
Computability

Some unofficial notes

Master’s degree in Computer Science

A.Y. 2024/2025

These LaTeX notes originates from some handwritten material distributed for the
course in Computability at the Master Degree in Computer Science at the Uni-
versity of Padua. I am grateful to Riccardo Borsetto, Mert Anil Hasret, Luca
Zaninotto for translating the notes (originally in italian) and producing the LaTeX
version.

They are unofficial sketchy notes, which are intended as a support for students
for understanding what is discussed in the course. They can contain errors or
inaccuracies (in case you find some, please report them).

They are not intended in any sense as a replacement for the official book (Nigel
Cutland “Computability. An Introduction to Recursive Function Theory”), on
which they are heavily based.

Paolo Baldan

Contents

Chapter 1. Introduction 1
1.1. Algorithm or effective procedure 1

Chapter 2. Algorithms and existence of non-computable functions 5
2.1. Characteristics of an algorithm 5
2.2. Existence of non-computable functions 6

Chapter 3. URM computability 11
3.1. Which model? 11
3.2. URM (Unlimited register machine) 12
3.3. URM-computable functions 13
3.4. Examples of URM-computable functions 14
3.5. Function computed by a program 15
3.6. Exercises 15

Chapter 4. Decidable Predicates 19
4.1. Examples of decidable predicates 20

Chapter 5. Computability on other domains 23

Chapter 6. Generation of computable functions 25
6.1. Basic computable functions 25
6.2. Generalized composition 27
6.3. Primitive recursion 28
6.4. Algebra of decidability 33
6.5. Bounded sum, product and quantification 34
6.6. Bounded minimalisation 35
6.7. Encoding of pairs (and n-tuples) 36
6.8. Unbounded minimalisation 38

Chapter 7. Other approaches to computability 41
7.1. Partially recursive functions 41

Chapter 8. Primitive recursive functions 45
8.1. Ackermann’s function 46

Chapter 9. Enumeration of programs 51

Chapter 10. Cantor diagonalization technique 57

Chapter 11. Parametrisation theorem 61
11.1. smn Theorem 62

v

vi CONTENTS

Chapter 12. Universal Function 69
12.1. Applications 73
12.2. Effective operations on computable functions 74

Chapter 13. Recursive sets 77
13.1. Recursive sets 77

Chapter 14. Rice theorem 81
14.1. Saturated sets 81
14.2. Rice’s theorem 82

Chapter 15. Recursively enumerable sets 85
15.1. Projection theorem 86

Chapter 16. Rice-Shapiro theorem 89

Chapter 17. First recursion theorem 95
17.1. Myhill-Sheperdson theorems 96

Chapter 18. Second recursion theorem 99

Bibliography 103

CHAPTER 1

Introduction

In this chapter, we informally discuss the notion of effective procedure and function
computable by means of an effective procedure. This will lead us to single out the
main features of an algorithm/computational model. Despite being informal, these
considerations will allow us to derive the existence of non-computable functions
for every effective computational model. In the next lessons these notions and
considerations will be formalized by setting a specific computational model, a kind
of idealized computer.

1.1. Algorithm or effective procedure

Effective procedures and algorithms, even though we do not always call them in this
way, are a part of our everyday life.

For example, at the primary school we are not only taught that given two numbers
their sum exists, but we are also provided with a procedure to compute the sum of
two numbers!

In general terms, an algorithm can be defined as the description of a sequence of
elementary steps (where an “elementary step” is a step which can be performed
“mechanically”, without any intelligence) which allows one reach some objective.
Typically, the aim is transforming some input into a corresponding output, suitably
related to the input. This could be transforming ingredients into a cake, although
normally we are interested in computational problems.

Example 1.1. Some examples are:

(1) given n P N, establish whether n is prime;

(2) find the nth prime number;

(3) differentiate a polynomial;

(4) perform the square root
?
n;

(5) find least common multiple lcm and greatest common divisor GCD .

Therefore we can think of an algorithm as a black box

in Ñ blackbox Ñ out

where the transformation is performed by executing a sequence of elementary in-
structions.

If each step is deterministic (i.e., for each state of the system, the instruction to be
executed next and the new state it produces are uniquely determined), then each

1

2 1. INTRODUCTION

possible input will uniquely determine the corresponding output (or the procedure
might not terminate, in which case we will have no output).

In mathematical terms, the algorithm determines a (partial) function

f : input Ñ output .

We say that f is the function computed by the algorithm and that f is effectively
computable. Thus, we can give the following first definition of a computable func-
tion (still informal since it refers to a generic notion of algorithm).

Definition 1.2 (Computable function). A function f is computable if there exists
an algorithm that computes f .

We stress that for f to be computable, it is not important to know which is the
algorithm that computes f , but we just need to know that some algorithm that
computes f exists.

Example 1.3. According to the above definition, we informally expect the the
following functions to be computable:

‚ GCD (greatest common divisor), e.g., exploiting Euclid’s algorithm.

‚ the function f : NÑ N defined as

fpnq “

#

1 n prime

0 otherwise

‚ gpnq “ pn
where pn is the n-th prime number.

This is computable by generating numbers and testing for primality until
the n-th prime is found.

‚ hpnq “ πn where πn is the n-th digit of the decimal representation of π.

Indeed there are

– series that converge to π

– techniques to estimate (by excess) the error caused by

˚ truncating a series

˚ rounding in the computation of the value of the truncated series

What about the function below?

gpnq “

#

1 there is a sequence of exactly n consecutive 5’s in π

0 otherwise

For example gp3q “ 1 if and only if π “ 3.14 . . . i555j . . . , with i, j ‰ 5.

A naive algorithm could consist in generating the digits of π until a sequence of
5’s of the desired length n is found. Clearly, if such a sequence exists, it will be

1.1. ALGORITHM OR EFFECTIVE PROCEDURE 3

eventually found and the answer 1 will be returned. However, at no stage of the
computation, we can exclude that the desired sequence of n 5’s will appear later;
hence, apparently, we have no way of returning 0.

Remark 1.4. On the basis of the considerations above, the following

‚ generate all digits in the decimal representation of π;

‚ if they include a sequence of n consecutive 5’s then gpnq “ 1;

‚ otherwise gpnq “ 0.

is not an effective procedure.

Note that this does not mean that g is not computable, i.e., that an effective
procedure for computing g does not exist, but at the moment this procedure is not
known (to us)!

We do not know if g is computable, but there might be a property of π that allows
us to conclude. In particular, there is a conjecture that all finite sequences of digits
appear in π, which would imply that g is simply the constant 1, whence computable.

Consider now a slightly different function h : NÑ N, defined by

hpnq “

#

1 there is a sequence of at least n consecutive 5’s in π

0 otherwise

The function seems very similar to the one considered before. However, note that
if π “ 3.14 . . . i555j . . . , then we deduce, not only that hp3q “ 5, but also hp2q “
hp1q “ hp0q “ 1. More generally, whenever hpnq “ 1 then hpmq “ 1 for all m ă n.
This suggests that h could have a quite simple shape.

More precisely, consider K “ suptn | π contains n consecutive digits 5u. Then we
have 2 possibilities:

(1) K is finite, and thus

hpnq “

#

1 if n ď K

0 otherwise

(2) K is infinite, and thus

hpnq “ 1 for all n P N

This implies that h is computable because it is either a step function or a constant
function, and these function can are computed by simple programs. One could
object that we do not know which shape the function has and thus we do not
know exactly which is the program that computes the function. This is true, but
irrelevant for computability.

Trying to replicate the same argument for function g fails. In fact, one could think
of defining A “ tn | π contains exactly n consecutive 5’su. Then

4 1. INTRODUCTION

gpnq “

#

0 n P A

1 n R A

This does not suggest that g is computable. Set A is possibly infinite and we do
not see a way of providing a finite representation of A which can be included in a
program.

Bringing the argument to the extreme, one could consider the function G : NÑ N
defined by

Gpxq “

#

1 if P “ NP

0 otherwise

Since the condition does not depend on the variable x, the function is either the
constant 0 or the constant 1. Independently of which of the two cases applies, the
function is computable.

CHAPTER 2

Algorithms and existence of non-computable
functions

2.1. Characteristics of an algorithm

We present a list of features that an algorithm should satisfy in order to capture the
intuitive idea of effective procedure. Roughly, what we ask is that an algorithm is
“implementable” on some sort of idealised machine, that we call the computational
model. Hence, below, we also list some requirements that the computational model
should meet to be considered effective.

An algorithm is a sequence of instructions with the following characteristics:

a) it is of finite length;

b) there exists a computing agent able to execute its instructions;

c) the agent has a memory (for storing the input, intermediate results to be
used in subsequent steps and the output);

d) the computation consists of discrete steps;

e) the computation is neither non-deterministic nor probabilistic (we model
a digital computer);

f) there is no limit to the size of the input data
(we want to be able to define algorithms that work on any possible input,
e.g. ` operating on summands of any size);

g) there is no limit to the memory that can be used.

This requirement may seem less natural, but having unbounded memory
is essential to avoid the notion of computability being dependent from
the available resources. In fact, for many functions the space required for
intermediate results depends on the size of the input,

e.g. fpnq “ n2 then p1000q2 “ 1000000. Note that I must add a number
of zeroes that depends on n and thus n must be stored (the states are
finite);

h) there exist a finite limit to the number of the instructions and to their
complexity.

This is intended to capture the intrinsic finiteness of the computing device
(justified by Turing with the limits of the human mind/memory),

5

6 2. ALGORITHMS AND EXISTENCE OF NON-COMPUTABLE FUNCTIONS

e.g. for a computer, the memory that can be accessed with a single in-
struction must be finite (even if by (g), the memory is unbounded);

i) computations might

(a) terminate and return a result after a finite, but unbounded number
of steps (e.g. the square function requires a number of steps propor-
tional to the argument);

(b) continue forever, without returning a result.

2.2. Existence of non-computable functions

Later on, we will focus on a concrete computational model and this will allow
us to give a completely formal definition of computable function. Now we argue
that, simply on the basis of the assumptions above, we can infer the existence of
non-computable functions for every “effective” computational model.

2.2.1. Some mathematical notions and notation. We start by recalling
some basic notions and introducing useful notation.

‚ We will consider the set of natural numbers N “ t0, 1, 2, . . . u;

‚ Given the sets A,B their Cartesian product is

AˆB “ tpa, bq | a P A ^ b P Bu.

We will write An for AˆAˆAˆ . . .ˆA
loooooooooooomoooooooooooon

n times

. Thus, we have A1 “ A and

An`1 “ AˆAn.

‚ A (binary) relation or predicate is r Ď AˆB.

‚ A (partial) function f : AÑ B is a special relation f Ď AˆB such that
if pa, b1q, pa, b2q P f then b1 “ b2. Following the standard convention, we
will write fpaq “ b instead of pa, bq P f

– the domain of f is dompfq “ ta | Db P B. fpaq “ bu;

– we write fpaq Ó for a P dompfq and fpaq Ò for a R dompfq;

‚ Given a set A we indicate with |A| its cardinality (intuitively, the number
of elements of A, but the notion extends to infinite sets). Given the sets
A and B we have

– |A| “ |B| if there exists a bijective function f : AÑ B;

– |A| ď |B| if there exists an injective function f : A Ñ B or equiva-
lently1 a surjective function g : B Ñ A.

Observe that if A Ď B then |A| ď |B| as witnessed by the inclusion, which
is an injective function

i : AÑ B
a ÞÑ a

1Strictly speaking, the equivalence requires the axiom of choice.

2.2. EXISTENCE OF NON-COMPUTABLE FUNCTIONS 7

‚ We say that A is countable or denumerable when |A| ď |N|, i.e., there is
a surjective function f : NÑ A. Note that, when this is the case, we can
list (enumerate, whence the name) the elements of A as

fp0q fp1q fp2q . . .
a0 a1 a2 . . .

‚ When A,B are countable then AˆB is countable.

Idea of the proof:

– Since A and B are countable, we can consider the corresponding
enumerations

A a0 a1 a2
B b0 b1 b2

and place the elements of AˆB in a matrix

b0 b1 b2
a0 pa0, b0q pa0, b1q pa0, b2q
a1 pa1, b0q pa1, b1q pa1, b2q
a2 pa2, b0q pa2, b1q pa2, b2q

so that they can be enumerated along the diagonals as follows:
pa0, b0q, pa0, b1q, pa1, b0q, pa0, b2q, pa1, b1q, pa2, b0q, . . . (this is referred
to as dove tail enumeration)

‚ A countable union of countable sets is countable: if tAiuiPN is a collection
of countable sets then

Ť

iPN
Ai is countable.

2.2.2. Existence of non-computable functions. Let us consider some fixed
computational model satisfying the assumptions in §2.1. We want to show that
there are functions which are not computable in such a model.

We focus on unary functions over the natural numbers. Let

F “ tf | f : NÑ Nu

be the set of all the (partial) unary functions on N.

Let A be the set of all algorithms in our fixed computational model. Every al-
gorithm A P A computes a function fA : N Ñ N and a function is said to be
computable in our model if there exists an algorithm that computes it. Hence the
set FA set of computable functions in the given computational model is

FA “ tfA | A P Au

Certainly FA Ď F . But, is the inclusion strict (i.e., is there a non-computable
function)?

The answer is yes. Basically for combinatorial reasons: the algorithms are too few
to compute all the functions.

In fact, an algorithm A P A, by assumption a) in the characteristics of an algorithm,
will be a finite sequence of instructions taken from some instruction set I. Moreover,

8 2. ALGORITHMS AND EXISTENCE OF NON-COMPUTABLE FUNCTIONS

by assumption h), I must be finite. Hence:

A Ď
ď

iPN
In

Since a countable union of finite (hence countable) sets is countable, we have

|A| ď |
ď

nPN
In| ď |N|

and since the function

AÑ FA

A ÞÑ fA

is surjective by definition, we have that

|FA| ď |A| ď |N|

On the other hand the set of all functions, F , is not countable. Let T the subset of
F consisting of the total functions T “ tf | f P F ^ dompfq “ Nu. We show that

|F | ě |T | ą |N|

We prove that |T | ą |N| by contradiction. Let us suppose that T is countable.
Then we can consider an enumeration f0, f1, f2, . . . of F as in the following matrix

f0 f1 f2
0 f0p0q f1p0q f2p0q
1 f1p0q f1p1q f1p2q
2 f2p0q f2p1q f2p2q

and build a function d, by considering and systematically changing diagonal values

d : NÑ N
n ÞÑ fnpnq ` 1

We can observe that

‚ d is total, by definition;

‚ d ‰ fn for all n P N, since dpnq “ fnpnq ` 1 ‰ fnpnq.

This is absurd, since f0, f1, f2, . . . is an enumeration of all the total functions.

Summing up

FA Ď F
|FA| ď |N| ă |T | “ |F |

we get FA Ă F , as desired.

Note that the set of non-computable functions is not countable

|FzFA| ą |N|
In fact, F “ FA Y pFzFAq. Thus, if it were |FzFA| ď |N|, we would have had
|F | ď |N| because the union of countable sets is countable.

We conclude that

2.2. EXISTENCE OF NON-COMPUTABLE FUNCTIONS 9

(1) no computational model can compute all functions;

(2) there are more non-computable than computable functions.

CHAPTER 3

URM computability

3.1. Which model?

To give a formal notion of computability we must choose a concrete model of com-
putation that induces a class of algorithms and thus a corresponding class of com-
putable functions. Despite the fact that we focus on an abstract ideal model, there
are still a lot of possibilities. Many models have been considered in the literature:

(1) Turing machine (Turing, 1936)

(2) λ-calculus (Church, 1930)

(3) Partial recursive functions (Godel-Kleene 1930)

(4) Canonical deductive systems (Post, 1943)

(5) Markov systems (Markov, 1951)

(6) Unlimited register machine (URM) (Shepherdson - Sturgis, 1963)

(7) . . .

In principle, each computational model determines a class of computable functions.
We may be concerned thinking that the developed theory is valid only for a specific
model chosen. Actually, it can be verified that the class of computable functions for
all models cited (and for all “sufficiently expressive” models considered in literature)
is always the same. This leads to the so-called Church-Turing thesis:

Church-Turing thesis: A function is computable by an effective procedure (i.e.,
in a finitary computational model, obeying the conditions (a)-(e) from the chapter
before) if and only if it is computable by a Turing machine.

This means that the notion of “computable function” is robust (i.e. independent of
the specific computational model), and we can choose our favorite one for developing
our theory.

Remark 3.1. The Church-Turing thesis is called a thesis and not a theorem due
of its informal nature. It cannot be proved since it refers to an informal notion of
effective procedure, but is supported only by evidence: many computational models
have been considered and all respect the thesis (e.g. Yuri Gurevich, argues that it
should be proved on the basis of a formal axiomatization of conditions (a) - (e)).

Sometimes we resort to the Church-Turing thesis to shorten the proof that a certain
function is computable. However this should only be done when it is not strictly
necessary, i.e. when it could be replaced by a formal proof (and providing all the
details could hide the intuitive idea under a bunch of technicalities).

11

12 3. URM COMPUTABILITY

3.2. URM (Unlimited register machine)

We will formalise the notion of computable function by using an abstract ma-
chine called URM-machine (Unlimited Register Machine), which is an abstrac-
tion of a computer based on the Von Neumann’s model. It is characterized by

‚ unbounded memory that consists of a infinite sequence of registers,
each of which can store a natural number

R1 R2 . . . Rn . . .
r1 r2 . . . rn . . .

the n-th register is indicated by Rn, its content by rn

the sequence pr1, r2, . . . , rn, . . . q P Nω is called configuration of the
URM;

‚ a computing agent capable of executing an URM program;

‚ a URM program, i.e. a finite sequence of instructions I1, I2, . . . , Is that
can “locally” alter the configuration of the URM.

Program instructions can be the following

‚ zero Zpnq
sets the content of the register Rn to zero: rn Ð 0;

‚ successor Spnq
increments by 1 the content of register Rn: rn Ð rn ` 1;

‚ transfer T pm,nq
transfers the content of the register Rm in the register Rn, Rm stays
untouched: rn Ð rm.

The above are often referred to as arithmetic instructions. They are characterised
by the fact that the instruction to be executed in the next step is the one following
the current instruction in the program.

Then last instruction is

‚ conditional jump Jpm,n, tq compares the content of the registers Rm

and Rn

– if rm “ rn it jumps to the t-th instruction;

– otherwise, it continues with the next instruction.

Example 3.2. An example of program is the following:

I1: J(2,3,5)
I2: S(1)
I3: S(3)
I4: J(1,1,1) // unconditional jump

Disregard what this program computes for the moment. The computation starting
from the configuration below is:

3.3. URM-COMPUTABLE FUNCTIONS 13

R1 R2 R3 . . .
1 2 0 . . .

I1,I2
ÝÝÝÑ

R1 R2 R3 . . .
2 2 0 . . .

I3
ÝÑ

R1 R2 R3 . . .
2 2 1 . . .

I4,I1,I2
ÝÝÝÝÝÑ

R1 R2 R3 . . .
3 2 1 . . .

I3
ÝÑ

R1 R2 R3 . . .
3 2 2 . . .

I4,I1,I5
ÝÝÝÝÝÑ

The state of the URM machine in which it executes a program P “ I1 . . . Is is
given by a pair xc, ty that consists of a

‚ register configuration c
a total function c : NÑ N such that cpnq is the content of register Rn;

‚ program counter t, i.e., index of the current instruction.

An operational semantics can easily be defined via a set of deduction rules axioma-
tising the state transitions xc, ty Ñ xc1, t1y. However we do not need this level of
formality, and we will rely on an informal description of program execution.

Remark 3.3. A computation might not terminate! Consider for instance the
program

I1: S(1)
I2: J(1,1,1)

Then the computation will not terminate. For instance

R1 R2 R3 . . .
0 0 0 . . .

I1,I2
ÝÝÝÑ

R1 R2 R3 . . .
1 0 0 . . .

I1,I2
ÝÝÝÑ

R1 R2 R3 . . .
2 0 0 . . .

...
ÝÑ

Notation 3.4. Let P be an URM program, and pa1, a2, a3, . . . q P Nω a sequence
of natural numbers. We indicate the computation of P starting from the initial
configuration by P pa1, a2, . . . q:

R1 R2 R3 . . .
a1 a2 a3 . . .

and

‚ P pa1, a2, . . . q Ó if the computation halts.

‚ P pa1, a2, . . . q Ò if the computation never halts (i.e., it diverges).

We will work on computations that start from an initial configuration where only
a finite number of registers contain a non-zero value for the majority of
the time (almost always for obvious reasons of input finiteness). Hence; given
a1, a2, . . . , ak P N we will write

P pa1, . . . , akq for P pa1, . . . , ak, 0, . . . , 0q

The notation extends to P pa1, . . . , akq Ó or P pa1, . . . , akq Ò.

3.3. URM-computable functions

Let f : Nk Ñ N be a partial function. What does it mean for f to be computable
by an URM machine?

14 3. URM COMPUTABILITY

Intuitively, it means that there exists a program P such that for each pa1, . . . , akq P
Nk, P pa1, . . . , akq computes the value of f , i.e. when pa1, . . . , akq P dompfq, P ter-
minates and outputs fpa1, . . . , akq. Instead, P does not terminate if pa1, . . . , akq R
dompfq.

A doubt could concern where the output is stored. We conventionally decide that
the output will be in the first register R1 (hence at the end of the computation, the
content of any register other than the first one will be irrelevant). For this reason
we introduce the following notation

Notation 3.5. Let P be a program and pa1, . . . , akq P Nk, we write P pa1, . . . , akq Ó
a if P pa1, . . . , akq Ó and the final configuration contains a in R1

Definition 3.6 (URM-computable function). A function f : Nk Ñ N is said
to be URM-computable if there exists a URM program P such that for all
pa1, . . . , akq P Nk and a P N, P pa1, . . . , akq Ó if and only if pa1, . . . , akq P dompfq
and fpa1, . . . , akq “ a.

In this case we say that P computes f .

We denote by C the class of all URM-computable functions and by Cpkq the class
of the k-ary URM-computable functions. Therefore we have C “

Ť

kě1 Cpkq.

3.4. Examples of URM-computable functions

We next list some URM-computable functions, providing the corresponding pro-
grams.

(1) f : N2 Ñ N
fpx, yq “ x` y

I1: J(2,3,5)
I2: S(1)
I3: S(3)
I4: J(1,1,1) // unconditional jump

R1 R2 R3 . . .
x y 0 . . .

Idea: Increment R1 and R3 until R2 and R3 contain the same value. This
results in adding to R1 the content of R2.

(2) f : NÑ N

fpxq “ x 9́ 1 “

#

0 x “ 0

x´ 1 x ą 0

R1 R2 R3 . . .
x 0 0 . . .

Idea: if x “ 0 it trivially terminates; if x ą 0, it keeps a value k´ 1 in R2

and k in R5, with k ą 1 ascending until R3 “ x, at that point R2 “ x´1.

Here’s the program

3.6. EXERCISES 15

I1: J(1,3,8)
I2: S(3)
I3: J(1,3,7)
I4: S(2)
I5: S(3)
I6: J(1,1,3)
I7: T(2,1)

(3) f : NÑ N

fpxq “

#x

2
if x even

Ò otherwise

Idea: Store an increasing even number in R2 and store its’ half in R3.

R1 R2 R3 . . .
x 2k k . . .

I1: J(1,2,6)
I2: S(2)
I3: S(2)
I4: S(3)
I5: J(1,1,1)
I6: T(3,1)

3.5. Function computed by a program

Given a program P , for some fixed number k ě 1 of parameters, there exists a

unique function computed by P that we denote by f
pkq
P : Nk Ñ N defined by:

f
pkq
P pa1, . . . , akq “

#

a if P pa1, . . . , akq Ó a

Ò if P pa1, . . . , akq Ò

Remark 3.7. The same function can be computed by different programs, for the
following two reasons

‚ we can add useless instructions to a program (dead code, T pn, nq, ...)

‚ the same function can be computed via different algorithms (e.g., for sort-
ing we have quicksort, mergesort, heapsort, etc.)

A function can be computed either by no program or by infinitely many programs.

3.6. Exercises

Exercise 3.8 (Reduced URM). Let URM´ be the class of URM machines without
transfer instruction. Indicate by C´ the class of functions that can be computed
by URM´ machines. How does C´ compare to C?

Proof. We show that C´ “ C

Obviously C´ Ď C.

16 3. URM COMPUTABILITY

Let us prove that C Ď C´. Informally an instruction T pm,nq at the t step can be
replaced with the following subroutine

Zpnq
LOOP : Jpm,n,ENDq

Spnq
Jp1, 1, LOOP q

END:

We prove it formally. Given f P C, f : Nk Ñ N, there is an URM program P such

that f
pkq
P “ f . We show that the program P can be transformed into a URM´

program P 1 of the reduced URM machine such that f
pkq
P 1 “ f

pkq
P .

We proceed by induction on the number h of transfer instructions T in P . Observe
that we can assume, without loss of generality, that when a program halts it does
so at the index of the last instruction plus one.

(1) h “ 0 trivial, we can take P “ P 1 since P is already a URM´-program.

(2) hÑ h` 1: Assume that P contains h` 1 transfer instructions. Hence it
has the shape

I1: . . .
. . .
It : T pm,nq
. . .
Is : . . .

We can transform it into the program P 2, where the instruction T is
replaced by a jump to the subroutine:

I1: . . .
. . .
It : Jp1, 1, s` 2q // jump to the subroutine

. . .
Is : . . .
Is`1 : J(1,1,s+6) // jump to the end
Is`2: Zpnq
Is`3: Jpm,n, t` 1q // back to the successor of the T -instruction
Is`4: Spnq
Is`5: Jp1, 1, s` 3q

Note that f
phq
P2 “ f

phq
P . Moreover program P 2 includes h instructions T

and therefore, by inductive hypothesis, there exists a URM´ program P 1

such that f
phq
P 1 “ f

phq
P2 . Then f

phq
P 1 “ f

phq
P2 “ f

phq
P and P 1 is the desired

program.

□

Exercise 3.9 (URM with swap instructions). Let URMS be the model obtained
by removing the transfer instruction and inserting a swap instruction TSpm,nq

3.6. EXERCISES 17

which exchanges the contents of registers m and n. Let CS be the corresponding
class of computable functions. How do the classes C and CS relate?

Proof. (C Ď CS) We already know that C Ď CR by the previous exercise and
therefore, since CR Ď CS , the desired inclusion follows.

(CS Ď C) First observe that the swap instruction TSpm,nq can be encoded in the
URM machine by means of the routine:

T pn, iq
T pm,nq
T pi,mq

where i is a “new” register, i.e., a register not used by the program.

More formally, let f P CS , f : N Ñ N. Then there exists a URMS program P s.t.

f
pkq
P “ f . Let us proceed by induction on the number of swap instructions h.

‚ (h “ 0) the program is already a URM program. Therefore wwe can take
P 1 “ P .

‚ (hÑ h` 1) Assume that P contains h` 1 swap instructions.

Let i be a register not used by P (observe that it can be found by just
inspecting the program text). Let t be the index of a swap instructions.
As in the previous exercise, replace such instruction by a jump

It : Jp1, 1, SUBq

to a subroutine encoding the swap. Let P 2 be the program obtained in
this way. Since it has only h swap instructions, by inductive hypothesis

there is P 1 URM such that f
pkq
P 1 “ f

pkq
P2 “ f

pkq
P , and we are done.

Observe that strictly speaking the proof above is not working
properly!

In fact the program P 2 obtained from P replacing a swap instruction will
indeed have h swap instructions but it possibly contains also some transfer
instructions, hence it is not a URMS program.

We can easily solve the issue by proving the following stronger statement:
given a program P that uses both URM instructions and URMS instruc-

tions, there is a URM program P 1 such that f
pkq
P “ f

pkq
P 1 .

The proof remains essentially the same but the inductive case now works
smoothly and we conclude that CS Ď C.

Therefore we deduce CS “ C, as desired. □

Exercise 3.10 (URM without jump instructions). Consider an URM machine
without jump instructions Jpm,n, tq and call it URMnj . Let Cnj be the corre-
sponding class of computable functions. How does this class relate to C?

Proof. Clearly Cnj Ď C and the inclusion is strict since, f : N Ñ N with
fpxq Ò @x is computable in URM, but it is not computable in URM nj . In fact,

18 3. URM COMPUTABILITY

all functions in Cnj are total since programs without jump instructions always
terminate.

We can characterise precisely the (unary) functions in Cnj . They are of the shape:

‚ fpxq “ c

‚ fpxq “ x` c

where c is a constant in N.

This can be proved as follows. Denote by r1ph, xq the content of register R1 after
h steps starting from an initial configuration where R1 is x and the other registers
contain 0.

We show by induction on h that after h execution steps r1ph, xq is equal to x ` c
or to c for some suitable constant c P N.

‚ Case h “ 0:
We have r1p0, xq “ x, which is fine, with c “ 0.

‚ Case hÑ h` 1:
We know r1ph, xq “ x ` c or r1ph, xq “ c by inductive hypothesis. The
next instruction can be of three shapes:

– Zpnq
If n “ 1, r1ph ` 1, xq “ 0, otherwise r1ph ` 1, xq “ r1ph, xq, and we
conclude by inductive hypothesis.

– Spnq
If n “ 1 we have that r1ph` 1, xq “ r1ph, xq ` 1 which, by inductive
hypothesis, is fine. Otherwise, r1ph` 1, xq “ r1ph, xq and, again, we
conclude by induction hypothesis.

– T pm,nq
When n ą 1 or n “ m “ 1 then r1ph ` 1, xq “ r1ph, xq and we
conclude by inductive hypothesis. Otherwise, if n “ 1, m ą 1 we do
know nothing about the content of r1ph` 1, xq. We are stuck . . .

The problem can be solved by observing that register 1 has nothing special
and the same result can be proved for all registers. More precisely, denote
by rnph, xq the content of register Rn after h steps starting from an initial
configuration where R1 is x and the other registers contain 0. Then one
can show that rnph, xq contains either c or x` c for a suitable constant c.
In this case the proof goes smoothly.

□

CHAPTER 4

Decidable Predicates

In mathematics we often want to establish properties. For example, consider the
property “m is a divisor of n”. We can view itas a relation

div Ď Nˆ N
div “ tpm, k ¨mq | m P N, k P Nu

We can also view div as a function

div : Nˆ NÑ ttrue, falseu

div “

#

true if m is a divisor of n

false otherwise

In the setting of computability theory one normally uses the term predicates.

Thus a k-ary predicate on N indicated with Qpx1, . . . , xkq is a property that can
be true or false, formally we can see it as

‚ a function Q : Nk Ñ ttrue, falseu;

‚ a set Q Ď Nk.

We write Qpx1, . . . , xkq to denote px1, . . . , xkq P Q or Qpx1, . . . , xkq “ true

When is Q computable? When there exists a URM such that given a k-tuple
px1, . . . , xkq in input, it returns true if Qpx1, . . . , xkq and false otherwise.

To represent true and false we conventionally use values 1 and 0.

Definition 4.1 (decidable predicate). A predicate Q Ď Nk is said to be decidable
if its characteristic function

XQpx1, . . . , xkq “

#

1 if Qpx1, . . . , xkq

0 otherwise

is (URM) computable.

Remark 4.2. XQ is a total function (dealing with decidability of predicates, in-
volves only total functions).

19

20 4. DECIDABLE PREDICATES

4.1. Examples of decidable predicates

(1) Equality
Q Ď N2, Qpx, yq ” “x “ y”

The characteristic function

XQpx, yq “

#

1 if x “ y

0 otherwise

is computed, for instance, by the program

I1 J(1,2,3)
I2 J(1,1,4)
I3 S(3)
I4 T(3,1)

(2) Qpxq ” “x is even”

I1 J(1,2,6)
I2 S(2)
I3 J(1,2,7)
I4 S(2)
I5 J(1,1,1)
I6 S(3)
I7 T(3,1)

x k r in memory where k is a growing index and r is the result.

(3) Qpx, yq ” “x ď y”

We can increment both x and y until either x` k “ y and thus x ď y or
y ` k “ x and thus x ą y.

T(1,3)
T(2,4)

LOOP: J(2,3,SI) // x+k=y?

J(1,4,NO) // y+k=x?

S(3)
S(4)
J(1,1,LOOP)

SI: S(5)
NO: T(5,1)

Memory: x y x` k y ` k r where r is the result.

Another approach is to increment a register starting from 0. If we reach
x first then x ď y, otherwise x ą y.

LOOP: J(1,3,SI)
J(2,3,NO)
S(3)
J(1,1,LOOP)

SI: S(4)
NO: T(4,1)

4.1. EXAMPLES OF DECIDABLE PREDICATES 21

x` k y k r where r is the result.

(4) divpx, yq with x ‰ 0

LOOP: J(2,3,SI)
Z(4) // sum x to R2

ADDX: J(1,4,LOOP)
J(2,3,NO) // kx` h “ y?
S(3)
S(4)
J(1,1,ADDX)

SI: S(5)
NO: T(5,1)

x y kx` h h r where r is the result.

CHAPTER 5

Computability on other domains

Since the URM is confined to manipulate natural numbers, our definition of com-
putability concerns only functions and predicates over N.

The concept of computability can be extended to other domains by resorting to a
notion of effective encoding.

Suppose that we are interested in computability on a domain D of objects. Can
our notion of computability extend to this domain?

One of the necessary conditions is the possibility of encoding the elements of D
as natural numbers. Suppose there exists α : D Ñ N, which is bijective and that
α, α´1 are “effective”. We don’t have a formal notion of effectiveness.

The domainD must be countable. For example, take the strings over some alphabet
Σ, D “ Σ˚. The set of rational numbers Q is also countable, and so is the set of
integers Z, while D cannot be R or Aω (streams).

Once an encoding is fixed we can use it for defining URM-computability com-
putability on the domain D.

Definition 5.1 (Computable function on generic domain). Given f : D Ñ D, we
say that it is computable if f˚ “ α ˝ f ˝ α´1

D D

N N
α´1

f

α

f˚

is URM-computable.

We will see that if α is effective, its inverse is also effective.

Example 5.2 (Computability on the integers). Assume we want to define com-
putability over the integers Z. We need an encoding α : ZÑ N. It can be defined
in several ways. One possibility is

αpzq “

#

2z z ě 0

´2z ´ 1 z ă 0

which is an effective function with inverse

α´1pnq “

$

&

%

n

2
n is even

´
pn` 1q

2
n is odd

23

24 5. COMPUTABILITY ON OTHER DOMAINS

Consider the function

fpzq “ |z|.

It is computable if f˚ “ α ˝ f ˝ α´1 is URM-computable. We have

f˚pnq “ pα ˝ f ˝ α´1qpnq

“

$

’

&

’

%

pα ˝ fq
´n

2

¯

n even

pα ˝ fq

ˆ

´
n` 1

2

˙

otherwise

“

$

’

&

’

%

α
´n

2

¯

n even

α

ˆ

n` 1

2

˙

otherwise

“

#

n n even

n` 1 otherwise

that is URM-computable, so f is computable.

CHAPTER 6

Generation of computable functions

The aim here is to provide a way of proving that certain functions are computable
by arguing that they are combinations of simpler functions that are known to be
computable.

This amount to showing that there are operations op that take functions f1, f2 and
compose them producing oppf1, f2q in a way that if f1, f2 P C then oppf1, f2q is still
in C.

More precisely we will prove that the C class is closed with respect to the following
operations:

‚ (generalized) composition

‚ primitive recursion

‚ (unbounded) minimization

After this, in order to prove that a function f : Nk Ñ N is computable we have two

techniques: write a URM program P that computes f (i.e., such that f
pkq
P “ f), or

use the closure theorems of C.

Actually the three operations above are chosen carefully. The long term objective is
to show that C coincides with the class of functions which can be obtained through
composition, primitive recursion and minimization, starting from a restricted core
of basic functions (partial recursive functions of Godel-Kleene).

6.1. Basic computable functions

The following basic functions are URM-computable:

(1) constant zero

z : Nk Ñ N
px1, . . . , xkq ÞÑ 0

(2) successor

s : NÑ N
x ÞÑ x` 1

(3) projection

Uk
i : Nk Ñ N
px1, . . . , xkq ÞÑ xi

25

26 6. GENERATION OF COMPUTABLE FUNCTIONS

In fact, one immediately sees that these basic functions are computed by simple
programs consisting of one arithmetic instruction:

(1) z computed by Zp1q;

(2) s computed by Sp1q;

(3) Uk
i computed by T pi, 1q.

Remark 6.1. The identity is just a special projection.

To prove the closure properties we will need to “combine” programs so we need
some notation.

Notation 6.2. Given a URM program P

‚ ρpP q is the largest register index used in P

‚ lpP q is the number of instructions in P;

‚ P is in standard form if, for each Jpm,n, tq instruction, t ď lpP q ` 1 (if
the program terminate it will do so at the instruction lpP q ` 1).

Considering only programs in standard form is not restrictive, as stated by the
following lemma:

Lemma 6.3. For each URM program P there exists an equivalent program P 1 in

standard form, i.e. for all k, f
pkq
p “ f

pkq
P 1

Proof. It is enough to replace every instruction Jpm,n, tq in P such that
t ą lpP q ` 1 with Jpm,n, lpP q ` 1q □

Often we will have to concatenate programs. Given programs P,Q, their concate-
nation is obtained by considering P followed by the instructions of Q. Only observe
that jump instructions in Q need to be updated (each instruction Jpm,n, tq in Q
is replaced with Jpm,n, t` lpP qq).

Remark 6.4. If P and Q are in standard form then PQ is in standard form;
moreover pPQqR “ P pQRq. We will assume every program is in standard form
and we will use concatenation freely.

It will be useful to consider programs which take the input and give the output in
arbitrary registers.

Given a program P , we want a program P ri1, . . . , ik Ñ hs that takes input from
Ri1, . . . , Rik, without assuming that the remaining the registers are set to 0, and
gives back the output in Rh This is easily obtainable with transfer and reset oper-
ations to move the contents of registers from i1, . . . , ik to 1, . . . , k and the output
from h to 1.

More precisely P ri1, . . . , ik Ñ hs is as follows:

6.2. GENERALIZED COMPOSITION 27

T pi1, 1q
. . .
T pik, kq
Zpk ` 1q
. . .
ZpρpP qq
P
T p1, lq

6.2. Generalized composition

Definition 6.5. Given a function f : Nk Ñ N and functions g1, . . . , gk : Nn Ñ N
we define the composition h : Nn Ñ N by

hpx⃗q “

#

fpg1px⃗q, . . . , gkpx⃗qq if g1px⃗q Ó, . . . , gkpx⃗q Ó and fpg1px⃗q, . . . , gkpx⃗qq Ó

Ò otherwise

Example 6.6. Consider

zpxq “ 0 @x ∅pxq Ò @x

then

zp∅pxqq Ò @x

Example 6.7. Consider ∅ and U2
1 , then

U2
1 px1, x2q “ x1 but U2

1 px1,∅px2qq Ò

Proposition 6.8. C is closed under generalised composition

Proof. Let

f : Nk Ñ N
g1, . . . , gk : Nn Ñ N

in C, consider the composition

h : Nk Ñ N
x⃗ ÞÑ fpg1px⃗q, . . . , gkpx⃗qq

Since f, g1, . . . , gk P C, we can take F,G1, . . . , Gk programs in standard form for
them.

Let us consider the largest register index possibly used by the involved programs
i.e., m “ maxtρpF q, ρpG1q, . . . ρpGkq, k, nu. Then the registers from m ` 1 on can
be used freely without the risk of interferences. The program for the composition
can be

1 . . . m m` 1 . . . m` n m` n` 1 . . . m` n` k
. . . x1 . . . xn g1px⃗q . . . gkpx⃗q

28 6. GENERATION OF COMPUTABLE FUNCTIONS

T p1,m` 1q
. . .
T pn,m` nq
G1rm` 1, . . . ,m` nÑ m` n` 1s
. . .
Gkrm` 1, . . . ,m` nÑ m` n` ks
F rm` n` 1, . . . ,m` n` k Ñ 1s

This allows us to conclude that h P C. □

Example 6.9. If f : N2 Ñ N is computable, then the following are also computable

‚ f1px, yq “ fpy, xq;

‚ f2pxq “ fpx, xq;

‚ f3px, y, zq “ fpx, yq.

Remark 6.10. On the basis of the results above we can use generalized composition
when the gi are not functions of all the variables or are functions with repetitions.

Example 6.11. We know that f : N2 Ñ N where fpx1, x2q “ x1`x2 is computable.
Using this fact and the closure of C under generalise composition we can derive
that g : N3 Ñ N where gpx1, x2, x3q “ x1 ` x2 ` x3 is also computable. In fact
gpx1, x2, x3q “ fpfpx1, x2q, x3q “ fpfpU3

1 px⃗q, U
3
2 px⃗qq, U

3
3 px⃗qq, that is computable.

Example 6.12. The following functions are computable

‚ constant mpx⃗q “ m
mpx⃗q “ spsp. . . spzpx⃗qqqq, i.e., s applied m times;

‚ addition gpx1, . . . , xkq “ x1 ` ¨ ¨ ¨ ` xk, as seen before;

‚ product by a constant fpxq “ k¨x “ gpx, . . . , x
looomooon

k times

q, where g is the function

at the previous step;

‚ if fpx, yq is computable, then also f 1pxq “ fpx,mq is computable. In fact
f 1pxq “ fpx,mq “ fpU1

1 pxq,mpxqq, that is computable;

‚ if f : N Ñ N is total computable, the predicate Qpx, yq ” “fpxq “ y” is
decidable.

In fact, we know that

XEqpx, yq “

#

1 x “ y

0 otherwise

is computable.

Therefore XQpx, yq “ XEqpfpxq, yq “ XEqpfpU
2
1 px, yqq, U

2
2 px, yqq, and

thus XQ is computable.

6.3. Primitive recursion

Recursion is a familiar concept; it allows to define a function specifying its values
in terms of other values of the same function (and possibly using other functions
already defined).

6.3. PRIMITIVE RECURSION 29

Example 6.13 (Factorial).
#

0! “ 1

pn` 1q! “ n! ¨ pn` 1q

Example 6.14 (Fibonacci).
$

’

&

’

%

fp0q “ 1

fp1q “ 1

fpn` 2q “ fpnq ` fpn` 1q

There are many types of recursion, here we use a very “controlled” version of
recursion.

Definition 6.15 (Primitive recursion). Given f : Nk Ñ N and g : Nk`2 Ñ N
functions, we define h : Nk`1 Ñ N by primitive recursion as follows

#

hpx⃗, 0q “ fpx⃗q

hpx⃗, y ` 1q “ gpx⃗, y, hpx⃗, yqq

Remark 6.16. The function h is defined in an equational manner, with h that
appears on both sides: it is an implicit definition and it is not obvious that such h
exists or that it is unique, but actually it does exist and it is unique. However, a
general theory that supports this observation is not trivial.

The argument proceeds as follows

(1) let Nn Ñ N the set of functions on natural numbers with n arguments

(2) we define an operator

T : pNk`1 Ñ Nq Ñ pNk`1 Ñ Nq
T phqpx⃗, 0q “ fpx⃗q

T phqpx⃗, y ` 1q “ gpx⃗, y, hpx⃗, yqq

(3) the desired function is a fixed points of T , i.e. h such that T phq “ h;

(4) the existence of the fixed point follows from these properties

‚ Nk`1 Ñ N is a CPO;

‚ T is continuous;

‚ continuous functions over a CPO have a least fixed point.

(5) uniqueness can be proved inductively, showing that if h, h1 are fixed points
then h “ h1.

Example 6.17. Consider the sum function hpx, yq “ x ` y. It can be defined by
primitive recursione as

"

hpx, 0q “ x “ fpxq
hpx, y ` 1q “ hpx, yq ` 1 “ gphpx, yqq

where f is the identity and g is the successor. Both are computable, so the sum is
computable by primitive recursion.

30 6. GENERATION OF COMPUTABLE FUNCTIONS

Proposition 6.18. Functions obtained from total functions by

(1) generalized composition

(2) primitive recursion

are total.

Proof. (1) obvious by definition;

(2) Let f : Nk Ñ N, g : Nk`2 Ñ N be total functions and define h by primitive
recursion.

It can be proved by induction on y that

@x⃗ P Nk px⃗, yq P domphq

‚ py “ 0q: for all x⃗ P Nk, hpx⃗, 0q “ fpx⃗q Ó;

‚ py Ñ y`1q: for all x⃗ P Nk, hpx⃗, y`1q “ gpx⃗, y, hpx⃗, yqq Ó by inductive
hypothesis.

□

Example 6.19. We observe that some functions can be defined by primitive recur-
sion:

‚ sum x` y
x` 0 “ x
x` py ` 1q “ px` yq ` 1

hpx, 0q “ x
hpx, y ` 1q “ hpx, yq ` 1

fpxq “ x
gpx, y, zq “ z ` 1

‚ product x ¨ y
x ¨ 0 “ 0
x ¨ py ` 1q “ px ¨ yq ` x

hpx, 0q “ 0
hpx, y ` 1q “ hpx, yq ` x

fpxq “ 0
gpx, y, zq “ z ` y

‚ factorial y!
0! “ 1
py ` 1q! “ y! ¨ py ` 1q

hp0q “ 1
hpy ` 1q “ hpyq ¨ py ` 1q

6.3. PRIMITIVE RECURSION 31

fp0q “ 1
gpy, zq “ z ¨ py ` 1q

Proposition 6.20. C is closed under primitive recursion.

Proof. Let f : Nk Ñ N and g : Nk`2 Ñ N be computable functions. We want
to prove that h : Nk`1 Ñ N defined through primitive recursion

#

hpx⃗, 0q “ fpx⃗q

hpx⃗, y ` 1q “ gpx⃗, y, hpx⃗, yqq

is computable.

Let F,G programs in standard form for f, g. We want a program H for h. We
proceed as suggested by the definition.

We start from x1 . . . xk y 0 . . .

we save the parameters and we start to compute hpx⃗, 0q using F .

If y “ 0 we are done, otherwise we save hpx⃗, 0q and compute hpx⃗, 1q “ gpx⃗, 0, hpx⃗, 0qq
with G. We do the same for hpx⃗, iq until we arrive at i “ y.

As usual we need registers not used by F and G, m “ maxtρpF q, ρpGq, k ` 2u and
we build the program for h as follows:

1 . . . m` 1 . . . m` k m` k ` 1 . . . m` k ` 3
. x⃗ . . . i hpx⃗, 2q y 0

T p1,m` 1q
. . .
T pk,m` kq
T pk ` 1,m` k ` 3q
F rm` 1, . . . ,m` k Ñ m` k ` 2s // compute hpx⃗, 0q

LOOP : Jpm` k ` 1,m` k ` 3, ENDq // i=y?

Grm` 1, . . . ,m` k ` 2Ñ m` k ` 2s
Spm` k ` 1q // i = i+1

Jp1, 1, LOOP q
END : T pm` k ` 2, 1q

□

Observation 6.21. We do nothing more than implementing recursion through
iteration.

Observation 6.22. The following functions are computable.

(1) sum x` y, see above;

(2) product x ¨ y see above;

(3) exponential xy

x0 “ 1 hpx, 0q “ 1 fpxq “ 1
xy`1 “ xy ¨ x hpx, y ` 1q “ hpx, yq ¨ x gpx, y, zq “ z ¨ x

(4) predecessor x´ 1

32 6. GENERATION OF COMPUTABLE FUNCTIONS

0 ´ 1 “ 0 hp0q “ 0 f ” 0
px` 1q´ 1 “ x hpx` 1q “ x gpy, zq “ y

(5) subtraction x´ y “

#

x´ y x ě y

0 otherwise

x´ 0 “ x fpxq “ x
x´ py ` 1q “ px´ yq´ 1 gpx, y, zq “ z ´ 1

(6) sign sgpxq “

#

0 x “ 0

1 x ą 0

sgp0q “ 0 f ” 0
sgpx` 1q “ 1 gpy, zq “ 1

(7) complement sign s̄gpxq “

#

1 x “ 0

0 x ą 0

s̄gpxq “ 1 ´ sgpxq, composition and (6);

(8) |x´ y| “

#

x´ y x ě y

y ´ x x ă y

|x´ y| “ px´ yq ` py ´ xq from (1), (6) and composition;

(9) factorial y!
0! “ 1 f ” py ` 1q! “ y! ¨ py ` 1q gpy, zq “ py ` 1q ¨ z

(10) minimum minpx, yq “ x´ px´ yq;

(11) maximum maxpx, yq “ px´ yq ` y;

(12) remainder rmpx, yq “

#

y mod x x ‰ 0

y x “ 0

remainder of the integer division of y by x

rmpx, 0q “ 0

rmpx, y ` 1q “

#

rmpx, yq ` 1 rmpx, yq ` 1 ‰ x

0 otherwise

“ prmpx, yq ` 1q ¨ sgppx´ 1q´ rmpx, yqq

fpxq “ 0 gpx, y, zq “ z ˚ sgpx´ 1 ´ zq

(13) quotient qtpx, yq “ y div x (convention qtp0, yq “ y), we define:

qtpx, 0q “ 0

qtpx, y ` 1q “

#

qtpx, yq ` 1 rmpx, yq ` 1 “ x

qtpx, yq otherwise

“ qtpx, yq ` sgppx´ 1q´ rmpx, yqq

6.4. ALGEBRA OF DECIDABILITY 33

(14)

divpx, yq “

#

1 rmpx, yq “ 0

0 otherwise

“ s̄gprmpx, yqq

Corollary 6.23 (Definition by cases). Given f1, . . . , fn : Nk Ñ N total, com-
putable and Q1, . . . , Qn Ď Nk decidable and mutually exclusive predicates (for each
x⃗ P Nk, exactly one of Q1, . . . , Qn holds) then f : Nk Ñ N is total computable
where

fpx⃗q “

$

’

’

’

&

’

’

’

%

f1px⃗q Q1px⃗q

f2px⃗q Q2px⃗q

. . .

fnpx⃗q Qnpx⃗q

Proof. fpx⃗q “ f1px⃗q ¨ XQ1px⃗q ` ¨ ¨ ¨ ` fnpx⃗q ¨ XQnpx⃗q

We conclude using the computability of sum and product and the fact that com-
position preserves computability. □

6.4. Algebra of decidability

Lemma 6.24. Let Q,Q1 be decidable predicates. Then also ␣Q,Q^Q1, Q_Q1 are
decidable.

Proof. It is enough to observe that:

(1) X␣Qpx⃗q “ sgpXQpx⃗qq

(2) XQ^Q1px⃗q “ XQpx⃗q ¨ XQ1px⃗q

(3) Just use De Morgan and observe that Qpx⃗q^Q1px⃗q “ ␣p␣Qpx⃗q_␣Q1px⃗qq
or, directly,

XQ_Q1px⃗q “ maxtXQpx⃗q,XQ1px⃗qu

□

Recall that t␣,^,_u (t␣,_u is enough) is a functionally complete set of connectives
(it allows to express any function t0, 1un Ñ t0, 1u). We deduce that:

Corollary 6.25. Let Q1, . . . , Qn Ď Nk decidable predicates and let f : t0, 1un Ñ
t0, 1u a function. Let us consider:

X : Nk Ñ t0, 1u
X px⃗q “ fpXQ1

px⃗q, . . . ,XQn
px⃗qq

Then the predicate Q which corresponds to X is decidable, and therefore X is com-
putable.

34 6. GENERATION OF COMPUTABLE FUNCTIONS

6.5. Bounded sum, product and quantification

Definition 6.26 (Bounded sum and product). Let f : Nk`1 Ñ N be a total
function. Then

‚
ř

zăy fpx⃗, zq is defined by
ÿ

ză0

fpx⃗, zq “ 0

ÿ

zăy`1

fpx⃗, zq “
ÿ

zăy

fpx⃗, zq ` fpx⃗, yq

‚
ś

zăy fpx⃗, zq is defined by:
ź

ză1

fpx⃗, zq “ 1

ź

zăy`1

fpx⃗, zq “
ź

zăy

fpx⃗, zq ¨ fpx⃗, yq

Lemma 6.27. If f : Nk`1 Ñ N is total computable then

(1) gpx⃗, yq “
ř

zăy fpx⃗, yq

(2) hpx⃗, yq “
ś

zăy fpx⃗, yq

are total computable.

Proof. Just note that they are defined by primitive recursion!

gpx⃗, 0q “ 0
gpx⃗, y ` 1q “ gpx⃗, yq ` fpx⃗, yq

and `, f are computable.

Same for 2. □

Obviously, by closure under composition, the bound can be a total computable
function.

Another immediate consequence concerns the decidability of the bounded quantifi-
cation on the predicates.

Lemma 6.28. Let Q Ď Nk`1 be a decidable predicate, then:

(1) Q1px⃗, yq ” @z ă y.Qpx⃗, zq

(2) Q2px⃗, yq ” Dz ă y.Qpx⃗, zq

are decidable.

Proof. (1) observe that XQ1
px⃗, yq “

ś

zăy XQpx⃗, zq

(2) observe that XQ2
px⃗, yq “ sgp

ř

zăy XQpx⃗, zqq

□

6.6. BOUNDED MINIMALISATION 35

6.6. Bounded minimalisation

Given a total function f : Nk`1 Ñ N, we define a function h : Nk`1 Ñ N as follows:

hpx⃗, yq “ µz ă y.fpx⃗, zq “

#

miniumum z ă y such that fpx⃗, zq “ 0 if it exists

y otherwise

Lemma 6.29. Let f : Nk`1 Ñ N total computable. Then also h : Nk Ñ N defined
by hpx⃗, yq “ µz ă y.fpx⃗, zq is (total) computable.

Proof. We observe that h can be defined as:

hpx⃗, yq “
ř

zăy

ś

wďz sgpfpx⃗, wqq

The product value is 1 on the intervals r0, zs in which f ‰ 0, i.e. if z0 is the min
z ă y where f is null, they’re equal to z0, therefore the external sum counts them.

Alternatively h can be defined directly through primitive recursion:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

hpx⃗, 0q “ 0

hpx⃗, y ` 1q “

$

’

&

’

%

hpx⃗, yq hpx⃗, yq ‰ y
#

y fpx⃗, yq “ 0

y ` 1 otherwise
otherwise

“ sgpy ´ hpx⃗, yqq ¨ hpx⃗, yq ` s̄gpy ´ hpx⃗, yqqpy ` sgpfpx⃗, yqqq

□

Lemma 6.30. The following functions are computable:

a) Dpxq “ number of divisors of x

b) Prpxq “

#

1 x is prime

0 otherwise
(x prime is decidable)

c) px = x-th prime number (convention: p0 “ 0, p1 “ 2, p2 “ 3 . . .)

d) pxqy “

#

exponent of py in the factorization of x x, y ą 0

0 x “ 0_ y “ 0

e.g. 72 “ 23 ¨ 32, p72q1 “ 3, p72q2 “ 2, p72q3 “ 0

Proof. a) Dpxq “
ř

yďx divpy, xq

b) Prpxq is 1 if x ą 1 and is divided only by 1 and itself

Prpxq “

#

1 Dpxq “ 2

0 otherwise

“ s̄gp|Dpxq ´ 2|q

c) Px can be defined by primitive recursion

P0 “ 0

Px`1 “ µz ď pPx!` 1q.s̄gpPzpzq ¨ XząPxpzqq

36 6. GENERATION OF COMPUTABLE FUNCTIONS

Certainly Px`1 ď Px!` 1, in fact, call p a prime in the decomposition of
px! ` 1, therefore p | px! ` 1, so p ą px, otherwise p | px! and therefore
p | 1. Thus px ă px`1 ď p.

d) Note that

pxqy “ max z.pzy | x “

“ min z.pz`2
y ∤ x

“ µz ď x.␣divpppyq
z`1, xq

□

6.6.1. Exercises. Prove that the following functions are computable:

‚ t
?
xu

t
?
xu “ maxy ď x.y2 ď x

“ min y ď x.py ` 1q2 ą x

µy ď x.ppx` 1q ´ py ` 1q2q

‚ lcmpx, yq

lcmpx, yq “ µz ď x ¨ y.px | z ^ y | zq

“ µz ď x ¨ y ¨ s̄gpdivpx, zq ¨ divpy, zqq

‚ GCDpx, yq

GCDpx, yq ď mintx, yu and it can be characterized using the minimum
number that can be subtracted to mintx, yu to obtain the divisor of x, y

GCDpx, yq ď minpx, yq ´ µz

ď minpx, yq.p1 ´ divpminpx, yq ´ z, xq ¨ divpminpx, yq ´ z, yqq

‚ number of prime divisors of x
ř

zďx prpzq ¨ divpz, xq

6.7. Encoding of pairs (and n-tuples)

Let’s see an encoding in N of pairs (and n-tuples) of natural numbers that will be
useful for some considerations on recursion. Define a pair encoding as

π : N2 Ñ N
πpx, yq “ 2xp2y ` 1q ´ 1

Notice that π is bijective and effective (computable).

The inverse can be characterized in terms of two computable functions that give
the first and second component of a natural number n seen as pair:

π´1 : NÑ N2

π´1pnq “ pπ1pnq, π2pnqq

6.7. ENCODING OF PAIRS (AND N-TUPLES) 37

where π1pnq “ pn` 1q1 and π2pnq “ p
n`1

2π1pnq
´ 1q{2.

It can be generalized to an encoding of n-tuples:

πn : Nn Ñ N

defining

π2 “ π

πn`1px⃗, yq “ πpπnpx⃗, yqq x⃗ P Nn, y P N

and then we can define the projections πn
j : NÑ Nn.

6.7.1. Considerations on recursion. The Fibonacci function is defined by:
#

fibp0q “ fibp1q “ 1

fibpn` 2q “ fibpnq ` fibpn` 1q

This is not exactly a definition by primitive recursion. Given that fpy`2q is defined
in terms of fpyq and fpy`1q, it does not completely adhere to the primitive recursion
schema.

We can show that f is computable by resorting to the encoding of pairs. Define:

g : NÑ N
gpyq “ πpfpyq, fpy ` 1qq

therefore g can be defined by primitive recursion:
#

gp0q “ πpfp0q, fp1qq “ πp1, 1q

gpy ` 1q “ πpfpy ` 1q, fpy ` 2qq “ πpπ2pgpyqq, π1pgpyqq ` π2pgpyqqq

so g is computable, by primitive recursion. Finally, fpyq “ π1pgpyqq is computable
by composition.

In general we could have a function f defined using k previous values
$

’

&

’

%

fp0q “ c0

fpk ´ 1q “ ck

fpy ` kq “ hpfpyq, . . . , fpy ` k ´ 1qq

with h : Nk Ñ N computable.

One can proceed like before and define

g : NÑ N

gpyq “ πkpfpyq, . . . , fpy ` k ´ 1qq

Then function g can be defined by primitive recursion
#

gp0q “ πkpc0, . . . , ck´1q

gpy ` 1q “ πkpfpy ` 1q, . . . , fpy ` k ´ 1q, fpy ` kqq

38 6. GENERATION OF COMPUTABLE FUNCTIONS

where

fpy ` 1q “ πk
2 pgpyqq

fpy ` k ´ 1q “ πk
kpgpyqq

fpy ` kq “ hpfpyq, . . . , fpy ` k ´ 1qq

“ hpπk
1 pgpyqq, . . . , π

k
kpgpyqqq

“ πkpπk
2 pgpyqq, . . . , π

k
kpgpyqq, hpπ

k
1 pgpyqq, . . . , π

k
kpgpyqqqq

g is computable, so fpyq “ π1pgpyqq is computable.

6.8. Unbounded minimalisation

Generalized composition and primitive recursion produce total functions when
starting from total functions. Another essential operator, which instead allows
to construct partial functions is the unbounded minimalisation operator.

It is similar to bounded minimalisation, but the search is not bounded and fpx⃗, yq
not necessarily total. It defines, informally, the following function:

µy.fpx⃗, yq “ minimum y s.t. fpx⃗, yq “ 0.

But there are two cases in which the definition has to be clarified:

(1) if there is no y s.t. fpx⃗, yq “ 0

(2) if before finding a y s.t. fpx⃗, yq “ 0, it happens that fpx⃗, zq Ò

In both cases the result of the minimalisation is undefined.

This is intuitive if we think about the obvious algorithm to compute the minimal-
isation: start from 0, fpx⃗, 0q “ 0? if yes then outp0q, otherwise fpx⃗, 1q “ 0? until
fpx⃗, yq “ 0.

Definition 6.31. Let f : Nk`1 Ñ N be a function. Then the function h : Nk Ñ N
defined through unbounded minimalisation is:

hpx⃗q “ µy.fpx⃗, yq “

$

’

&

’

%

least z s.t.

#

fpx⃗, zq “ 0

fpx⃗, zq Ó fpx⃗, z1q ‰ 0 for z ă z1

Ò otherwise, if such a z does not exist

Theorem 6.32 (Closure under minimalisation). Let f : Nk`1 Ñ N a computable
function (not necessarily total). Then h : Nk Ñ N defined by hpx⃗q “ µy.fpx⃗, yq is
computable.

Proof. Let F be a program in standard form for f .

Idea: for z “ 0, 1, 2, . . . we compute fpx⃗, zq until we find zero.

We need to save the argument x⃗ in a register Rm (m “ maxtρpF q, k ` 1u) such
that it is not used by the program F .

So the program for h is obtained as follows:

1 . . . k . . . m` 1 . . . m` k m` k ` 1
x⃗ x⃗ z

6.8. UNBOUNDED MINIMALISATION 39

T p1,m` 1q
. . .
T pk,m` kq

LOOP : F rm` 1, . . . ,m` k ` 1Ñ 1s // fpx⃗, zq Ñ R1

Jp1,m` k ` 2, ENDq //fpx⃗, zq “ 0?
Spm` k ` 1q // z “ z ` 1
Jp1, 1, LOOP q

END : T pm` k ` 1, 1q

□

Observation 6.33. Observe that F may not terminate, this is correct! The entire
program does not terminate and µ is undefined!

Observation 6.34. The unbounded minimalisation is nothing more than a while
loop implemented with goto.

Observation 6.35. The µ operator allows us to obtain non total functions start-
ing from total functions.

Example 6.36. Given fpx, yq “ |x´ y2|, we have that

µy.fpx, yq “

#?
x x is a perfect square

Ò otherwise

Exercise 6.37. Let f : NÑ N be computable, total and injective. The the inverse

f´1 “

#

y fpyq “ x

Ò Ey.fpyq “ x

is computable. In fact, in our hypothesis f´1pxq “ µy.|fpyq ´ x|.

Observation 6.38. Intuitively, when f is not total, to find f´1pxq we consider a
program P for f and execute it as follows:

‚ 0 steps of the program on argument 0

‚ 1 step on 0

‚ 0 steps on 1

‚ 2 steps on 0
. . .

in a dove-tail execution pattern.

Every time the program terminates in a certain number of steps k on argument
y, we check the output fpyq, if fpyq “ x we stop, otherwise we continue.

Exercise 6.39. Prove that the following function is computable.

fpx, yq “

#

x
y y ‰ 0^ y | z

Ò otherwise

Proof.

fpx, yq “ µz.p|yz ´ x| ` Xx“0^y“0px, yqq

□

40 6. GENERATION OF COMPUTABLE FUNCTIONS

Lemma 6.40. All finite functions (functions with finite domain) are computable.

Proof. Let θ : NÑ N a finite domain function

θ “ tpx1, y1q, . . . , pxn, ynqu

i.e.

θpxq “

$

’

’

’

&

’

’

’

%

y1 x “ x1

. . .

yn x “ xn

Ò otherwise

then

θpxq “
n

ÿ

i“1

yi ¨ s̄gp|x´ xiq ` µz.p
n

ź

i“1

|x´ xi|q

The minimalisation is needed only to make the function Ò when x ‰ x1, . . . , xn, it
is 0 otherwise. □

CHAPTER 7

Other approaches to computability

We already observed that the URM machine is just one of the many possible com-
putational models that allow us to formalize the notion of computable functions.

We could have used:

‚ Turing machine

‚ Canonical deduction systems of Post

‚ λ-calculus of Church

‚ Partial recursive functions of Gödel-Kleene

All of these approaches define the same class of computable functions, leading
to the

Church-Turing thesis: a function is computable through an effective procedure
if and only if it is URM-computable

Now, we introduce another formalism for the definition of computable functions,
the set R of partial recursive functions of Gödel-Kleene and prove that it is
equivalent to the URM, meaning it defines the same class of functions: R “ C.

7.1. Partially recursive functions

Definition 7.1 (Partially recursive functions). The classR of partially recursive
functions is the least class of partial functions on the natural numbers which
contains

(a) zero function;

(b) successor;

(c) projections

and closed under

(1) composition;

(2) primitive recursion;

(3) minimalisation.

We argue that the above is a well given definition.

Definition 7.2 (Rich class). A class of functions A is said to be rich if it includes
(a),(b) and (c) and it is closed under (1), (2) and (3).

41

42 7. OTHER APPROACHES TO COMPUTABILITY

R is rich and for all A, we have R Ď A

Remark 7.3. The property of being a rich class is closed under intersection:
let tAiuiPI a family of rich classes, then

Ş

iPI Ai rich.

Finally we observe that

Proposition 7.4. The set of the partially recursive functions can be characterised
as

R “
č

A rich

A

We can now prove the main result, showing that the class of URM-computable
functions coincides with the class of partial recursive functions.

Theorem 7.5. R “ C

Proof.
(R Ď C)
Just observe that C is a rich class, R is the smallest rich class, so this inclusion
trivially follows.

(C Ď R)
Let f : Nk Ñ N P C be a computable function. We have to show that f P R.

We know that there exists a URM program P such that f
pkq
P “ f .

Consider the following functions

‚ c1P : Nk`1 Ñ N with c1P px⃗, tq be the content of R1 after t steps of P px⃗q.
If P px⃗q terminates in less than t steps, c1P px⃗, tq gives the content of R1 in
the final configuration, i.e. the output of the function f ;

‚ jP : Nk`1 Ñ N with jP px⃗, tq be the instruction to be executed after t
steps of P px⃗q. If the program has already ended, then jP px⃗, tq “ 0.

Clearly c1p and jp are total functions.

Given x⃗ P Nk

‚ if fpx⃗q Ó then P px⃗q Ó in a number of steps t0 “ µt.jP px⃗, tq, so

fpx⃗q “ c1P px⃗, t0q “ c1P px⃗, µt.jP px⃗, tqq

‚ otherwise, if fpx⃗q Ò then P px⃗q Ò and µt.jP px⃗, tq Ò, and thus

fpx⃗q “ c1P px⃗, µt.jP px⃗, tqq Ò

therefore
fpx⃗q “ c1P px⃗, µt.jP px⃗, tqq @x⃗ P Nk

If we knew that c1P , jP P R then we could argue that f P R.

The idea of the proof is the following

‚ work on sequences encodings that represent the registers and program
counter configurations

7.1. PARTIALLY RECURSIVE FUNCTIONS 43

‚ manipulate such sequences with functions such as (px, qt,div, . . .) that
were built by:

– composition

– primitive recursion

in this way, we obtain c1P , jP through primitive recursion.

A register configuration in which a finite number of registers contains a value other
than 0 can be encoded in the following way:

c “
ź

iě1

prii “
k

ź

i“1

prii

such that
ri “ pxqi

Thus, using this encoding, we can consider a function cP : Nk`1 Ñ N, that provides
the (encoding of the) registers’ configuration after t steps of P px⃗q.

We define cP , jP by primitive recursion:

‚ base cases

cP px⃗, 0q “
k

ź

i“1

pxi
i

jP px⃗, 0q “ 1

‚ recursive cases
In order to simplify the notation, below let c “ cP px⃗, tq and j “ jP px⃗, tq.

cP px⃗, t` 1q “

$

’

’

’

&

’

’

’

%

qtpp
pcqn
n , cq if 1 ď j ď lpP q & Ij “ Zpnq

pn ¨ c if 1 ď j ď lpP q & Ij “ Spnq

qtpp
pcqn
n , cq ¨ p

pcqm
n if 1 ď j ď lpP q & Ij “ T pm,nq

c otherwise

jP px⃗, t` 1q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

j ` 1 if 1 ď j ă lpP q & Ij “ Zpnq, Spnq, T pm,nq

or Jpm,n, tq with pcqm ‰ pcqn

u if 1 ď j ď lpP q & Ij “ Jpm,n, uq

& pcqm “ pcqn & if 1 ď u ď lpP q

0 otherwise

thus cP , jP are in R. Hence also c1P is, since c1P px⃗, tq “ pcP px⃗, tqq1 for all x⃗ P Nk

and t P N. Therefore f , defined by composition and minimalisation of c1P and jP is
in R, as desired. □

CHAPTER 8

Primitive recursive functions

We define the primitive recursive functions as follows

Definition 8.1 (Primitive recursive functions). The class of primitive recursive
functions is the smallest class of functions PR containing

(a) zero function

(b) successor

(c) projections

and closed under

(1) composition

(2) primitive recursion

One reason of interest for PR is that primitive recursion intuitively corresponds to
bounded iteration, i.e., for loops constructs, while minimalisation corresponds to
unbounded iteration, i.e., while loops. This fact can be formalized by considerng
variant on the URM machine, with structured programs, where the jump instruction
is replaced by for and while loops. We’ll call this machine URMfor,while.

We can prove that this model has the same expressive power as the URM model,
i.e., the class Cfor,while coincides with C “ R. Instead the class Cfor of functions
computable using only the for construct coincides with PR.

Thus, studying the relation between R and PR corresponds to studying the re-
lation between the expressive power of for and while constructs. We know that
many “arithmetic” functions, like Prpxq, pxqy, qt,mcmpx, yq, x

y are in PR and PR
is closed under sum, product and minimalisation. This class is very ample, but
it does not contain all computable functions, in other words PR Ĺ R, because
PR functions are always total, since PR functions are obtainable from base total
functions by composition and primitive recursion.

One could still suppose that PR includes all the total recursive functions, in other
words if Tot is the set of all total functions: PR “ RX Tot [Hilbert, 1926].

This is false, i.e.,

PR Ĺ RX Tot

i.e., even if we restrain ourselves to total functions (programs that always termi-
nates), the while construct is essential.

45

46 8. PRIMITIVE RECURSIVE FUNCTIONS

8.1. Ackermann’s function

A function which witnesses the strict inclusion PR Ĺ R X Tot is the Ackermann
function which can be proved to be total computable and not primitive recursive.

The Ackermann’s function is ψ : N2 Ñ N defined as
$

’

&

’

%

ψp0, yq “ y ` 1

ψpx` 1, 0q “ ψpx, 1q

ψpx` 1, y ` 1q “ ψpx, ψpx` 1, yqq

This scheme uniquely determine a function, because the value ψpx, yq is always
defined based on smaller values of ψ itself. But what does smaller mean?

‚ in ψpx` 1, 0q “ ψpx, 1q the first argument diminishes.

‚ in ψpx ` 1, y ` 1q “ ψpx, ψpx ` 1, yqq at first we compute ψpx ` 1, yq
where the second argument diminishes and then ψpx, uq in which the first
argument u is, the first argument is smaller.

We can see that the arguments diminish in a lexicographical order on N2, i.e., in
pN2,ďlexq with px, yq ď px

1, y1q if px ă x1q ^ px “ x1 and y ď y1q and we can show
that pN2,ďlexq does not allow for infinite descending sequences

Definition 8.2 (Partially ordered set). A set D with a binary relation ď is a
partially ordered set (poset) pD,ďq if ď is a partial order, i.e., for all x, y, z P D, it
is

(1) reflexive: x ď x;

(2) antisymmetric: if x ď y and y ď x, then x “ y;

(3) transitive: if x ď y and y ď z, then x ď z.

Definition 8.3 (Well-founded poset). pD,ďq is well-founded if every non-empty
X Ď D has a minimal element d, i.e.

@d1 P X d1 ď dñ d1 “ d

Observation 8.4. pD,ďq is well-founded iff it does not allow for infinite descending
chains

d0 ą d1 ą d2 ą ¨ ¨ ¨ ą dn ą dn ` 1 . . .

This fact can be useful when dealing with termination problems. If we can conclude
that the set of configurations is well-founded, we simply need to prove that for
each step confi Ñ confi`1 and confi`1 ă confi to end our proof. This way our
computation descends a decreasing sequence of values, which is necessarily finite.

Looking back at the Ackermann function, the computation of ψ is based on the
computation of ψ with smaller values, at some point it will for sure reach the case
ψp0, yq “ y ` 1, terminating.

Example 8.5. pN2,ďlexq is well-founded. Let H ‰ X Ď N2 and define

x0 “ mintx | Dy P N.px, yq P Xu
y0 “ minty | px0, yq P Xu

8.1. ACKERMANN’S FUNCTION 47

then we can see that minX “ px0, y0q. (Actually, in this way we can prove that
the product of two well-ordered sets is well-ordered.)

Observation 8.6. ďlex is total.

Over the natural numbers we can prove the so-called complete induction principle:
if @n1 ă n . P pn1q implies P pnq then we can deduce that @n P N . P pnq. The
principle can be actually generalised to each well-founded poset D:

Definition 8.7 (Well-founded induction). Let pD,ďq be a well-founded poset and
let P pxq a property on elements of D. If for all d P D, assuming P pd1q for d1 ă d,
we can conclude that P pdq holds, then

@d P D.P pdq

Theorem 8.8. The Ackermann’s function ψ is total, i.e.

@px, yq P N2 ψpx, yq Ó

Proof. We proceed by well-founded induction on pN2,ďlexq. Let px, yq P N2,
assume

@px1, y1q ďlex px, yq . ψpx
1, y1q Ó

we want to prove ψpx1, y1q Ó. We have 3 cases:

‚ px “ 0q
ψp0, yq “ y ` 1 Ó

‚ px ą 0, y “ 0q
ψpx, 0q “ ψpx´1, 1q Ó for inductive hypothesis, since px´1, 1q ďlex px, 0q

‚ px ą 0, y ą 0q
ψpx, yq “ ψpx´1, ψpx, y´1qq where ψpx, y´1q Ó by inductive hypothesis.
Let u “ ψpx, y ´ 1q, so ψpx, yq “ ψpx´ 1, uq Ó by inductive hypothesis.

□

Exercise 8.9. Given a box with an arbitrary number of balls in it, each one with
a number in N, do the following:

‚ extract a ball;

‚ substitute the extracted ball with an arbitrary number of balls, each one
with a label lower than the extracted one.

Prove that this process always terminates.

Theorem 8.10. The Ackermann’s function ψ is computable, i.e.

ψ P C “ R

One could argue by using the Church-Turing thesis: the computation of ψpx, yq is
always reduced to the computation of ψ on smaller input values until we reach a
base case where the successor is used.

The above is unsatisfactory. A formal proof can be based on the notion of a valid
set. Intuitively a set S Ď N3 is considered valid if, for all px, y, zq P S, we have

48 8. PRIMITIVE RECURSIVE FUNCTIONS

‚ z “ ψpx, yq

‚ S contains all the triples needed to compute ψpx, yq

Example 8.11. ψp1, 1q “ ψp0, ψp1, 0qq “ ψp0, ψp0, 1qq “ ψp0, 2q “ 3

ñ S “ p1, 1, 3q, p0, 2, 3q, p1, 0, 2q, p0, 1, 2q

Formally:

Definition 8.12 (Valid set). Let S be a set of triples such that S Ď N3. We say
that S is valid if:

(1) p0, y, zq P S ñ z “ y ` 1

(2) px` 1, 0, zq P S ñ px, 1, zq P S

(3) px` 1, y ` 1, zq P S ñ Du . px` 1, y, uq P S ^ px, u, zq P S

We can prove that for every px, y, zq P N3 we have ψpx, yq “ z if and only if there
exists a valid finite set of triples S Ď N3 such that px, y, zq P S by complete
induction on px, yq, knowing that the validity of a set is preserved under union (left
as an exercise).

A triple px, y, zq can be encoded into an integer using the encoding function

π3 : N3 Ñ N pπ3
i : NÑ N are the projectionsq

In this way a set of triples becomes a set of natural numbers tx1, . . . , xnu that we
can encode injectively as the product

tx1, . . . , xnu ÞÑ px1
¨ ¨ ¨ ¨ ¨ pxn

Now given ν P N which represents a set of triples Sν we have that

px, y, zq P Sν ðñ divppπpx,y,zq, νq

and the predicate Valpνq ““ν encodes a set of valid tuples” is decidable.

In fact Valpνq is true if and only if:

‚ @i ď ν pνqi ď 1

‚ @ω ď ν divppω, νq

ñ

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

π1pωq “ 0 ñ π3pωq “ π2pωq ` 1

π1pωq ą 0 ñ

$

’

’

’

&

’

’

’

%

π2pωq “ 0 ñ πpπ1pωq, 0, π3pωqq P Sν

π2pωq ą 0 ñ Du ď ω s.t.

πpπ1pωq, π2pωq ´ 1, uq P Sω

πpπ1pωq ´ 1, u, zq P Sω

with associated characteristic function

χVal P PR

8.1. ACKERMANN’S FUNCTION 49

We can also verify that

Rpx, y, zq “

#

χValpωq if ω encodes some valid S that contains px, y, zq for some z

0 otherwise

“ χValpωq ¨ sgpω ` 1 9́ µz ď ω.divpPπpx,y,zq, ωq

Thus we can write the Ackermann function as

ψpx, yq “ µpz, yq ¨ sgpRpx, y, ωq ¨ divppπpx,y,zq, ωqq

Since it is computable,

ψ P R “ C

Theorem 8.13. The Ackermann’s function is not primitive recursive:

ψ R PR

Informal idea of the proof. The proof of the fact that ψ is not a primitive
recursive function is done by showing that ψ grows faster than every function in
PR. We already saw how we obtain

‚ sum from successor

‚ product from sum

‚ exponential from product

each one by nested primitive recursion.

The idea of the Ackermann function is that it won’t be possible to compute it with
a finite number of nested primitive recursions.

In fact, by calling

ψxpyq “ ψpx, yq

we have that

ψx`1pyq “ ψxpψx`1py ´ 1qq “ ψ2
xpψx`1py ´ 2qq “ ¨ ¨ ¨ “ ψy`1

x p1q

ψ0pyq “ y ` 1 “ succpxq

ψ1pyq “ ψy`1
0 p1q “ y ` 2

ψ2pyq “ ψy`1
1 p1q “ 2y ` 3

ψ3pyq “ ψy`1
2 p1q “ 2y`3 ´ 3

e.g.

ψ0p1q “ 2, ψ1p1q “ 3, ψ2p1q “ 5, ψ3p1q “ 13, . . .

Intuitively, if x grows so does the level of nesting in the functions, which is equivalent
to say that we need more nested for loops. Since x can grow to infinity and for

loops cannot be nested to infinity, a while loop is needed. More precisely, given
a function f : Nn Ñ N P PR and a program P computing f using only for-loops
(primitive recursion), if j is the maximum level of nesting of for-loops, then

fpx⃗q ă ψj`1pmaxtx1, . . . , xkuq

50 8. PRIMITIVE RECURSIVE FUNCTIONS

Now, assume ψ P PR, let j be the level of nesting of for-loops for computing ψ,
so

@px, yq . ψpx, yq ă ψj`1pmaxtx, yuq

Let x “ y “ j ` 1 big enough we have that

ψpj ` 1, j ` 1q ă ψj`1pj ` 1q “ ψpj ` 1, j ` 1q

which is absurd, so ψ R PR. □

Observation 8.14. Initially, Gödel and Kleene studied a class of functions R0

called µ-recursive. This class contained

a zero function

b successor

c projections

and was closed under

(1) composition;

(2) primitive recursion;

(3) minimization, restricted to the case in which the function that produces
is total.

R0 Ă R trivially holds, since:

‚ functions in R0 are total;

‚ some functions in R are partial.

Also
R0 Ď RX Tot

but is not obvious that the equality holds. In fact, a function f P RX Tot can be
total, but obtained through minimization of partial functions. For example:

fpx, yq “

$

’

&

’

%

x` 1 x ă y

0 x “ y

Ò x ą y

µy.fpx, yq “ λx.x

thus, fpx, yq is partial and µy.fpx, yq is total, then

µy.fpx, yq P R0

Theorem 8.15.
R0 “ RX Tot

Proof. pĎq trivial.

pĚq Let f P RX Tot, then f P C. We can observe that

fpx⃗q “ c1P px⃗, µt.jP px⃗, tqq

but c1P , jP are total, so f is total.

□

CHAPTER 9

Enumeration of programs

The objective here is to define an effective enumeration of URM programs and
URM-computable functions. These results will be fundamental for our theory, and
in particular to

‚ prove the existence of non computable functions

‚ the smn theorem

‚ the universal function/machine.

Definition 9.1 (Countable set). A is countable if |A| ď |N|, i.e. we have f : NÑ
A surjective. We say that f is an enumeration of X, because we can enumerate all
elements in X as

fp0q, fp1q, fp2q, . . .

An enumeration is without repetitions if it is injective (and thus bijective).

We will call effective those enumerations which are “intuitively”computable, but
the type does not allow to talk formally about their computability. Note that we
will argue about effectiveness by showing that they are built using components
which are formally computable and we will only use in proofs the computability of
these components.

Lemma 9.2. There are effective bijective enumerations of

(1) N2

(2) N3

(3)
Ť

kě1 Nk

Proof. (1) we already saw that

π : N2 Ñ N
πpx, yq “ 2xp2y ` 1q ´ 1

is computable with inverse

π´1 : NÑ N2

π´1pxq “ pπ1pxq, π2pxqq

where π1, π2 : NÑ N
π1pnq “ pn` 1q1

π2pnq “

ˆˆ

n` 1

2π1pnq

˙

´ 1

˙

51

52 9. ENUMERATION OF PROGRAMS

are computable.

(2) consider

ν : N3 Ñ N
νpx, y, zq “ πpπpx, yq, zq

with inverse built upon projections

ν´1 : NÑ N3

ν´1pxq “ pν1pxq, ν2pxq, ν3pxqq

with ν1, ν2, ν3 are computable.

(3) The following tuple encoding

τ :
ď

kě1

Nk Ñ N

τpx1, . . . , xkq “
k

ź

i“1

pxi
i ´ 1

does not work, since it is not injective. The idea is that we can increment
the last component, in this way

τpx1, . . . , xkq “

˜

k´1
ź

i“1

pxi
i

¸

¨ pxk`1
k ´ 2

with inverse τ´1 : NÑ
Ť

kě1 Nk defined out of the following functions:

‚ l : NÑ N
lpnq “ maxtk : divppk, px` 2qq “ 1u “ x´ µph ď xq . sgpdivppx´h, px` 2qqq

‚ a : N2 Ñ N

apn, iq “

#

pn` 2qi i “ 1, . . . , ℓpxq ´ 1

pn` 2qi ´ 1 i “ ℓpxq

An alternative encoding is the following

‚ τpx1, . . . , xkq “ πp
śk

i“1 p
ai
i , kq

‚ lpnq “ π2pnq

‚ apn, iq “ pπ1pnqqi

□

Theorem 9.3. Let P the set of all URM programs. Then there exists an effective
bijective enumeration of P.

γ : P Ñ N

Proof. Let F the set of all URM instructions. First, we’ll prove that there
exists

β : F Ñ N
a bijective effective correspondence. The idea is to use the enumeration of pairs
and triples, sending

9. ENUMERATION OF PROGRAMS 53

‚ Zpnq instructions to multiples of 4

‚ Spnq instructions to numbers congruent 1 mod 4

‚ T pm,nq instructions to numbers congruent 2 mod 4

‚ Jpm,n, tq instructions to numbers congruent 3 mod 4

Concretely
$

’

’

’

&

’

’

’

%

βpZpnqq “ 4 ˚ pn´ 1q

βpSpnqq “ 4 ˚ pn´ 1q ` 1

βpT pm,nqq “ 4 ˚ πpm´ 1, n´ 1q ` 2

βpJpm,n, tqq “ 4 ˚ νpm´ 1, n´ 1, t´ 1q ` 3

with inverse β´1 : NÑ F such that, let r “ rmp4, xq and q “ qtp4, xq,

β´1pxq “

$

’

’

’

&

’

’

’

%

Zpq ` 1q if r “ 0

Spq ` 1q if r “ 1

T pπ1pqq ` 1, π2pqq ` 1q if r “ 2

Jpν1pqq ` 1, ν2pqq ` 1, ν3pqq ` 1q if r “ 3

so both β and β´1 are effective. Now γ : P Ñ N can be defined as follows: if
P “ I1 . . . Is, then

γpP q “ τpβpI1q, . . . , βpIsqq

with inverse γ´1pxq “ P “ I1 . . . Ilpxq, where Ii “ β´1papn, iqq. Thus, γ is bijec-

tive because is composition of bijective functions. Since γ, γ´1 are effective, P is
effectively denumerable. □

Definition 9.4 (Gödel number). Given P P P the value γpP q is called code (or
Gödel number) of P . Usually we’ll write Pn to represent γ´1pnq, the nth program
of the enumeration.

Observation 9.5. From now on we will consider a fixed enumeration γ of programs,
which determines the meaning of Pn. This fixed enumeration can be defined in
various ways, but we need to fix one, in a way that:

‚ given a program P we can compute in an effective way its code γpP q;

‚ given a number it is possible to find the nth program Pn “ γ´1pnq.

Example 9.6. Let us consider the program P

T p1, 2q

Sp2q

T p2, 1q

encoded by

βpT p1, 2qq “ 4 ˚ πp1´ 1, 2´ 1q ` 2 “ 4 ˚ πp0, 1q ` 2 “ 10

βpSp2qq “ 4 ˚ p2´ 1q ` 1 “ 5

βpT p2, 1qq “ 4 ˚ πp2´ 1, 1´ 1q ` 2 “ 4 ˚ πp1, 0q ` 2 “ 6

54 9. ENUMERATION OF PROGRAMS

then

γpP q “ τp10, 5, 6q

“ p101 ¨ p52 ¨ p
6`1
3 ´ 2

“ 210 ¨ 35 ¨ 57 ´ 2

“ 19439999998

What does this program compute? λx.x` 1.

The program P 1 : Sp1q computes the same function. In this case the encoding is

βpSp1qq “ 4 ˚ p1´ 1q ` 1 “ 1

and so

γpP 1q “ τp1q “ 21`1 ´ 2 “ 2

Example 9.7. Show what P100 “ γ´1p100q is.

We observe that

100` 2 “ 21 ˚ 31 ˚ 171 “ p11 ¨ p
1
2 ¨ p

1
3 ¨ p

0
4 ¨ p

0
5 ¨ p

0
6 ¨ p

1
7

hence the program contains 7 instructions:

β´1p1q Ñ Sp1q

β´1p1q Ñ Sp1q

β´1p0q Ñ Zp1q

β´1p0q Ñ Zp1q

β´1p0q Ñ Zp1q

β´1p0q Ñ Zp1q

β´1p0q Ñ Zp1q

Clearly, an enumeration of URM programs induces an enumeration of computable
functions

Definition 9.8. For a fixed an effective enumeration γ : P Ñ N we define:

1. φ
pkq
n : the function of k arguments (k-ary function) computed by the pro-

gram Pn “ γ´1pnq (with the notation presently introduced: φ
pkq
n “ f

pkq
Pn

)

2. W
pkq
n “ dompφ

pkq
n q Ď Nk

3. E
pkq
n “ codpφ

pkq
n q Ď N

usually if k “ 1, it is omitted. φn “ φ
p1q
n

Observation 9.9. The function

φpkq : NÑ Cpkq

n ÞÑ φpkqn

9. ENUMERATION OF PROGRAMS 55

is obviously surjective (each computable function is computed by a program!), and
so Cpkq is countable:

|Cpkq| “ |N|

Actually, from the existence of a surjective function NÑ C it follows that |Cpkq| ď
|N|. Equality |Cpkq| ě |N| derives from the observation that there are infinitely
many computable functions, for example constants λx1 . . . xk.c.

Clearly φpkq : NÑ Cpkq is not injective. In fact, for each computable function there
are infinitely many programs that compute it

@f P C |pφpkqq´1pfq| “ |N|

which means φ
pkq
0 , φ

pkq
1 , φ

pkq
2 , . . . is an enumeration of C with infinitely many repe-

titions. An enumeration without repetitions can be defined as:

χp0q “ 0

χpn` 1q “ µz . pφz R tφχp0q, . . . , φχpnquq

which raises the enumeration φχp0q, φχp1q, φχp2q, . . . but this enumeration is highly
ineffective.

It can be proved that there exists h : N Ñ N total and computable such that
φhp0q, φhp1q, φhp2q, . . . is an enumeration without repetitions [Fri58]. However, enu-
merations with repetitions are sufficient for us.

Theorem 9.10 (|C| “ |N|). The class C of computable functions is countable.

Proof.
C “

ď

kě1

Cpkq

Since the union of countable sets is countable, C is countable. □

Observation 9.11. From now on we will implicitly use the enumeration of pro-

grams γ. The meaning of φ
pkq
n ,W

pkq
n , E

pkq
n is fixed and determined starting from

γ.

CHAPTER 10

Cantor diagonalization technique

Roughly speaking, the diagonalization technique allows one to build an object that
differs from a (countable) infinity of similar objects. The idea behind is: given an
countable set of objects tx1, x2, x3, . . . u we can build another object x of the same
nature of the xn’s, but different from all of them by making it “differ from xn on
n”.

This is the original method used by Cantor, one of the founding fathers of set
theory, to prove that there are various “degrees of infinity” (observing that the
powerset 2X of a set A always has cardinality strictly larger than the cardinality of
X).

We provide a proof in the specific case of the natural numbers.

Proposition 10.1. |N| ă |2N|

Proof. By contradiction |N| ě |2N|, i.e. |2N| countable. This means that there
exists an enumeration of 2N: x0, x1, x2, . . .

Consider

X0 X1 X2 . . .
0 ? NO . . .
1 NO ? YES

2 YES NO ?
...

We can defineD “ ti | i R Xiu Ď N which “differs fromXi on i” element. Obviously
D P 2N which means that there exists k such that D “ Xk. But is k in D?

k P D ñ k R Xk “ D

k R D ñ k P Xk “ D

which is absurd. Therefore |N| ă |2N|. □

Example 10.2. Consider NÑ N “ tf | f : NÑ Nu, we have

|NÑ N| ą |N|

Proof. There are two approaches to proceed

57

58 10. CANTOR DIAGONALIZATION TECHNIQUE

(1) Define

NÑ 2 “ tf | f : NÑ N total ,@x fpxq P t0, 1uu Ď NÑ N

Note that there is a bijection between NÑ 2 and 2N and thus

|NÑ N| ě |NÑ 2| ą |N|

(2) Let f1, f2, f3, . . . be an enumeration of elements in NÑ N and consider

f0 f1 f2 . . .
0 f0p0q
1 . . . f1p1q . . .
2 f2p2q
...

We can define a function f that differs from every other function by con-
sidering the diagonal and systematically changimg it:

fpiq “

#

0 if fipiq Ò

Ò if fipiq Ó

In this way

@i f ‰ fi since fpiq ‰ fipiq

Hence no enumeration of functions in NÑ N can include the whole NÑ
N, which is this not countable.

□

Corollary 10.3. The set C̄ “ tf : NÑ N | f not computableu is not countable.

Proof. We know that |C| “ |N|. If C̄ were countable, then N Ñ N “ C Y C̄
would be countable, which is absurd for the previous corollary. □

Observation 10.4. There exists a total non-computable function f : N Ñ N
defined by

fpnq “

#

φnpnq ` 1 if φnpnq Ó

0 if φnpnq Ò

f is not computable because it differs from all computable functions. In fact

‚ if φnpnq Ó, then fpnq “ φnpnq ` 1 ‰ φnpnq

‚ if φnpnq Ò, then fpnq “ 0 ‰ φnpnq

so

@n f ‰ φn

Observation 10.5. There are infinitely many total non-computable functions of
the following shape

fpnq “

#

φnpnq ` k n PWn

k n RWn

10. CANTOR DIAGONALIZATION TECHNIQUE 59

Exercise 10.6. Let f : N Ñ N, m P N. Show that there exists a non-computable
function g : NÑ N such that

gpxq “ fpxq @x ă m

Idea: use a “translated diagonal”:

gpxq “

$

’

&

’

%

fpxq x ă m

φx´mpxq ` 1 x ě m and x PWx´m

0 x ě m and x RWx´m

g is not computable since gpx`mq ‰ φxpx`mq for all x, so

@x g ‰ φx

Another approach is to define g in the following way

gpxq “

$

’

&

’

%

fpxq x ă m

φxpxq ` 1 x ě m and x PWx

0 x ě m and x RWx

because each function appears infinitely many times in the enumeration, and skip-
ping the first m´ 1 steps does not create any problem. Formally

@x ě m g ‰ φx

so for all y

@y Dx ě m φy “ φx

thus

@y φy ‰ g

then g is not computable.

Exercise 10.7. Given a family of functions tfiuiPN with fi : N Ñ N, construct
g : NÑ N such that dompgq ‰ dompfiq for all i P N

Idea:

gpnq “

#

0 if n R dompfnq

Ò if n P dompfnq

In this way

@n n P dompgq ô n R dompfnq

Exercise 10.8. Define a non-computable total function that returns 0 when the
input is even

Idea:

fpxq “

$

’

&

’

%

0 x is even

φ x´1
2
pxq ` 1 x is odd, and x PW x´1

2

0 x is odd, and x RW x´1
2

it is total not computable. In fact

‚ if 2n` 1 PWn ñ fp2n` 1q “ φnp2n` 1q ` 1 ‰ φnp2n` 1q

‚ if 2n` 1 RWn ñ fp2n` 1q “ 0 ‰ φnp2n` 1q Ò

60 10. CANTOR DIAGONALIZATION TECHNIQUE

so
@n fp2n` 1q ‰ φnp2n` 1q

CHAPTER 11

Parametrisation theorem

We start by giving an intuition on what the theorem is about. Let f : N2 Ñ N be
a computable function. Then there exists e P N such that

fpx, yq “ φp2qe px, yq

Now, if we fix the first argument to some value x P N, we obtain a function of a
single argument fx : NÑ N

fxpyq “ fpx, yq “ φp2qe px, yq

and for all x P N, fx is computable (since it is obtained as composition of com-
putable functions). This means that there exists a d P N such that

fx “ φd

in other words, for all y P N

fxpyq “ φp2qe px, yq “ φdpyq

Clearly d depends on e and x. Thus there is a total function s : N2 Ñ N such that

spe, xq “ d

i.e., for all e, x, y P N it holds φ
p2q
e px, yq “ φspe,xqpyq.

The smn theorem additionally tells us that s is computable.

Intuitively, how can we compute spe, xq?

‚ get the program Pe “ γ´1peq that computes φ
p2q
e px, yq

‚ get the program that computes fx “ λy . fpx, yq with fixed x, from Pe:

– move y to R2;

– write x on R1;

– execute Pe

‚ take the code of the obtained program

Functions on indices, like s, are functions that transform programs. The smn
theorem states that the operation of fixing an argument of a program is effective.

Example 11.1. Consider the computable function

fpx, yq “ xy

61

62 11. PARAMETRISATION THEOREM

We know that there is an index such that φd “ fx, i.e.,

φdpx, yq “ fpx, yq “ xy

So, when x varies we obtain computable functions

f0pyq “ y0 “ 1 with index spe, 0q

f1pyq “ y1 “ y with index spe, 1q

f2pyq “ y2 with index spe, 2q

. . .

by smn theorem we can determine those indices in an effective way.

In its general form, the theorem works for functions of the form fpx⃗, y⃗q : Nm`n Ñ N
whence the name.

11.1. smn Theorem

Theorem 11.2 (smn theorem). Given m,n ě 1 there is a computable total function

sm,n : Nm`1 Ñ N

such that @e P N, x⃗ P Nm, y⃗ P Nn

φpm`nq
e px⃗, y⃗q “ φ

pnq
sm,npe,x⃗q

py⃗q

Proof. Intuitively, given e P N, x⃗ P Nm

‚ we get the program Pe “ γ´1peq in standard form that computes φ
pm`nq
e ,

so starting from

x⃗ y⃗ 0 0 . . . it computes φpm`nq
e px⃗, y⃗q

‚ from Pe we can build a new program P 1. Starting from

y⃗ 0 0 . . . it computes φpm`nq
e px⃗, y⃗q

In fact, it is sufficient to

‚ move y⃗ forward of m registers

‚ load x⃗ in the free m registers

‚ execute Pe

The program P 1 can be

11.1. SMN THEOREM 63

T pn,m` nq
. . .
T p1,m` 1q

zp1q
sp1q
. . . // x1 times

sp1q

...
zpmq
spmq
. . . // xm times

spmq

Pe

where concatenation has to update all the jump instructions in Pe, Jpm
1, n1, tq ù

Jpm1, n1, t`m` n`
řm

i“1 xiq

Once P has been built, we have

spe, x⃗q “ γpP 1q

Each function and construction method used are effective (so are γ, γ´1). Thus,
the existence, totality and computability of s are informally proven.

The formal proof of computability is long, but not difficult. We next provide just
some hints. We first discuss how to define some auxiliary functions and then we
use them to construct the smn-function.

Update function. Consider

upd : N2 Ñ N

where updpe, hq is the code of a program obtained from Pe “ γ´1peq by updating
each jump instruction Jpm,n, tq to Jpm,n, t` hq.

It is useful to define an auxiliary function that works on each single instruction
encoded with β

Ąupd : N2 Ñ N

where Ąupdpi, hq is the code of the instruction β´1piq, updated when it is a jump
instruction.

Given i, h P N and q “ qtp4, iq, r “ rmp4, iq it is formally defined in this way

Ąupdpi, hq “

#

4 ˚ νpν1pqq, ν2pqq, ν3pqq ` hq ` 3 r “ 3

i r ‰ 3

“ sgpr ´ 3q ¨ i` s̄gpr ´ 3q ¨ p4 ˚ νpν1pqq, ν2pqq, ν3pqq ` hq ` 3q

64 11. PARAMETRISATION THEOREM

Now

updpe, tq “ τpĄupdpape, 1q, hq, . . . , Ąupdpape, lpeqq, hqq

“

¨

˝

lpeq´1
ź

i“1

p
Ąupdpape,iq,hq
i

˛

‚¨ p
Ąupdpape,lpeqq,hq`1
lpeq ´ 2

Concatenation of sequences. We will need a function

c : N2 Ñ N

to concatenate sequences

cpe1, e2q “ τpape1, 1q, . . . , ape1, lpe1qq, ape2, 1q, . . . , ape2, epe2qqq “

“

lpe1q
ź

i“1

p
ape1,iq
i ¨

lpe2q´1
ź

j“1

p
ape1,jq
lpe1q`j ¨ p

ape2,lpe2q`1
lpe1q`lpe2q

´ 2

Concatenation of programs.

seq : N2 Ñ N

where

seqpe1, e2q “ γ

ˆ

Pe1

Pe2

˙

“ cpe1, updpe2, lpe2qqq

Transfer. Shift registers R1, . . .Rm of n positions forward

transf : N2 Ñ N

where

transf pm,nq “ γpT pr1, ns, rm` 1,m` nsqq

“ τpβpT p1,m` 1qq, . . . , βpT pn, n`mqqq

“

n´1
ź

i“1

p
βpT pi,m`iq
i ¨ pβpT pn,m`nq`1

n ´ 2

“

n´1
ź

i“1

p
4˚πpi´1,m`i´1q
i ¨ pπpn´1,m`n´1q`1

n ´ 2

Set. Set a register Ri to a value x

set : N2 Ñ N

11.1. SMN THEOREM 65

setpi, xq “ γ

¨

˚

˚

˚

˝

zpiq
spiq
...

spiq

˛

‹

‹

‹

‚

“ τpβpzpiqq, βpspiqq, . . . , βpspiqqq

“ p
βpZp1qq
1 ¨

x´1
ź

i“1

p
βpSpiq
i`1 ¨ p

βpSpiqq`1
x`1 ´ 2

“ p
4˚pi´1q
1 ¨

x´1
ź

i“1

p
4˚pi´1q`1
i`1 ¨ p

4˚pi´1q`2
x`1 ´ 2

Proof of the fact that the smn function is computable We can now conclude that
the smn-function is computable by composition. Just define:

prefm,n : Nm Ñ N

where

prefm,npx⃗q “ seqptransf pm,nq, seqpsetp1, x1q, . . . , seqp. . . , setpm,xmqqq . . .q

Then we have that

sm,n : Nm`1 Ñ N

sm,npe, x⃗q “ seqpprefm,npx⃗q, eq

which is in PR □

Observation 11.3. The proof above proves that the smn-function is not only
computable and total, but also primitive recursive.

The theorem is usually presented in the following simpler shape.

Corollary 11.4 (Simplified smn theorem). Let f : Nm`n Ñ N be a computable
function. There exists a total computable function s : Nm Ñ N such that

fpx⃗, y⃗q “ φ
pnq
spx⃗qpy⃗q @x P Nm @y P Nn

Proof. Since f is computable, given e P N and spx⃗q “ sm,npe, x⃗q

fpx⃗, y⃗q “ φpm`nq
e px⃗, y⃗q

“ φ
pnq
sm,npe,x⃗q

py⃗q

“ φ
pnq
spx⃗qpy⃗q

□

66 11. PARAMETRISATION THEOREM

11.1.1. The smn theorem at work.

Example 11.5. Prove that there exists a total computable function k : N Ñ N
such that for all n, x P N

φkpnqpxq “ t n
?
xu

This means that φk is an enumeration of functions of the form t n
?
xu. To put it

differently, φk is a function that given n, it returns the program that computes
t n
?
xu.

Proof. We define f : N2 Ñ N
fpn, xq “ t n

?
xu “ µy ď x “py ` 1qn ą x”

“ µy ď x . px` 1 ´ py ` 1qnq

The function f is computable because it is a bounded minimalisation of a compo-
sition of known computable functions. By the smn-theorem (Corollary 11.4), there
exists k : NÑ N total computable such that for all n, x P N

φkpnqpxq “ fpn, xq “ t n
?
xu

□

Example 11.6. There exists k : N Ñ N computable and total such that for all
n P N, φkpnq is defined only on nth powers, i.e.

Wkpnq “ t x | Dy P N . x “ yn u

Proof. We define f : N2 Ñ N as

fpn, xq “

#

n
?
x if Dy P N . x “ yn

Ò otherwise

“ µy . |yn ´ x|

It is computable. By the smn-theorem (Corollary 11.4), there exists k : N Ñ N
total computable such that for all n, x P N

φkpnqpxq “ fpn, xq

We claim
Wkpnq “ t x | Dy P N . x “ yn u

in fact, x PWkpnq iff φkpnqpxq Ó iff fpn, xq Ó iff x is a nth power. □

Exercise 11.7. Prove that there exists a function s : N Ñ N which is total and
computable such that

W
pkq
spxq “ tpy1, . . . , ykq |

k
ÿ

i“1

yi “ xqu

Idea: Define

fpx, y⃗q “

#

0
řk

i“1 yi “ x

Ò otherwise

“ µz .

ˇ

ˇ

ˇ

ˇ

ˇ

˜

k
ÿ

i“1

yi

¸

´ x

ˇ

ˇ

ˇ

ˇ

ˇ

11.1. SMN THEOREM 67

and then use the smn theorem to conclude.

CHAPTER 12

Universal Function

We now discuss how the theory developed up to now allows us to prove the com-
putability of a universal function, i.e., a function which, roughly speaking, embodies
every computable function of a given arity.

For instance, for arity 1, the universal function is ΨU : N2 Ñ N

ΨU px, yq “ φepyq

It captures all unary computable functions φ0, φ1, φ2, In fact, for all e P N

gpyq “ ΨU pe, yq “ φepyq ù g “ φe

so ΨU represents all the computable functions of the form NÑ N.

More generally, we have the following defition.

Definition 12.1. The universal function for k-ary functions (with k ě 1) is defined
as

Ψ
pkq
U : Nk`1 Ñ N

ΨU pe, x⃗q “ φpkqe px⃗q

The fact that it is computable means that there is a program PU which is able
to reproduce the behaviour of all programs of a fixed arity k (the Universal Com-
puter [Dav11]). While on the one hand this could seem strange and surprising, if
we look at it closely, such a program receives in input

‚ e (the index of the program, a description of the program Pe to run)

‚ x⃗ the arguments

hence it is an object which is quite familiar to computer scientists, i.e., an inter-
preter.

Theorem 12.2. The universal function Ψ
pkq
U is computable.

Proof. Fixed k ě 1, e P N and x⃗ P Nk we want ΨU pe, x⃗q “ φ
pkq
e px⃗q.

Idea:

‚ get the program Pe “ γ´1peq;

‚ execute Pe on input x⃗;

‚ if Pepx⃗q Ó, the value ΨU pe, x⃗q is in R1, otherwise the program correctly
diverges.

69

70 12. UNIVERSAL FUNCTION

All operations involved are effective, hence, by Church-Turing thesis, the function

Ψ
pkq
U is computable.

The above argument is too informal and vague to be satisfactory. We next hint at
the formal proof.

We need to encode the content of the memory. Consider

r1 r2 r3 0 . . .

the configuration of registers is given by

c “
ź

iě1

prii

From the encoding we can obtain the value of each register as ri “ pcqi.

Then we show that we can simulate the execution steps of a program by using only
computable functions. More precisely we define the following functions:

‚ ck : Nk`2 Ñ N

ckpe, x⃗, tq “

$

’

&

’

%

configuration after t steps of Pepx⃗q,
if Pe does not halt on x⃗ in t or fewer steps;

final configuration, if Pepx⃗q halts in t or fewer steps.

‚ jk : Nk`2 Ñ N

jkpe, x⃗, tq “

$

’

&

’

%

number of the instruction to be executed after t steps of Pepx⃗q,
if Pe does not halt on x⃗ in t or fewer steps;

0, Pepx⃗q halts in t or fewer steps.

Now observe that

‚ if Pepx⃗q Ó, then it halts in µt.jkpe, x⃗, tq steps, so

φpkqe px⃗q “ pckpe, x⃗, µt.jkpe, x⃗, tqqq1

‚ if Pepx⃗q Ò, then µt . jkpe, x⃗, tq Ò, hence

φpkqe px⃗q Ò“ pckpe, x⃗, µt.jkpe, x⃗, tqqq1

Hence in all cases

ΨU pe, x⃗q “ φpkqe px⃗q “ pckpe, x⃗, µt.jkpe, x⃗, tqqq1

Therefore, if we prove that ck, jk are computable, we can conclude that Ψ
pkq
U is also

computable.

We proceed in the same way we did in the proof of Theorem 7.5, by proving that
ck, jk P PR (in fact, computability of ck, jk proved here implies the computatbility
of cP , jP with a fixed program P , as needed in the proof of Theorem 7.5).

We build these function out of smaller components:

12. UNIVERSAL FUNCTION 71

(a) Arguments of an instruction
Given i P N instruction code pi “ βpInstructionqq

Zargpiq “ qtp4, iq ` 1

Sargpiq “ qtp4, iq ` 1

Targh
piq “ πhpqtp4, iqq ` 1 h P t1, 2u

Jargh
piq “ νhpqtp4, iqq ` 1 h P t1, 2, 3u

(b) Effect of executing an algebraic instruction on a configuration

zeropc, nq “ qtpppcqnn , cq

succpc, nq “ pn ¨ c

transfpc,m, nq “ ppcqmn ¨ zeropc, nq

(c) Effect on the configuration of registers of the execution of the instruction
with code i

changepc, iq “

$

’

’

’

&

’

’

’

%

zeropc, Zargpiqq rmp4, iq “ 0

succpc, Sargpiqq rmp4, iq “ 1

transfpc, Targ1
piq, Targ2

piqq rmp4, iq “ 2

c rmp4, iq “ 3

(d) Configuration of the registers starting from c, after executing instruction
t of program Pe

nextconfpe, c, tq “

#

changepc, ape, tqq 1 ď t ď ℓpeq

c otherwise

(e) Number of next instruction if we execute i “ βpInstructionq and this is in
position t of the program

nipc, i, tq “

#

t` 1 rmp4, iq ‰ 3_ prmp4, iq “ 3^ pcqJarg1
piq ‰ pcqJarg2

piqq

Jarg3
piq otherwise

(f) next instruction, if we execute instruction t in a program Pe starting from
configuration c

nextinstrpe, c, tq “

#

nipc, ape, tq, tq 1 ď t ď ℓpeq ^ 1 ď nipc, ape, tq, tq ď ℓpeq

0 otherwise

Now

ckpe, x⃗, 0q “
k

ź

i“1

pxi
i

jkpe, x⃗, 0q “ 1

ckpe, x⃗, t` 1q “ nextconfpe, ckpe, x⃗, tq, jkpe, x⃗, tqq

jkpe, x⃗, t` 1q “ nextinstrpe, ckpe, x⃗, tq, jkpe, x⃗, tqq

72 12. UNIVERSAL FUNCTION

they are defined by primitive recursion of computable functions, therefore ck, jj are
computable (actually, since all the involved functions are PR they also are in PR).
Thus,

ΨU pe, x⃗q “ pckpe, x⃗, µt . jkpe, x⃗, tqqq1

is computable. □

As a corollary, we obtain the decidability of two predicates that will be really useful
in the next chapters.

Corollary 12.3. The following predicates are decidable:

(a) Hkpe, x⃗, tq ” “Pepx⃗q Ó in t or less steps”

(b) Skpe, x⃗, y, tq ” “Pepx⃗q Ó y in t or less steps”

Proof. (a) The characteristic function

χHk
pe, x⃗, tq “

#

1 if Hkpe, x⃗, tq

0 otherwise

“ sgpjkpe, x⃗, tqq

it is computable by composition.

(b) The characteristic function

χSk
pe, x⃗, y, tq “ χHk

pe, x⃗, tq ¨ sgp|pckpe, x⃗, tqq1 ´ y|q

it is computable by composition.

□

If k “ 1 we will usually omit it.

Also, from the theorem we deduce the possibility to express every computable
function in Kleene Normal Form (KNF).

Corollary 12.4 (Kleene Normal Form). For every e, k P N and x P Nk

φpkqe pxq “ pµz . |χSk
pe, x⃗, pzq1, pzq2q ´ 1|q1

Observation 12.5. i. This corollary highlights that each computable func-
tion can be obtained from primitive recursion functions using minimi-
malisation at most once (we need to use while statements, but one is
sufficient).

ii. Minimixmalisation allows us to “search” a single value that has a cer-
tain property. The one we used is a technique to search pairs of values
generalizable to tuples.

12.1. APPLICATIONS 73

12.1. Applications

We observed that if f : NÑ N is a total computable injective function, then

f´1pyq “

#

x if exists y s.t. fpxq “ y

Ò otherwise

is computable since f´1 “ µx . |fpxq ´ y|. The hypothesis of totality can be
omitted.

Exercise 12.6. Let f : N Ñ N computable and injective. Then f´1 : N Ñ N is
computable.

Proof. Since f is computable, there exists e P N such that φe “ f . Now it is
sufficient to observe that

f´1pyq “ pµw . |χSpe, pwq1, x, pwq2q ´ 1|q1

□

We can also identify other non-computable functions and undecidable predicates:

Exercise 12.7. The statement “φx is total” is undecidable

Proof. Let Totpxq be the predicate

Totpxq ” “φx is total”

and assume that it is decidable. Define

fpxq “

#

φxpxq ` 1 φx total

0 otherwise

it is total. For every x if φx is total, then φx ‰ f , since

fpxq “ φxpxq ` 1 ‰ φxpxq

so f it is not computable. But we can write fpxq as

fpxq “ pµw.pSpx, x, pwq1, pwq2qq ^ Totpxq ^ pwq3 “ pwq2 ` 1q

_ppwq3 “ 0^␣Totpxqq

i.e., as the minimalisation and composition of computable functions, which would
imply that it is computable. Absurd. □

Observation 12.8 (Halting problem). The same technique applies to prove that
the following predicates are undecidable:

‚ P1pxq ” “x PWx” ” “φxpxq Ó ”

‚ P2px, yq ” “y PWx” ” “φxpyq Ó ”

74 12. UNIVERSAL FUNCTION

12.2. Effective operations on computable functions

The existence of the universal function, together with the smn theorem allows us
to formalise operations that manipulate programs and derive their effectiveness.

Proposition 12.9 (Effectiveness of product). There exists a function s : N2 Ñ N
total and computable such that for every x, y P N

φspx,yq “ φx ¨ φy

Proof. We define a function g : N3 Ñ N

gpx, y, zq “ φxpzq ¨ φypzq

“ ΨU px, zq ¨ΨU py, zq

it is computable since it arises as composition of computable functions. By the smn
theorem there exists s : N2 Ñ N total computable such that for every x, y, z

φspx,yqpzq “ gpx, y, zq “ φxpzq ¨ φypzq

thus

φspx,yq “ φx ¨ φy

□

Proposition 12.10 (Effectiveness of squaring). There exists k : N Ñ N total and
computable such that, for every x P N,

φkpxq “ φ2
x

Proof. kpxq “ spx, xq □

Proposition 12.11 (Effectiveness of primitive recursion). Recall the notion of
primitive recursion

hpx⃗, 0q “ fpx⃗q

hpx⃗, y ` 1q “ gpx⃗, y, fpx⃗, yqq

We know that if f, g are computable then h is computable. We can derive that there

exists r : N2 Ñ N total computable such that, if f “ φ
pkq
e1 and g “ φ

pk`2q
e2 , then

h “ φ
pk`1q
rpe1,e2q

Proposition 12.12 (Effectiveness of the inverse function). There exists k : NÑ N
total and computable such that

@x P N if φx is injective ñ φkpxq “ pφxq
´1

Proof. We define a function g : N2 Ñ N

gpx, yq “ pφxq
´1pyq

“

#

z Dz s.t. φxpzq “ y

Ò otherwise

“ pµω . |χSpx,pωq1,y,pωq2q ´ 1|q1

12.2. EFFECTIVE OPERATIONS ON COMPUTABLE FUNCTIONS 75

it is computable by minimalisation. Hence, by smn theorem, there is a k : NÑ N
total and computable such that for every x, y

φkpxqpyq “ gpx, yq “ pφxq
´1pyq

□

Proposition 12.13. There is a total computable function s : N2 Ñ N such that,
for every x, y

Wspx,yq “Wx YWy

Proof. We want φSpx,yqpzq Ó iff φxpzq Ó or φypzq Ó. We define a function

g : N3 Ñ N

gpx, y, zq “

#

1 z PWx _ z PWy

Ò otherwise

which is computable:

gpx, y, zq “ 1pµω . |χHpx,z,ωq^Hpy,z,ωq ´ 1|q

Hence by smn theorem exists s : N2 Ñ N computable and total such that

φSpx,yqpzq “ gpx, y, zq

□

Proposition 12.14. There exists a s : N2 Ñ N computable and total such that

@x, y Espx,yq “ Ex Y Ey

Proof. We want the value of φSpx,yq to be the same of the functions φxandφy.
In order to do this, we can simulate φx on even numbers and φy on odd numbers.
We define a function g : N3 Ñ N

gpx, y, zq “

#

φxp
z
2 q if z even

φyp
z´1
2 q if z odd

computable since

gpx, y, zq “ pµω . pSpx, z{2, pωq1, pωq2q ^ z evenq_
pSpy, pz ´ 1q{2, pωq1, pωq2q ^ z oddqq1 “

pµω . |maxtχSpx, qtp2, zq, pωq1, pωq2q ¨ sgprmp2, zqq,
χSpy, qtp2, zq, pωq1, pωq2q ¨ sgprmp2, zqqu ´ 1|q1

By smn theorem there exists s : N2 Ñ N computable and total such that

φspx,yqpzq “ gpx, y, zq

for every x, y, z. So

v P Espx,yq ô Dz . φSpx,yqpzq “ gpx, y, zq “ v

ô Dz .

#

z even and φxp
z
2 q “ v

z odd and φyp
z´1
2 q “ v

ô Dz . φxpzq “ v ^ φypzq “ v ô ω P Ex Y Ey

□

76 12. UNIVERSAL FUNCTION

Proposition 12.15. There is k : NÑ N computable and total such that Ekpxq “Wx

Proof. Define

gpx, yq “

#

y y PWx

Ò otherwise

“ 1pΨU px, yqq ¨ y

it is computable by composition, so by smn theorem there exists k : N Ñ N
computable and total such that, for every x, y

φkpxqpyq “ gpx, yq

In other words

y P Ekpxq ô φkpxqpyq “ y ô gpx, yq “ y ô y PWx

□

Proposition 12.16. Given f : N Ñ N computable, there exists k : N Ñ N com-
putable and total such that, for every x, Wkpxq “ f´1pWxq

Proof. Define
gpx, yq “ φxpfpyqq “ ΨU px, fpyqq

computable by definition. By the smn theorem, there exists k : NÑ N computable
and total such that φkpxqpyq “ gpx, yq. So

y PWkpxq ô φkpxqpyq “ gpx, yq “ φxpfpyqq Ó

ô fpyq Ó and fpyq PWx

ô y P f´1pWxq

□

Proposition 12.17. There exists k : N Ñ N computable and total such that if
φx “ χQ is the characteristic function of a decidable predicate Q, then φkpxq “ χ␣Q

Proof. Define

gpx, yq “ 1 ´ φxpyq “ 1´ΨU px, yq

which is computable by definition. By the smn theorem, there exists k computable
and total such that

gpx, yq “ φkpxq

In this way, if φx “ χQ

gpx, yq “ 1´ φxpyq “ φkpxqpyq “ 1ô φxpyq “ 0ô χQpyq “ 0

therefore
φkpxq “ χ␣Q

□

CHAPTER 13

Recursive sets

In previous chapters we spent most of our effort in identifying computable func-
tions and decidable properties, and for devising tools and techniques for proving
computability. Only in few cases we provided examples in the large classes of
non-computable functions and undecidable predicates.

From now on we start a mathematical study of

‚ classes of undecidable predicates/non computable functions

‚ techniques to prove the undecidability of predicates/non-computability of
functions

This will allow us to give a structure to the class of non-computable functions and
single out general classes of problems which do not admit an algorithmic solution.

We will focus on sets of numbers X Ď N and on the corresponding membership
problem “x P X?”. In most cases X will be seen as a set of program codes and
thus it can be seen as a program property, e.g.

‚ X “ tx | φx “ factu: the program is a correct implementation of the
factorial function;

‚ X “ tx |Wx “ Nu: the program is defined on all inputs.

‚ X “ tx | Px has linear complexityu: the program has a linear complexity.

‚ . . .

We will distinguish between

‚ recursive sets/decidable properties: It is possible to answer “yes” when
the property holds, “no” when the property does not hold.

‚ recursively enumerable sets/semi-decidable properties: It is possible to
answer “yes” when the property holds, but no answer when the property
does not hold.

13.1. Recursive sets

Definition 13.1. A set A Ď N is recursive if its characteristic function

χA : NÑ N

χApxq “

#

1 x P A

0 x R A

is computable.

77

78 13. RECURSIVE SETS

In other words, if the predicate “x P A” is decidable.

Observation 13.2. Note that

‚ if χA P PR we will say that A is primitively recursive.

‚ the notion can be extended to subsets of Nk, but we will stick to subsets
of N, since every subset of Nk can be encoded into a subset of N.

Example 13.3. The following sets are recursive:

(a) N, since χN “ 1 is computable;

(b) ∅, because χ∅ “ 0 is computable;

(c) prime numbers P, since

Prpxq “

#

1 if x is prime

0 otherwise

is computable;

(d) All finite sets. In fact, given A Ă N with |A| ă 8, A “ tx1, x2, . . . , xnu,
we have that

χApxq “ sg

˜

n
ź

i“1

|x´ xi|

¸

is computable.

On the other hand, the following sets are not recursive:

(a) K “ tx | x PWxu, since

χKpxq “

#

1 x PWx

0 x RWx

is not computable;

(b) tx | φx totalu

Observation 13.4. If A,B Ď N are recursive, then

1) A “ N´A

2) AXB

3) AYB

are recursive.

13.1.1. Reduction. Reduction is a simple but powerful tool when studying
the decidability status of problems. It formalizes the intuition of a problem A being
“easier” than another one, B.

Definition 13.5. Let A,B Ď N. We say that the problem x P A reduces to the
problem x P B (or simply that A reduces to B), written A ďm B if there exists a
function f : NÑ N computable and total such that, for every x P N

x P A ô fpxq P B

13.1. RECURSIVE SETS 79

In this case, we say that f is the reduction function.

Observation 13.6. Let A,B Ď N such that A ďm B then

1 if B is recursive, then A is recursive

2 of A is not recursive, then B is not recursive

Proof. Simply observe that χA “ χB ˝ f . □

We know that K “ tx | x P Wxu is not recursive. We next observe see how the
non-recursiveness of other sets can be proven by reduction to K.

Example 13.7. K ďm T “ tx | φx totalu

Proof. We prove that there exists s : NÑ N computable and total such that
x P k ô spxq P T . In other words

x PWx ô φfpxq is total

To do so, we can define

gpx, yq “

#

1 x PWx

Ò otherwise

which is computable, since

gpx, yq “ 1pφxpxqq “ 1pΨU px, xqq

Then, by the smn-theorem we have that there exists s : N Ñ N computable and
total such that

φspxqpyq “ gpx, yq

and

x P K ñ x PWx ñ @y φspxqpyq “ gpx, yq “ 1ñ φspxq total ñ spxq P T

x R K ñ x RWx ñ @y φspxqpyq “ gpx, yq Òñ φspxq not total ñ spxq R T

□

Example 13.8 (Input problem). For every n P N

An “ tx | φxpnq Óu

is not recursive.

Proof. We will prove that K ď An. We have to define a function f s.t.

x P K ô fpxq P An

i.e., x PWx ô φfpxqpnq Ó.

Define

gpx, yq “

#

1 x PWx

Ò otherwise

“ 1pΨU px, xqq

80 13. RECURSIVE SETS

Function g is computable, and thus by the smn-theorem, there exists f : N Ñ N
computable and total such that gpx, yq “ φfpxqpyq. It is now easy to show that s is
the reduction function, i.e.,

x P K ñ fpxq P An

x R K ñ fpxq R An

□

Example 13.9 (The output problem). For every n P N, Bn “ tx | n P Exu is not
recursive

Proof. We show that K ďm Bn. Define the function

gpx, yq “

#

n x PWx

Ò otherwise

“ n ¨ 1pΨU px, xqq

Observe that g is computable. Hence by the smn-theorem there exists a function
s : NÑ N such that

@x, y gpx, yq “ φspxqpyq

It is now easy to show that s is the reduction function, i.e.,

x P K ñ spxq P Bn

x R K ñ spxq R Bn

□

Observation 13.10. Let A,B Ď N with A ďm B through an injective reduction
function f : N Ñ N (total and computable). One could think that, since f´1 is
computable, then also B ďm A. This is clearly not the case since f´1 is not total
and thus it reduces A to a “subproblem” of B (which typically have no clear relation
with B).

CHAPTER 14

Rice theorem

Rice’s theorem gives a general undecidability result. It roughly states that no
property of the behaviour of programs which is related to the input/output (besides
the trivial ones, always true and always false) is decidable or, in other words, that
no non-trivial property of computable functions is decidable.

Formally, we will need the notion of saturated set.

14.1. Saturated sets

Definition 14.1 (Saturated set). A subset A Ď N is saturated (or extensional) if
for all x, y P N

x P A^ φx “ φy ñ y P A

In other words, A is saturated if it expresses a property of functions, independently
from indices

A “ tx | P pφxqu

or, again, if there exists A Ď C such that

A “ tx | φx P Au

Example 14.2. The following set is saturated

T “ tn | Pn always terminateu

“ tn | ϕn P T u

where

T “ tf | f is totalu

Example 14.3. The following set is saturated

ONE “ tn | Pn computes 1u

“ tn | ϕn “ 1u

“ tn | ϕn P t1uu

Example 14.4. Consider

T2 “ te | Pepeq Ó in two steps u

“ te | ϕe P T2u

two programs can compute the same function, one terminates in less than 2 steps
and the other in more than 2. Thus, the set is not saturated.

81

82 14. RICE THEOREM

Example 14.5. Consider

K “ te | e PWeu

“ te | ϕe P Ku
where we would like

K “ tf |?u
It is not saturated. We cannot give a formal proof yet. The proof will rely on the
fact that one can show the existence of a program e such that

ϕepxq “

#

0 x “ e

Ò otherwise

Then e P K. Moreover, since there are infinitely many programs for the same
function, there is e1 ‰ e such that varphie “ φe1 . Note that φ1pe1q “ φepe

1q Ò,
hence e1 R K and we conclude.

14.2. Rice’s theorem

Theorem 14.6 (Rice’s theorem). Let A P N, A ‰ H, A ‰ N be saturated. Then it
is not recursive.

Proof. We show that K ďm A. Let e0 such that ϕe0pxq Ò @x. We distinguish
two cases depending on whether e P A or not.

(e0 R A) Suppose e0 R A and let e1 P Ap‰ Hq. Now define

gpx, yq “

#

ϕe1pyq x P K

ϕe0pyq x R K

“

#

ϕe1pyq x P K

Ò x R K

“ ϕe1pyq ¨ 1pΨU px, xqq

it is computable. By smn theorem there is sNÑ N such that ϕspxqpyq “
gpx, yq.

Now observe that s is a reduction function for K ďm A

– x P K ñ @y φspxqpyq “ φe1pyq ñ spxq P A

– x R K ñ @y φspxqpyq “ φe0pyq Òñ spxq R A

Hence K ďm A, K not recursive, thus A.

(e0 P A) If e0 P A then e0 R Ā. Then Ā Ď N, Ā ‰ H, Ā ‰ N, and Ā is saturated
since A is. Therefore, by the first part,o Ā is not recursive, and therefore
A is not recursive either.

□

Example 14.7 (Output problem). We proved that

Bn “ te | n P Eeu

is not recursive by showing that K ďm Bn. We can conclude the same by observing

14.2. RICE’S THEOREM 83

‚ Bn is saturated;

‚ Bn ‰ H;

‚ Bn ‰ N.

By Rice’s theorem Bn is not recursive.

CHAPTER 15

Recursively enumerable sets

Definition 15.1 (Recursively enumerable set). We say that A Ď N is recursively
enumerable if the semi-characteristic function

scApxq “

#

1 x P A

Ò otherwise

is computable.

Definition 15.2 (Semi-decidable predicate). A predicate Qpxq Ď N is
semi-decidable if tx P N | Qpxqu is r.e.

Thus, saying that A is r.e. is like saying that the predicate Qpxq “ “x P A” is
semi-decidable. This notion is also easily generalisable to

‚ subsets of Nk

‚ k-ary predicates

Observation 15.3. Let AssubseteqN be a set.

A recursive ô A, Ā are r.e.

Proof. (ñ) If A recursive,

XApxq “

#

1 x P A

0 otherwise

is computable. Then scApxq “ 1pµz.|χApxq´ 1|q is computable, therefore
A is r.e. Since A is recursive, then Ā is recursive, thus, r.e.

(ð) Let A, Ā be r.e., then by definition scA and scĀ are computable, and we
can define

1´ scĀpxq “

#

0 x P Ā

Ò otherwise

that is computable. This means that De0, e1 P N such that

φe0 “ scA φe1 “ 1´ scĀ

therefore we can “combine two machines” and wait until one of the two
terminates. Since either x P A or x P Ā, then the process will terminate
for sure. We can build the characteristic function of A as

χApxq “pµω.|Spe0, x, pωq1, pωq2 ^ Spe1, x, pωq1, pωq2qq ´ 1|q1

pµω.|χSpe0,x,pωq1,pωq2^Spe1,x,pωq1,pωq2qq ´ 1|q1

85

86 15. RECURSIVELY ENUMERABLE SETS

which is computable, therefore A is recursive.

□

Observation 15.4. The set K “ tx | x PWxu is r.e. In fact

scKpxq “

#

1 x P K

Ò otherwise
“ 1pφxpxqq “ 1pΨU px, xqq

is computable by definition and by 15.3

K̄ “ tx | x RWxu

is not r.e, otherwise K, K̄ would have been both r.e., and therefore K would have
been recursive, which is a contradiction.

Theorem 15.5 (Structure of semi-decidable predicates). Let P px⃗q Ď Nk be a
predicate. Then P px⃗q is decidable if and only if there is a decidable predicate
Qpt, x⃗q Ď Nk`1 such that P px⃗q “ Dt.Qpt, x⃗q.

Proof. (ñ) Let P px⃗q be semi-decidable. It has a computable semi char-
acteristic function scP so

P px⃗q ” Dt.Hpe, x⃗, tq

therefore if we can rewrite H as Qpt, x⃗q “ Hpe, x⃗, tq, in this way Q is
decidable as we wanted and

P px⃗q ” Dt.Qpt, x⃗q

(ð) Let P px⃗q ” Dt.Qpt, x⃗q with Qpt, x⃗q decidable. Observe that

scP px⃗q “ 1pµt.|χQpt, x⃗q ´ 1|q

which is computable by definition, and therefore P px⃗q is semi-decidable.

□

15.1. Projection theorem

From the last theorem we had a hint about the fact that the class of semi-decidable
predicates is closed under existential quantification. The projection theorem states
this:

Theorem 15.6 (Projection theorem). Let P px, y⃗q be semi-decidable; then

Dx.P px, y⃗q “ P 1py⃗q

is semi-decidable.

Proof. Let P px, y⃗q be semi-decidable. Then by Theorem 15.5, there exists
Qpt, x, y⃗q decidable such that

P px, y⃗q ” Dt.Qpt, x, y⃗q

15.1. PROJECTION THEOREM 87

Thus

P 1py⃗q ” Dx.P px, y⃗q

” Dx.Dt.Qpt, x, y⃗q

” Dω.Qppωq1, pωq2, y⃗q

since Qppωq1, pωq2, y⃗q is decidable, by Theorem 15.5 P 1py⃗q is semi-decidable. □

Theorem 15.7 (Closure under conjuction and disjunction). Let P1px⃗q, P2px⃗q be
semi-decidable predicates. Then

‚ P1px⃗q _ P2px⃗q;

‚ P1px⃗q ^ P2px⃗q

are semi-decidable.

Proof. Let P1px⃗q, P2px⃗q be semi-decidable predicates. Then by Theorem 15.5
there are two decidable predicates Q1pt, x⃗q, Q2pt, x⃗q such that

P1px⃗q ” Dt.Q1pt, x⃗q

P2px⃗q ” Dt.Q2pt, x⃗q

Hence

(1)

P1px⃗q _ P2px⃗q ” Dt.Q1pt, x⃗q _ Dt.Q2pt, x⃗q

” Dω.pQ1ppωq1, x⃗q _Q2ppωq2, x⃗qq

This means that by Theorem 15.5, P1px⃗q _ P2px⃗q is semi-decidable.

(2) Analogously

P1px⃗q ^ P2px⃗q ” Dt.pQ1pt, x⃗q ^Q2pt, x⃗qq

□

Observation 15.8. The set of semi-decidable predicates is closed under ^,_ and D,
but it is not closed under @ and ␣. For instance P pxq “ “x P K2 is semi-decidable,
while ␣P pxq “ “x R K2 is not. Moreover Qpx, tq “ ␣Hpx, x, tq is decidable, while
@t.Qpxq “ ”x R K” is not semi-decidable.

Exercise 15.9. Prove that if P px⃗q is semi-decidable and is not decidable then
␣P px⃗q is not semi-decidable.

Observation 15.10. (1) A Ď N is recursive if and only if A, Ā are r.e.

(2) if A Ď N r.e. and f : NÑ N computable ñ f´1pAq is r.e. (projection)

(3) A,B Ď N r.e. ñ AYB,AXB are r.e.

88 15. RECURSIVELY ENUMERABLE SETS

15.1.1. r.e. sets and reducibility. Reduction can be used as a tool for
comparing sets with respect to recursive enumerability as we already did for recur-
siveness.

Observation 15.11. Given A,B Ď N, A ďm B, then

(1) B is r.e. ñ A is r.e.

(2) A is not r.e. ñ B not r.e.

Proof. (1) If B r.e., then

scBpxq “

#

1 x P B

Ò otherwise

is computable. Let f : N Ñ N be a total computable reduction function
for A ďm B. Then scApxq “ scBpfpxqq, therefore scA is computable by
composition and A is r.e.

(2) equivalent.

□

CHAPTER 16

Rice-Shapiro theorem

Rice-Shapiro states that a property of the functions computed by programs can be
semi-decidable only if it depends on a finite part of the function (I/O behavior on
a finite number of inputs).

In order to properly state the theorem, we need some more tools.

Definition 16.1 (Finite function). A finite function is a function θ : NÑ N such
that dompθq is finite.

The fact that a function is finite means that the set of input-output pairs is finite,
i.e.,

θpxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

y1 if x “ x1

y2 if x “ x2

. . .

yn if x “ xm

Ò otherwise

In other words θ “ tpx1, y1q, . . . pxn, ynqu, i.e., the function seen a relation is a finite
set.

Definition 16.2 (subfunction). Given two functions f, g : N Ñ N, we say f is a
sub-function of g if f Ď g.

In other words, we have that f Ď g if g is defined wherever f is defined, i.e.,
dompfq Ď dompgq, and where f is defined, it coincides with g, i.e., for all x P
dompfq, it holds that fpxq “ gpxq.

Notation 16.3. We recall some notation:

‚ We is the domain of the function φe;

‚ Ee “ tφepxq | x PWeu;

‚ Hpx, y, tq “ “Pxpyq Ó in t steps or less”;

‚ Spx, y, z, tq “ “Pxpyq Ó z in t steps or less”;

‚ K “ tx | x PWxu “ tx | φxpxq Óu “ tx | Pxpxq terminatesu

Theorem 16.4 (Rice-shapiro theorem). Let A Ď C be a set of computable functions.
If the set A “ tx | φx P Au is r.e., then

@fpf P Aô Dθ finite function, θ Ď f ^ θ P Aq

89

90 16. RICE-SHAPIRO THEOREM

Proof. We will prove the following

(1) Df P C.f R A^ Dθ Ď f finite, θ P Añ A not r.e

(2) Df P C.f P A^ @θ Ď f finite, θ R Añ A not r.e.

Here are the proofs:

(1) Let f R A and θ Ď f finite with θ P A. We show that K̄ ďm A.

Define

gpx, yq “

#

θpyq x P K̄

fpyq x P K

“

$

’

&

’

%

Ò x P K̄ ^ x R dompθq

θpyq “ fpyq x P K̄ ^ x P dompθq

fpyq x P K

“

#

fpyq x P K _ y P dompθq

Ò otherwise

Since x P K _ y P dompθq “ Qpx, yq predicate, x P K semi-decidable and
y P dompθq decidable, then Qpx, yq semi-decidable. Then, since

scQpx, yq “

#

1 Qpx, yq

0 otherwise

is computable, we have gpx, yq “ fpyq ¨ scQpx, yq computable.

By smn theorem, there is a total computable function s : N Ñ N such
that, for every x, y

φspxqpyq “ gpx, yq “

#

θpyq x P K̄

fpyq x P K

We show that s is the reduction function for K̄ ďm A

‚ x P K̄ ñ @y φspxqpyq “ gpx, yq “ θpyq ñ φspxq “ θ P Añ spxq P A

‚ x R K̄ ñ x P K ñ @y φspxqpyq “ gpx, yq “ fpyq ñ φspxq “ f R A ñ

spxq R A

Since K̄ ďm A and K̄ is not r.e. we conclude that A is not r.e.

(2) Let f P A^ θ Ď f be with θ finite, θ R A

Informally, we want

gpx, yq “

#

fpyq x P K̄ pφxpxq Òq

θpyq for some θ Ď f finite, otherwise (x P K)

16. RICE-SHAPIRO THEOREM 91

More formally

gpx, yq “

#

fpyq if ␣Hpx, x, yq

Ò if Hpx, x, yq

“ fpyq ` µz.χHpx, x, yq

is computable.

By smn there exists s : NÑ N total computable such that

φspxqpyq “ gpx, yq

We show that s is a reduction function for K̄ ďm A

‚ x P K̄
ñ φxpxq Ò
ñ @y ␣Hpx, x, yq
ñ @y φspxqpyq “ gpx, yq “ fpyq
ñ f “ φspxq P A
ñ spxq P A

‚ x R K̄
ñ x P K
ñ φxpxq Ó
ñ Dt0 p@t ą t0 Hpx, x, tq ^ @t ă t0 ␣Hpx, x, tqq
ñ φspxqpyq “ gpx, yq
ñ φspxq Ď f finite

ñ spxq P Ā

□

Example 16.5. A “ tx | φx totalu is not r.e.

Proof. Clearly A is saturated since A “ tx | φx P Au, and A “ tf P C | f
totalu. Given any function f P A (total by definition) we have that @θ Ď f finite
clearly θ R A, since each and every finite function is partial, then by Rice-Shapiro’s
theorem, A is not r.e. □

Example 16.6. Ā “ tx | φx not totalu is not r.e.

Proof. Let Ā “ tf P C | f not totalu. We observe that each θ finite is in Ā,
but no total extension of such θ can be included in Ā. Again, by Rice-Shapiro Ā is
not r.e. □

Examples 16.5 and 16.6 characterise the two basic situations in which we can apply
the theorem. They are generalised in the observation below.

Observation 16.7. Let A Ď C be a set of computable functions s.t. A “ tx | φx P

Au is r.e. Then

(1) if, for every θ finite, θ R Añ A “ H

(2) H P Añ A “ C

92 16. RICE-SHAPIRO THEOREM

Proof. (1) Consider a generic f P C. We know that f P A if and only if
there exists θ Ď f finite θ P A. Since no finite function is in A we conclude
that f R A. Hence A “ H.

(2) Consider a generic f P C. Since H Ď f and H P A ñ f P A, Hence
A “ C.

□

Example 16.8. Consider A “ tx | φx “ 1u

(1) A is not r.e.

The set of functions is A “ t1u, which

‚ does not contain finite functions

‚ is not empty

therefore A is not r.e.

(2) Ā is not r.e.

Ā “ C ´ t1u, and we have that

‚ H P Ā

‚ Ā ‰ C

therefore Ā is not r.e.

Observation 16.9. The converse implication of Rice-Shapiro theorem does not
hold, i.e. the following does not hold

(16.1) @f p f P A iff Dθ finite, θ Ď f, θ P A q ñ A r.e.

In other words, Rice-Shapiro can be used to prove that a set is not r.e., but not to
prove that a set is r.e.

For a counterexample to (16.1), define A “ tf P C | dompfq X K̄ ‰ Hu and let
A “ tx | φx P Au

(1) A satisfies the premise of (16.1)

f P Añ dompfq X K̄ ‰ H

ñ let x P dompfq X k̄ we have that θ “ tpx, fpxqqu

is finite, θ Ď f and dompθq X k̄ “ txu ‰ H

ñ θ P A

if θ finite, θ Ď f, θ P Añ dompθq Ď dompfq

ñ dompfq X K̄ Ě dompθq X K̄ ‰ H

ñ f P A

16. RICE-SHAPIRO THEOREM 93

(2) A is not r.e., since K̄ ďm A

Define

gpx, yq “

#

0 x “ y

Ò otherwise

“ µz.|x´ y|

is computable. Again, by smn theorem Ds : NÑ N computable and total
such that

gpx, yq “ φspxqpyq

and therefore dompφspxqq “ txu. so

‚ x P K̄ ñ dompφspxqq X K̄ “ txu ‰ H ñ spxq P A

‚ x R K̄ ñ dompφspxqq X K̄ “ txu “ H ñ spxq R A

CHAPTER 17

First recursion theorem

In programming languages, we have higher-order functions that take other functions
as arguments and produce functional results. E.g. in ML, the function succ that
given a function f returns f ` 1 can be defined as

fun succ f x “ f x` 1

From the computability point of view it is still somewhat natural to ask how ef-
fective/computable operations can be characterized on functions. We will later see
that this idea leads to the concept of recursive functional.

Definition 17.1. Let FpNkq denote the set of all the functions (possibly not com-
putable) of k arguments Nk Ñ Nk.

A functional is a total function

Φ : FpNkq Ñ FpNhq

When can we say that a functional is effective (computable)? Given Φ : FpNkq Ñ

FpNhq

‚ a function f P F and its image Φpfq P FpNkq are both infinite objects in
general.

‚ we cannot ask for Φpfq to be effectively computable in a finite time from
f

17.0.1. Encoding of finite functions. As a first step we need a way of view-
ing finite functions as numbers. The encoding of a finite function θ “ tpx1, y1q, . . . , px2, y2qu

is θ̃ P N defined as

θ̃ “
n

ź

i“1

pyi`1
xi`1

which is both injective and effective. Given the encoding of a function z “ θ̃,

x P dompθq iff pzqx`1 ‰ 0

apppz, xq “ θpxq “

#

pzqx`1 ´ 1 x P dompθq

Ò otherwise

“ ppzqx`1 ´ 1q 1pµω . sgppzqx`1qq

In this way we can give the following definition of recursive functional

95

96 17. FIRST RECURSION THEOREM

Definition 17.2. A functional Φ : FpNkq Ñ FpNhq is recursive if there exists
φ : Nh`1 Ñ N computable such that, for every f P FpNkq, x⃗ P Nh, y P N

Φpfqpyq “ y iff Dθ Ď f finite s.t. φpθ̃, x⃗q “ y

Example 17.3. The functional

fib : FpNq Ñ FpNq

fibpfqpxq “

#

1 x “ 0_ x “ 1

fpx´ 2q ` fpx´ 1q x ě 2

is recursive, the function φ : N2 Ñ N can be

φpz, xq “

#

1 x “ 0_ x “ 1

θpx´ 2q ` θpx´ 1q x ě 2^ z “ θ̃

“

#

1 x “ 0_ x “ 1

apppz, x´ 2q ` apppz, x´ 1q x ą 2

which is computable.

Example 17.4. The functional associated to the Ackermann’s function

Ψack : FpN2q Ñ FpN2q
$

’

&

’

%

Ψackpfqp0, yq “ y ` 1

Ψackpfqpx` 1, 0q “ fpx, 1q

Ψackpfqpx` 1, y ` 1q “ fpx, fpx` 1, yqq

is clearly recursive.

Theorem 17.5. Let Φ : FpNkq Ñ FpNhq be a recursive functional and let f P
FpNkq be computable. Then Φpfq P FpNhq is computable

17.1. Myhill-Sheperdson theorems

Given a recursive functional Φ, by (17.5)

f computable ù Φpfq computable

f “ φe ù Φpfq “ φe1

so we can see a recursive functional as a function that transforms indices (programs)
into indices (other programs), but with the property that the transformation de-
pends on the indexed function and not on the index itself.

Definition 17.6 (Extensional function). Let h : N Ñ N a total function. It is
extensional if

@e, e1 φe “ φe1 Ñ φhpeq “ φhpe1q

Theorem 17.7 (Myhill-Shepherdson (I)). If Φ : FpNkq Ñ FpNhq is a recursive
functional then there exists a total computable function hΦ : NÑ N s.t.

@e P N Φpφeq “ φ
pkq
hΦpeq

Intuitively, the behaviour of the recursive functional on computable functions is
captured by a total extensional function on the indices.

17.1. MYHILL-SHEPERDSON THEOREMS 97

Theorem 17.8 (Myhill-Shepherdson (II)). If h : N Ñ N is a total computable
extensional function, then there is a unique recursive functional Φh sych that

@e P N Φhpφeq “ φhpeq

Note that a total computable extensional function, which only explains how to
transform programs (hence computable functions) uniquely identifies a recursive
functional, which instead is defined also on non-computable functions. The reason
is roughly connected to the fact that all functions (even if they are not computable)
can be approximated with arbitrary precision by computable ones (e.g., by finite
subfunctions).

Theorem 17.9 (First recursion theorem (Kleene)). Let Φ : FpNkq Ñ FpNhq be a
recursive functional. Then Φ has a least fixed point fΦ which is computable,
i.e.

(1) ΦpfΦq “ fΦ

(2) @g P FpNkq Φpgq “ g ñ fΦ Ď g

(3) fΦ is computable

and we can see that fΦ “
Ť

n
ΦnpHq.

The theorem above implies the closure of the set of computable functions with
respect to extremely general forms of recursion.

Example 17.10 (Primitive recursion). Given f : Nh Ñ N and g : Nh`2 Ñ N, the
function defined by primitive recursion is the least fixed point of Φr P FpNh`1q,
defined by

Φrphqpx⃗, 0q “ fpx⃗q

Φrphqpx⃗, y ` 1q “ gpx⃗, yhpx⃗, yqq

and if f, g are computable, then Φr is a recursive functional. The theorem assures
that

‚ there exists a least fixed point;

‚ it is computable.

Example 17.11 (Minimalisation). Given a function f : Nk`1 Ñ N, we can see the
minimization µy . fpx⃗, yq as a fixed point. Let us consider, for a fixed f

Φµ P FpNk`1q

Φµphqpx⃗, yq “

$

’

&

’

%

y fpx⃗, yq “ 0

hpx⃗, y ` 1q fpx⃗, yq Ó ^fpx⃗, yq ‰ 0

Ò otherwise

it is recursive and has a least fixed point:

fΦµ
px⃗, yq “ µz ě y . fpx⃗, yq

Example 17.12 (Ackermann’s function). We saw that Φack is recursive, therefore
it has a computable least fixed point (the Ackermann function itself ψ). The fact
that ψ is total, actually implies that such fixed point is the only fixed point.

98 17. FIRST RECURSION THEOREM

Observation 17.13. In general the fixed point is not unique. Counter-example:

Φpfqpxq “

#

0 x “ 0

fpx` 1q otherwise

is recursive, and therefore has a minimum fixed point

fΦpxq “

#

0 x “ 0

Ò otherwise

but it has other fixed points, for example, for every k P N

fpxq “

#

0 x “ 0

k x ą 0

CHAPTER 18

Second recursion theorem

Let f : NÑ N be total, computable and extensional i.e.

@e, e1 φe “ φe1 ñ φfpeq “ φfpe1q

Then, by Theorem 17.8 (Myhill-Shephedson) there exists a unique recursive func-
tional Φ such that

@e P N Φpφeq “ φfpeq

Since Φ is recursive, by the First Recursion Theorem (Theorem 17.9) it has a least
fixed point fΦ : NÑ N computable. Therefore there is e0 P N such that

φe0 “ fΦ “ ΦpfΦq “ Φpφe0q “ φfpe0q

This means that if f is total computable and extensional, then there exists e0 such
that

φe0 “ φfpe0q

The second recursion theorem states that this holds also when f is not extensional.

Theorem 18.1 (Second recursion theorem (Kleene)). Let f : N Ñ N a total com-
putable function. Then there exists e0 P N such that

φe0 “ φfpe0q

Proof. Let f : NÑ N a total computable. Take

gpx, yq “ φfpφxpxqqpyq

“ ΨU pfpφxpxqq, yq

“ ΨU pfpΨU px, xqq, yq

it is computable. By the smn theorem there exists s : N Ñ N total computable
such that

φspxqpyq “ gpx, yq “ φfpφxpxqqpyq @x, y

Since s is computable there exists m P N such that

S “ φm

hence

φφmpxqpyq “ φfpφxpxqqpyq @x, y

For x “ m

φφmpmqpyq “ φfpφmpmqqpyq @y

We set e0 “ φmpmq Ó and we replace in the previous equation

φe0pyq “ φfpe0qpyq @y

99

100 18. SECOND RECURSION THEOREM

i.e.
φe0 “ φhpe0q

□

This theorem can therefore be interpreted in the following manner given any effec-
tive procedure to transform programs, there is always at a program such that when
modified by the procedure it does exactly what it did before or it is impossible to
write a program that change the extensional behaviour of of all programs.

The proof of the theorem can appear mysterious, but after a closer inspection,
it clearly appears to be a simple diagonalization. Nevertheless, the result of this
theorem is extremely deep; in this way, many theorems we’ve seen up until now are
just corollaries.

Corollary 18.2 (Rice’s theorem). Let H ‰ A Ĺ N saturated, then A is not
recursive.

Proof. Let H ‰ A Ă N saturated. Take e1 P A and e0 R A and assume by
contradiction that A is recursive. Define f : NÑ N

fpxq “

#

e0 x P A

e1 x R A

“ e0 ¨ χApxq ` e1 ¨ χĀpxq

Since A is recursive then also Ā is recursive, thus χA and χĀ are computable.
Thus, f is computable and total, then by the Second Recursion Theorem (18.1)
there exists e P N such that φe “ φfpeq; there are two possibilities

‚ if e P A, then fpeq “ e0 R A and since A saturated, φe ‰ φe0 “ φfpeq

‚ if e R A, then fpeq “ e1 P A and since A saturated, φe ‰ φe1 “ φfpeq

that is absurd, so A cannot be recursive. □

Corollary 18.3. The halting set K “ tx | φxpxq Óu is not recursive.

Proof. Let k “ tx | x P Wxu recursive for the sake of the argument. and let
e0, e1 be indexes s.t. φe0 “ H and φe1 “ λx . x.

Define f : NÑ N

fpxq “

#

e0 x P K

e0 x R K

“ e0 ¨ χKpxq ` e1 ¨ χK̄pxq

If K were recursive, then χK and χK̄ would be computable, thus f would be both
computable and total, then by (18.1), there would be e P N such that φe “ φfpeq,
but

‚ if e P K, then fpeq “ e0, so φepeq Ó‰ φfpeqpeq “ φe0peq Ò

‚ if e P K̄, then fpeq “ e1, so φepeq Ò‰ φfpeqpeq “ φe1peq “ e Ó

which is absurd, so K cannot be recursive. □

18. SECOND RECURSION THEOREM 101

Corollary 18.4. K “ tx | φxpxq Óu is not saturated.

Proof. First observe that there is n0 s.t. φn0 “ tpn0, n0qu. In fact, define

gpn, xq “

"

0 if x “ n
Ò otherwise

“ µz. |x´ n|

Since g is computable there is s : N Ñ N total computable such that φspnqpxq “
gpx, yq. By the Second Recursion Theorem there is n0 such that φn0 “ φspn0q.
Therefore

φn0
pxq “ φspn0qpxq “ gpn0, xq “

"

0 if x “ n0
Ò otherwise

Observe that n0 P K. Moreover we know that there are infinitely many indices for
the same function. Thus let n ‰ n0 s.t. φn “ φn0

. Then

φnpnq “ φn0pnq Ò

Hence n R K and thus K is not saturated. □

Bibliography

[Fri58] Richard M. Friedberg. Three Theorems on Recursive Enumeration. I.
Decomposition. II. Maximal Set. III. Enumeration Without Duplication.
Vol. 23. 3. Journal of Symbolic Logic, 1958, pp. 309–316.

[Dav11] Martin Davis. The Universal Computer: The Road from Leibniz to Turing.
1st. USA: A. K. Peters, Ltd., 2011. isbn: 1466505192.

103

	Chapter 1. Introduction
	1.1. Algorithm or effective procedure

	Chapter 2. Algorithms and existence of non-computable functions
	2.1. Characteristics of an algorithm
	2.2. Existence of non-computable functions

	Chapter 3. URM computability
	3.1. Which model?
	3.2. URM (Unlimited register machine)
	3.3. URM-computable functions
	3.4. Examples of URM-computable functions
	3.5. Function computed by a program
	3.6. Exercises

	Chapter 4. Decidable Predicates
	4.1. Examples of decidable predicates

	Chapter 5. Computability on other domains
	Chapter 6. Generation of computable functions
	6.1. Basic computable functions
	6.2. Generalized composition
	6.3. Primitive recursion
	6.4. Algebra of decidability
	6.5. Bounded sum, product and quantification
	6.6. Bounded minimalisation
	6.7. Encoding of pairs (and n-tuples)
	6.8. Unbounded minimalisation

	Chapter 7. Other approaches to computability
	7.1. Partially recursive functions

	Chapter 8. Primitive recursive functions
	8.1. Ackermann's function

	Chapter 9. Enumeration of programs
	Chapter 10. Cantor diagonalization technique
	Chapter 11. Parametrisation theorem
	11.1. smn Theorem

	Chapter 12. Universal Function
	12.1. Applications
	12.2. Effective operations on computable functions

	Chapter 13. Recursive sets
	13.1. Recursive sets

	Chapter 14. Rice theorem
	14.1. Saturated sets
	14.2. Rice's theorem

	Chapter 15. Recursively enumerable sets
	15.1. Projection theorem

	Chapter 16. Rice-Shapiro theorem
	Chapter 17. First recursion theorem
	17.1. Myhill-Sheperdson theorems

	Chapter 18. Second recursion theorem
	Bibliography

