizzazione delle operazioni suddette.
- b. Dimostrare, mediante un'analisi ammortizzata della complessità, che una sequenza di n operazioni costa $O(n \log n)$.
- c. È possibile ottenere una complessità lineare per una sequenza di n operazioni?

Cognome: Nome: Matricola:

Esercizio 2

Si consideri il seguente grafo G orientato aciclico, dove le liste delle adiacenze e gli elementi delle liste delle adiacenze si assumono ordinati alfabeticamente.

- Si indichino direttamente sul grafo i tempi di inizio e di fine di ciascun vertice ottenuti applicando una ricerca in profondità DFS(G, m).
- Si disegni la foresta ottenuta.
- Si indichi direttamente sul grafo la classificazione degli archi.
- Si indichi un ordinamento topologico.

Αl	goritmi	е	Strutture	Dati	2
	O				

19 Giugno 2008

Cognome:	Nome:	Matricola:
----------	-------	------------

Domanda 4

Dare la definizione di ordinamento topologico di un grafo orientato aciclico. Dimostrare che un grafo orientato ciclico non può mai essere ordinato topologicamente.