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CHAPTER 1

Introduction

In this chapter, we informally discuss the notion of effective procedure and function
computable by means of an effective procedure. This will lead us to single out the
main features of an algorithm/computational model. Despite being informal, these
considerations will allow us to derive the existence of non-computable functions
for every effective computational model. In the next lessons these notions and
considerations will be formalized by setting a specific computational model, a kind
of idealized computer.

1.1. Algorithm or effective procedure

Effective procedures and algorithms, even though we do not always call them in this
way, are a part of our everyday life.

For example, at the primary school we are not only taught that given two numbers
their sum exists, but we are also provided with a procedure to compute the sum of
two numbers!

In general terms, an algorithm can be defined as the description of a sequence of
elementary steps (where an “elementary step” is a step which can be performed
“mechanically”, without any intelligence) which allows one reach some objective.
Typically, the aim is transforming some input into a corresponding output, suitably
related to the input. This could be transforming ingredients into a cake, although
normally we are interested in computational problems.

EXAMPLE 1.1. Some examples are:
1) given n € N, establish whether n is prime;

2) find the n** prime number;

4
)

(

(2)

(3) differentiate a polynomial;
(4) perform the square root 1/n;
()

find least common multiple lem and greatest common divisor GCD.

Therefore we can think of an algorithm as a black box

in — | blackbox | — out

where the transformation is performed by executing a sequence of elementary in-
structions.

If each step is deterministic (i.e., for each state of the system, the instruction to be
executed next and the new state it produces are uniquely determined), then each

1



2 1. INTRODUCTION
possible input will uniquely determine the corresponding output (or the procedure
might not terminate, in which case we will have no output).
In mathematical terms, the algorithm determines a (partial) function
f :input — output.

We say that f is the function computed by the algorithm and that f is effectively
computable. Thus, we can give the following first definition of a computable func-
tion (still informal since it refers to a generic notion of algorithm).

DEFINITION 1.2 (Computable function). A function f is computable if there exists

an algorithm that computes f.

We stress that for f to be computable, it is not important to know which is the
algorithm that computes f, but we just need to know that some algorithm that
computes f exists.

ExAMPLE 1.3. According to the above definition, we informally expect the the
following functions to be computable:

e GCD (greatest common divisor), e.g., exploiting Euclid’s algorithm.

e the function f: N — N defined as

F(n) = {1 n prime

0 otherwise
e g(n) =pn
where p,, is the n-th prime number.

This is computable by generating numbers and testing for primality until
the n-th prime is found.

o h(n) = m, where 7, is the n-th digit of the decimal representation of 7.
Indeed there are
— series that converge to 7
— techniques to estimate (by excess) the error caused by
* truncating a series

x rounding in the computation of the value of the truncated series

What about the function below?

g(n) =

1 there is a sequence of exactly n consecutive 5’s in 7
0 otherwise

For example ¢(3) = 1 if and only if 7 = 3.14...45555 ..., with 4,5 # 5.

A naive algorithm could consist in generating the digits of « until a sequence of
5’s of the desired length n is found. Clearly, if such a sequence exists, it will be
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eventually found and the answer 1 will be returned. However, at no stage of the
computation, we can exclude that the desired sequence of n 5’s will appear later;
hence, apparently, we have no way of returning 0.

REMARK 1.4. On the basis of the considerations above, the following
e generate all digits in the decimal representation of 7;
o if they include a sequence of n consecutive 5’s then g(n) = 1;
e otherwise g(n) = 0.

is nmot an effective procedure.

Note that this does not mean that g is not computable, i.e., that an effective
procedure for computing g does not exist, but at the moment this procedure is not
known (to us)!

We do not know if g is computable, but there might be a property of 7 that allows
us to conclude. In particular, there is a conjecture that all finite sequences of digits
appear in 7, which would imply that g is simply the constant 1, whence computable.

Consider now a slightly different function i : N — N, defined by

h(n) = {1 there is a sequence of at least n consecutive 5’s in m

0 otherwise

The function seems very similar to the one considered before. However, note that
if = 3.14...i5555 ..., then we deduce, not only that h(3) = 5, but also h(2) =
h(1) = h(0) = 1. More generally, whenever h(n) = 1 then h(m) = 1 for all m < n.
This suggests that h could have a quite simple shape.

More precisely, consider K = sup{n | © contains n consecutive digits 5}. Then we
have 2 possibilities:

(1) K is finite, and thus

h(n) =

1 fn<K
0 otherwise

(2) K is infinite, and thus
h(n) =1forallneN

This implies that h is computable because it is either a step function or a constant
function, and these function can are computed by simple programs. One could
object that we do not know which shape the function has and thus we do not
know exactly which is the program that computes the function. This is true, but
irrelevant for computability.

Trying to replicate the same argument for function g fails. In fact, one could think
of defining A = {n | 7 contains exactly n consecutive 5’s}. Then
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0 neAd
g(n)={1 né A

This does not suggest that g is computable. Set A is possibly infinite and we do
not see a way of providing a finite representation of A which can be included in a
program.

Bringing the argument to the extreme, one could consider the function G : N - N
defined by

1 f P=NP
Ga)=4{ "=~
0 otherwise

Since the condition does not depend on the variable x, the function is either the
constant 0 or the constant 1. Independently of which of the two cases applies, the
function is computable.



CHAPTER 2

Algorithms and existence of non-computable

functions

2.1. Characteristics of an algorithm

We present a list of features that an algorithm should satisfy in order to capture the
intuitive idea of effective procedure. Roughly, what we ask is that an algorithm is
“implementable” on some sort of idealised machine, that we call the computational
model. Hence, below, we also list some requirements that the computational model
should meet to be considered effective.

An algorithm is a sequence of instructions with the following characteristics:

a)
b)

)

it is of finite length;
there exists a computing agent able to execute its instructions;

the agent has a memory (for storing the input, intermediate results to be
used in subsequent steps and the output);

the computation consists of discrete steps;

the computation is neither non-deterministic nor probabilistic (we model
a digital computer);

there is no limit to the size of the input data
(we want to be able to define algorithms that work on any possible input,
e.g. + operating on summands of any size);

there is no limit to the memory that can be used.

This requirement may seem less natural, but having unbounded memory
is essential to avoid the notion of computability being dependent from
the available resources. In fact, for many functions the space required for
intermediate results depends on the size of the input,

e.g. f(n) =n? then (1000)? = 1000000. Note that I must add a number
of zeroes that depends on n and thus n must be stored (the states are
finite);

there exist a finite limit to the number of the instructions and to their
complexity.

This is intended to capture the intrinsic finiteness of the computing device
(justified by Turing with the limits of the human mind/memory),

5



6 2. ALGORITHMS AND EXISTENCE OF NON-COMPUTABLE FUNCTIONS
e.g. for a computer, the memory that can be accessed with a single in-
struction must be finite (even if by (g), the memory is unbounded);
i) computations might

(a) terminate and return a result after a finite, but unbounded number
of steps (e.g. the square function requires a number of steps propor-
tional to the argument);

(b) continue forever, without returning a result.

2.2. Existence of non-computable functions

Later on, we will focus on a concrete computational model and this will allow
us to give a completely formal definition of computable function. Now we argue
that, simply on the basis of the assumptions above, we can infer the existence of
non-computable functions for every “effective” computational model.

2.2.1. Some mathematical notions and notation. We start by recalling
some basic notions and introducing useful notation.

e We will consider the set of natural numbers N ={0,1,2,...};
e Given the sets A, B their Cartesian product is
AxB={(a,b)|ac A A be B}.
We will write A™ for A x A x Ax...x A. Thus, we have A' = A and

n times

A+l — A x A™.
e A (binary) relation or predicate is r € A x B.

o A (partial) function f: A — B is a special relation f € A x B such that
if (a,b1), (a,b2) € f then b; = by. Following the standard convention, we
will write f(a) = b instead of (a,b) € f

— the domain of f is dom(f) ={a|3Ibe B. f(a) = b};
— we write f(a) | for a € dom(f) and f(a) 1 for a ¢ dom(f);

e Given a set A we indicate with |A| its cardinality (intuitively, the number
of elements of A, but the notion extends to infinite sets). Given the sets
A and B we have

— |A| = |B| if there exists a bijective function f: A — B;

— |A] < |B] if there exists an injective function f : A — B or equiva-
lentlyE| a surjective function g : B — A.

Observe that if A € B then |A| < |B| as witnessed by the inclusion, which
is an injective function

i1: A— B

ar— a

1Strictly speaking, the equivalence requires the axiom of choice.
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e We say that A is countable or denumerable when |A| < |N|, i.e., there is
a surjective function f: N — A. Note that, when this is the case, we can
list (enumerate, whence the name) the elements of A as

fO) F) £(2)
aq ay as
e When A, B are countable then A x B is countable.
Idea of the proof:

— Since A and B are countable, we can consider the corresponding
enumerations

A apg a1 a
B by by by

and place the elements of A x B in a matrix

| b by by
ao | (ao,bo) (ao,b1) (aog,b2)
ar | (a1,bo) (a1,b1) (a1,b2)
az | (a2,b0) (az,b1) (az,b2)

so that they can be enumerated along the diagonals as follows:
(Cl,o, bo), (CLQ, bl), (al, bo), (ao, bg), (CLl, b1), (az, b())7 PN (this is referred

to as dove tail enumeration)

e A countable union of countable sets is countable: if {4;};en is a collection

of countable sets then | J A; is countable.
€N

2.2.2. Existence of non-computable functions. Let us consider some fixed
computational model satisfying the assumptions in §2.1] We want to show that
there are functions which are not computable in such a model.

We focus on unary functions over the natural numbers. Let
F={f]f: N> N}
be the set of all the (partial) unary functions on N.

Let A be the set of all algorithms in our fixed computational model. Every al-
gorithm A € A computes a function f4 : N — N and a function is said to be
computable in our model if there exists an algorithm that computes it. Hence the
set F 4 set of computable functions in the given computational model is

Fa={fa|Ac A}

Certainly F4 < F. But, is the inclusion strict (i.e., is there a non-computable
function)?

The answer is yes. Basically for combinatorial reasons: the algorithms are too few
to compute all the functions.

In fact, an algorithm A € A, by assumption@in the characteristics of an algorithm,
will be a finite sequence of instructions taken from some instruction set I. Moreover,
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by assumption [b)] I must be finite. Hence:
Acl 1
€N
Since a countable union of finite (hence countable) sets is countable, we have
i< <IN
neN

and since the function
A — Fu
A fa

is surjective by definition, we have that
|Fal < Al < N|
On the other hand the set of all functions, F, is not countable. Let T the subset of
F consisting of the total functions 7 = {f | f € F A dom(f) = N}. We show that
|71 =T > IN|

We prove that |T| > |N| by contradiction. Let us suppose that T is countable.
Then we can consider an enumeration fo, f1, f2,... of F as in the following matrix

| fo fi f2
0] fo(0) f1(0) £2(0)
L] f1(0)  fi(1)  f1(2)
2| f2(0) fa(1)  fa(2)

and build a function d, by considering and systematically changing diagonal values
d:N—->N
ne— fn(n)+1

We can observe that
e d is total, by definition;
o d# f, for all n € N, since d(n) = f,(n) + 1 # fn(n).

This is absurd, since fg, f1, fo, ... is an enumeration of all the total functions.

Summing up
Fa F
[Fal < IN| <|T| = |F|
we get F 4 < F, as desired.
Note that the set of non-computable functions is not countable
| F\Fal > |N|

In fact, F = F4q U (F\Fa). Thus, if it were |F\F4| < |N|, we would have had
|F| < |N| because the union of countable sets is countable.

We conclude that
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(1) no computational model can compute all functions;

(2) there are more non-computable than computable functions.






CHAPTER 3

URM computability

3.1. Which model?

To give a formal notion of computability we must choose a concrete model of com-
putation that induces a class of algorithms and thus a corresponding class of com-
putable functions. Despite the fact that we focus on an abstract ideal model, there
are still a lot of possibilities. Many models have been considered in the literature:

(1
(2) A-calculus (Church, 1930)
(3
(4
(
(

Turing machine (Turing, 1936)

Partial recursive functions (Godel-Kleene 1930)

Canonical deductive systems (Post, 1943)

5) Markov systems (Markov, 1951)

6) Unlimited register machine (URM) (Shepherdson - Sturgis, 1963)

) ...

In principle, each computational model determines a class of computable functions.
We may be concerned thinking that the developed theory is valid only for a specific
model chosen. Actually, it can be verified that the class of computable functions for
all models cited (and for all “sufficiently expressive” models considered in literature)
is always the same. This leads to the so-called Church-Turing thesis:

)
)
)
)
)
)

Church-Turing thesis: A function is computable by an effective procedure (i.e.,
in a finitary computational model, obeying the conditions (a)-(e) from the chapter
before) if and only if it is computable by a Turing machine.

This means that the notion of “computable function” is robust (i.e. independent of
the specific computational model), and we can choose our favorite one for developing
our theory.

REMARK 3.1. The Church-Turing thesis is called a thesis and not a theorem due
of its informal nature. It cannot be proved since it refers to an informal notion of
effective procedure, but is supported only by evidence: many computational models
have been considered and all respect the thesis (e.g. Yuri Gurevich, argues that it
should be proved on the basis of a formal axiomatization of conditions (a) - (e)).

Sometimes we resort to the Church-Turing thesis to shorten the proof that a certain
function is computable. However this should only be done when it is not strictly
necessary, i.e. when it could be replaced by a formal proof (and providing all the
details could hide the intuitive idea under a bunch of technicalities).

11



12 3. URM COMPUTABILITY

3.2. URM (Unlimited register machine)

We will formalise the notion of computable function by using an abstract ma-
chine called URM-machine (Unlimited Register Machine), which is an abstrac-
tion of a computer based on the Von Neumann’s model. It is characterized by

e unbounded memory that consists of a infinite sequence of registers,
each of which can store a natural number

Ry |Ry|...| Ry

T1 T9 ‘e Tn

the n-th register is indicated by R, its content by 7,

the sequence (r1,73,...,7p,...) € N¥ is called configuration of the
URM;

e a computing agent capable of executing an URM program;

e a URM program, i.e. a finite sequence of instructions I, Io, ..., Is that
can “locally” alter the configuration of the URM.

Program instructions can be the following

e zero Z(n)
sets the content of the register R,, to zero: r,, < 0;

e successor S(n)
increments by 1 the content of register R,: 7, <« rp, + 1;

e transfer T(m,n)
transfers the content of the register R,, in the register R,, R,, stays
untouched: r, < 7,.

The above are often referred to as arithmetic instructions. They are characterised
by the fact that the instruction to be executed in the next step is the one following
the current instruction in the program.

Then last instruction is

e conditional jump J(m,n,t) compares the content of the registers R,,
and R,

— if rp, = 1, it jumps to the ¢t-th instruction;
— otherwise, it continues with the next instruction.

EXAMPLE 3.2. An example of program is the following:

L: J(2,3,5)
.[2: S(l)
Ig: 8(3)

I,: J(1,1,1) // unconditional jump

Disregard what this program computes for the moment. The computation starting
from the configuration below is:
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Rl Rg R3 . 11,15 R1 RQ R3 e I3 Rl Rg R3 . 14,14,
11210 ... o1 210 ... 21271
R1 RQ Rg cee | I3 Rl RQ Rg oo | I4,0h,15
31211 1...1 [312]2

The state of the URM machine in which it executes a program P = I... I is
given by a pair {c, ty that consists of a

e register configuration c
a total function ¢ : N — N such that ¢(n) is the content of register Ry;

e program counter t, i.e., index of the current instruction.

An operational semantics can easily be defined via a set of deduction rules axioma-
tising the state transitions {(c,t)y — {¢/,#'). However we do not need this level of
formality, and we will rely on an informal description of program execution.

REMARK 3.3. A computation might not terminate! Consider for instance the
program

Ili S(l)
L J(1,1,1)

Then the computation will not terminate. For instance

R1 RQ R3 oo | Iq,12 R1 R2 Rg e | 9,12 R1 RQ Rg
0 0 0 |... 1 0 0 ... 2 0 0

NOTATION 3.4. Let P be an URM program, and (ai,as,as,...) € N¥ a sequence
of natural numbers. We indicate the computation of P starting from the initial
configuration by P(aq,as,...):

Ry | R2 | Rs
ay | G2 | ag

and
e P(ay,as,...) | if the computation halts.
e P(ay,asq,...) 1 if the computation never halts (i.e., it diverges).

We will work on computations that start from an initial configuration where only
a finite number of registers contain a non-zero value for the majority of
the time (almost always for obvious reasons of input finiteness). Hence; given
ai,as,...,ar € N we will write

P(ay,...,a) for P(ay,...,a;,0,...,0)

The notation extends to P(aq,...,ax) | or P(ai,...,ax) 1.

3.3. URM-computable functions

Let f : N¥* — N be a partial function. What does it mean for f to be computable
by an URM machine?
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Intuitively, it means that there exists a program P such that for each (a1, ...,ax) €
N*, P(aq,...,a;) computes the value of f, i.e. when (ai,...,ax) € dom(f), P ter-
minates and outputs f(a1,...,ax). Instead, P does not terminate if (a1,...,ar) ¢
dom(f).

A doubt could concern where the output is stored. We conventionally decide that
the output will be in the first register Ry (hence at the end of the computation, the
content of any register other than the first one will be irrelevant). For this reason
we introduce the following notation

NOTATION 3.5. Let P be a program and (ay, .. .,a) € N¥, we write P(ay,...,ax) |
a if P(ay,...,ax) | and the final configuration contains a in Ry

DEFINITION 3.6 (URM-computable function). A function f : N* — N is said
to be URM-computable if there exists a URM program P such that for all
(ai,...,ar) € N¥ and a € N, P(ay,...,ax) | if and only if (ay,...,ar) € dom(f)
and f(a1,...,ar) = a.

In this case we say that P computes f.
We denote by C the class of all URM-computable functions and by C(¥) the class
of the k-ary URM-computable functions. Therefore we have C = (J;~, C (k).

3.4. Examples of URM-computable functions

We next list some URM-computable functions, providing the corresponding pro-
grams.

(1) f: N> >N
flz,y) =z +y

I J(2,3,5)

IQI S(l)

Igl 8(3)

I,: J(1,1,1) // unconditional jump
Ry | Ry | Rs
T |y 0

Idea: Increment R; and R3 until Ry and R3 contain the same value. This
results in adding to Ry the content of Rs.

(2) f:N>N

f(x)=x41={0 Ty

z—1 >0

Ri | Ry | R3
T 0 0

Idea: if x = 0 it trivially terminates; if > 0, it keeps a value k — 1 in Ry
and k in Rs, with £ > 1 ascending until R3 = «x, at that point Ry = x — 1.

Here’s the program



3.6. EXERCISES 15

L: J(1,3.8)
122 8(3)
I+ J(1,3.7)
I4S S(Q)
I5Z 8(3)
Is: J(1,1,3)
I7Z T(Z,l)
(3) f:N>N

z if z even
f(a) = {2

1 otherwise

Idea: Store an increasing even number in Ry and store its’ half in Rj.

Ry | Ry | R
x | 2k | k

Li: J(1,2,6)

122 8(2)

Ig: 8(2)

.[42 8(3)

Is: J(1,1,1)

I6Z T(3,1)

3.5. Function computed by a program

Given a program P, for some fixed number k£ > 1 of parameters, there exists a
unique function computed by P that we denote by fl(;k) : N¥ — N defined by:

(k) _)a if P(ay,...,ax) |l a
b (a1,...,ak) {T it Plas,...,ax) 1

REMARK 3.7. The same function can be computed by different programs, for the
following two reasons

e we can add useless instructions to a program (dead code, T'(n,n), ...)

e the same function can be computed via different algorithms (e.g., for sort-
ing we have quicksort, mergesort, heapsort, etc.)

A function can be computed either by no program or by infinitely many programs.

3.6. Exercises

EXERCISE 3.8 (Reduced URM). Let URM ~ be the class of URM machines without
transfer instruction. Indicate by C~ the class of functions that can be computed
by URM ~ machines. How does C~ compare to C?

ProOOF. We show that C— =C

Obviously C~ < C.
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Let us prove that C € C~. Informally an instruction T'(m,n) at the ¢ step can be
replaced with the following subroutine

Z(n)

LOOP : J(m,n, END)
S(n)
J(1,1,LOOP)

END:

We prove it formally. Given f € C, f : N¥ — N, there is an URM program P such
that fl(f) = f. We show that the program P can be transformed into a URM™
program P’ of the reduced URM machine such that flgf) = I(Dk).

We proceed by induction on the number h of transfer instructions T in P. Observe
that we can assume, without loss of generality, that when a program halts it does
so at the index of the last instruction plus one.

(1) h =0 trivial, we can take P = P’ since P is already a URM ~-program.

(2) h — h+ 1: Assume that P contains h + 1 transfer instructions. Hence it
has the shape

Ili
I : T(m,n)
I : ...

We can transform it into the program P”, where the instruction T is
replaced by a jump to the subroutine:

Ill
I; : J(1,1,s+2) // jump to the subroutine
I : ...
Istq 0 J(1,1,546) // jump to the end
Is+2: Z(n)
Ists: J(m,n,t+1) // back to the successor of the T-instruction
IS+4: S(n)
IS+5: J(1717S+3)
Note that f 1(3}},) = I(Dh). Moreover program P’ includes h instructions T

and therefore, by inductive hypothesis, there exists a URM ™~ program P’
such that f(}f) = ,(!f?. Then I(JI,L) = I(J}f/) = I(Dh) and P’ is the desired
program.

O

EXERCISE 3.9 (URM with swap instructions). Let URM® be the model obtained
by removing the transfer instruction and inserting a swap instruction Tg(m,n)
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which exchanges the contents of registers m and n. Let C° be the corresponding
class of computable functions. How do the classes C and C° relate?

ProOF. (C < C?¥) We already know that C < C* by the previous exercise and
therefore, since C®* < C°, the desired inclusion follows.

(C¥ < C) First observe that the swap instruction Ts(m,n) can be encoded in the
URM machine by means of the routine:

T(n,i)
T(m,n)
T(i,m)
where i is a “new” register, i.e., a register not used by the program.

More formally, let f € C%, f : N — N. Then there exists a URM* program P s.t.
f}(f) = f. Let us proceed by induction on the number of swap instructions h.

o (h =0) the program is already a URM program. Therefore wwe can take
P =P

e (h — h + 1) Assume that P contains h + 1 swap instructions.

Let ¢ be a register not used by P (observe that it can be found by just
inspecting the program text). Let ¢ be the index of a swap instructions.
As in the previous exercise, replace such instruction by a jump

I,: J(1,1,SUB)

to a subroutine encoding the swap. Let P” be the program obtained in
this way. Since it has only h swap instructions, by inductive hypothesis

there is P/ URM such that f(]f) = ,‘D’f,) = I(Dk), and we are done.

Observe that strictly speaking the proof above is not working
properly!

In fact the program P’ obtained from P replacing a swap instruction will
indeed have h swap instructions but it possibly contains also some transfer
instructions, hence it is not a URM?® program.

We can easily solve the issue by proving the following stronger statement:
given a program P that uses both URM instructions and U RM*® instruc-
tions, there is a URM program P’ such that fl(pk) = 1(313).

The proof remains essentially the same but the inductive case now works
smoothly and we conclude that C° < C.

Therefore we deduce C° = C, as desired. ]

EXERCISE 3.10 (URM without jump instructions). Consider an URM machine
without jump instructions J(m,n,t) and call it URM™. Let C™ be the corre-
sponding class of computable functions. How does this class relate to C?

PrOOF. Clearly C™ < C and the inclusion is strict since, f : N — N with
f(x) 1 Yx is computable in URM, but it is not computable in URM ™. In fact,



18

3. URM COMPUTABILITY

all functions in C™ are total since programs without jump instructions always

terminate.

We can characterise precisely the (unary) functions in C™. They are of the shape:
. fla)=c
o fl(x)=x+c¢c

where c is a constant in N.

This can be proved as follows. Denote by r1(h,z) the content of register R; after
h steps starting from an initial configuration where R; is x and the other registers

contain 0.

We show by induction on h that after h execution steps r1(h,x) is equal to x + ¢
or to ¢ for some suitable constant ¢ € N.

e Case h =0:
We have r1(0,z) = x, which is fine, with ¢ = 0.

e Case h > h+ 1:
We know ry(h,z) =  + ¢ or r1(h,x) = ¢ by inductive hypothesis. The
next instruction can be of three shapes:

- Z(n)

If n=1,r1(h+1,2) = 0, otherwise r1(h + 1,2) = r1(h,x), and we
conclude by inductive hypothesis.

S5(n)

If n = 1 we have that 1 (h + 1,2) = r1(h,z) + 1 which, by inductive
hypothesis, is fine. Otherwise, r1(h + 1,z) = r1(h,z) and, again, we
conclude by induction hypothesis.

T(m,n)

When n > 1 orn = m = 1 then ri(h + 1,2) = r1(h,2) and we
conclude by inductive hypothesis. Otherwise, if n =1, m > 1 we do
know nothing about the content of r1(h + 1,z). We are stuck ...

The problem can be solved by observing that register 1 has nothing special
and the same result can be proved for all registers. More precisely, denote
by 7, (h, z) the content of register R,, after h steps starting from an initial
configuration where R; is x and the other registers contain 0. Then one
can show that r,(h, x) contains either ¢ or x + ¢ for a suitable constant c.
In this case the proof goes smoothly.

O



CHAPTER 4

Decidable Predicates

In mathematics we often want to establish properties. For example, consider the
property “m is a divisor of n”. We can view itas a relation

div € Nx N
div ={(m,k-m) | meNkeN}

We can also view div as a function

div : N x N — {true, false}

di {true if m is a divisor of n
VA —

false otherwise

In the setting of computability theory one normally uses the term predicates.

Thus a k-ary predicate on N indicated with Q(x1,...,x) is a property that can
be true or false, formally we can see it as

e a function Q : N* — {true, false};
e aset Q < Nk,
We write Q(z1,...,zk) to denote (z1,...,zr) € Q or Q(z1,...,Tx) = true

When is @ computable? When there exists a URM such that given a k-tuple
(z1,...,2,) in input, it returns true if Q(x1,...,xx) and false otherwise.

To represent true and false we conventionally use values 1 and 0.

DEFINITION 4.1 (decidable predicate). A predicate Q < N* is said to be decidable
if its characteristic function

1 if Qz1,...,zk)
0 otherwise

XQ(ZCl,...,SCk) = {

is (URM) computable.

REMARK 4.2. X is a total function (dealing with decidability of predicates, in-
volves only total functions).

19
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4.1. Examples of decidable predicates

(1) Equality
QN Qa,y) =z =y

The characteristic function

1 ifz=y

Mﬂ%y)—{o

otherwise
is computed, for instance, by the program

L J(1.2.3)
L J(1,1,4)
I S(3)
Iy T(3,1)

(2) Q(z) = “x is even”

L J(1,2,6)
L S(2)

Is J
Ii S
I J
Is S
I T(3,1)

in memory where k is a growing index and r is the result.
) Qlz,y) ="z <y’

We can increment both = and y until either x + k = y and thus z < y or
y + k =z and thus z > y.

T(1,3)
T(2,4)
LOOP: J(2,3,81) // xtk=y?
J(1,4,NO) // y+k=x7?
S(3)
S(4)
J(1,1,LOOP)
SL: S(5)
NO:  T(5.1)

Memory: ’ x \ y\x+k\y+k\r ‘whereristheresult.

Another approach is to increment a register starting from 0. If we reach
x first then z < y, otherwise x > y.

LOOP: J(1,3,S)

SI: S(4
NO:  T(4,1)
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’ x+k \ Y \ k \ r ‘Whereristheresult.
(4) div(x,y) with z # 0
LOOP: J(2,3,S1)

Z(4) // sum = to Ry
ADDX: J(1,4,LOOP)
J(2,3,NO) /] kx+h=y?
S(3)
S(4)
J(1,1,ADDX)
SI: S(5)
NO: T(5,1)

’x\y\kx+h\h\r‘whereristheresult.

21






CHAPTER 5

Computability on other domains

Since the URM is confined to manipulate natural numbers, our definition of com-
putability concerns only functions and predicates over N.

The concept of computability can be extended to other domains by resorting to a
notion of effective encoding.

Suppose that we are interested in computability on a domain D of objects. Can
our notion of computability extend to this domain?

One of the necessary conditions is the possibility of encoding the elements of D
as natural numbers. Suppose there exists o : D — N, which is bijective and that
a,a” 1 are “effective”. We don’t have a formal notion of effectiveness.

The domain D must be countable. For example, take the strings over some alphabet
¥, D = ¥*. The set of rational numbers Q is also countable, and so is the set of
integers Z, while D cannot be R or A% (streams).

Once an encoding is fixed we can use it for defining URM-computability com-
putability on the domain D.

DEFINITION 5.1 (Computable function on generic domain). Given f: D — D, we
say that it is computable if f* = ao foa™!

p—1.4p

oflT o

N—— N
f*

is URM-computable.

We will see that if « is effective, its inverse is also effective.

EXAMPLE 5.2 (Computability on the integers). Assume we want to define com-
putability over the integers Z. We need an encoding « : Z — N. It can be defined
in several ways. One possibility is

2z z=0
a(z) =
—2z—1 z<0
which is an effective function with inverse

n .
- n is even
2

n is odd
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Consider the function

f(z) = 12l.
It is computable if f* = oo f o a™' is URM-computable. We have
f*(n) = (ao foa™)(n)

(ao f) (%) n even
- (ao f) (_n i 1> otherwise
e (g) n even

n+1 .
« 5 otherwise

_Jn n even
n+1 otherwise

that is URM-computable, so f is computable.



CHAPTER 6

Generation of computable functions

The aim here is to provide a way of proving that certain functions are computable
by arguing that they are combinations of simpler functions that are known to be
computable.

This amount to showing that there are operations op that take functions fi, fo and
compose them producing op(fi, f2) in a way that if fi, fo € C then op(f1, f2) is still
in C.

More precisely we will prove that the C class is closed with respect to the following
operations:

e (generalized) composition
e primitive recursion
e (unbounded) minimization

After this, in order to prove that a function f : N¥ — N is computable we have two
techniques: write a URM program P that computes f (i.e., such that fé,k) = f), or

use the closure theorems of C.

Actually the three operations above are chosen carefully. The long term objective is
to show that C coincides with the class of functions which can be obtained through
composition, primitive recursion and minimization, starting from a restricted core
of basic functions (partial recursive functions of Godel-Kleene).

6.1. Basic computable functions
The following basic functions are URM-computable:

(1) constant zero

z:NF 5 N
(xlv"ka)HO
(2) successor
s:N—>N
z—x+1
(3) projection
Uf:NF >N
(X1, ., T) — 25

25



26 6. GENERATION OF COMPUTABLE FUNCTIONS

In fact, one immediately sees that these basic functions are computed by simple
programs consisting of one arithmetic instruction:

(1) z computed by Z(1);
(2) s computed by S(1);
(3) UF computed by T(i, 1).
REMARK 6.1. The identity is just a special projection.
To prove the closure properties we will need to “combine” programs so we need
some notation.
NOTATION 6.2. Given a URM program P
e p(P) is the largest register index used in P
e [(P) is the number of instructions in P;
e P isin standard form if, for each J(m,n,t) instruction, ¢ < I(P)+1 (if
the program terminate it will do so at the instruction I(P) + 1).
Considering only programs in standard form is not restrictive, as stated by the
following lemma:;:

LEMMA 6.3. For each URM program P there exists an equivalent program P’ in
standard form, i.e. for all k, f,gk) = 1(3’?)

PROOF. It is enough to replace every instruction J(m,n,t) in P such that
t > 1(P)+ 1 with J(m,n,l(P)+1) O

Often we will have to concatenate programs. Given programs P, (), their concate-
nation is obtained by considering P followed by the instructions of (). Only observe
that jump instructions in @ need to be updated (each instruction J(m,n,t) in Q
is replaced with J(m,n,t + [(P))).

REMARK 6.4. If P and @ are in standard form then PQ is in standard form;
moreover (PQ)R = P(QR). We will assume every program is in standard form
and we will use concatenation freely.

It will be useful to consider programs which take the input and give the output in
arbitrary registers.

Given a program P, we want a program Pliq,...,i; — h] that takes input from
Ri1, ..., Rjr, without assuming that the remaining the registers are set to 0, and
gives back the output in Rj This is easily obtainable with transfer and reset oper-
ations to move the contents of registers from iq,...,7; to 1,...,k and the output
from h to 1.

More precisely P[iy,...,i; — h] is as follows:
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6.2. Generalized composition

DEFINITION 6.5. Given a function f : N¥ — N and functions ¢1,...,g5 : N > N
we define the composition h : N* — N by

W) = {f(gl(f),...,gk(f)) if g1(Z) |,...,9x(Z) | and f(g1(Z),...,g1(X)) |

1 otherwise
EXAMPLE 6.6. Consider
z(x) =0 Vz g(x) 1t Va
then
22@) 1 Ve
EXAMPLE 6.7. Consider @ and UZ, then
Ui (z1,22) =21 but Uf(xy, D(x2)) 1

PROPOSITION 6.8. C is closed under generalised composition

PROOF. Let

f:NF SN
gis---50k : N* > N

in C, consider the composition

h:NF >N
T f(gl(f)a cee agk(f))
Since f,g1,...,9x € C, we can take F,(G1,...,Gy programs in standard form for

them.

Let us consider the largest register index possibly used by the involved programs
i.e., m = max{p(F), p(G1),...p(Gk),k,n}. Then the registers from m + 1 on can
be used freely without the risk of interferences. The program for the composition
can be

L[...]m[m+1]. .. [m+n][m+n+1][...[m+n+k
1 .. T 91 (%) e i (Z)
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T(1,m+1)

T(n,m+ n)
Gilm+1,....m+n—->m+n+1]

.C;‘;;[m—i—l,...,m—i-n—»m—i—n—&-k]
Fim+n+1,....m+n+k—1]
This allows us to conclude that h e C. O
EXAMPLE 6.9. If f : N2 — N is computable, then the following are also computable
o filz,y) = f(y,);
o fa(x) = f(z,2);
o fs(x,y,2) = f(z,y).

REMARK 6.10. On the basis of the results above we can use generalized composition
when the g; are not functions of all the variables or are functions with repetitions.

EXAMPLE 6.11. We know that f : N2 — N where f(z1,72) = 21 +z2 is computable.
Using this fact and the closure of C under generalise composition we can derive
that g : N> — N where g(x1, 72, 23) = o1 + o2 + o3 is also computable. In fact
g(x1,22,73) = f(f(x1,22),23) = f(f(U(T), US(F)), U3 (F)), that is computable.

ExXAMPLE 6.12. The following functions are computable

e constant m(Z) =m
m(Z) = s(s(...s(z(2)))), i.e., s applied m times;

e addition g(z1,...,zk) = x1 + - + Xk, as seen before;

e product by a constant f(z) = k-x = g(z,...,z), where g is the function
—_——

. k times
at the previous step;

e if f(x,y) is computable, then also f'(x) = f(x,m) is computable. In fact
f'(x) = f(x,m) = f(U{(x), m(z)), that is computable;

o if f: N — N is total computable, the predicate Q(x,y) = “f(z) = y” is
decidable.
In fact, we know that
1 z=y
XEq(xvy) = {

0 otherwise

is computable.

Therefore Xg(z,y) = Xp,(f(2),y) = Xg(f(U(z,y)),Us(z,y)), and
thus X is computable.

6.3. Primitive recursion

Recursion is a familiar concept; it allows to define a function specifying its values
in terms of other values of the same function (and possibly using other functions
already defined).
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EXAMPLE 6.13 (Factorial).

f(0) =1

f=1

fln+2)=f(n)+ fn+1)
There are many types of recursion, here we use a very “controlled” version of
recursion.

DEFINITION 6.15 (Primitive recursion). Given f : N¥ — N and g : NF*2 — N
functions, we define h : N¥*1 — N by primitive recursion as follows

h(%,0) = f(%)
h(Z,y +1) = g(Z,y, MZ,y))

REMARK 6.16. The function A is defined in an equational manner, with A that
appears on both sides: it is an implicit definition and it is not obvious that such h
exists or that it is unique, but actually it does exist and it is unique. However, a
general theory that supports this observation is not trivial.

The argument proceeds as follows
(1) let N™ — N the set of functions on natural numbers with n arguments
(2) we define an operator
T (N*! 5 N) - (N1 & N)
T(h)(7,0) = /()
T(h)(Z,y +1) = g(&,y, h(Z, y))
(3) the desired function is a fixed points of T', i.e. h such that T'(h) = h;
(4) the existence of the fixed point follows from these properties
e N¥*1 N is a CPO;
e T’ is continuous;
e continuous functions over a CPO have a least fixed point.

(5) uniqueness can be proved inductively, showing that if h, A" are fixed points
then h = 1.

EXAMPLE 6.17. Consider the sum function h(z,y) = x + y. It can be defined by
primitive recursione as

{ h(z,0) =z = f(x)
h(z,y +1) = h(x,y) + 1 = g(h(z,y))

where f is the identity and g is the successor. Both are computable, so the sum is
computable by primitive recursion.
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PROPOSITION 6.18. Functions obtained from total functions by
(1) generalized composition
(2) primitive recursion

are total.

PROOF. (1) obvious by definition;

(2) Let f:N*¥ - N,g: NF¥*2 — N be total functions and define h by primitive
recursion.

It can be proved by induction on y that
vz e N* (Z,y) € dom(h)
e (y=0): for all e N¥, h(Z,0) = f(Z) |;
e (y > y+1): forall Z e N* h(Z,y+1) = g(Z,y, h(Z,y)) | by inductive
hypothesis.
([l

EXAMPLE 6.19. We observe that some functions can be defined by primitive recur-
sion:
e sumzx +y

r+0==x
r+y+1)=(x+y) +1

h(z,0) =z
hz,y+1) =h(z,y)+1

fl@) =
g(x,y,2) =z +1

e product z -y
z-0=0
zo(y+1)=(z-y)+=z

h(z,0) =0
hz,y+1) =h(z,y) +x

f(x) =0
9(z,y,2) =z +y
e factorial y!
=1
(y+ D=yl (y+1)

h(0) = 1
h(y +1) =h(y)- (y +1)
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f(0)=1
9(y,2) =2 (y+1)

PROPOSITION 6.20. C is closed under primitive recursion.

PRrROOF. Let f: NF — N and g : N¥*2 — N be computable functions. We want
to prove that h : N¥+*! — N defined through primitive recursion

h(Z,0) = f(Z)
W&,y + 1) = g(Z,y, h(Z, y))
is computable.

Let F,G programs in standard form for f,g. We want a program H for h. We
proceed as suggested by the definition.

Westartfrom] T \ \ a:k\y\o \ \

we save the parameters and we start to compute h(Z,0) using F.

If y = 0 we are done, otherwise we save h(Z, 0) and compute h(Z, 1) = g(Z, 0, h(Z,0))
with G. We do the same for h(Z,7) until we arrive at i = y.

As usual we need registers not used by F' and G, m = max{p(F), p(G),k + 2} and
we build the program for h as follows:

1 |...)m+1|...|m+k|m+k+1 m+k+3
T .. i h(Z,2) y 0

T(1,m+1)

T(k,m+ k)

Tk+1,m+k+3)

Flm+1,....m+k—>m+k+2] // compute h(Z,0) 0
LOOP: Jm+k+1,m+k+3,END) // i=y?

Gm+1,....m+k+2—->m+k+2|

Sm+k+1) // i =i+l

J

(
(1,1,LOOP)
END: T(m+k+2,1)

OBSERVATION 6.21. We do nothing more than implementing recursion through
iteration.

OBSERVATION 6.22. The following functions are computable.
(1) sum z + y, see above;
(2) product z -y see above;
(3) exponential z¥

20 =1 h(z,0)=1 flz)=1
¥ =aY.x h(z,y+1)=h(z,y) = glx,y,z2) =22

(4) predecessor x ~ 1
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0-1=0 h(0) =0 F=0
(x+1)=1=z h(z+1)=2z g(y,2)=y
—y >
(5) subtraction = -y = yor=y .
0 otherwise
r=0=zx flz) ==z

1 =0
0 >0
$9(x) =1 = sg(z), composition and (6);

(7) complement sign sg(z) =

— =
®) fg—y =4 ¥ 7Y

|z —y| = (x ~y) + (y = z) from (1), (6) and composition;

y—xz <y

(9) factorial y!
=1 f=@+)=y-w+1) gly,2)=(y+1) 2

(10) minimum min(z,y) =z = (x - y);
(11) maximum maz(z,y) = (z =~ y) + y;

d
(12) remainder rm(z,y) = y modz x#0

Y z=0
remainder of the integer division of y by =
rm(z,0) =0
1 1
rm(z,y + 1) = rm(z,y) + rm(m,y.) +1#x
0 otherwise

= (rm(z,y) +1) - sg((x = 1) = rm(z,y))
f(x) =0 g(z,y,2) = zxsg(x =1+ 2)

(13) quotient gt(x,y) = y div x (convention ¢t(0,y) = y), we define:
qt(z,0) =0

qt(z,y) +1 rm(z,y)+1=12x
qt(x,y) otherwise

gt(z,y +1) = {

= qt(z,y) + sg((z = 1) = rm(z,y))
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(14)
1 ,y) =0
div(z,y) = rmiz y.)
0 otherwise
= S_Q(Tm(l'v y))
COROLLARY 6.23 (Definition by cases). Given fi,...,f, : N¥ — N total, com-
putable and Q1, ..., Q, < N* decidable and mutually exclusive predicates (for each

7 € N¥, exactly one of Q1,...,Q, holds) then f : N¥ — N is total computable
where

[(@) - Qu(T)
fa(Z)  Qa(7)

PROOF. f(Z) = f1(Z) - Xg1(F) + -+ + fu(T) - Xou(F)

We conclude using the computability of sum and product and the fact that com-
position preserves computability. ([

6.4. Algebra of decidability

LEMMA 6.24. Let Q, Q' be decidable predicates. Then also —=Q,Q A Q',Q v Q' are
decidable.

PRrOOF. Tt is enough to observe that:
(1) X-q(Z) = 59(Xo (7))
(2) Xonq () = XQ(T) - Xo/(7)

(3) Just use De Morgan and observe that Q(Z) A Q' (Z) = —(—Q(Z) v —=Q'(Z))
or, directly,

Qv (Z) = max{Xo(7), Xo (T)}
(]

Recall that {—, A, v} ({—, v} is enough) is a functionally complete set of connectives
(it allows to express any function {0,1}" — {0,1}). We deduce that:

COROLLARY 6.25. Let Q1,...,Q, S N¥ decidable predicates and let f : {0,1}" —
{0,1} a function. Let us consider:

X :NF - {0,1}

X(Z) = f(Xg,(@),...,Xg, (X))

Then the predicate Q) which corresponds to X is decidable, and therefore X is com-
putable.



34 6. GENERATION OF COMPUTABLE FUNCTIONS

6.5. Bounded sum, product and quantification

DEFINITION 6.26 (Bounded sum and product). Let f : N¥*1 — N be a total
function. Then

e >, f(@ 2) is defined by
D& 2) =0

2<0
D) (@ 2) =), (@ 2) + f(Ty)
z<y+1 zZ<y

e [[.-, f(& 2) is defined by:
[[r@2)=1

z<1
[ r@=)=1]r&2- &y
z<y+1 <y

LEMMA 6.27. If f : NF*1 & N is total computable then
(1) 9(@,y) =2, f(Zy)
(2) h(Z,y) = Hz<y f(Z,y)

are total computable.

PrROOF. Just note that they are defined by primitive recursion!

9(Z,0) =0
9@,y +1) =g(@y) + f(Z,y)

and +, f are computable.

Same for 2. 0
Obviously, by closure under composition, the bound can be a total computable
function.

Another immediate consequence concerns the decidability of the bounded quantifi-
cation on the predicates.

LEMMA 6.28. Let Q < N**1 be a decidable predicate, then:

are decidable.

PROOF. (1) observe that Xo, (7,y) =[], ., Xo(Z, 2)
(2) observe that Xo, (7, y) = sg(X, ., Xo(Z, 2))



6.6. BOUNDED MINIMALISATION 35

6.6. Bounded minimalisation

Given a total function f : N¥*1 — N, we define a function h : N¥*1 — N as follows:

miniumum z < y such that f(Z,z) =0 if it exists
y otherwise

h(Z,y) = pz <y.f(Z,2) = {

LEMMA 6.29. Let f : N**1 — N total computable. Then also h : N* — N defined
by h(Z,y) = pz < y.f(Z, 2) is (total) computable.

PRrROOF. We observe that h can be defined as:

h(f’ Zl) = Zz<y ngz Sg(f(fv ’U)))

The product value is 1 on the intervals [0, z] in which f # 0, i.e. if 2y is the min
z < y where f is null, they're equal to z, therefore the external sum counts them.

Alternatively h can be defined directly through primitive recursion:
h(Z,0) =0
h(Z,y) hZ,y) #y

MZy+1) =4 )y f(@y)=0
y+1 otherwise

otherwise
= sg(y — h(Z,y)) - h(Z, y) + sg(y — (&, y))(y + sg(f(Z,y)))
|
LEMMA 6.30. The following functions are computable:
a) D(x) = number of divisors of x

1 =z is prime
P , (x prime is decidable)
0 otherwise

b) Pr(z) = {

¢) px = x-th prime number (convention: py = 0,p1 = 2,p2 =3...)

exponent of py in the factorization of x  x,y >0
4) (@) = 0 z=0vy=0
e.g. 72=23.32(72); = 3,(72)2 = 2,(72)3 =0

PROOF. a) D(z) =3, <, div(y,z)
b) Pr(x)is 1if 2 > 1 and is divided only by 1 and itself

Pr(e) = {1 D(z) =2

0 otherwise
= 59(|D(x) —2)
¢) P, can be defined by primitive recursion
Py=0
Poi1=pz < (P! +1).89(P.(2) - Xo=po(2))
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Certainly P, < P!+ 1, in fact, call p a prime in the decomposition of
ps! + 1, therefore p | p,! + 1, so p > p,, otherwise p | p,! and therefore
p | 1. Thus Dy < Pat1 <D

d) Note that
(z), =max z.p; |z =

= min z.p;+2 tx

z+1

= pz < z.~div((py)* ", x)

6.6.1. Exercises. Prove that the following functions are computable:
N
|Vz| = mary <zy® <w
=miny <z.(y+1)* >z
py <z.((z+1) = (y+1)?)

(xlzryl2)

y
-y - sy(div(x, 2) - div(y, 2))

» GOD(z,y)

GCD(z,y) < min{z,y} and it can be characterized using the minimum

number that can be subtracted to min{z,y} to obtain the divisor of z,y
GCD(z,y) < min(z,y) — pz

<
< min(z,y).(1 = div(min(x,y) — z,z) - div(min(z,y) — z,y))
e number of prime divisors of x
Zzgz pr(z) - div(z, )
6.7. Encoding of pairs (and n-tuples)

Let’s see an encoding in N of pairs (and n-tuples) of natural numbers that will be
useful for some considerations on recursion. Define a pair encoding as

7:N? >N
w(z,y) =22y +1)—1
Notice that 7 is bijective and effective (computable).

The inverse can be characterized in terms of two computable functions that give
the first and second component of a natural number n seen as pair:

71N o> N2

7 (n) = (m1(n), m2(n))
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where 71 (n) = (n + 1); and m2(n) = (2;?(11) —1)/2.
It can be generalized to an encoding of n-tuples:
™ :N" - N
defining
m?=r

™t (Z,y) = n(7"(Z,y)) FeN",yeN

and then we can define the projections 7 : N — N".

6.7.1. Considerations on recursion. The Fibonacci function is defined by:

fib(0) = fib(1) =1
fib(n +2) = fib(n) + fib(n + 1)

This is not exactly a definition by primitive recursion. Given that f(y+2) is defined
in terms of f(y) and f(y-+1), it does not completely adhere to the primitive recursion
schema.

We can show that f is computable by resorting to the encoding of pairs. Define:

g:N—>N
9() =7(f(y), fly+1))
therefore g can be defined by primitive recursion:
{gm) w(f(0), (1)) = =(1,1)
gy +1) =7(fly+1), f(y +2)) = 7(m(9(y)), m1(9(y)) + 72(9(y)))

so g is computable, by primitive recursion. Finally, f(y) = m1(g(y)) is computable
by composition.

In general we could have a function f defined using k previous values

f(0) =co
flk=1)=ck
fly+k)=n(f(y),....fly+k—-1))

with h : N¥ — N computable.

One can proceed like before and define
g:N—-N
9(y) =7 (@) fly+k=1))

Then function g can be defined by primitive recursion

( ) i (Co,.. Ck 1)
gy+1) =7 (fly+1),....fly+k—=1),fly+k))
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where
fly+1) =m5(9(y))
fly+k—1)=m5(g(y))
fly+k)=h(f(y),....fly+k—1))
= Wi (9(®),- - T (9(y))

= 7 (15 (9(9)); -, i (9(W)), (7T (9(W)), - - T (9(1))))
g is computable, so f(y) = m1(g(y)) is computable.

6.8. Unbounded minimalisation

Generalized composition and primitive recursion produce total functions when
starting from total functions. Another essential operator, which instead allows
to construct partial functions is the unbounded minimalisation operator.

It is similar to bounded minimalisation, but the search is not bounded and f(Z,y)
not necessarily total. It defines, informally, the following function:

wy.f(Z,y) = minimum y s.t. f(Z,y) = 0.
But there are two cases in which the definition has to be clarified:
(1) if there is no y s.t. f(Z,y) =0
(2) if before finding a y s.t. f(&,y) = 0, it happens that f(Z,z) 1
In both cases the result of the minimalisation is undefined.

This is intuitive if we think about the obvious algorithm to compute the minimal-
isation: start from 0, f(&,0) = 07 if yes then out(0), otherwise f(Z,1) = 07 until
f(&y) = 0.

DEFINITION 6.31. Let f: N*+1 — N be a function. Then the function h : N* — N
defined through unbounded minimalisation is:

f(faz) =0
f(@2)] f(@&7Z)#0 forz<2

1 otherwise, if such a z does not exist

~ . least z s.t.
h(E) = py.f(Z,y) = {

THEOREM 6.32 (Closure under minimalisation). Let f : N**1 — N a computable
function (not necessarily total). Then h : N¥ — N defined by h(Z) = py.f(Z,y) is
computable.

PROOF. Let F be a program in standard form for f.
Idea: for z = 0,1,2,... we compute f(Z,z) until we find zero.

We need to save the argument # in a register R, (m = maz{p(F),k + 1}) such
that it is not used by the program F'.

So the program for h is obtained as follows:

1 ... £k ... m+1 ... m+k m+k+1
L& [ ] z | =z ]
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T(,m+1)
T(k,m+ k)
LOOP: Fim+1,....m+k+1->1] // f(Zz2) — R 0
J(1, m+k+2 END) //f(&,2z) =07
Sm+k+1) /] z=z+1
J(1,1, LOOP)

END: T(m+k+1,1)

OBSERVATION 6.33. Observe that F' may not terminate, this is correct! The entire
program does not terminate and p is undefined!

OBSERVATION 6.34. The unbounded minimalisation is nothing more than a while
loop implemented with goto.

OBSERVATION 6.35. The pu operator allows us to obtain non total functions start-
ing from total functions.

EXAMPLE 6.36. Given f(x,y) = |r — y?|, we have that

A/ x is a perfect square

py-f(x,y) = {

1 otherwise

EXERCISE 6.37. Let f : N — N be computable, total and injective. The the inverse

f—l _ Yy f(y) =
t Py fly) =

is computable. In fact, in our hypothesis f~1(z) = py.|f(y) — z|.

OBSERVATION 6.38. Intuitively, when f is not total, to find f~'(x) we consider a
program P for f and execute it as follows:

e 0 steps of the program on argument 0
e 1stepon0
e () stepson 1

e 2 steps on 0

in a dove-tail execution pattern.

Every time the program terminates in a certain number of steps k on argument
y, we check the output f(y), if f(y) = z we stop, otherwise we continue.

EXERCISE 6.39. Prove that the following function is computable.

2 y#£0Ay|z
T,y)=17Y
f@y) { 1 otherwise

PRrROOF.
.f(xay) = ,LLZ(|yZ - 17| + Xr:OAy:O(Ivy))
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LEMMA 6.40. All finite functions (functions with finite domain) are computable.

PROOF. Let 8 : N — N a finite domain function

0 = {($17y1), ceey (‘rnvyﬂ)}

i.e.
y1 =21
0(z) =
Yn T =Ty
1 otherwise
then

n n
0(x) = > yi - s9(lx — ;) + pz(] [z — ail)
i=1 i=1
The minimalisation is needed only to make the function 1 when x # x1,
is 0 otherwise.

ey T, 1t



CHAPTER 7

Other approaches to computability

We already observed that the URM machine is just one of the many possible com-
putational models that allow us to formalize the notion of computable functions.

We could have used:
e Turing machine
e Canonical deduction systems of Post
e )\-calculus of Church

Partial recursive functions of Godel-Kleene

All of these approaches define the same class of computable functions, leading
to the

Church-Turing thesis: a function is computable through an effective procedure
if and only if it is URM-computable

Now, we introduce another formalism for the definition of computable functions,
the set R of partial recursive functions of Gédel-Kleene and prove that it is
equivalent to the URM, meaning it defines the same class of functions: R = C.

7.1. Partially recursive functions

DEFINITION 7.1 (Partially recursive functions). The class R of partially recursive
functions is the least class of partial functions on the natural numbers which
contains

(a) zero function;
(b) successor;
(c) projections
and closed under
(1) composition;
(2) primitive recursion;

(3) minimalisation.

We argue that the above is a well given definition.

DEFINITION 7.2 (Rich class). A class of functions A is said to be rich if it includes
(a),(b) and (c) and it is closed under (1), (2) and (3).

41
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R is rich and for all A, we have R < A

REMARK 7.3. The property of being a rich class is closed under intersection:
let {A;}ier a family of rich classes, then [._; A; rich.

iel
Finally we observe that

PROPOSITION 7.4. The set of the partially recursive functions can be characterised
as
R= () A
A rich

We can now prove the main result, showing that the class of URM-computable
functions coincides with the class of partial recursive functions.

THEOREM 7.5. R =C
PROOF.
(Rc(C)

Just observe that C is a rich class, R is the smallest rich class, so this inclusion
trivially follows.

(C<R)
Let f: N*¥ - Ne C be a computable function. We have to show that f e R.

We know that there exists a URM program P such that fl(gk) = f.
Consider the following functions

o cL : NF*1 N with ¢h(Z,t) be the content of R; after ¢ steps of P(7).
If P(%) terminates in less than ¢ steps, c¢h(%,t) gives the content of R; in
the final configuration, i.e. the output of the function f;

e jp : N**1 N with jp(#,t) be the instruction to be executed after t
steps of P(Z). If the program has already ended, then jp(Z,t) = 0.

Clearly ¢, and jj, are total functions.
Given 7 € N¥
o if f(Z) | then P(Z) | in a number of steps tg = pt.jp(Z,t), so
f(Z) = cp(F,to) = cp (&, ut.jp (T, 1))
o otherwise, if f(Z) 1 then P(Z) 1 and ut.jp(Z,t) 1, and thus
F(&) = cp(& pt.jp(7,1) 1

therefore

f(@) = cp(&, pt.jp(Z,1)) VEeNF
If we knew that cL,jp € R then we could argue that f € R.
The idea of the proof is the following

e work on sequences encodings that represent the registers and program
counter configurations
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e manipulate such sequences with functions such as (p.,qt,div,...) that
were built by:
— composition
— primitive recursion
. h. b . 1 . h h . oy .
in this way, we obtain cp, jp through primitive recursion.

A register configuration in which a finite number of registers contains a value other
than 0 can be encoded in the following way:

k
c=1]p =10

i>1 i=1
such that

T = (.’E)l

Thus, using this encoding, we can consider a function cp : N¥*! — N, that provides
the (encoding of the) registers’ configuration after ¢ steps of P(Z).

We define cp, jp by primitive recursion:

e base cases
k

CP(:Z:a 0) = ]‘_[pf1
=1
jP(:Ea 0) =1

e recursive cases
In order to simplify the notation, below let ¢ = ¢p(Z,t) and j = jp(Z, ).

gt(p" ) it1<j<I(P) & I = Z(n)
- Pn - C ifl1<j<i(P) & I; =5S(n)
cp(Z,t+1) = ©n @ ‘ J
c otherwise

j+1 if1<j<l(P) & I; = Z(n),S(n),T(m,n)
or J(m,n,t) with (¢)m # (¢)n
jp(@t+1)=<u if1<j<l(P) & I; = J(m,n,u)
& (O)m =(c)n & f1<u<I(P)
0 otherwise

thus cp, jp are in R. Hence also cb is, since ch(7,t) = (cp(&,t)); for all & € N
and t € N. Therefore f, defined by composition and minimalisation of ¢} and jp is
in R, as desired. (I






CHAPTER 8

Primitive recursive functions

We define the primitive recursive functions as follows

DEFINITION 8.1 (Primitive recursive functions). The class of primitive recursive
functions is the smallest class of functions PR containing

(a) zero function

(b) successor

(¢) projections
and closed under

(1) composition

(2) primitive recursion

One reason of interest for PR is that primitive recursion intuitively corresponds to
bounded iteration, i.e., for loops constructs, while minimalisation corresponds to
unbounded iteration, i.e., while loops. This fact can be formalized by considerng
variant on the URM machine, with structured programs, where the jump instruction
is replaced by for and while loops. We’ll call this machine URM¢q; while-

We can prove that this model has the same expressive power as the URM model,
i.e., the class Crorwhile coincides with C = R. Instead the class Cs, of functions
computable using only the for construct coincides with PR.

Thus, studying the relation between R and PR corresponds to studying the re-
lation between the expressive power of for and while constructs. We know that
many “arithmetic” functions, like Pr(x), (z)y, gt, mem(z,y),z¥ are in PR and PR
is closed under sum, product and minimalisation. This class is very ample, but
it does not contain all computable functions, in other words PR < R, because
PR functions are always total, since PR functions are obtainable from base total
functions by composition and primitive recursion.

One could still suppose that PR includes all the total recursive functions, in other
words if Tot is the set of all total functions: PR = R n Tot [Hilbert, 1926].

This is false, i.e.,
PR < R n Tot

i.e., even if we restrain ourselves to total functions (programs that always termi-
nates), the while construct is essential.
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8.1. Ackermann’s function

A function which witnesses the strict inclusion PR < R n Tot is the Ackermann
function which can be proved to be total computable and not primitive recursive.

The Ackermann’s function is ¢ : N> — N defined as
¥(0,y) =y +1
Y(z+1,0) = ¥(z,1)
P+ Ly+1) =+ 1,y)

This scheme uniquely determine a function, because the value ¥ (z,y) is always
defined based on smaller values of v itself. But what does smaller mean?

e in ¢(x +1,0) = 9(x,1) the first argument diminishes.

o in Y(x + L,y + 1) = ¢¥(x,¥(x + 1,y)) at first we compute ¥(z + 1,y)
where the second argument diminishes and then v (z,u) in which the first
argument u is, the first argument is smaller.

We can see that the arguments diminish in a lezicographical order on N2, i.e., in
(N2, <jep) with (z,y) < (2/,y') if (x < 2') A (z = 2" and y < y/') and we can show
that (N2, <;.,) does not allow for infinite descending sequences

DEFINITION 8.2 (Partially ordered set). A set D with a binary relation < is a
partially ordered set (poset) (D, <) if < is a partial order, i.e., for all ,y,z € D, it
is

(1) reflexive: x < x;

(2) antisymmetric: if z < y and y < , then z = y;

(3) tranmsitive: if x < y and y < z, then = < z.

DEFINITION 8.3 (Well-founded poset). (D, <) is well-founded if every non-empty
X < D has a minimal element d, i.e.

VdeX d<d=d=d
OBSERVATION 8.4. (D, <) is well-founded iff it does not allow for infinite descending

chains
do>dy >dyg>-->dp,>d, +1...

This fact can be useful when dealing with termination problems. If we can conclude
that the set of configurations is well-founded, we simply need to prove that for
each step conf; — conf;.; and conf;;; < conf; to end our proof. This way our
computation descends a decreasing sequence of values, which is necessarily finite.

Looking back at the Ackermann function, the computation of v is based on the
computation of ¢ with smaller values, at some point it will for sure reach the case
¥(0,y) = y + 1, terminating.

EXAMPLE 8.5. (N2, <) is well-founded. Let & # X € N? and define
xo = min{z | Jy € N.(z,y) € X}
yo = min{y | (zo,y) € X}
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then we can see that min X = (z9,yo). (Actually, in this way we can prove that
the product of two well-ordered sets is well-ordered.)

OBSERVATION 8.6. <, 1S total.

Over the natural numbers we can prove the so-called complete induction principle:
if Vo' < n . P(n') implies P(n) then we can deduce that ¥n € N . P(n). The
principle can be actually generalised to each well-founded poset D:

DEFINITION 8.7 (Well-founded induction). Let (D, <) be a well-founded poset and
let P(z) a property on elements of D. If for all d € D, assuming P(d’) for d’ < d,
we can conclude that P(d) holds, then

Vd e D.P(d)
THEOREM 8.8. The Ackermann’s function v is total, i.e.
V(z,y) e N* (z,y) |

PROOF. We proceed by well-founded induction on (N?, <;.,). Let (z,y) € N2,
assume

V(J?/, y/) Slex (Z‘,y) . 1#(.’11/, y/) ~L
we want to prove ¥(z’,y’) |. We have 3 cases:

o (x=0)
w(oﬁg):y""_li
o (x>0,y:0)

¥(x,0) = ¢(x—1,1) | for inductive hypothesis, since (x —1,1) <jer (2,0)

e (z>0,y>0)
Y(z,y) = Y(x—1,¢%(z,y—1)) where ¥(z,y—1) | by inductive hypothesis.
Let u = ¢(z,y — 1), so ¥(x,y) = ¢¥(z — 1,u) | by inductive hypothesis.

O

EXERCISE 8.9. Given a box with an arbitrary number of balls in it, each one with
a number in N, do the following:

e extract a ball;

e substitute the extracted ball with an arbitrary number of balls, each one
with a label lower than the extracted one.

Prove that this process always terminates.

THEOREM 8.10. The Ackermann’s function v is computable, i.e.
Ppel=R

One could argue by using the Church-Turing thesis: the computation of ¥ (z,y) is
always reduced to the computation of ¥ on smaller input values until we reach a
base case where the successor is used.

The above is unsatisfactory. A formal proof can be based on the notion of a valid
set. Intuitively a set S < N3 is considered valid if, for all (z,y, z) € S, we have
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o z=1(z,y)

e S contains all the triples needed to compute ¥ (z,y)
ExXAMPLE 8.11. 9(1,1) = ¢(0,%(1,0)) = ¢(0,%(0,1)) = (0,2) = 3
= 5 =(1,1,3),(0,2,3),(1,0,2), (0, 1,2)

Formally:

DEFINITION 8.12 (Valid set). Let S be a set of triples such that S < N3. We say
that S is valid if:

(1) (0,y,2)eS = z=y+1

(2) (x+1,0,2)eS = (z,1,2)e S

3B) (x+1,y+1,2)eS = Fu.(z+1lyu)eSA(z,u,z)es
We can prove that for every (x,y,2) € N® we have ¢ (x,y) = z if and only if there
exists a valid finite set of triples S < N3 such that (z,y,2) € S by complete

induction on (z,y), knowing that the validity of a set is preserved under union (left
as an exercise).
A triple (z,y, z) can be encoded into an integer using the encoding function

7 N> >N (73 : N — N are the projections)

In this way a set of triples becomes a set of natural numbers {x1,...,z,} that we
can encode injectively as the product

{$17"‘7$n}'_)p:131 """ Pz,

Now given v € N which represents a set of triples S,, we have that
(z,y,2) €S, < div(p,r(gcyy,z)7 V)
and the predicate Val(v) =“v encodes a set of valid tuples” is decidable.
In fact Val(v) is true if and only if:
e Vi<v (v);<1
o Yw < v div(p,,v)
0

™1 (UJ) =

= m3(w)=m(w)+1
ma(w) =0 = 7(m(w),0,75(w)) €S,
= ma(w) >0 = Ju < w s.t.
m) >0 = 7(m (@), ma(w) — 1,u) € S,

m(m(w) —1,u,2) € S,

with associated characteristic function

Xval € PR
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We can also verify that

XVal(w) if w encodes some valid S that contains (z,y, z) for some z

R(z,y,2) = {

0 otherwise

= Xval(w) - 58w + 1-pz < w.div(Pr(z y.2), w)

Thus we can write the Ackermann function as
Yz, y) = p(z,y) - S8(R(2,y,w) - div(Pr(s,y,2) @)
Since it is computable,
PveR=C
THEOREM 8.13. The Ackermann’s function is not primitive recursive:

Y ¢ PR

INFORMAL IDEA OF THE PROOF. The proof of the fact that v is not a primitive
recursive function is done by showing that ¢ grows faster than every function in
PR. We already saw how we obtain

e sum from successor

e product from sum

e exponential from product
each one by nested primitive recursion.

The idea of the Ackermann function is that it won’t be possible to compute it with
a finite number of nested primitive recursions.

In fact, by calling
'(/)z(y) = 1#(33,:9)

we have that

1/1z+1(2/) = wr("br-&-l(y - 1)) = 1/)325(7/)z+1(y - 2)) == wngl(l)
Yoly) =y + 1 = suce(x)
Pr(y) =T (1) =y +2

e.g.
Yo(1) =2, ¢1(1) =3, (1) =5, ¢s(1) =13,

Intuitively, if x grows so does the level of nesting in the functions, which is equivalent
to say that we need more nested for loops. Since x can grow to infinity and for
loops cannot be nested to infinity, a while loop is needed. More precisely, given
a function f : N — N € PR and a program P computing f using only for-loops
(primitive recursion), if j is the maximum level of nesting of for-loops, then

f(@) < jpi(max{z,...,25})
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Now, assume @ € PR, let j be the level of nesting of for-loops for computing 1,
SO

V(l’,y) . w(xa y) < ijrl(ma’X{xa y})
Let x = y = 7 + 1 big enough we have that

PE+1Lj+1D) <¢in(G+1)=v@+1,j+1)
which is absurd, so 1 ¢ PR. a

OBSERVATION 8.14. Initially, Gédel and Kleene studied a class of functions Ry
called p-recursive. This class contained

a zero function
b successor
¢ projections
and was closed under
(1) composition;
(2) primitive recursion;

(3) minimization, restricted to the case in which the function that produces
is total.

Ro < R trivially holds, since:
e functions in R are total;
e some functions in R are partial.

Also

Ro € R n Tot
but is not obvious that the equality holds. In fact, a function f € R n Tot can be
total, but obtained through minimization of partial functions. For example:

z+1 z<y
f(xay): 0 r=y
1 r>y

ny-f(z,y) = Az
thus, f(z,y) is partial and py.f(z,y) is total, then
py-f(x,y) € Ro
THEOREM 8&.15.
Ro =R n Tot
PROOF. (S) trivial.
(2) Let f € R n Tot, then f € C. We can observe that
(&) = ch(@, ut.jp(2, 1))

but ¢k, jp are total, so f is total.



CHAPTER 9

Enumeration of programs

The objective here is to define an effective enumeration of URM programs and
URM-computable functions. These results will be fundamental for our theory, and
in particular to

e prove the existence of non computable functions
e the smn theorem

e the universal function/machine.

DEFINITION 9.1 (Countable set). A is countable if |A| < |N|, i.e. we have f: N —
A surjective. We say that f is an enumeration of X, because we can enumerate all
elements in X as

f(0), (1), £(2), ...

An enumeration is without repetitions if it is injective (and thus bijective).

We will call effective those enumerations which are “intuitively” computable, but
the type does not allow to talk formally about their computability. Note that we
will argue about effectiveness by showing that they are built using components
which are formally computable and we will only use in proofs the computability of
these components.

LEMMA 9.2. There are effective bijective enumerations of
(1) N?
(2) N?
(3) Uis1 N
PROOF. (1) we already saw that
7:N> >N
m(z,y) =2"2y+1) -1
is computable with inverse
71N - N
(@) = (m(x), m2(2))
where 7,1 : N > N

m(n)=(n+1)

o= ((35) )
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are computable.
(2) consider
v:N* >N
v(z,y,z) = w(r(z,y), 2)
with inverse built upon projections
v 1:N->N3
v (z) = (ni(2), 12 (), v3(x))
with vy, s, v3 are computable.
(3) The following tuple encoding

T UN’“—>N
k=1

k
T(z1,...,28) = npfi -1
i=1

does not work, since it is not injective. The idea is that we can increment
the last component, in this way

k—1
T(T1,...,2k) = (H pf) -p‘z“l -2
i=1
with inverse 77! : N — Uk=1 N* defined out of the following functions:

e [:N—>N
l(n) = max{k : div(pg, (x +2)) = 1} =z — p(h < z) . 5g(div(ps—n, (z + 2)))

e a:N2 5N
a(n’i)_{(n—i-Q)i i=1,...,0(z)—1

(n+2);—1 i=4{x)

An alternative encoding is the following

o T(z1,..,a1) = ([T, 2, k)
e [(n) =ma(n)

e a(n,i) = (mi(n))
O

THEOREM 9.3. Let P the set of all URM programs. Then there exists an effective

bijective enumeration of P.
v:P—->N

PROOF. Let F the set of all URM instructions. First, we’ll prove that there
exists
8:F—>N
a bijective effective correspondence. The idea is to use the enumeration of pairs
and triples, sending
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e Z(n) instructions to multiples of 4
e S(n) instructions to numbers congruent 1 mod 4
e T(m,n) instructions to numbers congruent 2 mod 4
e J(m,n,t) instructions to numbers congruent 3 mod 4
Concretely
B(Z(n)) =4x%(n—1)
B(S(n)=4x(n—1)+1
B(T(m,n)) =4xm(m—1,n—1)+2
B(J(m,n,t)) =4xv(m—1,n—1,t—1)+3
with inverse 37! : N — F such that, let r = rm(4,z) and q = qt(4, ),
Z(qg+1) if r =0
_ S(g+1 ifr=1
5 (@)= 100 |
T(7T1((])+1,7T2(q)+1) ifr=2
J(w1(q) + L,e(q) + 1,v3(q) +1) ifr=3

so both 8 and B! are effective. Now v : P — N can be defined as follows: if
P =1 ...1 then

V(P) = T(B(Il)a ce 7B(IG))

with inverse v '(z) = P = Iy ... Iy, where I; = $7"(a(n,i)). Thus, v is bijec-
tive because is composition of bijective functions. Since ,~v~! are effective, P is
effectively denumerable. O

DEFINITION 9.4 (Gddel number). Given P € P the value v(P) is called code (or
Godel number) of P. Usually we’ll write P, to represent 4~ '(n), the n® program
of the enumeration.

OBSERVATION 9.5. From now on we will consider a fixed enumeration y of programs,
which determines the meaning of P,,. This fixed enumeration can be defined in
various ways, but we need to fix one, in a way that:

e given a program P we can compute in an effective way its code v(P);
e given a number it is possible to find the n'* program P, =y~ 1(n).
EXAMPLE 9.6. Let us consider the program P
7(1,2)
S(2)
T(2,1)
encoded by
B(T(1,2) =4+7(1-1,2—-1)+2=4+n(0,1)+2=10
B(S(2)=4+(2—-1)+1=5
B(T(2,1)=4+7(2-1,1-1)+2=4%7(1,0)+2=06
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then
~v(P) = 7(10,5,6)
=p’ pyp§tt -2
=210.35.57 _2
= 19439999998
What does this program compute? Az.xz + 1.
The program P’ : S(1) computes the same function. In this case the encoding is
B(S(1)=4=(1-1)+1=1
and so
y(P)=7(1)=2"""-2=2

EXAMPLE 9.7. Show what Pjgg = 7v~1(100) is.
We observe that

100 +2 =2« 3"« 17" = pi - py - p3 - p% - p2 - P - Pt

hence the program contains 7 instructions:

B~ S
B~ 81
B0~ Z(1)
B0~ 2(1)
B0~ Z(1)
B0~ 2(1)
B0~ Z(1)

Clearly, an enumeration of URM programs induces an enumeration of computable
functions
DEFINITION 9.8. For a fixed an effective enumeration v : P — N we define:
1. <p7(1k): the function of k arguments (k-ary function) computed by the pro-
gram P, = v~ 1(n) (with the notation presently introduced: goflk) = f}ﬁ))

2. Wik = dom(gaglk)) c Nk

3. B = cod(go%k)) cN

usually if £ = 1, it is omitted. ¢, = gosll)

OBSERVATION 9.9. The function
9O(k) . NoCc®

n— ol
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is obviously surjective (each computable function is computed by a program!), and
so C®) is countable:

) =|N]

Actually, from the existence of a surjective function N — C it follows that [C*)| <
IN|. Equality |C*)| > |N| derives from the observation that there are infinitely
many computable functions, for example constants Axy ... zg.c.

Clearly ¢ : N — C®) is not injective. In fact, for each computable function there
are infinitely many programs that compute it

vfeC (")l =N|
which means <pék), 905’6)’ Wék), ... is an enumeration of C with infinitely many repe-
titions. An enumeration without repetitions can be defined as:
x(0) =0
X(n4+1) = pz . (02 & {©x©) > Pxn)})
which raises the enumeration ¢, 0y, (1), Px(2),--- but this enumeration is highly
ineffective.

It can be proved that there exists h : N — N total and computable such that
©h(0)> Ph(1)s Ph(2), - - - 18 an enumeration without repetitions [Fri58]. However, enu-
merations with repetitions are sufficient for us.

THEOREM 9.10 (|C| = |N|). The class C of computable functions is countable.

PRrROOF.
C = U c)
k=1
Since the union of countable sets is countable, C is countable. O

OBSERVATION 9.11. From now on we will implicitly use the enumeration of pro-

grams . The meaning of @%k), ,(Lk), E% is fixed and determined starting from

Y-






CHAPTER 10

Cantor diagonalization technique

Roughly speaking, the diagonalization technique allows one to build an object that
differs from a (countable) infinity of similar objects. The idea behind is: given an
countable set of objects {x1,xa, z3,...} we can build another object x of the same
nature of the x,,’s, but different from all of them by making it “differ from x,, on
n’.

This is the original method used by Cantor, one of the founding fathers of set
theory, to prove that there are various “degrees of infinity” (observing that the
powerset 2% of a set A always has cardinality strictly larger than the cardinality of
X).

We provide a proof in the specific case of the natural numbers.
PROPOSITION 10.1. |N| < |2

PROOF. By contradiction [N| > |2V], i.e. |2| countable. This means that there
exists an enumeration of 2Y: zg, z1, Ta, ...

Consider

Xo X1 Xo

0 o
1| ~no 7?7  YEs
2

We can define D = {i | i ¢ X;} < N which “differs from X; on i” element. Obviously
D € 2N which means that there exists k such that D = X. But is k in D?

keD = k¢X,=D
k¢D = keX,=D

which is absurd. Therefore |N| < [2V]. O

ExAMPLE 10.2. Consider N - N = {f | f : N — N}, we have
[N — N| > [N|

PROOF. There are two approaches to proceed
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(1) Define
N—-2={f|f:N—-Ntotal Yo f(z)e {0,1}} c N> N
Note that there is a bijection between N — 2 and 2V and thus
IN—-N| > |N—- 2| > |N|

(2) Let fi1, fa2, f3,... be an enumeration of elements in N — N and consider
| fo f1 f2
01 fo(0) ... .
10 ... fi(®) ...
2 o f2(2)

We can define a function f that differs from every other function by con-
sidering the diagonal and systematically changimg it:

L Jo i fi() 1
fo= {T if f,(0) |
In this way
Vi f# fi since f(i) # fi(i)

Hence no enumeration of functions in N — N can include the whole N —
N, which is this not countable.

O

COROLLARY 10.3. The set C = {f : N — N | f not computable} is not countable.

PrOOF. We know that |C| = |N|. If C were countable, then N - N = C u C

would be countable, which is absurd for the previous corollary. ([

OBSERVATION 10.4. There exists a total non-computable function f : N — N
defined by

o) = on(n) +1 if p,(n) |
f {0 i () 1

f is not computable because it differs from all computable functions. In fact

SO

o if @n(n) |, then f(’fl) = Spn(n) +1# Qﬁn('ﬂ)
o if <pn(n) 1, then f(n) =0+# @n(n)

Vn f # on

OBSERVATION 10.5. There are infinitely many total non-computable functions of
the following shape

_)enn)+k new,
o = fe ek e
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EXERCISE 10.6. Let f: N — N, m € N. Show that there exists a non-computable
function g : N — N such that

9(@) = f(x) Va<m

Idea: use a “translated diagonal”:

f(l‘> r<m
g@) =< m@)+1 z=mand ze W,_,
0 xzmand z ¢ Wy_p,

g is not computable since g(z + m) # @, (z +m) for all z, so

Vo g # ¢

Another approach is to define g in the following way

f(z) xT<m
g@)=<p(z)+1 z>=mandzeW,
0 r=mandxz¢ W,

because each function appears infinitely many times in the enumeration, and skip-
ping the first m — 1 steps does not create any problem. Formally
Ve=m g# ¢
so for all y
Vydz=m @y = ¢
thus
Yy oy #9g
then g is not computable.

EXERCISE 10.7. Given a family of functions {f;}.en with f; : N — N, construct
g : N — N such that dom(g) # dom(f;) for all i e N

Idea:

o(n) = {0 if n¢ dom(fn)

T if ne dom(fn)

In this way
Vn n € dom(g) < n ¢ dom(f,)

EXERCISE 10.8. Define a non-computable total function that returns 0 when the
input is even

Idea:
0 T is even
f(z) = goqu(z)Jrl  is odd, and w € Was
0 x is odd, and z ¢ W:nT—l

it is total not computable. In fact
e if2n+1eW, = f2n+1)=p,2n+1)+1# p,(2n+1)
e if2n+1¢W, = f2n+1)=0+#¢,(2n+1)1
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SO
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Vn f(2n+1) # pn(2n+1)



CHAPTER 11

Parametrisation theorem

We start by giving an intuition on what the theorem is about. Let f : N> — N be
a computable function. Then there exists e € N such that

fxy) =P (z,y)

Now, if we fix the first argument to some value x € N, we obtain a function of a

single argument f, : N — N

fo(y) = f(z,y) = o2 (z,y)

and for all z € N, f, is computable (since it is obtained as composition of com-
putable functions). This means that there exists a d € N such that

fa: = ¥d
in other words, for all y € N
fo(y) = 02 (2,) = aly)
Clearly d depends on e and x. Thus there is a total function s : N> — N such that
s(e,z) =d

i.e., for all e, z,y € N it holds <p.(32) (7,9) = Ps(e,a) (V)-
The smn theorem additionally tells us that s is computable.
Intuitively, how can we compute s(e,x)?
e get the program P, = y~!(e) that computes gog) (z,9)
e get the program that computes f, = Ay . f(z,y) with fixed z, from P,:
— move y to Ry;
— write x on Ry;
— execute P,

e take the code of the obtained program

Functions on indices, like s, are functions that transform programs. The smn
theorem states that the operation of fixing an argument of a program is effective.

ExaMpPLE 11.1. Consider the computable function
fla,y) =¥
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We know that there is an index such that ¢4 = f;, i.e.,
(Pd(x’y) = f(x,y) =¥

So, when z varies we obtain computable functions

fo(y)
fily) =y' =y with index s(e, 1)

O=1 with index s(e,0)

Il
<

f2(y) =y? with index s(e, 2)

by smn theorem we can determine those indices in an effective way.

In its general form, the theorem works for functions of the form f(Z,7) : N™*" — N
whence the name.

11.1. smn Theorem

THEOREM 11.2 (smn theorem). Given m,n = 1 there is a computable total function
Smon N N
such that Ve e N, £ e N ¢ e N

(n)

(m+n) ("’E’ g) = gOsyn,n(eaf) (g)

Pe

PROOF. Intuitively, given e € N, # € N™

e we get the program P, = v~ !(e) in standard form that computes <p£m+")

so starting from

i

= =

[Z]g]o]O]... it computes (™™ (Z, )

e from P, we can build a new program P’. Starting from
[g]oJo]... it computes (™™ (Z, 7)

In fact, it is sufficient to
e move ¥ forward of m registers
e load ¥ in the free m registers
e cxecute P,

The program P’ can be
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T(n,m +n)

T(1,m+1)

// x1 times

// x,, times

where concatenation has to update all the jump instructions in P, J(m/,n’,t) v~
Jm!' .0 t+m+n+ 0" ;)

Once P has been built, we have

5(67*%) = 'Y(P/)

Each function and construction method used are effective (so are v,7~!). Thus,
the existence, totality and computability of s are informally proven.

The formal proof of computability is long, but not difficult. We next provide just
some hints. We first discuss how to define some auxiliary functions and then we
use them to construct the smn-function.

Update function. Consider
upd : N> > N
where upd(e, h) is the code of a program obtained from P. = v~!(e) by updating

each jump instruction J(m,n,t) to J(m,n,t + h).

It is useful to define an auxiliary function that works on each single instruction
encoded with 3

upd : N2 > N

where m(z,h) is the code of the instruction 371(i), updated when it is a jump
instruction.

Given i,h € N and q = ¢t(4,i),r = rm(4,1) it is formally defined in this way

@(i,h) _ {;l *v(11(q),v2(q),v3(q) +h) + 3 : : 2

=sg(r—3)-i+ $g(r —3) - (4 =v(v1(q),2(q),v3(q) + h) + 3)
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Now

upd(e,t) = T(M(a(ev 1), h),..., Z"Ea(a(a I(e)),h))

wo-1 _
o H p?pd(a(e,z),h) .plu(pec)l(a(e,l(e))ﬁ)le _9

i=1

Concatenation of sequences. We will need a function
N2
c:N°—>N
to concatenate sequences

c(er,e2) = 7(aler,1),... a(el, l(e1)),ales, 1),...,a(ez, e(er))) =

i(e1) I(e2)
e alersi) @t ) polealleat1
H H Piier)y+i Pi(er)+i(en)

Concatenation of programs.

seq : N2 - N
where
P,
seq(er,ea) =7y p = c(ey, upd(ea,l(e2)))
€2
Transfer. Shift registers Ry, ... R,, of n positions forward
transf : N> > N
where

ﬁ\
-

transf(m,n) = ([1,n],[m + 1,m + n]))

T(B(T(1,m+1)),...,8(T(n,n+ m)))

/-\

—1
_ n pf(T(i,eri) . pg(T(n,m-&-n)-ﬁ-l _9
1=1
n—1
_ p;l*‘rr(i—l,m+i—1) prn=lmin=D+1_o
i=1

Set. Set a register R; to a value z

set : N2 5> N
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= 7(B(2(3)), ﬂ(s(i)), s B(s(1)))

B(Z(1 1
=p1( ) sz-u x+1 S g

:p4*(i—1) Hp;;:(lz D+1 ii(li—1)+2 _9

Proof of the fact that the smn function is computable We can now conclude that
the smn-function is computable by composition. Just define:

prefm’n : N - N
where
pref .o (%) = seq(transf (m,n), seq(set(1,21),..., seq(. .., set(m,zm)))...)
Then we have that

. NnH—l SN

Sm,n
Sm:’ﬂ(e’ f) = Seg(prefm,n(f)7 6)

which is in PR O

OBSERVATION 11.3. The proof above proves that the smn-function is not only
computable and total, but also primitive recursive.

The theorem is usually presented in the following simpler shape.

COROLLARY 11.4 (Simplified smn theorem). Let f : Nt — N be a computable
function. There exists a total computable function s : N™ — N such that

F@9 =¢lh@  YoeN™ ¥yeN"

PRrROOF. Since f is computable, given e € N and s(Z) = sy, n (€, %)

F(& ) = (&, §)

0" en @)
= SOS(L%) (g)
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11.1.1. The smn theorem at work.

ExaMpLE 11.5. Prove that there exists a total computable function k£ : N — N
such that for all n,z € N

This means that o) is an enumeration of functions of the form | {/z|. To put it
differently, @ is a function that given n, it returns the program that computes

[ ¥/
PRrROOF. We define f: N? —» N
fnyz)=|¥Vz|=py<z “(y+1)">2a”
=y <z.(z+1=(y+1)")

The function f is computable because it is a bounded minimalisation of a compo-
sition of known computable functions. By the smn-theorem (Corollary [11.4]), there
exists k : N — N total computable such that for all n,z € N

P (@) = f(n,2) = [ Vx|
m

EXAMPLE 11.6. There exists £ : N — N computable and total such that for all
n € N, ¢y (p) is defined only on nt" powers, i.e.

Wiy ={2z|JyeN.z=9y"}
PRrROOF. We define f: N?> - N as

f(’mﬂ;‘) = {

=y - |y" — x|
It is computable. By the smn-theorem (Corollary , there exists k : N - N
total computable such that for all n,z € N

Pr(n) () = f(n,2)

Vx ifdyeN.z=y"

1 otherwise

We claim
Wk(n):{x\ﬂyEN.x:y”}
in fact, x € W) iff oy (2) | iff f(n,2) | iff 7 is a nt" power. a

EXERCISE 11.7. Prove that there exists a function s : N — N which is total and
computable such that

k
Ws((ic)) ={(y1,-- - ur) | Zyz = 2)}
i=1

Idea: Define
{0 Zf:1 Yi =T

1 otherwise

(2]

= uz.
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and then use the smn theorem to conclude.
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CHAPTER 12

Universal Function

We now discuss how the theory developed up to now allows us to prove the com-
putability of a universal function, i.e., a function which, roughly speaking, embodies
every computable function of a given arity.

For instance, for arity 1, the universal function is Uy : N2 — N
Yy (z,y) = pe(y)
It captures all unary computable functions g, @1, @2,.... In fact, for all ee N
9(y) = Yule,y) = e(y) v g=¢e
so Uy represents all the computable functions of the form N — N.
More generally, we have the following defition.

DEFINITION 12.1. The universal function for k-ary functions (with k& > 1) is defined
as

(k) . ngk+1
U NS N
Yy (e, @) = o()
The fact that it is computable means that there is a program P, which is able
to reproduce the behaviour of all programs of a fixed arity & (the Universal Com-

puter [Dav1l]). While on the one hand this could seem strange and surprising, if
we look at it closely, such a program receives in input

e ¢ (the index of the program, a description of the program P, to run)
e 7 the arguments

hence it is an object which is quite familiar to computer scientists, i.e., an inter-
preter.

THEOREM 12.2. The universal function \Ilgjk) s computable.

ProOF. Fixed k > 1, e e N and Z € N¥ we want Uy (e, 7) = @ék) (Z).
Idea:
e get the program P, = v~ !(e);
e execute P, on input T;

o if P.(¥) |, the value Uy (e, Z) is in Ry, otherwise the program correctly
diverges.
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All operations involved are effective, hence, by Church-Turing thesis, the function
\Ilgg) is computable.

The above argument is too informal and vague to be satisfactory. We next hint at
the formal proof.

We need to encode the content of the memory. Consider

’7’1‘7‘2‘7‘3‘0‘...

the configuration of registers is given by

c= Hp?

i>1
From the encoding we can obtain the value of each register as r; = (¢);.

Then we show that we can simulate the execution steps of a program by using only
computable functions. More precisely we define the following functions:

o ¢ : NFt2 L, N

configuration after ¢ steps of P,(Z),
cule, @, t) = { if Pe does not halt on 7 in ¢ or fewer steps;

final configuration, if P.(Z) halts in ¢ or fewer steps.

number of the instruction to be executed after ¢ steps of P.(Z),
ke, t) = if P, does not halt on # in ¢ or fewer steps;

0, P.(Z) halts in t or fewer steps.
Now observe that
o if P.(Z) |, then it halts in put.ji(e, Z,t) steps, so

(pgk) (f) = (ck(ev fa :U'tujk(ea (Za t)))l

o if P.(Z) 1, then ut . jp(e,&,t) 1, hence

(pék) (f) 1= (Ck(ev f) Mt-jk(€7 fv t)))l

Hence in all cases
Uy (e, ) = o(E) = (ci(e. T, pt.ji(e, F,)))

Therefore, if we prove that cg, ji are computable, we can conclude that ‘Ifgc) is also
computable.

We proceed in the same way we did in the proof of Theorem by proving that
Ck, jr € PR (in fact, computability of ¢, ji proved here implies the computatbility
of cp,jp with a fized program P, as needed in the proof of Theorem .

We build these function out of smaller components:
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ni(c,i,t) = {

(f)

nextinstr(e,c,t) = {

Now
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Arguments of an instruction
Given i € N instruction code (i = S(Instruction))
Zarg(1) = qt(4,4) +1
Sarg(i) = qt(4,1) +1
Targ, (i) = mh(qt(4, 1))
(4) )

Jarg, (1) = vn(qt(4,1

+1 he{1,2}
+1 he{1,2,3}

Effect of executing an algebraic instruction on a configuration
zero(c,n) = qt(p'9, )
suce(e,n) = pyn - ¢
transf(c,m,n) = p&m - zero(c,n)

Effect on the configuration of registers of the execution of the instruction
with code 4

zero(c, Zarg (1)) rm(4,i) =0

change(c,i) = suce(c, Sarg (1)) rm(4,i) =1
’ trans f(c, Targ, (1), Targ, (1)) 1m(4,i) = 2

¢ rm(4,i) = 3

Configuration of the registers starting from c¢, after executing instruction
t of program P,

1<t <(e)

c otherwise

nextconf(e,c,t) = {Change(c, a(e, t))

Number of next instruction if we execute i = S(Instruction) and this is in
position ¢ of the program

t+1
Jarg, (1)

rm(4,4) # 3 v (rm(4,i) =3 A (C)mel(i) # (c)‘]m2 @)
otherwise

next instruction, if we execute instruction ¢ in a program P, starting from
configuration ¢

ni(c,ale,t),t) 1<t <lle) nl<ni(calet),t) < L(e)
0 otherwise

k
Ck(e7 :Z:u 0) = leml
i=1

jk(e,f,O) =1
cr(e, Z,t + 1) = nextconf(e, cx(e, @, t), jr(e, T, 1))

Jr(e, Z,t + 1) = nextinstr(e, cx (e, T, 1), jr (e, T, 1))
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they are defined by primitive recursion of computable functions, therefore cy, j; are
computable (actually, since all the involved functions are PR they also are in PR).
Thus,

Uy (e, @) = (er(e, @, ut . jr(e,Z,t)))1

is computable. (I

As a corollary, we obtain the decidability of two predicates that will be really useful
in the next chapters.

COROLLARY 12.3. The following predicates are decidable:
(a) Hi(e,Z,t) = “P.(Z) | int or less steps”

(b) Sk(e,Z,y,t) = “P.(¥) | y in t or less steps”

PROOF. (a) The characteristic function

. 1 if Hp(e,@,t)
e) l‘7t = .
X ) {O otherwise

= 59(jk(e, T, 1))
it is computable by composition.
(b) The characteristic function
Xsi (€, @y, t) = xm, (e, 7, 1) - 59(|(ck(e, T, 1)1 — yl)

it is computable by composition.

If k =1 we will usually omit it.

Also, from the theorem we deduce the possibility to express every computable
function in Kleene Normal Form (KNF).

COROLLARY 12.4 (Kleene Normal Form). For every e,k € N and x € NF

Pt (@) = (2 [xs, (e, T, (21, (2)2) — 11

OBSERVATION 12.5. i. This corollary highlights that each computable func-
tion can be obtained from primitive recursion functions using minimi-
malisation at most once (we need to use while statements, but one is
sufficient).

ii. Minimixmalisation allows us to “search” a single value that has a cer-
tain property. The one we used is a technique to search pairs of values
generalizable to tuples.
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12.1. Applications

We observed that if f: N — N is a total computable injective function, then

F () = {x if exists y s.t. f(z) =y

1 otherwise

is computable since f~! = pz . |f(x) — y|. The hypothesis of totality can be
omitted.

EXERCISE 12.6. Let f : N — N computable and injective. Then f~! : N — N is
computable.

PRrROOF. Since f is computable, there exists e € N such that ¢, = f. Now it is
sufficient to observe that

F7H ) = (nw - [xs(e, ()i, @, (w)2) = 1)
]

We can also identify other non-computable functions and undecidable predicates:

EXERCISE 12.7. The statement “gp, is total” is undecidable

PRrOOF. Let Tot(x) be the predicate
Tot(x) = “p, is total”
and assume that it is decidable. Define

1 total
0 otherwise

it is total. For every «x if ¢, is total, then ¢, # f, since
f(@) = pa(z) + 1 # @u(z)
so f it is not computable. But we can write f(z) as

f(@) = (pw.(S(z, z, (w)1, (w)2)) A Tot(x) A (w)s = (w)2 + 1)
v((w)s =0 A =Tot(x))

i.e., as the minimalisation and composition of computable functions, which would
imply that it is computable. Absurd. O

OBSERVATION 12.8 (Halting problem). The same technique applies to prove that
the following predicates are undecidable:

° Pl(x) = “‘T c WIH = LL(pI(m) l 7

° P2(x,y) = “y = Wr” = LLSO:L‘(y) i ”
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12.2. Effective operations on computable functions

The existence of the universal function, together with the smn theorem allows us
to formalise operations that manipulate programs and derive their effectiveness.

PROPOSITION 12.9 (Effectiveness of product). There ezists a function s : N> — N
total and computable such that for every x,y € N

st(ac,y) = Pz Py

PRrROOF. We define a function g : N3 — N
= \I]U(xv Z) : \IJU(yv Z)
it is computable since it arises as composition of computable functions. By the smn
theorem there exists s : N> — N total computable such that for every z, v, 2
ws(w,y)(z) = g(xa Y, Z) = QDI?(Z) : ‘Py(z)
thus
st(ac,y) = Pz Py

O

PRrROPOSITION 12.10 (Effectiveness of squaring). There exists k : N — N total and
computable such that, for every x € N,

Pr(z) = %Qv

PRrROOF. k(z) = s(z,x) O

ProproOSITION 12.11 (Effectiveness of primitive recursion). Recall the notion of
primitive recursion

h(f’ 0) = f(f)
h(f’y + 1) = g(fayvf(fv y))

We know that if f, g are computable then h is computable. We can derive that there

) (k+2

erists v : N> — N total computable such that, if f = wé]f and g = Qe, ), then

_ (k+1)
h = (pr(el,@)

PROPOSITION 12.12 (Effectiveness of the inverse function). There ezists k : N — N
total and computable such that

Ve e N if p, is injective = @p(y) = ()t

PRrROOF. We define a function g : N> — N
9(@,y) = () "' (v)

CJz Fzstope(z) =y
B 1 otherwise

= (,uw . |XS($,(w)1,y7(w)2) - 1|)1
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it is computable by minimalisation. Hence, by smn theorem, there isa k : N - N
total and computable such that for every x,y
Py (y) = 9(z,9) = ()" ()
O

PROPOSITION 12.13. There is a total computable function s : N> — N such that,
for every x,y

Ws(m,y) = WI o Wy

PrOOF. We want ¢g(,.)(2) | iff @.(2) | or p,(2) |. We define a function
g: N> - N
1 zeW,vzelW,

1 otherwise

9(z,y,2) = {
which is computable:

g(x,y,Z) = 1(/1,(4) : |XH(a:,z,w)AH(y,z,w) - 1|)

Hence by smn theorem exists s : N2 — N computable and total such that

PS(x,y) (Z) = g($,y,2)
[

PROPOSITION 12.14. There exists a s : N> — N computable and total such that

Vo,y Egmy) = E: v Ey
PRrROOF. We want the value of pg(, ,) to be the same of the functions ¢ andy,.

In order to do this, we can simulate ¢, on even numbers and ¢, on odd numbers.
We define a function g : N® — N

~ Jea(3) if z even
9(@9,2) {wy(zgl) if 2 odd

computable since

9(@,y,2) = (. (S(x,2/2,(W)1, (W)2) A zeven)v
(S(yv (Z - 1)/2a (w)lv (w)2) Nz Odd))l =

(pw . [max{xs(z, gt(2, 2), (W)1, (W)2) - 5g(rm(2, 2)),
Xs(:qt(2,2), (W), (W)2) - sg(rm(2,2))} — 1)

By smn theorem there exists s : N2 — N computable and total such that
@s(m,y)(z) = g(x, Y, Z)
for every z,y, z. So

v e Es(z,y) < 3Jz. @S(m,y)(z) = g(xayaz) =v

zodd and ¢, (5t) =

e {z even and <p$(g) =

<Az p(2)=vAapy(z) =veweE, UE,
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PROPOSITION 12.15. There isk : N — N computable and total such that Ey,y = W,

PROOF. Define

e W,
g(z,y) = {y v

1 otherwise

= 1(Vy(z,y)) -y
it is computable by composition, so by smn theorem there exists ¥ : N — N
computable and total such that, for every z,y

) (Y) = g(z,y)
In other words
Y€ By Oray) =y glr,y) =ysyeW,
O

PropPOSITION 12.16. Given f : N — N computable, there exists k : N — N com-
putable and total such that, for every x, Wy, = F~Lw,)

PROOF. Define

9(x,y) = v (f(y)) = Yu(z, f(y))
computable by definition. By the smn theorem, there exists k : N — N computable

and total such that @) (y) = g(z,y). So
Y€ Wia) < @ra)(y) = 9(z,y) = 0 (f(y)) |
< f(y) | and f(y) e W,
sye fTH(W,)
O

PROPOSITION 12.17. There exists k : N — N computable and total such that if
Yz = Xq 18 the characteristic function of a decidable predicate Q, then gy = X-q

PROOF. Define

9(@,y) =1 = ¢u(y) =1 - Vy(z,y)
which is computable by definition. By the smn theorem, there exists k computable
and total such that
9(z,y) = Pi(a)
In this way, if ¢, = X0
9(@,y) =1 = 0a(y) = @) (W) =1 = @a(y) =0 = xqy) =0
therefore
Pr(z) = X-Q



CHAPTER 13

Recursive sets

In previous chapters we spent most of our effort in identifying computable func-
tions and decidable properties, and for devising tools and techniques for proving
computability. Only in few cases we provided examples in the large classes of
non-computable functions and undecidable predicates.

From now on we start a mathematical study of
e classes of undecidable predicates/non computable functions

o techniques to prove the undecidability of predicates/non-computability of
functions

This will allow us to give a structure to the class of non-computable functions and
single out general classes of problems which do not admit an algorithmic solution.

We will focus on sets of numbers X < N and on the corresponding membership
problem “z e X?7”. In most cases X will be seen as a set of program codes and
thus it can be seen as a program property, e.g.

o X = {z | p, = fact}: the program is a correct implementation of the
factorial function;

e X = {z| W, = N}: the program is defined on all inputs.
e X = {z| P, has linear complexity}: the program has a linear complexity.
o ...

We will distinguish between

o recursive sets/decidable properties: It is possible to answer “yes” when
the property holds, “no” when the property does not hold.

o recursively enumerable sets/semi-decidable properties: It is possible to

4

answer “yes” when the property holds, but no answer when the property
does not hold.

13.1. Recursive sets

DEFINITION 13.1. A set A € N is recursive if its characteristic function

XA:N—>N
(@) 1 z€A
) =

x4 0 z¢A

is computable.

7
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In other words, if the predicate “x € A” is decidable.
OBSERVATION 13.2. Note that
o if x4 € PR we will say that A is primitively recursive.

e the notion can be extended to subsets of N¥, but we will stick to subsets
of N, since every subset of N*¥ can be encoded into a subset of N.

ExampPLE 13.3. The following sets are recursive:
(a) N, since xy = 1 is computable;
(b) @, because xz = 0 is computable;
(¢) prime numbers P, since

1 if x is prime
Pr(z) = P
0 otherwise

is computable;

(d) All finite sets. In fact, given A < N with |A] < 00, A = {x1,29,...,2,},

we have that
xa(r) =3g (H |z — mil)

i=1
is computable.
On the other hand, the following sets are not recursive:

(a) K ={x|xeW,}, since

is not computable;

(b) {z | ¢a total}
OBSERVATION 13.4. If A, B € N are recursive, then

) A=N-4A

2) AnB

3) AuB
are recursive.

13.1.1. Reduction. Reduction is a simple but powerful tool when studying

the decidability status of problems. It formalizes the intuition of a problem 4 being
“easier” than another one, 5.

DEFINITION 13.5. Let A, B € N. We say that the problem x € A reduces to the
problem z € B (or simply that A reduces to B), written A <,,, B if there exists a
function f : N — N computable and total such that, for every z € N

reA < f(x)eB
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In this case, we say that f is the reduction function.
OBSERVATION 13.6. Let A, B < N such that A <,,, B then
1 if B is recursive, then A is recursive

2 of A is not recursive, then B is not recursive
PROOF. Simply observe that x4 = xgo f. O

We know that K = {z | x € W,} is not recursive. We next observe see how the
non-recursiveness of other sets can be proven by reduction to K.

EXAMPLE 13.7. K <,, T = {z | ¢, total}

Proor. We prove that there exists s : N — N computable and total such that
x € k < s(x) € T. In other words

x € Wy < ¢y(y) is total

1 zeW,
g(w,y)—{

To do so, we can define

1 otherwise
which is computable, since
9(@,y) = Upe(2)) = 1Yy (z,2))

Then, by the smn-theorem we have that there exists s : N — N computable and
total such that

Ps(a)(y) = g(x,y)
and

reK=xeW, =Yy o) (y) = 9(x,y) =1 = @y total = s(x)eT
¢ K=2¢W,=Vy s (y) = 9(z,y) 1= @s(z) not total = s(z) ¢ T
([l

ExaMPLE 13.8 (Input problem). For every n € N
An = {JJ | @x(n) l}

is not recursive.
Proor. We will prove that K < A,. We have to define a function f s.t.
re K< f(x)e A,

e, ze W, < priuy(n) |
Define
)1 zeW,

Zz, - -
9(zy) 1 otherwise
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Function g is computable, and thus by the smn-theorem, there exists f : N - N
computable and total such that g(z,y) = @ () (y). It is now easy to show that s is
the reduction function, i.e.,

ze K= f(z)e A,
r¢ K= f(z)¢ A,
O

EXAMPLE 13.9 (The output problem). For every n € N, B, = {z | n € E,} is not
recursive

Proor. We show that K <,, B,. Define the function

(2,y) = n xeW,
gy = 1 otherwise

=n-1(Yy(z,z))
Observe that g is computable. Hence by the smn-theorem there exists a function
s : N — N such that
Yo,y g(@,y) = 0s)(y)
It is now easy to show that s is the reduction function, i.e.,
ze K = s(x)e B,
z¢ K = s(x) ¢ B,
O
OBSERVATION 13.10. Let A, B € N with A <,,, B through an injective reduction
function f : N — N (total and computable). One could think that, since f~! is

computable, then also B <,, A. This is clearly not the case since f~! is not total

and thus it reduces A to a “subproblem” of B (which typically have no clear relation
with B).
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Rice theorem

Rice’s theorem gives a general undecidability result. It roughly states that no
property of the behaviour of programs which is related to the input/output (besides
the trivial ones, always true and always false) is decidable or, in other words, that
no non-trivial property of computable functions is decidable.

Formally, we will need the notion of saturated set.

14.1. Saturated sets

DEFINITION 14.1 (Saturated set). A subset A € N is saturated (or extensional) if
for all z,y e N

TEANp, =y =>yeA
In other words, A is saturated if it expresses a property of functions, independently
from indices

A= {z|P(pa)}
or, again, if there exists A € C such that
A={z]p, € A}

EXAMPLE 14.2. The following set is saturated
T = {n | P, always terminate}
={nloneT}
where
T ={f] f is total}
ExaMmpPLE 14.3. The following set is saturated
ONE = {n | P, computes 1}
={nlén=1}
={n|one{l}}
ExampLE 14.4. Consider
Ty = {e| P.(e) | in two steps }
= {e| ¢c € T2}

two programs can compute the same function, one terminates in less than 2 steps
and the other in more than 2. Thus, the set is not saturated.

81
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ExXAMPLE 14.5. Consider
K={e|leecW.}
={e[ ¢ €K}
where we would like

K={r"

It is not saturated. We cannot give a formal proof yet. The proof will rely on the
fact that one can show the existence of a program e such that

0 z=e
de(w) = {T otherwise

Then e € K. Moreover, since there are infinitely many programs for the same
function, there is ¢’ # e such that varphi. = ¢.. Note that ¢/(e') = @e(¢') 1,
hence ¢’ ¢ K and we conclude.

14.2. Rice’s theorem

THEOREM 14.6 (Rice’s theorem). Let Ae N, A # (5, A # N be saturated. Then it
18 not recursive.
ProoOF. We show that K <, A. Let ey such that ¢.,(z) T Vo. We distinguish

two cases depending on whether e € A or not.

(eg ¢ A) Suppose eg ¢ A and let e; € A(# ). Now define
1 re K
glx,y) = {¢ v

Peo(y) ¢ K
_ e, (y) zeK
1 z¢ K

= d)el (y) : 1(\I/U(£L',.’E))
it is computable. By smn theorem there is sN — N such that ¢, (y) =
9(z,y).

Now observe that s is a reduction function for K <,, A
—reK= Vy SDs(x)(y) = Pey (y) = 8(%) €A
— 2 ¢ K=Yy 0,)(y) = pe,(y) 1= s(z) ¢ A

Hence K <,, A, K not recursive, thus A.

(g€ A) If eg € A then ey ¢ A. Then A € N, A ;éi@,[l # N, and A is saturated
since A is. Therefore, by the first part,o A is not recursive, and therefore
A is not recursive either.

O

EXAMPLE 14.7 (Output problem). We proved that
B, ={e|nekE.}

is not recursive by showing that K <,,, B,,. We can conclude the same by observing
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e B, is saturated;
* B, # J;
e B, #N.

By Rice’s theorem B,, is not recursive.
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CHAPTER 15

Recursively enumerable sets

DEFINITION 15.1 (Recursively enumerable set). We say that A = N is recursively
enumerable if the semi-characteristic function

scalx) = {1 xeA

1 otherwise

is computable.
DEFINITION 15.2 (Semi-decidable predicate). A predicate Q(z) < N is
semi-decidable if {x e N | Q(x)} is r.e.
Thus, saying that A is r.e. is like saying that the predicate Q(z) = “x € A” is
semi-decidable. This notion is also easily generalisable to

e subsets of N¥

e k-ary predicates
OBSERVATION 15.3. Let A]subsetegN be a set.

A recursive < A, A arer.e.

PROOF. (=) If A recursive,
1 z€eA
Xa(z) =
al@) {O otherwise

is computable. Then sca(x) = 1(pz.|xa(z) — 1]) is computable, therefore
A is r.e. Since A is recursive, then A is recursive, thus, r.e.

(«<) Let A, A be 1.e., then by definition scs and scz are computable, and we

can define
0 zeA
1—ses(a) = .
1 otherwise
that is computable. This means that deg, e; € N such that
Peg = SCA  Pe; = 1- sCx

therefore we can “combine two machings” and wait until one of the two
terminates. Since either x € A or x € A, then the process will terminate
for sure. We can build the characteristic function of A as

xa(r) =(pw.|S(eo, , ()1, (W)2 A Ser, z, (W)1, (W)2)) — 1)1
(10X S (0,2, (@)1, (@)a A S(er s (@)1,(w)2)) — 1)1
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which is computable, therefore A is recursive.

OBSERVATION 15.4. The set K = {z | z € W,} is r.e. In fact

1 ze K
sci (@) = = 1(pe(@) = 1(Yy(z,2))
1 otherwise

is computable by definition and by [15.3]
K={x|z¢W,}

is not r.e, otherwise K, K would have been both r.e., and therefore KX would have
been recursive, which is a contradiction.

THEOREM 15.5 (Structure of semi-decidable predicates). Let P(Z) < N* be a
predicate. Then P(Z) is decidable if and only if there is a decidable predicate
Q(t,7) € N**1 such that P(Z) = 3t.Q(t, 7).

PROOF. (=) Let P(Z) be semi-decidable. It has a computable semi char-
acteristic function scp so

P(%) = 3t.H(e, ,t)

therefore if we can rewrite H as Q(¢t,Z) = H(e,Z,t), in this way Q is
decidable as we wanted and

P(%) =3t.Q(¢, %)

(<) Let P(Z) = 3t.Q(¢t, ) with Q(¢t, &) decidable. Observe that
sep(Z) = L(ptxo(t, &) — 1))
which is computable by definition, and therefore P(Z) is semi-decidable.

O

15.1. Projection theorem

From the last theorem we had a hint about the fact that the class of semi-decidable
predicates is closed under ezistential quantification. The projection theorem states
this:

THEOREM 15.6 (Projection theorem). Let P(x,¥) be semi-decidable; then
Jx.P(x,1) = P'(7)
is semi-decidable.
PROOF. Let P(x,%) be semi-decidable. Then by Theorem there exists
Q(t, x,7) decidable such that

P(z,) = 3t.Q(t, z,)
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Thus

= 32.3t.Q(t, 2, )
= w.Q((w)1, ()2, ¥)

since Q((w)1, ()2, %) is decidable, by Theorem [I5.5] P’(#) is semi-decidable. O

THEOREM 15.7 (Closure under conjuction and disjunction). Let Py(¥), Py(Z) be
semi-decidable predicates. Then

LJ Pl(ii") Y Pg(f),
L] Pl(f) N Pg(f)

are semi-decidable.

PROOF. Let P (), P2(Z) be semi-decidable predicates. Then by Theorem [15.5]
there are two decidable predicates Q1 (t, ¥), Q2(t, Z) such that

Elt'Ql (t, f)
Ht'QQ (tv f)

Py (Z)
P (T)

Hence

P1 (f) \4 Pg(f) = Ht.Ql(t,f) Vv Elt.QQ(t,f)
Jw.(Q1((W)1, T) v Q2((w)2, T))

This means that by Theorem [I5.5] P;(Z) v P2(&) is semi-decidable.

(2) Analogously

Py(Z) A Po(T) = Tt(Qu(t, T) A Q2(t, 7))

O

OBSERVATION 15.8. The set of semi-decidable predicates is closed under A, v and 3,
but it is not closed under ¥V and —. For instance P(x) = “x € K" is semi-decidable,
while —P(z) = “x ¢ K” is not. Moreover Q(x,t) = —H(x,z,t) is decidable, while
Vi.Q(z) =7z ¢ K7 is not semi-decidable.

EXERCISE 15.9. Prove that if P(Z) is semi-decidable and is not decidable then
—P(Z) is not semi-decidable.

OBSERVATION 15.10. (1) A S N is recursive if and only if A, A are r.e.
(2) if A= Nr.e. and f: N — N computable = f~!(A) is r.e. (projection)

(3) AAB=Nre. = AuB,An Barer.e.
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15.1.1. r.e. sets and reducibility. Reduction can be used as a tool for
comparing sets with respect to recursive enumerability as we already did for recur-
siveness.

OBSERVATION 15.11. Given A, B € N, A <,,, B, then
(1) Bisre. = Alisr.e.

(2) A isnotr.e. = B not r.e.

PROOF. (1) If B r.e., then
1 zeB
sep(x) = )
1 otherwise

is computable. Let f : N — N be a total computable reduction function
for A <, B. Then sca(x) = scp(f(x)), therefore sca is computable by
composition and A is r.e.

(2) equivalent.
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Rice-Shapiro theorem

Rice-Shapiro states that a property of the functions computed by programs can be
semi-decidable only if it depends on a finite part of the function (I/O behavior on
a finite number of inputs).

In order to properly state the theorem, we need some more tools.
DEFINITION 16.1 (Finite function). A finite function is a function 6 : N — N such
that dom(0) is finite.

The fact that a function is finite means that the set of input-output pairs is finite,
i.e.,

1 frz=x

Yo if x =9

Yn fz=ux,
1 otherwise

In other words 6 = {(x1,¥1), .. (Tn,yn)}, i-e., the function seen a relation is a finite
set.

DEFINITION 16.2 (subfunction). Given two functions f,g : N — N, we say f is a
sub-function of g if f < g.

In other words, we have that f < g if g is defined wherever f is defined, i.e.,
dom(f) < dom(g), and where f is defined, it coincides with g, i.e., for all = €
dom(f), it holds that f(x) = g(z).

NOTATION 16.3. We recall some notation:

e W, is the domain of the function ¢,;
Ee = {pe(z) | v € We};
H(z,y,t) = “P.(y) | in t steps or less”;

S(z,y,2,t) = “Py(y) | z in t steps or less”;
K={z|zeW,}={z]|ps(x) ]|} ={x]| P:(x) terminates}

THEOREM 16.4 (Rice-shapiro theorem). Let A < C be a set of computable functions.
If the set A = {z | p, € A} is r.c., then

Vf(fe A< 30 finite function, 6 = f A0 e A)
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Proor. We will prove the following
(1) 3feC.f ¢ AA3TOC f finite,d € A= A not r.e
(2) 3feC.f e AA VO < f finite,0 ¢ A= A not r.e.

Here are the proofs:

(1) Let f ¢ A and 6 C f finite with 6 € A. We show that K <,, A.

Define
0 rze K
(i 15

1 re K A x¢dom(9)

=10(y) = fly) reK Axedom(h)
fy) reK

_{f(y) xe K vyedom(d)
1 otherwise

Since x € K v y € dom(f) = Q(x,y) predicate, x € K semi-decidable and
y € dom(0) decidable, then Q(z,y) semi-decidable. Then, since

R Q(z,y)
@V 0 otherwise

is computable, we have g(x,y) = f(y) - sco(z,y) computable.

By smn theorem, there is a total computable function s : N — N such
that, for every x,y

O(y) zeK
fly) zeK

We show that s is the reduction function for K <,, A

Ps(2)(y) = g(w,y) = {

ereK = Vy ws(a:)(y) = g(gj,y) = a(y) = Ps(z) = e A= S(I) €A

cr¢ K=ueK =Yy o) =g@y) =fy) = ps@) = fEA=
s(z)¢ A

Since K <,, A and K is not r.e. we conclude that A is not r.e.
(2) Let fe AA6 < f be with 6 finite, 0 ¢ A

Informally, we want

(1) vk (pul@) D)
g(x,y) = {G(y) for some 6 < f finite, otherwise (x € K)
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More formally

if ~H(z,x,y)
if H(z,z,y)
f ) + pzxu(x,z,y)
is computable.

By smn there exists s : N — N total computable such that

We show that s is a reduction function for K <,,, A

° xeK
:>90:r( )T
= Vy —~H(z,2,y)
=YY s2)(¥) = 9(z,y) = f(y)
3.]0 Ps(x) €A
s(r)e A

e ¢ K
=sze K

= oz(7) |
= 3ty (Vt > tog H(z,z,t) AVt <ty ~H(z,x,t))

= Py(z) S [ finite
=s(r)e A

EXAMPLE 16.5. A = {x | ¢, total} is not r.e.

PROOF. Clearly A is saturated since A = {z | p, € A}, and A = {feC| f
total}. Given any function f € A (total by definition) we have that V0 < f finite
clearly 0 ¢ A, since each and every finite function is partial, then by Rice-Shapiro’s
theorem, A is not r.e. O

EXAMPLE 16.6. A = {z | ¢, not total} is not r.e.
PROOF. Let A = {f € C | f not total}. We observe that each 6 finite is in A,

but no total extension of such # can be included in A. Again, by Rice-Shapiro A is
not r.e. O

Examples[16.5] and characterise the two basic situations in which we can apply
the theorem. They are generalised in the observation below.

OBSERVATION 16.7. Let A < C be a set of computable functions s.t. A = {z | ¢, €
A} is r.e. Then

(1) if, for every 6 finite, 0 ¢ A= A=
(2) geA=>A=C
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PROOF. (1) Consider a generic f € C. We know that f € A if and only if
there exists § < f finite § € A. Since no finite function is in A we conclude

that f ¢ A. Hence A = (.

(2) Consider a generic f € C. Since @& < f and J € A = f € A, Hence
A=C.

O
EXAMPLE 16.8. Consider A = {z | ¢, = 1}
(1) Aisnot r.e.
The set of functions is A = {1}, which
e does not contain finite functions
e is not empty
therefore A is not r.e.
(2) Aisnot r.e.
A =C— {1}, and we have that
e Je A
e A% C
therefore A is not r.e.

OBSERVATION 16.9. The converse implication of Rice-Shapiro theorem does not
hold, i.e. the following does not hold

(16.1) Vf(fe Aiff 30 finite, 0 = f, /e A) = Are.

In other words, Rice-Shapiro can be used to prove that a set is not r.e., but not to
prove that a set is r.e.

For a counterexample to (16.1]), define A = {f € C | dom(f) n K # &} and let
A={z]ps €A}

(1) A satisfies the premise of (|16.1))

feA=dom(f)n K # &
= let € dom(f) N k we have that 0 = {(z, f(z))}
is finite, § < f and dom(0) Nk = {z} # &
=0ecA

if 0 finite, 6 < f,0 € A = dom(8) < dom(f)
= dom(f) n K 2 dom(0) n K # &
=fed
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(2) Ais not r.e., since K <,, A

Define

(2,1) 0 z=y
x? = .
NEY 1 otherwise
= pz.lz —y|
is computable. Again, by smn theorem 3s : N — N computable and total
such that






CHAPTER 17

First recursion theorem

In programming languages, we have higher-order functions that take other functions
as arguments and produce functional results. E.g. in ML, the function succ that
given a function f returns f + 1 can be defined as

fun suce fr=fax+1

From the computability point of view it is still somewhat natural to ask how ef-
fective/computable operations can be characterized on functions. We will later see
that this idea leads to the concept of recursive functional.

DEFINITION 17.1. Let F(N*) denote the set of all the functions (possibly not com-
putable) of k arguments N¥ — N¥.

A functional is a total function

@ : F(NF) — F(NM)
When can we say that a functional is effective (computable)? Given ® : F(N¥) —
F(NM)

e a function f € F and its image ®(f) € F(N*) are both infinite objects in
general.

e we cannot ask for ®(f) to be effectively computable in a finite time from

f

17.0.1. Encoding of finite functions. As a first step we need a way of view-
ing finite functions as numbers. The encoding of a finite function 6 = {(x1,y1),. .., (x2,y2)}

is 0 € N defined as
o=]]rh
i=1

which is both injective and effective. Given the encoding of a function z = é,

x€dom(f) iff (2)g41 #0

app(z,r) = 0(z) = {iZ) - itier(::s(e )

= ((2as1 = 1) L(pw . 59((2)241))

In this way we can give the following definition of recursive functional

95
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DEFINITION 17.2. A functional ® : F(N¥) — F(N") is recursive if there exists
¢ : N1 — N computable such that, for every f e F(N¥),#e N ye N
d(f)(y) =y iff 30 < f finite s.t. p(0,7) =y
ExXAMPLE 17.3. The functional
fib : F(N) - F(N)
1 r=0vz=1
flz=2)+ flx—1) =2

is recursive, the function ¢ : N> — N can be

(2,2) = 1 r=0vz=1
[ Oz —2)+0(x—1) 2=2r2=10

_{1 r=0vz=1

fib(f)(z) =

app(z,x —2) + app(z,x — 1) = >2
which is computable.
ExXAMPLE 17.4. The functional associated to the Ackermann’s function
Uer : F(N?) — F(N?)
Vack(f)(0,y) =y +1
Vack (f)(z +1,0) = f(x,1)
v

ack(f)(@ + 1Ly +1) = f(z, f(z + 1,9))
is clearly recursive.

THEOREM 17.5. Let ® : F(N¥) — F(N") be a recursive functional and let f €
F(N¥) be computable. Then ®(f) e F(N") is computable

17.1. Myhill-Sheperdson theorems

Given a recursive functional @, by (17.5]
f computable v~ ®(f) computable

[ = e ®(f) = per

so we can see a recursive functional as a function that transforms indices (programs)
into indices (other programs), but with the property that the transformation de-
pends on the indexed function and not on the index itself.

DEFINITION 17.6 (Extensional function). Let h : N — N a total function. It is
extensional if

Ve, €' e = 0o = Onie) = Ph(er)
THEOREM 17.7 (Myhill-Shepherdson (I)). If ® : F(N*) — F(N") is a recursive
functional then there exists a total computable function he : N — N s.t.

k
Vee N ®(pe) = @EW)(Q)

Intuitively, the behaviour of the recursive functional on computable functions is
captured by a total extensional function on the indices.
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THEOREM 17.8 (Myhill-Shepherdson (II)). If h : N — N is a total computable
extensional function, then there is a unique recursive functional ®j sych that

Vee N @p(pe) = @n(e)

Note that a total computable extensional function, which only explains how to
transform programs (hence computable functions) uniquely identifies a recursive
functional, which instead is defined also on non-computable functions. The reason
is roughly connected to the fact that all functions (even if they are not computable)
can be approximated with arbitrary precision by computable ones (e.g., by finite
subfunctions).

THEOREM 17.9 (First recursion theorem (Kleene)). Let ® : F(N¥) — F(N") be a
recursive functional. Then ® has a least fixed point fo which is computable,
i.e.

(1) ©(fo) = fo
(2) Yge F(N*) ®(9)=g=focy
(3) fo is computable

and we can see that fo = |J D™ ().

The theorem above implies the closure of the set of computable functions with
respect to extremely general forms of recursion.

EXAMPLE 17.10 (Primitive recursion). Given f : N* — N and g : N**2 — N, the
function defined by primitive recursion is the least fixed point of ®, € F(Nh+1),
defined by

®,.(h)(%,0) = (&)
®,.(h)(Z,y + 1) = g(Z,yh(7, y))

and if f, g are computable, then ®, is a recursive functional. The theorem assures
that

e there exists a least fixed point;
e it is computable.

EXAMPLE 17.11 (Minimalisation). Given a function f : N¥+1 — N, we can see the
minimization py . f(Z,y) as a fixed point. Let us consider, for a fixed f

®, e F(N)

y f(@,y)=0
®,(h)(%,y) = { My + 1) f(Z,y) | Af(@y) #0
1 otherwise

it is recursive and has a least fixed point:
fo,(Ty) =pz=y. f(Zy)

EXAMPLE 17.12 (Ackermann’s function). We saw that @, is recursive, therefore
it has a computable least fixed point (the Ackermann function itself ¢). The fact
that v is total, actually implies that such fixed point is the only fixed point.
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OBSERVATION 17.13. In general the fixed point is not unique. Counter-example:

0 z=0
(f)(x) = .
f(z+1) otherwise
is recursive, and therefore has a minimum fixed point
0 z=0
xr) =
folw) {T otherwise
but it has other fixed points, for example, for every k € N

IO o



CHAPTER 18

Second recursion theorem

Let f : N — N be total, computable and extensional i.e.

Ve,e’ Pe = Pe! = Pre) = Pf(e’)

Then, by Theorem m (Myhill-Shephedson) there exists a unique recursive func-
tional @ such that

Vee N (I)(<pe) = @f(e)
Since ® is recursive, by the First Recursion Theorem (Theorem [17.9)) it has a least
fixed point fg : N — N computable. Therefore there is eg € N such that
Peo = f‘I’ = (I)(.f‘t’) = (I)((peo) = Pf(eo)

This means that if f is total computable and extensional, then there exists ey such
that

Peo = Pf(eo)
The second recursion theorem states that this holds also when f is not extensional.

THEOREM 18.1 (Second recursion theorem (Kleene)). Let f: N — N a total com-
putable function. Then there exists eg € N such that

Peo = Pfleo)

PrOOF. Let f: N — N a total computable. Take

g(x,y) = Wf((pz(z))(y)
= Yy (fpa(2)),y)
= WU(f(‘I’U(x’x))vy)

it is computable. By the smn theorem there exists s : N — N total computable
such that

Gs(2) (W) = 9(T,Y) = Prpaa)(y) Yo,y
Since s is computable there exists m € N such that
S =ovn
hence

Com@) (¥) = Prpa@)(¥y) YT,y
For x =m

SOS‘JM("’"') (y) = saf(ﬂam(m))(y) vy
We set eg = ¢, (m) | and we replace in the previous equation

Peo (Y) = Pren)y) Yy
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i.e.
Peo = Ph(eo)
O

This theorem can therefore be interpreted in the following manner given any effec-
tive procedure to transform programs, there is always at a program such that when
modified by the procedure it does exactly what it did before or it is impossible to
write a program that change the extensional behaviour of of all programs.

The proof of the theorem can appear mysterious, but after a closer inspection,
it clearly appears to be a simple diagonalization. Nevertheless, the result of this
theorem is extremely deep; in this way, many theorems we’ve seen up until now are
just corollaries.

COROLLARY 18.2 (Rice’s theorem). Let &J # A & N saturated, then A is not

recursive.

PROOF. Let J # A < N saturated. Take e; € A and ey ¢ A and assume by
contradiction that A is recursive. Define f: N —» N

_)eo reA
o= e

= e xalz) +e1-xa()

Since A is recursive then also A is recursive, thus y4 and s are computable.
Thus, f is computable and total, then by the Second Recursion Theorem ([18.1]
there exists e € N such that ¢, = @(); there are two possibilities

o if e€ A, then f(e) = eg ¢ A and since A saturated, Ye # Ye, = Pf(e)

e if e¢ A, then f(e) = e; € A and since A saturated, we # Ye, = Pf(e)
that is absurd, so A cannot be recursive. [
COROLLARY 18.3. The halting set K = {x | p.(z) |} is not recursive.

PROOF. Let k = {x | x € W, } recursive for the sake of the argument. and let
€0, €1 be indexes s.t. ., = & and ., = A\x . 2.

Define f : N - N

ep v¢ K
=eo xk(z) +e1- xg(2)
If K were recursive, then xx and x iz would be computable, thus f would be both

computable and total, then by (I8.1]), there would be e € N such that ¢, = ©fe)s
but '

@) = {eo reK

—

e if ee K, then f(e) = eg, 50 pe(e) L# @f(e)(€) = e, (€)
e if e € K, then f(e) = e1, 50 p.(e) 1# Vie)(e) = e, (e) =e

which is absurd, so K cannot be recursive. O
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COROLLARY 18.4. K = {z | p,(x) |} is not saturated.

PrROOF. First observe that there is ng s.t. ¢, = {(no,n0)}. In fact, define

g(n,x) = {

Since g is computable there is s : N — N total computable such that ¢, (z) =
g(z,y). By the Second Recursion Theorem there is ng such that ¢n, = @)
Therefore

0 ifz=n

1 otherwise = pz. v —n|

0 ifx=ng

Pne(T) = SDS(HU)(x) = g(no, z) = { 1 otherwise

Observe that ng € K. Moreover we know that there are infinitely many indices for
the same function. Thus let n # ng s.t. ¢, = @n,. Then

en(n) = @ny(n) 1
Hence n ¢ K and thus K is not saturated. ([l
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