
Actor Frameworks for the JVM Platform:
A Comparative Analysis

Rajesh K. Karmani, Amin Shali, Gul Agha
Open Systems Laboratory

Department of Computer Science
University of Illinois at Urbana-Champaign

{rkumar8, shali1, agha}@illinois.edu

ABSTRACT
The problem of programming scalable multicore processors
has renewed interest in message-passing languages and frame-
works. Such languages and frameworks are typically actor-
oriented, implementing some variant of the standard Actor
semantics. This paper analyzes some of the more significant
efforts to build actor-oriented frameworks for the JVM plat-
form. It compares the frameworks in terms of their execution
semantics, the communication and synchronization abstrac-
tions provided, and the representations used in the imple-
mentations. It analyzes the performance of actor-oriented
frameworks to determine the costs of supporting different
actor properties on JVM. The analysis suggests that with
suitable optimizations, standard Actor semantics and some
useful communication and synchronization abstractions may
be supported with reasonable efficiency on the JVM plat-
form.

Categories and Subject Descriptors
D.1.3 [Software]: PROGRAMMING TECHNIQUES—Con-
current Programming ; D.3.3 [Software]: PROGRAMMING
LANGUAGES—Language Constructs and Features , Con-
current programming structures

General Terms
Languages, Performance

Keywords
Actors, Libraries, Frameworks, Java, JVM, Comparison, Se-
mantics, Abstractions, Performance

1. INTRODUCTION
The growth of multicore computers has made it impera-

tive for application programmers to write concurrent pro-
grams [1]. The dominant model for concurrent program-
ming, popularized by Java, is a shared memory model: mul-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ ’09, August 27–28, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-598-7 ...$10.00.

tiple threads working with a shared memory. The shared
memory model is unnatural for developers, leading to pro-
grams that are error-prone and unscalable [2]. Not surpris-
ingly, researchers and practitioners have shown an increas-
ing interest in using actor-oriented programming. Some lan-
guages based on the Actor model include Erlang [3], E lan-
guage [4], SALSA [5], Ptolemy [6] and Axum [7].

Ed Lee [2] has argued that in adopting a new language
or library, programmers are motivated as much by its syn-
tax as by its semantics. Perhaps for this reason, despite the
development of a number of novel Actor languages, there
continue to be efforts to develop Actor frameworks based
on familiar languages such as C/C++ (Act++ [8], Broad-
way [9], Thal [10]), Smalltalk (Actalk [11]), Python (Stack-
less Python [12], Parley [13]), Ruby (Stage [14]), .NET (Mi-
crosoft’s Asynchronous Agents Library [15], Retlang [16])
and Java (Scala Actors library [17], Kilim [18], Jetlang [19],
ActorFoundry [20], Actor Architecture [21], Actors Guild [22],
JavAct [23], AJ [24], and Jsasb [25]).

In this paper, we analyze actor-oriented frameworks that
execute on the JVM platform. Supporting actors through
frameworks in a language with a different programming
model can be complicated. Moreover, because the actor code
runs on compilers and runtime systems for other languages,
the resulting execution can be inefficient. Either to sim-
plify the implementation, or to improve performance, many
actor-oriented frameworks compromise one or more seman-
tic property of the standard Actor model. For example,
execution efficiency may be improved by unfair scheduling,
or by implementing message-passing by passing references
rather than copying messages. Our goal in this paper is to
understand the semantic properties of Actor-oriented frame-
works, what abstractions they support, and how they are
implemented.

A programming frameworks can be analyzed along two di-
mensions: the linguistic support the framework provides for
programmers, and the efficiency of executing code written
using the framework. In case of the actor frameworks, lin-
guistic support comes in two forms. First, by supporting the
properties of the Actor model, a framework can enable scal-
able concurrency which facilitates compositional program-
ming. Second, by providing programming abstractions that
simplify expression of communication and synchronization
between actors, a framework can allow programming idioms
to be expressed in succinct notation.

As mentioned earlier, many actor-oriented frameworks
compromise one or more of the semantic properties of actors.
We discuss the significance of each of these properties in or-

der to understand the impact of compromising the property
from the “ease of programming” point of view (§3). We then
describe some common communication and synchronization
abstractions in actor frameworks (§4). Finally, we analyze
the implementation mechanisms in Actor frameworks and
study how the cost of providing actor properties may be
mitigated (§5). Our analysis suggests that while a näıve im-
plementation of actor properties may be highly inefficient,
a sophisticated implementation of actor framework on JVM
may provide efficient execution without compromising es-
sential actor properties.

The main contribution of this paper is to provide a basis
for understanding how various actor frameworks differ, both
from a programmability point of view, and from a perfor-
mance point of view. We hope that the results will guide
developers in selecting a suitable framework and facilitate
in the development of other actor-oriented frameworks.

2. OVERVIEW OF THE ACTOR MODEL
The Actor model is an inherently concurrent model of

programming [26]. In the Actor model, systems comprise
of concurrent, autonomous entities, called actors, and mes-
sages. Each actor has a unique, immutable name which is
required to send a message to that actor. An actor name
cannot be guessed but may be communicated to other ac-
tors. Each actor has its own mutable local state; actors do
not share this local state with other actors–each actor is
responsible for updating its own local state.

Actors communicate by sending asynchronous messages
to other actors (see Figure 1). The receiving actor processes
the messages one at a time in a single atomic step. Each step
consists of all actions taken in response to a given message,
enabling a macro-step semantics [27].

[msg_a]

[create]

Mailbox

Methods

Thread
State

Mailbox

Methods

Thread
StateMailbox

Methods

Thread
State

Figure 1: Actors are concurrent entities that ex-
change messages asynchronously.

The standard Actor semantics provides encapsulation, fair
scheduling, location transparency (location independent nam-
ing), locality of reference, and transparent migration. These
properties enable compositional design and simplify reason-
ing [27], and improve performance as applications and ar-
chitectures scale [28]. For example, because actors commu-
nicate using asynchronous messages, an actor does not hold
any system resources while sending and receiving a mes-
sage. This is in contrast to the shared memory model where
threads occupy system resources such as a system stack and
possibly other locks while waiting to obtain a lock. Thus
actors provide failure isolation while potentially improving

performance.
Asynchronous messaging is a key source of nondetermin-

ism in Actor programs: the order in which messages are
processed affects the behavior of an actor. In many applica-
tions, application programmers want to prune some of the
nondeterminism by restricting the possible orders in which
messages are processed. Two commonly used abstractions
that constrain the message order are request-reply messaging
and local synchronization constraints (we will discuss these
abstractions in §4).

3. ACTOR PROPERTIES
We discuss four important semantic properties of actor

systems: encapsulation, fairness, location transparency and
mobility. Using examples, we argue for the advantages of
preserving these semantics in Actor implementations.

3.1 Encapsulation
Encapsulation is one of the core principles of object ori-

ented programming. Preserving encapsulation boundaries
between objects facilitates reasoning about safety proper-
ties such as memory safety, data race freedom, safe mod-
ification of object state. For example, Java is considered
a memory-safe language because it hides memory pointers
behind object references that provide safe access to objects
(e.g. pointer arithmetic is not allowed). Memory-safety is
important for preserving object semantics: it permits access
to an object’s state only using well-defined interfaces. In the
context of the Actor model of programming, there are two
important requirements for encapsulation: state encapsula-
tion and safe messaging.

State Encapsulation.
An actor cannot directly (i.e., in its own stack) access the

internal state of another actor. An actor may affect the state
of another actor only by sending the second actor a message.

The code in Figure 2 shows an implementation of a count-
ing semaphore in the Scala Actors. The main actor, in addi-
tion to sending an enter() message, executes enter() in its
own stack. Because of a lack of enforcement of Actor encap-
sulation in the library, the code violates the Actor property
that an actor may not directly access the internal state of an-
other actor. As a consequence, in a multi-threaded, shared
memory implementation of the Actor model, two actors can
concurrently enter the critical section and thus violate the
semantics of a counting semaphore.

In Kilim, actors have memory references to other actors’
mailboxes. Again, this violates the desired encapsulation
property. Actor implementations that enforce state encap-
sulation do so using indirection. Because such indirection
also provides location transparency, we discuss this sepa-
rately later in this section.

Safe Messaging.
There is no shared state between actors. Therefore, mes-

sage passing should have call-by-value semantics. This may
require making a copy of the message contents, even on
shared memory platforms. In Scala Actors, Kilim, JavAct
and Jetlang a message carries references to its contents on
shared memory platforms, thus introducing shared state be-
tween the actors. These frameworks encourage the program-
mers to use immutable objects inside their objects or explic-

import scala.actors.Actor
import scala.actors.Actor._

object semaphore {
class SemaphoreActor() extends Actor {

...

def enter() {
if (num < MAX) {
// critical section

num = num + 1;
} } }

def main(args : Array[String]) : Unit = {
var gate = new SemaphoreActor()
gate.start
gate ! ”enter”
gate.enter

}
}

Figure 2: A program written in the Scala Actors
shows violation of state encapsulation which may
cause two actors to simultaneously execute the crit-
ical section.

itly copy the objects in the program to avoid shared state.
An alternate proposal is to add a type system based on lin-
ear types to enable safe, zero-copy messaging [18]. Such a
type system is not part of currently available distributions.
While such a type system would be useful, the current pro-
posal may be too restrictive and complex to be widely used
in practice.

We believe that both aspects of encapsulation are impor-
tant for writing large-scale actor programs. Without en-
forcing encapsulation, the Actor model of programming is
effectively reduced to guidance for taming multi-threaded
programming on shared memory machines. It is difficult to
provide semantics for, or reason about the safety properties
of actor-oriented languages that do not guarantee encapsu-
lation. For example, a macro-step semantics [27] simplifies
testing and reasoning about safety properties in actor pro-
grams [29]. Without enforcing actor encapsulation, it would
be incorrect to assume the macro-step semantics.

3.2 Fair Scheduling
The Actor model assumes a notion of fairness: a message

is eventually delivered to its destination actor, unless the
destination actor is permanently “disabled” (in an infinite
loop or trying to do an illegal operation). Another notion
of fairness states that no actor can be permanently starved.
Note that if an actor is never scheduled, pending messages
directed to it cannot be delivered. The notion of guarantee
of message delivery is formulated to also imply that no actor
is permanently starved.

Previous work [27] has shown that in the presence of fair-
ness, reasoning about liveness properties in actor programs
can be done in a modular fashion. For example, with fair-
ness, composing an actor system A, with an actor system B
that consists of actors which are permanently busy does not
affect the progress of the actors in A.

import scala.actors.Actor
import scala.actors.Actor._

object fairness {
class FairActor() extends Actor {

...

def act() { loop { react {
case (v : int) => {
data = v

}
case (”wait”) => {

// busy-waiting section

if (data > 0) println(data)
else self ! ”wait”

}
case (”start”) => {

calc ! (”add”, 4, 5)
self ! ”wait”

}
} } }

} }

Figure 3: A program written in the Scala Actors
showing an Actor “busy-waiting” for a reply. In the
absence of fair scheduling, such an actor can poten-
tially starve other actors.

Consider the program in Figure 3 in which an actor is
“busy-waiting”for a reply from another actor, say a calculator.
In the absence of fairness, calculator may never be scheduled
(starvation). Therefore, the first actor never receives the de-
sired reply, and the system cannot make progress. Similarly
non-cooperative actors (i.e. actors running an infinite loop
or blocked on an I/O or system call) can occupy a native
thread and potentially starve other actors.

A commonly occurring example of this scenario is the
composition of browser components with 3rd party plug-ins,
which are frequently blamed for browser crashes and hang-
ups. Because browsers usually do not provide any fairness
guarantee for the execution of different browser components
(which include plug-ins), the problem of hang-ups is exacer-
bated.

Scala Actors, ActorFoundry, SALSA and Actor Architec-
ture ensure fair scheduling of actors, but as always, such a
guarantee is limited by the resource constraints of the JVM
and the underlying platform.

3.3 Location Transparency
In the Actor model, the actual location of an actor does

not affect its name. Actors communicate by exchanging mes-
sages; each actor has its own address space which could be
completely different from that of others. The actors an actor
knows could be on the same core, on the same CPU, or on a
different node in a network. Location transparency provides
an infrastructure for programmers so that they can program
without worrying about the actual physical locations.

Because one actor does not know the address space of an-
other actor, a desirable consequence of location transparency

Table 1: Comparison of Execution Semantics
SALSA
(v1.1.2)

Scala Actors
(v2.7.3)

Kilim
(v0.6)

Actor Architec-
ture (v0.1.3)

JavAct
(v1.5.3)

ActorFoundry
(v1.0)

Jetlang
(v0.1.7)

State Encapsu-
lation

Yes No No Yes Yes Yes Yes

Safe Message-
passing

Yes No No Yes No Yes No

Fair Scheduling Yes Yes No Yes No Yes No
Location Trans-
parency

Yes No No Yes Yes Yes Yes

Mobility Yes No No Yes Yes Yes No

is state encapsulation. Location transparent naming also fa-
cilitates runtime migration of actors to different nodes, or
mobility. In turn, migration can enable runtime optimiza-
tions for load-balancing and fault-tolerance.

Location transparency is supported by SALSA, Actor Ar-
chitecture, JavAct, ActorFoundry and Jetlang, while in Scala
Actors and Kilim, an actor’s name is a memory reference, re-
spectively, to the object representation of the actors (Scala)
and to the actors’ mailbox (Kilim).

3.4 Mobility
Mobility is defined as the ability of a computation to move

across different nodes. In their seminal work, Fuggetta et al.
classify mobility as either strong or weak [30]. Strong mobil-
ity is defined as the ability of a system to support movement
of both code and execution state. Weak mobility, on the
other hand, only allows movement of code (except for the
initial state, which may be transferable). In actor systems,
weak mobility is useful when migrating an idle actor (i.e.
an actor that is blocked due to an empty mailbox), while
strong mobility means that it is meaningful for an actor to
migrate while it is still processing a message.

Because actors provide modularity of control and encapsu-
lation, mobility is quite natural to the Actor model. Object-
oriented languages may allow mobility at the level of objects
but all thread stacks executing through the object need to
be made aware of this migration. Moreover, when the stack
frame requires access to an object on a remote node, the
execution stack needs to be moved to the remote node to
complete the execution of the frame and then migrated back
to the original node [31].

At the system level, mobility is important for load balanc-
ing, fault-tolerance and reconfiguration. Previous work has
shown that mobility is essential for achieving scalable per-
formance, especially for dynamic, irregular applications over
sparse data structures [32]. In such applications, different
stages may require a different distribution of computation.
In other cases, the optimal distribution is dependent on run-
time conditions such as data and work load. We should point
out that strong mobility (when augmented with discovery
services) will enable the programmer to declaratively exploit
heterogeneous system resources such as GPUs, DSPs, other
task-specific accelerators, and high clock frequency cores.

Weak mobility is supported by SALSA, Actor Architec-
ture, JavAct and ActorFoundry. Strong mobility can be
provided in frameworks such as ActorFoundry, which allow
capturing the current execution context (continuation) and
enforce Actor encapsulation.

3.5 Discussion
Table 1 summarizes semantic properties supported by

some of the more popular Actor frameworks on the JVM
platform. Some frameworks improve execution efficiency by
ignoring aspects of the Actor semantics. For example, as we
mentioned earlier, actor message-passing entails sending the
message contents by value. In languages such as C, C++
or Java, which can have arbitrary aliasing patterns, send-
ing messages by value involves making a deep copy of the
message contents to prevent any unintended sharing among
actors. Deep copying is an expensive operation, even when
performed at the level of native instructions (see §5).

Actor implementations such as Kilim [18] and Scala Ac-
tors [17] provide by-reference semantics for message-passing,
and when required, leave the responsibility of making a copy
of message contents to the programmers. We argue that such
an approach creates a double jeopardy for the programmers.
To begin with, they have to think in a message-passing Ac-
tor model, then they need to revisit their design in order
to figure out which messages actually need to be copied,
and finally, they need to ensure that the contents of these
messages are actually copied.

The temptation to ignore encapsulation is stronger in the
case of an Actor framework as opposed to an Actor lan-
guage. For example, in order to ensure that an actor is
unable to access the state of another actor directly, a lan-
guage may provide an abstraction such as a mailbox address
or a channel but implement it using direct references in the
compiled code for efficiency. This is similar to how Java im-
plements object references to abstract away pointers. In an
Actor-based framework, such abstractions (or indirections)
have to be resolved at runtime, something that is relatively
inefficient.

Even the notion of scheduling fairness is subtle in Actor
implementations. Note that the execution of actor programs
is message-driven, i.e. actors are scheduled for execution
on the arrival of a message, and actors are assumed to be
cooperative, (i.e., an actor ’yields’ control when no message
is pending for it). However, nothing prevents an actor from
executing an infinite loop, or blocking indefinitely on an I/O
or system call.

In order to provide fair scheduling, the implementation re-
quires some support for pre-emption. In frameworks where
each actor is mapped to a JVM thread (also called the 1:1
architecture) the Actor implementation is as fair as the un-
derlying virtual machine or operating system (on many plat-
forms, a JVM thread maps to a native thread). In other
cases, explicit scheduling by the frameworks may be required
to support fair scheduling.

4. PROGRAMMING ABSTRACTIONS
We now discuss two useful programming abstractions for

communication and synchronization in actor programs.

4.1 Request-Reply Messaging Pattern
Request-reply messages express the most common pattern

of messaging and synchronization in actor programs. In this
pattern, the sender of a message blocks waiting for the reply
to arrive before it can proceed [33, 34, 35]. This RPC-like
pattern is sometimes also called synchronous messaging. For
example, an actor that requests a stock quote from a broker
needs to wait for the quote to arrive before it can make a
decision whether or not to buy the stock (see Figure 4).

Figure 4: Request-reply messaging pattern blocks
the sender of a request until it receives the reply.
All other incoming messages during this period are
deferred for later processing.

Without a high-level abstraction for request-reply messag-
ing, the programmer has to explicitly encode the following
steps in their program: an actor sends the request, waits
for the reply to arrive and for each incoming message, the
actor checks whether the message is a reply to the request
or is another message that happened to arrive between the
request and the reply.

Request-reply messaging is almost universally supported
in Actor languages and frameworks. For example, it is avail-
able as a primitive in Scala Actors, SALSA, Actor Architec-
ture and ActorFoundry.

4.2 Local Synchronization Constraints
Observe that each actor operates asynchronously and mes-

sage passing is also subject to arbitrary communication de-
lays; therefore, the order of messages processed by an actor
is nondeterministic. However, sometimes an actor needs to
process messages in a specific order. For example a single
element buffer has to alternate the processing of put and
get messages [36]. This requires that the order in which
messages are processed is restricted. Synchronization con-
straints simplify the task of programming such restrictions
on the order in which messages are processed. For exam-
ple, they can allow the programmer to declare that an actor
postpone the processing of a message until it receives some
sequence of messages, or until a condition on the actor’s
state is satisfied.

Figure 5 shows the state diagram of a bounded buffer.
This state diagram explains how a bounded buffer actor ac-
cepts different messages based on its current state.

Figure 5: Bounded Buffer State Diagram

From a programming language design perspective, it is de-
sirable to separate the specification of when a message is pro-
cessed from the specification of how a message is processed.
Such a separation makes the process of reasoning about the
system more modular. In this case, method implementations
specify how to respond to a message, and synchronization
constraints specify when to respond to a message [36]. Sep-
arating synchronization constraints also makes it easier for
programmers to change the implementation of the methods
(in ways not affecting the state variables that are used in
the synchronization constraints), or change the constraints,
without affecting the other.

The following code is an example of a synchronization con-
straint in the ActorFoundry. Here, the method disablePut

defines a synchronization constraint for the message put.
Note that the constraint is required to be a side-effect free
function (to enable efficient evaluation as well as simplify
the semantics).

@Disable(messageName = "put")

public Boolean disablePut(Integer x) {

if (bufferReady) {

return (tail == bufferSize);

}

else {

return true;

}

}

In the above code, the constraint returns true if the put

message cannot be processed in the actor’s current state. At
runtime, a message is processed if it is not disabled i.e., no
constraint returns true for the message (see Figure 6). A
disabled message is placed in a queue called save queue for
later processing.

Figure 6: Implementation semantics of local syn-
chronization constraints in ActorFoundry

Table 2: Comparison of Programming Abstractions
SALSA
(v1.1.2)

Scala Actors
(v2.7.3)

Kilim
(v0.6)

Actor Architec-
ture (v0.1.3)

JavAct
(v1.5.3)

ActorFoundry
(v1.0)

Jetlang
(v0.1.7)

Request-reply
messaging

Yes Yes No Yes No Yes No

LSC No Yes No No No Yes No
Join expres-
sions

Yes Yes No No No Yes No

Whenever a message is processed successfully by an actor,
it is possible that a previously disabled message (a message
in save queue) is no longer disabled. This is because the
state of the actor may change after processing a message,
and this change of state may enable other messages.

Among the other frameworks on the JVM platform, only
Scala Actors library provides local synchronization constr-
aints. Its support for constraints is based on pattern match-
ing on incoming messages (as in Erlang). Messages that do
not match the receive pattern are postponed and may be
matched by a different pattern later in execution.

4.3 Discussion
Language abstractions are syntactic sugar which do not

change the underlying Actor semantics. For example, pre-
vious research formally shows how an actor program with
these constraints can be translated to an equivalent program
without the constraints [37].

In addition to request-reply messaging and local synchro-
nization constraints, some Actor frameworks have provided
other communication and synchronization abstractions which
we could not discuss in detail due to space constraints. For
example, both Scala and ActorFoundry provide join expres-
sions [38, 39], which allow an actor to respond to a set of
messages as if it were one message. SALSA provides three
other abstractions for synchronization: token-passing con-
tinuations, join blocks and first-class continuations. Token-
passing continuations are designed to specify a partial order
of message processing. In addition, a token can be used as
a result to pass on to a function for further processing. Join
blocks can be used to specify a barrier for concurrent activi-
ties, such that the results from all the activities are available
in a subsequent message. Join blocks are quite similar to join
expressions. First-class continuations allow delegating com-
putation to a third party, enabling dynamic replacement or
expansion of messages grouped by token-passing continua-
tions.

Both Kilim and Jetlang have a channel-based communi-
cation model. Kilim’s runtime provides typed mailboxes
as channels. Moreover, in Kilim there is only one receiver
for each channel. On the other hand, Jetlang provides a
publish/subscribe message-passing paradigm on top of these
channels. Multiple subscribers may subscribe to a channel
and a single actor can subscribe to multiple channels. In
the implementation, the latter feature can result in multiple
messages being simultaneously processed by an actor, which
is a violation of Actor state encapsulation.

Besides two party interactions, we have previously pro-
posed other mechanisms for expressing multi-actor coordi-
nation. These include Synchronizers [40] which constrain
the messages arriving for an actor or a group of actors,
and a Protocol Description Language [9, 41] which can ex-

press complex messaging protocols between actors, poten-
tially constrain messages at all actors participating in a pro-
tocol. As actor languages and frameworks get more traction,
we believe that such coordination methods may be an im-
portant mechanism for writing large-scale programs.

Table 2 summarizes the support for the more common
language abstractions by various Actor implementations on
the JVM platform.

5. IMPLEMENTATION STRATEGIES FOR
PERFORMANCE

We now address the question: can standard Actor seman-
tic properties such as encapsulation, fair scheduling, loca-
tion transparency and mobility be provided efficiently in an
Actor framework on the JVM? As noted earlier (see Ta-
ble 1, 2), SALSA, Actor Architecture and ActorFoundry
(since v0.1.14) faithfully preserve Actor semantic proper-
ties such as fairness (as fair as the underlying JVM and OS
scheduler), encapsulation, location transparency and mobil-
ity. In order to analyze the cost of supporting these proper-
ties, we implemented a small benchmark called Threadring

[42] in which 503 concurrent entities pass a token around
in a ring 10 million times. Threadring provides a crude
estimate of overhead for creating an actor and stress tests
message-passing and context switching.

For our experiments we used a Dell XPS laptop with In-
tel CoreTM 2 Duo CPU @2.40GHz, 4GB RAM and 3MB
L2 cache. The software platform is Sun’s JavaTM SE Run-
time Environment 1.6.0 and Java HotSpotTM Server VM
10.0 running on Linux 2.6.26. We set the JVM heap size to
256MB for all experiments (unless otherwise indicated).

The Actor Foundry v0.1.14 takes about 695s to execute
this benchmark. Both SALSA and Actor Architecture have
similar execution times. In contrast, Kilim and Scala Actors
perform an order of magnitude faster. JavaAct performs
better than Actor Foundry v0.1.14 but does not come close
to either Kilim or Scala’s efficiency. For comparison, note
that, an Erlang implementation takes about 8s while a Java
Thread implementation takes 63s. See Figure 7 for a full
comparison.

This shows that a faithful but näıve implementation of
the standard Actor semantics can make the execution over-
head of actor programs significantly high, making frame-
works such as SALSA, Actor Architecture and Actor
Foundry v0.1.14 efficient only for coarse-grained concurrent
or distributed applications.

To address the question we posed earlier, we optimize and
analyze the performance of Actor Foundry v0.1.14 to under-
stand the costs, and study strategies in order to mitigate
these costs.

Figure 7: Threadring Performance - Actor Foundry
v0.1.14 compared with other concurrent languages
and frameworks

5.1 Overview of ActorFoundry
Actor Foundry v0.1.14 was originally designed and de-

veloped at the Open Systems Laboratory by Astley et al.
around 1998-2000 [20]. The goal was to develop a modular
Actor framework for a new, upcoming object-oriented lan-
guage called Java. Actor Foundry v0.1.14 provides a simple,
elegant model in which the control and mailbox are hidden
away in the framework while the programmer is concerned
with an actor’s local state and behavior only. Figure 8 il-
lustrates the programming model. To leverage the Actor
semantics, programmers are provided with a small set of
methods as part of the Actor Foundry v0.1.14 API. The
API includes:

• send(actorAddress, message, args). Sends an asyn-
chronous message to the actor at specified address along
with arguments.

• call(actorAddress, message, args). Sends an asyn-
chronous message and waits for a reply. The reply is
also an asynchronous message which is either simply
an acknowledgment, or contains a return value.

• create(node, behavior, args). Creates a new actor
with the given behavior at the specified node. The
argument node is optional, if it is not specified, the
actor is created locally.

Actor Foundry v0.1.14 maps each actor onto a JVM thread.
Messages are dispatched to actors by using the Java Reflec-
tion API. The message string is matched to a method name
at runtime and the method is selected based on the runtime
type of arguments. Any Java object can be part of a mes-
sage in Actor Foundry v0.1.14; the only restriction being
that the object implements java.lang.Serializable inter-
face. All message contents are sent by making a deep copy
by using Java’s Serialization and Deserialization mechanism.
Actor Foundry v0.1.14 also supports distributed execution
of actor programs, location transparency and weak mobility
[30]. Actor Foundry v0.1.14 does not implement an auto-
matic actor garbage collection mechanism [43].

Figure 8: Actor Anatomy in Actor Foundry v0.1.14

5.2 Continuations based actors
Note that each actor in Actor Foundry v0.1.14 maps to

a thread; hence actor creation and switching entails thread
creation and thread context switching. In particular, thread
context switching involves saving the complete computation
stack of the thread, program counter and state of other reg-
isters. Another source of context switching overhead in the
kernel mode is due to kernel crossings.

Prior experience with ThAL language [10] suggests that
continuations based actors provide significant improvement
in terms of creation as well as context switch overhead.
To provide similar support in ActorFoundry, we integrate
Kilim’s light-weight Task abstraction and its bytecode post-
processor (“weaver”) [44]. In our context, Kilim’s post-
processor transformation presents two challenges.

First, the transformation does not work when messages
are dispatched using Java Reflection API, since the weaver
is unable to transform Java library code. This prevents the
continuations from being available in the actor code. To
overcome this, we generate custom reflection for each actor
behavior. A method matching a message is found by com-
paring the message string to a method’s name and the type
of message arguments to type of method’s formal arguments.
Once a match is found, the method is dispatched statically.
A desirable side-effect is that static dispatch is more efficient
than Java Reflection.

Second, the transformation requires introducing a sched-
uler for ActorFoundry which is aware of cooperative,
continuations based actors. We introduce such a scheduler
as follows. The scheduler employs a fixed number of JVM
threads called worker threads. All worker threads share a
common scheduler queue. Each worker thread dequeues an
actor from the queue and call its continuation. Actors are
assumed to be cooperative; an actor continues to run until
it yields waiting for a message. When scheduled, an actor
may process multiple messages. This scheduling strategy in-
creases locality and reduces actor context switches. On the
other hand, it can cause starvation in the system. We discuss
this issue in the context of fairness in §5.4. Our scheduler
is message-driven: an actor is put on the scheduler queue if
and only if it has a pending message.

With this implementation, the running time for Thread-
ring example is reduced to about 267s. Further cleanup of
the framework and disabling the logging service brings the
running time down to about 190s.

5.3 Zero-copy messaging on shared memory
platforms

We profile the execution to identify further performance
bottlenecks. A faithful implementation of the actor message-
passing semantics in Actor Foundry v0.1.14 means that mes-
sage contents are deep-copied using Java’s Serialization and
Deserialization mechanism, even for immutable types. It
turns out that deep copying of message contents remains the
biggest bottleneck. Figure 9 compares the overhead of deep
copying versus that of sending message contents by reference
for the Threadring benchmark. Note that in Threadring,
the message content is an integer (token), which is an im-
mutable type and can be safely shared between actors. We
disable deep-copying for some known immutable types. This
brings down the running time of Threadring to 30s.

Figure 9: Graph showing the cost of sending mes-
sages in ActorFoundry by reference versus by mak-
ing a deep copy.

5.4 Fair Scheduling
In order to guarantee scheduling fairness, we modify the

scheduler described earlier to include a monitoring thread.
At regular intervals, the monitoring threads checks whether
the system has made “progress”. A system is said to have
made progress if any of the worker threads have scheduled
an actor from the schedule queue in the preceding inter-
val. If the monitoring thread does not “observe” any system
progress and the schedule queue has actors waiting to be
scheduled, it spawns a new JVM thread. This lazy thread
creation mechanism ensures that enabled actors are not per-
manently starved.

There are some trade-offs in lazy thread creation. If the
duration between observations is too small and actors carry
out relatively coarse-grained computations, the monitoring
thread may incorrectly observe that no progress has been
made. In the worst case, this approach may result in some
extra native threads. An unfortunate worst case is when the
number of native threads exceeds what can fit in the avail-
able JVM heap size, resulting in a crash. (This possibility
could be prevented by checking the heap size before creating
a thread). Moreover, frequently checking progress incurs a
higher overhead. On the other hand, a large gap between

observations may decrease the responsiveness of an appli-
cation in the presence of non-cooperative actors. In other
words, there is a trade-off between responsiveness, overhead
and precision. In our current implementation, the monitor-
ing thread wakes up every 250ms to make observations.

We implemented another small benchmark called Cha-

meneos-redux [42]. Chameneos-redux comprises of two sets
of concurrent entities called Chameneos and another con-
current entity called Broker. The first set contains three
Chameneos while the second set contains ten. Initially each
Chameneos in the first set sends a message to the Broker.
The Broker provides match-making service by picking two
random Chameneos and sending each of them the other’s
information. After a match, the Chameneos send another
message to the Broker and so on. The Broker is required
to complete six million matches, after which it polls each
Chameneos for total individual matches. At the end, the
Broker prints the sum of matches across all Chameneos (in
this case, twelve million). After the first round, the same
interaction occurs for the second set which has ten Chame-
neos.

We compare the overhead of fairness for Threadring, Cha-
meneos-redux and a näıve implementation of fibonacci.
These benchmarks consist of cooperative actors only. Fig-
ure 10 shows that the modified (fair) scheduler incurs negli-
gible overhead for the three benchmarks.

Figure 10: Overhead of Fairness for (a) Threadring
(b) Chameneos-redux (c) Näıve fibonacci calculator

5.5 Performance
Figure 11 compares the performance of Threadring bench-

mark written for an optimized implementation of the Ac-
torFoundry (v1.0) with its performance in Kilim, Scala and
Jetlang. We do not include SALSA and Actor Architecture
as their performance is almost an order of magnitude worse.
We also include numbers for Erlang which currently holds
the undisputed position of being the most widely used Ac-
tor language. Figure 12 provides a similar comparison for
Chameneos-redux benchmark.

Observe that Kilim outperforms the rest (including Er-
lang) for both benchmarks, since the framework provides
light-weight actors and basic message passing support only.
The programming model is low-level as the programmer has
to directly deal with mailboxes, and as noted in Table 1, 2,
it does not provide standard Actor semantics and common
programming abstractions. This allows Kilim to avoid the
costs associated with providing these features.

Note that ActorFoundry’s performance is quite compara-
ble to the other frameworks. This is despite the fact that Ac-
torFoundry v1.0 preserves encapsulation, fairness, location
transparency and mobility. We believe that further signif-

icant optimizations for location transparency and mobility
are possible.

Figure 11: Threadring Performance

Figure 12: Chameneos-redux Performance

6. DISCUSSION AND FUTURE WORK
Engineering is mainly about picking the right tool for the

job. Our experience suggests that, despite a growing interest
in the Actor model, the model may not be generally well-
understood beyond the basic concept of actors and asyn-
chronous messages. Perhaps this is to be expected as the
mindset of the majority of the programmers is ingrained in
the currently dominant object-oriented paradigm, and the
Actor model of programming requires a shift in that mind-
set. Such a shift will be as significant as the shift object-
oriented programming brought in the world of procedural
programming. It may be hard for programmers, and some-
times even for the designers of an Actor framework, to un-
derstand the implications of the various design decisions in
building or using a particular framework. We have tried to
take an open view in this paper since we realize that Ac-
tor frameworks are still evolving. We believe this paper can
serve as a reference for framework designers evaluating dif-
ferent trade-offs. Our study may also motivate the design of
better benchmarks for Actor implementations.

We would like to extend this work with further analyses
of the cost of supporting location transparency and mobil-
ity. Preliminary results suggest that safe messaging is the
dominant source of inefficiency in actor systems. Thus, safe
efficient messaging remains an active research topic. We
believe static analysis can determine some cases where mes-
sages contents can be safely passed by reference. Such an
analysis would largely relieve the programmer of the bur-
den of reasoning in terms of a dual semantics for message
passing. Although a static analysis would necessarily be con-
servative, we believe it could be effective much of time. We
are also exploring possible optimizations for communication
and synchronization between co-located actors.

Acknowledgment
This work was funded in part by the Universal Parallel
Computing Research Center at the University of Illinois at
Urbana-Champaign. The Center is sponsored by Intel Cor-
poration and Microsoft Corporation, and in part by the Na-
tional Science Foundation under grant CNS 05-09321. The
authors would like to thank the anonymous reviewers for
their detailed and useful feedback, and Steven Lauterburg,
Darko Marinov, Mirco Dotta, Niklas Gustafsson and other
members of the Axum development team at Microsoft for
useful discussions during the course of this work. We would
like to acknowledge the support of past and present members
of the Open Systems Laboratory in this research.

7. REFERENCES
[1] Herb Sutter and James R. Larus. Software and the

concurrency revolution. ACM Queue, 3(7):54–62, 2005.

[2] Edward A. Lee. The problem with threads. Computer,
39(5):33–42, 2006.

[3] Joe Armstrong. Programming Erlang: Software for a
Concurrent World. Pragmatic Bookshelf, 2007.

[4] The e language. http://www.erights.org/elang, 2000.

[5] C. Varela and G. Agha. Programming dynamically
reconfigurable open systems with SALSA. ACM
SIGPLAN Notices, 36(12):20–34, 2001.

[6] Edward A. Lee. Overview of the ptolemy project.
Technical Report UCB/ERL M03/25, University of
California, Berkeley, 2003.

[7] Microsoft Corporation. Axum programming language.
http://msdn.microsoft.com/en-
us/devlabs/dd795202.aspx,
2008-09.

[8] D. Kafura. ACT++: building a concurrent C++ with
actors. Journal of Object-Oriented Programming,
3(1):25–37, 1990.

[9] D.C. Sturman and G.A. Agha. A protocol description
language for customizing failure semantics. In
Proceedings of 13th Symposium on Reliable Distributed
Systems, pages 148–157, Oct 1994.

[10] WooYoung Kim. ThAL: An Actor System for Efficient
and Scalable Concurrent Computing. PhD thesis,
University of Illinois at Urbana-Champaign, 1997.

[11] J.P. Briot. Actalk: a Test bed for Classifying and
Designing Actor Languages in the Smalltalk-80
Environment. In Proceedings of the 1989 European
Conference on Object-Oriented Programming, page
109. Cambridge University Press, 1989.

[12] Christian Tismer. Stackless python.
http://www.stackless.com/, 2004-09.

[13] Jacob Lee. Parley. http://osl.cs.uiuc.edu/parley/, 2007.

[14] Jonathan Sillito. Stage: exploring erlang style
concurrency in ruby. In IWMSE ’08: Proceedings of
the 1st international workshop on Multicore software
engineering, pages 33–40, New York, NY, USA, 2008.
ACM.

[15] Microsoft Corporation. Asynchronous agents library.
http://msdn.microsoft.com/en-
us/library/dd492627(VS.100).aspx,
2008-09.

[16] Mike Rettig. Retlang.
http://code.google.com/p/retlang/, 2007-09.

[17] P. Haller and M. Odersky. Actors That Unify Threads
and Events. In 9th International Conference on
Coordination Models and Languages, volume 4467 of
Lecture Notes in Computer Science. Springer, 2007.

[18] S. Srinivasan and A. Mycroft. Kilim: Isolation typed
actors for Java. In Procedings if the European
Conference on Object Oriented Programming
(ECOOP), 2008.

[19] Mike Rettig. Jetlang.
http://code.google.com/p/jetlang/, 2008-09.

[20] Mark Astley. The Actor Foundry: A Java-based Actor
Programming Environment. Open Systems Laboratory,
University of Illinois at Urbana-Champaign, 1998-99.

[21] Myeong-Wuk Jang. The Actor Architecture Manual.
Department of Computer Science, University of
Illinois at Urbana-Champaign, March 2004.

[22] Tim Jansen. Actors guild.
http://actorsguildframework.org/, 2009.

[23] S. Rougemaille J.-P. Arcangeli, F. Migeon. Javact : a
java middleware for mobile adaptive agents, February
2008.

[24] William Zwicky. Aj: A systems for buildings actors
with java. Master’s thesis, University of Illinois at
Urbana-Champaign, 2008.

[25] Rex Young. Jsasb. https://jsasb.dev.java.net/,
2008-09.

[26] Gul Agha. Actors: a model of concurrent computation
in distributed systems. MIT Press, Cambridge, MA,
USA, 1986.

[27] Gul Agha, Ian A. Mason, Scott Smith, and Carolyn
Talcott. A Foundation for Actor Computation.
Journal of Functional Programming, 7(01):1–72, 1997.

[28] WooYoung Kim and Gul Agha. Efficient support of
location transparency in concurrent object-oriented
programming languages. In Supercomputing ’95:
Proceedings of the 1995 ACM/IEEE conference on
Supercomputing (CDROM), page 39, New York, NY,
USA, 1995. ACM.

[29] K. Sen and G. Agha. Automated systematic testing of
open distributed programs. In Fundamental
Approaches to Software Engineering (FASE), volume
3922 of Lecture Notes in Computer Science, pages
339–356. Springer, 2006.

[30] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni
Vigna. Understanding code mobility. IEEE
Transactions on Software Engineering, 24(5):342–361,
1998.

[31] T. Walsh, P. Nixon, and S. Dobson. As strong as
possible mobility: An Architecture for stateful object
migration on the Internet. 6th ECOOP Workshop on
Mobile Object Systems: Operating System Support,
Security and Programming Languages, Sophia
Antipolis (France), 2000.

[32] Rajendra Panwar and Gul Agha. A methodology for
programming scalable architectures. In Journal of
Parallel and Distributed Computing, vol. 22 pp
479-487, 1994.

[33] Gul Agha. Concurrent object-oriented programming.
In in Communications of the ACM, Association for
Computing Machinery, vol. 33, no. 9, pp 125-141,
September, 1990.

[34] G. Agha, S. Frolund, WY Kim, R. Panwar,
A. Patterson, and D. Sturman. Abstraction and
modularity mechanisms for concurrent computing.
IEEE Parallel & Distributed Technology: Systems &
Applications, 1(2):3–14, 1993.

[35] T. Papaioannou. On the structuring of distributed
systems: The argument for mobility. Loughborough
University of Technology, 2000.

[36] Svend Frølund. Coordinating distributed objects: an
actor-based approach to synchronization. MIT Press,
Cambridge, MA, USA, 1996.

[37] I.A. Mason and C.L. Talcott. Actor languages their
syntax, semantics, translation, and equivalence.
Theoretical Computer Science, 220(2):409–467, 1999.

[38] S. Frølund and G. Agha. Abstracting interactions
based on message sets. In Selected papers from the
ECOOP ’94 Workshop on Object-Based Models and
Languages for Concurrent Systems, Lecture Notes In
Computer Science, pages 107–124. Springer-Verlag,
1995.

[39] Philipp Haller and Tom Van Cutsem. Implementing
joins using extensible pattern matching. In 10th
International Conference on Coordination Models and
Languages, volume 5052 of Lecture Notes in Computer
Science, pages 135–152. Springer, 2008.

[40] Svend Frølund and Gul Agha. A language framework
for multi-object coordination. In ECOOP ’93:
Proceedings of the 7th European Conference on
Object-Oriented Programming, pages 346–360,
London, UK, 1993. Springer-Verlag.

[41] Mark Astley, Daniel Sturman, and Gul Agha.
Customizable middleware for modular distributed
software. Communications of the ACM, 44(5):99–107,
2001.

[42] Open Source. The computer language benchmarks
game. http://shootout.alioth.debian.org/, 2004-2008.

[43] Nalini Venkatasubramanian, Gul Agha, and Carolyn
Talcott. Scalable distributed garbage collection for
systems of active objects. In in Y. Bekkers and J.
Cohen (editors), International Workshop on Memory
Management, ACM SIGPLAN and INRIA, St. Malo,
France, Lecture Notes in Computer Science, vol. 637,
pp 134-148, Springer-Verlag, September, 1992.

[44] S. Srinivasan. A thread of one’s own. In Workshop on
New Horizons in Compilers, volume 4. Citeseer, 2006.

