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This is a collection of exam exercises, roughly organised by thematic areas. The exercises often
come along with a solution, which is sometimes fully detailed and in some other cases only sketched.

The exercises that can be used for the preparation of the intermediate test are marked by a
“(p)”.

Please report any mistake you might find.

1 URM machine

Exercise 1.1(p). Consider a variant, denoted URM´, of the URM machine obtained replacing
the successor instruction Spnq with a predecessor instruction P pnq. Executing P pnq replaces the
content rn of register n with rn 9́ 1. Determine the relation between the set C´ of the functions
computable by a URM´ machine and the set C of functions computable by a standard URM
machine. Is one contained in the other? Is the inclusion strict? Justify your answer.

Solution: It holds that C´ Ď C because predecessor is URM-computable. Inclusion is strict
because it is possible to prove, inductively on the number of steps, that the maximum of the values
contained in the registers at any time is bounded by the maximum value in the initial configuration.
As a consequence the successor function is not URM´ computable. l

Exercise 1.2(p). Consider a variant of the URM machine where the jump and successor in-
structions are replaced by the instruction JIpm,n, tq which compare the content rm and rn of of
registers Rm and Rn and then:

• if rm “ rn, increment register Rm and jump to the address t (it is intended that if t is outside
the program, the execution of the program halts).

• otherwise, continue with the next instruction.

Describe the relation between the set C1 of the functions computable by the new machine and
the set C of the functions that can be computed by a standard URM machine. Is one included in
the other? Is the inclusion strict? Justify your answers.

Solution: Observe that the instructions of each machine can be encoded in the other. Then show,
by induction on the length of a program that contains both sets of instructions, that it can be
transformed into an equivalent program that contains instructions only of one of the two machines.

In particular, a URM instruction Ij : Spnq can be replaced by

Ij : JIpn, n, j ` 1q

Moreover, if k is any register not used by the program, the instruction Jpm,n, tq can be replaced
by
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T pm, kq
JIpk, n, tq

Conversely, the new instruction JIpm,n, tq can encoded as a jump Jpm,n, t1q to a subroutine
at t1

t1 : Spmq
t1 ` 1 : Jpm,m, tq

l

Exercise 1.3(p). Consider a variant URMs of URM machine obtained by removing the successor
Spnq and jump Jpm,n, tq instructions, and inserting the instruction JSpm,n, tq, which compares
the contents of register m and n, and if they coincide, it jumps to instruction t, otherwise it
increments the m-th register and executes the next instruction. Determine the relation between
the set Cs of functions computable by a URMs machine and the set C of functions computable by a
standard URM machine. Is one included in the other? Is the inclusion strict? Justify your answers.

Solution: Clearly the instruction JSpm,n, tq can be simulated in the URM machine as

Jpm,n, tq
Spmq

Conversely, the instruction Spnq cannot be simulated. In fact, starting from the configuration in
which all registers have value 0, there is no a way of modifying the content of any register: this
would require the presence of two registers with different content and there are none. l

Exercise 1.4(p). Consider the subclass of URM programs where, if the i-th instruction is a
jump instruction Jpm,n, tq, then t ą i. Prove that the functions computable by programs in such
subclass are all total.

Solution: Given a program P prove, by induction on t, that the instruction to execute at the
t` 1-th step has an index greater than t. This implies that the program will end in at most lpP q
steps. l

Exercise 1.5. Consider a variant of the URM machine, which includes the jump and transfer
instructions and two new instructions

• A(m, n) which adds to register m the content of register n, i.e., rm Ð rm ` rn;

• C(n) which replaces the value in register n by its sign, i.e., rn Ð sgprnq.

Determine the relation between the set C1 of the functions computable with the new machine
and the set C of the functions that can be computed with the URM machine. Is one included in
the other? Is the inclusion strict? Justify your answers.

Solution: Let us denote by URM˚ the modified machine. We observe that the URM˚ machine
instructions can be encoded as programs of standard URM machine.

The instruction Ij : Apm,nq can be replaced with a jump to the following routine (where we
denote by q the index of the first register not used by the program, hence such register initially
contains 0)

SUB : Jpn, q, j ` 1q
Spmq
Spqq
Jp1, 1,SUBq
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Similarly, by indicating again with q the index of an unused register, an instruction Ij : Cpmq can
be replaced by a jump to the subroutine

SUB : Jpn, q,ZEROq
Zpnq
Spnq

ZERO Jp1, 1, j ` 1q

More formally, we can prove that C˚ Ď C showing that, for each number of arguments k and for
each program P using both sets of instructions we can obtain a URM program P 1 which computes

the same function, i.e., such that f
pkq
P 1 “ f

pkq
P .

The proof proceeds by induction on the number h of A and C instructions in the program.
The base case h “ 0 is trivial, since a program P with 0 instructions A and C is already a URM
program. Suppose that the result holds for h, let us prove it for h ` 1. The program P certainly
contains at least one A or C instruction. Assume it is a C instruction and call j its index.

1 : I1
. . .

j Apm,nq
. . .

ℓpP q : IℓpP q

We build a program P 2, using a register not referenced in P , say q “ maxtρpP q, ku ` 1

1 : I1
. . .

j Jp1, 1,SUBq
. . .

ℓpP q : IℓpP q
Jp1, 1,ENDq

SUB : Jpn, q,ZEROq
Zpnq

: Spnq
ZERO Jp1, 1, j ` 1q
END :

The program P 2 is such that f
pkq
P2 “ f

pkq
P and it contains h instructions of type A or C. By inductive

hypothesis, there exists a URM program P 1 such that f
pkq
P 1 “ f

pkq
P2 , which is the desired program.

If the instruction Ij is of type A, we proceed in a completely analogous way, replacing the
instruction with its encoding and using the inductive hypothesis.

The inclusion is strict, i.e., C Ę C˚. For example, one can easily see that the successor function
is not URM˚ computable. In fact, it can be shown that, starting from a configuration with all
registers at 0, any program URM˚, after any number of steps, will produce a configuration with
all registers still at 0. A fully formal proof proves the above by induction on the number of steps.
l

Exercise 1.6(p). Consider a variant URMm of the URM machine obtained by removing the
successor instruction Spnq and adding the instruction Mpnq, which stores in the nth register the
value 1 ` mintri | i ď nu, i.e., the successor of the least value contained in registers with index
less than or equal to n. Determine the relation between the set Cm of functions computable by the
URMm machine and the set C of the functions computable by the ordinary URM machine. Is one
included in the other? Is the inclusion strict? Justify your answers.

Solution: Observe that the instruction Mpnq can be simulated in the URM machine as follows:
store in an “unused” register k, an increasing number, which starts from zero. Such a number is
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compared with all registers R1, . . . , Rn until it coincides with one of them. Then the value in
register k will be the minimum of registers R1, . . . , Rm. Its successor is the value to be stored in
Rn

Zpkq
LOOP : Jp1, k, ENDq

Jp2, k, ENDq
. . .
Jpn, k,ENDq
Spkq
Jp1, 1, LOOP q

END : Spkq
T pk, nq

Conversely, the instruction Spnq can be simulated in the URMm machine as follows. Assume again
that k is the number of a register not used by the program. Then the encoding can be the following:

T p1, kq
T pn, 1q
Mp1q
T p1, nq
T pk, 1q

l

Exercise 1.7(p). Define the operation of primitive recursion and prove that the set C of URM-
computable functions is closed with respect to this operation.

2 Primitive Recursive Functions

Exercise 2.1(p). Give the definition of the set PR of recursive primitive functions and, using
only the definition, prove that the function pow2 : N Ñ N, defined by pow2pyq “ 2y, is primitive
recursive.

Solution: We define pow2 : NÑ N:
"

pow2p0q “ 1
pow2py ` 1q “ doubleppow2pyqq

where doublepxq can be defined by primitive recursion as
"

doublep0q “ 0
doublepy ` 1q “ doublepyq ` 2 “ pdoublepyq ` 1q ` 1

l

Exercise 2.2(p). Give the definition of the set PR of primitive recursive functions and, using
only the definition, prove that the the characteristic function χA of the set A “ t2n ´ 1 : n P Nu is
primitive recursive. You can assume, without proving it, that sum, product, sg and sg are in PR.

Solution: Observe that A “ tapnq : n P Nu where a : NÑ N P PR is the function defined by
"

ap0q “ 0
apn` 1q “ 2 ¨ apnq ` 1
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Now define chk : N2 Ñ N, in a way that chkpx,mq “ 1 if there exists n ď m such that x “ apnq
and 0 otherwise. It can be defined by primitive recursion as follows:

"

chkpx, 0q “ sgpxq
chkpx,m` 1q “ chkpx,mq ` eqpx, apm` 1qq

Hence we can deduce that chk P PR by the fact that y 9́ 1 and x 9́ y are in PR, and observing
that eqpx, yq “ sgpx 9́ y ` y 9́ xq, hence also such function is in PR. We conclude by noting that
χApxq “ chkpx, xq. l

Exercise 2.3(p). Give the definition of the set PR of primitive recursive functions and, using
only the definition, prove that the χP, the characteristic function of the set of even numbers P is
primitive recursive.

Solution: The function χP can be defined as follows:

χPp0q “ 1
χPpy ` 1q “ sgpχPpyqq

where sg can also be defined by primitive recursion:

sgp0q “ 1
sgpy ` 1q “ 0

l

Exercise 2.4(p). Give the definition of the set PR of primitive recursive functions and, using only
the definition, prove the function half : NÑ N, defined by half pxq “ x{2, is primitive recursive.

Solution: The set PR of primitive recursive functions is the smallest set of functions that contains
the basic functions:

1. 0 : NÑ Ndefined by 0pxq “ 0 for each x P N;

2. s : NÑ Ndefined by spxq “ x` 1 for each x P N;

3. Uk
j : Nk Ñ Ndefined by Uk

j px1, . . . , xkq “ xj for each px1, . . . , xkq P Nk.

and which is closed with respect to generalized composition and primitive recursion, defined as
follows. Given the functions f1, . . . , fn : Nk Ñ Nand g : Nn Ñ N their generalized composition is
the function h : Nk Ñ N defined by:

hpx⃗q “ gpf1px⃗q, . . . , fnpx⃗qq.

Given the functions f : Nk Ñ N and g : Nk`2 Ñ N the function defined by primitive recursion is
h : Nk`1 Ñ N:

"

hpx⃗, 0q “ fpx⃗q
hpx⃗, y ` 1q “ gpx⃗, y, hpx⃗, yqq

We need to prove that the function half can be obtained from the basic functions (1), (2) and
(3), using primitive recursion and generalized composition. One can proceed as follows.

First we define the function sg : NÑ N such that sgpxq “ 1 if x “ 0 and sgpxq “ 0 otherwise:
"

sgp0q “ 1
sgpx` 1q “ 0

Then the function rm2 : NÑ N which returns the remainder of the division of x by 2:
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"

rm2p0q “ 0
rm2px` 1q “ sgprm2pxqq

Finally the function half : NÑ N can be defined as:
"

half p0q “ 0
half px` 1q “ half pxq ` rm2pxq

l

Exercise 2.5(p). Give the definition of the set PR of primitive recursive functions and, using
only the definition, prove that p2 : NÑ N defined by p2pyq “ |y ´ 2| is primitive recursive.

Solution: For the definition of PR see the book. For the second part, we observe that if we define
p1pyq “ |y ´ 1| then

"

p1p0q “ 1
p1py ` 1q “ |y ` 1´ 1| “ |y| “ y

and therefore
"

p2p0q “ 2
p2py ` 1q “ |y ` 1´ 2| “ |y ´ 1| “ p1pyq

Hence p2 can be defined by primitive recursion starting from basic functions and thus it is in PR.
l

3 SMN Theorem

Exercise 3.1(p). State the smn theorem and prove it (it is sufficient to provide the informal
argument using encode/decode functions).

Exercise 3.2(p). State the theorem s-m-n and use it to prove that it exists a total computable
function s : NÑ N such that |Wspxq| “ 2x and |Espxq| “ x.

Solution: We can define, for instance,

fpx, yq “

"

qtp2, yq if y ă 2x
Ò otherwise

Observe that fpx, yq “ qtp2, yq ` µz. py ` 1 ´ 2xq is computable and finally use the smn theorem
to get function spxq. l

Exercise 3.3. State the smn theorem and use it to prove that there exists a total computable
function s : N2 Ñ N such that Wspx,yq “ tz : x ˚ z “ yu

Exercise 3.4(p). Prove that there is a total computable function k : N Ñ N such that for each
n P N it holds that Wkpnq “ P “ tx P N | x evenu and Ekpnq “ tx P N | x ě nu.

Solution: We start by defining a computable function of two arguments fpn, xqwhich meets the
conditions when viewed as a function of x, with n taken as a parameter, e.g.
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fpn, xq “

"

x{2` n if x even
Ò otherwise

“ qtp2, xq ` n` µz.rmp2, xq

By the smn theorem, there is a computable total function k : NÑ N such that φkpnqpxq “ fpn, xq
for each n, x P N. Therefore:

• Wkpnq “ tx | fpn, xq Óu “ tx | x evenu

• Ekpnq “ tfpn, xq | x P Nu “ tn` x{2 | x evenu “ tn` x | x ě 0u “ ty | y ě Nu

as desired. l

Exercise 3.5. State the smn theorem. Use it to prove it exists a total computable function k :
NÑ N such that Wkpnq “ tx P N | x ě nu e Ekpnq “ ty P N | y evenu for all n P N.

Solution: We start by defining a computable function of two arguments fpn, xq which enjoys the
property when viewed as a function of x, with n seen as a parameter, e.g.

fpn, xq “

"

2 ˚ px´ nq if x ě n
Ò otherwise

“ 2 ˚ px´ nq ` µz.pn´ xq

By the smn theorem, there is a computable total function k : NÑ N such that φkpnqpxq “ fpn, xq
for each n, x P N. Therefore, as desired

• Wkpnq “ tx | fpn, xq Óu “ tx | x ě nu;

• Ekpnq “ tfpn, xq | x P Nu “ t2px´ nq | x ě nu “ t2pn` z ´ nq | z ě 0u “ t2z | z P Nu.

l

4 Decidability and Semidecidability

Exercise 4.1. Prove the “structure theorem” of semidecidable predicates, i.e., show that a pred-
icate P px⃗q is semidecidable if and only if there exists a decidable predicate Qpx⃗, yq such that
P px⃗q ” Dy. Qpx⃗, yq.

Exercise 4.2. Prove the “projection theorem”, i.e., show that if the predicate P px, y⃗q is semide-
cidable then also Dx. P px, y⃗q is semi-decidable. Does the converse implication hold? Is it the case
that if P px, y⃗q is decidable then also Dx. P px, y⃗q is decidable? Give a proof or a counterexample.

Solution: No, the converse is false. Consider, for instance, P px, yq “ py “ 2xq ^ py R Wxq (or,
simply, P px, yq “ x R Wx), which is not semi-decidable. The existentially quantified version is
constant, hence decidable.

Also the second claim is false. Take for instance P px, yq “ Hpy, y, xq which is decidable, while
Dx. P px, yq ” y P K is only semi-decidable, but not decidable. l

5 Numerability and diagonalization

Exercise 5.1(p). Consider the set F0 of functions f : NÑ N, possibly partial, such that codpfq Ď
t0u. Is the set F0 countable? Justify your answer.
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Solution: No, such functions are completely determined by the their domain, which is a generic
subset of N, and the set of subsets of N is uncountable. l

Exercise 5.2(p). A function f : N Ñ N is called total increasing when it is total and for each
x, y P N, if x ă y then fpxq ă fpyq. Prove that the set of total increasing functions is not countable.

Solution: Given any enumeration of the total increasing functions tfnunPN you can define a
function f : NÑ N as follows

fpxq “ 1` Σx
n“0fnpnq,

Such function is an total increasing and different from all fn. In fact

• f is clearly total by definition.

• f is increasing, since fpx` 1q “ fpxq ` fx`1px` 1q ą fpxq. The last inequality is motivated
by the fact that fx`1 is increasing, and thus fx`1px` 1q ą fx`1pxq ě 0.

• f is differs from all fx since for each x P N,

fpxq “ 1` Σx
n“0fnpnq ě 1` fxpxq ą fxpxq.

It follows that no enumeration can contain all total increasing functions.
The same argument would work if we defined fpxq “ 1`maxtfnpnq | 0 ď n ď xu. l

Exercise 5.3(p). A function f : N Ñ N is called total increasing when it is total and for each
x, y P N, if x ď y then fpxq ď fpyq. It is called binary if codpfq Ď t0, 1u. Is the set of binary total
increasing functions countable? Justify your answer.

Solution: Let f be an total increasing binary function, different from the constant 0, and define
spfq “ mintx | fpxq “ 1u P N. It is easy see that f1 “ f2 iff spf1q “ spf2q. Hence, indicated by

fipxq “

"

0 x ă i
1 otherwise

we have that pfiqiPN is an enumeration of the total binary increasing functions, different from the
constant 0, which therefore they are countable. When adding the constant 0 the set clearly stays
countable. l

6 Functions and Computability

Exercise 6.1(p). Define a function f : N Ñ N total and not computable such that fpxq “ x for
infinite arguments x P N or prove that such a function cannot exist.

Solution: We can define

fpxq “

"

φxpxq ` 1 if x PWx

x if x RWx

Clearly, for all x P N we have φxpxq ‰ fpxq, hence f is not computable. Moreover x R Wx holds
true infinitely many times since the empty function has infinitely many indices. Therefore also the
last condition is satisfied. l
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Exercise 6.2(p). Say that a ffunction : NÑ N is increasing if it is total and for each x, y P N,
if x ď y then fpxq ď fpyq. Is there an increasing function which is not computable? Justify your
answer.

Solution: Define

gpxq “

#

φxpxq ` 1 if x PWx

0 otherwise

and then fpxq “ Σyďxgpyq. l

Exercise 6.3(p). Are there two functions f, g : N Ñ N with g not computable such that the
composition f ˝ g (defined by pf ˝ gqpxq “ fpgpxqq) is computable? And requiring that f is also
not computable, can the composition f ˝ g be computable? Justify your answer, giving examples
or proving non-existence.

Solution: Yes, in both cases. In fact, let g “ χk, not computable, and f defined by

fpxq “

"

0 if x ď 1
χkpxq otherwise

not computable too, otherwise χK would be computable. It is easy to see that f ˝ g is the constant
0, which is computable. l

Exercise 6.4(p). Is there a function f : N Ñ N with finite range, total and increasing (i.e.
fpxq ď fpyq for x ď y) and not computable? Justify your answer with an example or a proof of
non-existence. What if we relax the requirement of totality?

Solution: With the totality requirement, function f cannot exist. Indeed, we can prove that
each function f : N Ñ N with all the required properties is computable. The proof proceeds for
induction on M “ maxtfpxq | x P Nu.

(M “ 0) Observe that in this case fpxq “ 0 for all x P N, i.e. f is the constant 0 and therefore
it is computable.

(M ą 0) In this case, let x0 “ mintx | fpxq “Mu. If x0 “ 0, the function f is the constant M ,
and therefore it is computable.

If, on the other hand, x0 ą 0, let M 1 “ fpx0 ´ 1q, i.e., the value assumed by f before M . We
can then write fpxq as the sum of two functions

fpxq “ f 1pxq ` gpxq

where f 1 : NÑ N is:

f 1pxq “

"

fpxq if x ă x0
M 1 otherwise

and g : NÑ N is:

gpxq “

"

0 if x ă x0
M ´M 1 otherwise

“ pM ´M 1q sgpx` 1 ´ x0q

The function f 1 is total, with range included in that of f , whence finite; moreover it is increasing
and maxtf 1pxq | x P Nu “ M 1 ă M . Hence it is computable by inductive hypothesis. Also g is
computable as it can be expressed as a composition of computable functions. Thus f is also
computable.

If instead we relax the requirement of totality we can define a function
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fpxq “

"

1 if x RWx

Ò otherwise

that is increasing, with finite range and not computable since, by diagonalization, it is different
from all computable function.

l

Exercise 6.5(p). Say that a function f : NÑ N is decreasing if it is total and for each x, y P N,
if x ď y then fpxq ě fpyq. Is there a decreasing function which is not computable? Justify your
answer.

Solution: Let k “ mintfpxq | x P Nu and let x0 P N be such that fpx0q “ k. Therefore, since f
is decreasing, fpxq “ k for all x ě x0. If we define

θpxq “

"

fpxq if x ă x0
Ò otherwise

we can write f as

fpxq “

"

θpxq if x ă x0
k otherwise

Since θ is finite, it is computable. Let θ “ φe. Therefore

fpxq “ pµw. ppx ă x0 ^ Spe, x, pwq1, pwq2q _ px ě x0 ^ pwq1 “ kqqq1

hence it is computable.

An alternative simpler solution, shows that actually all decreasing functions are primitive re-
cursive. One can reuse the previous exercise and observe that gpxq “ fp0q˜fpxq is total, increasing
and with finite domain. A direct proof can proceed by (complete) induction on fp0q. l

Exercise 6.6(p). Say if there can be a non-computable function f : N Ñ N such that for any
other non-computable function g : NÑ N the function f ` g defined by pf ` gqpxq “ fpxq ` gpxq
is computable. Justify your answer (providing an example of such f , if it exists, or proving that
cannot exist).

Solution: It cannot exist otherwise, since the quantification over g is universal, the property
should also hold for g “ f . Thus f ` f “ 2f would be computable, which implies f computable.
l

Exercise 6.7. Say if there can be a non-computable function f : N Ñ N such that there exists a
non-computable function g : NÑ N for which the function f`g (defined by pf`gqpxq “ fpxq`gpxq)
is computable. Justify your answer (providing an example of such f , if it exists, or proving that
cannot exist).

Solution: Yes, χK ` χK̄ is the constant 1. l

Exercise 6.8(p). Say if there can be a non-computable function f : NÑ N such that dompfq X
imgpfq is finite. Justify your answer (providing an example of such f , if it exists, or proving that
cannot exist).

Solution: Yes, define
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fpxq “

"

Ò if x ď 1
χKpxq otherwise, if x ą 1

l

Exercise 6.9. Is there non-computable function f : NÑ N such that dompfq X imgpfq is empty?
Justify your answer (providing an example of such f , if it exists, or proving that cannot exist).

Solution: Consider the function

fpxq “

"

2 ˚ χKptx{2uq if x odd
Ò otherwise

We have that dompfq is the set of odd numbers, codpfq “ t0, 2u, then dompfqX codpfq “ H. Also,
f is not computable. If it were then also χKpzq “ fp2z`1q{2 would be computable, while we know
that K is not recursive, i.e., χK is not is computable. l

Exercise 6.10. Is there a total non-computable function f : NÑ N, such that its image codpfq “
ty | Dx P N. fpxq “ yu is finite? Provide an example or show that such a function does not exists.

Solution: Yes, it exists. For example, just consider:

fpxq “

"

sgpφxpxqq if x PWx

0 if x RWx

Then the function f

• it is total;

• it is not computable since for each x P N, one has that fpxq ‰ φxpxq; in fact, if φxpxq Ó then
fpxq “ sgpφxpxqq ‰ φxpxq, and if φxpxq Ò then fpxq “ 0 ‰ φxpxq;

• clearly codpfq Ď t0, 1u.

l

Exercise 6.11(p). Prove that the function f : NÑ N, defined as

fpxq “

"

φxpxq if x PWx

x otherwise

is not computable.

Solution: Observe that

gpxq “

"

φxpxq ` 1 if x PWx

x` 1 otherwise

is not computable, and, for concluding, use the fact that gpxq “ fpxq ` 1. Hence if f were com-
putable, also g would have been so. l

Exercise 6.12(p). Say if there is a total non-computable function f : NÑ N such that, for infinite
x P N it holds

fpxq “ φxpxq
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If the answer is negative, provide a proof, if the answer is positive, provide an example of such a
function.

Solution: We can define

fpxq “

"

φxpxq if x PWx

0 if x RWx

If this were computable, also function: h : N Ñ N defined below, would be computable (by com-
position)

hpxq “ fpxq ` 1 “

"

φxpxq ` 1 if x PWx

1 if x RWx

Instead, we know that it is not computable. In fact, it is easy to prove that for each x P N we have
h ‰ φx. l

Exercise 6.13. Say if there is a total non-computable function f : NÑ N such that

fpxq ‰ φxpxq

only on a single argument x P N. If the answer is negative provide a proof, if the answer is positive
give an example of such a function.

Exercise 6.14. Is there non-computable function f : NÑ N such that

fpxq ‰ φxpxq

only on a single x P N? If the answer is negative provide a proof of non-existence, otherwise give
an example of such a function.

Exercise 6.15. Is there a total non-computable function f : N Ñ N such that codpfq is the set
P of even numbers? Justify your answer response (providing an example of such f , if it exists, or
proving that it does not exist).

Solution: Yes, such a function exists. For example, just consider:

fpxq “

"

2φxpxq ` 2 if x PWx

2k if x RWxek “ |ty ă x | y RWyu|

The domain of f is the set of even numbers, since there are infinitely many functions undefined on
their index (e.g. there are infinitely many indices for the function which is always undefined). Fur-
thermore, it is not computable since, by construction, it is different from all computable functions.

Alternatively we could consider

fpxq “

"

2φ x
2
pxq ` 2 if x PWx

0 otherwise

In fact, all even numbers greater than zero will be “covered” by the first case (e.g., all constant
functions are computable!). l

Exercise 6.16. Say if there is a non-computable function f : N Ñ N such that the set D “ tx P
N | fpxq ‰ ϕxpxqu is finite. Justify your answer.
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Exercise 6.17. Say if there are total computable functions f, g : N Ñ N such that fpxq ‰ φxpxq
for each x P K and gpxq ‰ φxpxq for each x R K. Justify your answer by providing a example or
by proving non-existence.

Solution: The function f does not exist. In fact, for every x P K we have fpxq ‰ φxpxq. Moreover,
for every x, if φx is total then x P K. It follows that f is different from all total computable function.
So, if it is total it is not computable.

The function g exists since we can just take gpxq “ 1 for all x P N. In fact, if x P K̄, we have
that gpxq “ 1 ‰ φxpxq “Ò. l

Exercise 6.18. Consider the function f : NÑ N defined by

fpxq “

#

2x` 1 if φxpxq Ó

2x 9́ 1 otherwise

Is it computable? Justify your answer.

Solution: The function is not computable, since we can write

χKpxq “ sgpfpxq 9́ 2xq.

If f were computable, we would deduce that also χK is computable, while we know that K is not
is recursive and thus χK is not computable. l

Exercise 6.19(p). Consider the function f : NÑ N defined by

fpxq “

#

x sg @y ď x. φytotal

0 otherwise

Is it computable? Justify your answer.

Solution: Let y0 “ minty | φy is not totalu. Note that y0 is well-defined since the set of non-total
computable function is non-empty and natural numbers are well-ordered. Then note that

fpxq “

#

x if x ă y0

0 otherwise
“ x ¨ sgpy0 ´ xq

is computable. l

Exercise 6.20. Consider the function f : NÑ N defined by

fpxq “

#

x` 2 if φxpxq Ó

x 9́ 1 otherwise

Is it computable? Justify your answer.

Exercise 6.21. Consider the function f : NÑ N defined by

fpxq “

#

φxpx` 1q ` 1 if φxpx` 1q Ó

Ò otherwise
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Is it computable? Justify your answer.

Exercise 6.22. Consider the function f : NÑ N defined by

fpxq “

#

φxpxq ` 1 if φypyq Ó for each y ď x

0 otherwise

Is it computable? Justify your answer.

Exercise 6.23. Consider the function f : NÑ N defined by

fpxq “

"

x2 if φxpxq Ó
x` 1 otherwise

Is it computable? Justify your answer.

Solution: The function f is not computable. In fact, since x2 ‰ x ` 1 for each x P N, if we
consider the function gpxq “ sgp|fpxq ´ x2|q we have that gpxq “ χKpxq. l

Exercise 6.24. A function f : N Ñ N is called almost total if it is undefined on a finite set of
points. Is there an almost total and computable function f : N Ñ N such that f Ď χK? Justify
your answer by giving an example of such a function in case it exists or a proof of non-existence,
otherwise.

Solution: Let f be almost total and assume that f Ď χK . Note that, if we let D “ dompfq, one
has that D is finite and therefore recursive. Thus also D is recursive. Define θ “ χK |D, which is a
finite function, therefore computable.

Now, we observe that

χKpxq “

"

fpxq x P D
θpxq otherwise

and conclude that f cannot be computable, otherwise also χK would be computable. l

Exercise 6.25. Say that a function f : N Ñ N is almost constant if there is a value k P N such
that the set tx | fpxq ‰ ku is finite. Is there an almost constant function which is not computable?
Adequately motivate your answer.

Solution: Let I “ tx | fpxq ‰ ku and define

θpxq “

"

fpxq if x P I
Ò otherwise

We can write f as

fpxq “

"

θpxq if x P I
k otherwise

Since θ is finite, it is computable. Let θ “ φe. Therefore fpxq ““ pµw. ppx P I ^ Spe, x, pwq1, pwq2q_
px R I ^ pwq1 “ kqq1 is computable. l

Exercise 6.26. Is there a total non-computable function f : N Ñ N with the property that
fpxq “ x2 for all x P N such that φxpxq Ó? Justify your answer by providing an example of such
function, if it exists, or by proving that it does not exist, otherwise.
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Solution: Yes, the function exists and it can be defined as:

fpxq “

"

x2 if φxpxq Ó
x2 ` 1 otherwise

It is not computable since χKpxq “ sgpfpxq ´ x2q. l

Exercise 6.27(p). Is there a non-computable function f : N Ñ N such that for any non-
computable function g : NÑ N the function f ˚g (defined as pf ˚gqpxq “ fpxq¨gpxq) is computable?
Justify your answer (providing an example of such f , if it exists, or proving that it does not exist).

Solution: No, the function cannot exist. In fact, assume, by contradiction, that such non-
computable function f exists. Then, in particular, we can choose g “ f and deduce that f ˚ f
is computable. Now

pf ˚ fqpxq “ fpxq ¨ fpxq “ fpxq2

But then also fpxq “ µy.|pf ˚ fqpyq ´ y ¨ y| is computable, leading to a contradiction. l

Exercise 6.28(p). Define a function f : N Ñ N total and not computable such that fpxq “ x{2
for each even x P N or prove that such a function does not exist.

Solution: We define

fpxq “

$

&

%

x{2 if x even
φ x´1

2
pxq ` 1 if x odd andx PW x´1

2

0 otherwise

Then observe that for each x P N it holds that φx ‰ f since φxp2x` 1q ‰ fp2x` 1q. l

Exercise 6.29. Is there a total non-computable function f : N Ñ N such that the function
g : NÑ N defined, for each x P N, by gpxq “ fpxq´x is computable? Provide an example or prove
that such a function does not exist.

Solution: Consider fpxq “ χKpxq. Then fpxq ´ x is the constant 0 for each x ě 1, therefore
computable. l

Exercise 6.30(p). Is there may be a non-computable function f : N Ñ N such that for each
non-computable function g : N Ñ N the function f ` g (defined by pf ` gqpxq “ fpxq ` gpxq)
is computable? Justify your answer (providing an example of such f , if it exists, or proving that
cannot exist).

Solution: No, otherwise, we should have f ` f “ 2f computable, and thus f computable. l

Exercise 6.31. Is there a computable function f : NÑ N such that dompfq “ K and codpfq “ N?
Justify your answer.

Solution: Yes, it exists. For example, consider fpxq “ φxpxq. Clearly dompfq “ K. Furthermore,
for each k P N , if we consider an index of the constant function k we have that fpeq “ φepeq “ k.
Thus codpfq “ N.

Alternatively one can define
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fpxq “ pµt.Hpx, x, tqq ´ 1

Clearlydompfq “ K since fpxq Ó if there exists some t such that Hpx, x, tq, i.e., if x P K. Further-
more, for each x P N just take the program Zk which consists of Zp1q repeated x times. For the
corresponding index y “ γpZkq we will have fpyq “ k ´ 1, which shows that codpfq “ N. l

Exercise 6.32. Let A be a recursive set and let f1, f2 : N Ñ N be computable functions. Prove
that the function f : NÑ N defined below is computable:

fpxq “

"

f1pxq if x P A
f2pxq if x R A

Does the result hold if we weaken the hypotheses and assume A only r.e.? Explain how the proof
can be adapted, if the answer is positive, or provide a counterexample, otherwise.

Solution: Let e1, e2 P N be indexes for f1, f2, respectively, namely φe1 “ f1 and φe2 “ f2. Observe
that we can define f as

fpxq “ pµw.ppSpe1, x, pwq1, pwq2q ^ χApxq “ 1q _ pSpe2, x, pwq1, pwq2q ^ χApxq “ 0qqq1

showing that f is computable. Relaxing the hypotheses to recursive enumerability of A, the result
is no longer true. Consider for instance f1pxq “ 1, f2pxq “ 0 and A “ K, which is r.e. Then f
defined as above would be the characteristic function of K which is not computable. l

Exercise 6.33(p). Is there a total, non-computable function such that imgpfq “ tfpxq | x P Nu
is the set Pr of Prime numbers? Justify your answer.

Solution: Yes, it exists. For example, consider:

fpxq “

"

p if x PWxep “ mintp1 P Pr | p1 ą φxpxqu
2 otherwise

Then the function f

• is total;

• it is not computable, since for each x P N one has that fpxq ‰ φxpxq; in fact, if φxpxq Ó we
have that fpxq is a prime larger than φxpxq, and if φxpxq Ò then fpxq “ 2;

• clearly imgpfq Ď Pr. For the reverse inclusion, consider any prime number p P Pr and the
constant function gpxq “ p´ 1 for each x P N. The function g is computable, thus g “ φn for
a suitable index n. We conclude by noting that fpnq “ mintp1 P Pr | p1 ą φnpnqu “ mintp1 P
Pr | p ą p´ 1u “ mintp1 P Pr | p1 ě pu “ p and thus p P imgpfq.

l

7 Reduction, Recursiveness and Recursive Enumerability

Exercise 7.1. Prove that a set A is recursive if and only if there is a total computable function
f : NÑ N such that x P A if and only if fpxq ą x.

Solution: Let A be recursive. Then χA is computable. Therefore the required function can be
fpxq “ x` χApxq.
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Vice versa, let f : NÑ N be a computable total function such that x P A if and only if fpxq ą x.
Then χApxq “ sgpfpxq 9́ xq is computable and therefore A is recursive. l

Exercise 7.2. Prove that a set A is recursive if and only if there are two total computable functions
f, g : NÑ N such that for each x P N

x P A if and only if fpxq ą gpxq.

Solution: Let A be recursive. Then χA is computable. Therefore the required functions can be
fpxq “ χApxq and gpxq “ 0.

Vice versa, let f, g : N Ñ N be total computable functions such that x P A if and only if
fpxq ą gpxq. Then χApxq “ sgpfpxq 9́ gpxqq is computable and therefore A is recursive. l

Exercise 7.3. Prove that a set A is recursive if and only if A ďm t0u.

Solution: LetA be recursive. Then χA is computable. The reduction function witnessingA ďm t0u
can then be 1 ´ χApxq. Conversely, if A ďm t0u and f is the reduction function, then χApxq “
s̄gpfpxq. l

Exercise 7.4. Let A Ď N be a set and let f : N Ñ N be a computable function. Prove that if A
is r.e. then fpAq “ ty P N | Dx P A. y “ fpxqu is r.e. Is the converse also true? That is, from fpAq
r.e. can we deduce that A is r.e.?

Solution: Let e, e1 be such that f “ φe and scA “ φe1 . Then

scfpAqpyq “ 1pµw. Hpe1, pwq1, pwq2q ^ Spe, pwq1, y, pwq3qq

hence fpAq is r.e. The converse is not true. For example 1pK̄q “ t1u is r.e., but K̄ is not r.e. l

Exercise 7.5. Let A be a recursive set and f : NÑ N be a total computable function. Is it true,
in general, that fpAq is r.e.? Is it true that fpAq is recursive? Justify your answers with a proof or
counterexample.

Solution: We have that fpAq is r.e. since

scfpAqpxq “ 1pµz.|fpzq ´ y|q

However,fpAq is not recursive. For example, consider the function defined as follows. Take a P K
and define:

fpxq “

"

pxq1 if Hppxq1, pxq1, pxq2q
a otherwise

“ pxq1 ¨ χHppxq1, pxq1, pxq2q ` a ¨ s̄gpχHppxq1, pxq1, pxq2qq

computable and total. Moreover fpNq “ K. l

Exercise 7.6. Let A Ď N be a set and let f : NÑ N be a computable function. Prove that if A is
recursive then f´1pAq “ tx P N | fpxq P Au is r.e. Is the set f´1pAq also recursive? For the latter
give a proof or provide a counterexample.

Solution: The set f´1pAq is r.e. since
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scf´1pAqpxq “ χApfpxqq

It is not recursive in general, since sc´1
K pNq “ K. l

Exercise 7.7. Prove that a set A is r.e. if and only if A ďm K.

Solution: Consider If A is r.e., then consider gpx, yq “ scApxq, and, using the smn theorem,
obtain the reduction function. Conversely, if A ďm K, then if f is the reduction function, we have
scApxq “ sckpfpxqq, which is computable. l

Exercise 7.8. Prove that a set A is r.e. if and only if there is a computable function f : N Ñ N
such that A “ imgpfq (remember that imgpfq “ ty : Dz. y “ fpzqu).

Solution: If A is r.e., then just take fpxq “ x ¨ scApxq. Conversely, if A “ imgpfq for f : NÑ N
computable, sayf “ φe for a suitablee P N then scApxq “ 1pµw.Spe, pwq1, x, pwq2qq. l

Exercise 7.9. Given a function f : N Ñ N, define the predicate Pf px, yq ” “fpxq “ y2, i.e.,
Pf px, yq is true if x P dompfq and fpxq “ y. Prove that f is computable if and only if the predicate
Pf px, yq is semi-decidable.

Solution: Let f : NÑ N be a computable function. Let e P N such that f “ φe. Then scP px, yq “
1pµw.|fpxq ´ y| is computable, hence P is semidecidable.

Vice versa, let P px, yq be semidecidable and let e be an index for the semi-characteristics

function of P , namely φ
p2q
e “ scP . Then we have fpxq “ pµw.Hp2qpe, px, pwq1q, pwq2qq1. l

Exercise 7.10. Let A Ď N. Prove that A is recursive and infinite if and only if it is the image of
a function f : NÑ N computable, total and strictly increasing (i.e., such that for each x, y P N, if
x ă y then fpxq ă fpyq).

Solution: Let A be recursive and infinite. Define the function g : NÑ N as

gpxq “ ΣyăxχApyq

that is, gpxq counts the number of elements of A below x, or, in other words, it assigns a increasing
number to each element of A. The function is computable since χA is so. Furthermore, it is easy
to see that g is monotone, that is, for each x P N, gpxq ď gpx` 1q . Moreover, x P A if and only if
gpx` 1q “ gpxq ` 1. Since A is infinite, this implies that imgpgq “ N.

Now we can define f : NÑ N as

fpnq “ µx. pgpx` 1q “ n` 1q

“ µx. |n` 1´ gpx` 1q|

The function f is

• computable, since it arises as the minimization of a computable function;

• total, since imgpgq “ N and therefore, for all n, the condition gpx ` 1q “ n ` 1 is certainly
satisfied for some x;

• increasing, since if n ă m then gpfpnq ` 1q “ n` 1 ă m` 1 “ gpfpmq ` 1q. Recalling that g
is increasing, this implies fpnq ` 1 ă gpmq ` 1 and therefore fpnq ă fpmq.
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In addition, imgpfq “ A. In fact, if x P imgpfq, then there exists n P N such that fpnq “ x,
hence gpxq “ n and gpx ` 1q “ n ` 1. Therefore, as observed above, χApxq “ 1, i.e., x P A.
Conversely, if x P A, then we have gpxq “ n and gpx ` 1q “ n ` 1. Therefore fpnq “ x, and thus
x P imgpAq.

For the converse implication, let A “ imgpfq with f total computable and strictly increasing.
Clearly A is infinite. In addition, since f is increasing, it is easy to see that for each x P N we have
fpxq ě x and thus, if there is z P N such that fpzq “ x then z ď x. Therefore the characteristic
function of A can be expressed as χApxq “ sgpΠx

z“0|fpzq ´ x|q. l

Exercise 7.11. Let π : N2 Ñ N be the function encoding pairs of natural numbers into the natural
numbers. Prove that a function f : NÑ N is computable if and only if the set Af “ tπpx, fpxqq x P
Nu is recursively enumerable.

Exercise 7.12. Prove that a set A Ď N is recursive if and only if A ďm t0u.

Exercise 7.13. Let A Ď N be a non-empty set. Prove that A is recursively enumerable if and only
if there exists a function f : NÑ N such that dompfq is the set of prime numbers and imgpfq “ A.

Exercise 7.14. Let A Ď C be a set of computable functions such that, denoted by 0 and 1 the
constant functions 0 and1, respectively, we have 0 R A and 1 P A. Define A “ tx : φx P Au and
show that either A is not or Ā is not r.e.

Solution: Since neither A nor its complement are empty, by Rice’s theorem they are not recursive.
Therefore, they cannot be both r.e. l

Exercise 7.15. Establish whether an index x P N can exist such that K̄ “ t2y ´ 1 : y P Exu.
Justify your answer.

Solution: No, it cannot exist. Let f denote the function fpyq “ 2y ´ 1. Then, we have that
t2y ´ 1 : y P Exu “ imgpf ˝ φxq, which implies that such set is r.e., unlike K̄. Hence they cannot
coincide. l

Exercise 7.16. Given two sets A,B Ď N what A ďm B means. Prove that given A,B,C Ď N the
following hold:

a. if A ďm B and B ďm C then A ďm C;

b. if A ‰ N then H ďm A.

Solution:

a. Observe that if f reduces A toB, and g reduces B to C then g ˝ f reduces A to C.

b. Consider a0 R A (which exists since A ‰ N). Then the reduction function can be fpxq “ a0
for each x P N.
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l

Exercise 7.17. Given two sets A,B Ď N define what A ďm B means. Is it the case that A ďm

A Y t0u for all sets A? If the answer is positive, provide a proof, otherwise, a counterexample. In
the second case, identify a condition (specifying whether it is only sufficient or also necessary) that
make A ďm AY t0u true.

Solution:

In general A ďm A Y t0u does not hold. For instance Nzt0u ęm N, since a total function
f : N Ñ N cannot exist such that x P Nzt0u iff fpxq P N: for an choice of f the consequent is
always true, while the antecedent is not!

This is the only counterexample, i.e., for each A ‰ Nzt0u we have A ďm A Y t0u. In fact, we
distinguish two cases:

• if 0 P A, then AY t0u (the reduction function can be the identity).

• if 0 R A, then we can certainly find x0 R A, x0 ‰ 0 (in fact we know that A ‰ N and
A ‰ Nzt0u). Then, the reduction function can be

fpxq “

"

x0 if x “ 0
x otherwise

l

Exercise 7.18. Given two sets A,B Ď N define what A ďm B means. Prove that, given any
A Ď N, we have A r.e. iff A ďm K.

Solution: If A ďm K then A r.e., by reduction, since K is r.e.

Conversely, let A r.e. Define

gpx, yq “ scApxq “ φspxqpyq

with s : N Ñ N computable total, given by the smn theorem. Then s is a reduction function for
A ďm K. l

Exercise 7.19. Prove that a set A Ď N is recursive if and only if A and Ā are r.e.

Exercise 7.20. State and prove Rice’s theorem(without using the second recursion theorem).

Exercise 7.21. Define what it means for a set A Ď N to be saturated and prove that K is not is
saturated.

Exercise 7.22. LetA Ď Cbe a set of functions computable and letf P A such that for any function
overθ Ď f is worth θ R A. Prove that A “ tx P N | φx P Au is not r.e.
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8 Characterization of sets

Exercise 8.1. Study the recursiveness of the set A “ tx P N : |Wx| ě 2u, i.e., establish if A and Ā
are recursive/recursively enumerable.

Exercise 8.2. Study the recursiveness of the set A “ tx P N : x P Wx X Exu, i.e., establish if A
and Ā are recursive/recursively enumerable.

Exercise 8.3. Study the recursiveness of the set

B “ tx | x PWx Y Exu,

i.e., establish if B and B̄ are recursive/recursive enumerable.

Solution: We prove that K ďm A. Define

gpx, yq “

"

1 x P K
Ò otherwise

“ scKpxq

By the smn theorem, we get a total computable function s : N Ñ N, such that gpx, yq “ φspxqpyq
and it is easy to see that s can be the reduction function.

Furthermore, B is r.e., in fact

scBpxq “ 1pµw.pHpx, x, pwq2q _ Spx, pwq1, x, pwq2qq

We therefore conclude that Ā is not r.e. l

Exercise 8.4. Study the recursiveness of the set A “ tx P N :Wx Ď Pu, where P is the set of even
numbers, i.e. establish whether A and Ā are recursive/recursively enumerable.

Solution: The set Ā is not is recursive since K ďm Ā. In fact, consider the function

gpx, yq “

"

1 x P K
Ò otherwise

It is computable. Therefore, by the smn theorem, there exists a total computable s : NÑ N, such
that gpx, yq “ φspxqpyq. Such a function s can be shown to be a reduction function.

In fact, if x P K, we have that φspxqpyq “ gpx, yq “ 1 for all y. Then Wspxq “ N. Therefore
Wspxq Ę P, i.e., spxq P A.

On the other hand, if x R K, we have that φspxqpyq “ gpx, yq Ò for all y. Then Wspxq “ H, and

therefore Wspxq Ď P, then spxq P A, i.e., spxq R A.

The set Ā is r.e., in fact

scĀpxq “ µw.Hpx, 2pwq1 ` 1, pwq2q

Therefore, A is not r.e.
l

Exercise 8.5. Study the recursiveness of the set A “ tx P N : Dy, z P N. z ą 1 ^ x “ yzu, i.e.,
establish if A and Ā are recursive/recursively enumerable.

Exercise 8.6. Study the recursiveness of the set A “ tx P N : ϕxpyq “ y for infinitely many yu,
i.e., establish if A and Ā are recursive/recursive enumerable.
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Exercise 8.7. Study the recursiveness of the set A “ tx P N : Wx Ď Exu, i.e., establish if A and
Ā are recursive/recursively enumerable.

Exercise 8.8. Study the recursiveness of the set A “ tx P N : |Wx| ą |Ex|u, i.e. establish whether
A and Ā are recursive/recursively enumerable.

Exercise 8.9. Study the recursiveness of the set A “ tx P N | φxpyq “ x ˚ y per some yu, that is
to say if A e Āare recursive/recursively enumerable.

Solution: The set A is r.e. In fact the semi-characteristic function

Apxq “ µw.Spx, pwq1, x ˚ pwq1, pwq2q

is computable.
It is not is recursive, since K ďm A. In fact, consider the function

gpx, yq “

"

0 x P K
Ò otherwise

“ 0pscKpxqq

It is computable and thus, by the smn theorem, we deduce that there is a total computable function
s : NÑ N such that, for each x, y P N,

gpx, yq “ φspxqpyq

Then s is a reduction function for K ďm A. In fact

• if x P K then φspxqpyq “ gpx, yq “ 0 for each y P N. In particular φspxqp0q “ 0 “ spxq ˚ 0.
Thus spxq P A.

• if x R K then φspxqpyq “ gpx, yq Ò for each y P N. Therefore surely there is no y such that
φspxqpyq “ x ˚ y. Thus spxq R A.

Finally, since A r.e. and non-recursive, we conclude that Ā is not r.e. and thus not recursive.
l

Exercise 8.10. Study the recursiveness of the set A “ tx P N | |WxXEx| “ 1u, i.e., establish if A
e Āare recursive/recursively enumerable.

Solution: The set A is clearly saturated since A “ tx | φx P AuwhereA “ tf | |codpfqXimgpfq| “
1u. We can deduce, by using Rice-Shapiro’s theorem, that A is not r.e. In fact id R A but we can
find a finite subfunction θ Ď id, defined as follows:

θpxq “

"

0 if x “ 0
Ò otherwise

such that codpθq “ dompθq “ t0u, hence |codpθq X dompθq| “ |t0u| “ 1. Therefore θ P A.
The complement is not r.e. again by Rice-Shapiro’s theorem. E.g.,θ, as defined above, is not in

Ā, but it admits H as finite subfunction and H P Ā. l

Exercise 8.11. Say that a function f : NÑ N is strictly increasing when for each y, z P dompfq,
if y ă z then fpyq ă fpzq. Study the recursiveness of the set A “ tx | φx sharply increasingu, i.e.,
establish whether A and Ā are recursive/recursively enumerable.
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Solution: The set A is clearly saturated since A “ tx | φx P Au where A “ tf |

fstrictly increasingu. We can deduce, by using Rice-Shapiro’s theorem, that A is not r.e. In fact
H P A and H Ď id R A.

The complement is r.e., in fact

scĀpxq “ 1pµz.Spx, pzq1, pzq2 ` pzq3, pzq4q ^ Spx, pzq1 ` pzq5 ` 1, pzq2, pzq4q

Therefore Ā is not recursive. l

Exercise 8.12. Say that a function f : N Ñ N is almost total if it is undefined on a finite set of
points. Study the recursiveness of the set A “ tx | φx almost totalu, i.e., establish if A and Ā are
recursive/recursively enumerable.

Exercise 8.13. Study the recursiveness of the set A “ tx P N : Wx X Ex “ Hu, i.e., establish
whether A and Ā are recursive/recursively enumerable.

Exercise 8.14. Given a set X Ď N, we define X ` 1 “ tx` 1 : x P Xu. Study the recursiveness of
the set A “ tx P N : Ex “Wx` 1u, i.e., establish if A and Ā are recursive/recursively enumerable.

Solution: The set A is saturated since A “ tx | φx P Au, where A “ tf | codpfq “ dompfq ` 1u.
We can use Rice-Shapiro to show that

• A is not r.e .
In fact id R A since codpidq “ N ‰ dompidq ` 1 “ N ` 1 “ Nzt0u. Moreover, H Ď id and
H P A since codpHq “ H “ dompHq ` 1.

• A not r.e .
In fact, if we define

fpxq “

"

1 if x ď 1
x otherwise

and

θpxq “

"

1 if x “ 1
Ò otherwise

we have that f R Ā since codpfq “ Nzt0u “ dompfq ` 1 “ N` 1. Moreover, θ Ď f and θ P Ā
since codpθq “ t1u “ dompθq ‰ dompθq ` 1.

l

Exercise 8.15. Let P be the set of even numbers. Prove that indicated with A “ tx P N : Ex “ Pu,
we have K̄ ďm A.

Solution: To obtain the reduction function we can consider

fpx, yq “

"

2y if ␣Hpx, x, yq
1 otherwise

The function f is computable, since it can be written as fpx, yq “ 2 y s̄gpχHpx, x, yqq`χHpx, x, yq.
Therefore, by the smn theorem, there exists s : N Ñ N computable total, such that fpx, yq “

φspxqpyq for each x, y P N, which can be used as a reduction function for K̄ ďm A. Indeed:
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• if x P K̄, then χHpx, x, yq “ 0 for each y, and therefore φspxqpyq “ fpx, yq “ 2y for each y.
Thus Espxq “ P and hence spxq P A.

• if x R K̄, or x P K then there exists y0 such that χHpx, x, yq “ 1 for each y ě y0. Therefore
φspxqpyq “ 1 for y ě y0, thus 1 P Espxq and therefore Espxq ‰ P. Hence spxq R A.

l

Exercise 8.16. Study the recursiveness of the set A “ tx P N : φxpxq Ó ^ φxpxq ă x ` 1u, i.e.,
establish if A and Ā are recursive/recursive enumerable.

Solution: pK ď Aq The reduction function can be obtained by considering

fpx, yq “

"

0 if x P K
Ò otherwise

Thus A is not recursive. Furthermore, A is r.e. since we can write its semi-characteristic function
as follows:

scApxq “ sgpx` 1´ φxpxqq

Finally Ā not r.e., since A r.e. and non-recursive.
l

Exercise 8.17. Study the recursion of the set A “ tx P N : x PWx ^ φxpxq “ x2u, i.e., establish
if A and Ā are recursive/recursive enumerable.

Solution: We show that K ď A, and thus A is not recursive. Define

gpx, yq “

"

y2 if x P K
Ò otherwise

The function gpx, yq is computable, since

gpx, yq “ y2 ¨ scKpxq

Thus by the smn theorem, there exists a total computable function s : N Ñ N such that for each
x, y P N

φspxqpyq “ gpx, yq

The function s is a reduction function of K to A. Indeed

• if x P K then φspxqpyq “ gpx, yq “ y2 for each y P N. Therefore spxq P Wspxq “ N and
φspxqpspxqq “ spxq2. Thus spxq P A.

• if x R K then φspxqpyq “ gpx, yq Ò for each y P N. Therefore spxq RWspxq “ H. Thus spxq R A.

Furthermore, A is r.e., since its semi-characteristic function

scApxq “ 1pµw. |x2 ´ φxpxq|q “ 1pµw. |x2 ´ΨU px, xqqq|

is computable. Therefore Ā not r.e. and thus it is not recursive. l

Exercise 8.18. Study the recursiveness of the set A “ tx P N : Dk P N. φxpx`3kq Òu, i.e., establish
if A and Ā are recursive/recursive enumerable.

Solution: pK̄ ď Aq The reduction function can be obtained starting from the function
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fpx, yq “

"

0 if x P K
Ò otherwise

Therefore A not r.e.
pK̄ ď Āq The reduction function can be obtained starting from the function

gpx, yq “

"

0 if ␣Hpx, x, yq
Ò otherwise

Hence Ā not r.e.
l

Exercise 8.19. Study the recursiveness of the set A “ tx P N :Wx “ Exu, i.e., establish if A and
Ā are recursive/recursively enumerable.

Solution: The set A is saturated, since A “ tx : φx P Au, where A “ tf P C : dompfq “ codpfqu.
Using Rice-Shapiro’s theorem we can prove that A and A are not r.e .:

• A non r.e .
Observe that no finite function can belong to A and A ‰ H (e.g. scN´t1u, the semi-
characteristic function ofN´ t1u, is in A)

• A is not r.e .
Note that scN´t1u R A, but H P A.

l

Exercise 8.20. Study the recursiveness of the set

B “ tπpx, yq Pxpxq Ó in less than ystepsu,

i.e., establish whether B and B̄ are recursive/recursively enumerable.

Solution: We have that B “ tπpx, yq Hpx, x, y ´ 1qu. Thus B and B are recursive. l

Exercise 8.21. Given A “ tx | φx is totalu, show that K̄ ďm A.

Solution: Defines

gpx, yq “

"

y if ␣Hpx, x, yq
Ò otherwise

By the smn theorem, we obtain a total computable function s : NÑ N, such that gpx, yq “ φspxqpyq
and it is easy to see that s can be the reduction function. l

Exercise 8.22. Study the recursiveness of the set A “ tx P N : φxpyq “ yfor infinitiesyu, that is,
say if A and Ā are recursive/recursive enumerable.

Exercise 8.23. Given a subset X Ď N define F pXq “ t0u Y ty, y ` 1 | y P Xu. Studying recur-
siveness of the set A “ tx P N : Wx “ F pExqu, i.e., establish if A and Ā are recursive/recursively
enumerable.

Solution: The set A is saturated, since A “ tx : φx P Au, where A “ tf P C : dompfq “
F pcodepfqquu.

Using Rice-Shapiro’s theorem we prove that both A and A are not r.e .:
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• A is not r.e .
Consider the function

fpxq “

"

0 if x “ 0, 1, 2
Ò “ otherwise

We have f R A, since dompfq “ t0, 1, 2uecodpfq “ t0u. Thus F pcodpfqq “ t0, 1u ‰ dompfq.
Moreover consider

θpxq “

"

0 if x “ 0, 1
Ò “ otherwise

Clearly θ Ď f . In addition dompθq “ t0, 1uecodpθq “ t0u. Then F pcodpθqq “ t0, 1u “ dompθq
and therefore θ P A. By Rice-Shapiro’s theorem, we conclude that A is not r.e.

• A is not r.e .
Note that if θ is the function defined in the previous case, θ R A, but the function always
undefined H P A, since dompHq “ codpHq “ H and therefore F pcodpHqq “ t0u ‰ dompHq.
Thus, summing up θ R A, but it admits a finite subfunction, i.e., the function always undefined
H P A. By Rice-Shapiro’s theorem, we conclude that Ā is not r.e.

l

Exercise 8.24. Study the recursiveness of the set

B “ tx | k ¨ px` 1q PWx X Exfor each k P Nu,

i.e., establish if B and B̄ are recursive/recursive enumerable.

Solution: The set A is not r.e., since K̄ ďm A. We prove it by considering

gpx, yq “

"

y ␣Hpx, x, yq
Ò otherwise

This is computable and, by using the smn theorem, one can obtain the reduction function.
Also Ā is not r.e., since K̄ ďm Ā. The reduction function can be obtained by considering

gpx, yq “

"

y x P K
Ò otherwise

l

Exercise 8.25. Let H be the always undefined function. Study the recursiveness of the set A “
tx | φx “ Hu, i.e., establish if A and Ā are recursive/recursive enumerable.

Solution: The set A is non-recursive, by Rice’s theorem, since it is saturated, not empty (the
always undefined function is computable) and different from N.

In addition Ā is r.e., since

scĀpxq “ 1pµw.Hpx, pwq1, pwq2q

Thus A not r.e. l

Exercise 8.26. Study the recursiveness of the set A “ tx @y. if y ` x PWx then y ď φxpy ` xqu,
i.e., establish whether A and Ā are recursive/recursive enumerable.

Solution: The set Ā “ tx Dy. y ` x P Wx ^ y ą φxpy ` xqu is not is recursive, since K ďm A.
Consider the function
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gpx, yq “

"

0 x P K
Ò otherwise

It is computable and thus, using the smn theorem, we deduce the existence of a total computable
function s : NÑ N, such that gpx, yq “ φspxqpyq. The function s can be the reduction function.

In fact, if x P K, we have that φspxqpyq “ gpx, yq “ 0 for all y. Hence φspxqpspxq ` 1q “ 0 ă
spxq ` 1, and therefore spxq P Ā. If, on the other hand, x R K, we have spxq R Ā.

The set Ā is r.e., in fact

scĀpxq “ µw.Spx, pwq1 ` x, pwq1 ` pwq2 ` 1, pwq3q

where, intuitively, pwq1 represents the value y we are looking for and the value of the function is
required to be pwq1 ` pwq2 ` 1 ą pwq1.

Therefore, A is not r.e.
l

Exercise 8.27. Study the recursiveness of the set A “ tx | φxpy ` xq Ó for some y ě 0u, i.e.,
establish if A and Ā are recursive/recursively enumerable.

Solution: The set A “ tx | φxpy ` xq Ó for some y ě 0u is not recursive because K ď A. In
order to prove this fact, let us consider the function g : N2 Ñ N defined, by

gpx, yq “

"

1 if x PWx

Ò otherwise

The function is computable since gpx, yq “ scKpxq. Hence, by the smn-theorem, there is a total
computable function s : NÑ N such that φspxqpyq “ gpx, yq for all x, y P N. We next argue that s
is a reduction function for K ďm A. In fact

• If x P K then φspxqpyq “ gpx, yq “ 1 for all y P N. In particular, φspxqp0 ` spxqq Ó. Hence
spxq P A.

• If x R K then φspxqpyq “ gpx, yq Ò for all y P N. Hence φspxqpy ` spxqq Ò for all y P N. Hence
spxq R A.

The set A is r.e., since it semi-characteristic function

scApxq “ 1pµpy, tq.Hpx, x` y, tqq

is computable.
Therefore, Ā is not r.e. l

Exercise 8.28. Let X Ď N be finite, X ‰ H and define AX “ tx P N :Wx “ Ex YXu. Study the
recursiveness of A, i.e., say if AX and ĀX are recursive/recursively enumerable.

Solution: The set AA is saturated, since AX “ tx : φx P Au, where AX “ tf P C : dompfq “
codpfq YXuu.

Using Rice-Shapiro’s theorem we prove that A and Ā are both not r.e .:

• A is not r.e .
Let x P X and y R X and consider the function

fpxq “

"

x if x P X Y tyu
Ò otherwise

We have f R A, since dompfq “ X Y tyu ‰ X “ X Y txu “ X Y codpfq. Moreover, if we
consider
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θpxq “

"

x if x P X
Ò otherwise

clearly θ Ď f . Note that dompθq “ X “ X Ytxu “ X Y codpθq and therefore θ P A. Thus, by
Rice-Shapiro’s theorem we conclude that A is not r.e.

• Ā is not r.e .
Note that if θ is the function defined above, θ R A, but the function always undefined
H P A, since dompHq “ H ‰ X “ codpHq YX. Thus, summing up θ R A, but it admits a
finite subfunction, i.e., the function always undefined H P A. By Rice-Shapiro’s theorem, we
conclude that Ā is not r.e.

l

Exercise 8.29. Let A “ tx P N :Wx X Ex ‰ Hu. Study the recursiveness of A, i.e., say if A and
Ā are recursive/recursively enumerable.

Solution: The set A is saturated, since A “ tx : φx P Au, where A “ tf P C : dompfq X codpfq ‰
Hu. It is not empty (since 1 P A) and it is not the entire N (since H R A), thus by Rice’s theorem
A is not recursive. Furthermore,A is r.e. since

scApxq “ 1pµpy, z, tq.Hpx, y, tq ^ Spx, z, y, tqq
“ 1pµw.Hpx, pwq1, pwq3q ^ Spx, pwq2, pwq1, pwq3q

Therefore Ā is not is r.e. l

Exercise 8.30. Study the recursiveness of the set A “ tx P N : @k P N. x` k PWxu, i.e., establish
if A and Ā are recursive/recursively enumerable.

Solution: We prove that K̄ ďm A, and thus A is not r.e. In order to obtain the reduction function,
consider the following computable function

gpx, yq “

"

y if ␣Hpx, x, yq
Ò otherwise

and then use the smn theorem.

Also K ďm A. In order to obtain the reduction function, consider the following computable
function

gpx, yq “

"

1 if x P K
Ò otherwise

and again, use the smn theorem. Therefore K̄ ď Ā and therefore Ā not r.e. l

Exercise 8.31. A partial function f : N Ñ N is called injective when for each x, y P dompfq, if
fpxq “ fpyq then x “ y. Study the recursiveness of the set A “ tx φx injectiveu, i.e., establish if
A and Ā are recursive/recursive enumerable.

Solution: The set A is clearly saturated, since A “ tx | φx P Au, where A is the set of injective
functions. Since H P A and 1 R A, by Rice’s theorem the sets A and Ā are not is recursive. Also
Ā is r.e, since

scApxq “ 1pµw. pSpx, pwq1, pwq3, pwq4q ^ Spx, pwq2, pwq3, pwq4q ^ pwq1 ‰ pwq2qq.
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Thus A is not r.e. l

Exercise 8.32. Study the recursiveness of the set A “ tx P N : Dy P Ex.Dz P Wx. x “ y ˚ zu, i.e.,
establish if A and Ā are recursive/recursive enumerable.

Solution: We show that K ď A, thus A is not recursive. In fact, define

gpx, yq “

"

1 if x P K
Ò otherwise

The function gpx, yq is computable, since

gpx, yq “K pxq

So by the SMN theorem, there exists a total computable such function s : N Ñ N such that for
each x, y P N

φspxqpyq “ gpx, yq

The function s is a reduction function of K to A. Indeed, if x P K, then φspxqpyq “ y for each
y, and thus we can take spxq P Wspxq and 1 P Espxq such that spxq “ spxq ˚ 1. Thus spxq P A.
Otherwise, φspxq “ H and thus it is easy to conclude spxq R A.

Furthermore, A is r.e., since

scApxq “ 1pµw. Spx, pwq1, pwq2, pwq3q ^ pwq1 ˚ pwq2 “ xq

Therefore Ā is not r.e. l

Exercise 8.33. Study the recursiveness of the set A “ tx P N : x P Wx ^ φxpxq ą xu, i.e.,
establish if A and Ā are recursive/recursive enumerable.

Solution: We show that K ď A, thus A is not recursive. Define

gpx, yq “

"

y ` 1 if x P K
Ò otherwise

The function gpx, yq is computable, since

gpx, yq “ py ` 1q ¨ scKpxq

So by the SMN theorem, there exists a total computable function s : N Ñ N such that for each
x, y P N

φspxqpyq “ gpx, yq

The function s is a reduction function of K to A. In fact

• if x P K then φspxqpyq “ gpx, yq “ y ` 1 for each y P N. Therefore spxq P Wspxq “ Ne
φspxqpspxqq “ spxq ` 1 ą spxq. Therefore spxq P A.

• if x R K then φspxqpyq “ gpx, yq Ò for each y P N. Therefore spxq RWspxq “ H. Thus spxq R A.

Furthermore, A is r.e., since its characteristic function

scApxq “ 1pµw. px` 1q 9́ φxpxqq “ 1pµw. ppx` 1q 9́ ΨU px, xqqq
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is computable. Therefore Ā is not r.e., and therefore it is not not even recursive. l

Exercise 8.34. Let f be a total computable function such that imgpfq “ tfpxq : x P Nu is infinite.
Study the recursiveness of the set

A “ tx Dy PWx. x ă fpyqu,

i.e., establish if A e Ā are recursive/recursively enumerable.

Solution: The set A is not is recursive since K ďm A. In fact, consider the function

gpx, yq “

"

1 x P K
Ò otherwise

It is computable. Therefore for the smn theorem there exists a total computable function s : NÑ N,
such that gpx, yq “ φspxqpyq. The function s is a reduction function.

In fact, if x P K, we have that φspxqpyq “ gpx, yq “ 1 for each y. Hence Wspxq “ N, and
therefore fpWspxqq “ fpNq “ imgpfq, which is infinite for hypothesis. Thus there certainly exists
z P fpWspxqq such that x ă z, i.e., there exists y PWspxq such that spxq ă fpyq. Therefore spxq P A.

If, on the other hand, x R K, we have that φspxqpyq “ gpx, yq “Ò for each y. Hence Wspxq “ H,
and therefore, certainly there is no y PWspxq such that spxq ă fpyq. Thus spxq R A.

The set A is r.e., in fact

scApxq “ µw.pHpx, pwq1, pwq2q ^ x ă fppwq1qq

Therefore, Ā is not r.e.
l

Exercise 8.35. Study the recursiveness of the set B “ tx P N : x P Exu, i.e., establish if B and B̄
are recursive/recursively enumerable.

Exercise 8.36. Study the recursiveness of the set V “ tx P N : Wx infinityu, i.e., establish if V
and V are recursive/recursively enumerable.

Exercise 8.37. Study the recursiveness of the set V “ tx P N : Dy P Wx. Dk P N. y “ k ¨ xu, i.e.,
establish if V and V are recursive/recursive enumerable.

Exercise 8.38. Study the recursiveness of the set V “ tx P N : |Wx| ą 1u, i.e., establish if V and
V are recursive/recursive enumerable.

Exercise 8.39. Let P be the set of even numbers and Pr the set of prime numbers. Show that
P ďm Pr and Pr ďm P .

Exercise 8.40. Let f : N Ñ N be a fixed total computable function. Study the recursiveness of
the set B “ tx P N fpxq P Exu, i.e., establish if B and B̄ are recursive/recursively enumerable.

Solution: Observe that B is r.e., in fact we can write its semi-characteristic function as follows:

scBpxq “ 1pµw. px, pwq1, fpxq, pwq2qq
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Moreover B is not recursive since K ďm B. In order to obtain the reduction function consider

gpx, yq “

"

y if x PWx

Ò otherwise

Hence B̄ is not r.e. l

Exercise 8.41. Let f : NÑ N be a fixed total computable function. Study the recursiveness of the
set B “ tx P N imgpfqXEx ‰ Hu, i.e., establish if B and B̄ are recursive/recursively enumerable.
Please note that imgpfq “ tfpxq | x P Nu.

Exercise 8.42. Study the recursiveness of the set B “ tx P N Ex Ğ Wxu, i.e., establish if B e
B̄are recursive/recursively enumerable.

Exercise 8.43. Let B “ tx | @m P N. m ¨ x P Wxu. Study the recursiveness of the B set, that is
to say if B and B̄ are recursive/recursively enumerable.

Exercise 8.44. Given A “ tx | φx is totalu, show that K̄ ďm A.

Solution: Define

gpx, yq “

"

y if ␣Hpx, x, yq
Ò otherwise

By smn theorem, we obtain a total computable function s : N Ñ N, such that gpx, yq “ φspxqpyq
and it is easy to see that s can be the reduction function. l

Exercise 8.45. Study the recursiveness of the set B “ tx P N Dy ą x. y P Exu, i.e., establish ifB
and B̄ are recursive/recursively enumerable.

Exercise 8.46. Study the recursiveness of the set B “ tx P N @y ą x. 2y P Wxu, i.e., establish if
B and B̄ are recursive/recursively enumerable.

Solution: Observe that B is not r.e. since K̄ ďm B. In order to get the reduction function consider

gpx, yq “

"

y if ␣Hpx, x, yq
Ò otherwise

Also B̄ “ tx | Dy ą x. 2y R Wxu is not r.e. In order to reduce K̄ ďm B̄, the reduction function
can be constructed from:

gpx, yq “

"

Ò if x R K
1 otherwise

“ scKpxq

l

Exercise 8.47. Study the recursiveness of the set B “ tx P N : 1 ď |Ex| ď 2u, i.e., establish if B
e B̄ are recursive/recursively enumerable.
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Solution: The set B is saturated, since it can be expressed as B “ tx : φx P Bu, where B “ tf P
C : 1 ď |codpfq| ď 2u.

Using Rice-Shapiro’s theorem, we prove that B and B̄ are both not r.e .:

• B is not r.e .
Note that id R B but there is a finite function

θpxq “

"

0 if x “ 0
Ò otherwise

such that θ Ď id and θ P B. Hence by Rice-Shapiro’s theorem we conclude that B is not is
r.e.

• B̄ is not r.e .
Note that if θ is the function defined in the previous case, θ R B, but the function always
undefined H P B. By Rice-Shapiro’s theorem we conclude that B̄ is not r.e.

l

Exercise 8.48. Study the recursiveness of the set A “ tx P N | P ĎWxu, i.e., establish ifA and Ā
are recursive/recursively enumerable.

Solution: The set A is saturated since A “ tx | φx P Au, where A “ tf | P Ď dompfqu. We can
use Rice-Shapiro’s theorem to show that

• A is not r.e .
In fact id P A since P Ď dompidq “ N and no finite θ Ď id can be in A, since functions in A
necessarily have an infinite domain.

• A not r.e .
In fact, id R Ā, and H Ď id, H P Ā.

l

Exercise 8.49. Study the recursiveness of the set B “ tx P N φxpyq “ y2 for infinitive yu, i.e.,
establish if B and B̄ are recursive/recursive enumerable.

Solution: We observe that B is saturated, since B “ tx | φx P Bu, where B “ tf | fpyq “
y2 for infinite yu. Rice-Shapiro’s theorem is used to deduce that both sets are not r.e.

• B is not r.e. because B contains y2 and none of its sub-functions finite (it does not contain
any finite functions).

• B̄ is not r.e. since H P B̄ and H admits as an extension y2 R B̄.

l

Exercise 8.50. Given X Ď N, indicate by 2X the set 2X “ t2x : x P Xu. Study the recursiveness
of the set B “ tx P N 2Wx Ď Exu, i.e., establish if B and B̄ are recursive/recursive enumerable.

Solution: Rice-Shapiro’s theorem is used to prove that both sets are not r.e .:

• B is not r.e. because it containsH, but not all functions (e.g. it does not contain θ “ tp1, 4qu.

• B̄ not r.e. since it contains θ, as defined above, but not θ1 “ tp1, 4q, p2, 2qu.
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l

Exercise 8.51. Study the recursiveness of the set B “ tx P N Wx Ě Pru, where Pr Ď Nis the set
of the prime numbers, i.e., establish if B and B̄ are recursive/recursively enumerable.

Solution: We use Rice-Shapiro’s theorem for proving that both sets are not r.e .:

• B is not r.e. because it does not contain any finite functions and it is not empty (e.g. id P B,
but no finite subfunction of id can be in B).

• B̄ is not r.e. since it contains H, but it does not include all functions (e.g. it does not contain
id , of which H is a finite subfunction).

l

Exercise 8.52. Classify the following set from the point of view of recursiveness

B “ tπpx, yq Px stops on input x in more than y stepsu,

where π : N2 Ñ N is the pair encoding function, i.e., establish if B and B̄ are recursive/recursively
enumerable.

Solution: The set B is r.e., but not recursive. In fact

B “ tx : x P K ^ ␣Hpx, x, yqu

For proving that it is not is recursive, note thatK ďm B. In fact, x P K iff πpx, 0q P B. Furthermore,
B is r.e. since its semi-characteristic function is computable:

scBpzq “ scKpπ1pzqq ¨ sc␣Hpπ1pzq, π1pzq, π2pzqq

Thus B̄ non-recursive. l

Exercise 8.53. Say that a function f : N Ñ N is symmetric in the interval r0, 2ks if dompfq Ě
r0, 2ks and for each y P r0, ks we have fpyq “ fp2k ´ yq. Study the recursiveness of the set

A “ tx P N : Dk ą 0. φx symmetric in r0, 2ksu,

i.e., establish if A and Ā are recursive/recursively enumerable.

Solution: The set A is r.e. In fact:

scApxq “ 1pµh.@yďh`1 φxpyq “ φxp2ph` 1q ´ yqq

It is not recursive by Rice’s theorem. In fact, A is saturated. Moreover, if e0 ed e1 are indices for
the functions H and 1, respectively, we have that e0 R A and e1 P A. Hence A ‰ H,N. l

Exercise 8.54. Given X Ď N define incpXq “ X Y tx ` 1 : x P Xu. Classify the following set
from the point of view of recursiveness B “ tx P N : incpWxq “ Exu, i.e. say if B and B̄ are
recursive/recursively enumerable.

Solution: We have that B “ tf | incpdompfqq “ codpfqu, thus the set is saturated. Furthermore
H P B, but H Ď 1 and 1 R B since N “ incpdomp1qq ‰ codp1q “ t1u. Hence, by Rice-Shapiro’s
theorem, the set B is not r.e.
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The function θ “ tp0, 0qu P B̄, but θ Ď id R B̄, therefore, again by Rice-Shapiro’s theorem, also
B̄ is not r.e. l

Exercise 8.55. Classify the following set from the point of view of recursiveness

B “ tx φxp0q Ò _ φxp0q “ 0u,

i.e., establish if B and B̄are recursive/recursively enumerable.

Solution: Observe that B is saturated, the corresponding set of functions can be defined as
B “ tf : fp0q Ò _ fp0q “ 0u. We have that 1 R B, while the finite subfunction H P B. Thus,
by Rice-Shapiro’s theorem, B is not r.e. Instead B̄ “ tx : φxp0q Ó ^ φxp0q ‰ 0u is r.e., since
scBpxq “ sgpφxp0qq is computable. l

Exercise 8.56. A function f : N Ñ N is said increasing when for each x, y P dompfq, if x ă y
then fpxq ă fpyq. Define B “ tx P N : φx increasingu and show that K ďm B.

Solution: One can mimic the proof of Rice-Shapiro’s theorem and define

gpx, yq “

"

y if ␣Hpx, x, yq
0 otherwise

Thus, if x P K̄ then g, seen as a function of y, will be the identity, which is increasing. Otherwise
there exists a number of steps y such that Hpx, x, yq and therefore from that point onward gpx, yq
is constantly equal to 0 and thus not increasing.

More precisely, observe that the function gpx, yq is computable, since

gpx, yq “ y ¨ χ␣Hpx, x, yq

Thus, by the SMN theorem, there exists a function s : NÑ N total and computable such that for
each x, y P N

φspxqpyq “ gpx, yq

The function s is a reduction function of K̄ into B. In fact

• If x P K̄ then for every y P N the predicateHpx, x, yq is false. Therefore φspxqpyq “ gpx, yq “ y
for all y P N. Hence φspxq is increasing and therefore spxq P B.

• If x R K̄ then there exists a y P N such that Hpx, x, yq holds true, and therefore also
Hpx, x, y ` 1q holds. Thus φspxqpyq “ 0 “ φspxqpy ` 1q. Then φspxq is not increasing and
therefore spxq R B.

Alternatively, more simply, we can be observe that the function always undefined is increasing
and the constant 0 is not. So just define gpx, yq “ scKpxq (semi-characteristic function of the set
K, which is known to be computable since K is r.e.) and then proceed as above. l

Exercise 8.57. Say that a function f : N Ñ N is k-bounded if @x P dompfq we have fpxq ă k.
For each k P N, study the recursiveness of the set

Ak “ tx P N : φx k- boundedu,

i.e., establish if A and Ā are recursive/recursively enumerable.

Solution: The set Āk is r.e. In fact:
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scĀk
pxq “ 1pµw.Spx, pwq1, pwq2 ` k, pwq3qq

It is not recursive by Rice’s theorem. In fact, Āk is saturated. Moreover, if e0 and e1 are indices
for the functions H and id, we have that e0 R Āk and e1 P Āk. Thus Āk ‰ H,N and we conclude
that Āk is not recursive. Therefore Ak not r.e. l

Exercise 8.58. Classify the following set from the point of view of recursiveness B “ tx ` y :
x, y P N ^ φxpyq Òu, i.e., establish whether B and B̄ are recursive/recursively enumerable.

Solution: The set B is recursive. In fact, let z0 be the minimum index for the function always
undefined. Then, for every z ě z0 we can express z as z0 ` pz ´ z0q and we have φz0pz ´ z0q Ò.
Hence z P B. Therefore, if we denote by θ “ χB |r0,z0´1s, the finite subfunction of the characteristic
function restricted to the interval r0, z0 ´ 1s, we have

χBpzq “

"

θpzq if z ă z0
1 otherwise

Since θ and the constant 1 are computable, and the predicate z ă z0 is decidable, the characteristic
function is computable. l

Exercise 8.59. Let f be a total computable function. Classify the following set from the point of
view of recursiveness Bf “ tx P N φxpyq “ fpyq for infinitivesyu, i.e., establish if B and B̄ are
recursive/recursive enumerable.

Solution: Rice-Shapiro’s theorem is used for both sets

• B is not r.e. because it contains f and none of its finite subfunctions (since f is total, B does
not contain any finite function)

• B̄ is not r.e. since H P B̄ and H admits f R B̄ as an extension.

l

Exercise 8.60. Let f be a total computable function, different from the identity. Classify the
following set from the point of view of recursiveness Bf “ tx P N φx “ f ˝ φxu, i.e., establish if
Bf and B̄f are recursive/recursively enumerable.

Solution: Observe that Bf is saturated since it can be expressed as Bf “ tx | φx P Bfu where
Bf “ tg | g “ f ˝ gu.

We can use Rice-Shapiro’s theorem to show that Bf is not r.e. In fact the identity id R Bf since
id ‰ f “ f ˝ id. Moreover the function always undefined H P Bf since H “ f ˝ H and clearly
H Ď id.

Moreover, the complement B̄f is r.e. In fact, let e be an index for f , i.e., such that φe “ f .
Then we have that x P B̄f iff there is an input z where v “ φxpzq Ó and φepvq ‰ v. Hence the
semi-characteristic function of B̄f can be expressed as follows:

scBf
pxq “ µw.pSpx, pwq1, pwq2, pwq3q ^ Spe, pwq2, pwq4, pwq3q ^ pwq2 ‰ pwq4q

l

Exercise 8.61. Study the recursiveness of the set B “ tx P N : Dk P N. k ¨ x P Wxu, i.e. establish
whether B and B are recursive/recursively enumerable.

Solution: We show that K ď B and therefore B is not recursive. In fact, define
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gpx, yq “

"

φxpxq if x P K
Ò otherwise

The function gpx, yq is computable, since

gpx, yq “ ψU px, xq

Hence, by the SMN theorem, we have that there exists a function s : N Ñ N total computable
such that for each x, y P N

φspxqpyq “ gpx, yq

The function s is a reduction function of K to B.

Furthermore,B is r.e., since

scBpxq “ 1pµw. Hpx, pwq1 ¨ x, pwq2qq

Therefore B̄ not r.e. l

Exercise 8.62. Classify from the point of view of recursiveness the set B “ tx P N : @k P N. k`x P
Wxu, i.e., establish if B and B are recursive/recursively enumerable.

Solution: We show that K̄ ď B and therefore B is not r.e. In fact, define

gpx, yq “

"

0 if ␣Hpx, x, yq
Ò otherwise

The function gpx, yq is computable, since

gpx, yq “ µz.χHpx, x, yq

So by the SMN theorem, we have that there exists a function s : N Ñ N total computable such
that for each x, y P N

φspxqpyq “ gpx, yq

The function s reduces K to B.

Furthermore, B̄ not r.e., since K̄ ď B̄. In fact, define

gpx, yq “

"

0 x P K
Ò otherwise

and proceed as before. l

Exercise 8.63. Classify from the point of view of recursiveness the set V “ tx P N : Ex infiniteu,
i.e., establish if V and V are recursive/recursively enumerable.

Solution: The set V is saturated since V “ tx | φx P Au, dove A “ tf | codpfq infiniteu. Then
we can use Rice-Shapiro’s theorem:

• id P A, but no finite subfunction of id is in A, hence A is not r.e.;

• H P Ā, H Ď id, but id R Ā, hence Ā is not r.e.

Paolo Baldan Master in Computer Science - University of Padua



37 Computability - 2024/2025

l

Exercise 8.64. Classify the following set from the point of view of recursiveness B “ tx P N x P
Wxzt0uu, i.e. establish if B and B̄ are recursive/recursively enumerable.

Solution: The set B is r.e., since

scApxq “ 1pµw. pHpx, pwq1, pwq2q ^ x ‰ 0qq.

and not recursive. In fact, K ďm B. In order to prove this fact consider

gpx, yq “

"

φxpxq if x PWx

Ò otherwise

By the smn theorem, since the function is computable, we obtain s : N Ñ N, computable and
total such that φspxqpyq “ gpx, yq. This is almost the reduction function, except for the fact that it
might have value 0 for some input. However, it is sufficient to take an index k ‰ 0 for the function
φ0 and consider:

s1pxq “

"

spxq if spxq ‰ 0
k otherwise

and we are done. l

Exercise 8.65. Classify the following set from the point of view of recursiveness

A “ tx |WxzEx infiniteu,

i.e., establish if A and Ā are recursive/recursively enumerable.

Solution: The set A is saturated since A “ tx | φx P Au with A “ tf | dompfqzcodpfq infiniteu.
By Rice-Shapiro’s theorem:

• A is not r.e., since 1 P A, but no finite subfunction θ Ď 1 can belong to A. In fact dompθq is
finite and therefore also dompθqzcodpθq is finite. Therefore θ R A.

• Ā is not r.e., since H P Ā, 1 R Ā and H Ď 1.

l

Exercise 8.66. Classify the following set from the point of view of recursiveness B “ tx P N :
|WxzEx| ě 2u, i.e., establish if B e B̄ are recursive/recursively enumerable.

Solution: The set B is saturated, since B “ tx : φx P Bu, where B “ tf P C : |dompfqzcodpfq| ě
2uu.

Using Rice-Shapiro’s theorem we prove that B and B̄ are not r.e .:

• B not r.e .
Observe that fpxq “ x´ 2 R B (dompfq “ codpfq “ N, thus dompfq´ codpfq “ H) but there
is a finite subfunction

θpxq “

"

0 if x ď 2
Ò otherwise

such that θ Ď f and θ P B. By Rice-Shapiro’s theorem therefore we conclude that B is not
r.e.
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• B̄ not r.e .
Note that if θ is the function defined above, then θ R B, but the function always undefined
H P B. By Rice-Shapiro’s theorem therefore we conclude that B̄ is not r.e.

l

Exercise 8.67. Classify the following set from the point of view of recursiveness B “ tx P N :
Dk P N. @y ě k. φxpyq Óu, i.e., establish if B and B̄ are recursive/recursively enumerable.

Solution: The set B is clearly saturated since it is the set of indexes of functions in B “ tf P C |
Dk P N. @y ě k. fpyq Óu.

We can conclude that B and B̄ are non-r.e. using Rice-Shapiro’s theorem. In fact:

• B is not r.e., since id P B but obviously no finite subfunction θ Ď id can belong to B (which
does not contain any finite function).

• B̄ is not r.e., since id R B̄, but there is a finite subfunction H Ď id with H P B.

l

Exercise 8.68. Classify the following set from the point of view of recursiveness B “ tx P N x ą
0 ^ x{2 R Exu, i.e., establish if B and B̄ are recursive/recursively enumerable.

Solution: Observe that B̄ is r.e., in fact we can write its semi-characteristic function as follows:

scB̄pxq “ 1pµw. x “ 0 _ Spx, pwq1, x{2, pwq2qq

Moreover B̄ is not recursive since K ďm B̄. In order to get the reduction function consider

gpx, yq “

"

y if x PWx

Ò otherwise

Then, by smn theorem, we have that gpx, yq “ φspxqpyq for some total computable function
s : NÑ N. This is almost the reduction function. We need to be sure that when x R K then spxq,
which is an index of the empty function, is not 0. This can be done by “modifying” function s.
More precisely take any index n0 ą 0 such that φn0 “ H (there is such n0 since H has infinitely
many indices). Then define s1pxq “ spxq if spxq ‰ 0 and spxq “ n0, otherwise. Then s

1 is still total
and computable, and works as a reduction function.

Hence B̄ is not r.e. l

Exercise 8.69. Classify the following set from the point of view of recursiveness

B “ tx P N : @y PWx. Dz PWx. py ă zq ^ pφxpyq ą φxpzqqu,

i.e., establish if B and B̄ are recursive/recursive enumerable.

Solution: The set B is saturated, given that B “ tx : φx P Bu, where B “ tf P C : @y P
dompfq. Dz P dompfq. py ă zq ^ pfpyq ą fpzqquu.

For the complement B̄ “ tf | Dy P dompfq.@z ą y. pz R dompfqq _ pfpyq ď fpzqqu, we observe
that if f ‰ H then we can consider y P tx P dompfq | fpxq “ min fpNqu and we have that y satisfies
the defining condition of B̄. So H is the only function not in B̄, i.e., B “ tHu and B̄ “ CztHu.
Then B̄ is r.e. since its semi-characteristic function is scB̄ “ 1pµw.Hpx, pwq1, pwq2qq. Using Rice’s
theorem, we prove B̄ is not recursive, so B not r.e.

This last fact can be deduced by Rice-Shapiro’s theorem, noting that id R B but there is a finite
function H Ď id such that H P B. l
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Exercise 8.70. Classify the following set from the point of view of recursiveness

B “ tx P N : @y PWx. Dz PWx. py ă zq ^ pφxpyq ă φxpzqqu,

i.e., establish if B and B̄ are recursive/recursive enumerable.

Solution: The set B is saturated, given that B “ tx : φx P Bu, where B “ tf P C : @y P
dompfq. Dz P dompfq. py ă zq ^ pfpyq ă fpzqquu.

The set B is not is r.e. by Rice-Shapiro’s theorem. In fact, observe that 1 R B, but H Ď 1 and
H P B.

For the complement B̄ “ tf | Dy P dompfq.@z P dompfq.y ă z Ñ pfpyq ě fpzqqu, observe that
if θ is any finite function,θ ‰ H, y “ maxpdompθqq clearly satisfies the condition definition of B̄.
Hence, it is enough to observe that id R B̄ and consider θ Ď id,θ ‰ H noting that θ P B̄. l

Exercise 8.71. Classify the following set from the point of view of recursiveness

A “ tx |Wx Y Ex “ Nu,

i.e., establish if A and Ā are recursive/recursive enumerable.

Solution: The set A is saturated since A “ tx | φx P Au with A “ tf | dompfq Y codpfq “ Nu.
By Rice-Shapiro’s theorem:

• A is not r.e., since id P A, but no finite subfunction θ Ď id can belong to A. In fact dompθq
is finite and therefore also codpθq is finite. Hence their union dompθqYdompθq is again finite,
which implies that dompθq Y dompθq ‰ N. Therefore θ R A.

• Ā is not r.e., since H P Ā, id R Ā and H Ď id.

l

Exercise 8.72. Classify the following set from the point of view of recursiveness

B “ tx | Dk P N. kx PWxu,

i.e., establish if B and B̄ are recursive/recursive enumerable.

Solution: We observe that K ďm A. Define

gpx, yq “

"

1 x P K
Ò otherwise

“ scKpxq

By smn theorem, we obtain a function s : N Ñ N which is total and computable, such that
gpx, yq “ φspxqpyq and it is easy to see that s can be the reduction function.

Furthermore,A is r.e., in fact

scApxq “ 1pµw.Hpx, x ¨ pwq1, pwq2qq

We therefore conclude that Ā is not r.e. l

Exercise 8.73. Given X,Y Ď N define X`Y “ tx`y | x P X ^ y P Y u. Study the recursiveness
of the set

B “ tx | x PWx ` Exu,
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i.e., establish if B and B̄ are recursive/recursive enumerable.

Solution: We observe that K ďm A. Define

gpx, yq “

"

0 x P K
Ò otherwise

“ 0pscKpxqq

By smn theorem, we obtain a function s : NÑ N total computable and such that gpx, yq “ φspxqpyq.
It is easy to see that s can be the reduction function.

Furthermore, B is r.e., in fact

scBpxq “ 1pµw.pSppwq1 ` pwq2, pwq1, pwq2, pwq3qq

We therefore conclude that Ā is not r.e. l

Exercise 8.74. Classify from the point of view of recursiveness the set A “ tx P N :WxXEx “ Nu,
i.e., say if A and Ā are recursive/recursively enumerable.

Solution: The set A is clearly saturated since A “ tx | φx P Au where A “ tf | codpfqYimgpfq “
Nu. We can deduce, by using Rice-Shapiro’s theorem, that A is not r.e., in fact id P A but clearly no
finite subfunction θ Ď id can be in A since codpfq, imgpfq are finite and thus codpfqY imgpfq ‰ N.

The complement is not r.e. again by Rice-Shapiro’s theorem. E.g., id R Ā, but it admits H as
finite subfunction and H P Ā. l

9 Second recursion theorem

Exercise 9.1. State and prove the second recursion theorem.

Exercise 9.2. State the second recursion theorem and use it to prove that K is not is recursive.

Exercise 9.3. State the Second Recursion Theorem and use it for proving that there exists x P N
such that φxpyq “ yx, for each y P N.

Exercise 9.4. State the Second Recursion Theorem and use it for proving that there exists n P N
such that Wn “ En “ tx ¨ n : x P Nu.

Exercise 9.5. State the Second Recursion Theorem and use it for proving that x P Nexists such
that φxpyq “ x` y.

Solution: Define hpx, yq “ x ` y, which is a computable function. By smn theorem there is a
total computable function s : N Ñ N such that φspxqpyq “ hpx, yq. The second recursion theorem
provides a x0 such that φx0

pyq “ φspx0qpyq “ hpx0, yq “ x0 ` y for all y P N. l

Exercise 9.6. State the Second Recursion Theorem and use it for proving that there exists x P N
such that φxpyq “ x´ y.
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Exercise 9.7. State the second recursion theorem and use it for proving that there exists a n P N
such that φn is total and |En| “ n.

Solution: The second recursion theorem states that for each total computable function h : NÑ N
there exists n P N such that φn “ φhpnq.

Consider the function g : N2 Ñ N

gpx, yq “ rmpx, yq

which we know to be computable (with the convention rmp0, yq “ y). By the smn theorem there
exists h : N Ñ N computable total such that gpx, yq “ φhpxqpyq and by the second recursion
theorem there exists n P N such that φn “ φhpnq. Therefore

φnpyq “ φhpnqpyq “ gpn, yq “ rmpn, yq

If n ‰ 0, then En “ r0, nq, then |En| “ n, as desired.
But if n “ 0 things do not work, because φnpyq “ rmp0, yq “ y. This can be fixed by changing

h in a way that the fixed point in 0 is removed. That is, we consider e such that φe ‰ φ0, and we
define

h1pxq “

"

e if x “ 0
hpxq otherwise

Clearly h1pxq “ hpxq ˚ sgpxq` e˚ sgpxq is computable and total and then you can reapply the same
reasoning first and conclude. l

Exercise 9.8. State the second recursion theorem and use it for proving that the function ∆ :
NÑ N, defined by ∆pxq “ minty : φy ‰ φxu, is not computable.

Solution: Just observe that ∆ is total, and by definition, for all x, it holds φ∆pxq ‰ φx. Then, by
the second recursion theorem, ∆ cannot be computable. l

Exercise 9.9. State the second recursion theorem and use it for proving that, if we indicate by
e0 an index of the function always undefined H and by e1 an index of the identity function, the
function h : NÑ N, defined by

hpxq “

"

e0 if φx is total
e1 otherwise

is not computable.

Solution: Observe that h is total. Furthermore φx ‰ φhpxq for each x, since φx is total when
φhpxq is not. So, by the second recursion theorem, we deduce that h cannot be computable. l

Exercise 9.10. State the Second Recursion Theorem and use it for proving that there exists an
index x P N such that

φxpyq “

"

y2 if x ď y ď x` 2
Ò otherwise

Solution: Consider the function

fpx, yq “

"

y2 if x ď y ď x` 2
Ò otherwise
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This is clearly computable, hence, by the smn theorem there is a total computable function s :
NÑ N such that fpx, yq “ φspxqpyq. Applying the second recursion theorem to s we conclude. l

Exercise 9.11. State the second recursion theorem and use it for proving that the set C “ tx :
2x PWx X Exu is not saturated.

Solution: Define

gpx, yq “

"

2x if y “ 2x
Ò otherwise

and proceed in the standard way. l

Exercise 9.12. State the second recursion theorem. Use it for proving that the set C “ tx P N |
x P Exu not saturated.

Solution: The Second Recursion Theorem states that given a total computable function h : NÑ N
there exists e P N such that φhpeq “ φe.

For answering the question, define

gpx, yq “ x

which is a computable function and thus, by smn theorem, there is a total computable function
s : NÑ N such that for each x, y P N

φspxqpyq “ gpx, yq

By the II recursion theorem there exists an index e such that φspeq “ φe and then

φepyq “ e

Therefore Ee “ teu and therefore e P C.
Given any e1 ‰ and such φe1 “ φe one has that e R Ee1 “ Ee and therefore e R C. Therefore C

is not is saturated. l

Exercise 9.13. Let e0 and e1 be indices for the function always undefined H and the constant 1,
respectively. State the Second Recursion Theorem and use it to prove that the function g : NÑ N
defined as below, is not computable:

gpxq “

"

e0 φx total
e1 otherwise

Solution: The function g is clearly total. If it were computable, for the II Recursion Theorem
there would exist e P N such that φe “ φgpeq. Instead, by definition of g we have that φe total iff
φgpeq is not total. l

Exercise 9.14. State the second recursion theorem. Prove that, given a function f : NÑ N total
computable injective, the set Cf “ tx : fpxq PWxu is not saturated.

Solution: Define

gpx, yq “

"

fpyq if x “ fpyq
Ò otherwise
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By the smn theorem, we obtain a function s : NÑ N total computable, such that gpx, yq “ φspxqpyq
and by the second recursion theorem there exists e P N such that φe “ φspeq. Therefore:

φepyq “ φspeqpyq “ gpe, yq “

"

fpeq if x “ fpeq
Ò otherwise

Thus e P Cf . Now, if we take a different index e such that φe “ φe1 we will have that, by injectivity
of f , it holds fpe1q ‰ fpeq and thus fpe1q RWe1 “We “ tfpequ. Hence e1 R Cf . l

Exercise 9.15. State the second recursion theorem. Use it for proving that if C is a set such that
C ďm C, then C is not saturated.

Solution: The Second Recursion Theorem states that given a total computable function h : NÑ N
there exists e P N such that φhpeq “ φe.

As for the question, let C ďm C̄ and let f be the reduction function, i.e., f : N Ñ N is
computable and total, and satisfies:

x P C ifffpxq R C (1)

Since f is computable and total, by the second recursion theorem, there exists e such that

φe “ φfpeq. (2)

Now if e P C, since C is saturated, from (2) we have that fpeq P C and this contradicts (1).
Similarly if e R C, we get a contradiction. Thus we conclude that the reduction function cannot
exist and therefore C is not saturated. l

Exercise 9.16. State the Second Recursion Theorem and use it for proving that there is an
indexand P N such that

φepyq “

"

y ` e if y multiple ofe
Ò otherwise

Solution: Define

gpx, yq “

"

x` y if y multiple of x
Ò otherwise

“ px` yq ¨ 1pµz.|z ˚ x´ y|q

By smn theorem, gpx, yq “ φspxqpyq with s computable total. Then the II recursion theorem can
be used to conclude. l

Exercise 9.17. State the second recursion theorem. Use it for proving that every function f which
is not total, but undefined only on a single point, i.e. dompfq “ Nztku for some k P N, admits a
fixed point, i.e., there is x ‰ k such that φx “ φfpxq.

Solution: Let h be such that φh ‰ φk and define

f 1pxq “

"

fpxq if x ‰ k
h if x “ k

Clearly f 1 is computable (since f and the constant k are computable, and the predicate x “ k
is decidable) and total. Therefore for the second recursion theorem there exists x P N such that
φf 1pxq “ φx. And by construction x ‰ k, thus f 1pxq “ fpxq. l
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Exercise 9.18. State the Second Recursion Theorem and use it for proving that there is n P N
such that Wn “ En “ tx ¨ n : x P Nu.

Solution: Define

gpn, yq “

"

y if y “ x ¨ n
Ò otherwise

The smn theorem and the second recursion theorem can then be used to conclude.
l

Exercise 9.19. Prove that there exists n P N such that φn “ φn`1 and also m P N such that
φm ‰ φm`1.

Solution: For the first part, observe that spxq “ x`1 is a computable total function and therefore
the smn theorem and the second recursion theorem can be used to conclude.

For the second part, if the m index did not exist, all computable functions would coincide,
which is clearly not the case. l

Exercise 9.20. State the second recursion theorem. Use it for proving that the set B “ tx P N :
Dk P N. k ¨ x PWxu is not saturated.

Solution: The Second Recursion Theorem states that given a total computable function h : NÑ N
there exists e P N such that φhpeq “ φe.

Concerning the question, we proceed similarly to the proof of the fact that K is not saturated
and find an index e such that φe “ tpe, equ. Also, we can assume that e ‰ 0. In fact, define

gpe, xq “

"

e if x “ e
Ò otherwise

Note that g is computable and therefore by the SMN theorem, we derive the existence of a total
computable function s : NÑ N such that for each e, x P N

φspeqpxq “ gpe, xq

By the II recursion theorem, there exists an index e such that φspeq “ φe and then

φepxq “

"

e if x “ e
Ò otherwise

We can assume e ‰ 0 because if it were e “ 0, it would be sufficient to consider s1 such that
s1p0q “ e0 (index of the function always undefined) and s1pxq “ spxq otherwise, and apply the
same reasoning again. The fixed point will certainly be ‰ 0, since φ0 ‰ H “ φe0 “ φfp0q.

Now, we have that

• e P B, since e “ 1 ¨ and PWe “ teu;

• given any index e1 ą e such that φe “ φe1 (it certainly exists, since there are infinite indices
for a computable function) we have that e1 R B, since there cannot be a k P N such that
k ¨ e1 P We1 “ We “ te

1u. In fact, for k ą 0 we have that k ¨ e1 ą e and for k “ 0, we have
k ¨ e1 “ 0 ‰ e, by construction.

Thus B not saturated. l

Exercise 9.21. State the second recursion theorem. Use it for proving that the set C “ tx P N :
φxpxq “ x2u is not saturated.
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Solution: The Second Recursion Theorem states that given a total computable function h : NÑ
N, there exists e P N such that φhpeq “ φe.

Concerning the question, as in the case of the proof for K we can find an index e such that
φe “ tpe, e

2qu. Then we have e P C, but any other index for the same function is not in C. l

Exercise 9.22. State the second recursion theorem and use it for proving that there is an index
k such that Wk “ tk ˚ i | i P Nu.

Solution: Consider the following function

gpx, yq “

"

0 if there exists i such that y “ x ˚ i
Ò otherwise

“ µi.|x ¨ i´ y|

It is computable, hence we can use the smn theorem and the second recursion theorem to conclude.
l

Exercise 9.23. State the second recursion theorem. Use it for proving that the set C “ tx P N :
r0, xs ĎWxu is not saturated.

Solution: The Second Recursion Theorem states that given a total computable function h : NÑ N
there exists e P N such that φhpeq “ φe.

Concerning the question, as in the case of the proof for K we can find an index e such that
We “ r0, es and we can assume that e ‰ 0. In fact, let us define

gpe, xq “

"

e if x ď e
Ò otherwise

This is computable and therefore by SMN theorem, we derive the existence of a computable total
function s : NÑ N such that for each e, x P N

φspeqpxq “ gpe, xq

By the II recursion theorem there exists an index e such that φspeq “ φe and then

φepxq “

"

e if x ď e
Ò otherwise

Given any index e1 ą e such that φe “ φe1 (it certainly exists since there are infinite indices for
a computable function) we have that e1 R C, sincer0, e1s Ę r0, es “We1 .

Thus C is not saturated. l

Exercise 9.24. State the second recursion theorem and use it for proving that there is an index
n P N such that φpn

“ φn, where pn is the n-th prime number.

Solution: Just observe that fpxq “ px is a computable total function and use the second recursion
theorem. l

Exercise 9.25. State the second recursion theorem. Use it for proving that there is an index x
such that Wx “ tkx | k P Nu.

Solution: The Second Recursion Theorem states that given a total computable function h : NÑ
Nexists e P N such that φhpeq “ φe.
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For the second part, define a function gpx, yq “ µz.|zx´ y|. Note that dompλy.gpx, yq “ tkx |
k P Nu and then we can use the second recursion theorem to conclude.

l

Exercise 9.26. State the second recursion theorem. Use it for prove that there is an index e P N
such that We “ te

n : n P Nu.

Solution: The Second Recursion Theorem states that given a total computable function h : NÑ N
there exists e P N such that φhpeq “ φe.

Concerning the question, define

gpx, yq “

"

logx y if y “ xn for somen
Ò otherwise

“ µn. |y ´ xn|

It is a computable function and therefore by the smn theorem, we have that there is a total
computable function s : NÑ N such that for each x, y P N

φspxqpyq “ gpx, yq

By the II recursion theorem there exists an index e such that φspeq “ φe and then

φepyq “

"

loge y if y “ en for somen
Ò otherwise

Therefore We “ te
n | n P Nu. l

Exercise 9.27. Use the second recursion theorem to prove that the following set is not saturated

C “ tx |Wx “ N ^ φxp0q “ xu.

Solution: Consider
gpx, yq “ x

For the smn theorem there exists s : NÑ N total computable such that gpx, yq “ φspxqpyq. By the
second recursion theorem there exists e such that φe “ φspeq. Therefore φepyq “ φspeqpyq “ e. In
particular φep0q “ e and clearly We “ N, then e P C.

Take e1 ‰ and such φe1 “ φe. Then we have that φe1p0q “ φep0q “ and ‰ is. So is R C.
Therefore C not saturated. l
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