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This is a collection of exam exercises, roughly organised by thematic areas. The exercises often
come along with a solution, which is sometimes fully detailed and in some other cases only sketched.
The exercises that can be used for the preparation of the intermediate test are marked by a

“(p)ﬂ .
Please report any mistake you might find.

1 URM machine

Exercise 1.1(p). Cousider a variant, denoted URM™, of the URM machine obtained replacing
the successor instruction S(n) with a predecessor instruction P(n). Executing P(n) replaces the
content r,, of register n with r,—1. Determine the relation between the set C~ of the functions
computable by a URM™ machine and the set C of functions computable by a standard URM
machine. Is one contained in the other? Is the inclusion strict? Justify your answer.

Solution: It holds that C~ < C because predecessor is URM-computable. Inclusion is strict
because it is possible to prove, inductively on the number of steps, that the maximum of the values
contained in the registers at any time is bounded by the maximum value in the initial configuration.
As a consequence the successor function is not URM™ computable. O

Exercise 1.2(p). Consider a variant of the URM machine where the jump and successor in-
structions are replaced by the instruction JI(m,n,t) which compare the content r,, and r, of of
registers R, and R,, and then:

e if r,, = r,, increment register R,, and jump to the address ¢ (it is intended that if ¢ is outside
the program, the execution of the program halts).

e otherwise, continue with the next instruction.

Describe the relation between the set C’ of the functions computable by the new machine and
the set C of the functions that can be computed by a standard URM machine. Is one included in
the other? Is the inclusion strict? Justify your answers.

Solution: Observe that the instructions of each machine can be encoded in the other. Then show,

by induction on the length of a program that contains both sets of instructions, that it can be

transformed into an equivalent program that contains instructions only of one of the two machines.
In particular, a URM instruction I; : S(n) can be replaced by

I - JI(n,n,j+1)

Moreover, if k is any register not used by the program, the instruction J(m,n,t) can be replaced
by
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T(m, k)
JI(k,n,t)

Conversely, the new instruction JI(m,n,t) can encoded as a jump J(m,n,t1) to a subroutine
at tl

t1 : S(m)
t1+1 :J(m,m,t)

Exercise 1.3(p). Consider a variant URM?® of URM machine obtained by removing the successor
S(n) and jump J(m,n,t) instructions, and inserting the instruction J.S(m,n,t), which compares
the contents of register m and n, and if they coincide, it jumps to instruction ¢, otherwise it
increments the m-th register and executes the next instruction. Determine the relation between
the set C® of functions computable by a URM?® machine and the set C of functions computable by a
standard URM machine. Is one included in the other? Is the inclusion strict? Justify your answers.

Solution: Clearly the instruction JS(m,n,t) can be simulated in the URM machine as

J(m,n,t)
S(m)

Conversely, the instruction S(n) cannot be simulated. In fact, starting from the configuration in
which all registers have value 0, there is no a way of modifying the content of any register: this
would require the presence of two registers with different content and there are none. O

Exercise 1.4(p). Consider the subclass of URM programs where, if the i-th instruction is a
jump instruction J(m,n,t), then ¢ > i. Prove that the functions computable by programs in such
subclass are all total.

Solution: Given a program P prove, by induction on ¢, that the instruction to execute at the
t + 1-th step has an index greater than ¢t. This implies that the program will end in at most {(P)
steps. |

Exercise 1.5. Consider a variant of the URM machine, which includes the jump and transfer
instructions and two new instructions

e A(m, n) which adds to register m the content of register n, i.e., ry < 7 + Tn;
e (C(n) which replaces the value in register n by its sign, i.e., 7, < sg(r5).

Determine the relation between the set C’ of the functions computable with the new machine
and the set C of the functions that can be computed with the URM machine. Is one included in
the other? Is the inclusion strict? Justify your answers.

Solution: Let us denote by URM* the modified machine. We observe that the URM* machine
instructions can be encoded as programs of standard URM machine.

The instruction I; : A(m,n) can be replaced with a jump to the following routine (where we
denote by ¢ the index of the first register not used by the program, hence such register initially
contains 0)

SUB
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Similarly, by indicating again with ¢ the index of an unused register, an instruction I; : C'(m) can
be replaced by a jump to the subroutine

SUB  : J(n,q, ZERO)
Z(n)
S(n)

ZERO  J(1,1,j +1)

More formally, we can prove that C* < C showing that, for each number of arguments k and for
each program P using both sets of instructions we can obtain a URM program P’ which computes
the same function, i.e., such that f(lf) = gf).

The proof proceeds by induction on the number i of A and C instructions in the program.
The base case h = 0 is trivial, since a program P with 0 instructions A and C' is already a URM
program. Suppose that the result holds for h, let us prove it for h + 1. The program P certainly
contains at least one A or C' instruction. Assume it is a C' instruction and call j its index.

1 : Il
j A(m,n)
UP) : Iyp)

We build a program P”, using a register not referenced in P, say ¢ = max{p(P),k} + 1

1 : Il
J J(1,1,SUB)
(p) Iop
J(1,1, END)
SUB J(n,q, ZERO)
Z(n)
S(n)
ZERO J(1,1,j+1)
END

The program P” is such that f l(glf,) =f ](Jk) and it contains h instructions of type A or C. By inductive

hypothesis, there exists a URM program P’ such that f Uf) = gf,), which is the desired program.

If the instruction I; is of type A, we proceed in a completely analogous way, replacing the
instruction with its encoding and using the inductive hypothesis.

The inclusion is strict, i.e., C &€ C*. For example, one can easily see that the successor function
is not URM* computable. In fact, it can be shown that, starting from a configuration with all
registers at 0, any program URM*  after any number of steps, will produce a configuration with
all registers still at 0. A fully formal proof proves the above by induction on the number of steps.

O

Exercise 1.6(p). Consider a variant URM™ of the URM machine obtained by removing the
successor instruction S(n) and adding the instruction M (n), which stores in the nth register the
value 1 4+ min{r; | i < n}, i.e., the successor of the least value contained in registers with index
less than or equal to n. Determine the relation between the set C™ of functions computable by the
URM™ machine and the set C of the functions computable by the ordinary URM machine. Is one
included in the other? Is the inclusion strict? Justify your answers.

Solution: Observe that the instruction M (n) can be simulated in the URM machine as follows:
store in an “unused” register k, an increasing number, which starts from zero. Such a number is
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compared with all registers Ry, ..., R, until it coincides with one of them. Then the value in
register k£ will be the minimum of registers Ry, ..., R,,. Its successor is the value to be stored in
R,
Z (k)
LOOP: J(1,k,END)
J(2,k, END)
J(n k,END)
S(k)
J(1,1, LOOP)
END: S(k)
T(k,n)

Conversely, the instruction S(n) can be simulated in the URM™ machine as follows. Assume again
that k is the number of a register not used by the program. Then the encoding can be the following:

Exercise 1.7(p). Define the operation of primitive recursion and prove that the set C of URM-
computable functions is closed with respect to this operation.

2 Primitive Recursive Functions

Exercise 2.1(p). Give the definition of the set PR of recursive primitive functions and, using
only the definition, prove that the function pow2 : N — N, defined by pow2(y) = 2¥, is primitive
recursive.

Solution: We define pow2 : N — N:

{ pow2(0) =1
pow2(y + 1) = double(pow2(y))

where double(z) can be defined by primitive recursion as

double(0) =0
double(y + 1) = double(y) + 2 = (double(y) + 1) +1

Exercise 2.2(p). Give the definition of the set PR of primitive recursive functions and, using
only the definition, prove that the the characteristic function x4 of the set A = {2" —1:n e N} is
primitive recursive. You can assume, without proving it, that sum, product, sg and sg are in PR.

Solution: Observe that A = {a(n) : n € N} where a : N - N € PR is the function defined by
{ a(0) = 0

an+1) = 2-a(n)+1
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Now define chk : N> — N, in a way that chk(z,m) = 1 if there exists n < m such that z = a(n)
and 0 otherwise. It can be defined by primitive recursion as follows:

chk(z,0) = 35g(z)
chk(x,m+1) = chk(z,m)+ eq(xz,a(m + 1))

Hence we can deduce that chk € PR by the fact that y—1 and z—y are in PR, and observing
that eq(z,y) = 5g(z—y + y—x), hence also such function is in PR. We conclude by noting that
xa(z) = chk(z,x). O

Exercise 2.3(p). Give the definition of the set PR of primitive recursive functions and, using
only the definition, prove that the xp, the characteristic function of the set of even numbers P is
primitive recursive.

Solution: The function xp can be defined as follows:
xp(0) =1
xe(y +1) =59(xe(y))

where 5g can also be defined by primitive recursion:

59(0) =1
59(y+1)=0

Exercise 2.4(p). Give the definition of the set PR of primitive recursive functions and, using only
the definition, prove the function half : N — N defined by half (x) = /2, is primitive recursive.

Solution: The set PR of primitive recursive functions is the smallest set of functions that contains
the basic functions:

1. 0: N — Ndefined by 0(z) = 0 for each z € N;

2. s: N — Ndefined by s(z) = 2 + 1 for each z € N;

3. U? : N* — Ndefined by Ug?(xl, ..., xp) = x; for each (1,...,z3) € N*.

and which is closed with respect to generalized composition and primitive recursion, defined as
follows. Given the functions fi,..., f, : N® — Nand g : N® — N their generalized composition is
the function h : N¥ — N defined by:

W) = g(f1(D); - -, [n(T)).

Given the functions f : N¥* — N and ¢ : N**2 — N the function defined by primitive recursion is
h : NF+1 & N:

We need to prove that the function half can be obtained from the basic functions (1), (2) and
(3), using primitive recursion and generalized composition. One can proceed as follows.
First we define the function 5g : N — N such that 5g(z) = 1 if x = 0 and 5g(z) = 0 otherwise:

s0) = 1
{sg($+1) = 0

Then the function rms : N — N which returns the remainder of the division of x by 2:
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{ rma(0) =0

rma(z+1) = 3g(rme(x))
Finally the function half : N — N can be defined as:

{ half (0) -0
half(x +1) = half(z) + rma(z)

Exercise 2.5(p). Give the definition of the set PR of primitive recursive functions and, using
only the definition, prove that ps : N — N defined by pa(y) = |y — 2| is primitive recursive.

Solution: For the definition of PR see the book. For the second part, we observe that if we define
p1(y) = [y — 1| then

{ p1(0) =1

py+)=ly+1-1=ly =y
and therefore

{PQ(O)ZQ
pely+1)=ly+1-2=y—1=pi(y)

Hence ps can be defined by primitive recursion starting from basic functions and thus it is in PR.

O

3 SMN Theorem

Exercise 3.1(p). State the smn theorem and prove it (it is sufficient to provide the informal
argument using encode/decode functions).

Exercise 3.2(p). State the theorem s-m-n and use it to prove that it exists a total computable
function s : N — N such that |[Wy,| = 22 and |Eyy| = 2.
Solution: We can define, for instance,

) oqt(2,y) fy<2z
flz,y) = { 1 otherwise

Observe that f(z,y) = ¢t(2,y) + pz. (y + 1 = 2x) is computable and finally use the smn theorem
to get function s(z). O

Exercise 3.3. State the smn theorem and use it to prove that there exists a total computable
function s : N*> — N such that W, ) = {z: z %z = y}

Exercise 3.4(p). Prove that there is a total computable function k£ : N — N such that for each
n € N it holds that Wj,,,) = P = {z € N[z even} and Ej,) = {x e N| 2z > n}.

Solution: We start by defining a computable function of two arguments f(n,z)which meets the
conditions when viewed as a function of x, with n taken as a parameter, e.g.
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z/2+mn if z even

f(n,z) = { ' otherwise = qt(2,z) + n + pz.orm(2,x)

By the smn theorem, there is a computable total function k : N — N such that ¢, (7) = f(n,z)
for each n,z € N. Therefore:

® Wiy ={z | f(n,z) I} = {z | z even}
o Eymy ={f(n,z) |zeN} ={n+2z/2|zeven} ={n+z|z>0}={y|y=>N}
as desired. m

Exercise 3.5. State the smn theorem. Use it to prove it exists a total computable function k :
N — N such that W,y = {r e N |2 > n} e Ey,) = {y € N|y even} for all n € N.

Solution: We start by defining a computable function of two arguments f(n,x) which enjoys the
property when viewed as a function of z, with n seen as a parameter, e.g.

f(n,z =2%(x=n)+ pz.(n—=2x)

) — 2% (z=n) ifx=n
1 otherwise

By the smn theorem, there is a computable total function k : N — N such that ¢, (z) = f(n,z)
for each n,z € N. Therefore, as desired

¢ Wiy ={z| f(n,z) |} ={z |z = n};
¢ Eymy=1{f(n,z) |zeN} ={2(x=n)|z=n}={2n+2+-n)|2>0}={22]zeN}.

4 Decidability and Semidecidability

Exercise 4.1. Prove the “structure theorem” of semidecidable predicates, i.e., show that a pred-
icate P(¥) is semidecidable if and only if there exists a decidable predicate Q(Z,y) such that

P(¥) =3y Q).

Exercise 4.2. Prove the “projection theorem”, i.e., show that if the predicate P(z,¥) is semide-
cidable then also Jz. P(x, ) is semi-decidable. Does the converse implication hold? Is it the case
that if P(z,) is decidable then also Jz. P(x, ) is decidable? Give a proof or a counterexample.

Solution: No, the converse is false. Consider, for instance, P(z,y) = (y = 2x) A (y ¢ W) (or,
simply, P(z,y) = « ¢ W,), which is not semi-decidable. The existentially quantified version is
constant, hence decidable.

Also the second claim is false. Take for instance P(z,y) = H(y,y,«) which is decidable, while
Jz. P(x,y) = y € K is only semi-decidable, but not decidable. O

5 Numerability and diagonalization

Exercise 5.1(p). Consider the set Fy of functions f : N — N| possibly partial, such that cod(f) <
{0}. Is the set F, countable? Justify your answer.

Master in Computer Science - University of Padua Paolo Baldan



Computability - 2024/2025 8

Solution: No, such functions are completely determined by the their domain, which is a generic
subset of N, and the set of subsets of N is uncountable. O

Exercise 5.2(p). A function f : N — N is called total increasing when it is total and for each
z,y € N, if x < y then f(x) < f(y). Prove that the set of total increasing functions is not countable.

Solution: Given any enumeration of the total increasing functions {f,}nen you can define a
function f : N — N as follows

flx) =1+ 30 fn(n),
Such function is an total increasing and different from all f,,. In fact
e f is clearly total by definition.

e f is increasing, since f(x + 1) = f(z) + fo+1(z + 1) > f(x). The last inequality is motivated
by the fact that f,, is increasing, and thus fy11(x + 1) > foy1(x) = 0.

o f is differs from all f, since for each z € N,

f@) =1+ 50 ofu(n) 2 1+ fo(x) > fu(2).

It follows that no enumeration can contain all total increasing functions.
The same argument would work if we defined f(z) = 1 + max{f,(n) |0 < n < z}. O

Exercise 5.3(p). A function f : N — N is called total increasing when it is total and for each
xz,y € N, if z < y then f(z) < f(y). It is called binary if cod(f) < {0,1}. Is the set of binary total
increasing functions countable? Justify your answer.

Solution: Let f be an total increasing binary function, different from the constant 0, and define
s(f) = min{z | f(x) =1} € N. It is easy see that f; = fo iff s(f1) = s(f2). Hence, indicated by

0 =<1
1 otherwise

i) = {

we have that (f;)ien is an enumeration of the total binary increasing functions, different from the
constant 0, which therefore they are countable. When adding the constant 0 the set clearly stays
countable. 0

6 Functions and Computability

Exercise 6.1(p). Define a function f : N — N total and not computable such that f(z) = z for
infinite arguments x € N or prove that such a function cannot exist.

Solution: We can define

[ () +1 if x e W,
f(x)_{:r if ¢ W,

Clearly, for all x € N we have ¢, (x) # f(z), hence f is not computable. Moreover = ¢ W, holds
true infinitely many times since the empty function has infinitely many indices. Therefore also the
last condition is satisfied. O
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Exercise 6.2(p). Say that a ffunction : N — N is increasing if it is total and for each =,y € N,
if z <y then f(z) < f(y). Is there an increasing function which is not computable? Justify your
answer.

Solution: Define

or(x)+1 ifxeW,
g(z) = .
0 otherwise

and then f(z) = £,<,9(y). Ul

Exercise 6.3(p). Are there two functions f,g : N — N with g not computable such that the
composition f o g (defined by (f o g)(z) = f(g(z))) is computable? And requiring that f is also
not computable, can the composition f o g be computable? Justify your answer, giving examples
or proving non-existence.

Solution: Yes, in both cases. In fact, let g = xx, not computable, and f defined by

o) = {

not computable too, otherwise y x would be computable. It is easy to see that fog is the constant
0, which is computable. O

0 ife<1
Xk(z) otherwise

Exercise 6.4(p). Is there a function f : N — N with finite range, total and increasing (i.e.
f(z) < f(y) for x < y) and not computable? Justify your answer with an example or a proof of
non-existence. What if we relax the requirement of totality?

Solution: With the totality requirement, function f cannot exist. Indeed, we can prove that
each function f : N — N with all the required properties is computable. The proof proceeds for
induction on M = max{f(z) | z € N}.

(M = 0) Observe that in this case f(x) = 0 for all x € N, i.e. f is the constant 0 and therefore
it is computable.

(M > 0) In this case, let g = min{z | f(z) = M}. If 29 = 0, the function f is the constant M,
and therefore it is computable.

If, on the other hand, z¢p > 0, let M’ = f(xo — 1), i.e., the value assumed by f before M. We
can then write f(z) as the sum of two functions

f(z) = f'(z) + g(x)
where f/: N — N is:

Fla) = { fl@) ifx <z

M’ otherwise

and g : N — Nis:

{0 ifx<xzg y .
g(x)_{M—M’ otherwise = (M = M’) sg(z + 1+ o)

The function f” is total, with range included in that of f, whence finite; moreover it is increasing
and max{f’'(z) | * € N} = M’ < M. Hence it is computable by inductive hypothesis. Also g is
computable as it can be expressed as a composition of computable functions. Thus f is also
computable.

If instead we relax the requirement of totality we can define a function
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1 ifxe¢W,
1 otherwise

o) - {

that is increasing, with finite range and not computable since, by diagonalization, it is different
from all computable function.

O

Exercise 6.5(p). Say that a function f : N — N is decreasing if it is total and for each =,y € N,
if £ <y then f(z) = f(y). Is there a decreasing function which is not computable? Justify your
answer.

Solution: Let k = min{f(x) | z € N} and let 25 € N be such that f(xg) = k. Therefore, since f
is decreasing, f(z) = k for all x > z. If we define

o(z) = { f(z) if v <z

1 otherwise
we can write f as

[ 0(x) if © < xg
flz) = { k otherwise

Since 6 is finite, it is computable. Let 6 = ¢.. Therefore
f(@) = (pw. ((z <zo A S(e,z, (W, (w)2) v (=20 A (W) = k)

hence it is computable.

An alternative simpler solution, shows that actually all decreasing functions are primitive re-
cursive. One can reuse the previous exercise and observe that g(x) = f(0) — f(z) is total, increasing
and with finite domain. A direct proof can proceed by (complete) induction on f(0). O

Exercise 6.6(p). Say if there can be a non-computable function f : N — N such that for any
other non-computable function ¢g : N — N the function f + g defined by (f + ¢)(z) = f(z) + g(x)
is computable. Justify your answer (providing an example of such f, if it exists, or proving that
cannot exist).

Solution: It cannot exist otherwise, since the quantification over g is universal, the property
should also hold for g = f. Thus f + f = 2f would be computable, which implies f computable.
[

Exercise 6.7. Say if there can be a non-computable function f : N — N such that there exists a
non-computable function g : N — N for which the function f+g¢ (defined by (f+g)(z) = f(x)+g(x))
is computable. Justify your answer (providing an example of such f, if it exists, or proving that
cannot exist).

Solution: Yes, xx + xj is the constant 1. O
Exercise 6.8(p). Say if there can be a non-computable function f : N — N such that dom(f) n

img(f) is finite. Justify your answer (providing an example of such f, if it exists, or proving that
cannot exist).

Solution: Yes, define
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f(x)={T ifx<1

Xk (z) otherwise, if z > 1

Exercise 6.9. Is there non-computable function f : N — N such that dom(f) n img(f) is empty?
Justify your answer (providing an example of such f, if it exists, or proving that cannot exist).

Solution: Consider the function

2% xk(|z/2]) if 2 odd
f(z) = { 1 " otherwise

We have that dom(f) is the set of odd numbers, cod(f) = {0, 2}, then dom(f) ncod(f) = &. Also,
f is not computable. If it were then also xx (2) = f(22+1)/2 would be computable, while we know
that K is not recursive, i.e., xXx is not is computable. J

Exercise 6.10. Is there a total non-computable function f : N — N, such that its image cod(f) =
{y | 3z e N. f(z) =y} is finite? Provide an example or show that such a function does not exists.

Solution: Yes, it exists. For example, just consider:

Then the function f

e it is total;

e it is not computable since for each x € N, one has that f(z) # . (z); in fact, if @, (x) | then
f(@) =59(pa(x)) # ¢a(x), and if g (2) 1 then f(z) =0 # @u(2);

o clearly cod(f) < {0,1}.

Exercise 6.11(p). Prove that the function f: N — N, defined as

F(x) :{ or(x) fxeW,

T otherwise

is not computable.

Solution: Observe that

() +1 fxeW,
g(x) = { r+1 otherwise

is not computable, and, for concluding, use the fact that g(z) = f(z) + 1. Hence if f were com-
putable, also g would have been so. O

Exercise 6.12(p). Say if there is a total non-computable function f : N — N such that, for infinite
x € N it holds

f(x) = ¢u(2)
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If the answer is negative, provide a proof, if the answer is positive, provide an example of such a
function.

Solution: We can define

oz () if x e W,
f(x)_{o if 2 ¢ W,

If this were computable, also function: h : N — N defined below, would be computable (by com-
position)

h(x)=f(m)+1:{ Sl%(ff)ﬂ ii;%ﬁ

Instead, we know that it is not computable. In fact, it is easy to prove that for each x € N we have
h # @,. |

Exercise 6.13. Say if there is a total non-computable function f : N — N such that

f(@) # pu(z)

only on a single argument x € N. If the answer is negative provide a proof, if the answer is positive
give an example of such a function.

Exercise 6.14. Is there non-computable function f : N — N such that

f(@) # pu(z)

only on a single z € N7 If the answer is negative provide a proof of non-existence, otherwise give
an example of such a function.

Exercise 6.15. Is there a total non-computable function f : N — N such that cod(f) is the set
P of even numbers? Justify your answer response (providing an example of such f, if it exists, or
proving that it does not exist).

Solution: Yes, such a function exists. For example, just consider:

[ 20p(x)+2 ifzeW,
fla)={ 56 it ¢ Wick = [{y <a |y ¢ W)

The domain of f is the set of even numbers, since there are infinitely many functions undefined on

their index (e.g. there are infinitely many indices for the function which is always undefined). Fur-

thermore, it is not computable since, by construction, it is different from all computable functions.
Alternatively we could consider

_f 2pz(x)+2 ifzeW,

fz) = { 0 otherwise
In fact, all even numbers greater than zero will be “covered” by the first case (e.g., all constant
functions are computable!). 0

Exercise 6.16. Say if there is a non-computable function f : N — N such that the set D = {z €
N | f(x) # ¢(x)} is finite. Justify your answer.
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Exercise 6.17. Say if there are total computable functions f,g : N — N such that f(z) # @.(x)
for each x € K and g(x) # ¢, (x) for each x ¢ K. Justify your answer by providing a example or
by proving non-existence.

Solution: The function f does not exist. In fact, for every x € K we have f(z) # ¢, (). Moreover,
for every z, if ¢, is total then z € K. It follows that f is different from all total computable function.
So, if it is total it is not computable.

The function g exists since we can just take g(z) = 1 for all x € N. In fact, if 2 € K, we have
that g(z) = 1 # pz(x) =1. O

Exercise 6.18. Consider the function f : N — N defined by

f(x)*{ 2e+1 if pu(x) ]

B 2¢ —1 otherwise

Is it computable? Justify your answer.

Solution: The function is not computable, since we can write

X (z) = sg(f(x) - 22).

If f were computable, we would deduce that also x x is computable, while we know that K is not
is recursive and thus x g is not computable. OJ

Exercise 6.19(p). Consider the function f : N — N defined by

x sgVy <z @ytotal
fz) = .
0 otherwise

Is it computable? Justify your answer.

Solution: Let yo = min{y | ¢, is not total}. Note that yo is well-defined since the set of non-total
computable function is non-empty and natural numbers are well-ordered. Then note that

xz ifz <y
f@) = { 0 otherwise v 590 — )

is computable. O

Exercise 6.20. Consider the function f : N — N defined by

f@):{ Tz 42 if pu(2) |

x—1  otherwise

Is it computable? Justify your answer.

Exercise 6.21. Consider the function f : N — N defined by

ez +1)+1 fp(z+1)]
flz) = .
1 otherwise
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Is it computable? Justify your answer.

Exercise 6.22. Consider the function f : N — N defined by

wo(z) +1 if @y(y) | for each y <z
flz) = :
0 otherwise

Is it computable? Justify your answer.

Exercise 6.23. Consider the function f : N — N defined by
2

f(z) = { @ if ¢q(2) |

z + 1 otherwise

Is it computable? Justify your answer.

Solution: The function f is not computable. In fact, since 2 # x + 1 for each z € N, if we
consider the function g(x) = 5g(|f(x) — 2?|) we have that g(x) = xx (). O

Exercise 6.24. A function f : N — N is called almost total if it is undefined on a finite set of
points. Is there an almost total and computable function f : N — N such that f < xg? Justify
your answer by giving an example of such a function in case it exists or a proof of non-existence,
otherwise.

Solution: Let f be almost total and assume that f < x . Note that, if we let D = dom(f), one
has that D is finite and therefore recursive. Thus also D is recursive. Define 6 = X K|5, which is a
finite function, therefore computable.

Now, we observe that

i (@) :{ fl) zeD

O(x) otherwise

and conclude that f cannot be computable, otherwise also xx would be computable. O

Exercise 6.25. Say that a function f : N — N is almost constant if there is a value k € N such
that the set {« | f(z) # k} is finite. Is there an almost constant function which is not computable?
Adequately motivate your answer.

Solution: Let I = {z | f(z) # k} and define
0(:5)—{ flz) ifzel

1 otherwise

We can write f as

[ 0(x) ifexel
fx) = { k otherwise
Since 6 is finite, it is computable. Let § = ¢.. Therefore f(z) == (uw. ((x € I A S(e,z, (w)1, (W)2) Vv
(x¢ I A(w); =k))1 is computable. O

Exercise 6.26. Is there a total non-computable function f : N — N with the property that
f(x) = 2? for all x € N such that ¢,(x) |? Justify your answer by providing an example of such
function, if it exists, or by proving that it does not exist, otherwise.
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Solution: Yes, the function exists and it can be defined as:

OB BT il

22 +1 otherwise

It is not computable since xx (z) = 3g(f(z) — z?). O

Exercise 6.27(p). Is there a non-computable function f : N — N such that for any non-
computable function g : N — N the function f=*g (defined as (f*g)(z) = f(x)-g(x)) is computable?
Justify your answer (providing an example of such f, if it exists, or proving that it does not exist).

Solution: No, the function cannot exist. In fact, assume, by contradiction, that such non-
computable function f exists. Then, in particular, we can choose ¢ = f and deduce that f « f
is computable. Now

(f = f)(x) = f2) flz) = f(z)?
But then also f(x) = py.|(f * f)(y) — v - y| is computable, leading to a contradiction. O

Exercise 6.28(p). Define a function f : N — N total and not computable such that f(z) = z/2
for each even x € N or prove that such a function does not exist.

Solution: We define

x/2 if x even
flz) = <pTT_1(a:) +1 ifw odd andz € Was
0 otherwise
Then observe that for each x € N it holds that ¢, # f since ¢, (22 + 1) # f(2x + 1). O

Exercise 6.29. Is there a total non-computable function f : N — N such that the function
g : N — N defined, for each z € N, by g(z) = f(x) ~ z is computable? Provide an example or prove
that such a function does not exist.

Solution: Consider f(z) = xx(z). Then f(z) — z is the constant 0 for each z > 1, therefore
computable. O

Exercise 6.30(p). Is there may be a non-computable function f : N — N such that for each
non-computable function g : N — N the function f + g (defined by (f + g)(x) = f(z) + g(z))
is computable? Justify your answer (providing an example of such f, if it exists, or proving that
cannot exist).

Solution: No, otherwise, we should have f + f = 2f computable, and thus f computable. []

Exercise 6.31. Is there a computable function f : N — N such that dom(f) = K and cod(f) = N?
Justify your answer.

Solution: Yes, it exists. For example, consider f(x) = ¢, (x). Clearly dom(f) = K. Furthermore,
for each k € N, if we consider an index of the constant function k we have that f(e) = p.(e) = k.
Thus cod(f) = N.

Alternatively one can define
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Clearlydom(f) = K since f(x) | if there exists some ¢ such that H(z,z,t), i.e., if x € K. Further-
more, for each z € N just take the program Z; which consists of Z(1) repeated = times. For the
corresponding index y = v(Z;) we will have f(y) = k — 1, which shows that cod(f) = N. O

Exercise 6.32. Let A be a recursive set and let fi, fo : N — N be computable functions. Prove
that the function f : N — N defined below is computable:

_ f1 (l’) ifreA
@) = { folz) ifaz¢A
Does the result hold if we weaken the hypotheses and assume A only r.e.? Explain how the proof

can be adapted, if the answer is positive, or provide a counterexample, otherwise.

Solution: Let ey, e3 € N be indexes for f1, fa, respectively, namely ., = f1 and ., = fa. Observe
that we can define f as

f(@) = (pw.((S(er, 2, ()1, (w)2) A xalz) =1) v (S(e, 2, ()1, (w)2) A xal@) =0))h

showing that f is computable. Relaxing the hypotheses to recursive enumerability of A, the result
is no longer true. Consider for instance fi(x) = 1, fa(z) = 0 and A = K, which is r.e. Then f
defined as above would be the characteristic function of K which is not computable. |

Exercise 6.33(p). Is there a total, non-computable function such that img(f) = {f(z) | x € N}
is the set Pr of Prime numbers? Justify your answer.

Solution: Yes, it exists. For example, consider:

Fz) = p ifxeWyep =min{p’ € Pr|p > p.(x)}
)= 2 otherwise

Then the function f

e is total;

e it is not computable, since for each x € N one has that f(z) # ¢.(z); in fact, if . (z) | we
have that f(z) is a prime larger than ¢, (), and if ¢, (z) 1 then f(z) = 2;

e clearly img(f) < Pr. For the reverse inclusion, consider any prime number p € Pr and the
constant function g(z) = p—1 for each « € N. The function g is computable, thus g = ¢,, for
a suitable index n. We conclude by noting that f(n) = min{p’ € Pr | p’ > ¢, (n)} = min{p’ €
Pr|p>p—1} =min{p’ € Pr | p’ = p} = p and thus p € img(f).

O

7 Reduction, Recursiveness and Recursive Enumerability

Exercise 7.1. Prove that a set A is recursive if and only if there is a total computable function
f : N — N such that x € A if and only if f(z) > x.

Solution: Let A be recursive. Then x4 is computable. Therefore the required function can be
f(x) =2+ xa(x).
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Vice versa, let f : N — N be a computable total function such that « € A if and only if f(z) > =.
Then xa(x) = sg(f(x)—x) is computable and therefore A is recursive. O

Exercise 7.2. Prove that a set A is recursive if and only if there are two total computable functions
f,9 : N — N such that for each z € N

x € A if and only if f(z) > g(z).

Solution: Let A be recursive. Then x4 is computable. Therefore the required functions can be
f(@) = xa(x) and g(x) = 0.

Vice versa, let f,g : N — N be total computable functions such that = € A if and only if
f(z) > g(x). Then ya(x) = sg(f(x)—g(z)) is computable and therefore A is recursive. O

Exercise 7.3. Prove that a set A is recursive if and only if A <,,, {0}.

Solution: Let A be recursive. Then x 4 is computable. The reduction function witnessing A <, {0}
can then be 1 — ya(x). Conversely, if A <,,, {0} and f is the reduction function, then ya(x) =

s59(f(x). O

Exercise 7.4. Let A < N be a set and let f : N — N be a computable function. Prove that if A
is r.e. then f(A) ={yeN |3z e A. y = f(x)} is r.e. Is the converse also true? That is, from f(A)
r.e. can we deduce that A is r.e.?

Solution: Let e, e’ be such that f = ¢, and scy = pe. Then

scpay(y) = L(pw. H(e, (w)1, (w)2) A S(e, (w)1,y, (w)s3))

hence f(A) is r.e. The converse is not true. For example 1(K) = {1} is r.e., but K is not r.e. []

Exercise 7.5. Let A be a recursive set and f : N — N be a total computable function. Is it true,
in general, that f(A) is r.e.? Is it true that f(A) is recursive? Justify your answers with a proof or
counterexample.

Solution: We have that f(A) is r.e. since

scra) (@) = Upz|f(2) —yl)

However, f(A) is not recursive. For example, consider the function defined as follows. Take a € K
and define:

()1 if H((2)1, (@)1, (2)2)

G a otherwise
= (@)1 x# (@)1, ()1, (2)2) + a - sg(xu (@)1, ()1, (2)2))
computable and total. Moreover f(N) = K. O

Exercise 7.6. Let A € N be a set and let f : N — N be a computable function. Prove that if A is
recursive then f~1(A) = {zr € N| f(z) € A} is r.e. Is the set f~1(A) also recursive? For the latter
give a proof or provide a counterexample.

Solution: The set f~1(A) is r.e. since
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SCf—l(A)(x) = xa(f(z))

It is not recursive in general, since sc;' (N) = K. O

Exercise 7.7. Prove that a set A is r.e. if and only if A <,,, K.

Solution: Consider If A is r.e., then consider g(z,y) = sca(z), and, using the smn theorem,
obtain the reduction function. Conversely, if A <,,, K, then if f is the reduction function, we have
sca(x) = sck(f(x)), which is computable. O

Exercise 7.8. Prove that a set A is r.e. if and only if there is a computable function f: N —» N
such that A = img(f) (remember that img(f) = {y: 3z. y = f(2)}).

Solution: If A isr.e., then just take f(x) = z - sca(z). Conversely, if A = img(f) for f: N >N
computable, say f = ¢, for a suitablee € N then sca(z) = 1(pw.S(e, (w)1, x, (w)2)). O

Exercise 7.9. Given a function f : N — N, define the predicate Py(z,y) = “f(z) = ¢", ie,
Py(x,y) is true if 2 € dom(f) and f(z) = y. Prove that f is computable if and only if the predicate
Py (z,y) is semi-decidable.

Solution: Let f: N — N be a computable function. Let e € N such that f = ¢.. Then scp(z,y) =
1(pw.|f(z) — y| is computable, hence P is semidecidable.
Vice versa, let P(z,y) be semidecidable and let e be an index for the semi-characteristics

function of P, namely <p£2) = scp. Then we have f(z) = (pw.H® (e, (z, (w)1), (w)2))1. O

Exercise 7.10. Let A € N. Prove that A is recursive and infinite if and only if it is the image of
a function f : N — N computable, total and strictly increasing (i.e., such that for each z,y € N, if

x <y then f(z) < f(y)).
Solution: Let A be recursive and infinite. Define the function ¢ : N — N as

that is, g(z) counts the number of elements of A below z, or, in other words, it assigns a increasing
number to each element of A. The function is computable since x 4 is so. Furthermore, it is easy
to see that g is monotone, that is, for each x € N, g(z) < g(z + 1) . Moreover, x € A if and only if
g(x + 1) = g(x) + 1. Since A is infinite, this implies that img(g) = N.

Now we can define f : N — N as

fn) = pz. (glx+1)=n+1)
px. n+1—g(z+1)]

The function f is
e computable, since it arises as the minimization of a computable function;

e total, since img(g) = N and therefore, for all n, the condition g(x + 1) = n + 1 is certainly
satisfied for some x;

e increasing, since if n < m then g(f(n)+1) =n+1<m+1=g(f(m)+ 1). Recalling that g
is increasing, this implies f(n) + 1 < g(m) + 1 and therefore f(n) < f(m).
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In addition, img(f) = A. In fact, if x € img(f), then there exists n € N such that f(n) = z,
hence g(z) = n and g(z + 1) = n + 1. Therefore, as observed above, xa(z) = 1, i.e., v € A.
Conversely, if z € A, then we have g(z) = n and g(z + 1) = n + 1. Therefore f(n) = z, and thus
x € img(A).

For the converse implication, let A = img(f) with f total computable and strictly increasing.
Clearly A is infinite. In addition, since f is increasing, it is easy to see that for each x € N we have
f(z) = z and thus, if there is z € N such that f(z) = x then z < z. Therefore the characteristic
function of A can be expressed as xa(z) = 3sg(II%_,|f(2) — z|). O

Exercise 7.11. Let 7 : N> — N be the function encoding pairs of natural numbers into the natural
numbers. Prove that a function f : N — N is computable if and only if the set Ay = {n(z, f(z)) z €
N} is recursively enumerable.

Exercise 7.12. Prove that a set A N is recursive if and only if A <,,, {0}.

Exercise 7.13. Let A € N be a non-empty set. Prove that A is recursively enumerable if and only
if there exists a function f : N — N such that dom(f) is the set of prime numbers and img(f) = A.

Exercise 7.14. Let A < C be a set of computable functions such that, denoted by 0 and 1 the
constant functions 0 andl, respectively, we have 0 ¢ A and 1 € A. Define A = { : v, € A} and
show that either A is not or A is not r.e.

Solution: Since neither A nor its complement are empty, by Rice’s theorem they are not recursive.
Therefore, they cannot be both r.e. O

Exercise 7.15. Establish whether an index z € N can exist such that K = {2Y —1:y € E,}.
Justify your answer.

Solution: No, it cannot exist. Let f denote the function f(y) = 2¥ — 1. Then, we have that
{2 —1:y€e E,} =img(f o¢,), which implies that such set is r.e., unlike K. Hence they cannot
coincide. |

Exercise 7.16. Given two sets A, B € N what A <,,, B means. Prove that given A, B,C < N the
following hold:

a. if A <,, B and B <,,, C then A <,,, C;

b. if A # N then & <, A.

Solution:

a. Observe that if f reduces A toB, and g reduces B to C then g o f reduces A to C.

b. Consider ag ¢ A (which exists since A # N). Then the reduction function can be f(z) = ao
for each z € N.
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Exercise 7.17. Given two sets A, B € N define what A <,, B means. Is it the case that A <,,
A U {0} for all sets A? If the answer is positive, provide a proof, otherwise, a counterexample. In
the second case, identify a condition (specifying whether it is only sufficient or also necessary) that
make A <,,, A v {0} true.

Solution:

In general A <,, A U {0} does not hold. For instance N\{0} <,, N, since a total function
f : N — N cannot exist such that € N\{0} iff f(x) € N: for an choice of f the consequent is
always true, while the antecedent is not!

This is the only counterexample, i.e., for each A # N\{0} we have A <,, A U {0}. In fact, we
distinguish two cases:

e if 0 € A, then A U {0} (the reduction function can be the identity).

e if 0 ¢ A, then we can certainly find xg ¢ A, o # 0 (in fact we know that A # N and
A = N\{0}). Then, the reduction function can be

f(a:)={x0 ifrz=0

T otherwise

Exercise 7.18. Given two sets A, B © N define what A <,, B means. Prove that, given any
AcC N, we have A re. iff A <,,, K.

Solution: If A <,,, K then A r.e., by reduction, since K is r.e.
Conversely, let A r.e. Define

g(xvy) = SCA(J;> = Ps(x) (y)

with s : N — N computable total, given by the smn theorem. Then s is a reduction function for
A<, K. Ul

Exercise 7.19. Prove that a set A € N is recursive if and only if A and A are r.e.
Exercise 7.20. State and prove Rice’s theorem(without using the second recursion theorem).

Exercise 7.21. Define what it means for a set A € N to be saturated and prove that K is not is
saturated.

Exercise 7.22. Let. A < Che a set of functions computable and let f € A such that for any function
overf) C f is worth 0 ¢ A. Prove that A = {x € N | ¢, € A} is not r.e.
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8 Characterization of sets

Exercise 8.1. Study the recursiveness of the set A = {z € N : |W,| > 2}, i.e., establish if A and A
are recursive/recursively enumerable.

Exercise 8.2. Study the recursiveness of the set A = {z € N: z € W, n E.}, i.e., establish if A
and A are recursive/recursively enumerable.

Exercise 8.3. Study the recursiveness of the set
B={z|zeW, uE,}

i.e., establish if B and B are recursive/recursive enumerable.

Solution: We prove that K <,, A. Define

1 ze K

g(.y) = { 1 otherwise = scx(x)

By the smn theorem, we get a total computable function s : N — N, such that g(z,y) = @5 (v)
and it is easy to see that s can be the reduction function.
Furthermore, B is r.e., in fact

sep(x) = 1(pw.(H(z, z, (w)2) v S(z, (w)1, z, (w)2))
We therefore conclude that A is not r.e. |

Exercise 8.4. Study the recursiveness of the set A = {x € N: W, < P}, where PP is the set of even
numbers, i.e. establish whether A and A are recursive/recursively enumerable.

Solution: The set A is not is recursive since K <,,, A. In fact, consider the function

g(m,y)—{ 1 zeK

1 otherwise
It is computable. Therefore, by the smn theorem, there exists a total computable s : N — N, such
that g(2,y) = @s(2)(y). Such a function s can be shown to be a reduction function.
In fact, if z € K, we have that ¢,,(y) = g(x,y) = 1 for all y. Then W,y = N. Therefore
W) £ P, ie., s(x) € A.
On the other hand, if x ¢ K, we have that ;) (y) = g(z,y) 1 for all y. Then W,y = &, and
therefore Wy(,) € P, then s(z) € A, ie., s(z) ¢ A.

The set A is r.e., in fact
sci(@) = pw.H(z,2(w)1 + 1, (w)2)

Therefore, A is not r.e.

Exercise 8.5. Study the recursiveness of the set A = {zr e N:3y,2e N. 2 >1 A z =y?}, ie,
establish if A and A are recursive/recursively enumerable.

Exercise 8.6. Study the recursiveness of the set A = {z € N : ¢,(y) = y for infinitely many y},
i.e., establish if A and A are recursive/recursive enumerable.
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Exercise 8.7. Study the recursiveness of the set A = {x € N: W, € E,}, i.e., establish if A and
A are recursive/recursively enumerable.

Exercise 8.8. Study the recursiveness of the set A = {x € N: [W,| > |E,[}, i.e. establish whether
A and A are recursive/recursively enumerable.

Exercise 8.9. Study the recursiveness of the set A = {z € N | ¢,(y) = z * y per some y}, that is
to say if A e Aare recursive/recursively enumerable.

Solution: The set A is r.e. In fact the semi-characteristic function

ale) = pw.S(x, (w)y,  * (w)1, (w)2)

is computable.
It is not is recursive, since K <,, A. In fact, consider the function

o) = { ] e Osex(a)

otherwise

It is computable and thus, by the smn theorem, we deduce that there is a total computable function
s : N — N such that, for each x,y € N,

Then s is a reduction function for K <,,, A. In fact

e if x € K then o (;)(y) = g(x,y) = 0 for each y € N. In particular ¢ (;)(0) = 0 = s(x) * 0.
Thus s(z) € A.

o if v ¢ K then pg,)(y) = g(x,y) 1 for each y € N. Therefore surely there is no y such that
®s@@)(y) = v *y. Thus s(v) ¢ A.

Finally, since A r.e. and non-recursive, we conclude that A is not r.e. and thus not recursive.

O

Exercise 8.10. Study the recursiveness of the set A = {z € N [ [W, n E,| = 1}, i.e., establish if A
e Aare recursive/recursively enumerable.

Solution: The set A is clearly saturated since A = {x | ¢, € A}where A = {f | |cod(f)nimg(f)| =
1}. We can deduce, by using Rice-Shapiro’s theorem, that A is not r.e. In fact id ¢ A but we can
find a finite subfunction 0 < id, defined as follows:

G(I):{ 0 ifz=0

1 otherwise

such that cod(0) = dom(0) = {0}, hence |cod(6) n dom(0)| = |{0}| = 1. Therefore 0 € A.
_ The complement is not r.e. again by Rice-Shapiro’s theorem. E.g..0, as defined above, is not in
A, but it admits ¢ as finite subfunction and & € A. O

Exercise 8.11. Say that a function f : N — N is strictly increasing when for each y, z € dom(f),
if y < z then f(y) < f(2). Study the recursiveness of the set A = {x | ¢, sharply increasing}, i.e.,
establish whether A and A are recursive/recursively enumerable.
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Solution: The set A is clearly saturated since A = {& | ¢, € A} where A = {f |
fstrictly increasing}. We can deduce, by using Rice-Shapiro’s theorem, that A is not r.e. In fact
geAand g cid¢ A.

The complement is r.e., in fact

sca(w) = 1(uz.S(x, (2)1, (2)2 + (2)3, (2)a) A S(x, (2)1 + (2)5 + 1, (2)2, (2)4)

Therefore A is not recursive. O

Exercise 8.12. Say that a function f : N — N is almost total if it is undefined on a finite set of
points. Study the recursiveness of the set A = {x | ¢, almost total}, i.e., establish if A and A are
recursive/recursively enumerable.

Exercise 8.13. _Study the recursiveness of the set A = {x € N: W, n E, = J}, i.e., establish
whether A and A are recursive/recursively enumerable.

Exercise 8.14. Given a set X € N, we define X + 1 = {z + 1: 2 € X}. Study the recursiveness of
theset A ={x e N: E, = W, + 1}, i.e., establish if A and A are recursive/recursively enumerable.

Solution: The set A is saturated since A = {z | ¢, € A}, where A = {f | cod(f) = dom(f) + 1}.
We can use Rice-Shapiro to show that

e Aisnotre.
In fact id ¢ A since cod(id) = N # dom(id) + 1 = N+ 1 = N\{0}. Moreover, & < id and
& € A since cod(D) = & = dom () + 1.

e Anotre.
In fact, if we define

1 ifz<1
T otherwise

1 ifz=1
0(x) = { 1 otherwise

we have that f ¢ A since cod(f) = N\{0} = dom(f) + 1 = N+ 1. Moreover, § C f and § € A
since cod(0) = {1} = dom(0) # dom(6) + 1.

O

Exercise 8.15. Let P be the set of even numbers. Prove that indicated with A = {zr e N: £, = P},
we have K <, A.

Solution: To obtain the reduction function we can consider

{2y if -H(z,z,y)
fla,y) = { 1  otherwise

The function f is computable, since it can be written as f(z,y) = 2y sg(xu (%, z,9)) + xu (z, z,y).
Therefore, by the smn theorem, there exists s : N — N computable total, such that f (z,y) =
©s(z)(y) for each x,y € N, which can be used as a reduction function for K <, A. Indeed:
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e if v € K, then xy(z,2,y) = 0 for each y, and therefore @s@) (y) = f(x,y) = 2y for each y.
Thus E,(,) = P and hence s(z) € A.

e if v ¢ K, or x € K then there exists yo such that xz(x,z,y) = 1 for each y > yo. Therefore
©s@)(y) = 1 for y = yo, thus 1 € Ey(,) and therefore F,,y # P. Hence s(x) ¢ A.

O

Exercise 8.16. Study the recursiveness of the set A = {z e N: @, (z) | A @.(z) <z + 1}, ie,
establish if A and A are recursive/recursive enumerable.

Solution: (K < A) The reduction function can be obtained by considering

f(x,y)z{ 0 ifxeK

1 otherwise
Thus A is not recursive. Furthermore, A is r.e. since we can write its semi-characteristic function
as follows:

scA(w) = Sg(f +1- Sox(x))

Finally A not r.e., since A r.e. and non-recursive.

Exercise 8.17. Study the recursion of the set A = {x e N:ze W, A ¢.(z) = 27}, i.e., establish
if A and A are recursive/recursive enumerable.

Solution: We show that K < A, and thus A is not recursive. Define

2 .
Jy ifre K
g(w,y) = { i otherwise

The function g(z,y) is computable, since

g(z,y) = y* - sci ()

Thus by the smn theorem, there exists a total computable function s : N — N such that for each
r,yeN

Ps(x)(y) = 9(x,y)
The function s is a reduction function of K to A. Indeed

e if x € K then gasg) = g(x,y) = y? for each y € N. Therefore s(x) € Wy(,) = N and
Ps(a) (s(x)) = Thus s(x) € A.

o if x ¢ K then ¢, (y) = g(x,y) 1 for each y € N. Therefore s(x) ¢ Wy(,) = . Thus s(x) ¢ A.

Furthermore, A is r.e., since its semi-characteristic function

sca(z) = L(pw. [2? = pu(z)]) = L(pw. [2? — Yy (z,2)))]

is computable. Therefore A not r.e. and thus it is not recursive. |

Exercise 8.18. Study the recursiveness of the set A = {x € N: 3k € N. ¢, (z+3k) 1}, i.e., establish
if A and A are recursive/recursive enumerable.

Solution: (K < A) The reduction function can be obtained starting from the function
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0 ifreK
1 otherwise

[, y) ={

Therefore A not r.e.
(K < A) The reduction function can be obtained starting from the function
[0 if -H(z,z,y)
g, y) = { 1 otherwise

Hence A not r.e.

Exercise 8.19. Study the recursiveness of the set A = {re N: W, = E.}, i.e., establish if A and
A are recursive/recursively enumerable.

Solution: The set A is saturated, since A = {x : ¢, € A}, where A = {f € C: dom(f) = cod(f)}.
Using Rice-Shapiro’s theorem we can prove that A and A are not r.e .:

e Anonr.e.
Observe that no finite function can belong to A and A # J (e.g. scy_q1}, the semi-
characteristic function ofN — {1}, is in \A)

e Aisnotre. B B
Note that scy_q1y ¢ A, but J € A.

]
Exercise 8.20. Study the recursiveness of the set
B = {n(z,y) P.(z) | in less than ysteps},
i.e., establish whether B and B are recursive/recursively enumerable.
Solution: We have that B = {r(x,y) H(z,z,y —1)}. Thus B and B are recursive. O

Exercise 8.21. Given A = {z | ¢, is total}, show that K <,,, A.

Solution: Defines

_Jy if—H(z,z,y)
g(m,y)—{ 1 otherwise

By the smn theorem, we obtain a total computable function s : N — N, such that g(z,y) = @5 (v)
and it is easy to see that s can be the reduction function. |

Exercise 8.22. Study the recursiveness of the set A = {x € N : ¢, (y) = yfor infinitiesy}, that is,
say if A and A are recursive/recursive enumerable.

Exercise 8.23. Given a subset X < N define F(X) = {0} u {y,y + 1 | y € X}. Studying recur-
siveness of the set A = {x e N: W, = F(E,)}, i.e., establish if A and A are recursive/recursively
enumerable.

Solution: The set A is saturated, since A = {z : ¢, € A}, where A = {f € C : dom(f) =

F(code(f))}}- _
Using Rice-Shapiro’s theorem we prove that both A and A are not r.e .:
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e Aisnotr.e.
Consider the function
0 if v =0,1,2
1 = otherwise

We have f ¢ A, since dom(f) = {0, 1,2}ecod(f) = {0}. Thus F(cod(f)) = {0,1} # dom(f).
Moreover consider

0 ifx=0,1

1 = otherwise
Clearly 6 < f. In addition dom(0) = {0, 1}ecod(6) = {0}. Then F(cod(8)) = {0,1} = dom(0)
and therefore 6 € A. By Rice-Shapiro’s theorem, we conclude that A is not r.e.

e Aisnotr.e.
Note that if @ is the function defined in the previous case, 8 ¢ A, but the function always
undefined @ € A, since dom() = cod(F) = & and therefore F(cod(&)) = {0} # dom ().
Thus, summing up 0 ¢ A, but it admits a finite subfunction, i.e., the function always undefined
& € A. By Rice-Shapiro’s theorem, we conclude that A is not r.e.

Ul
Exercise 8.24. Study the recursiveness of the set
B={z|k-(x+1)e W, n E,for each k € N},
i.e., establish if B and B are recursive/recursive enumerable.
Solution: The set A is not r.e., since K <,, A. We prove it by considering
_ vy ~H(z,zy)
g(w,y) = { 1 otherwise
This is computable and, by using the smn theorem, one can obtain the reduction function.
Also A is not r.e., since K <,, A. The reduction function can be obtained by considering
_Jy zeK
g.y) = { 1 otherwise
O

Exercise 8.25. Let (J be the always undefined function. Study the recursiveness of the set A =
{x | px = T}, i.e., establish if A and A are recursive/recursive enumerable.

Solution: The set A is non-recursive, by Rice’s theorem, since it is saturated, not empty (the
always undefined function is computable) and different from N.
In addition A is r.e., since

sca(w) = pw H(z, (), (w)2)

Thus A not r.e. U
Exercise 8.26. Study the recursiveness of the set A = {z Vy. if y + x € W, then y < ¢.(y + x)},
i.e., establish whether A and A are recursive/recursive enumerable.

Solution: Theset A= {x Jy. y+xe W, A y> p.(y+ )} is not is recursive, since K <,, A.
Consider the function
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0 zeK
1 otherwise

9(z,y) = {

It is computable and thus, using the smn theorem, we deduce the existence of a total computable
function s : N — N, such that g(z,y) = @s(s)(y). The function s can be the reduction function.

In fact, if x € K, we have that ¢p,,)(y) = g(z,y) = 0 for all y. Hence ¢y (s(z) +1) =0 <
s(z) + 1, and therefore s(x) € A. If, on the other hand, = ¢ K, we have s(z) ¢ A.

The set A is r.e., in fact
sci(z) = pw.S(z, (W) + z,(w); + (w)a + 1, (w)s)

where, intuitively, (w); represents the value y we are looking for and the value of the function is
required to be (w); + (w)2 + 1 > (w);.
Therefore, A is not r.e.

O

Exercise 8.27. Study the recursiveness of the set A = {z | @.(y +x) | for some y > 0}, i.e.,
establish if A and A are recursive/recursively enumerable.

Solution: The set A = {z | p(y + x) | for some y = 0} is not recursive because K < A. In
order to prove this fact, let us consider the function g : N2 — N defined, by

1 fzeW,
g(x,y) =

1 otherwise

The function is computable since g(z,y) = scx(z). Hence, by the smn-theorem, there is a total
computable function s : N — N such that ¢, (y) = g(z,y) for all z,y € N. We next argue that s
is a reduction function for K <,,, A. In fact

o If v € K then ¢, (y) = g(x,y) = 1 for all y € N. In particular, ;) (0 + s(z)) |. Hence
s(z) € A.

o If v ¢ K then ¢y, (y) = g(z,y) 1 for all y € N. Hence ¢4, (y + s(z)) 1 for all y € N. Hence
s(z) ¢ A.

The set A is r.e., since it semi-characteristic function

sca(z) = 1(p(y,t).H(z,z + y,t))

is computable.
Therefore, A is not r.e. U

Exercise 8.28. Let X < N be finite, X # J and define Ax = {x e N: W, = E, U X}. Study the
recursiveness of A, i.e., say if Ax and Ax are recursive/recursively enumerable.

Solution: The set A4 is saturated, since Ax = {x : ¢, € A}, where Ax = {f € C : dom(f) =
cod(f) u X}}. B
Using Rice-Shapiro’s theorem we prove that A and A are both not r.e .:

e Aisnotr.e.
Let z € X and y ¢ X and consider the function

oz ifze X u{y}
) = { 1 otherwise

We have f ¢ A, since dom(f) = X v {y} # X = X u {z} = X U cod(f). Moreover, if we
consider
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T ifreX
0(z) = { 1 otherwise

clearly 6 < f. Note that dom(f) = X = X u{z} = X U cod() and therefore § € A. Thus, by
Rice-Shapiro’s theorem we conclude that A is not r.e.

e Aisnotr.e.
Note that if @ is the function defined above, § ¢ A, but the function always undefined
7 € A, since dom() = & # X = cod(Z) u X. Thus, summing up 6 ¢ A, but it admits a
finite subfunction, i.e., the function always undefined &5 € A. By Rice-Shapiro’s theorem, we
conclude that A is not r.e.

O

Exercise 8.29. Let A= {re N: W, n B, # J}. Study the recursiveness of A, i.e., say if A and
A are recursive/recursively enumerable.

Solution: The set A is saturated, since A = {z : ¢, € A}, where A = {f € C : dom(f) n cod(f) #
}. It is not empty (since 1 € A) and it is not the entire N (since ¢ ¢ A), thus by Rice’s theorem
A is not recursive. Furthermore, A is r.e. since

sca(x) = Uwply,z,t).H(z,y,t) A Sz, 2,y,t))
= 1(uw.H(x, (w)1, (w)3) A S(z, (w)g, (w)h (w)3>

Therefore A is not is r.e. O

Exercise 8.30. Study the recursiveness of the set A = {r e N:Vke N. z+ke W,}, ie., establish
if A and A are recursive/recursively enumerable.

Solution: We prove that K <,, A, and thus A is not r.e. In order to obtain the reduction function,
consider the following computable function

_J oy it —H(z,z,y)
g(.y) = { 1 otherwise

and then use the smn theorem.
Also K <,, A. In order to obtain the reduction function, consider the following computable
function

1 ifzeK
1 otherwise

g9(x,y) = {

and again, use the smn theorem. Therefore K < A and therefore A not r.e. O

Exercise 8.31. A partial function f : N — N is called injective when for each z,y € dom(f), if
f(z) = f(y) then z = y. Study the recursiveness of the set A = {z ¢, injective}, i.e., establish if
A and A are recursive/recursive enumerable.

Solution: The set A is clearly saturated, since A = {x | ¢, € A}, where A is the set of injective
functions. Since J € A and 1 ¢ A, by Rice’s theorem the sets A and A are not is recursive. Also
A is r.e, since

sca(z) = L(pw. (S(z, (w)1, (w)3, (W)a) A S(x, (W)2, (w)3, (w)a) A (w)1 # (w)2)).
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Thus A is not r.e. O

Exercise 8.32. Study the recursiveness of the set A = {r e N:3ye E, 32 e W,. x = y= 2}, ie,
establish if A and A are recursive/recursive enumerable.

Solution: We show that K < A, thus A is not recursive. In fact, define

(@, y) = 1 ifre K
NEY) =11 otherwise

The function g(zx,y) is computable, since

9(z,y) =k (2)

So by the SMN theorem, there exists a total computable such function s : N — N such that for
each z,y e N

Psa)(y) = g(z,9)

The function s is a reduction function of K to A. Indeed, if x € K, then p,(,)(y) = y for each
y, and thus we can take s(z) € Wy(,y and 1 € Ey, such that s(z) = s(z) * 1. Thus s(z) € A.
Otherwise, ¢5(;) = & and thus it is easy to conclude s(x) ¢ A.

Furthermore, A is r.e., since
sealw) = 1w, S(z, (W), W)z, (w)s) A (W) * (w)s = 2)
Therefore A is not r.e. |

Exercise 8.33. Study the recursiveness of the set A = {x e N: 2 e W, A p.(x) > z}, ie,
establish if A and A are recursive/recursive enumerable.

Solution: We show that K < A, thus A is not recursive. Define

(@,y) = y+1 ifre K
g\ Y) = 1 otherwise

The function g(zx,y) is computable, since

g(w,y) = (y +1) - scx(z)

So by the SMN theorem, there exists a total computable function s : N — N such that for each
x,yeN

Ps(x) (y) = 9(1'7 y)

The function s is a reduction function of K to A. In fact

o if x € K then o,,)(y) = g(x,y) = y + 1 for each y € N. Therefore s(z) € W,y = Ne
©s@)(8(x)) = s(x) + 1 > s(x). Therefore s(x) € A.

e if v ¢ K then ¢, (y) = g(w,y) 1 for each y € N. Therefore s(x) ¢ W,y = . Thus s(z) ¢ A.

Furthermore, A is r.e., since its characteristic function

seal) = L. (@ + 1)p,(2)) = Luw. (@ + 1)~y (z,2)))
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is computable. Therefore A is not r.e., and therefore it is not not even recursive. O

Exercise 8.34. Let f be a total computable function such that img(f) = {f(z) : € N} is infinite.
Study the recursiveness of the set

A={z yeW,. < f(y)},

i.e., establish if A e A are recursive/recursively enumerable.

Solution: The set A is not is recursive since K <,,, A. In fact, consider the function

g(x,y)={ 1 zeK

1 otherwise
It is computable. Therefore for the smn theorem there exists a total computable function s : N — N,
such that g(z,y) = ©s(z)(y). The function s is a reduction function.

In fact, if + € K, we have that ¢, (y) = g(z,y) = 1 for each y. Hence W,y = N, and
therefore f(Wy,)) = f(N) = img(f), which is infinite for hypothesis. Thus there certainly exists
z € f(Wy(z)) such that x < z, i.e., there exists y € W (,) such that s(x) < f(y). Therefore s(z) € A.

If, on the other hand, x ¢ K, we have that ¢,(,)(y) = g(v,y) =1 for each y. Hence W) = &,
and therefore, certainly there is no y € W, such that s(z) < f(y). Thus s(x) ¢ A.

The set A is r.e., in fact
sca(r) = pw.(H(z, ()1, (w)2) A x < f((w)1))

Therefore, A is not r.e.

Exercise 8.35. Study the recursiveness of the set B = {x € N: z € E,}, i.e., establish if B and B
are recursive/recursively enumerable.

Exercise 8.36. Study the recursiveness of the set V = {z € N : W, infinity}, i.e., establish if V/
and V are recursive/recursively enumerable.

Exercise 8.37. Study the recursiveness of the set V = {r e N:3ye W,. Ik e N. y =k -z}, ie,
establish if V and V' are recursive/recursive enumerable.

Exercise 8.38. Study the recursiveness of the set V = {z € N: |[W,| > 1}, i.e., establish if V and
V are recursive/recursive enumerable.

Exercise 8.39. Let P be the set of even numbers and Pr the set of prime numbers. Show that
P <, Pr and Pr <,, P.

Exercise 8.40. Let f : N — N be a fixed total computable function. Study the recursiveness of
the set B ={x e N f(x) € E,}, i.e., establish if B and B are recursive/recursively enumerable.

Solution: Observe that B is r.e., in fact we can write its semi-characteristic function as follows:

sep(x) = 1(pw. (z, (w)1, f(z), (w)2))
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Moreover B is not recursive since K <,, B. In order to obtain the reduction function consider

Jy if x e W,
g(x,y) = { 1 otherwise

Hence B is not r.e. O

Exercise 8.41. Let f : N — N be a fixed total computable function. Study the recursiveness of the
set B ={xeN img(f)nE, # J}, i.e,, establish if B and B are recursive/recursively enumerable.
Please note that img(f) = {f(z) | x € N}.

Exercise 8.42. Study the recursiveness of the set B = {zr e N E, 2 W,}, i.e., establish if B e
Bare recursive/recursively enumerable.

Exercise 8.43. Let B = {z | Ym € N. m -z € W,}. Study the recursiveness of the B set, that is
to say if B and B are recursive/recursively enumerable.

Exercise 8.44. Given A = {z | ¢, is total}, show that K <,,, A.

Solution: Define

_J oy it —H(z,zy)
g(z,y)—{ 1 otherwise

By smn theorem, we obtain a total computable function s : N — N, such that g(z,y) = @) (y)
and it is easy to see that s can be the reduction function. O

Exercise 8.45. Study the recursiveness of the set B = {r € N 3y > x. y € E,}, i.e,, establish ifB
and B are recursive/recursively enumerable.

Exercise 8.46. Study the recursiveness of the set B = {x € N Vy > . 2y € W, }, i.e., establish if
B and B are recursive/recursively enumerable.

Solution: Observe that B is not r.e. since K <,,, B. In order to get the reduction function consider

_Jy i —H(z,z,y)
9(w,y) = { 1 otherwise

Also B = {z | 3y > z. 2y ¢ W} is not r.e. In order to reduce K <,, B, the reduction function
can be constructed from:

se) = {1 NnE il = st

otherwise

Exercise 8.47. Study the recursiveness of the set B = {zx € N : 1 < |E,| < 2}, i.e., establish if B
e B are recursive/recursively enumerable.
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Solution: The set B is saturated, since it can be expressed as B = {x : ¢, € B}, where B = {f €
C:1<|eod(f)| <2} B
Using Rice-Shapiro’s theorem, we prove that B and B are both not r.e .:

e Bisnotr.e.
Note that id ¢ B but there is a finite function

a(x)_{o ifrx=0

1 otherwise

such that @ < id and 6 € B. Hence by Rice-Shapiro’s theorem we conclude that B is not is
r.e.

e Bisnotr.e. B
Note that if 6 is the function defined in the previous case, ¢ ¢ B, but the function always
undefined J € B. By Rice-Shapiro’s theorem we conclude that B is not r.e.

O

Exercise 8.48. Study the recursiveness of the set A = {x € N|P < W,}, i.e., establish ifA and A
are recursive/recursively enumerable.

Solution: The set A is saturated since A = {z | ¢, € A}, where A = {f | P < dom(f)}. We can
use Rice-Shapiro’s theorem to show that

e Aisnotre.
In fact id € A since P < dom(id) = N and no finite § < id can be in A, since functions in A
necessarily have an infinite domain.

e Anotre.

In fact, id ¢ A, and & < id, g e A.

Exercise 8.49. Study the recursiveness of the set B = {z € N ¢,(y) = y* for infinitive y}, i.e.,
establish if B and B are recursive/recursive enumerable.

Solution: We observe that B is saturated, since B = {z | ¢, € B}, where B = {f | f(y) =
y? for infinite y}. Rice-Shapiro’s theorem is used to deduce that both sets are not r.e.

e B is not r.e. because B contains y? and none of its sub-functions finite (it does not contain
any finite functions).

e B is not r.e. since @ € B and @ admits as an extension y? ¢ B.

Exercise 8.50. Given X < N, indicate by 2X the set 2X = {27 : v € X}. Study the recursiveness
of the set B = {x e N 2W, € E,}, i.e., establish if B and B are recursive/recursive enumerable.

Solution: Rice-Shapiro’s theorem is used to prove that both sets are not r.e .:
e Bisnot r.e. because it contains ¢f, but not all functions (e.g. it does not contain 6 = {(1,4)}.

e B not r.e. since it contains 6, as defined above, but not 6 = {(1,4), (2,2)}.
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O

Exercise 8.51. Study the recursiveness of the set B = {x € N W, 2 Pr}, where Pr < Nis the set
of the prime numbers, i.e., establish if B and B are recursive/recursively enumerable.

Solution: We use Rice-Shapiro’s theorem for proving that both sets are not r.e .:

e B is not r.e. because it does not contain any finite functions and it is not empty (e.g. id € B,
but no finite subfunction of id can be in B).

e B is not r.e. since it contains &, but it does not include all functions (e.g. it does not contain
id, of which ¢ is a finite subfunction).

O

Exercise 8.52. Classify the following set from the point of view of recursiveness
B = {w(z,y) P, stops on input x in more than y steps},

where 7 : N2 — N is the pair encoding function, i.e., establish if B and B are recursive/recursively
enumerable.

Solution: The set B is r.e., but not recursive. In fact
B={zx:2e K A —H(xz,z,y)}

For proving that it is not is recursive, note that K <,, B. In fact, x € K iff 7(x,0) € B. Furthermore,
B is r.e. since its semi-characteristic function is computable:

scp(2) = scr(mi(2)) - se-m(mi(2), mi(2), ma(2))

Thus B non-recursive. O

Exercise 8.53. Say that a function f : N — N is symmetric in the interval [0, 2k] if dom(f) 2
[0,2k] and for each y € [0, k] we have f(y) = f(2k — y). Study the recursiveness of the set

A ={xeN:3k > 0. p, symmetric in [0, 2k]},

i.e., establish if A and A are recursive/recursively enumerable.

Solution: The set A is r.e. In fact:

sca(®) = L(phYy<hs1 0o (y) = @a(2(h + 1) —y))

It is not recursive by Rice’s theorem. In fact, A is saturated. Moreover, if ey ed e; are indices for
the functions ¢ and 1, respectively, we have that eg ¢ A and e; € A. Hence A # ¢, N. O

Exercise 8.54. Given X < N define inc(X) = X u {z + 1 : x € X}. Classify the following set
from the point of view of recursiveness B = {z € N : inc(W,) = E.}, i.e. say if B and B are
recursive/recursively enumerable.

Solution: We have that B = {f | inc(dom(f)) = cod(f)}, thus the set is saturated. Furthermore
g eB,but &g < 1and1l¢Bsince N =inc(dom(1)) # cod(1) = {1}. Hence, by Rice-Shapiro’s
theorem, the set B is not r.e.
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~ The function 6 = {(0,0)} € B, but 6 C id ¢ B, therefore, again by Rice-Shapiro’s theorem, also
B is not r.e. O

Exercise 8.55. Classify the following set from the point of view of recursiveness

B ={z ¢.(0)1 v ¢.(0) =0},

i.e., establish if B and Bare recursive/recursively enumerable.

Solution: Observe that B is saturated, the corresponding set of functions can be defined as
B={f:f(0)1 v f(0) =0} We have that 1 ¢ B, while the finite subfunction ¢ € B. Thus,
by Rice-Shapiro’s theorem, B is not r.e. Instead B = {z : »,(0) | A ¢.(0) # 0} is r.e., since
scp(x) = 35g(p,(0)) is computable. O

Exercise 8.56. A function f : N — N is said increasing when for each z,y € dom(f), if z <y
then f(z) < f(y). Define B = {x € N: ¢, increasing} and show that K <,, B.

Solution: One can mimic the proof of Rice-Shapiro’s theorem and define

_ ) if *H(.Tﬁt,y)
g(x,y) = { 0 otherwise

Thus, if z € K then g, seen as a function of y, will be the identity, which is increasing. Otherwise
there exists a number of steps y such that H(z,z,y) and therefore from that point onward g(z,y)
is constantly equal to 0 and thus not increasing.

More precisely, observe that the function g(z,y) is computable, since

9(x,y) =y - x-u(x,z,y)

Thus, by the SMN theorem, there exists a function s : N — N total and computable such that for
each z,y e N

Ps(x) (y) = g(x, y)

The function s is a reduction function of K into B. In fact

e Ifz € K then for every y € N the predicate H (x, z,y) is false. Therefore s (W) =g(x,y) =y
for all y € N. Hence @, is increasing and therefore s(z) € B.

o If + ¢ K then there exists a y € N such that H(z,z,y) holds true, and therefore also
H(x,2,y + 1) holds. Thus ¢44)(y) = 0 = py(z)(y + 1). Then ¢y, is not increasing and
therefore s(z) ¢ B.

Alternatively, more simply, we can be observe that the function always undefined is increasing
and the constant 0 is not. So just define g(z,y) = scx () (semi-characteristic function of the set
K, which is known to be computable since K is r.e.) and then proceed as above. O

Exercise 8.57. Say that a function f : N — N is k-bounded if Yz € dom(f) we have f(z) < k.
For each k € N, study the recursiveness of the set

Ay = {x € N: p, k- bounded},

i.e., establish if A and A are recursive/recursively enumerable.

Solution: The set Ay, is r.e. In fact:
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sc, () = 1(pw.S(z, ()1, () + &, (w)3))

It is not recursive by Rice’s theorem. In fact,_/fk is satura‘ged. Moreo_ver, if eg and e; are indices
for the functions ¢ and id, we have that eg ¢ A and e; € Ag. Thus A, # ¢, N and we conclude
that A is not recursive. Therefore A; not r.e. O

Exercise 8.58. Classify the following set from the point of view of recursiveness B = {z +y :
z,y€ N A p.(y) 1}, i-e., establish whether B and B are recursive/recursively enumerable.

Solution: The set B is recursive. In fact, let zg be the minimum index for the function always
undefined. Then, for every z > 2y we can express z as zg + (2 — 29) and we have p,,(z — 29) 1.
Hence z € B. Therefore, if we denote by 6 = xp|[o,.,—1]. the finite subfunction of the characteristic
function restricted to the interval [0, zg — 1], we have

| 0(2) ifz<z
xp(2) = { 1 otherwise

Since # and the constant 1 are computable, and the predicate z < zg is decidable, the characteristic
function is computable. O

Exercise 8.59. Let f be a total computable function. Classify the following set from the point of
view of recursiveness By = {x € N ¢,(y) = f(y) for infinitivesy}, i.e., establish if B and B are
recursive/recursive enumerable.

Solution: Rice-Shapiro’s theorem is used for both sets

e Bis not r.e. because it contains f and none of its finite subfunctions (since f is total, B does
not contain any finite function)

e B is not r.e. since @ € B and ¢J admits f ¢ B as an extension.

Exercise 8.60. Let f be a total computable function, different from the identity. Classify the
following set from the point of view of recursiveness By = {x € N ¢, = f o ¢,}, i.e., establish if
By and By are recursive/recursively enumerable.

Solution: Observe that By is saturated since it can be expressed as By = {x | ¢, € By} where
By={glg=fog}

We can use Rice-Shapiro’s theorem to show that By is not r.e. In fact the identity id ¢ By since
id # f = f oid. Moreover the function always undefined J € By since (J = f o J and clearly
g < id.

Moreover, the complement Bf is r.e. In fact, let e be an index for f, i.e., such that ¢, = f.
Then we have that z € By iff there is an input z where v = ¢,(2) | and ¢.(v) # v. Hence the
semi-characteristic function of By can be expressed as follows:

scp, () = pw-(S(z, (w)1, (w)2, (w)z) A S(e; (w2, (w)a, (w)3) A (W) # (w)a)

Exercise 8.61. Study the recursiveness of the set B = {zr € N: 3k e N. k- x € W,}, i.e. establish
whether B and B are recursive/recursively enumerable.

Solution: We show that K < B and therefore B is not recursive. In fact, define
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) ifre K
9(@.y) = { 1 otherwise

The function g(zx,y) is computable, since

g(:&y) = wU(‘r’x)

Hence, by the SMN theorem, we have that there exists a function s : N — N total computable
such that for each z,y e N

Ps(2)(y) = 9(z, )
The function s is a reduction function of K to B.

Furthermore, B is r.e., since
scp(x) = L(pw. H(z, (w) -z, (w)2))

Therefore B not r.e. O

Exercise 8.62. Classify from the point of view of recursiveness the set B = {reN:VkeN. k+xe
W}, i.e., establish if B and B are recursive/recursively enumerable.

Solution: We show that X < B and therefore B is not r.e. In fact, define

0 if —H(z,z,y)
1 otherwise

9(@,y) = {

The function g(x,y) is computable, since

9(x,y) = pz.xu(r,2,9)

So by the SMN theorem, we have that there exists a function s : N — N total computable such
that for each z,y € N

Ps(x) (y) = 9(1'7 y)
The function s reduces K to B.

Furthermore, B not r.e., since K < B. In fact, define

(2,y) = 0 reK
9\*Yy) = 1 otherwise
and proceed as before. O

Exercise 8.63. Classify from the point of view of recursiveness the set V' = {z € N : F, infinite},
i.e., establish if V' and V are recursive/recursively enumerable.

Solution: The set V is saturated since V = {z | ¢, € A}, dove A = {f | cod(f) infinite}. Then
we can use Rice-Shapiro’s theorem:

e id € A, but no finite subfunction of id is in A, hence A is not r.e.;

e gJe A, J Cid, but id ¢ A, hence A is not r.e.
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O

Exercise 8.64. Classify the following set from the point of view of recursiveness B = {re N z €
W, \{0}}, i.e. establish if B and B are recursive/recursively enumerable.

Solution: The set B is r.e., since
sca(z) = 1(pw. (H(z,(w)1, (w)2) Az # 0)).
and not recursive. In fact, K <,, B. In order to prove this fact consider

| () ifxeW,
9@, y) = { 1 otherwise

By the smn theorem, since the function is computable, we obtain s : N — N, computable and
total such that ¢, (y) = g(z,y). This is almost the reduction function, except for the fact that it
might have value 0 for some input. However, it is sufficient to take an index k # 0 for the function
o and consider:

() = { Z(m) if s(z) #0

otherwise

and we are done. |

Exercise 8.65. Classify the following set from the point of view of recursiveness
A = {z | W,\E, infinite},
i.e., establish if A and A are recursive/recursively enumerable.

Solution: The set A is saturated since A = {z | v, € A} with A = {f | dom(f)\cod(f) infinite}.
By Rice-Shapiro’s theorem:

e Ais not r.e., since 1 € A, but no finite subfunction < 1 can belong to A. In fact dom(9) is
finite and therefore also dom(0)\cod(0) is finite. Therefore 6 ¢ A.

e Aisnotre., since ge A 1¢ Aand & < 1.

Exercise 8.66. Classify the following set from the point of view of recursiveness B = {z € N :
|[W\E,| = 2}, i.e., establish if B e B are recursive/recursively enumerable.

Solution: The set B is saturated, since B = {z : ¢, € B}, where B = {f € C : |dom(f)\cod(f)| =
2}

Using Rice-Shapiro’s theorem we prove that B and B are not r.e .:

e Bnotr.e.
Observe that f(z) =z —2¢ B (dom(f) = cod(f) = N, thus dom(f) — cod(f) = &) but there
is a finite subfunction

0 ifx<2
0(z) = { 1 otherwise

such that 0 € f and 6 € B. By Rice-Shapiro’s theorem therefore we conclude that B is not
r.e.
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e Bnotr.e.
Note that if 6 is the function defined above, then 6 ¢ B, but the function always undefined
& € B. By Rice-Shapiro’s theorem therefore we conclude that B is not r.e.

O

Exercise 8.67. Classify the following set from the point of view of recursiveness B = {x e N:
Jk e N. Vy = k. ¢, (y) |}, i.e., establish if B and B are recursive/recursively enumerable.

Solution: The set B is clearly saturated since it is the set of indexes of functions in B = {f € C |
dkeN.Vy=k. f(y) |} B
We can conclude that B and B are non-r.e. using Rice-Shapiro’s theorem. In fact:

e B is not r.e., since id € B but obviously no finite subfunction 6 € id can belong to B (which
does not contain any finite function).

e B is not r.e., since id ¢ B, but there is a finite subfunction @ < id with ¢ € B.

Exercise 8.68. Classify the following set from the point of view of recursiveness B = {r e N z >
0 A z/2¢ E,}, ie., establish if B and B are recursive/recursively enumerable.

Solution: Observe that B is r.e., in fact we can write its semi-characteristic function as follows:
scg(z) = pw.x =0 v Sz, (w)1,2/2, (w)2))

Moreover B is not recursive since K <, B. In order to get the reduction function consider

oy ifxeW,
g(w,y) = { 1 otherwise

Then, by smn theorem, we have that g(z,y) = @) (y) for some total computable function
s: N — N. This is almost the reduction function. We need to be sure that when z ¢ K then s(z),
which is an index of the empty function, is not 0. This can be done by “modifying” function s.
More precisely take any index ng > 0 such that ¢,, = & (there is such ng since ¢J has infinitely
many indices). Then define s'(x) = s(x) if s(z) # 0 and s(z) = ng, otherwise. Then s’ is still total
and computable, and works as a reduction function.

Hence B is not r.e. ]

Exercise 8.69. Classify the following set from the point of view of recursiveness
B={zxeN:VyeW,.3ze W,.(y <z) A (pz(y) > 9z(2))},

i.e., establish if B and B are recursive/recursive enumerable.

Solution: The set B is saturated, given that B = {z : ¢, € B}, where B = {f € C : Vy €
dom(f).3z € dom(f). (y < 2) ~ (f(y) > F(N}.

For the complement B = {f | Iy € dom(f).Vz > y. (z ¢ dom(f)) v (f(y) < f(2))}, we observe
that if f % ¢ then we can consider y € {z € dom(f) | f(z) = min f(N)} and we have that y satisfies
the defining condition of B. So ¢ is the only function not in B, i.e., B = {} and B = C\{J}.
Then B is r.e. since its semi-characteristic function is scg = 1(pw.H (z, (w)y, (w)2)). Using Rice’s
theorem, we prove B is not recursive, so B not r.e.

This last fact can be deduced by Rice-Shapiro’s theorem, noting that id ¢ B but there is a finite
function J < id such that ¢ € B. O
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Exercise 8.70. Classify the following set from the point of view of recursiveness
B={zeN:VyeW, 3z2e W,.(y <2) A (¢a(y) < a(2))},

i.e., establish if B and B are recursive/recursive enumerable.

Solution: The set B is saturated, given that B = {z : ¢, € B}, where B = {f € C : Vy €

dom(f).3z € dom(f). (y <2) ~ (f(y) < f(2))}}-
The set B is not is r.e. by Rice-Shapiro’s theorem. In fact, observe that 1 ¢ B, but ¢ < 1 and

o eB.

For the complement B = {f | 3y € dom(f).Vz € dom(f).y < z — (f(y) = f(2))}, observe that
if 6 is any finite function,f # ¢, y = max(dom(#)) clearly satisfies the condition definition of B.
Hence, it is enough to observe that id ¢ B and consider 6 < id,0 # ¢ noting that 6 € B. |

Exercise 8.71. Classify the following set from the point of view of recursiveness
A={z|W,uUFE, =N},

i.e., establish if A and A are recursive/recursive enumerable.

Solution: The set A is saturated since A = {z | ¢, € A} with A = {f | dom(f) U cod(f) = N}.
By Rice-Shapiro’s theorem:

e A is not r.e., since id € A, but no finite subfunction 6 < id can belong to A. In fact dom(6)
is finite and therefore also cod(#) is finite. Hence their union dom(8) u dom(6) is again finite,
which implies that dom(6) u dom(0) # N. Therefore 6 ¢ A.

e Aisnot r.e., since @ e A id¢ Aand & C id.

Exercise 8.72. Classify the following set from the point of view of recursiveness
B ={z|3keN. kx e W,},

i.e., establish if B and B are recursive/recursive enumerable.

Solution: We observe that K <,,, A. Define

1 zeK

9@, y) = { 1 otherwise = scx(x)

By smn theorem, we obtain a function s : N — N which is total and computable, such that
9(2,Y) = @s(2)(y) and it is easy to see that s can be the reduction function.
Furthermore, A is r.e., in fact

sca(z) = L(pw.H(z,z - ()1, (w)2))

We therefore conclude that A is not r.e. |

Exercise 8.73. Given X, Y € Ndefine X +Y ={z+y| 2 € X A yeY}. Study the recursiveness
of the set

B={c|zeW,+E,),
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i.e., establish if B and B are recursive/recursive enumerable.

Solution: We observe that K <,,, A. Define

0 ze K

1 otherwise = O(scx ()

g(z,y) = {

By smn theorem, we obtain a function s : N — N total computable and such that g(x,y) = ©g)(y)-
It is easy to see that s can be the reduction function.
Furthermore, B is r.e., in fact

sep(x) = 1(pw.(S((w)1 + (w)2, ()1, (w)2, (w)3))

We therefore conclude that A is not r.c. O

Exercise 8.74. Classify from the point of view of recursiveness the set A = {z € N: W,n E, = N},
i.e., say if A and A are recursive/recursively enumerable.

Solution: The set A is clearly saturated since A = {z | ¢, € A} where A = {f | cod(f)vimg(f) =
N}. We can deduce, by using Rice-Shapiro’s theorem, that A is not r.e., in fact id € A but clearly no
finite subfunction 6 < id can be in A since cod(f), img(f) are finite and thus cod(f) vimg(f) # N.

The complement is not r.e. again by Rice-Shapiro’s theorem. E.g., id ¢ A, but it admits ¢J as
finite subfunction and ¢ € A. |

9 Second recursion theorem

Exercise 9.1. State and prove the second recursion theorem.
Exercise 9.2. State the second recursion theorem and use it to prove that K is not is recursive.

Exercise 9.3. State the Second Recursion Theorem and use it for proving that there exists r € N
such that ¢, (y) = y*, for each y € N.

Exercise 9.4. State the Second Recursion Theorem and use it for proving that there exists n € N
such that W,, = E, = {z-n:xz e N}

Exercise 9.5. State the Second Recursion Theorem and use it for proving that x € Nexists such
that ¢, (y) =z + y.

Solution: Define h(z,y) = x + y, which is a computable function. By smn theorem there is a
total computable function s : N — N such that ¢,(,)(y) = h(x,y). The second recursion theorem
provides a x¢ such that @, (y) = Qs(ze)(¥) = h(20,y) = w0 +y for all y € N. O

Exercise 9.6. State the Second Recursion Theorem and use it for proving that there exists x € N
such that ¢, (y) =z —y.
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Exercise 9.7. State the second recursion theorem and use it for proving that there exists an e N
such that ¢, is total and |E,| = n.

Solution: The second recursion theorem states that for each total computable function A : N — N
there exists n € N such that ¢, = )
Consider the function g : N> - N

g(:&y) = Tm($>y)

which we know to be computable (with the convention rm(0,y) = y). By the smn theorem there
exists o : N — N computable total such that g(x,y) = @u)(y) and by the second recursion
theorem there exists n € N such that ¢, = ¢y (). Therefore

@n(y) = Ph(n) (y) = g(nvy) = Tm(nvy)

If n # 0, then E,, = [0,n), then |E,| = n, as desired.

But if n = 0 things do not work, because ¢, (y) = rm(0,y) = y. This can be fixed by changing
h in a way that the fixed point in 0 is removed. That is, we consider e such that ¢, # g, and we
define

h,@)_{ ¢ ifz=0

h(z) otherwise

Clearly h/(x) = h(z) = sg(x) + e*5g(x) is computable and total and then you can reapply the same
reasoning first and conclude. |

Exercise 9.8. State the second recursion theorem and use it for proving that the function A :
N — N, defined by A(z) = min{y : ¢, # ¢4}, is not computable.

Solution: Just observe that A is total, and by definition, for all z, it holds YA () # ¢. Then, by
the second recursion theorem, A cannot be computable. O

Exercise 9.9. State the second recursion theorem and use it for proving that, if we indicate by
ep an index of the function always undefined ¥ and by e; an index of the identity function, the
function i : N — N, defined by

| eo if gy is total
h(z) = { e; otherwise

is not computable.

Solution: Observe that h is total. Furthermore ¢, # ¢p(,) for each z, since ¢, is total when
©n(z) is not. So, by the second recursion theorem, we deduce that h cannot be computable.  []

Exercise 9.10. State the Second Recursion Theorem and use it for proving that there exists an
index x € N such that

2 .
oy frx<y<z+2
Paly) = { 1 otherwise

Solution: Consider the function

ﬂ%w={?

2 ifr<y<az+2
otherwise
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This is clearly computable, hence, by the smn theorem there is a total computable function s :
N — N such that f(x,y) = ps()(y). Applying the second recursion theorem to s we conclude. []

Exercise 9.11. State the second recursion theorem and use it for proving that the set C = {x :
2x € W, n E,} is not saturated.

Solution: Define

gz, y) :{ ?aj ify=2x

otherwise

and proceed in the standard way. O

Exercise 9.12. State the second recursion theorem. Use it for proving that the set C = {zx € N |
x € E,} not saturated.

Solution: The Second Recursion Theorem states that given a total computable function A : N - N
there exists e € N such that p) = @e-
For answering the question, define

g(z,y) =z
which is a computable function and thus, by smn theorem, there is a total computable function
s : N — N such that for each z,y € N

Ps)(y) = g(z,y)

By the II recursion theorem there exists an index e such that ¢,y = p. and then

Pe(y) =€

Therefore E, = {e} and therefore e € C.
Given any €' # and such o = @, one has that ¢ ¢ ., = E, and therefore e ¢ C. Therefore C
is not is saturated. O

Exercise 9.13. Let ey and e; be indices for the function always undefined ¢ and the constant 1,
respectively. State the Second Recursion Theorem and use it to prove that the function g : N - N
defined as below, is not computable:

| eo g, total
g(x) = { e; otherwise

Solution: The function g is clearly total. If it were computable, for the II Recursion Theorem
there would exist e € N such that p. = ¢y(). Instead, by definition of g we have that ¢ total iff
©g(e) is nOt total. OJ

Exercise 9.14. State the second recursion theorem. Prove that, given a function f : N — N total
computable injective, the set Cy = {z : f(x) € W} is not saturated.

Solution: Define

otherwise

g(z,y) :{ {(y) ifz=f(y)
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By the smn theorem, we obtain a function s : N — N total computable, such that g(z,y) = @5 (v)
and by the second recursion theorem there exists e € N such that . = (). Therefore:

Pe(y) = ps(e) (W) = gle,y) = { {(e) gtﬁe?w{s(s )

Thus e € . Now, if we take a different index e such that ¢, = ¢ we will have that, by injectivity
of f, it holds f(e’) # f(e) and thus f(e) ¢ Wer = We = {f(e)}. Hence €’ ¢ Cj. O

Exercise 9.15. State the second recursion theorem. Use it for proving that if C' is a set such that

C <, C, then C is not saturated.

Solution: The Second Recursion Theorem states that given a total computable function A : N - N
there exists e € N such that ¢p) = we-

As for the question, let C' <,, C and let f be the reduction function, i.e., f : N — N is
computable and total, and satisfies:

xeC ifff(z)¢C (1)
Since f is computable and total, by the second recursion theorem, there exists e such that

Ve = Pf(e)- (2)

Now if e € C, since C is saturated, from (2) we have that f(e) € C and this contradicts (1).
Similarly if e ¢ C, we get a contradiction. Thus we conclude that the reduction function cannot
exist and therefore C is not saturated. O

Exercise 9.16. State the Second Recursion Theorem and use it for proving that there is an
indexand € N such that

| y+e ify multiple ofe
wely) = { i otherwise

Solution: Define

= (z+y) Upz|z =z —yl)

| x+y if y multiple of x
9@, y) = { 1 otherwise

By smn theorem, g(z,y) = ©4)(y) with s computable total. Then the II recursion theorem can
be used to conclude. O

Exercise 9.17. State the second recursion theorem. Use it for proving that every function f which
is not total, but undefined only on a single point, i.e. dom(f) = N\{k} for some k € N, admits a
fixed point, i.e., there is x # k such that v, = @y

Solution: Let h be such that ¢, # ¢ and define

oy | fle) ifx#k
f(x)_{ hoife=k

Clearly f’ is computable (since f and the constant k are computable, and the predicate x = k
is decidable) and total. Therefore for the second recursion theorem there exists € N such that
©f1(z) = Y- And by construction x # k, thus f'(z) = f(z). O
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Exercise 9.18. State the Second Recursion Theorem and use it for proving that there is n € N
such that W, = E, = {z-n:z e N}

Solution: Define

_Jy ify=x-n
g(n,y) = { 1 otherwise

The smn theorem and the second recursion theorem can then be used to conclude.

Exercise 9.19. Prove that there exists n € N such that ¢, = ¢,11 and also m € N such that
©m #* ©m+1-

Solution: For the first part, observe that s(x) = 2 +1 is a computable total function and therefore
the smn theorem and the second recursion theorem can be used to conclude.

For the second part, if the m index did not exist, all computable functions would coincide,
which is clearly not the case. |

Exercise 9.20. State the second recursion theorem. Use it for proving that the set B = {x € N :
3k e N. k- x € W,} is not saturated.

Solution: The Second Recursion Theorem states that given a total computable function  : N - N
there exists e € N such that p) = @e.

Concerning the question, we proceed similarly to the proof of the fact that K is not saturated
and find an index e such that ¢, = {(e,e)}. Also, we can assume that e # 0. In fact, define

(e,2) = e ifx=e
IET)I=7 1 otherwise

Note that g is computable and therefore by the SMN theorem, we derive the existence of a total
computable function s : N — N such that for each e,z € N

Ps(e) (I’) = g(ea IE)
By the II recursion theorem, there exists an index e such that () = ¢e and then

e ifx=e
1 otherwise

Pe(x) = {

We can assume ¢ # 0 because if it were ¢ = 0, it would be sufficient to consider s’ such that
s'(0) = eg (index of the function always undefined) and s'(x) = s(x) otherwise, and apply the
same reasoning again. The fixed point will certainly be # 0, since g # & = e, = ©y(0)-

Now, we have that

e ce B, sincee=1-ande W, = {e};

e given any index e’ > e such that ¢, = . (it certainly exists, since there are infinite indices
for a computable function) we have that ¢’ ¢ B, since there cannot be a k € N such that
k-e e W =W, = {€}. In fact, for £ > 0 we have that k- e’ > e and for k = 0, we have
ke’ =0 # e, by construction.

Thus B not saturated. |

Exercise 9.21. State the second recursion theorem. Use it for proving that the set C' = {x € N :
¢, (z) = 22} is not saturated.
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Solution: The Second Recursion Theorem states that given a total computable function h : N —
N, there exists e € N such that ¢y ) = @e.

Concerning the question, as in the case of the proof for K we can find an index e such that
e = {(e,€?)}. Then we have e € C, but any other index for the same function is not in C. O

Exercise 9.22. State the second recursion theorem and use it for proving that there is an index
k such that Wy, = {k =i |ie N}.

Solution: Consider the following function

0 if there exists 7 such that y = x =4 . .
g(x.y) = = pi.lx - i —y|

1 otherwise

It is computable, hence we can use the smn theorem and the second recursion theorem to conclude.

O

Exercise 9.23. State the second recursion theorem. Use it for proving that the set C = {x € N :
[0, 2] € W,} is not saturated.

Solution: The Second Recursion Theorem states that given a total computable function A : N —» N
there exists e € N such that ¢p() = we-

Concerning the question, as in the case of the proof for K we can find an index e such that
W, = [0, e] and we can assume that e # 0. In fact, let us define

(e,2) = e ifz<e
g\&; )= 1 otherwise

This is computable and therefore by SMN theorem, we derive the existence of a computable total
function s : N — N such that for each e,z € N

Ps(e) (l’) = g(e’ ‘T)

By the II recursion theorem there exists an index e such that ) = p. and then

o) =5 Brss

otherwise

Given any index ¢’ > e such that ¢, = @ (it certainly exists since there are infinite indices for
a computable function) we have that ¢’ ¢ C, since[0,¢'] € [0,e] = Wer.
Thus C is not saturated. U

Exercise 9.24. State the second recursion theorem and use it for proving that there is an index
n € N such that ¢,, = ¢,, where p,, is the n-th prime number.

Solution: Just observe that f(x) = p, is a computable total function and use the second recursion
theorem. |
Exercise 9.25. State the second recursion theorem. Use it for proving that there is an index x

such that W, = {kz | k € N}.

Solution: The Second Recursion Theorem states that given a total computable function h : N —
Nexists e € N such that ¢p) = we-
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For the second part, define a function g(x,y) = pz.|zx — y|. Note that dom(Ay.g(z,y) = {ka |
k € N} and then we can use the second recursion theorem to conclude.

O

Exercise 9.26. State the second recursion theorem. Use it for prove that there is an index e € N
such that W, = {e" : n € N}.

Solution: The Second Recursion Theorem states that given a total computable function  : N - N
there exists e € N such that @p) = @e.

Concerning the question, define
"

=pn. ly—x

| log,y if y = 2" for somen
g(w,y) = { 1 otherwise

It is a computable function and therefore by the smn theorem, we have that there is a total
computable function s : N — N such that for each z,y e N
Ps(2)(y) = 9(z,y)

By the II recursion theorem there exists an index e such that @) = e and then

| log.y if y = e™ for somen
Pely) = { 1 otherwise

Therefore W, = {e™ | n € N}. Ul

Exercise 9.27. Use the second recursion theorem to prove that the following set is not saturated

C={x| Wy =N A ¢;(0) =z}

Solution: Consider
g(z,y) ==

For the smn theorem there exists s : N — N total computable such that g(z,y) = ©4@)(y). By the
second recursion theorem there exists e such that ¢, = @4). Therefore p.(y) = @) (y) = e. In
particular ¢, (0) = e and clearly W, = N, then e € C.
Take ¢’ # and such . = @.. Then we have that ¢ (0) = ¢.(0) = and # is. So is ¢ C.
Therefore C not saturated. O
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