
Erlang
An introduction

Paolo Baldan
Linguaggi e Modelli per il Global Computing

AA 2018/2019

Erlang, in a slogan
Declarative (functional) language for concurrent and
distributed fault-tolerant systems

Erlang 
= 

Functions + Concurrency + Messages

Basics
• Dynamic typing

• Light-weight processes

• Total separation between processes (no sharing,
naturally enforced by functional style)

• (Fast) Message passing

• Transparent distribution

Where does it come from?
• Old language with modern design

• Created in ’86 at Ericsson

• Open sourced in ’98

• “Programming with Erlang” published in ’07

• Getting more and more popular … also in
different incarnations (cfr. Elixir)

Intended domain
• Highly concurrent and distributed (hundreds of thousands

of parallel activities)

• (Soft) real time

• Complex software (million of lines of code)

• High Availability (down times of minutes/year – never
down)

• Continuous operation (years)

• Continuous evolution / In service upgrade

Principles

Erlang

Concurrent
programming Functional

programming

Fault
tolerance

Concurrency
Oriented

 programming

Multicore

Scalability

Fault tolerance
• To make a system fault tolerant you need at least …

• If one crashes, the other takes over

C1 C2

• two computers (and some form of coordination)

Fault tolerance
• To make a system very fault tolerant you need (at

least) …

• Which also addresses scalability

C1
C3

C2 C4

C5

Cn

• many computers

• Concurrency

• Distribution

• Fault tolerance

• Scalability

faces of the same
medal (inseparable)

Models of concurrency
• Shared memory

• Threads

• Mutexes and locks

• Message passing

• Processes

• Messages

Shared Memory
• Problems:

• Where do we (physically) locate the shared  
memory for distributed systems?

corrupted shared memory

• What if a thread fails in the critical section?

Message passing
Concurrency

• No sharing (share by communicating)

• No locks, mutexes etc

• (Lots of) processes (fault tolerant, scalable)
communicating via pure message passing

Concurrency oriented
programming

• The world is parallel and distributed

• The observation of the concurrency patterns and
message channels as a way of designing an
application

• Concurrency seen as a structuring paradigm
(without being shy at creating processes)

Concurrency oriented programming (COP)

Message from …

"My first message is that  
concurrency 

is best regarded as a  
program structuring principle"

Sir Tony Hoare
Structured Oriented Programming

Transparent distribution
• Abstract from physical locations

Machine/node
Process
Message

P1 → P2 → P3 → Value
• No mutable state

• copy, not modify

• essentially no side effects

• Nothing to lock and automatic thread safety when
parallellized

Functional programming
• Programs are expressions, 

computation is evaluation

Multicore (& co.) era
• Paradigm shift in CPU architecture

• Multi core  
(easily up to 8 cores)

• GPU - Graphical Processing Unit

• NOC - Network on chip  
(up to 80 and more cores)

Hope
• Language and programming style exploiting

parallelism

• Ideally: Make my program run N times faster on
an N core CPU with

• no changes to the program

• no pain and suffering

• Can we have this? Somehow …

Get into the fight

Erlang

• Functional

• dynamic(ally typed)

• garbage collected

• eager

• compiled to Erlang runtime (BEAM instance)

Shell

• Can play most tricks in the shell!

baldan@comp:~/Erlang$ Erlang/OTP 21 [erts-10.3]
[source] [64-bit] [smp:4:4] [ds:4:4:10] [async-
threads:1]

Eshell V10.3 (abort with ^G)
1> help().
...

Expression
• Terminated with a period evaluate to a value

1> 2 + 15.
17

2> 15 div 2.
7

3> 2#101010.
42

4> 16#AE.
174

Variables
• Start with capital letter

• Once assigned, a variable is immutable

• “=” is pattern matching 
Compare (and possibly instantiate vars in the lhs)
1> Two = 2.
2

2> Two = 2.
2

3> Two = 3.
** exception error: no match of right hand side value 3

Modules
• Programs are organised in modules

-module(myMath).
-export([fac/1]).

fac(0) ->
 1;
fac(N) ->
 N * fac(N-1).

fac(5) ! 5*fac(5-1) ! 5*fac(4)
! 5*4*fac(4-1) ! ...

Modules
• Some functions are exported, some others are not

-module(myMath).
-export([fac/1]).

add(X,0) -> X;
add(X,Y) -> add(X,Y-1)+1.

mul(X,0) -> 0;
mul(X,Y) -> add(mul(X,Y-1),X).

fac(0) -> 1;
fac(N) -> mul(N, fac(N-1)).

Compilation
• A module can be compiled (and loaded)

• And used …

1> c(myMath).
{ok,myMath}

2> myMath:fac(5).
120
25> myMath:fac(7).
5024

Besides integers
• Atoms: constants with their own name for value

1> atom.
atom
2> new_atom.
new_atom

• Booleans

4> not false.
true
5> not (true and true).
false

1> true and false.
false
2> false or true.
true
3> true xor false.
true

Tuples
• Syntax {comp1, comp2, comp3}

1> X = 10, Y = 4.
4

4> First.
10.

2> Point = {X,Y}.
{10,4}

3> {First,_} = Point.
{10,4}

Tagged Tuples
• Tuples can be tagged for identifying their structure

1> P = {point,{10,5}}.
{point,{10,5}}

2> CP = {colpoint, {{10,5},red}}.
{colpoint, {{10,5},red}}

5> Val.
{{10,5},red}

3> {colpoint, Val} = P
** exception error: no match of right hand side  
value {point,{10,5}}

4> {colpoint, Val} = CP
{colpoint,{{10,5},red}

Temperature converter

• Temperatures denoted by values {Unit, Value}
where Unit can be c(elsius), or f(ahrenheit)

-module(conv).
-export([convert/1]).

convert({c, X}) ->
 {f, 1.8 * X + 32};
convert({f, X}) ->
 {c, (X-32)/ 1.8}.

Temperature converter

2> conv:convert({f,100}).
{c,37.8}

3> conv:convert({c,100}).
{f,212.0}

4> conv:convert({k,2}).
** exception error: no function clause matching …)

Temperature converter,
Reprise

-module(conv).
-export([convert/1]).

convert({c, X}) ->
 {f, 1.8 * X + 32};
convert({f, X}) ->
 {c, (X-32)/ 1.8}
convert(_) ->
 error.

Lists
• Syntax [elem1, elem2, elem3, ….]

1> [1, 2, 3, {numbers,[4,5,6]}, 5.34, atom].
[1,2,3,{numbers,[4,5,6]},5.34,atom]

• Any type of element

• Head and tail
11> hd([1,2,3,4]).
1
12> tl([1,2,3,4]).
[2,3,4]

Head/Tail, with matching
15> [Head | Tail] = [1,2,3,4].
[1,2,3,4]

16> Head.
1

19> NewHead.
2

17> Tail.
[2,3,4]

18> [NewHead | NewTail] = Tail.
[2,3,4]

Length
len([]) ->
 0;
len([_|T]) ->
 1+len(T).

lentr(L) ->
 lentr(L,0).

lentr([],N) ->
 N;
lentr([_|T],N) ->
 lentr(T,N+1).

• With tail recursion

More list ops
• Concatenation, subtraction

5> [1,2,3] ++ [4,5].
[1,2,3,4,5]

6> [1,2,3,4,5] -- [1,2,3].
[4,5]

7> [2,4,2] -- [2,4].
[2]

8> [2,4,2] -- [2,4,2].
[]

Comprehension
• Doubling
1> [2*N || N <- [1,2,3,4]].
[2,4,6,8]

• Get the even
2> [X || X <- [1,2,3,4,5,6,7,8,9,10], X rem 2 =:= 0].
[2,4,6,8,10]

• Sum
5> [X+Y || X <- [1,2], Y <- [2,3]].
[3,4,4,5]

Quicksort
-module(quicksort).
-export([qsort/1, triqsort/1]).

qsort([]) ->
 [];

qsort([Pivot|Rest]) ->
 qsort([X || X <- Rest, X < Pivot])
 ++ [Pivot]
 ++ qsort([Y || Y <- Rest, Y >= Pivot]).

If
• Sugar for (conditional) pattern matching

test(X,Y) ->
 if
 X < Y -> -1;

 X == Y -> 0;
 X > Y -> 1

 end.

test(X,Y) when X < Y ->
 -1;
test(X,X) ->
 0;
test(X,Y) when X > Y ->
 1.

Case
• Sugar for (conditional) pattern matching

insert(X,Set) ->
 case lists:member(X,Set) of
 true -> Set;
 false -> [X|Set]
 end.

Types?
• Dynamically typed

• Types inferred runtime (type errors are possible)

is_atom/1, is_binary/1, is_bitstring/1, is_boolean/1

atom_to_list/1, list_to_atom/1, integer_to_list/1 …

• Type test functions

• Type conversion functions

Higher-order
• Functions are first class values

• Profitably used as function arguments

1> Double = fun(X) -> X * 2 end.
#Fun<erl_eval.6.54118792>
2> Double(3).
6.

Map, filter …
• Apply to all elements of a list

map(Fun, [First|Rest]) -> [Fun(First)|map(Fun,Rest)];
map(Fun, []) -> [].

filter(Pred, L)

filter(_, []) -> [];
filter(Pred, [H|T]) ->
 case Pred(H) of
 true -> [H|filter(Pred, T)];
 false -> filter(Pred, T)
 end.

• Filter only elements satisfying a predicate

Example
• Convert a list of temperatures

4> [{"Milan",{f,50.0}},{"Turin",{f,53.6}}, ...]

1> Temps = [{“Milan”, {c,10}}, {“Turin”, {c,12}}, …]
2> Fun = fun(X) ->
 {City,Temp} = X,
 {City,conv:convert(Temp)} end.

3> map(Fun, Temps)

Example
• Keep only warm temperatures

4> [{“Turin”, {c,12}}, …]

1> Temps = [{“Milan”, {c,10}}, {“Turin”, {c,12}}, …]
2> Pred = fun(X) ->
 {City,{c,Temp}} = X,
 Temp >= 12 end.

3> filter(Fun, Temps)

Concurrency

Processes
• Basic structuring concept for concurrency

(everything is a process)

• Execute a function on some parameters

• Identified by an identifier (id or name), that can be
passed (and cannot be forged)

• Strongly isolated (no sharing)

Messages
• Processes communicate through asynchronous

message passing (with known companions)

• Messages are atomic (delivered or not)

• Messages are sent to a process and kept in a
message queue (the mailbox)

• A process can be informed about the status of
other processes (detect a failure)

General structure
• Processes typically sit in an infinite loop

• get a message

• process the message

• start over

• The mailbox can be accessed selectively

Actor model
• Everything is an actor and actors execute concurrently

• Actors can

• send messages to other actors, asynchronously
(mailing);

• designate the behaviour for the messages received

• create new actors;

• An actor can communicate only with actors whose
address is known, and addresses can be passed

Creating processes

• Create a new process executing

• a function

• exported by some module

• on a list of arguments

• Returns a pid, uniquely identifying the process

spawn(Module, Exported_Function, Arg_List)

Tick
-module(tick).
-export([start/0, tick/2]).

tick(Msg, 0) ->
 done;

tick(Msg, N) ->
 io:format(“Here is tick saying \"~p\" ~B times~n”,
 [Msg,N]),
 tick(Msg, N - 1).

start() ->
 spawn(tick, tick, [yup, 3]),
 spawn(tick, tick, [yap, 2]).

Tick tock … run

• up

7> tick:start().
Here is tick saying "yup" 3 times
Here is tick saying "yap" 2 times
Here is tick saying "yup" 2 times
Here is tick saying "yap" 1 times
Here is tick saying "yup" 1 times

8>

Fast spawning
• Lightweight (not 1-1 with system threads)

Communication
• Asynchronous message passing

• Messages are valid Erlang terms (lists, tuples,
integers, atoms, pids, …)

• Each process has a message queue

• A message can be sent to a process (non blocking)

• A process can selectively receive messages on its
queue (blocking)

Send and receive
• Send

pid ! msg

• Receive
receive
 msg_pattern1 ->
 action1;
 msg_pattern2 ->
 action2;
 ...
end

Multiplier: server
-module(mulServer).
-export([start/0, mul_server/0]).

mul_server() ->
 receive
 {X, Y, Pid} ->
 Pid ! X*Y,
 mul_server();

 stop ->
 io:format("Server stopping ... ", [])
 end.

Multiplier: server 
(concurrent)

-module(mulServerConc).
-export([start/0, mul_server/0]).

mul_server() ->
 receive
 {X, Y, Pid} ->
 spawn(fun() -> Pid ! X*Y end.),
 mul_server();

 stop ->
 io:format("Server stopping ... ", [])
 end.

Multiplier: client
start() ->
 Server = spawn(proc2, mul_server, []),
 Server ! {2, 2, self()},
 Server ! {2, 4, self()},
 receive
 P1 ->
 io:format("Product 2*2 = ~B~n", [P1])
 end,

 receive
 P2 ->
 io:format("Product 2*4 = ~B~n", [P2])
 end,

 Server!stop.

MultiplierAdder: server
-module(mulAddServer).
% messages are of the kind {Op, X, Y, Pid}
mul_add_server() ->
 receive
 {mul, X, Y, Pid} ->
 Pid ! X*Y,
 mul_add_server();

 {add, X, Y, Pid} ->
 Pid ! X+Y,
 mul_add_server();

 stop ->
 io:format("Server stopping ...", [])
 end.

mulAddSever.erl

Careful with the mailbox
• What if the server gets wrongly formatted

messages?

However, as messages not matched by receive are left in the
mailbox, it is the programmer's responsibility to make sure
that the system does not fill up with such messages.

• Do something with unmatched messages

• Try to avoid unmatched messages offering a
communication interface

Process unmatched
messages

-module(mulAddServer).
% messages are of the kind {Op, X, Y, Pid}
mul_add_server() ->
 receive
 {mul, X, Y, Pid} -> … ;
 {add, X, Y, Pid} -> … ;
 stop -> … ;
 …
 M -> do st. with message M (e.g., log error)
 end.

mulAddSever1.erl

Offer an interface
-module(mulAddServer).

mul(Server, X,Y) ->
 Server ! {mul, X, Y, self()}.

add(Server, X,Y) ->
 Server ! {add, X, Y, self()}.

mul_add_server() ->
 receive
 {mul, X, Y, Pid} -> … ;
 {add, X, Y, Pid} -> … ;
 stop -> … ;
 end.

mulAddSever2.erl

Registering
• Processes can be registered

register(Pid, Alias)

• Useful for restarting behaviours (node visibility)

unregister(Alias)

• Alias can be unregistered (done automatically
when aliased process dies)

Timing out
• A receive can be exited after some time:

receive
 Msg1 ->
 action1;
 Msg2 ->
 action2
 …

 after Time ->
 action after timeout

• Example

Multiplier, again
• The server (mul_server) is registered (multiplier)

• Accessible to clients knowing the name

• The server can be stopped ‘only by the
creator’ (secret = creator pid … not very secret)

• The client sends and gets tagged messages and
possibly timeouts if answer takes too long.

mulServerReg.erl

Multiplier, again
• The server (mul_server) is registered (as

multiplier) when started

start() ->
 Server = spawn(mulServerReg, mul_server, [self()]),
 register(multiplier, Server),

• Pid of the creator is passed to the server, to be kept
in the “server state”

• Known as multiplier in the node

Server
• The server (mul_server) is registered (multiplier)

mul_server(Creator) ->

 receive
 % mul message: provide answer 'signed'  
 % with an id
 {Id, Pid, X, Y} ->
 Pid ! {Id, X*Y},
 mul_server(Creator);

 end.

 % stop message, not from creator
 {Pid, stop} ->
 io:format("Process \"~w\" not allowed  
 to stop ...~n", [Pid]),
 mul_server(Creator)

 % stop message (only by creator)
 {Creator, stop} ->
 io:format("Server stopping ...~n", []);

Client
client() ->
 % first message
 Id1 = crypto:strong_rand_bytes(5),
 Msg1 = {Id1, self(), 2, 2},
 multiplier ! Msg1,

 receive
 {Id1,P1} ->

 out_result(Msg1,P1)
 after
 10 ->
 out_result(Msg1,fail)
 end,

 multiplier ! {self(), stop },

Robustness
• Primitives allows to “link” processes in a way that

processes in the same group are notified of
abnormal (error) events

• Abnormal termination is normal: "Let it crash"
philosophy

• The structuring can be hierarchical allowing for
layered applications: workers, monitors,
supervisors

Links and monitors
• A process can be linked to or monitor another  

process

• A process can exit

• normally  
run out of code or exit(normal)

• abnormally 
error or exit(Reason)

Links

• When a process exits, linked processes receive a
signal, carrying pid and exit reason

link(Pid)

• (Bidirectional) link between caller and pid

• By default
• normal exits ignored

kill the receiving process.
propagate the error signal to the
links of the killed process

• abnormal exits

Links, more control

process_flag(trap_exit, true).

• A process can become a supervisor process
(also called system process)

 {‘EXIT',Pid, Reason}

• The exit signal is caught as a message

Links, more control

start() ->
 process_flag(trap_exit, true),

 Server = spawn(mulServerReg, mul_server, [self()]),
 link(Server),
 register(multiplier, Server),

 ...
 receive

 {'EXIT', Server, Reason} ->
 % depending on reason, possibly  
 % restart the server

• E.g., in the process start (see before)

Example
• A server that gets messages consisting of a

function and its arguments

• Execute the function on the arguments as a
“supervised” servant, keeping a list of the
unfinished tasks

• For each servant, get the result and provides it to
the corresponding client.

• In case of abnormal exit of the servant, retry
hierarchy.erl

Example: servant
% Given a function and some arguments  
% - executes the functions on the arguments
% - or randomly fails (75% of the times)
servant(F, Args, Server) ->
 case rand:uniform(4) of

 % regular execution, notify the server
 % providing the result
 1 ->
 Server ! {answ, {self(), F(Args)}};

 % failure
 _ ->
 exit(went_wrong)
 end.

Example: server
% The server keeps in its state
% - Creator: the pid of the creator
% - WaitingList: list of requests being processed of
% the kind {Servant,Client,F,Args} including
% Servant's pid, client's pid, request data

server(Creator, WaitingList) ->

 % Supervisor process: traps the exit signals
 process_flag(trap_exit, true),

 receive
 % (1) client request
 % (2) normal termination from servant
 % (3) error message from servant
 % (4) stop request from creator
 % (5) stop request from non creator

 end.

Example: server
% (1) client request
{req, {Client, F, Args}} ->

 % spawn and link at the same time (atomic)
 Servant = spawn_link(hierarchy, servant, [F, Args, self()]),
 server(Creator, [{Servant,Client,F,Args} | WaitingList]);

% (2) normal termination from servant
{answ, {Servant, Result}} ->

 {_,Client,F,Args} = lists:keyfind(Servant,1,WaitingList),
 Client ! {answ, {Client, F,Args}, Result},
 server(Creator, WaitingList--[{Servant,Client,F,Args}]);

Example: server
% (3) error message from servant
{'EXIT', Servant, went_wrong } ->
 {_,Client,F,Args} = lists:keyfind(Servant,1,WaitingList),
 io:format("Servant ~w went wrong, retrying ...~n", [Servant]),
 NewServant = spawn_link(hierarchy, servant, [F, Args, self()]),
 server(Creator, (WaitingList--[{Servant,Client,F,Args}])  
 ++ [{NewServant,Client,F,Args}]);

% (4) stop request from creator
{Creator, stop} ->
 io:format("Server stopping ...~n", []),
 exit(normal) ;

% (5) stop request not from creator
{Pid, stop} ->
 io:format("Process \"~w\" not allowed ...~n", [Pid]),
 server(Creator,WaitingList)

Example: creator

start() ->

 % create and register the the server
 Server = spawn(hierarchy, server, [self(),[]]),
 register(pserver, Server),

 % accessible to some client, without getting the pid
 spawn(hierarchy, client, []),

 % wait a bit and stops the server
 timer:sleep(1000),
 pserver ! {self(),stop}.

Example: client
client() ->
 % first message
 Msg1 = {self(), fun([X,Y]) -> X*Y end, [1,2]},
 pserver ! {req, Msg1},

 % wait for result, possibly timing out
 receive
 {answ, Msg1, R1} ->
 out_result(product,R1)
 after
 10 ->
 out_result(product,fail)
 end,

 ...

Exercise
• Modify the system as follows:

• The server creates a servant for each request

• In case of normal termination, the servant itself
send the result to the client

• In case of abnormal termination of the servant,
the server is notified and a new servant is
created

Monitors
• Create a “unidirectional” link: 

current process monitors the process Pid

monitor(process, Pid)

• On exits the monitor process gets a message

{'DOWN', MonitorReference, process, Pid, Reason}

Distribution
• Distributed Erlang

• Processes run in various Erlang nodes, same intranode
primitives

• Applications running in a distributed trusted environment
(cluster)

• Socket-based distribution

• TCP/IP sockets to communicate in an untrusted environment

• less flexibile, but more secure

Distributed Erlang
• Actors are spread on different nodes

• Node A can communicate with Node B if they
share a cookie (magic cookie) and know each
other name

erl -sname name -setcookie cookie % same host
erl -name name@host -setcookie cookie % across hosts

• Start a node (with cookie)

Connections
• Node in Erlang are loosely connected

• Connecting nodes  
 
 
Also implicitly established at first connection attempt

• Connections are transitive

• If a node goes down, all connections to it are
removed.

net_kernel:connect_node(NodeName)

Connectionserl -sname node1 -setcookie "a"
erl -sname node2 -setcookie "a"
erl -sname node3 -setcookie "a"

node1> nodes().
[]
node1> net_kernel:connect_node(‘node2@host’).
pong

node1> nodes().
[‘node2@host']

node2> net_kernel:connect_node(‘node3@host’).
pong

node1> nodes().
[‘node2@host’, ‘node3@host']

Distributing
• Lifting to the cluster level works reasonably smoothly

• primitives like spawn, link, monitor etc. has additional
node parameter, e.g.

• registered names are local to nodes, hence pid must be
used (or see global module)

• when spawning a process at a node, the code must be
available at that node (care with passing functional
arguments)

spawn(Node, Module, Exported_Function, Arg List)

Example

• The previous example, of a server getting a list of
tasks to execute modified as follows:

• client, server and slaves on different nodes

• the server monitor the slaves, on fail it retries on a
(possibly) different node

distributed.erl

Socket-based distribution

• Standard (low level) socket interface (gen_tcp
module)

• Server: listen, accept

• Client: connect

• send, recv

Open Telecom Platform
(OTP)

• A set of design principles

• A set of libraries

• Developed and used by Ericsson to build large-
scale, fault-tolerant, distributed applications with
pre-designed skeletons and patterns (server, fsm,
event …)

gen_server
• Need to implement a number of callbacks

• init (set up, initialise the state)

• handle_cast (asynchronous call without a reply,
determining a state change)

• handle_call (synchronous call with a reply)

• terminate

• …

Example

• Multiplier realised with gen_server

mulGenServer.erl

-module(mulGenServer).

% declare that the gen_server behaviour is implemented
-behaviour(gen_server).

-export([go/0,client/0]).
-export([start/0, mul/2, stop/0]).
-export([init/1, handle_call/3, handle_cast/2,
 handle_info/2, terminate/2]).

%%% INTERFACE

% Create the server, registered locally as multiplier, calling init
% with parameter self() (the pid of the creator)
start() ->
 gen_server:start({local, multiplier}, ?MODULE, [self()], []).

% multiplication: synchronous call
mul(X,Y) ->
 gen_server:call(multiplier, {mul, X, Y}).

% stop request, asynchronous call passing the pid of the caller
% (better implemented as terminate message, just to have an example of
% cast)
stop() ->
 gen_server:cast(multiplier, {stop, self()}).

%%% CALLBACKS

% initialization: establish the initial state
init([Creator]) ->
 {ok, [Creator]}.

% multiplication handle
% IN: message, sender, server state
% OUT: reply atom, reply content, new state
handle_call({mul,X,Y}, _From, [Creator]) ->
 {reply, X*Y, [Creator]}.

% stop handle
handle_cast({stop, From}, [Creator]) ->
 if From =:= Creator ->

 {stop, normal, [Creator]};
 From =/= Creator ->

 io:format("Invalid shutdown req (pid ~w)~n",[From]),
 {noreply, [Creator]}

 end.

% handling termination
terminate(normal, [Creator]) ->
 io:format("Server created by: ~w properly
terminated~n",[Creator]).

% other messages
handle_info(Msg, [Creator]) ->
 io:format("Unexpected message: ~p~n",[Msg]),
 {noreply, [Creator]}.

Dynamic Code Loading
• Built-in in Erlang

• A module can exist in two variants in a system:
current and old

• When a module is loaded into the system for the
first time, the code becomes ‘current'.

• If then a new instance is loaded, the previous
instance becomes 'old' and the new one 'current'.

Dynamic Code Loading
• Two possible ways of referencing a function

• Name only: still refers to the old version

• Fully qualified: refers to the new version  
and changes the current code

fun(…)

module:fun(…) Module

Module
new

fun(…)

module:fun(…)

fun(…)hotSwap.erl

Example
• Controller:

• new: create new loop process, return pid

• Supervises termination of loop processes and communicate
reason

• Loop:

• ver: get version

• upd: update to new version

• stop: stop

Dynamic Code Loading

• Dangerous

• Higher-level abstractions provided in OTP

Concluding …
• Concurrency Oriented Programming (~ actor model)

• Emphasis on

• Encapsulation with focus on computing entities (state +
reaction to messages)

• Transparent Distribution

• Fault tolerance (supervisor trees and let it crash philosophy)

• Scalability (multiple instances on multiple nodes)

• Continuous Operation (hot-swapping)

Not perfect 
(as everything in the world)

• A bit oldish/low level syntax and design choices …
alternatives Elixir, Clojure, …

• Untyped … (Scala, Akka)

• Identifying communication channels with computing
entities possibly cumbersome (see message tagging)

• Primitive security model (restricting access to a node /
process capabilities)

• Message passing only is good, but can be heavy when
supporting the sharing of large data sets

Still you can make cool apps

