
An Algebraic Theory of Actors and Its

Application to a Simple Object-Based Language

Gul Agha and Prasanna Thati

University of Illinois at Urbana-Champaign, USA
{agha,thati}@cs.uiuc.edu

http://osl.cs.uiuc.edu/

1 Introduction

The development of Simula by Ole-Johan Dahl and Kristen Nygaard introduced
a number of important programming language concepts – object which supports
modularity in programming through encapsulation of data and procedures, the
concept of class which organizes behavior and supports Abstract Data Types,
and the concept inheritance which provides subtyping relations and reuse [6].
Peter Wegner terms programming languages which use objects as object-based
languages, and reserves the term object-oriented languages for languages which
also support classes and inheritance [58].

Concurrency provides a natural model for the execution of objects: in fact,
Simula uses co-routines to simulate a simple form of concurrency in a sequen-
tial execution environment. The resulting execution is tightly synchronized and,
while this execution model is appropriate for simulations which use a global
virtual clock, it is not an adequate model for distributed systems. The Actor
Model unifies the notion of objects with concurrency; an actor is a concurrent
object which operates asynchronously and interacts with other actors by sending
asynchronous messages [2].

Many models for concurrent and distributed computation have been devel-
oped. An early and influential model is Petri Nets developed by Carl Adam Petri
[44]. In the Petri Net model, there are two kinds of elements – nodes and tokens.
Nodes are connected to other nodes by fixed (static) links. Tokens are passed be-
tween nodes using these links. The behavior of each node is governed by reactive
rules which are triggered based on the presence of tokens at the nodes.

Another popular model of concurrency is based on communicating processes.
Two exponents of this sort of model are Robin Milner who defined the Calculus
of Communicating Systems (CCS) [38], and Tony Hoare who defined the pro-
gramming language, Communicating Sequential Processes (CSP) [20]. In both
these systems, asynchronous processes have a fixed communication topology
(processes which can communicate with each other are statically determined)
and the communication is synchronous – i.e. a message exchange involves an
explicit handshake between the sender and the receiver.

In contrast to these models, the notion of actors is very flexible. In the earliest
formulation of the Actor Model, an actor was defined by Carl Hewitt as an

O. Owe et al. (Eds.): From OO to FM (Dahl Festschrift), LNCS 2635, pp. 26–57, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

An Algebraic Theory of Actors 27

autonomous agent which has intentions, resources, contain message monitors
and a scheduler [19]. Later work by Hewitt and his associates developed a more
abstract model of parallelism based on causal relations between asynchronous
events at different actors – where an event represents the sending or receiving of
a message [10, 16]. The formulation of the Actor Model that most people refer
to is based on the transition system in Agha [1]. In particular, this formulation
provides a basis for the operational semantics developed in [3].

The Actor Model is more flexible than Petri Nets, CCS or CSP. Petri Nets
have been generalized to Colored Petri Nets which allow tokens to carry data. It is
possible to encode actor computations in this more general model by interpreting
actor behaviors although it is not clear how useful such an encoding is [42].

In fact, the work on actors inspired Robin Milner to develop the π-calculus
[41], a model which is more general than CCS. As Milner reports: “. . . the pure λ-
calculus is built with just two kinds of things: terms and variables. Can we achieve
the same economy for a process calculus? Carl Hewitt, with his Actor Model,
responded to this challenge a long ago; he declared that a value, an operator on
values, and a process should all be the same kind of thing: an actor. This goal
impressed me, because it implies a homogeneity and completeness of expression
. . . . But it was long before I could see how to attain the goal in terms of an
algebraic calculus So, in the spirit of Hewitt, our first step is to demand that
all things denoted by terms or accessed by names–values, registers, operators,
processes, objects–are all the same kind of thing; they should all be processes.
Thereafter we regard access-by-name as the raw material of computation”
[39].

The π-calculus allows names to be communicable – thus capturing an essen-
tial aspect of actors which provides it greater flexibility. However, there are num-
ber of differences between the two models that are caused by differing goals and
ontological commitments. The goal of explicitly modeling distributed systems
has motivated the development of actors, while the goal of providing an alge-
braic formulation has been central to work on π-calculus. As a consequence, the
Actor Model uses asynchronous communication which is natural in distributed
systems, while the π-calculus uses synchronous communication which results in
a simpler algebra. As in object-based systems, each actor has a distinct identity
which is bound to a unique name which does not change. By contrast, in the
π-calculus, different processes can have the same name, and these names can
disappear.

This paper develops a formal calculus for actors by imposing suitable type
restrictions on the π-calculus. Our aim is to gain a better understanding of the
implications of the different ontological commitments of the Actor Model. We
present a typed variant of π-calculus, called Aπ, which is an accurate representa-
tion of the Actor Model, and we investigate a basic theory of process equivalence
in Aπ. We then illustrate how Aπ can be used to provide formal semantics for
actor-based concurrent programming languages. The Actor Model has served
as the basis of a number of object-based languages [4, 59]. Since our aim is to
investigate the effects of only the basic ontological commitments of the Actor

28 Gul Agha and Prasanna Thati

Model, we focus our presentation on a simple actor-based language which was
first defined in [1].

Following is the layout of the rest of this paper. In Section 2, we give a brief
and informal description of the Actor Model, and in Section 3, we describe a
simple actor language (SAL). In Section 4, we present the calculus Aπ, and in
Section 5, we investigate a basic theory of process equivalence in Aπ. In Section
6, we provide a formal semantics for SAL by translating its programs to Aπ.
In Section 7, we conclude the paper with an overview of several other research
directions that have been pursued on the basic Actor Model over the last two
decades.

2 The Actor Model

A computational system in the Actor Model, called a configuration, consists of a
collection of concurrently executing actors and a collection of messages in transit
[1]. Each actor has a unique name (the uniqueness property) and a behavior, and
communicates with other actors via asynchronous messages. Actors are reactive
in nature, i.e. they execute only in response to messages received. An actor’s
behavior is deterministic in that its response to a message is uniquely determined
by the message contents. Message delivery in the Actor Model is fair [10]. The
delivery of a message can only be delayed for a finite but unbounded amount of
time.

An actor can perform three basic actions on receiving a message (see Fig-
ure 1): (a) create a finite number of actors with universally fresh names, (b) send
a finite number of messages, and (c) assume a new behavior. Furthermore, all
actions performed on receiving a message are concurrent; there is no ordering
between any two of them. The following observations are in order here. First,
actors are persistent in that they do not disappear after processing a message
(the persistence property). Second, actors cannot be created with well known
names or names received in a message (the freshness property).

The description of a configuration also defines an interface between the con-
figuration and its environment, which constrains interactions between the two.
An interface is a set of names ρ, called the receptionist set, that contains names
of all the actors in the configuration that are visible to the environment. The
only way an environment can effect the actors in a configuration is by sending
messages to the receptionists of the configuration; the non-receptionist actors
are all hidden from the environment. Note that uniqueness of actor names au-
tomatically prevents the environment from receiving messages in configuration
that are targeted to the receptionists, because to receive such messages the en-
vironment should have an actor with the same name as that of a receptionist.
The receptionist set may evolve during interactions, as the messages that the
configuration sends to the environment may contain names of actors are not
currently in the receptionist set.

An Algebraic Theory of Actors 29

Xn Xn+1

Y1

Zm

behavior

assume new

send messages

create actors

mail queue

mail queue

21 n n+1

m

1

Actor

Actor

. . . .

.

. . . .

. . .

Fig. 1. A diagram illustrating computation in an actor system.

3 A Simple Actor Language (SAL)

A SAL program consists of a sequence of behavior definitions followed by a single
(top level) command.

Pgm ::= BDef1 ... BDefn Com

The behavior definitions are templates for actor behaviors. The top level com-
mand creates an initial collection of actors and messages, and specifies the in-
terface of the configuration to its environment.

3.1 Expressions

Three types of primitive values - booleans, integers and names - are presumed.
There are literals for boolean and integer constants, but none for names. Primi-
tive operations include ∧,∨,¬ on booleans, +,−, ∗, = on integers. Expressions
always evaluate to values of one of the primitive types. An expression may con-
tain identifiers which may be bound by formal parameters of the behavior def-
inition in which the expression occurs (see behavior definitions in Section 3.3).
Identifiers are lexically scoped in SAL. We let e range over the syntactic domain
of expressions, and u, v, w, x, y, z over actor names.

30 Gul Agha and Prasanna Thati

3.2 Commands

Following is the syntax for SAL commands.

Com ::= send [e1, ..., en] to x (message send)
become B(e1, ..., en) (new behavior)
let x1 = [recep] new B1(e1, ..., ei1),
. . . xk = [recep] new Bk(e1, ..., eik

)
in Com (actor creations)

if e then Com1 else Com2 (conditional)
case x of (y1 : Com1 , . . . , yn : Comn) (name matching)
Com1 || Com2 (composition)

Message send: Expressions e1 to en are evaluated, and a message containing
the resulting tuple of values is sent to actor x. A message send is asynchronous:
execution of the command does not involve actual delivery of the message.

New behavior: This specifies a new behavior for the actor which is executing
the command. The identifier B should be bound by a behavior definition (see
behavior definitions in Section 3.3). Expressions e1 to en are evaluated and the
results are bound to the parameters in the acquaintance list of B. The resulting
closure is the new behavior of the actor. A become command cannot occur in
the top level command of an actor program, because the top level command
specifies the initial system configuration and not the behavior of a single actor.

Actor creations: Actors with the specified behaviors are created. The identifiers
x1, . . . , xn, which are all required to be distinct, denote names of the actors, and
the command Com is executed under the scope of these identifiers. In the top
level command of a program, the identifiers can be optionally tagged with the
qualifier recep. The corresponding actors will be receptionists of the program
configuration, and can thus receive messages from the environment; all the other
actors are (at least initially) private to the configuration. The set of receptionists
can of course expand during the execution, as messages containing the names of
non-receptionists are sent to the environment.

While the scope of the identifiers declared as receptionists is the entire top
level command, the scope of the others is only the let command. Because actor
names are unique, a name can not be declared as a receptionist more than once
in the entire top level command. An actor creates new actors with universally
fresh names, and these names must be communicated before they can be used
by any actor other than the creator. This freshness property would be violated if
any of the new actors is declared as a receptionist. Therefore, the recep qualifier
can not be used in behavior definitions.

Conditional: The expression e should evaluate to a boolean. If the result is true,
command Com1 is executed, else Com2 is executed.

An Algebraic Theory of Actors 31

Name matching: The name x is matched against the names y1, . . . , yn. If there is
a match, the command corresponding to one of the matches is non-deterministic-
ally chosen and executed. If there is no match, then there is no further execution
of the command. Note that the mismatch capability on names is not available,
i.e. it is not possible to take an action based on the failure of a match.

Composition: The two composed commands are executed concurrently.
A couple of observations are in order here. First, there is no notion of sequen-

tial composition of commands. This is because all the actions an actor performs
on receiving a message, other than the evaluation order dependencies imposed
by the semantics, are concurrent. Second, message passing in SAL is analogous
to call-by-value parameter passing; expressions in a send command are first eval-
uated and a message is created with the resulting values. Alternately, we can
think of a call-by-need message passing scheme. But both the mechanisms are
semantically equivalent because expressions do not involve recursions and hence
their evaluations always terminate.

3.3 Behavior Definitions

The syntax of behavior definitions is as follows.

BDef ::= def 〈beh name〉(〈acquaintence list〉)[〈input list〉]
Com

end def

The identifier 〈beh name〉 is bound to an abstraction and the scope of this
binding is the entire program. The identifiers in acquaintance list are formal pa-
rameters of this abstraction, and their scope is the body Com. These parameters
are bound during a behavior instantiation, and the resulting closure is an actor
behavior. The identifiers in input list are formal parameters of this behavior,
and their scope is the body Com. They are bound at the receipt of a message.
The acquaintance and input lists contain all the free identifiers in Com. The
reserved identifier self can be used in Com as a reference to the actor which
has (an instance of) the behavior being defined. The execution of Com should
always result in the execution of at most a single become command, else the be-
havior definition is said to be erroneous. This property is guaranteed statically
by requiring that in any concurrent composition of commands, at most one of
the commands contains a become. If the execution of Com does not result in
the execution of a become, then the corresponding actor is assumed to take on
a ‘sink’ behavior that simply ignores all the messages it receives.

3.4 An Example

SAL is not equipped with high-level control flow structures such as recursion
and iteration. However, such structures can be encoded as patterns of message
passing [18]. The following implementation of the factorial function (adapted
from [1]) shows how recursion can be encoded. The example also illustrates
continuation passing style of programming common in actor systems.

32 Gul Agha and Prasanna Thati

 (a,Factorial(a))

[3,c]

[2,c1]

[1,c2]

[0,c3]

(c1,FactorialCont(3,c))

(c2,FactorialCont(2,c1))

(c3,FactorialCont(1,c2))

[1]

[1]

[2]

{cust,6}

Fig. 2. A diagram illustrating computation of factorial 3, whose result is to be
sent back to the actor c. The vertical lines denote time lines of actors. An arrow
to the top of a time line denotes an actor creation. Other arrows denote messages.

def Factorial ()[val,cust]
become Factorial () ||
if val = 0

then send [1] to cust
else let cont = new FactorialCont (val,cust)

in send [val − 1, cont] to self
end def

def FactorialCont (val,cust)[arg]
send [val ∗ arg] to cust

end def

A request to factorial actor includes a positive integer n and the actor name
cust to which the result has to be sent. On receiving a message the actor creates
a continuation actor cont and sends itself a message with contents n − 1 and
cont. The continuation actor has n and cust as its acquaintances. Eventually a
chain of continuation actors will be created each knowing the name of the next
in the chain (see Figure 2). On receiving a message with an integer, the behavior
of each continuation actor is to multiply the integer with the one it remembers
and send the reply to its customer. The program can be proved correct by a
simple induction on n. Note that since the factorial actor is stateless, it can

An Algebraic Theory of Actors 33

process different factorial requests concurrently, without affecting the result of
a factorial evaluation.

Following is a top level command that creates a factorial actor that is also a
receptionist and sends a message with value 5 to it.

let x = [recep] new Factorial()
in send [5] to x

4 The Calculus Aπ

The Actor Model and π-calculus have served as the basis of a large body of
research on concurrency. In this section, we represent the Actor Model as a typed
asynchronous π-calculus [7, 21], called Aπ. The type system imposes a certain
discipline on the use of names to capture actor properties such as uniqueness,
freshness and persistence. This embedding of the Actor Model in π-calculus not
only provides a direct basis for comparison between the two models, but also
enables us to apply concepts and techniques developed for π-calculus to the
Actor Model. As an illustration of how the theory of behavioral equivalences
for π-calculus can be adapted to the Actor Model, we develop a theory of may
testing for Aπ in Section 5. In the interest of space and simplicity, we skip the
proofs of all the propositions we state. In fact, the proofs are variations of the
ones presented in [53, 54].

4.1 Syntax

We assume an infinite set of names N , and let u, v, w, x, y, z, . . . range over N .
The set of configurations, ranged over by P, Q, R, is defined by the following
grammar.

P := 0 | x(y).P | xy | (νx)P | P1|P2

| case x of (y1 : P1, . . . , yn : Pn) | B〈x̃; ỹ〉
The order of precedence among the constructs is the order in which they are
listed. The reader may note that, as in the π-calculus, only names are assumed
to be primitive in Aπ. As we will see in Section 6, datatypes such as booleans
and integers, and operations on them, can be encoded as Aπ processes. These
encodings are similar to those for π-calculus [40]; the differences arise mainly
due to the typing constraints imposed by Aπ.

Following is the intended interpretation of Aπ terms as actor configurations.
The nil term 0, represents an empty configuration. The output term xy, repre-
sents a configuration with a single message targeted to x and with contents y. We
call x the subject of the output term. Note that unlike in SAL, where tuples of
arbitrary length can be communicated, only a single name can be communicated
per message in Aπ. As we will explain in Section 4.3, polyadic communication
(communication of tuples of arbitrary length) can be encoded in Aπ, although
only after relaxing the persistence property. The input term x(y).P represents

34 Gul Agha and Prasanna Thati

z(v).Q
2

y(v).Q
1

x(u).P 1

xy

zy
x(u).P 2

wx

Fig. 3. A visualization of the Aπ term R = (νx)(x(u).P1 |y(v).Q1|xy|zy) |
(νx)(x(u).P2 |z(v).Q2|wx). A box around subterms indicates a restriction op-
erator. An outlet next to an actor inside the box indicates that the actor is a
receptionist for the configuration.

a configuration with an actor x whose behavior is (y)P . The parameter y con-
stitutes the formal parameter list of the behavior (y)P , and binds all the free
occurrences of y in P . The actor x can receive an arbitrary name z and substi-
tute it for y in the definition of P , and then behave like P{z/y} (see below for
the definition of substitution). We call x the subject of the input term.

The restricted process (νx)P is the same as P , except that x is no longer a
receptionist of P . All free occurrence of x in P are bound by the restriction. Thus,
the receptionists of a configuration P , are simply those actors whose names are
not bound by a restriction. The composition P1|P2 is a configuration containing
all the actors and messages in P1 and P2. The configuration case x of (y1 :
P1, . . . , yn : Pn) behaves like Pi if x = yi, and like 0 if x �= yi for 1 ≤ i ≤ n.
If more than one branch is true, one of them is non-deterministically chosen.
Note that this construct does not provide mismatch capability on names, i.e. it
does not allow us to take an action based on the failure of a match. Thus, this
construct is much like the case construct of SAL.

The term B〈ũ; ṽ〉 is a behavior instantiation. The identifier B has a single

defining equation of the form B
def
= (x̃; ỹ)x1(z).P , where x̃ is a tuple of distinct

names of length 1 or 2, and x1 denotes the first component of x̃. This definition,
like a behavior definition in SAL, provides a template for an actor behavior.
The tuples x̃ and ỹ together contain exactly the free names in x1(z).P , and
constitute the acquaintance list of the behavior definition. The reason behind
the constraint on length of x̃ will be clear in Section 4.2. For an instantiation
B〈ũ; ṽ〉, we assume len(ũ) = len(x̃), and len(ṽ) = len(ỹ). In the case where ṽ is
the empty tuple, we write B〈ũ〉 as a shorthand for B〈ũ; 〉.

For example, the configuration

R = (νx)(x(u).P1 |y(v).Q1|xy|zy) | (νx)(x(u).P2|z(v).Q2|wx)

is a composition of two sub-configurations (see Figure 3). The first consists of
two actors x and y, a message targeted to x, and a message targeted to an actor

An Algebraic Theory of Actors 35

z that is external to the sub-configuration. The actor y is a receptionist, while x
is hidden. The second sub-configuration, also contains two actors x and z, and
a message targeted to an external actor w. Note that although the name x is
used to denote two different actors, the uniqueness property of actor names is
not violated in R because the scopes of the two restrictions of x do not intersect.
The actors y and z are receptionists of the configuration R.

The reader may note that we use the case construct and recursive defini-
tions instead of the standard match ([x = y]P) and replication (!P) operators
of π-calculus. We have chosen these constructs mainly because they are more
convenient in expressing actor systems. However, both these constructs can be
encoded using the match and replication operators. For instance, the reader can
find an encoding of recursive definitions using the standard π-calculus constructs
in [40].

Before presenting the type system, a few notational conventions are in order.
For a tuple x̃, we denote the set of names occurring in x̃ by {x̃}. We denote the
result of appending ỹ to x̃ by x̃, ỹ. We assume the variable ẑ ranges over {∅, {z}}.
By x̃, ẑ we mean x̃, z if ẑ = {z}, and x̃ otherwise. By (νẑ)P we mean (νz)P if
ẑ = {z}, and P otherwise. We define the functions for free names, bound names
and names, fn(.), bn(.) and n(.), of a process as expected. As usual, we do not
distinguish between alpha-equivalent processes, i.e. between processes that differ
only in the use of bound names. A name substitution is a function on names that
is almost always the identity. We write {ỹ/x̃} to denote a substitution that maps
xi to yi and is identity on all other names, and let σ range over substitutions. We
denote the result of simultaneous substitution of yi for xi in P by P{ỹ/x̃}. As
usual, we define substitution on processes only modulo alpha-equivalence, with
the usual renaming of bound names to avoid captures.

4.2 Type System

Not all terms represent actor configurations. For example, the term
x(u).P |x(v).Q violates the uniqueness property of actor names, as it contains
two actors with name x. The term x(u).(u(v).P |x(v).Q) violates the freshness
property because it creates an actor with name u that is received in a message.
Uniqueness of actor names and freshness of names of newly created actors, cap-
ture essential aspects of object identity. We enforce such constraints by imposing
a type system.

Enforcing all actor properties directly in Aπ results in a language that is
too weak to express certain communication patterns. For example, consider ex-
pressing polyadic communication in Aπ, where tuples of arbitrary length can be
communicated. Since communication in Aπ is monadic, both the sending and
receiving actors have to exchange each component of the tuple one at a time, and
delay the processing of other messages until all the arguments are transfered.
But on the other hand, the persistence property implies that both the actors are
always ready to process any message targeted to them. We therefore relax the
persistence requirement, so that instead of assuming a new behavior immedi-
ately after receiving a message, an actor can wait until certain synchronization

36 Gul Agha and Prasanna Thati

conditions are met before processing the next message. Specifically, we allow an
actor to assume a series of fresh names, one at a time, and resume the old name
at a later point. Basically, the synchronization task is delegated from one new
name to another until the last one releases the actor after the synchronization
conditions are met.

We assume ⊥, ∗ /∈ N , and for X ⊂ N define X∗ = X ∪ {⊥, ∗}. For f : X →
X∗, we define f∗ : X∗ → X∗ as f∗(x) = f(x) for x ∈ X and f∗(⊥) = f∗(∗) = ⊥.
A typing judgment is of the form ρ; f � P , where ρ is the receptionist set of P ,
and f : ρ → ρ∗ is a temporary name mapping function that relates actors in P
to the temporary names they have currently assumes. Specifically

– f(x) = ⊥ means that x is a regular actor name and not a temporary one,
– f(x) = ∗ means x is the temporary name of an actor with a private name

(bound by a restriction), and
– f(x) = y /∈ {⊥, ∗} means that actor y has assumed the temporary name x.

The function f has the following properties. For all x, y ∈ ρ,

– f(x) �= x: This holds for obvious reasons.
– f(x) = f(y) /∈ {⊥, ∗} implies x = y: This holds because an actor cannot

assume more than one temporary name at the same time.
– f∗(f(x)) = ⊥: This holds because temporary names are not like regular

actor names in that they themselves cannot temporarily assume new names,
but can only delegate their capability of releasing the original actor to new
names.

We define a few functions and relations on the temporary name mapping func-
tions, that will be useful in defining the type rules.

Definition 1. Let f1 : ρ1 → ρ∗1 and f2 : ρ2 → ρ∗2.

1. We define f1 ⊕ f2 : ρ1 ∪ ρ2 → (ρ1 ∪ ρ2)∗ as

(f1 ⊕ f2)(x) =
{

f1(x) if x ∈ ρ1, and f1(x) �= ⊥ or x /∈ ρ2

f2(x) otherwise

Note that ⊕ is associative.
2. If ρ ⊂ ρ1 we define f |ρ : ρ → ρ∗ as

(f |ρ)(x) =
{∗ if f(x) ∈ ρ1 − ρ

f(x) otherwise

3. We say f1 and f2 are compatible if f = f1 ⊕ f2 has following properties:
f = f2 ⊕ f1, and for all x, y ∈ ρ1 ∪ ρ2, f(x) �= x, f∗(f(x)) = ⊥, and
f(x) = f(y) /∈ {⊥, ∗} implies x = y. �

Definition 2. For a tuple x̃, we define ch(x̃) : {x̃} → {x̃}∗ as ch(ε) = {}, and
if len(x̃) = n, ch(x̃)(xi) = xi+1 for 1 ≤ i < n and ch(x̃)(xn) = ⊥. �

An Algebraic Theory of Actors 37

NIL: ∅; {} � 0 MSG: ∅; {} � xy

ACT:
ρ; f � P

{x} ∪ ẑ; ch(x, ẑ) � x(y).P
if

ρ − {x} = ẑ, y /∈ ρ, and

f =

{
ch(x, ẑ) if x ∈ ρ
ch(ε, ẑ) otherwise

CASE:
∀1 ≤ i ≤ n ρi; fi � Pi

(∪iρi); (f1 ⊕ f2 ⊕ . . . ⊕ fn) � case x of (y1 : P1, . . . , yn : Pn)

if fi are mutually compatible

COMP:
ρ1; f1 � P1 ρ2; f2 � P2

ρ1 ∪ ρ2; f1 ⊕ f2 � P1|P2
if ρ1 ∩ ρ2 = φ

RES:
ρ; f � P

ρ − {x}; f |(ρ − {x}) � (νx)P

INST: {x̃}; ch(x̃) � B〈x̃; ỹ〉 if len(x̃) = 2 implies x1 �= x2

Table 1. Type rules for Aπ.

The type rules are shown in Table 1. Rules NIL and MSG are obvious. In
the ACT rule, if ẑ = {z} then actor z has assumed temporary name x. The
condition y /∈ ρ ensures that actors are not created with names received in a
message. This is what is commonly referred to as the locality property in the π-
calculus literature [35] 1. The conditions y /∈ ρ and ρ−{x} = ẑ together guarantee
the freshness property by ensuring that new actors are created with fresh names.
Note that it is possible for x to be a regular name, i.e. ρ−{x} = ∅, and disappear
after receiving some message, i.e. x /∈ ρ. We interpret this as the actor x having
assumed a sink behavior, i.e. that it simply consumes all the messages that it
now receives. With this interpretation the intended persistence property is not
violated. Note that a similar interpretation was adopted to account for the case
where the body of a SAL behavior definition does not execute a become command
(see Section 3.3).

The compatibility check in CASE rule prevents errors such as: two actors,
each in a different branch, assuming the same temporary name; or, the same
actor assumes different temporary names in different branches. The COMP rule
guarantees the uniqueness property by ensuring that the two composed con-
figurations do not contain actors with the same name. In the RES rule, f is
updated so that if x has assumed a temporary name y in P , then y’s role as a
temporary name is remembered but x is forgotten. The INST rule states that
if len(x̃) = 2, then B〈x̃; ỹ〉 denotes a configuration containing a single actor x2

that has assumed temporary name x1.

1 In the context of π-calculus, the locality constraint stipulates that a processes can
not receive a name and listen to it; the constraint is enforced by the simple syntactic
rule that in a term x(y).P , the name y can not occur as the subject of an input.

38 Gul Agha and Prasanna Thati

Type checking a term involves checking the accompanying behavior defi-
nitions. For INST rule to be sound, for every definition B

def
= (x̃; ỹ)x1(z).P

and substitution σ = {ũ, ṽ/x̃, ỹ} that is one-to-one on {x̃}, the judgment
{ũ}; ch(ũ) � (x1(z).P)σ should be derivable. From Lemma 1, it follows that
this constraint is satisfied if {x̃}; ch(x̃) � x1(z).P is derivable. Thus, a term is

well-typed only if for each accompanying behavior definition B
def
= (x̃; ỹ)x1(z).P ,

the judgment {x̃}; ch(x̃) � x1(z).P is derivable.
The following theorem states a soundness property of the type system.

Theorem 1. If ρ; f � P then ρ ⊂ fn(P), and for all x, y ∈ ρ, f(x) �= x,
f∗(f(x)) = ⊥, and f(x) = f(y) /∈ {⊥, ∗} implies x = y. Furthermore, if ρ′; f ′ �
P then ρ = ρ′ and f = f ′. �

Not all substitutions on a term P yield terms. A substitution σ may identify
distinct actor names in P , and therefore violate the uniqueness property. But, if
σ renames different actors in P to different names, then Pσ will be well typed.
This is formally stated in Lemma 1, where we have used the following notation.
For a set of names X , σ(X) denotes the set obtained by applying the substitution
σ to each element of X . Further, if σ is a substitution which is one-to-one on
X , fσ : σ(X) → σ(X)∗ is defined as fσ(σ(x)) = σ(f(x)), where σ(⊥) = ⊥ and
σ(∗) = ∗.
Lemma 1. If ρ; f � P and σ is one-to-one on ρ then σ(ρ); fσ � Pσ. �

A consequence of Lemma 1 is that the type system respects alpha-equivalence,
i.e. if P1 and P2 are alpha-equivalent, then ρ; f � P1 if and only if ρ; f � P2. For
a well-typed term P , we define rcp(P) = ρ if ρ; f � P for some f .

4.3 Operational Semantics

We specify the operational semantics of Aπ using a labeled transition system
(see Table 2). The rules are obtained by simple modifications to the usual rules
for asynchronous π-calculus [7]. The modifications simply account for the use
of case construct and recursive definitions instead of the standard match and
replication operators.

The transition system is defined modulo alpha-equivalence on processes, i.e.
alpha-equivalent processes are declared to the same transitions. The symmetric
versions of COM, CLOSE, and PAR, where the roles of P1 and P2 are inter-
changed, are not shown. Transition labels, which are also called actions, can be
of five forms: τ (a silent action), xy (free output of a message with target x and
content y), x(y) (bound output), xy (free input of a message), and x(y) (bound
input). We denote the set of all visible (non-τ) actions by L, let α range over L,
and let β range over all the actions.

The interpretation of these rules in terms of the Actor Model, is as follows.
The INP rule represents the receipt of a message by an actor, and the OUT
rule represents the emission of a message. The BINP rule is used to infer bound

An Algebraic Theory of Actors 39

INP x(y).P
xz−→ P{z/y}

OUT xy
xy−→ 0

BINP
P

xy−→ P ′

P
x(y)−→ P ′ y /∈ fn(P)

RES
P

α−→ P ′

(νy)P
α−→ (νy)P ′ y /∈ n(α) OPEN

P
xy−→ P ′

(νy)P
x(y)−→ P ′

x �= y

PAR
P1

α−→ P ′
1

P1|P2
α−→ P ′

1|P2

bn(α) ∩ fn(P2) = ∅ COM
P1

xy−→ P ′
1 P2

xy−→ P ′
2

P1|P2
τ−→ P ′

1|P ′
2

CLOSE P1
x(y)−→ P ′

1 P2
xy−→ P ′

2

P1|P2
τ−→ (νy)(P ′

1|P ′
2)

y /∈ fn(P2)

BRNCH case x of (y1 : P1, . . . , yn : Pn)
τ−→ Pi if x = yi

BEHV
(x1(z).P){(ũ, ṽ)/(x̃, ỹ)} α−→ P ′

B〈ũ; ṽ〉 α−→ P ′ B
def
= (x̃; ỹ)x1(z).P

Table 2. A labeled transition system for Aπ.

inputs, i.e. receipt of messages that contain actor names that were previously
unknown to the receiving configuration. The RES rule states that an action α
performed by P can also be performed by (νx)P , provided x does not occur in α.
This condition disallows the emission of a message which contains the name of
a hidden actor in the configuration (a non-receptionist), and prevents confusing
a received name with the name of a hidden actor. The OPEN rule accounts for
the former type of actions, while the latter can be accounted for by an alpha-
conversion of the recepient (νx)P to a term (νy)P{y/x}, where y does not occur
in α, and then applying the RES rule. Note that in the OPEN rule, the hidden
actor name that is being emitted is bound in the output action, but is no longer
bound by a restriction in the transition target. Thus, the actor which was hidden
in the transition source, becomes a receptionist in the target. The side condition
of the OPEN rule prevents the emission of messages that are targeted to the
hidden actor.

The PAR rule captures the concurrent composition of configurations. The
side condition of the rule prevents erroneous inferences of bound inputs and
outputs. For example, if P1 performs a bound input x(y), and y ∈ fn(P2), then
the entire configuration P1|P2 can not perform the bound input x(y) as it already
‘knows’ the name y. Similarly, it would be erroneous to allow bound outputs of
P1 with the output argument occuring free in P2; such behavior would confuse
the name of a previously hidden actor with the name of another actor.

The COM rule is used to infer the communication of a receptionist name
between two composed configurations. The CLOSE rule is used to infer the
communication of non-receptionist names between the configurations. The side
condition prevents confusion of the private name that is communicated, with

40 Gul Agha and Prasanna Thati

other names in the recipient P2. Note that the transition target has a top-level
restriction of the communicated name; thus the actor whose name is communi-
cated (internally) is still a non-receptionist in the transition target.

The BRNCH and BEHV rules are self explanatory. The following theorem
states that the type system respects the transition rules.

Theorem 2. If P is well-typed and P
α−→ P ′ then P ′ is well-typed.

Since well-typed terms are closed under transitions, it follows that actor prop-
erties are preserved during a computation. However, note that the source and
the target of a transition need not have the same typing judgment. Specifically,
both the receptionist set and the function that relates actors to the temporary
names they have assumed, may change. For instance the receptionist set changes
when the name of a hidden actor is emitted to the environment, or an actor dis-
appears after receiving a message. (The reader may recall that the latter case
is interpreted as the actor assuming a sink behavior.) Similarly, the temporary
name map function changes when an actor with a temporary name re-assumes
its original name.

Example 1 (polyadic communication). We show how the ability to temporarily
assume a fresh name can be used to encode polyadic communication in Aπ.
Suppose that the subject of a polyadic receive is not a temporary name. In
particular, in the encoding below, x cannot be a temporary name. The idea
behind translation is to let x temporarily assume a fresh name z which is used
to receive all the arguments without any interference from other messages, and
re-assume x after the receipt. For fresh u, z we have

[|x〈y1, . . . , yn〉|] = (νu)(xu | S1〈u; y1, . . . , yn〉)
Si

def
= (u; yi, . . . , yn)u(z).(zyi | Si+1〈u; yi+1, . . . , yn〉) 1 ≤ i < n

Sn
def
= (u; yn)u(z).zyn

[|x(y1, . . . , yn).P |] = x(u).(νz)(uz | R1〈z, x̂; u, ã〉)
Ri

def
= (z, x̂; u, ã)z(yi).(uz | Ri+1〈z, x̂; u, ã〉) 1 ≤ i < n

Rn
def
= (z, x̂; u, ã)z(yn).(uz | [|P |])

where ã = fn(x(y1, . . . , yn).P) − {x}, and x̂ = {x} if for some ρ, f , we have
ρ ∪ {x}; f � [|P |], and x̂ = ∅ otherwise. �

Before we proceed any further, a few definitions and notational conventions
are in order. The functions fn(.), bn(.) and n(.) are defined on L as expected. As
a uniform notation for free and bound actions we adopt the following convention
from [7]: (∅)xy = xy, ({y})xy = x(y), and similarly for input actions. We define
a complementation function on L as (ŷ)xy = (ŷ)xy, (ŷ)xy = (ŷ)xy. The vari-
ables s, r, t are assumed to range over L∗. The functions fn(.), bn(.), n(.), and
complementation on L are extended to L∗ the obvious way. Elements in L∗ are

An Algebraic Theory of Actors 41

called traces. Alpha-equivalence over traces is defined as expected, and alpha-
equivalent traces are not distinguished. The relation =⇒ denotes the reflexive

transitive closure of τ−→, and
β

=⇒ denotes =⇒ β−→=⇒. For s = l.s′, P
l−→ s′−→ Q

is compactly written as P
s−→ Q, and similarly P

l=⇒ s′
=⇒ Q as P

s=⇒ Q. The
assertion, P

s=⇒ P ′ for some P ′, is written as P
s=⇒, and similarly P

s−→ and
P

τ−→.
Not every trace produced by the transition system corresponds to an actor

computation. For instance, we have

(νx)(x(u).P |xx|yx)
y(x)−→ x(u).P |xx

xx−→

But the message xx is not observable; due to the uniqueness property of actor
names, there can never be an actor named x in the environment. To account for
this, we define for any set of names ρ, the notion of a ρ-well-formed trace such
that only ρ-well-formed traces can be exhibited by an actor configuration with
ρ as its initial receptionist set.

Definition 3. For a set of names ρ and trace s we define rcp(ρ, s) inductively
as

rcp(ρ, ε) = ρ rcp(ρ, s.(ŷ)xy) = rcp(ρ, s) rcp(ρ, s.(ŷ)xy) = rcp(ρ, s) ∪ ŷ

We say s is ρ-well-formed if s = s1.(ŷ)xy.s2 implies x /∈ rcp(ρ, s1). We say s is
well-formed if it is ∅-well-formed. ��

The following lemma captures our intuition.

Lemma 2. Let P |Q be a well-typed Aπ term with rcp(P) = ρ1 and rcp(Q) = ρ2.
Then P |Q =⇒ can be unzipped into P

s=⇒ and Q
s=⇒ such that s is ρ1-well-

formed and s is ρ2-well-formed. ��
For convenience, since we work only modulo alpha-equivalence on traces, we

adopt the following hygiene condition. Whenever we are interested in ρ-well-
formed traces, we will only consider traces s such that if s = s1.α.s2, then
(ρ ∪ n(s1) ∪ fn(α)) ∩ bn(α.s2) = ∅.

The transition sequences are further constrained by a fairness requirement
which requires messages to be eventually delivered, if they can be. For example,
the following transition sequences are unfair.

Diverge〈x〉|xu|y(v).vv|yv
τ−→ Diverge〈x〉|xu|y(v).vv|yv
τ−→ Diverge〈x〉|xu|y(v).vv|yv
τ−→ · · ·

where Diverge
def
= (x)x(u).(xu | Diverge〈x〉)

In every transition above, the message xy is delivered to its target; but the
message yv is never delivered.

42 Gul Agha and Prasanna Thati

Fairness in actors requires that the delivery of a message is not delayed in-
finitely long; but it can be delayed for any finite number of steps. Thus, only
infinite transition sequences can be unfair. However, note that our fairness con-
straint does not require that every message is eventually delivered to its target.
Because we have relaxed the persistence property, an actor may disappear during
a computation, after which all the message targeted to it become permanently
disabled. Thus, the fairness criteria only requires that there is no message that is
infinitely often enabled, but not delivered. This is consistent with our convention
that an actor that disappears is assumed to take on a sink behavior.

The fairness requirement can be enforced by defining a predicate on sequences
of transitions as described in [48] such that only fair sequences satisfy the pred-
icate. However, we do not pursue this any further in this paper, as fairness does
not effect the theory we are concerned with. The reader is referred to Section 5.4
for further discussion.

4.4 Discussion

There has been considerable research on actor semantics in the past two decades.
We set Aπ in the context of some of the salient work. A significant fraction of
the research has been in formal semantics for high level concurrent programming
languages based on the Actor Model, e.g. [3, 13] where a core functional language
is extended with actor coordination primitives. The main aim of these works has
been to design concurrent languages that could be useful in practice. Accordingly,
the languages assume high-level computational notions as primitives, and are
embellished with type systems that guarantee useful properties in object-based
settings. In contrast, Aπ is a basic calculus that makes only the ontological
commitments inherent in the Actor Model, thus giving us a simpler framework
for further theoretical investigations. In Section 6, we show how Aπ can be used
to give a translational semantics for SAL.

In [48, 49], actors are modeled in rewriting logic which is often considered as a
universal model of concurrency [33, 36]. An actor system is modeled as a specific
rewrite theory, and established techniques are used to derive the semantics of
the specification and prove its properties. In a larger context, this effort belongs
to a collection of works that have demonstrated that rewriting logic provides
a good basis to unify many different concurrency theories. For example, we
have also a rewrite theory formulation of the π-calculus [52]. In comparison,
Aπ establishes a connection between two models of concurrency that is deeper
than is immediately available from representing the two models in a unified basis.
Specifically, the theory that we have developed in Section 5, can be seen as a more
elaborate investigation of the relationship between two specific rewrite theories,
and provides a formal connection that helps in adapting and transferring results
in one theory to the other.

There are several calculi that are inspired by the Actor Model and the π-
calculus [15, 22, 45]. But these are neither entirely faithful to the Actor Model,
nor directly comparable to the π-calculus. For example, they are either equipped
with primitives intrinsic to neither of the models [15, 22], or they ignore actor

An Algebraic Theory of Actors 43

properties such as uniqueness and persistence [45]. These works are primarily
intended for investigation of object-oriented concepts.

5 A Theory of May Testing for Aπ

Central to any process calculus is the notion of behavioral equivalence which is
concerned with the question of when two processes are equal. Typically, a notion
of success is defined, and two processes are considered equivalent if they have
the same success properties in all contexts. Depending on the chosen notion of
context and success one gets a variety of equivalences [8, 12, 46].

The may testing equivalence is one such instance [17, 12], where the con-
text consists of an observing process that runs in parallel and interacts with the
process being tested, and success is defined as the observer signaling a special
event. The possible non-determinism in execution leads to at least two possibil-
ities for the definition of equivalence. In may testing, a process is said to pass
a test proposed by an observer, if there exists at least one run that leads to
a success. By viewing a success as something bad happening, may testing can
be used for reasoning about safety properties. An alternate definition, where a
process is said to pass a test if every run leads to a success, is called the must
testing equivalence. By viewing a success as something good happening, must
testing can be used for reasoning about liveness properties. In this paper, we
will be develop only with the theory may testing for Aπ.

Context-based behavioral equalities like may testing suffer from the need for
universal quantification over all possible contexts; such quantification makes it
very hard to prove equalities directly from the definition. One solution is to find
an alternate characterization of the equivalence which involves only the processes
being compared. We provide an alternate characterization of may testing in
Aπ that is trace based and directly builds on the known characterization for
asynchronous π-calculus.

5.1 A Generalized May Preorder

As in any typed calculus, may testing in Aπ takes typing into account; an ob-
server O can be used to test a configuration P only if P |O is well-typed. Note
that P |O is well-typed only if rcp(P)∩ rcp(O) = ∅. Thus, O can be used to test
the equivalence between P and Q only if rcp(O) ∩ (rcp(P) ∪ rcp(Q)) = ∅.

The uniqueness property of actor names naturally leads to a generalized
version of may testing, where the equivalence �ρ is tagged with a parameter ρ.
All possible observers O that do not listen on names in ρ, i.e. rcp(O) ∩ ρ = ∅,
are used for deciding �ρ. Of course, for processes P and Q to be compared with
�ρ, it has to be the case that rcp(P), rcp(Q) ⊂ ρ.

Definition 4 (may testing). Observers are processes that can emit a special
message µµ. We let O range over the set of observers. We say O accepts a
trace s if O

s.µµ
=⇒. For P, O, we say P may O if P |O µµ

=⇒. For ρ such that

44 Gul Agha and Prasanna Thati

(L1) s1.(ŷ)s2 ≺ s1.(ŷ)xy.s2 if (ŷ)s2 �= ⊥
(L2) s1.(ŷ)(α.xy.s2) ≺ s1.(ŷ)xy.α.s2 if (ŷ)(α.xy.s2) �= ⊥
(L3) s1.(ŷ)s2 ≺ s1.(ŷ)xy.xy.s2 if (ŷ)s2 �= ⊥
(L4) s1.xw.(s2{w/y}) ≺ s1.x(y).s2

Table 3. A preorder relation on traces.

rcp(P), rcp(Q) ⊂ ρ, we say P
�∼ρ Q, if for every O such that rcp(O) ∩ ρ = ∅,

P may O implies Q may O. We say P �ρ Q if P
�∼ρ Q and Q

�∼ρ P . ��

The relation �∼ρ is a preorder, i.e. reflexive and transitive, and �ρ is an
equivalence relation. Further, note that the larger the parameter ρ, the smaller
the observer set that is used to decide �∼ρ. Hence if ρ1 ⊂ ρ2, we have P

�∼ρ1 Q

implies P
�∼ρ2 Q. However, P

�∼ρ2 Q need not imply P
�∼ρ1 Q. For instance,

0 �{x} xx, but only 0 �∼∅ xx and xx /
�∼∅ 0. Similarly, xx �{x,y} yy, but xx /

�∼∅ yy

and yy /
�∼∅ xx. However, P

�∼ρ2 Q implies P
�∼ρ1 Q if fn(P) ∪ fn(Q) ⊂ ρ1.

Theorem 3. Let ρ1 ⊂ ρ2. Then P
�∼ρ1 Q implies P

�∼ρ2 Q. Furthermore, if
fn(P) ∪ fn(Q) ⊂ ρ1 then P

�∼ρ2 Q implies P
�∼ρ1 Q. ��

5.2 An Alternate Characterization of May Testing

We now build on the trace-based characterization of may testing for asyn-
chronous π-calculus presented in [7] to obtain a characterization of may testing
in Aπ. Following is a summary of the alternate characterization of may testing
in asynchronous π-calculus. To account for asynchrony, the trace semantics is
modified using a trace preorder � that is defined as the reflexive transitive clo-
sure of the laws shown in Table 3, where the notation (ŷ)· is extended to traces
as follows.

(ŷ)s =

s if ŷ = ∅ or y �∈ fn(s)
s1.x(y).s2 if ŷ = {y} and there are s1, s2, x s.t.

s = s1.xy.s2 and y �∈ fn(s1) ∪ {x}
⊥ otherwise

The expression (ŷ)s returns ⊥, if ŷ = {y} and y is used in s before it is received
for the first time, i.e. the first free occurrence of y in s is not as the argument
of an input. Otherwise, the expression returns the trace s with the first such
free input changed to a bound input. The (unparameterized) may preorder �∼
in asynchronous π-calculus (which corresponds to �∼∅ in our setting) is then
characterized as: P

�∼ Q if and only if P
s=⇒ implies Q

r=⇒ for some r � s.
The intuition behind the preorder is that if an observer accepts a trace s,

then it also accepts any trace r � s. Laws L1-L3 capture asynchrony, and L4

An Algebraic Theory of Actors 45

captures the inability to mismatch names. Laws L1 and L2 state that an observer
cannot force inputs on the process being tested. Since outputs are asynchronous,
the actions following an output in a trace exhibited by an observer need not be
causally dependent on the output. Hence the observer’s outputs can be delayed
until a causally dependent action (L2), or dropped if there are no such actions
(L1). Law L3 states that an observer can consume its own outputs unless there
are subsequent actions that depend on the output. Law L4 states that without
mismatch an observer cannot discriminate bound names from free names, and
hence can receive any name in place of a bound name. The intuition behind
the trace preorder is formalized in the following lemma that is proved in [7] for
asynchronous π-calculus.

Lemma 3. If P
s=⇒, then r � s implies P

r=⇒. ��
We note that, the lemma above also holds for Aπ with very simple modifications
to the proof.

Actor properties such as uniqueness and freshness “weaken” may equivalence
in Aπ, in comparison to asynchronous π-calculus. Specifically, the type system of
Aπ reduces the number of observers that can be used to test actor configurations.
For example, the following two processes are distinguishable in asynchronous π-
calculus, but equivalent in Aπ:

P = (νx)(x(z).0|xx|yx) Q = (νx)(x(z).0|yx)

The observer O = y(z).z(w).µµ can distinguish P and Q in asynchronous π-
calculus, but is not a valid Aπ term as it violates the freshness property (ACT
rule of Table 1). In fact, no Aπ term can distinguish P and Q, because the
message xx is not observable.

The following alternate preorder on configurations characterizes the may pre-
order in Aπ.

Definition 5. We say P �ρ Q, if for every ρ-well-formed trace s, P
s=⇒ im-

plies there is r � s such that Q
r=⇒. ��

To prove the characterization, we define an observer O(s) for a well-formed
trace s, such that P may O(s) implies P

r=⇒ for some r � s.

Definition 6 (canonical observer). For a well-formed trace s, we define an
observer

O(s) = (νx̃, z)(|yi∈χProxy(s, yi, z) | O′(s, z)), where z fresh

{x̃} = set of names occurring as argument of bound input actions in s
χ = set of names occuring as subject of output actions in s

O′(ε, z)
�
= µµ

O′((v̂)uv.s, z)
�
= uv|O′(s, z)

46 Gul Agha and Prasanna Thati

O′(uv.s, z)
�
= z(w1, w2).case w1 of (u : case w2 of (v : O′(s, z))) w1, w2 fresh

O′(u(v).s, z)
�
= z(w, v).case w of (u : O′(s, z)) w fresh

Proxy(ε, y, z)
�
= 0

Proxy((v̂)uv.s, y, z)
�
= Proxy(s, y, z)

Proxy((v̂)uv.s, y, z)
�
=

{
y(w).(z〈y, w〉 | Proxy(s, y, z)) w fresh if u = y
Proxy(s, y, z) otherwise

In the above,
�
= is used for macro definitions. The reader may verify that χ −

{x̃}; f � O(s) where f maps every name in its domain to ⊥. Further, if s is
ρ-well-formed we have rcp(O(s)) ∩ ρ = ∅, because the set of names occurring as
subject of output actions in a ρ-well-formed trace is disjoint from ρ. �

The observer O(s) consists of a collection of proxies and a central matcher.
There is one forwarding proxy for each external name that a configuration sends
a message to while exhibiting s. The proxies forward messages to the matcher
which analyzes the contents. This forwarding mechanism (which is not nec-
essary for the construction of canonical observers in the corresponding proof
for asynchronous π-calculus), is essential for Aπ because of uniqueness of actor
names. Further, note that the forwarding mechanism uses polyadic communica-
tion, whose encoding was shown in Section 4.3. The following lemma formalizes
our intention behind the construction of O(s).

Lemma 4. For a well-formed trace s, O(s)
r.µµ
=⇒ implies r � s. ��

The following theorem, which establishes the alternate characterization of
may preorder in Aπ, can be proved easily using Lemmas 2, 3, and 4.

Theorem 4. P
�∼ρ Q if and only if P �ρ Q. ��

5.3 Some Axioms for May Testing

Table 4 lists some inference rules besides the reflexivity and transitivity rules,
and some axioms for �∼ρ. For an index set I = {1, . . . , n}, we use the macro∑

i∈I Pi to denote, (νu)(case u of (u : P1, . . . , u : Pn)) for u fresh if I �= ∅, and
0 otherwise. For an index set that is a singleton, we omit I and simply write

∑
P

instead of
∑

i∈I P . We let the variable G range over processes of form
∑

i∈I Pi.
We write

∑
i∈I Pi +

∑
j∈J Pj to denote

∑
k∈I�J Pk. We write � as a shorthand

for �∅ , and = for =∅ .
Axioms A1 to A17 are self explanatory. We note that they also hold in

asynchronous π-calculus [7]. But axiom A18 is unique to Aπ. It captures the fact
that a message targeted to an internal actor in a configuration, cannot escape to
the environment. The axiom states that there are only two ways such a message
can be handled in the next transition step: it can be consumed internally or de-
layed for later. The axiom also allows for dropping of the message permanently,
which is useful when the message target no longer exists (it may have disappeared

An Algebraic Theory of Actors 47

I1 if P �ρ Q and rcp(R) ∩ ρ = ∅, then (νx)P �ρ−{x} (νx)Q, P |R �ρ Q|R.
I2 if for each z ∈ fn(P, Q) P{z/y} �ρ Q{z/y} then x(y).P �ρ x(y).Q
I3 if for each i ∈ I Pi �ρ

∑
j∈J

Qij then
∑

i∈I
Pi �ρ

∑
i∈I,j∈J

Qij

I4 if ρ1 ⊂ ρ2 and P �ρ1 Q then P �ρ2 Q.

A1 G + G = G A3 P |0 = P A5 (P |Q)|R = P |(Q|R)
A2 G � G + G′ A4 P |Q = Q|P

A6 (νx)(
∑

i∈I
Pi) =

∑
i∈I

(νx)Pi

A7 (νx)(P |Q) = P |(νx)Q x /∈ n(P)
A8 (νx)(xy|α.P) = α.(νx)(xy|P) x /∈ n(α)
A9 (νx)(xy|x(z).P) = (νx)(P{y/z})
A10 (νx)(y(z).P) =

{
y(z).(νx)P if x �= y, x �= z
0 if x = y

A11 xy|∑
i∈I

Pi =
∑

i∈I
(xy|Pi) I �= ∅

A12 α.
∑

i∈I
Pi =

∑
i∈I

α.Pi I �= ∅
A13 P =

∑
P

A14 x(y).(uv|P) � uv|x(y).P y �= u, y �= v
A15 P{y/z} � xy|x(z).P
A16 x(y).(xy|P) � P y /∈ n(P)

A17 (νx)P � P{y/x}

A18 If x ∈ ρ, w �= x and w �= y, then

xy|z(w).P �ρ

∑
z(w).(xy|P) +

∑
z(w).P +

∑
Q

where Q =

{
P{y/w} if x = z
0 otherwise

Table 4. Inference rules and axioms for �∼ρ in Aπ.

during the computation). As an application of this axiom, if x ∈ ρ, we can prove
xy �ρ 0 as follows. For w fresh,

xy �ρ xy|(νw)(w(w).0) (A3 ,A10 , I1)
�ρ (νw)(xy|w(w).0) (A7)
�ρ (νw)(

∑
w(w).0 +

∑
w(w).xy +

∑
0) (A18 , I1)

�ρ

∑
(νw)(w(w).0) +

∑
(νw)w(w).xy +

∑
(νw)0 (A6)

�ρ 0 (A1 ,A10 ,A13 , I3)

Inference rules I1 and I3 are self explanatory, while I4 is motivated by The-
orem 3. We illustrate I1 through some examples. First, using xy �{x} 0 (proved
above) and I1, we get (νx)xy � (νx)0, and by axiom A17 we have (νx)0 � 0.

48 Gul Agha and Prasanna Thati

Therefore, (νx)xy � 0. Note the use of the ability to contract the parameter ρ
of the may preorder after applying a restriction. Second, the following example
illustrates the necessity of the side condition rcp(R) ∩ ρ = ∅ for composition:
xy

�∼{x} 0 but not xy|x(y).yy
�∼{x} x(y).yy, for the LHS can satisfy the observer

y(u).µµ and the RHS can not.
Note that the inference rules are generalizations of rules for asynchronous π-

calculus presented in [7], in order to handle parameterization of the may preorder.
In fact, the rules for asynchronous π-calculus can be obtained by setting ρ = ∅
in I1, I2 and I3. Rule I4 is unique to the parameterized may preorder.

The soundness of rules I1-I4 can be easily proved directly from Definition 4.
Soundness of the axioms is easy to check. For A1-A17, whenever P � Q, we have
P

s=⇒, implies Q
r=⇒ such that r � s. For A18 , both LHS and RHS exhibit the

same ρ-well-formed traces. The reader can verify that A18 would also be sound
as an equality.

5.4 Discussion

The alternate characterization of may testing for Aπ turns out to be the same
as that for Lπ= which we presented in [54]. Lπ= is a version of asynchronous
π-calculus with match operator and the locality constraint (see Section 4.2 for
a discussion on locality). This shows that of all the constraints enforced by the
type system of Aπ, only locality and uniqueness (which is taken care of by
parameterization of the may preorder) has an effect on may testing.

In Section, 4.3, we claimed that the fairness property of the Actor Model does
not affect the theory we have presented. The justification is simple. May testing
is concerned only with the occurrence of an event after a finite computation,
while fairness affects only infinite computations. An interesting consequence of
fairness, however, is that must equivalence [17] implies may equivalence, which
was shown for a specific actor-based language in [3]. It can be shown by a similar
argument that this result holds in Aπ also.

There has been a significant amount of research on notions of equivalence and
semantic models for actors, including asynchronous bisimulation [15], testing
equivalences [3], event diagrams [10], and interaction paths [50]. We have not
only related may testing [3] to the interaction paths model [50], but also related
our characterizations to that of asynchronous π-calculus and its variants.

6 Formal Semantics of SAL

Aπ can serve as the basis for actor based concurrent programming languages.
As an illustration, we give a formal semantics for SAL by translating its pro-
grams into Aπ. The translation can be exploited to apply the characterizations
established in Section 5 to reason about programs in SAL.

In Sections 6.1 and 6.2, we show how booleans, natural numbers and oper-
ations on them can be represented as processes in Aπ. These data types, along
with names, are assumed as primitive in SAL. Of course, this exercise is not

An Algebraic Theory of Actors 49

entirely necessary, and in fact, a better strategy may be to directly consider an
extended version of Aπ with basic data types. The characterizations for Aπ can
be adapted in a straightforward manner to the extended calculus. We have cho-
sen the other approach here, mainly to illustrate that the type system of Aπ does
not reduce the expressive power of the calculus. In Sections 6.3-6.5, we present
the translation of SAL expressions, commands and behavior definitions. SAL
expressions and commands are translated into Aπ terms, and their evaluation is
modeled as computation in these terms. SAL behavior definitions are translated
into recursive definitions in Aπ.

6.1 Booleans

Booleans are encoded as configurations with a single actor that is also a recep-
tionist. In the following, T defines the receptionist behavior for true, and F for
false.

T
def
= (x)x(u, v, c).cu

F
def
= (x)x(u, v, c).cv

The behaviors accept messages containing three names, of which the last name
is assumed to be the customer name (see Section 4.3 for an encoding of polyadic
communication). The behavior T replies back to the customer with the first
name, while F replies back with the second name.

The negation function can be encoded as follows

Not
def
= (x)x(u, c).(νv, y, z)(u〈y, z, v〉 | v(w).case w of(y : F 〈v〉, z : T 〈v〉))

Not(x) can be thought of as the function not available at name x. Evaluation of
the function is initiated by sending a message containing a value and a customer
name, to x. The customer eventually receives the negation of the value sent. The
reader may verify that

Not〈x〉 | F 〈u〉 | x〈u, c〉 c(v)
=⇒ T 〈v〉

Following is the encoding of boolean and

And
def
= (x)x(u, v, c).(νy, z1, z2)(u〈z1, z2, y〉 | v〈z1, z2, y〉 |

y(w1).y(w2).(cy |
case w1 of (

z1 : case w2 of (z1 : T 〈y〉, z2 : F 〈y〉),
z2 : F 〈y〉)))

The reader may verify the following

And〈x〉 | T 〈u〉 | F 〈v〉 | x〈u, v, c〉 c(y)
=⇒ F 〈y〉

The reader may also verify that for each behavior B defined above {x}; {x �→
⊥} � B〈x〉.

50 Gul Agha and Prasanna Thati

6.2 Natural Numbers

Natural numbers are built from the constructors 0 and S. Accordingly, we define
the following two behaviors.

Zero
def
= (x)x(u, v, c).c〈u, x〉

Succ
def
= (x, y)x(u, v, c).c〈v, y〉

With these, natural numbers can be encoded as follows.

0(x)
�
= Zero〈x〉

Sn+10(x)
�
= (νy)(Succ〈x, y〉 | Sn0(y))

The number Sn0 is encoded as a sequence of n + 1 actors each pointing to the
next, and the last one pointing to itself. The first n actors have the behavior
Succ and the last has behavior Zero. Only the first actor is the receptionist to
the entire configuration. As in our encoding for booleans, both the behaviors
accept messages with three names, the last of which is assumed to denote the
customer. The behavior Succ replies back to the customer with the second name
and the name of next actor in the sequence, while Zero replies back with the
first name and its own name.

We only show the encoding of the addition operation, and hope the reader is
convinced that it is possible to encode the others. Our aim is to define a behavior
Add such that

Add〈x〉 | Sn0(u) | Sm0(v) | x〈u, v, c〉 c(w)
=⇒ Sn+m0(w)

We first define a behavior AddTo such that

AddTo〈x〉 | (νu)(Sn0(u) | x〈u, v, c〉) | Sm0(v) =⇒ (νu)(Sn+m0(u) | cu)

We will then use AddTo to define Add.

AddTo
def
= (x)x(u1, u2, c).(νy1, y2, w)(u2〈y1, y2, w〉 |

w(z1,z2).case z1 of (
y1 : cu1,
y2 : (νv)(Succ〈v, u1〉 | x〈v, z2, c〉 | AddTo〈x〉)))

We are now ready to define Add.

Add
def
= (x)x(u, v, c).(νy, z, w)(AddTo〈y〉 | 0(w) | y〈w, u, z〉 |

z(w).(νy)(AddTo〈y〉 | y〈w, v, c〉))

Lemma 5. Add〈x〉 | Sn0(u) | Sm0(v) | x〈u, v, c〉 c(w)
=⇒ Sn+m0(w)

The reader may verify that for a natural number N , and each behavior B
defined above, {x}; {x �→ ⊥} � N(x), and {x}; {x �→ ⊥} � B〈x〉. This encoding
of natural numbers can be extended to integers in a fairly straightforward manner
(for example, by using tags to indicate the sign).

An Algebraic Theory of Actors 51

6.3 Expressions

Now that we have a representation of the basic constituents of expressions -
namely, booleans, integers, and names - what remains is the representation of
dependencies between the evaluation of subexpressions of an expression.

The translation of an expression takes as an argument, the name of a cus-
tomer to which the result of the expression’s evaluation is to be sent. An identifier
expression x is translated as

[|x|]c = cx

A constant (boolean or integer) expression e is translated as

[|e|]c = (νy)(e〈y〉 | cy)

where e is the encoding of the constant e. For an n−ary operator Op, the ex-
pression Op(e1, ..., en) is encoded as

[|Op(e1, . . . , en)|]c = (νy1, . . . , yn+1, z)(Marshal(y1, . . . , yn+1, z) |
[|e1|]y1 | . . . | [|en|]yn | yn+1c | Op〈z〉)

where Op is the encoding of operator Op, and z, yi are fresh. The expressions
e1 to en are concurrently evaluated. The configuration Marshal (y1, . . . , yn+1, z)
marshals their results and the customer name into a single tuple, and forwards it
to an internal actor that implements Op. The marshaling configuration is defined
as

Marshal(y1, . . . , yn, c) = (νu)(R〈y1, u〉 | . . . | R〈yn, u〉 | S1〈u, y1, . . . , yn, c〉)
where

R
def
= (x, y) x(u).y〈u, x〉

Si
def
= (x, yi, . . . , yn, v1, . . . , vi−1, c)

x(vi, w).case w of (
yi : Si+1〈x, yi+1, . . . , yn, v1, . . . , vi, c〉
yi+1 . . . yn : Si〈x, yi, . . . , yn, v1, . . . , vi−1, c〉 | x〈vi, w〉)

for 1 ≤ i < n

Sn
def
= (x, v1, . . . , vn−1, c) x(vn, w).c〈v1, . . . , vn〉
By structural induction on an expression e and name x, it is easy to show

that ∅; {} � [|e|]x.

6.4 Commands

Although the Actor Model stipulates that the actions an actor performs on re-
ceiving a message are all concurrent, execution of SAL commands may involve
sequentiality. For example, expressions need to be evaluated before the results
are used to send messages or instantiate a behavior. This sequentiality is rep-
resented as communication patterns in the Aπ configurations that encode these
commands. The translation of a command takes as an argument, the name of
the SAL actor which executes the command. In the following, we assume that
the names introduced during the translation are all fresh.

52 Gul Agha and Prasanna Thati

Message send: We use the Marshal configuration to marshal the results of ex-
pression evaluations into a polyadic message to the target.

[|send [e1, . . . , en] to z|]x = (νy1, . . . , yn)(Marshal(y1, . . . , yn, z) |
[|e1|]y1 | . . . | [|en|]yn)

New behavior: We use an actor’s ability to temporarily assume a new name to
wait for the results of expression evaluations before assuming the new behavior.

[|become B(e1, . . . , en)|]x = (νy1, . . . , yn, z)([|e1|]y1 | . . . | [|en|]yn |
Marshal 〈y1, . . . , yn, z〉 |
z(u1, . . . , un).B〈x, u1, . . . , un〉)

where B is the Aπ behavior definition that is the translation of the SAL behavior
definition B (see Section 6.5).

Actor creation: The identifiers in the let command are used as names for the
new actors. If not tagged by the recep qualifier, these names are bound by a
restriction. The actors are created at the beginning of command execution, but
they assume a temporary name until their behavior is determined.

[|let y1 = [recep] new B1(e1, . . . , ei1),
. . . yk = [recep] new Bk(e1, . . . , eik

) in Com|]x =
(νỹ)([|become B1(e1, . . . , ei1)|]y1 | . . . |

[|become Bk(e1, . . . , eik
)|]yk | [|Com|]x)

where ỹ consists of all yi which have not been qualified with recep.

Conditional: We use a temporary actor that waits for the outcome of the test
before executing the appropriate command.

[|if e then Com1 else Com2|]x =
(νu)([|e|]u | u(z).(νv1, v2)(z〈v1, v2, u〉 |

u(w).case w of (v1 : [|Com |]x, v2 : [|Com |]x))

Name matching: The translation simply uses the case construct of Aπ.

[|case z of(y1 : Com1 , . . . , yn : Comn)|]x =
case z of (y1 : [|Com1 |]x, . . . , yn : [|Comn |]x)

Concurrent Composition: The translation of a concurrent composition is just
the composition of individual translations.

[|Com1 || Com2|]x = [|Com1|]x | [|Com2|]x
This completes the translation of commands. Let Com be a command such

that in any of its subcommands that is a concurrent composition, at most one
of the composed commands contains a become. Further, assume that a name is
declared as a receptionist at most once, and that let constructs with receptionist

An Algebraic Theory of Actors 53

declarations are not nested under other let or conditional constructs. Let x be a
fresh name. Then by structural induction on Com, we can show that {x, ỹ}; f �
[|Com |]x if Com contains a become, and {ỹ}; f � [|Com |]x otherwise, where ỹ is
the set of all names declared as receptionists in Com, and f is a function that
maps all names in its domain to ⊥.

6.5 Behavior Definitions

Behavior definitions in SAL are translated to behavior definitions in Aπ as fol-
lows

[|def B(ũ)[ṽ] Com end def |] = B
def
= (self ; ũ)self (ṽ).[|Com |]self

Note that the implicitly available reference self in a SAL behavior definition
becomes explicit in the acquaintance list after translation. Since the body of
a behavior definition does not contain receptionist declarations, it follows that
{self }; {self �→ ⊥} � self (ṽ).[|Com|]self . So the RHS is well-typed.

We have completed the translation of various syntactic domains in SAL, and
are ready to present the overall translation of a SAL program. Recall that a
SAL program consists of a sequence of behavior definitions and a single top level
command. Following is the translation.

[|BDef 1 ... BDef n Com |] = [|BDef 1|] . . . [|BDef n|] [|Com |]x

where x is fresh. Since the top level command cannot contain a become, its
translation does not use the argument x supplied. Indeed, {ỹ}; f � [|Com|]x,
where {ỹ} is the set of all names declared as receptionists in Com, and f maps
all names in {ỹ} to ⊥.

6.6 Discussion

The translation we have given, can in principle be exploited to use the testing
theory developed for Aπ, to reason about SAL programs. Note that the char-
acterization of may-testing for Aπ applies unchanged to SAL. This is because
the set of experiments possible in SAL have the same distinguishing power as
the experiments in Aπ. Specifically, the canonical observers constructed for Aπ
in Section 5, are also expressible in SAL. Further, it follows immediately from
Lemma 4 and Theorem 4 that these observers have all the distinguishing power,
i.e. are sufficient to decide �∼ρ in Aπ.

Although, SAL is a very simple language, it can be enriched with higher level
programming constructs without altering the characterization. This is corrobo-
rated by the work in [34], where a high level actor language is translated to a
more basic kernel language (similar to SAL) in such a way that the source and
its translation exhibit the same set of traces.

Translational semantics for actor languages similar to SAL has been previ-
ously attempted. In [11] a simple actor language is translated into linear logic

54 Gul Agha and Prasanna Thati

formulae, and computations are modeled as deductions in the logic. In [29] an
actor-based object-oriented language is translated into HACL extended with
records [28]. These translations provide a firm foundation for further semantic
investigations. However, to reap the benefits of these translations, one still has
to explicitly characterize actor properties such as locality and uniqueness in the
underlying formal system, and identify the changes to the theory due to them.
For instance, the asynchronous π-calculus can be seen as the underlying sys-
tem of our translation, whereas only Aπ terms correspond to SAL programs,
and the characterization of may testing for Aπ is very different from that for
asynchronous π-calculus.

7 Research Directions

In this paper, we have focused only on the semantic aspects of the Actor Model,
while much of the actor research over the last two decades has been on languages
and systems.

Actor programming has been effective in combining benefits of object style
encapsulation with the concurrency of real-world systems. The autonomy of ac-
tors frees a programmer from the burden of explicitly managing threads and syn-
chronizing them. In fact, the autonomy of actors also facilitates mobility. Over
the years, many implementations of the Actor Model have been done [9, 55, 59].
In fact, the numerous agent languages currently being developed typically fol-
low the Actor Model [32, 23]. The Actor Model has also been used for efficient
parallel computation [24, 26, 27, 51]. Actor languages and systems currently be-
ing developed include SALSA for web computing [56], Ptolemy II for embedded
systems [30], and ActorFoundry for distributed computing [43].

An important area of active research in the Actor Model is the use of compu-
tational reflection [31]. The execution environment of an actor application can
be represented as a collection of actors called meta-actors. These meta-actors
constitute the middleware which mediates the interaction of the actor applica-
tion and the underlying operating systems and networks. In order to customize
fault-tolerance, security, synchronization and other types of interaction proper-
ties, meta-actors may be customized (see, for example, [5, 47]). Moreover, the
meta-actor model supports the ability to express dynamic coordination policies
as executable synchronization constraints between actors: the constraints may be
enforced by customizing the meta-actors during execution [14]. An operational
semantics of such reflective systems is developed in [57] and a rewriting model
has been proposed in [37].

The use of meta-actors supports a separation of design concerns which is
now popularly known as aspect-oriented programming [25]. The development of
aspect-oriented programming will enable the reuse of interaction protocols and
functional behavior of an object. The separation of the concurrent interaction
protocols from the sequential behavior of actors is another step in the revolution
in programming that was instigated by Dahl and Nygaard when they developed
the idea of separating the interface of an object from its representation.

An Algebraic Theory of Actors 55

8 Acknowledgments

The research described in here has been supported in part by DARPA under
contracts F33615-01-C-1907 and F30602-00-2-0586, and by ONR under contract
N00014-02-1-0715. Part of the work described in here is a sequel to the research
done in collaboration with Reza Ziaei, whom we would like to thank. We also
thank Carolyn Talcott for useful discussions and comments.

References

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
MIT Press, 1986.

[2] G. Agha. Concurrent Object-Oriented Programming. Communications of the
ACM, 33(9):125–141, September 1990.

[3] G. Agha, I. Mason, S. Smith, and C. Talcott. A Foundation for Actor Computa-
tion. Journal of Functional Programming, 1996.

[4] G. Agha, P. Wegner, and A. Yonezawa (editors). Proceedings of the ACM SIG-
PLAN workshop on object-based concurrent programming. Special issue of SIG-
PLAN Notices.

[5] M. Astley, D. Sturman, and G. Agha. Customizable middleware for modular
distributed software. CACM, 44(5):99–107, 2001.

[6] G.M. Birtwistle, O-J. Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin. Van
Nostrand Reinhold, New York, 1973.

[7] M. Boreale, R. de Nicola, and R. Pugliese. Trace and testing equivalence on
asynchronous processes. Information and Computation, 172(2):139–164, 2002.

[8] M. Boreale and D. Sangiorgi. Some congruence properties for π-calculus bisimi-
larities. In Theoretical Computer Science 198, 1998.

[9] J. P. Briot. Acttalk: A framework for object-oriented concurrent programming
- design and experience. In Object-based parallel and distributed computing II -
Proceedings of the 2nd France-Japan workshop, 1999.

[10] W.D. Clinger. Foundations of Actor Semantics. PhD thesis, Massachusetts Insti-
tute of Technology, AI Laboratory, 1981.

[11] J. Darlington and Y. K. Guo. Formalizing actors in linear logic. In In-
ternational Conference on Object-Oriented Information Systems, pages 37–53.
Springer-Verlag, 1994.

[12] R. de Nicola and M. Hennesy. Testing equivalence for processes. Theoretical
Computer Science, 34:83–133, 1984.

[13] F.Dagnat, M.Pantel, M.Colin, and P.Sall. Typing concurrent objects and actors.
In L’Objet – Mthodes formelles pour les objets (L’OBJET), volume 6, pages 83–
106, 2000.

[14] S. Frolund. Coordinating Distributed Objects: An Actor-Based Approach for Syn-
chronization. MIT Press, November 1996.

[15] M. Gaspari and G. Zavattaro. An Algebra of Actors. In Formal Methods for Open
Object Based Systems, 1999.

[16] I. Greif. Semantics of communicating parallel processes. Technical Report 154,
MIT, Project MAC, 1975.

[17] M. Hennessy. Algebraic Theory of Processes. MIT Press, 1988.
[18] C. Hewitt. Viewing Control Structures as Patterns of Message Passing. Journal

of Artificial Intelligence, 8(3):323–364, September 1977.

56 Gul Agha and Prasanna Thati

[19] C. Hewitt, P. Bishop, and R. Steiger. A Universal Modular Actor Formalism for
Artificial Intelligence. In International Joint Conference on Artificial Intelligence,
pages 235–245, 1973.

[20] C.A.R. Hoare. Communication Sequential Processes. Prentice Hall, 1985.
[21] K. Honda and M. Tokoro. An Object Calculus for Asynchronous Communication.

In Fifth European Conference on Object-Oriented Programming, July 1991. LNCS
512, 1991.

[22] J-L.Colao, M.Pantel, and P.Sall. Analyse de linarit par typage dans un calcul
d’acteurs primitifs. In Actes des Journes Francophones des Langages Applicatifs
(JFLA), 1997.

[23] N. Jamali, P. Thati, and G. Agha. An actor based architecture for customizing
and controlling agent ensembles. IEEE Intelligent Systems, 14(2), 1999.

[24] L.V. Kale and S. Krishnan. CHARM++: A portable concurrent object oriented
system based on C++. In Proceedings of the Conference on Object Oriented
Programming Systems, Languages and Applications, 1993.

[25] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M. Loingtier,
and J. Irwin. Aspect oriented programming. In Proceedings of the European
Conference on Object-Oriented Programming (ECOOP). Springer Verlag, 1997.
LNCS 1241.

[26] W. Kim. ThAL: An Actor System for Efficient and Scalable Concurrent Comput-
ing. PhD thesis, University of Illinois at Urbana Champaign, 1997.

[27] W. Kim and G. Agha. Efficient support of location transparency in concurrent
object-oriented programming languages. In Proceedings of SuperComputing, 1995.

[28] N. Kobayashi and A. Yonezawa. Higher-order concurrent linear logic program-
ming. In Theory and Practice of Parallel Programming, pages 137–166, 1994.

[29] N. Kobayashi and A. Yonezawa. Towards foundations of concurrent object-
oriented programming – types and language design. Theory and Practice of Object
Systems, 1(4), 1995.

[30] E. Lee, S. Neuendorffer, and M. Wirthlin. Actor-oriented design of embedded
hardware and software systems. In Journal of circuits, systems, and computers,
2002.

[31] P. Maes. Computational Reflection. PhD thesis, Vrije University, Brussels, Bel-
gium, 1987. Technical Report 87-2.

[32] P. Maes. Intelligent software: Easing the burdens that computers put on people.
In IEEE Expert, special issue on intelligent agents, 1996.

[33] N. Mart́ı-Oliet and J. Meseguer. Rewriting logic as a logical and semantic frame-
work, 1993.

[34] I.A. Mason and C.Talcott. A semantically sound actor translation. In ICALP 97,
pages 369–378, 1997. LNCS 1256.

[35] M. Merro and D. Sangiorgi. On Asynchrony in Name-Passing Calculi. In Pro-
ceeding of ICALP ’98. Springer-Verlag, 1998. LNCS 1443.

[36] J. Meseguer. Rewriting Logic as a Unified Model of Concurrency. Technical Re-
port SRI-CSI-90-02, SRI International, Computer Science Laboratory, February
1990.

[37] J. Meseguer and C. Talcott. Semantic models for distributed object reflection. In
Proceedings of the European Conference on Object-Oriented Programming, pages
1–36, 2002.

[38] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[39] R. Milner. Interactions, turing award lecture. Communications of the ACM,

36(1):79–97, January 1993.

An Algebraic Theory of Actors 57

[40] R. Milner. Communicating and Mobile Systems: the π-calculus. Cambridge Uni-
versity Press, 1999.

[41] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (Parts I and
II). Information and Computation, 100:1–77, 1992.

[42] S. Miriyala, G. Agha, and Y.Sami. Visulatizing actor programs using predicate
transition nets. Journal of Visual Programming, 1992.

[43] Open Systems Laboratory. The Actor Foundry: A Java based actor programming
language. Available for download at http://www-osl.cs.uiuc.edu/foundry.

[44] J.L. Peterson. Petri nets. Comput. Survey, Sept. 1977.
[45] A. Ravara and V. Vasconcelos. Typing non-uniform concurrent objects. In CON-

CUR, pages 474–488, 2000. LNCS 1877.
[46] R.Milner and D. Sangiorgi. Barbed bisimulation. In Proceedings of 19th Inter-

national Colloquium on Automata, Languages and Programming (ICALP ’92).
Springer Verlag, 1992. LNCS 623.

[47] D. Sturman and G. Agha. A protocol description language for cutomizing seman-
tics. In Proceedings of symposium on reliable distributed systems, pages 148–157,
1994.

[48] C. Talcott. An Actor Rewriting Theory. In Electronic Notes in Theoretical Com-
puter Science 5, 1996.

[49] C. Talcott. Interaction Semantics for Components of Distributed Systems. In
E.Najm and J.B. Stefani, editors, Formal Methods for Open Object Based Dis-
tributed Systems. Chapman & Hall, 1996.

[50] C. Talcott. Composable semantic models for actor theories. Higher-Order and
Symbolic Computation, 11(3), 1998.

[51] K. Taura, S. Matsuoka, and A. Yonezawa. An efficient implementation scheme of
concurrent object-oriented languages on stock multicomputers. In Symposium on
principles and practice of parallel programming (PPOPP), pages 218–228, 1993.

[52] P. Thati, K. Sen, and N. Mart́ı-Oliet. An executable specification of asynchronous
pi-calculus semantics and may testing in maude 2.0. In 4th International Work-
shop on Rewriting Logic and its Applications, September 2002.

[53] P. Thati, R. Ziaei, and G. Agha. A theory of may testing for actors. In Formal
Methods for Open Object-based Distributed Systems, March 2002.

[54] P. Thati, R. Ziaei, and G. Agha. A theory of may testing for asynchronous calculi
with locality and no name matching. In Proceedings of the 9th International
Conference on Algebraic Methodology and Software Technology. Springer Verlag,
September 2002. LNCS 2422.

[55] C. Tomlinson, W. Kim, M. Schevel, V. Singh, B. Will, and G. Agha. Rosette:
An object-oriented concurrent system architecture. Sigplan Notices, 24(4):91–93,
1989.

[56] C. Varela and G. Agha. Programming dynamically reconfigurable open systems
with SALSA. SIGPLAN Notices, 36(12):20–34, 2001.

[57] N. Venkatasubramanian, C. Talcott, and G. Agha. A formal model for reasoning
about adaptive QoS-enabled middleware. In Formal Methods Europe (FME),
2001.

[58] P. Wegner. Dimensions of object-based language design. In Proceedings of the
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA), pages 168–182, 1987.

[59] A. Yonezawa. ABCL: An Object-Oriented Concurrent System. MIT Press, 1990.

