
Clojure

A (not-so-pure) functional approach
to concurrency

Paolo Baldan
Linguaggi per il Global Computing

AA 2018/2019

In the words of the inventor

• Functional programming language (rooted in Lisp,
from 60s … old but beautifully compact language)

• symbiotic with an established platform (JVM)

• designed for concurrency

• with focus on immutability

Where all started

“Recursive Functions of Symbolic Expressions and Their 
 Computation by Machine, Part I” MIT 1960

“uncle”
John McCarthy

Turing award 
1971

Pragmatic
• Focus on pure functions (immutable data types),

but allows for mutability

• Functional, but allows for control (e.g., iteration)

• Direct compilation into JVM (strings are java
strings, …, access to Java’s libraries)

• Used in industry (CapitalOne, Amazon, Facebook,
Oracle, Boeing)

Outline

• Basics: expressions and evaluation

• Functional parallelism (on data, for free)

• Programmable concurrency: futures, promises
and all that

Basics

Program as data

• Code as a data structure (everything is a list)

• Tools offered for manipulating data as code (eval,
quote, apply, etc.)

• Make the language easily extensible (see macros)

“A programmable programming language.”

Starting …
• Numbers

user> 9
9

Evaluate to themselves
• Strings

user> "Here I am"
"Here I am"

• Keywords (atoms)
user> :name
:name

Lists
• … it’s essentially all about that

(mylist 1 2)

nil

• In the evaluation the first element is
intepreted as a function

user> (+ 1 2)
3

user> (* 2 (+ 1 2 3))
12

Defining things: vars
• Vars: names for pieces of Clojure data

user> (def word "cap")
#'user/word

user> (def len (count word))
#'user/len

• Evaluate to the corresponding value
user> len
3

Vectors
• Int indexed vectors

user> (def myvec [12 "some string" :name])
#'user/myvec

user=> (myvec 2)
:name

user=> (myvec 1)
"some string”

user=>(myvec 3)
IndexOutOfBoundsException … (PersistentVector.java:158)

Maps
• Key/val maps

user=> (def mymap {"one" 1, "two" 2, "three" 3})
#'user/mymapuser=> (mymap "one")
1

user=> (mymap "on")
Nil

user=> (mymap "on" :error)
:error

• Comma ok style

Functions
• Unnamed functions
(fn [x y]
 "Take the x percentage of y"
 (* x (/ y 100.0))) ; evaluate in sequence
 ; value is last

• Naming functions with def
(def percentage
 "Take the x percentage of y"
 (fn [x y]
 (* x (/ y 100.0)))
)

Functions
• Defining functions with defn

(defn percentage
 "Take the x percentage of y"
 [x y]
 (* x (/ y 100.0))
)

(defn percentage
 "Take the x percentage of y (50% by default)"
 ([x y] (* x (/ y 100.0)))
 ([y] (* 50 (/ y 100.0)))
)

• Different arities

Control & Recursion
• If

(defn sum-down-from [x]
 (if (pos? x)
 (+ x (sum-down-from (dec x)))
 0)
)

• Case-like
(defn fib [n]
 (cond
 (= n 0) 0
 (= n 1) 1
 :else (+ (fib (- n 1))
 (fib (- n 2)))))

Careful with recursion
• Very natural, but can have horrible performances

(try with 9 or 100)
• Tail recursive

(defn tail-fib [n]
 (letfn [(fib [current next k]
 ; idea: fib [fib(n-k) fib(n+1-k) k]
 (if (zero? k)
 current
 (fib next (+ current next) (dec k))))]
 (fib 0N 1N n)))

• Better, but no tail call elimination (try with 10000)

Tail elimination,  
do it yourself with recur

• Tail recursion, explicitly with loop-recur
(defn fib-recur [n]
 (loop [current 0N, next 1N, k n]
 (if (zero? k)
 current
 (recur next (+ current next) (dec k)))))

=> (fib-recur 10000)
336447648764317832666216120051075433103021484606800639065647699746800814421666623681555955136337340255820653326808361593737347904838652682630408924630564318873
545443695598274916066020998841839338646527313000888302692356736131351175792974378544137521305205043477016022647583189065278908551543661595829872796829875106312
005754287834532155151038708182989697916131278562650331954871402142875326981879620469360978799003509623022910263681314931952756302278376284415403605844025721143
349611800230912082870460889239623288354615057765832712525460935911282039252853934346209042452489294039017062338889910858410651831733604374707379085526317643257
339937128719375877468974799263058370657428301616374089691784263786242128352581128205163702980893320999057079200643674262023897831114700540749984592503606335609
338838319233867830561364353518921332797329081337326426526339897639227234078829281779535805709936910491754708089318410561463223382174656373212482263830921032977
016480547262438423748624114530938122065649140327510866433945175121615265453613331113140424368548051067658434935238369596534280717687753283482343455573667197313
927462736291082106792807847180353291311767789246590899386354593278945237776744061922403376386740040213303432974969020283281459334188268176838930720036347956231
171031012919531697946076327375892535307725523759437884345040677155557790564504430166401194625809722167297586150269684431469520346149322911059706762432685159928
347098912847067408620085871350162603120719031720860940812983215810772820763531866246112782455372085323653057759564300725177443150515396009051686032203491632226
408852488524331580515348496224348482993809050704834824493274537326245677558790891871908036620580095947431500524025327097469953187707243768259074199396322659841
474981936092852239450397071654431564213281576889080587831834049174345562705202235648464951961124602683139709750693826487066132645076650746115126775227486215986
425307112984411826226610571635150692600298617049454250474913781151541399415506712562711971332527636319396069028956502882686083622410820505624307017949761711212
33066073310059947366875N

• Works better!

Quoting and unquoting
• Quote: prevent evaluation

=> (+ 1 2)
3
=> '(+ 1 2) ; also (quote (+ 1 2))
(+ 1 2)
=> (first '(+ 1 2))
+

• Eval: force evaluation
=> (def mysum (quote (+ 1 1)))
=> (first mysum)
+
=> (eval mysum)
2

Interfacing with Java
• Accessing and using Java classes

user> (java.util.HashMap. {"answer" 42,
 "question" "who knows"})

user> (new java.util.HashMap {"answer" 42,
 "question" "who knows"})

user> (def myhash  
 (java.util.HashMap. {"answer" 42,
 "question" "who knows"})
#'user/myhash
user> (.get myhash "answer")
42

Functional Parallelism
(and laziness)

Functional parallelism
• Program are pure functions, copying not modifying

• No mutable state:

• No side effects

• Parallelization for map, reduce and all that

• Some form of laziness

• Evaluate (realize) it when (if) you need it

• Clojure is not lazy, in general, but sequences are

Summing numbers
• Sum of a sequence of numbers, recursively

(defn recursive-sum [numbers]
 (if (empty? numbers)
 0
 (+ (first numbers) (recursive-sum (rest numbers)))))

• Get rid of the tail
(defn recur-sum [numbers]
 (loop [acc 0, list numbers]
 (if (empty? list)
 acc
 (recur (+ acc (first list)) (rest list)))))

Using reduce
• Much simpler

(defn reduce-sum [numbers]
 (reduce (fn [acc x] (+ acc x)) 0 numbers))

• Reduce: applies the function once for each item of  
the collection
• Initial result 0
• Then apply the function on (result, 1st element)
• then on (result, 2nd),
• then on (result, 3rd) etc.

Reduce
(reduce f init [l1 ... ln])

f

init

ln-1

l2

ln f

f

l1

f

Reduce, reprise
• Even simpler: since + is function summing two (or

more) elements

(defn sum [numbers]
 (reduce + 0 numbers))

• Looks fine, but still sequential. Can’t we parallelize?

(defn sum [numbers]
 (reduce + numbers))

• reduce takes as standard initializer the zero of the
type ...

Computing frequencies
• Compute the number of occurrences of each word

in a (large) text

"the cat is on the table" --"
{"the" 2, "cat" 1, "is" 1, "on" 1, "table" 1}

• Idea: use a map

Maps recap=>(get counts "the" 0)
2
=>(get counts "tho" 0)
0
=>(assoc counts "is" 1)
{"the" 2, "cat" 1, "is" 1 } ; returns new map

=>(def counts {"the" 2, "cat" 1})
#user/counts

Word frequencies
• Word frequencies, sequentially, with reduce

=> (word-frequencies ["the" "cat" "is" "on" "the" “table"])
{"the" 2, "cat" 1, "is" 1, "on" 1, "table" 1}

(defn word-frequencies [words]
 (reduce
 (fn [counts word]
 (assoc counts

 word (inc (get counts word 0))))
 {} words))

• Compute frequencies, from the string
=> (word-frequencies (get-words "the cat is on the table"))
{"the" 2, "cat" 1, "is" 1, "on" 1, "table" 1}

Counting words,  
from several sources

• Imagine we want to count words from several strings

=> (map get-words ["the cat is on the table"
 "the dog is not on the table"])

(("the" "cat" "is" "on" "the" "table")  
 ("the" "dog" "is" "not" "on" "the" "table"))

• Idea: List of lists of words of all the strings using map

• and same for the frequencies
=> (map word-count
 (map get-words ["the cat is on the table"
 "the dog is not on the table"])

Merging
• Then we need to merge the resulting maps

• union of the keys
• sum counts (for keys existing in both)

(merge-with f & maps)

(def merge-counts (partial merge-with +))

• Proceeds left-to-right, using f for combining the
values with common keys

=>(merge-counts {:x 1 :y 2} {:y 1 :z 1})
{:z 1, :y 3, :x 1}

Counting words,  
from several sources

• Putting things together

(defn count-words-sequential [strings]
 (merge-counts
 (map word-frequencies
 (map get-words strings))))

Parallelizing!
• Idea:

• Process different strings and merge in parallel

the cat is on the table the dog is not on the table

catthe is on onthe table ondogthe is not on the table

get-words get-words

the: 2
cat: 1
is: 1
on: 1
table: 1

the: 2
dog: 1
is: 1

not: 1

table: 1
on: 1

word-frequencies word-frequencies

the: 2
cat: 1

is: 2
not: 1
on: 2

dog: 1

merge-counts

Parallel Map
• Apply a given function to all elements of a sequence, in

parallel

=> (pmap inc [1 2 3])
[2 3 4]

• Example: Slow inc

(defn slow-inc [x] (Thread/sleep 1000) (inc x))

• What’s happening?

(map slow-inc (range 10))

(pmap slow-inc (range 10))

Parallelising
• Use pmap to perform map in parallel

• Avoid going through the sequences twice

(defn count-words-parallel [strings]
 (reduce merge-counts

 (pmap #(word-frequencies (get-words %)) strings)))

• Macro: Creates a function taking %1, …,%n as
parameters (% stands for %1, if none constant fun)

Parallelizing!
• Idea:

• Process different strings and merge in parallel

the cat is on the table the dog is not on the table

catthe is on onthe table ondogthe is not on the table

get-word; word-frequencies get-word; word-frequencies

the: 2
cat: 1
is: 1
on: 1
table: 1

the: 2
dog: 1
is: 1

not: 1

table: 1
on: 1the: 2

cat: 1

is: 2
not: 1
on: 2

dog: 1

merge-counts

Batching

• The parallel version creates lot of processes for
possibly too small jobs

• Idea: Create larger batches (size n)

(defn count-words-parallel-batch [strings n]
 (reduce merge-counts
 (pmap count-words-sequential  
 (partition-all n strings))))

Using fold
• Fold works similarly:

• Split in subproblems (divide & conquer)

• Different functions for base and merge

 reduce g
merge f

(fold f g coll)

Fold
• The two functions can coincide …

(defn parallel-sum [numbers]
 (fold + numbers))

• Subproblems parallelized, more efficient!

user> (def numbers (range 0 10000000))

user> (time (parallel-sum numbers))
"Elapsed time: 226.982582 msecs"

user> (time (recur-sum numbers))
"Elapsed time: 617.350992 msecs"

Counting words with fold
• Idea: From the sequence of strings construct a unique

sequence of words and fold it with different functions:
catthe is on onthe table dogthe is not onon the

catthe is on onthe table dogthe is not on the

the: 2
cat: 1
is: 1

• Idea: From the sequence of strings construct a
unique sequence of words and fold with different
functions

Counting words with fold

(defn counting [counts word]
 (assoc counts
 word (inc (get counts word 0))))

(defn count-words-fold [strings]
 (fold merge-counts counting
 (mapcat get-words strings)))

• A functional Lisp-based language compiled to the
JVM

• Functional paradigm goes fine with parallel
processing

• Map, Reduce, Fold naturally admit concurrent
realisations

Summary

Laziness

Lazy sequences
• Sequences are lazy in Clojure, elements generated

“on demand”

• Only two (actually a bit more) elements generated

• Doall for reifying a sequence

=> (range 0 1000000)

• Very long sequence of integers

=> (take 2 (range 0 1000000))

• Generated on demand ...

(Lazy) Streams
• Lazy sequences can be infinite

(take 10 naturals)
(0 1 2 3 4 5 6 7 8 9)

• Iterate: lazy sequence by iterating a function to
an initial value
(def naturals (iterate inc 0))

• Repeatedly apply a constant function
(def rand-seq (repeatedly #(rand-int 10)))

Delay as much as you can
• When transforming a sequence the actual

transformation is only "recorded"

(def numbers (range 1000000))

• Some real computation only if sequence
accessed
(take 2 doubleshift)

(def shift (map inc numbers))

(def doubleshift (map inc shift))

What happens
• Conceptually each sequence seq is associated

with a transforming function f.

• See also the concept of reducibles

<f,seq>

• Applying a function to the elements of the
sequence just means composing with f.

(map g <f,seq>) -> < g○f, seq>

Different orders
• Functions are referential transparent: an expression

can be replaced by its value without changing the
overall behaviour

• Different evaluation orders produce the same
results
(reduce + (doall (map inc (range 1000))))

(reduce + (map inc (range 1000)))

(fold + (map inc (doall (range 1000))))

Self-made concurrency
• Independent functions – in principle - can be

evaluated in parallel

(* (+ 1 2) (+ 3 4))

• Can we do this?

1

2

3

4

+ 3

21

+ 7

*

Future and Promises

Futures
• Intuitively: expression evaluated in a different thread

(future Expr)

• Value does not immediately exist, (might be)
available at some later point

• Realised by an asynchronous concurrent thread

Futures
• Example

user=> (def sum (future (+ 1 2 3 4 5)))
#'user/sum
user=> sum
#object[clojure.core$future_call …]

• Deref (or @ for short): get the value

user=> (deref sum)
15

Wait until the value is 
realised (available)user=> @sum

15

Timing Out and checking
• Possibility of timing out when waiting for a value

(deref ref tout-ms tout-val)

user=> (def sum (future (+ 1 2 3 4 5)))
user=> (deref sum 100 :timed_out)

• Example

user=> (realized? sum)

• Checking if a future is realised

Promises
• Placeholder for a value realised asynchronously

(promise)

• (Might be) later written (delivered) only once

• Again deref (@ for short) for getting the value, and
realised? for checking availability

Promises
• Example

user=> (def answer (promise))

user=> (deref answer)

user=> (future
 (println "Waiting for answer ... ")
 (println "Here it is" @answer))

user=> (deliver answer 42)

Self-made concurrency

• Getting back

(* (+ 1 2) (+ 3 4))1

2

3

4

+ 3

21

+ 7

*

(let [a (future (+ 1 2))
 b (future (+ 3 4))]
 (+ @a @b))

• More generally they can be used to structure
concurrent applications

Example
• Call services and wait for the first result

(def search-engines
 {:bing "https://www.bing.com/"
 :google "https://www.google.com/"})

(defn search [search-term & engines]
 (let [result (promise)]
 (doseq [engine engines]
 (future (deliver result
 (slurp (str (engine search-engines)
 "search?q%3D"
 search-term)))))
 @result))

Example

Packet n

val

putPacket(n val)Packet n

val

putPacket(n val)

packetssender getter

Receiver
; packets are in a lazy sequence of promises
(def packets (repeatedly promise))

; when a packet arrives, the promise is realised
(defn put-packet [n content]
 (deliver (nth packets n) content))

; process taking each packet as long as it is available
; and all its predecessesors have been realised
(defn getter []
 (future
 (doseq [packet (map deref packets)]
 (println (str "*** GETTER: " packet)))))

Sender
; simulate the sender: split str in words and randomly  
; send the words until finished (possibly with repetitions)
(defn send-str [str]
 (let [words (get-words str)
 len (count words)]
 (send-words words len)))

Send words
; process that randomly sends the words 
; until all have been successfully sent
(defn send-words [words len]
 (future
 (loop [values-to-send len]
 (if (> values-to-send 0)
 (let [n (rand-int len)
 word (nth words n)]

 (if (nil? (put-packet n word))
 (do (println (str "* SENDER:" word " already sent"))
 (recur values-to-send))
 (do (println (str "* SENDER:" word " successfully sent"))
 (recur (dec values-to-send)))
))))))

Mutable state

Processes
• Dealing with concurrency, the notion of process

comes in

• Processes

• Wait for external events and produce effects on
the world

• Answers change over time

• Processes have mutable state

Identity and state

• Identity  
logical entity associated to a series of values

• State  
the value of an identity at some time

Imperative world
• Identity and state are mixed up

• The state of an identity is changed by locally
modifying the associated value

• Changing state requires locking

• Risk of inconsistency

Id

Field1
Field2

…

x

y

The clojure way
• Identity and state are kept distinct

• Symbols refer to identities that refers to immutable
values (never inconsistent)

• Only references are mutable Field1
Field2

…

x

y

Field1'
Field2'

…

id

@id

@id

Mutable references
• Only references change, in a controlled way

• Four types of mutable references:

• Atoms - shared/synchronous/autonomous

• Agents - shared/asynchronous/autonomous

• Refs - shared/synchronous/coordinated

• (Vars - Isolated changes within threads)

Atoms

• Atomic update of a single shared ref

• Changes occur synchronously on caller

• Change is requested

• Caller “blocks” until change is completed

Updating Atoms
• swap! atom f new

• a function computes the new value from the old one

• called repeatedly until the value at the beginning
matches the one right before change

• reset! atom new  
changes without considering old value

• compare-and-set! atom old new  
changes only if old value is identical to a specified value

Example
• Consider the packet example

Packet n

val

putPacket(n val)Packet n

val

putPacket(n val)

packetssender getter

Example
• and turn it into a web service

packetssender getter

put-packet(n val)Packet n

val
PUT/packet/n

GET/str
get-str()

GET/
index-page()

Routes
(defroutes main-routes

 ; receive a packet
 (PUT "/packet/:n" [n :as {:keys [body]}]
 (put-packet (edn/read-string n)
 (slurp body)))

 ; get the current string
 (GET "/str" [] (get-str))

 ; getting the current string as an html page
 (GET "/" [] (index-page))

Views
; state

; current collected string
(def msg (atom ""))

; packets in a lazy sequence of promises
(def packets (repeatedly promise))

; take each packet as long as it is available and all
; its predecessesors have been realised and join it
; the msg
(future
 (doseq [packet (map deref packets)]
 (swap! msg #(str % packet))))

Handlers
; handler for PUT/packet/n  
; when a packet arrives, the promise is realised
(defn put-packet [n content]
 (if (nil? (deliver (nth packets n) content))
 "FAILED\n" "OK\n"))

; handler for GET/str  
; client asking for the current string
(defn get-str [] (str @msg \newline))

; handler for GET/  
; html page showing the current string  
(defn index-page []
 (html5
 [:head [:title "Packets”" ...]
 [:body [:h1
 (str "String:" @msg)]]))

Agents
• Atomic update of a single shared ref

• Changes occur asynchronously

• Change is requested (via send) which
immediately returns

• Executed asynchronously (queued and
sequentialised on target)

• Useful for performing updated that do not require
coordination

Operating on Agents
• send

• a function computes the new value from the old one

• asynchronously

• @, deref  
access the current value (some updated possibly
queued)

• await  
wait for completion

Example: Back to the server
• In-memory logging could be done via agent
; state

; log
(def log-entries (agent []))

....

; adding a log-entry
(def log [entry]
 (send log-entries conj [(now) entry]))

Handlers

; handler for PUT/packet/n  
; when a packet arrives, the promise is realised
(defn put-packet-log [n content]
 (if (nil? (deliver (nth packets n) content))
 (do (log (str "Packet " n " duplicated"))
 "FAILED\n")
 "OK\n")
)

Software Transactional
Memory

• Software transactions ~ DB concept

• Atomic  
From outside: either it succeeds and produce all
side effects or it fails with no effect

• Consistent 
From a consistent state to a consistent state

• Isolated 
Effect of concurrent transactions is the same as a
sequentialised version

Software Transactions in
Clojure

• Based on refs

• Refs can only be changed within a transaction

(def account (ref 0))

• Changes to refs are visible outside only after the
end of the transaction

Software Transactions in
Clojure

• A transaction can be rolled back if

• it fails

• it is involved in a deadlock

• A transaction can be retried hence it should avoid
side effects (on non refs)

Transactions on refs
• Transactions enclosed in dosync

; transfers some amount of money between two accounts
(defn transfer [from to amount]
 (dosync
 (alter from - amount)
 (alter to + amount)))

• Side effects (ops on atoms) shouldn’t be there

• Operation on agents executed only upon
successful try (agents work well with transactions)

Concluding …
• Functional paradigm pairs nicely with concurrency

• Clojure takes a pragmatic view, it is functional but
with support to (controlled) mutable state

• Why don’t we work with imperative languages
altogether then?

• mutable state as an “exception”

• actually, mutable refs to immutable values

Concluding
• Futures and promises

• Software Transactional Memory

• Sometimes we miss channel based concurrency …
also Rich Hickey did (implemented from 1.5)

• No direct support for distribution and fault
tolerance (but integration with Java … you have
Akka there)

 82

