Actors

Rajesh K. Karmani, Gul Agha
Open Systems Laboratory
Department of Computer Science
University of Illinois at Urbana-Champaign
{rkumar8, agha}@illinois.edu

I. DEFINITION

Actors is a model of concurrent computation for devel-
oping parallel, distributed and mobile systems. Each actor
is an autonomous object that operates concurrently and
asynchronously, receiving and sending messages to other
actors, creating new actors, and updating its own local state.
An actor system consists of a collection of actors, some of
whom may send messages to, or receive messages from,
actors outside the system.

II. PRELIMINARIES

An actor has a name that is globally unique and a
behavior which determines its actions. In order to send
an actor a message, the actor’s name must be used; a
name cannot be guessed but it may be communicated in a
message. When an idle is idle, and it has a pending message,
the actor accepts the message, and does the computation
defined by its behavior. As a result the actor may take
three types of actions: send messages, create new actors,
and update its local state. An actor’s behavior may change
as it modifies its local state. Actors do not share state:
an actor must explicitly send a message to another actor
in order to affect the latter’s behavior. Each actor carries
out its actions concurrently (and asynchronously) with other
actors. Moreover, the path a message takes, as well as
network delays it may encounter, are not specified. Thus the
arrival order of messages is indeterminate. The key semantic
properties of the standard Actor model are encapsulation of
state and afomic execution of a method in response to a
message, fairness in scheduling actors and in the delivery
of messages, and location transparency enabling distributed
execution and mobility.

A. Advantages of the Actor Model:

In the object-oriented programming paradigm, an object
encapsulates data and behavior. This separates the interface
of an object (what an object does) from the its representation
(how it does it). Such separation enables modular reasoning
about object-based programs and facilitates their evolution.
Actors extend the advantages of objects to concurrent com-
putations by separating control (where and when) from the
logic of a computation.

State

Thread O ‘3
s

Method

State

Methodb

State

Thread O

Methods /

i

Mailbox

Thread

— —

Mailbox

Figure 1. Actors are concurrent objects which communicate through
messages and may create new actors. An actor may be viewed as an
object augmented with its own control, a mailbox and a globally unique,
immutable name.

The Actor model of programming [[1] allows programs to
be decomposed into self-contained, autonomous, interactive,
asynchronously operating components. Due to their asyn-
chronous operation, actors provide a model for the nonde-
terminism inherent in distributed systems, reactive systems,
mobile systems, and any form of interactive computing.

B. History:

The concept of actors has developed over three decades.
The earliest use of the term actors was in Carl Hewitt’s
Planner [2] where the term referred to rule-based active
entities which search a knowledge base for patterns to match,
and in response, trigger actions. For the next two decades,
Hewitt’s group worked on actors as agents of computation,
and it evolved as a model of concurrent computing. A brief
history of actor research can be found in [3]]. The commonly
used definition of actors today follows the work of Agha
(1985) which defines actors using a simple operational
semantics [1]].

In recent years, the Actor model has gained in popularity
with the growth of parallel and distributed computing plat-
forms such as multi-core architectures, cloud computers and
sensor networks. A number of actor languages and frame-
works have been developed. Some early actor languages
include ABCL, POOL, ConcurrentSmalltalk, ACT++, CEif-
fel (see [4] for a review of these) and HAL [5]. Actor
languages and frameworks in current use include Erlang
(from Ericsson) [6], E (Erights.org), Scala Actors library
(EPFL) [7], Ptolemy (UC Berkeley) [8], ASP (INRIA) [9],
JCoBox (University of Kaiserslautern) [[10], SALSA (UIUC
and RPI) [11], Charm++ [12] and ActorFoundry [13] (both
from UIUC), the Asynchronous Agents Library [14] and
Axum [[15] (both from Microsoft), and Orleans framework
for cloud computing from Microsoft Research [16]. Some
well-known open source applications built using actors
include Twitter’s message queuing system and Lift Web
Framework, and among commercial applications are Face-
book Chat system and Vendetta’s game engine.

III. ILLUSTRATIVE ACTOR LANGUAGE

In order to show how actor programs work, consider
a simple imperative actor language ActorFoundry that
extends Java. A class defining an actor behavior ex-
tends osl.manager.Actor. Messages are handled by meth-
ods; such methods are annotated with @message. The
create(class, args) method creates an actor instance of
the specified actor class, where args correspond to the
arguments of a constructor in the class. Each newly created
actor has a unique name that is initially known only to the
creator at the point where the creation occurs.

Listing 1 Hello World! program in ActorFoundry

public class HelloActor extends Actor {

@message

public void greet() throws RemoteCodeException

{
ActorName other = null;
send (stdout, ”print”, ”"Hello”);
other = create (WorldActor. class);
send (other , ”audience”);

}

}

public class WorldActor extends Actor {
@message
public void audience ()

{
}

throws RemoteCodeException
send (stdout, ”print”, "World”);

}

A. Execution Semantics

The semantics of ActorFoundry can be informally de-
scribed as follows. Consider an ActorFoundry program P

that consists of a set of actor definitions. An actor communi-
cates with another actor in P by sending asynchronous (non-
blocking) messages using the send statement: send(a,msg)
has the effect of eventually appending the contents of msg to
the mailbox of the actor a. However, the call to send returns
immediately i.e. the sending actor does not wait for the
message to arrive at its destination. Because actors operate
asynchronously, and the network has indeterminate delays,
the arrival order of messages is nondeterministic. However,
we assume that messages are eventually delivered (a form
of fairness).

At the beginning of execution of P, the mailbox of each
actor is empty and some actor in the program must receive a
message from the environment. The ActorFoundry runtime
first creates an instance of a specified actor and then sends
a specified message to it, which serves as P’s entry point.

Each actor can be viewed as executing a loop with the
following steps: remove a message from its mailbox (often
implemented as a queue), decode the message, and execute
the corresponding method. If an actor’s mailbox is empty,
the actor blocks—waiting for the next message to arrive in
the mailbox (such blocked actors are referred to as idle
actors). The processing of a message may cause the actor’s
local state to be updated, new actors to be created and
messages to be sent. Because of the encapsulation property
of actors, there is no interference between messages that are
concurrently processed by different actors.

An actor program ‘terminates’ when every actor created
by the program is idle and the actors are not open to the
environment (otherwise the environment could send new
messages to their mailboxes in the future). Note that an actor
program need not terminate—in particular, certain interactive
programs and operating systems may continue to execute
indefinitely.

Listing shows the HelloWorld program in Actor-
Foundry. The program comprises of two actor definitions,
the HelloActor and the WorldActor. An instance of the
HelloActor can receive one type of message, the greet
message, which triggers the execution of greet method.
The greet method serves as P’s entry point, in lieu of the
traditional main method.

On receiving a greet message, the HelloActor sends
a print message to the stdout actor (a built-in actor
representing the standard output stream) along with the
string “Hello”. As a result, “Hello” will eventually be
printed on the standard output stream. Next, it creates an
instance of the WorldActor. The HelloActor sends a a
audience message to the WorldActor, thus delegating the
printing of “World” to it. Note that due to asynchrony in
communication, it is possible for “World” to be printed
before “Hello”.

IV. SYNCHRONIZATION

Synchronization in actors is achieved through communi-
cation. Two types of commonly used communication pat-
terns are Remote Procedure Call (RPC) -like messaging and
local synchronization constraints. Language constructs can
enable actor programmers to specify such patterns. Such
language constructs are definable in terms of primitive actor
constructs, but providing them as first-class linguistic objects
simplifies the task of writing parallel code.

A. RPC-like Messaging

RPC-like communication is a common pattern of
message-passing in actor programs. In RPC-like communi-
cation, the sender of a message waits for the reply to arrive
before the sender proceeds with processing other messages.
For example, consider the pattern shown in Figure [2| for a
client actor which requests a quote from a travel service.
The client wishes to wait for the quote to arrive before it
decides whether to buy the trip, or to request a quote from
another service.

Without a high-level language abstraction to express RPC-
like message pattern, a programmer has to explicitly imple-
ment the following steps in their program:

1) the client actor sends a request;

2) the client then checks incoming messages;

3) if the incoming message corresponds to the reply to its
request, the client takes the appropriate action (accept
the offer, or keep searching);

4) if an incoming message does not correspond to the
reply to its request, the message must be handled (for
example, by being buffered for later processing), and
the client continues to check messages for the reply.

Figure 2. A client actor requesting quotes from multiple competing ser-
vices using RPC-like communication. The dashed slanted arrows denote
messages and the dashed vertical arrows denote that the actor is waiting or
is blocked during that period in its life.

RPC-like messaging is almost universally supported in
actor languages and libraries. RPC-like messages are par-
ticularly useful in two kinds of common scenarios. One
scenario occurs when an actor wants to send an ordered
sequence of messages to a particular recipient—in this case,
it wants to ensure that a message has been received before
it sends another. A variant of this scenario is where the
sender wants to ensure that the the target actor has received a
message before it communicates this information to another
actor. A second scenario is when the state of the requesting
actor is dependent on the reply it receives. In this case,
the requesting actor cannot meaningfully process unrelated
messages until it receives a response.

Because RPC-like messages are similar to procedure calls
in sequential languages, programmers have a tendency to
overuse them. Unfortunately, inappropriate usage of RPC-
like messages introduces unnecessary dependencies in the
code. This may not only make the program’s execution more
inefficient than it needs to be, it can lead to deadlocks and
livelocks (where an actor ignores or postpones processing
messages, waiting for an acknowledgement that never ar-
rives).

B. Local Synchronization Constraints

Asynchrony is inherent in distributed systems and mobile
systems. One implication of asynchrony is that the number
of possible orderings in which messages may arrive is
exponential in the number of messages that are ‘pending’
at any time (i.e., messages that have been sent but have
not been received). Because a sender may be unaware of
what the state of the actor it is sending a message to will
be when the latter receives the message, it is possible that
the recipient may not be in a state where it can process
the message it is receiving. For example, a spooler may
not have a job when some printer requests one. As another
example, messages to actors representing individual matrix
elements (or groups of elements) asking them to process
different iterations in a parallel Cholesky decomposition al-
gorithm need to be monotonically ordered. The need for such
orderings leads to considerable complexity in concurrent
programs, often introducing bugs or inefficiencies due to
suboptimal implementation strategies. For example, in the
case of Cholesky decomposition, imposing a global ordering
on the iterations leads to highly inefficient execution on
multicomputers [[17]].

Consider the example of a print spooler. Suppose a ‘get’
message from an idle printer to its spooler may arrive when
the spooler has no jobs to return the printer. One way to
address this problem is for the spooler to refuse the request.
Now the printer needs to repeatedly poll the spooler until
the latter has a job. This technique is called busy waiting;
busy waiting can be expensive—preventing the waiting actor
from possibly doing other work while it “waits”, and it
results in unnecessary message traffic. An alternate is to the

spooler buffer the ‘get’ message for deferred processing. The
effect of such buffering is to change the order in which the
messages are processed in a way that guarantees that the
number of messages put messages to the spooler is always
greater than the number of get messages processed by the
spooler.

~
~
~
~ ~
~ N a
~ A
File :
‘read” | “close”)
—
o

Figure 3. A file actor communication with a client is constrained using
local synchronization constraints. The vertical arrows depict the timeline
of the life of an actor and the slanted arrows denote messages. The labels
inside a circle denote the messages that the file actor can accept in that
particular state.

If pending messages are buffered explicitly inside the
body of an actor, the code specifying the functionality
(the how or representation) of the actor is mixed with
the logic determining the order in which the actor pro-
cesses the messages (the when). Such mixing violates the
software principle of separation of concerns. Researchers
have proposed various constructs to enable programmers to
specify the correct orderings in a modular and abstract way,
specifically, as logical formulae (predicates) over the state of
an actor and the type of messages. Many actor languages and
frameworks provide such constructs; examples include local
synchronization constraints in ActorFoundry, and pattern
matching on sets of messages in Erlang and Scala Actors
library.

C. Fatterns of Actor Programming

Two common patterns of parallel programming are
pipeline and divide-and-conquer [18]]. These patterns are
illustrated in Fig. f[a) and Fig. f{b), respectively.

An example of the pipeline pattern is an image processing
network (see Figure dfa)) in which a stream of images
is passed through a series of filtering and transforming
stages. The output of the last stage is a stream of processed
images. This pattern has been demonstrated by an image

processing example, written using the Asynchronous Agents
Library [14]), which is part of the Microsoft Visual Studio
2010.

Stage #1 |— W Stage #2 »
Raw Images
Master
(Map)
/ \ /

Stage #3
Processed Images

/ /\
/ / e .
|
/ 7
(Reduce) .

Figure 4. Patterns of actor programming (from top) (a) Pipeline pattern (b)
Divide-and-Conquer pattern.

A map-reduce graph is an example of the divide-and-
conquer pattern (see Figure f[b)). A master actor maps the
computation onto a set of workers and the output from
each of these workers is reduced in the ‘join continuation’
behavior of the master actor (possibly modeled as a sep-
arate actor) (e.g., see [[19]). Other examples of divide-and-
conquer pattern are naive parallel quicksort [20] and parallel
mergesort. The synchronization idioms discussed above may
be used in succinct encoding of these patterns in actor
programs since these patterns essentially require ordering
the processing of some messages.

V. SEMANTIC PROPERTIES

As mentioned earlier, some important semantic properties
of the pure Actor model are: encapsulation and atomic
execution of methods (where a method represents com-
putation in response to a message), fairness, and location
transparency [21]. We discuss the implications of these
properties.

Note that not all actor languages enforce all these prop-
erties. Often the implementations compromise some actor

properties, typically because it is simpler to achieve effi-
cient implementations by doing so. However, it is possible
by sophisticated program transformations, compilation and
runtime optimizations to regain almost all the efficiency that
is lost in a naive language implementation, although doing so
is more challenging for library-like actor frameworks [21].
By failing to enforce some actor properties in an actor
language or framework implementation, actor languages add
to the burden of the programmers, who have to then ensure
that they write programs in a way that does not violate the

property.
A. Encapsulation and Atomicity

Encapsulation implies that no two actors share state. This
is useful for enforcing an object-style decomposition in the
code. In sequential object-based languages, this has led to
the natural model of atomic change in objects: an object
invokes (sends a message to) another object, which finishes
processing the message before accepting another message
from a different object. This allows us to reason about the
behavior of the object in response to a message, given the
state of the target object when it received the message. In
a concurrent computation, it is possible for a message to
arrive while an actor is busy processing another message.
Now if the second message is allowed to interrupt the target
actor and modify the target’s state while the target is still
processing the first message, it is no longer feasible to reason
about the behavior of the target actor based on what the
target’s state was when it received the first message. This
makes it difficult to reason about the behavior of the system
as such interleaving of messages may lead to erroneous and
inconsistent states.

Instead, the target actor processes messages one at a time,
in a single atomic step consisting of all actions taken in
response to a given message [3]]. By dramatically reducing
the nondeterminism that must be considered, such atomicity
provides a macro-step semantics which simplifies reasoning
about actor programs. Macro-step semantics is commonly
used by correctness-checking tools; it significantly reduces
the state-space exploration required to check a property
against an actor program’s potential executions (e.g., see
[22]).

B. Fairness

The Actor model assumes a notion of fairness which
states that every actor makes progress if it has some
computation to do, and that every message is eventually
delivered to the destination actor, unless the destination actor
is permanently disabled. Fairness enables modular reasoning
about the liveness properties of actor programs [3]. For
example, if an actor system A is composed with an actor
system B where B includes actors that are permanently
busy, the composition does not affect the progress of the
actors in A. An familiar example where fairness would be

useful is in browsers. Problems are often caused by the
composition of browser components with third-party plug-
ins: in the absence of fairness, such plug-ins sometimes
result in browser crashes and hang-ups.

C. Location Transparency

In the Actor model, the actual location of an actor does
not affect its name. Actors communicate by exchanging
messages with other actors, which could be on the same
core, on the same CPU, or on another node in the network.
Location transparent naming provides an abstraction for
programmers, enabling them to program without worrying
about the actual physical location of actors. Location trans-
parent naming facilitates automatic migration in the runtime,
much as indirection in addressing facilitates compaction
following garbage collection in sequential programming.

Mobility is defined as the ability of a computation to
migrate across different nodes. Mobility is important for
load-balancing, fault-tolerance and reconfiguration. In par-
ticular, mobility is useful in achieving scalable performance,
particularly for dynamic, irregular applications [23]. More-
over, employing different distributions in different stages of
a computation may improve performance. In other cases, the
optimal or correct performance depends on runtime condi-
tions such as data and work load, or security characteristics
of different platforms. For example, web applications may
be migrated to servers or to mobile clients depending on the
network conditions and capabilities of the client [24].

Mobility may also be useful in reducing the energy
consumed by the execution of parallel applications. Differ-
ent parts of an application often involve different parallel
algorithms and the energy consumption of an algorithm
depends on how many cores the algorithm is executed on
and at what frequency these cores operate [25]. Mobility
facilitates dynamic redistribution of a parallel computation to
the appropriate number of cores (i.e., to the number of cores
that minimize energy consumption for a given performance
requirement and parallel algorithm) by migrating actors.
Thus mobility could be an important feature for energy-
aware programming of multi-core (manycore) architectures.
Similarly energy savings may be facilitated by being able to
migrate actors in sensor networks and clouds.

VI. IMPLEMENTATIONS

Erlang is arguably the best known implementation of
the Actor model. It was developed to program telecom
switches at Ericsson about 20 years ago. Some recent actor
implementations have been listed earlier. Many of these
implementations have focused on a particular domain such
as the Internet (SALSA), distributed applications (Erlang
and E), sensor networks (ActorNet), and more recently
multi-core processors (Scala Actors library, ActorFoundry,
and many others in development).

It has been noted that a faithful but naive implementation
of the Actor model can be highly inefficient [21] (at least
on the current generation of architectures). Consider three
examples:

1) An implementation that maps each actor to a separate

process may have a high cost for actor creation.

2) If the number of cores is less than the number of actors
in the program (sometimes termed CPU oversubscrip-
tion), an implementation mapping actors to separate
processes may suffer from high context switching cost.

3) If two actors are located on the same sequential node,
or on a shared-memory processor, it may be an order
of magnitude more efficient to pass a reference to the
message contents rather than to make a copy of the
actual message contents.

These inefficiencies may be addressed by compilation and
runtime techniques, or through a combinations of the two.
The implementation of the ABCL language [26] demon-
strates some early ideas for optimizing both intra-node and
inter-node execution and communication between actors.
The Thal language project [23|] shows that encapsulation,
fairness and universal naming in an actor language can be
implemented efficiently on commodity hardware by using
a combination of compiler and runtime. The Thal imple-
mentation also demonstrates that various communication
abstractions such as RPC-like communication, local syn-
chronization constraints and join expressions can also be
supported efficiently using various compile-time program
transformations.

The Kilim framework develops a clever post-compilation
continuation-passing style (CPS) transform (“weaving”) on
Java-based actor programs for supporting light-weight actors
that can pause and resume [27]. Kilim and Scala also add
type systems to support safe but efficient messages among
actors on a shared node [27], [28]. Recent work suggests
that ownership transfer between actors, which enables safe
and efficient messaging, can be statically inferred in most
cases [29].

On distributed platforms such as cloud computers or grids,
because of latency in sending messages to remote actors,
an important technique for achieving good performance
is communication-computation overlap. Decomposition into
actors and the placement of actors can significantly deter-
mine the extent of this overlap. Some of these issues have
been effectively addressed in the Charm++ runtime [12].
Decomposition and placement issues are also expected to
show up on scalable manycore architectures since these
architecture cannot be expected to support constant time
access to shared memory.

Finally note that the notion of garbage in actors is
somewhat complex. Because an actor name may be com-
municated in a message, it is not sufficient to mark the
forward acquaintances (references) of reachable actors as
reachable. The inverse acquaintances of reachable actors that

may be potentially active need to be considered as well
(these actors may send a message to a reachable actor).
Efficient garbage collection of distributed actors remains an
open research problem because of the problem of taking
efficient distributed snapshots of the reachability graph in a
running system [30].

VII. TooLs

Several tools are available to aid in writing, maintaining,
debugging, model checking and testing actor programs. Both
Erlang and Scala have a plug-in for the popular, open
source IDE (Integrated Development Environment) called
Eclipse (http://www.eclipse.org). A commercial
testing tool for Erlang programs called QuickCheck [31] is
available. The tool enables programmers to specify program
properties and input generators which are used to generate
test inputs.

JCute [32] is a tool for automatic unit testing of pro-
grams written in a Java actor framework. Basset [33] works
directly on executable (Java bytecode) actor programs and
is easily retargetable to any actor language that compiles
to bytecode. Basset understands the semantic structure of
actor programs (such as the macro-step semantics), enabling
efficient path exploration through the Java Pathfinder (JPF)—
a popular tool for model checking programs [34]. The term
rewriting system Maude provides an Actor module to specify
program behavior; which has been used to model check
actor programs [35]]. There has also been work on runtime
monitoring of actor programs [36].

VIII. EXTENSIONS AND ABSTRACTIONS

A programming language should facilitate the process of
writing programs by being close to the conceptual level at
which a programmer thinks about a problem, rather than
at the level at which it may be implemented. Higher level
abstractions for concurrent programming may be defined in
interaction languages which allow patterns to be captured
as first-class objects [37]]. Such abstractions can be imple-
mented through an adaptive, reflective middleware [38]]. Be-
sides programming abstractions for concurrency in the pure
(asynchronous) actor model, there are variants of the Actor
model, such as for real-time, which extend the model [39],
[8]. Two interaction patterns are discussed to illustrate the
ideas of interaction patterns.

A. Pattern-directed communication

Recall that a sending actor must know the name of a
target actor before the sending actor can communicate with
the target actor. This property, called locality, is useful
for compositional reasoning about actor programs—if it is
known that only some actors can send a message to an
actor A, then it may be possible to figure out what types of
messages A may get and perhaps specify some constraints
on the order in which it may get them. However, real-world

http://www.eclipse.org

programs generally create an open system which interacts
with their external environment. This means that having
ways of discovering actors which provide certain services
can be helpful. For example, if an actor migrates to some
environment, discovering a printer in that environment may
be useful.

Pattern-directed communication allows programmers to
declare properties of a group of actors, enabling the use
of the properties to discover actual recipients are chosen
at runtime. In the ActorSpace model, an actor specifies
recipients in terms of patterns over properties that must be
satisfied by the recipients. The sender may send the message
to all actors (in some group) that satisfy the property, or to a
single representative actor [40]. There are other models for
pattern based communication. In Linda, potential recipients
specify a pattern for messages they are interested in [41].
The sending actors simply inserts a message (called tuple in
Linda) into a tuple-space, from where the receiving actors
may read or remove the tuples if the tuple matches the
pattern of messages the receiving actor is interested in.

B. Coordination

Actors help simplify programming by increasing the
granularity at which programmers need to reason about
concurrency—viz., they may reason in terms of the potential
interleavings of messages to actors, instead of in terms the
interleavings of accesses to shared variables within actors.
However, developing actor programs is still complicated and
prone to errors. A key cause of complexity in actor programs
is the large number of possible interleaving of messages to
groups of actors: if these message orderings are not suitably
constrained, some possible execution orders may fail to meet
the desired specification.

Recall that local synchronization constraints postpone the
dispatch of a message based on the contents of the messages
and the local state of the receiving actor (see Section [[V-B].
Synchronizers, on the other hand, change the order in which
messages are processed by a group of actors by defining
constraints on ordering of messages processed at different
actors in a group of actors. For example, if a withdrawal
and deposit messages must be processed atomically by two
different actors, a Synchronizer can specify that they must
be scheduled together. Synchronizers are described in [42].

In the standard actor semantics, an actor which knows
the name of a target actor may send the latter a message.
An alternate semantics introduces the notion of a channel; a
channel is used to establish communication between a given
sender and a given recipient. Recent work on actor languages
has introduced stateful channel contracts to constrain the
order of messages between two actors. Channels are a
central concept for communication between actors in both
Microsoft’s Singularity platform [43] and Microsoft’s Axum
language [15], while they can be optionally introduced
between two actors in Erlang. Channel contracts specify a

protocol that governs the communication between the two
end-points (actors) of the channel. The contracts are stated
in terms of state transitions based on observing messages on
the channel.

From the perspective of each end-point (actor), the chan-
nel contract specifies the inferface of the other end-point
(actor) in terms of not only the type of messages but also
the ordering on messages. In Erlang, contracts are enforced
at runtime, while in Singularity a more restrictive notion of
typed contracts make it feasible to check the constraints at
compile time.

IX. CURRENT STATUS AND PERSPECTIVE

Actor languages have been used for parallel and dis-
tributed computing in the real world for some time (e.g.
Charm++ for scientific applications on supercomputers [[12],
Erlang for distributed applications [6]). In recent years,
interest in actor-based languages has been growing, both
among researchers and among practitioners. This interest is
triggered by emerging programming platforms such as mul-
ticore computers and cloud computers. In some cases, such
as cloud computing, web services and sensor networks, the
Actor model is a natural programming model because of the
distributed nature of these platforms. Moreover, as multicore
architectures are scaled, multicore computers will also look
more more like traditional multicomputer platforms. This
is illustrated by the 48-core Single-Chip Cloud Computer
(SCC) developed by Intel [44] and the 100-core TILE-Gx
by Tilera [45]. However, the argument for using actor-based
programming languages is not simply that they are a good
match for distributed computing platforms; it is that actors
is a good model in which to think about concurrency. Actors
simplify the task of programming by extending object-based
design to concurrent (parallel, distributed, mobile) systems.

REFERENCES

[1] Gul Agha. Actors: a model of concurrent computation in
distributed systems. MIT Press, Cambridge, MA, USA, 1986.

[2] C. Hewitt. PLANNER: A language for proving theorems
in robots. In Proceedings of the Ist international joint
conference on Artificial intelligence, pages 295-301. Morgan
Kaufmann Publishers Inc., 1969.

[3] Gul Agha, Ian A. Mason, Scott Smith, and Carolyn Talcott.
A Foundation for Actor Computation. Journal of Functional
Programming, 7(01):1-72, 1997.

[4] Jean-Pierre Briot, Rachid Guerraoui, and Klaus-Peter Lohr.
Concurrency and distribution in object-oriented programming.
ACM Comput. Surv., 30(3):291-329, 1998.

[5] Chris Houck and Gul Agha. Hal: A high-level actor language
and its distributed implementation. In 21st International
Conference on Parallel Processing (ICPP), vol. 11, pages 158—
165, 1992.

(6]

[7

—

[8

—

[9

—

(10]

(11]

[12]

[13]

[14]

(15]

[16]

(17]

(18]

(19]

(20]

Joe Armstrong. Programming Erlang: Software for a Con-
current World. Pragmatic Bookshelf, 2007.

P. Haller and M. Odersky. Actors That Unify Threads and
Events. In 9th International Conference on Coordination
Models and Languages, volume 4467 of Lecture Notes in
Computer Science. Springer, 2007.

Edward A. Lee. Overview of the ptolemy project. Technical
Report UCB/ERL M03/25, University of California, Berkeley,
2003.

Denis Caromel, Ludovic Henrio, and Bernard Paul Serpette.
Asynchronous sequential processes. Information and Com-
putation, 207(4):459 — 495, 2009.

Jan Schifer and Arnd Poetzsch-Heffter. Jcobox: generalizing
active objects to concurrent components. In Proceedings of
the 24th European conference on Object-oriented program-
ming, ECOOP’10, pages 275-299, Berlin, Heidelberg, 2010.
Springer-Verlag.

C. Varela and G. Agha. Programming dynamically reconfig-
urable open systems with SALSA. ACM SIGPLAN Notices,
36(12):20-34, 2001.

Laxmikant V. Kale and Sanjeev Krishnan. Charm++: a
portable concurrent object oriented system based on c++.
SIGPLAN Not., 28(10):91-108, 1993.

Mark Astley. The Actor Foundry: A Java-based Actor
Programming Environment. Open Systems Laboratory, Uni-
versity of Illinois at Urbana-Champaign, 1998-99.

Microsoft Corporation. Asynchronous
agents library. http://msdn.microsoft.com/en-
us/library/dd492627(VS.100).aspx.

Microsoft Corporation. Axum programming language.
http://msdn.microsoft.com/en-us/devlabs/dd795202.aspx.

Gabriel Kliot James Larus Ravi Pandya Jorgen Thelin
Sergey Bykov, Alan Geller. Orleans: A framework for cloud
computing. Technical Report MSR-TR-2010-159, Microsoft
Research, 2010.

G. Agha and W.Y. Kim. Parallel programming and complexity
analysis using actors. In Massively Parallel Programming
Models, 1997. Proceedings. Third Working Conference on,
pages 68-79. IEEE, 2002.

Gul Agha. Concurrent object-oriented programming. In
in Communications of the ACM, Association for Computing
Machinery, vol. 33, no. 9, pp 125-141, September, 1990.

Thomas Huining Feng and Edward A. Lee. Scalable models
using model transformation. In Ist International Workshop
on Model Based Architecting and Construction of Embedded
Systems (ACESMB), September 2008.

V. Singh, V. Kumar, G. Agha, and C. Tomlinson. Scalability
of parallel sorting on mesh multicomputers. In Parallel Pro-
cessing Symposium, 1991. Proceedings., Fifth International,
pages 92 —101, apr. 1991.

(21]

(22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

Rajesh K. Karmani, Amin Shali, and Gul Agha. Actor
frameworks for the JVM platform: a comparative analysis. In
PPPJ °09: Proceedings of the 7th International Conference
on Principles and Practice of Programming in Java, pages
11-20, New York, NY, USA, 2009. ACM.

Steven Lauterburg, Rajesh K. Karmani, Darko Marinov, and
Gul Agha. Evaluating ordering heuristics for dynamic partial-
order reduction techniques. In Fundamental Approaches to
Software Engineering (FASE) with ETAPS, 2010.

WooYoung Kim and Gul Agha. Efficient support of location
transparency in concurrent object-oriented programming lan-
guages. In Supercomputing ’95: Proceedings of the 1995
ACM/IEEE conference on Supercomputing, page 39, New
York, NY, USA, 1995. ACM.

Po-Hao Chang and Gul Agha. Towards context-aware
web applications. In 7th IFIP International Conference on
Distributed Applications and Interoperable Systems (DAIS),
2007.

Vijay Anand Korthikanti and Gul Agha. Towards optimizing
energy costs of algorithms for shared memory architectures.
In SPAA ’10: Proceedings of the 22nd ACM symposium on
Parallelism in algorithms and architectures, pages 157-165,
New York, NY, USA, 2010. ACM.

Akinori Yonezawa, editor. ABCL: an object-oriented concur-
rent system. MIT Press, Cambridge, MA, USA, 1990.

S. Srinivasan and A. Mycroft. Kilim: Isolation typed actors
for Java. In Procedings if the European Conference on Object
Oriented Programming (ECOOP), 2008.

Philipp Haller and Martin Odersky. Capabilities for unique-
ness and borrowing. In Theo DHondt, editor, ECOOP
2010 Object-Oriented Programming, volume 6183 of Lecture
Notes in Computer Science, pages 354-378. Springer Berlin
/ Heidelberg, 2010.

Stas Negara, Rajesh Kumar Karmani, and Gul Agha. Inferring
ownership transfer for efficient message passing. In 7o appear
in the 16th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP), New York, NY,
USA, 2011. ACM.

Nalini Venkatasubramanian, Gul Agha, and Carolyn Talcott.
Scalable distributed garbage collection for systems of active
objects. In in Y. Bekkers and J. Cohen (editors), International
Workshop on Memory Management, ACM SIGPLAN and
INRIA, St. Malo, France, Lecture Notes in Computer Science,
vol. 637, pp 134-148, Springer-Verlag, September, 1992.

Thomas Arts, John Hughes, Joakim Johansson, and Ulf
Wiger. Testing telecoms software with quviq quickcheck.
In ERLANG ’06: Proceedings of the 2006 ACM SIGPLAN
workshop on Erlang, pages 2—10, New York, NY, USA, 2006.
ACM.

K. Sen and G. Agha. Automated systematic testing of
open distributed programs. In Fundamental Approaches to
Software Engineering (FASE), volume 3922 of Lecture Notes
in Computer Science, pages 339-356. Springer, 2006.

(33]

[34]

(35]

(36]

[37]

(38]

(391

(40]

[41]

[42]

[43]

[44]

[45]

Steven Lauterburg, Mirco Dotta, Darko Marinov, and Gul
Agha. A framework for state-space exploration of java-
based actor programs. In ASE ’09: Proceedings of the 2009
IEEE/ACM International Conference on Automated Software
Engineering, pages 468-479, Washington, DC, USA, 2009.
IEEE Computer Society.

Willem Visser, Klaus Havelund, Guillaume Brat, and Se-
ungJoon Park. Model checking programs. In Proceedings
of the 15th IEEE international conference on Automated
software engineering, ASE ’00, pages 3—, Washington, DC,
USA, 2000. IEEE Computer Society.

Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lin-
coln, Narciso Marti-Oliet, José Meseguer, and Carolyn Tal-
cott. All about maude - a high-performance logical frame-
work: how to specify, program and verify systems in rewriting
logic. Springer-Verlag, Berlin, Heidelberg, 2007.

Koushik Sen, Abhay Vardhan, Gul Agha, and Grigore Rosu.
Efficient decentralized monitoring of safety in distributed
systems. In ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering, pages 418427, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

Daniel Sturman and Gul Agha. A protocol description
language for customizing failure semantics. In in Proceedings
of the Thirteenth Symposium on Reliable Distributed Systems,
pp 148-157, IEEE Computer Society Press, October, 1994.

Mark Astley, Daniel Sturman, and Gul Agha. Customizable
middleware for modular distributed software. Commun. ACM,
44(5):99-107, 2001.

Shangping Ren and Gul A. Agha. Rtsynchronizer: language
support for real-time specifications in distributed systems.
SIGPLAN Not., 30(11):50-59, 1995.

Gul Agha and Christian J. Callsen. Actorspace: an open
distributed programming paradigm. In Proceedings of the
fourth ACM SIGPLAN symposium on Principles and Practice
of Parallel Programming (PPoPP), pages 23-32, New York,
NY, USA, 1993. ACM.

Nicholas Carriero and David Gelernter. Linda in context.
Commun. ACM, 32:444-458, April 1989.

G. Agha, S. Frolund, WY Kim, R. Panwar, A. Patterson,
and D. Sturman. Abstraction and modularity mechanisms
for concurrent computing. [EEE Parallel & Distributed
Technology: Systems & Applications, 1(2):3-14, 1993.

Manuel Fiahndrich, Mark Aiken, Chris Hawblitzel, Orion
Hodson, Galen Hunt, James R. Larus, and Steven Levi.
Language support for fast and reliable message-based com-
munication in Singularity OS. SIGOPS Oper. Syst. Rev.,
40(4):177-190, 2006.

Intel Corporation. Single-chip Cloud Computer.
http://techresearch.intel.com/ProjectDetails.aspx?Id=1.

Tilera Corporation. TILE-Gx Processor Family.
http://tilera.com/products/processors/TILE-Gx_Family.

	Definition
	Preliminaries
	Advantages of the Actor Model:
	History:

	Illustrative Actor Language
	Execution Semantics

	Synchronization
	RPC-like Messaging
	Local Synchronization Constraints
	Patterns of Actor Programming

	Semantic Properties
	Encapsulation and Atomicity
	Fairness
	Location Transparency

	Implementations
	Tools
	Extensions and Abstractions
	Pattern-directed communication
	Coordination

	Current Status and Perspective
	References

