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Programming distributed systems is hard

● Programming concurrent distributed systems is usually harder than 
   programming non-concurrent and non-distributed ones.

● Some problems are:
● handling concurrency
● handling communications;
● handling faults;
● handling heterogeneity;
● handling the evolution of systems.



  

Programming distributed systems is hard - Communications

● The basic feature for any distributed system.
● A language can access the lower level IPC facilities. E.g. in Java we can
  open a TCP/IP socket and  send some data:

SocketChannel socketChannel = SocketChannel.open();

socketChannel.connect(new InetSocketAddress("http://someurl.com", 80));

Buffer buffer = . . .; // Create a byte buffer with data to be sent.

while( buffer.hasRemaining() ) {

channel.write( buffer );

}

A B



  

Programming distributed systems is hard - Communications

● That is NOT good Java code.
● We need to remember to:

● handle eventual exceptions;
● remember to close the channel.

● New version (and this is actually still not perfect, but better):

SocketChannel socketChannel = SocketChannel.open();
try {
  socketChannel.connect(new InetSocketAddress("http://someurl.com", 80));
  Buffer buffer = . . .; // Create a byte buffer with data to be sent.

  while( buffer.hasRemaining() ) {
    channel.write( buffer );
  }
}
catch( UnresolvedAddressException e ) { . . . }
catch( SecurityException e ) { . . . }
/* . . . many catches later . . . */
catch( IOException e ) { . . . }
finally { channel.close(); }



  

Programming distributed systems is hard - Faults

● Applications in a distributed system can perform a distributed transaction.

● Example:
● a client asks a store to buy some music;
● the store opens a request for handling a payment on a bank;
● the client sends his credentials to the bank for closing the payment;
● the store sends the goods to the client.

● Looks good, but a lot of things may go wrong, for instance:
● the store (or the bank) could be offline;
● the client may not have enough money in his bank account;
● the store may encounter a problem in sending the goods.



  

Programming distributed systems is hard - Heterogeneity

● In the real world, distributed systems can be heterogeneous.

● Different applications that are part of the same system could...
● use different communication mediums (Bluetooth? TCP/IP?, …);
● use different data protocols (HTTP? SOAP? X11?);
● use different versions of the same data protocol (SOAP 1.1? 1.2?);
● and so on...



  

Programming distributed systems is hard - Evolution

● Distributed systems usually evolve over time.

● Each application could be made by a different company.

● A company may update its application.

● Again, many possible pitfalls:
● the updated version may use a new data protocol, unsupported by the

clients;
● the updated version may have a different interface, e.g. first it took an

integer as a parameter for a functionality, now a string;
● the updated version may have a different behaviour, e.g. first it did not 

require clients to log in, now it does.



  

Simplifying distributed systems

● Things can be made easier by hiding the low-level details.

● Two main approaches:

● make a library/tool/framework for an existing programming language
(es. Java RMI);

● make a new programming language.



  

(Micro) Service-Oriented Computing (SOC)

● A design paradigm for distributed systems.

● A service-oriented system is a network of services.

● Services communicate through message passing.

● Messages are tagged with operations (similar to method names in OO).

● Services are typed with interfaces, which define operations and 
  message data types for operations.

● Reference technology: Web Services.
● Based on XML;
● WS-BPEL (BPEL for short) for programming composition.



  

Why SOC? A few other reasons...

● Everybody was using custom solutions for distributed computing.

● We need more integration between existing software.
● Programs using different data protocols cannot interact.

● We need support for more dynamicity.
● Service Discovery: we can discover where services are located at runtime.

● We need support for structured interactions (protocols exposed).
● Many web applications implement logical orderings between actions.
● Example: in a newspaper web portal, a user may need to log in before

reading the news.



  

Jolie: a service-oriented programming language

● Nice logo:

 
 

● Formal foundations from the Academia.

● Tested and used in the real world: 

● Open source (http://www.jolie-lang.org/), with a well-maintained code base:

FOCUS Research Team



  

Jolie: comes with formal syntax and semantics



  

Hello, Jolie!

include “console.iol”

main
{

println@Console( “Hello, world!” )()
}

● Yes, Jolie can print “Hello, world!”



  

Basics

● A Service-Oriented Architecture (SOA) is composed by services.
● A service is an application that offers operations.
● A service can invoke another service by calling one of its operations.
● Reminds of  Object-oriented programming:

Services Objects

Operations Methods

Service-oriented Object-oriented

http://www.jolie-lang.org/


  

Understanding Hello World: concepts

include “console.iol”

main
{

println@Console( “Hello, world!” )()
}

Include from standard
library

Program entry point

Operation The service I want to invoke



  

main
{

number@B( 5 )
}

A
main
{

number( x );
 operate on x …

}

B

Our first service-oriented application

● We need to tell B how to expose operation number
● We need to tell A how to reach B
● In other words, how they can communicate!

A: B:

● A program  (service) defines the input/output communications 
  it will make (operations and invocations of operations)

● A sends 5 to B through the number operation

  (invokes the number operation of service B).

mailto:println@Console


  

Ports and interfaces: overview

● Services communicate through ports.
● Ports give access to interfaces
● An interface is a set of operations (~ methods)
 

● An input port is used to expose an interface.
● An output port is used to invoke interfaces exposed by other services. 

● Example: A has an output port connected to the input port of B.

A B

numbernumber

Input
port

Output
port



  

Our first service-oriented application

A: B:interface MyInterface {
OneWay:

number(int)
}

interface.iol

include “interface.iol”

outputPort B {
Location:

“socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

main
{

number@B( 5 )
}

A.ol

include “interface.iol”

inputPort MyInput {
Location:

“socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

main
{

number( x )
…

}

B.ol

AB

mailto:println@Console


  

Anatomy of a port

outputPort B {
Location: “socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

inputPort MyInput {
Location: “socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

● A port specifies:
● the location on which the communication can take place;
● the protocol to use for encoding/decoding data;
● the interfaces it exposes.

● A service can use several ports

A.ol

B.ol



  

Anatomy of a port: Location

● A location is a URI (Uniform Resource Identifier) describing:
● the communication medium to use;
● the parameters for the communication medium to work.

● Some examples:

● TCP/IP:

● Bluetooth:

● Unix sockets:

● Java RMI:

socket://www.google.com:80/

btl2cap://localhost:3B9FA89520078C303355AAA694238F07;nam
e=Vision;encrypt=false;authenticate=false

localsocket:/tmp/mysocket.socket

rmi://myrmiurl.com/MyService



  

Anatomy of a port: protocol

● A protocol is a name, optionally equipped with configuration parameters.

● Some examples: sodep, soap, http, xmlrpc, …

Protocol: sodep

Protocol: soap

Protocol: http { .debug = true }

Protocol: https

Protocol: xmlrpc



  

Deployment and Behaviour

● A JOLIE program is composed by two parts:
● Behaviour: defines the workflow the service will execute.
● Deployment: defines how to execute the behaviour and how to

interact with the rest of the system;

// B.ol

include “interface.iol”

inputPort MyInput {
Location: “socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

main
{

number( x ) { … }
}

Deployment

Behaviour



  

Communication abstraction

● A program just needs its port definitions to be changed in order to support
 different communication technologies!

● Adapters as services which does nothing else that receiving and forwarding
 from/to ports with different protocols (no behaviour)

TCP/IP sockets Unix sockets Bluetooth ...

SODEP SOAP HTTP ...

● Jolie supports many different communication mediums and data protocols.



  

Operation types

● JOLIE supports two types of operations:
● One-Way: receives a message;
● Request-Response: receives a message and sends a response back.

● In our example, number was a One-Way operation.

● Syntax for Request-Response:

interface GreetInterface {
RequestResponse:

sayHello(string)(string)
}

sayHello@B( “John” )( result ) sayHello( name )( result ) {
result = “Hello ” + name  }

outputPort B {
Location:“socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

inputPort B {
Location:“socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

helloWho/base



  

Behaviour basics

● Interpreted, dynamically typed (run-time checking)

● Some basic statements:

● assignment:    x = x + 1

● if-then-else:    if ( x > 0 ) { B } else { B }

● while:             while ( x < 1 ) { B }

● for cycle:   for ( i = 0, i < x, i++ ) { B }

● Statements can be composed in sequences with the “;” operator.



  

Stateful server

● the server can be persistent and stateful

sayHello@B( “John” )( result ) main
{
    count = 0
    while ( true ) {
      sayHello( who  )( greet ) {

     greet = "Hello " + who + "! ";
     if ( count != 0 ) {

    greet = greet + "You came " 
                   + count + " times"

      };
   count++
}

}

● … we will see some better solution, later

HelloWho/base



  

Parallel Composition

●  Two blocks B1 and B2 can be executed  in parallel with the syntax

{ sendNumber@B( 5 ) |
  sendNumber@C( 7 )
}; 
println@Console( "both operations finished" )();

B1 | B2

●  Example



  

Input choice

[ Input_Statement1 ]
  { P1 }

[ Input_Statement2 ]  
  { P2 }

...

...
[ Input_Statementn ]
  { Pn }

run = true;
count = 0;
while( run ) {
    [ sayHello( who )( greet ) 
       {

     greet = "Hello " + who + "! ";
     if ( count != 0 ) {

   greet = greet + "You came " 
                 + count + " times"

      };
      count++
}]
{ 

println@Console( "Answered  " + who )()
    }

[ shutdown() ] { 
run = false
println@Console( "Shutdown by  " + who )()

    }
}

HelloWho/shutdown

mailto:sayHello@B


  

Data manipulation (1)

● In JOLIE, every variable is a tree

● Every tree node can be an array:

person.name = “John”;
person.surname = “Smith”

person.nicknames[0] = “Johnz”;
person.nicknames[1] = “Jo”

XML-likeperson

name surname nicknames[0] nicknames[1]



  

Data manipulation (2)

person.name = “John”;
person.surname = “Smith”;

<person>
<name>John</name>
<surname>Smith</surname>
</person>

SOAP

<form name=”person”>
<input name=”name” value=”John”/>
<input name=”surname” value=”Smith”/>
</form>

HTTP (form format)

01person02name114Johnsurname11Smith

SODEP

XML-like

mailto:sayHello@B


  

Data manipulation (3)

● You can dump the structure of a node using the standard library.

include “console.iol”
include “string_utils.iol”

main
{

team.person[0].name = “John”;
team.person[0].age = 30;
team.person[1].name = “Jimmy”;
team.person[1].age = 24;

team.sponsor = “Nike”;
team.ranking = 3;

valueToPrettyString@StringUtils( team )( result );
println@Console( result )()

}

● team.person      same as      team.person[0]

prettyString

mailto:sendNumber@B
mailto:sendNumber@C


  

Data manipulation: some operators

● Deep copy: copies an entire tree onto a node.
● team.person[2] << john

● Cardinality: returns the length of the array associated to a node
● size = #team.person

for( i = 0, i < #team.person, i++ ) {
println@Console( team.person[i].name )()

}

● Undefining: a variable or a subtree
● undef(team)



  

Data manipulation: some operators

●  With: avoding repetitive paths

with ( a.b.c ){
    .d[ 0 ] = "zero";
    .d[ 1 ] = "one";
    .d[ 2 ] = "two";
    .d[ 3 ] = "three"
};
currentElement -> a.b.c.d[ i ];
 
for ( i = 0, i < #a.b.c.d, i++ ){
    println@Console( currentElement )()
}

DataStructures/with.ol

Aliases are evaluated every time they are used (~ macro)

●Aliasing: creates an alias towards a tree path.
● myPlayer -> team.person[my_player_index] 



  

Dynamic path evaluation (associative arrays, maps)

● Static path: person.name
 

● Dynamic path
  Expression in round parenthesis in a path of a data tree.
● Example: 

● We make a map of cities indexed by their names:
● cityName = “Copenhagen”;
● cities.(cityName).state = “Denmark”

● Note that: 
cities.(“Copenhagen”)

● is the same as:
cities.Copenhagen

● can be browsed with the foreach statement:

foreach( city : cities ) {
    // for all children of cities, bound to city

println@Console( cities.(city).state )()
}



  

Data manipulation: question

● What will be printed to screen?

include “console.iol”
include “string_utils.iol”

main
{

cities[0] = “Copenhagen”;
i = 0;
while( i < #cities ) {

println@Console( cities[i] )();
cities[i] = “Copenhagen”;
i++

}
}

include “console.iol”
include “string_utils.iol”

main
{

cities[0] = “Copenhagen”;
i = 0;
while( i < #cities ) {

println@Console( cities[i] )();
i++;
cities[i] = “Copenhagen”

}
}

DataStructures/while.ol

mailto:valueToPrettyString@StringUtils
mailto:println@Console


  

Data types

● In an interface, each operation must be coupled to its message types.

● Syntax:
● type name:basic_type { subnode types }

● Where basic_type can be:
● int, long, double for numbers
● string for strings;
● raw for byte arrays (internal use, data passing purposes);
● void for empty nodes;
● any for any possible basic value;
● undefined: makes the type accepting any value and any subtree.

type Team:void {
.person:void {

.name:string

.age:int
}
.sponsor:string
.ranking:int

}

mailto:println@Console


  

Casting and runtime basic type checking

● For each basic data type, there is a corresponding primitive for:
● casting, e.g.   x = int( s )
● runtime checking, e.g.   x istanceof int



  

Data types: cardinalities

● Each node in a type can be coupled with a range of possible occurences.
● Syntax:

● type name[min,max]:basic_type { subtypes }
● One can also have:

● * for any number of occurences (>= 0);
● ? for [0,1].

type Team:void {
.person[1,5]:void {

.name:string

.age:int
}
.sponsor:string
.ranking:int

}

● With no indication, cardinality is defaulted to [1,1]

mailto:println@Console


  

Data types and operations

● Data types are to be associated to operations.

type SumRequest:void {
.x:int
.y:int

}

interface CalculatorInterface {
RequestResponse:

sum( SumRequest )( int )
}

mailto:println@Console
mailto:println@Console


  

A calculator service

inputPort MyInput {
Location: “socket://localhost:8000/”
Protocol: sodep
Interfaces: CalculatorInterface
}

main
{

sum( request )( response ) {
response = request.x + request.y

}
}

type SumRequest:void {
.x:int
.y:int

}

interface CalculatorInterface {
RequestResponse:

sum(SumRequest)(int)
}



  

A variadic calculator

type SumRequest:void {
.val [1,*]:int

}

interface CalculatorInterface {
RequestResponse:

sum(SumRequest)(int)
}

inputPort MyInput {
Location: “socket://localhost:8000/”
Protocol: sodep
Interfaces: CalculatorInterface
}

main
{

sum( request )( response ) {
response = 0;
for ( i = 0, i < #request.val, i++ ) {

response += request.val[i]
}

}
}



  

Summary

●  Everything is a service
● Exposing interfaces {operations with type} on input ports
● Invoking operations of other services,  through output ports

→ network of services

●  When defining the behaviour of a service we can use

● Standard control flow primitives (if, while, for)

● Sequential composition
       “;”

● Parallel
      { P } | { Q }

● Input choice  
      [ op1(x) ] { … }
      [ op2(x)(y) { … } ] { … }
(~ select, wait for multiple operations, 
    note the combination of parallel and sequential composition) 



  

Dynamic binding

● In an SOA, a fundamental mechanism is that of service discovery.
● A service dynamically (at runtime) discovers the location and a protocol
 for communicating with another service.

● In JOLIE we obtain this by manipulating an output port as a variable.

● Type for bindings in Binding.iol

outputPort Calculator {
Interfaces: CalculatorInterface

}

main
{

Calculator.location = “socket://localhost:8000/”;
Calculator.protocol = “sodep”;
request.x = 2;
request.y = 3;
sum@Calculator( request )( result )

}



  

Dynamic binding

●  Various calculators  offering each an operation between sum,  product
    and exp as an operation op at different addresses

● A service provider, that accept requests of sum/prod/exp and returns the 
   binding for the corresponding calculator

● A client asking to a service provider the binding to the appropriate
  service and then using the operation

[see serviceDiscovery]



  

Fault Handling



  

Scope, Fault, Throw

● A scope is a behavioural container denoted by a name

● Fault handlers can be associated to a scope

● Faults thrown within a scope are 
● Handled by corresponding handler, if any
● Passed to the parent scope, otherwise

…
scope ( scope_name ) {
  install ( 

fault_name1 => handler code
    fault_name2 => handler code
  );
  …
  throw ( fault_name )
  }
…

● Uncaught faults in a request-response operation passed to the invoker



  

Scope, Fault, Throw

● Example: A calculator that only accepts positive numbers

fault_calculator

mailto:sum@Calculator


  

Termination and recovery

● A scope can be terminated by a faulty parallel scope
● A termination handler can be installed for managing the situation and
  bringing the activity to a safe state

…
scope ( scope_name ) {
  install ( 

this => termination handler code
  );
  …

}

|    // parallel scope

scope ( sibling ) {
…
…
throw ( fault_xy )

}

● If scope_name  has children scopes with  termination handlers, 

  these are  triggered before



  

Compensation

● When a scope sucessfully terminates, its termination recovery code is
   made accessible to the enclosing scope (as a compensation)

● It can be called (in a handler) with comp(sub_scope) 

main
{

install( a_fault => 
  println@Console( "Fault handler for a_fault" )();
  comp( example_scope ) // Access to recovery of subscope
);

scope( example_scope )
{
  install( this => 

println@Console( "recovering step" )()
);

    …
};
throw( FaultName )

}



  

Compensation

● The current recovery handler can be referred to with cH,thus allowing

   an incremental construction of recovery code

main
{

install( a_fault => 
  println@Console( "Fault handler for a_fault" )();
  comp( example_scope ) // Access to recovery of subscope
);

scope( example_scope )
{
    …

… some work …
  install( this => 

println@Console( "recovering step 1" )());
    …

… some work …
  install( this => 

cH;
println@Console( "recovering step 2" )());

};
throw( FaultName )

}

terminationCompensation



  

Architectural Composition



  

Embedding

●  A mechanism for integrating multiple services in a single one 

● Possibly written in different languages (not only Jolie, but also
  Java and Javascript currently supported)

embedded {
Language : path [ in OutputPort ]

}

●  The output port (if specified) is bound to the local input port of the
   embedded service



  

Embedding Javascript

importClass( java.lang.System );
importClass( java.lang.Integer );

function sum( request )
{

var x = request.getFirstChild("x").intValue();
var y = request.getFirstChild("y").intValue();
System.out.println( "Got request for " + x + " and " + y );
return Integer.parseInt(x + y); // JS represents any number as 

  // ac64-bit floating point number.
}

●The JS service (Calculator.js)



  

Embedding Javascript

// port for connecting to the local port of the Javascript service
outputPort CalculatorJS {
Interfaces: CalculatorInterface
}

// embeds the JS service
embedded {
JavaScript:

"Calculator.js" in CalculatorJS
}

// port for exposing the embedded service (verbatim of the JS service)
inputPort Service {
Location: "socket://localhost:8000"
Protocol: sodep
Interfaces: CalculatorInterface
}

main
{

sum (request)(response) {
sum@CalculatorJS(request)(response)

}
}



  

Aggregation

●   A service can expose operations which are delegated to other services

// external service
outputPort A {

Location: "socket://urlA.com:80/"
Protocol: soap
Interfaces: InterfaceA

}

// external service
outputPort B {

Location: "socket://urlB.com:80/"
Protocol: xmlrpc
Interfaces: InterfaceB

}

// Expose the services from A, B and a locally implemented one
inputPort Input {

Location: "socket://url.com:8000/"
Protocol: sodep
Interfaces: MyInterface
Aggregates: A, B

}

main {
// implement the operations specified in MyInterface

}



  

Aggregation

●   Could be just a forwarder (or protocol connector)

// external service
outputPort A {

Location: "socket://urlA.com:80/"
Protocol: soap
Interfaces: InterfaceA

}

// external service
outputPort B {

Location: "socket://urlB.com:80/"
Protocol: xmlrpc
Interfaces: InterfaceB

}

// Expose the services from A, B and a locally implemented one
inputPort Input {

Location: "socket://url.com:8000/"
Protocol: sodep
Aggregates: A, B

}



  

And More ...

● Redirection
 

● Couriers (aggregation with code addition)

● Web Services … 
 (use web-services and export Jolie service as a web-service)



  

Session Management



  

Multiple executions: sessions

●  The calculator works, but it terminates after executing once ...

●  We would like it to keep going and accept further requests

●  We introduce sessions.

●  A session is an execution instance of a service behaviour.



  

Multiple executions: sessions

● In JOLIE, sessions can be executed concurrently or sequentially

execution { concurrent } execution { sequential }

sum( request )( response ) {
response = request.x + request.y

};
print( message );
println@Console( message )()

sum( request )( response ) {
response = request.x + request.y

};
print( message );
println@Console( message )()

sum( request )( response ) {
response = request.x + request.y

};
print( message );
println@Console( message )()

● execution { single } is the default and can be omitted



  

Multiple executions: sessions

● In the sequential and concurrent cases, the behavioural definition 
  inside main  must be an input statement
   - input
   - input choice 

● Kind of guarded pi-calculus “!” …

● Such inputs are called starting operations and determine the activation
  of a new service instance



  

More on sessions

● It  may engage in different separate conversations with other parties    
● Example: a chat service managing different chat rooms.

● Each conversation needs to be supported by a private execution state.
● Example: each chat room needs to keep track of the posted messages.

Service

Session

● A service may have multiple sessions running in parallel 
  (conceptually several sessions running inside the service)



  

Message routing

● What happens when a service receives a message from the network?
 

● We need to assign the message to a session!

Network

Service
Mesg

● How can we establish which session the message is meant for?



  

Session identifiers

● A widely used mechanism for routing messages to sessions.

● Each session has a session identifier (sid).

● All received messages contain a sid (e.g., cookie in http header reqs).

● The service gives the message to the session with the same sid.

Network

Service

sid = 21

2

3
4

5



  

Correlation sets

● A generalisation of session identifiers.

● A session is identified by the values of some of its variables.
● These variables form a correlation set (or cset).
● Similar to unique keys in relational databases.

● Example:
● in a service where we have a session for every person in the world

a correlation set could be formed by the national identification number
and the country.

Network

Service

nin = nin5
country = IT

nin=nin1
country=CY

...more
data...

nin=nin5
country=IT

...more
data...

...

mailto:println@Console
mailto:println@Console
mailto:println@Console


  

Session identifiers VS correlation sets
Session identifiers

Correlation sets

● Pros
● Usually handled by the middleware: hard to make mistakes.

● Cons
● All clients must send the sid as expected: no support for integration.

● Pros
● Programmability of correlation can be used for integration.
● Each cset is a different way of identifying a session: support for multiparty

interactions.

● Cons
● Almost totally controlled by the programmer: easy to make mistakes

(static analysis and typing support).



  

Example: chat service

● We model a chat service handling separate chat rooms. Each room is a session.

main
{

openRoom( openRequest )( response ) {
// Create the chat room...

}; run = true;
while ( run ) {

[ publish( message ) ] { println@Console( message.content )() }
[ close( closeRequest ) ] { run = false }

}
}

Chat service

Sports

Fun

Travel

interface ChatInterface {
RequestResponse:

openRoom(OpenRequest)(OpenResponse)
OneWay:

publish(PublishMesg),
close(CloseMesg)

}

Session starter



  

Correlating chats

● We want:
● to publish messages in the right rooms;
● to let the room creator close it, but only her!

● So we create two correlation sets:

main
{

openRoom( openRequest )( csets.adminToken ) {
csets.adminToken = new

}; run = true;
while ( run ) {

[ publish( message ) ] { println@Console( message.content )() }
[ close( closeRequest ) ] { run = false }

}
}

interface ChatInterface {
RequestResponse: openRoom(OpenRequest)(OpenResponse)
OneWay: publish(PublishMesg), close(CloseMesg)
}

cset { name: OpenRequest.room PublishMesg.roomName }
cset { adminToken: CloseMesg.adminToken }

1

2

2

1

Fresh value generator



  

Correlating chats

● Two correlation sets (both identifying the instance): 
- name for the name of the chat, 
- adminToken unique key for closing the chat

● openRoom:
starting message which creates a new instance, initialising the correlation
set to name=openRequest.room, adminToken=fresh value

● publish
destination determined by message.room

● close
destination determined by closeRequest.adminToken



  

Correlation sets

● Exactly one correlation set linking all its variables to (the type of) 
 an operation    →   the correlation set for the operation!

→ 

● Given a message the instance it refers to (if any) is determined

cset { correlation_var1 : alias_11 alias_12 ...
   ...

       correlation_varn : alias_n1 alias_n2 ... }

● Syntax



  

Correlation sets

● When a service receives a message through an input port, there are 
   three possibilities 

 -  The msg correlates with an instance 
     → passed over to the instance

-  The msg does not correlate with any instance and its operation
     is a starting operation
     → new behaviour instance is created
          correlation set of the starting operation (if any) initialized atomically

-  The msg does not correlate with any behaviour instance and its operation 
    is not a starting operation  

     → CorrelationError fault



  

Exercise (together)

● We design an SOA for handling exams between students and professors.
● A student can start an examination session.
● A professor can ask a question in the session.
● The student answers and the professor can either accept or reject.
● The student is notified.

● Questions

● Architecture: roles and services.
● What are the involved services? Roles.
● Who controls the execution flow? Orchestrator.

● Work flow: operations, data types and activity composition.
● Who starts the session?
● How does the session behave?



  

Exercise

student examinerexam

startExam(request)

makeQuestion(q)(a)

makeQuestion(q)(a)

pass(m) | fail(m)

sendMessage(string)



  

Some other things you can do with Jolie



  

Leonardo

● A web server in pure Jolie.

● Can fit in a slide.
 (ok, I reduced the font size a little)

● ~50 LOCs

include "console.iol"
include "file.iol"
include "string_utils.iol"
include "config.iol"

execution { concurrent }

interface HTTPInterface {
RequestResponse:

default(undefined)(undefined)
}

inputPort HTTPInput {
Protocol: http {

.debug = DebugHttp; .debug.showContent = DebugHttpContent;

.format -> format; .contentType -> mime;

.default = "default"
}
Location: Location_Leonardo
Interfaces: HTTPInterface
}

init {
documentRootDirectory = args[0]

}

main {
default( request )( response ) {

scope( s ) {
install(

FileNotFound =>
println@Console( "File not found: " + file.filename )()

);
s = request.operation;
s.regex = "\\?";
split@StringUtils( s )( s );
file.filename = documentRootDirectory + s.result[0];
getMimeType@File( file.filename )( mime );
mime.regex = "/";
split@StringUtils( mime )( s );
if ( s.result[0] == "text" ) {

file.format = "text";
format = "html"

} else {
file.format = format = "binary"

};
readFile@File( file )( response )

}
}

}



  

Jolie and DBMS

● Equipped with protection from SQL injection.

query@Database
( “select * from people” )( result );

print@Console( result.row[1].surname )() // “Duck”

id name surname

1 John Smith

2 Donald Duck



  

Jolie and Java

public class StringUtils
extends JavaService

{
public String trim( String s )
{

return s.trim();
}

}

include “string_utils.iol”

main
{

trim@StringUtils
( “ Hello “ )( s )

// now s is “Hello”
}



  

Also...

● Jolie is based on the service-oriented programming paradigm, but it is
 a general purpose programming language.

● You can use it even for controlling a media player (ECHOES), or the
 brightness level of your Apple keyboard (Jabuka).

● Lots of other applications... ask about them!
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