

A service-oriented programming language
Introduction and Basic Ideas

Paolo Baldan
Linguaggi e Modelli per il Global Computing

AA 2015/2016

Many thanks to Fabrizio Montesi
(IT University of Copenhagen)

for the material

Programming distributed systems is hard

● Programming concurrent distributed systems is usually harder than
 programming non-concurrent and non-distributed ones.

● Some problems are:
● handling concurrency
● handling communications;
● handling faults;
● handling heterogeneity;
● handling the evolution of systems.

Programming distributed systems is hard - Communications

● The basic feature for any distributed system.
● A language can access the lower level IPC facilities. E.g. in Java we can
 open a TCP/IP socket and send some data:

SocketChannel socketChannel = SocketChannel.open();

socketChannel.connect(new InetSocketAddress("http://someurl.com", 80));

Buffer buffer = . . .; // Create a byte buffer with data to be sent.

while(buffer.hasRemaining()) {

channel.write(buffer);

}

A B

Programming distributed systems is hard - Communications

● That is NOT good Java code.
● We need to remember to:

● handle eventual exceptions;
● remember to close the channel.

● New version (and this is actually still not perfect, but better):

SocketChannel socketChannel = SocketChannel.open();
try {
 socketChannel.connect(new InetSocketAddress("http://someurl.com", 80));
 Buffer buffer = . . .; // Create a byte buffer with data to be sent.

 while(buffer.hasRemaining()) {
 channel.write(buffer);
 }
}
catch(UnresolvedAddressException e) { . . . }
catch(SecurityException e) { . . . }
/* . . . many catches later . . . */
catch(IOException e) { . . . }
finally { channel.close(); }

Programming distributed systems is hard - Faults

● Applications in a distributed system can perform a distributed transaction.

● Example:
● a client asks a store to buy some music;
● the store opens a request for handling a payment on a bank;
● the client sends his credentials to the bank for closing the payment;
● the store sends the goods to the client.

● Looks good, but a lot of things may go wrong, for instance:
● the store (or the bank) could be offline;
● the client may not have enough money in his bank account;
● the store may encounter a problem in sending the goods.

Programming distributed systems is hard - Heterogeneity

● In the real world, distributed systems can be heterogeneous.

● Different applications that are part of the same system could...
● use different communication mediums (Bluetooth? TCP/IP?, …);
● use different data protocols (HTTP? SOAP? X11?);
● use different versions of the same data protocol (SOAP 1.1? 1.2?);
● and so on...

Programming distributed systems is hard - Evolution

● Distributed systems usually evolve over time.

● Each application could be made by a different company.

● A company may update its application.

● Again, many possible pitfalls:
● the updated version may use a new data protocol, unsupported by the

clients;
● the updated version may have a different interface, e.g. first it took an

integer as a parameter for a functionality, now a string;
● the updated version may have a different behaviour, e.g. first it did not

require clients to log in, now it does.

Simplifying distributed systems

● Things can be made easier by hiding the low-level details.

● Two main approaches:

● make a library/tool/framework for an existing programming language
(es. Java RMI);

● make a new programming language.

(Micro) Service-Oriented Computing (SOC)

● A design paradigm for distributed systems.

● A service-oriented system is a network of services.

● Services communicate through message passing.

● Messages are tagged with operations (similar to method names in OO).

● Services are typed with interfaces, which define operations and
 message data types for operations.

● Reference technology: Web Services.
● Based on XML;
● WS-BPEL (BPEL for short) for programming composition.

Why SOC? A few other reasons...

● Everybody was using custom solutions for distributed computing.

● We need more integration between existing software.
● Programs using different data protocols cannot interact.

● We need support for more dynamicity.
● Service Discovery: we can discover where services are located at runtime.

● We need support for structured interactions (protocols exposed).
● Many web applications implement logical orderings between actions.
● Example: in a newspaper web portal, a user may need to log in before

reading the news.

Jolie: a service-oriented programming language

● Nice logo:

● Formal foundations from the Academia.

● Tested and used in the real world:

● Open source (http://www.jolie-lang.org/), with a well-maintained code base:

FOCUS Research Team

Jolie: comes with formal syntax and semantics

Hello, Jolie!

include “console.iol”

main
{

println@Console(“Hello, world!”)()
}

● Yes, Jolie can print “Hello, world!”

Basics

● A Service-Oriented Architecture (SOA) is composed by services.
● A service is an application that offers operations.
● A service can invoke another service by calling one of its operations.
● Reminds of Object-oriented programming:

Services Objects

Operations Methods

Service-oriented Object-oriented

http://www.jolie-lang.org/

Understanding Hello World: concepts

include “console.iol”

main
{

println@Console(“Hello, world!”)()
}

Include from standard
library

Program entry point

Operation The service I want to invoke

main
{

number@B(5)
}

A
main
{

number(x);
 operate on x …

}

B

Our first service-oriented application

● We need to tell B how to expose operation number
● We need to tell A how to reach B
● In other words, how they can communicate!

A: B:

● A program (service) defines the input/output communications
 it will make (operations and invocations of operations)

● A sends 5 to B through the number operation

 (invokes the number operation of service B).

mailto:println@Console

Ports and interfaces: overview

● Services communicate through ports.
● Ports give access to interfaces
● An interface is a set of operations (~ methods)

● An input port is used to expose an interface.
● An output port is used to invoke interfaces exposed by other services.

● Example: A has an output port connected to the input port of B.

A B

numbernumber

Input
port

Output
port

Our first service-oriented application

A: B:interface MyInterface {
OneWay:

number(int)
}

interface.iol

include “interface.iol”

outputPort B {
Location:

“socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

main
{

number@B(5)
}

A.ol

include “interface.iol”

inputPort MyInput {
Location:

“socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

main
{

number(x)
…

}

B.ol

AB

mailto:println@Console

Anatomy of a port

outputPort B {
Location: “socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

inputPort MyInput {
Location: “socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

● A port specifies:
● the location on which the communication can take place;
● the protocol to use for encoding/decoding data;
● the interfaces it exposes.

● A service can use several ports

A.ol

B.ol

Anatomy of a port: Location

● A location is a URI (Uniform Resource Identifier) describing:
● the communication medium to use;
● the parameters for the communication medium to work.

● Some examples:

● TCP/IP:

● Bluetooth:

● Unix sockets:

● Java RMI:

socket://www.google.com:80/

btl2cap://localhost:3B9FA89520078C303355AAA694238F07;nam
e=Vision;encrypt=false;authenticate=false

localsocket:/tmp/mysocket.socket

rmi://myrmiurl.com/MyService

Anatomy of a port: protocol

● A protocol is a name, optionally equipped with configuration parameters.

● Some examples: sodep, soap, http, xmlrpc, …

Protocol: sodep

Protocol: soap

Protocol: http { .debug = true }

Protocol: https

Protocol: xmlrpc

Deployment and Behaviour

● A JOLIE program is composed by two parts:
● Behaviour: defines the workflow the service will execute.
● Deployment: defines how to execute the behaviour and how to

interact with the rest of the system;

// B.ol

include “interface.iol”

inputPort MyInput {
Location: “socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

main
{

number(x) { … }
}

Deployment

Behaviour

Communication abstraction

● A program just needs its port definitions to be changed in order to support
 different communication technologies!

● Adapters as services which does nothing else that receiving and forwarding
 from/to ports with different protocols (no behaviour)

TCP/IP sockets Unix sockets Bluetooth ...

SODEP SOAP HTTP ...

● Jolie supports many different communication mediums and data protocols.

Operation types

● JOLIE supports two types of operations:
● One-Way: receives a message;
● Request-Response: receives a message and sends a response back.

● In our example, number was a One-Way operation.

● Syntax for Request-Response:

interface GreetInterface {
RequestResponse:

sayHello(string)(string)
}

sayHello@B(“John”)(result) sayHello(name)(result) {
result = “Hello ” + name }

outputPort B {
Location:“socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

inputPort B {
Location:“socket://localhost:8000”
Protocol: sodep
Interfaces: MyInterface
}

helloWho/base

Behaviour basics

● Interpreted, dynamically typed (run-time checking)

● Some basic statements:

● assignment: x = x + 1

● if-then-else: if (x > 0) { B } else { B }

● while: while (x < 1) { B }

● for cycle: for (i = 0, i < x, i++) { B }

● Statements can be composed in sequences with the “;” operator.

Stateful server

● the server can be persistent and stateful

sayHello@B(“John”)(result) main
{
 count = 0
 while (true) {
 sayHello(who)(greet) {

 greet = "Hello " + who + "! ";
 if (count != 0) {

 greet = greet + "You came "
 + count + " times"

 };
 count++
}

}

● … we will see some better solution, later

HelloWho/base

Parallel Composition

● Two blocks B1 and B2 can be executed in parallel with the syntax

{ sendNumber@B(5) |
 sendNumber@C(7)
};
println@Console("both operations finished")();

B1 | B2

● Example

Input choice

[Input_Statement1]
 { P1 }

[Input_Statement2]
 { P2 }

...

...
[Input_Statementn]
 { Pn }

run = true;
count = 0;
while(run) {
 [sayHello(who)(greet)
 {

 greet = "Hello " + who + "! ";
 if (count != 0) {

 greet = greet + "You came "
 + count + " times"

 };
 count++
}]
{

println@Console("Answered " + who)()
 }

[shutdown()] {
run = false
println@Console("Shutdown by " + who)()

 }
}

HelloWho/shutdown

mailto:sayHello@B

Data manipulation (1)

● In JOLIE, every variable is a tree

● Every tree node can be an array:

person.name = “John”;
person.surname = “Smith”

person.nicknames[0] = “Johnz”;
person.nicknames[1] = “Jo”

XML-likeperson

name surname nicknames[0] nicknames[1]

Data manipulation (2)

person.name = “John”;
person.surname = “Smith”;

<person>
<name>John</name>
<surname>Smith</surname>
</person>

SOAP

<form name=”person”>
<input name=”name” value=”John”/>
<input name=”surname” value=”Smith”/>
</form>

HTTP (form format)

01person02name114Johnsurname11Smith

SODEP

XML-like

mailto:sayHello@B

Data manipulation (3)

● You can dump the structure of a node using the standard library.

include “console.iol”
include “string_utils.iol”

main
{

team.person[0].name = “John”;
team.person[0].age = 30;
team.person[1].name = “Jimmy”;
team.person[1].age = 24;

team.sponsor = “Nike”;
team.ranking = 3;

valueToPrettyString@StringUtils(team)(result);
println@Console(result)()

}

● team.person same as team.person[0]

prettyString

mailto:sendNumber@B
mailto:sendNumber@C

Data manipulation: some operators

● Deep copy: copies an entire tree onto a node.
● team.person[2] << john

● Cardinality: returns the length of the array associated to a node
● size = #team.person

for(i = 0, i < #team.person, i++) {
println@Console(team.person[i].name)()

}

● Undefining: a variable or a subtree
● undef(team)

Data manipulation: some operators

● With: avoding repetitive paths

with (a.b.c){
 .d[0] = "zero";
 .d[1] = "one";
 .d[2] = "two";
 .d[3] = "three"
};
currentElement -> a.b.c.d[i];

for (i = 0, i < #a.b.c.d, i++){
 println@Console(currentElement)()
}

DataStructures/with.ol

Aliases are evaluated every time they are used (~ macro)

●Aliasing: creates an alias towards a tree path.
● myPlayer -> team.person[my_player_index]

Dynamic path evaluation (associative arrays, maps)

● Static path: person.name

● Dynamic path
 Expression in round parenthesis in a path of a data tree.
● Example:

● We make a map of cities indexed by their names:
● cityName = “Copenhagen”;
● cities.(cityName).state = “Denmark”

● Note that:
cities.(“Copenhagen”)

● is the same as:
cities.Copenhagen

● can be browsed with the foreach statement:

foreach(city : cities) {
 // for all children of cities, bound to city

println@Console(cities.(city).state)()
}

Data manipulation: question

● What will be printed to screen?

include “console.iol”
include “string_utils.iol”

main
{

cities[0] = “Copenhagen”;
i = 0;
while(i < #cities) {

println@Console(cities[i])();
cities[i] = “Copenhagen”;
i++

}
}

include “console.iol”
include “string_utils.iol”

main
{

cities[0] = “Copenhagen”;
i = 0;
while(i < #cities) {

println@Console(cities[i])();
i++;
cities[i] = “Copenhagen”

}
}

DataStructures/while.ol

mailto:valueToPrettyString@StringUtils
mailto:println@Console

Data types

● In an interface, each operation must be coupled to its message types.

● Syntax:
● type name:basic_type { subnode types }

● Where basic_type can be:
● int, long, double for numbers
● string for strings;
● raw for byte arrays (internal use, data passing purposes);
● void for empty nodes;
● any for any possible basic value;
● undefined: makes the type accepting any value and any subtree.

type Team:void {
.person:void {

.name:string

.age:int
}
.sponsor:string
.ranking:int

}

mailto:println@Console

Casting and runtime basic type checking

● For each basic data type, there is a corresponding primitive for:
● casting, e.g. x = int(s)
● runtime checking, e.g. x istanceof int

Data types: cardinalities

● Each node in a type can be coupled with a range of possible occurences.
● Syntax:

● type name[min,max]:basic_type { subtypes }
● One can also have:

● * for any number of occurences (>= 0);
● ? for [0,1].

type Team:void {
.person[1,5]:void {

.name:string

.age:int
}
.sponsor:string
.ranking:int

}

● With no indication, cardinality is defaulted to [1,1]

mailto:println@Console

Data types and operations

● Data types are to be associated to operations.

type SumRequest:void {
.x:int
.y:int

}

interface CalculatorInterface {
RequestResponse:

sum(SumRequest)(int)
}

mailto:println@Console
mailto:println@Console

A calculator service

inputPort MyInput {
Location: “socket://localhost:8000/”
Protocol: sodep
Interfaces: CalculatorInterface
}

main
{

sum(request)(response) {
response = request.x + request.y

}
}

type SumRequest:void {
.x:int
.y:int

}

interface CalculatorInterface {
RequestResponse:

sum(SumRequest)(int)
}

A variadic calculator

type SumRequest:void {
.val [1,*]:int

}

interface CalculatorInterface {
RequestResponse:

sum(SumRequest)(int)
}

inputPort MyInput {
Location: “socket://localhost:8000/”
Protocol: sodep
Interfaces: CalculatorInterface
}

main
{

sum(request)(response) {
response = 0;
for (i = 0, i < #request.val, i++) {

response += request.val[i]
}

}
}

Summary

● Everything is a service
● Exposing interfaces {operations with type} on input ports
● Invoking operations of other services, through output ports

→ network of services

● When defining the behaviour of a service we can use

● Standard control flow primitives (if, while, for)

● Sequential composition
 “;”

● Parallel
 { P } | { Q }

● Input choice
 [op1(x)] { … }
 [op2(x)(y) { … }] { … }
(~ select, wait for multiple operations,
 note the combination of parallel and sequential composition)

Dynamic binding

● In an SOA, a fundamental mechanism is that of service discovery.
● A service dynamically (at runtime) discovers the location and a protocol
 for communicating with another service.

● In JOLIE we obtain this by manipulating an output port as a variable.

● Type for bindings in Binding.iol

outputPort Calculator {
Interfaces: CalculatorInterface

}

main
{

Calculator.location = “socket://localhost:8000/”;
Calculator.protocol = “sodep”;
request.x = 2;
request.y = 3;
sum@Calculator(request)(result)

}

Dynamic binding

● Various calculators offering each an operation between sum, product
 and exp as an operation op at different addresses

● A service provider, that accept requests of sum/prod/exp and returns the
 binding for the corresponding calculator

● A client asking to a service provider the binding to the appropriate
 service and then using the operation

[see serviceDiscovery]

Fault Handling

Scope, Fault, Throw

● A scope is a behavioural container denoted by a name

● Fault handlers can be associated to a scope

● Faults thrown within a scope are
● Handled by corresponding handler, if any
● Passed to the parent scope, otherwise

…
scope (scope_name) {
 install (

fault_name1 => handler code
 fault_name2 => handler code
);
 …
 throw (fault_name)
 }
…

● Uncaught faults in a request-response operation passed to the invoker

Scope, Fault, Throw

● Example: A calculator that only accepts positive numbers

fault_calculator

mailto:sum@Calculator

Termination and recovery

● A scope can be terminated by a faulty parallel scope
● A termination handler can be installed for managing the situation and
 bringing the activity to a safe state

…
scope (scope_name) {
 install (

this => termination handler code
);
 …

}

| // parallel scope

scope (sibling) {
…
…
throw (fault_xy)

}

● If scope_name has children scopes with termination handlers,

 these are triggered before

Compensation

● When a scope sucessfully terminates, its termination recovery code is
 made accessible to the enclosing scope (as a compensation)

● It can be called (in a handler) with comp(sub_scope)

main
{

install(a_fault =>
 println@Console("Fault handler for a_fault")();
 comp(example_scope) // Access to recovery of subscope
);

scope(example_scope)
{
 install(this =>

println@Console("recovering step")()
);

 …
};
throw(FaultName)

}

Compensation

● The current recovery handler can be referred to with cH,thus allowing

 an incremental construction of recovery code

main
{

install(a_fault =>
 println@Console("Fault handler for a_fault")();
 comp(example_scope) // Access to recovery of subscope
);

scope(example_scope)
{
 …

… some work …
 install(this =>

println@Console("recovering step 1")());
 …

… some work …
 install(this =>

cH;
println@Console("recovering step 2")());

};
throw(FaultName)

}

terminationCompensation

Architectural Composition

Embedding

● A mechanism for integrating multiple services in a single one

● Possibly written in different languages (not only Jolie, but also
 Java and Javascript currently supported)

embedded {
Language : path [in OutputPort]

}

● The output port (if specified) is bound to the local input port of the
 embedded service

Embedding Javascript

importClass(java.lang.System);
importClass(java.lang.Integer);

function sum(request)
{

var x = request.getFirstChild("x").intValue();
var y = request.getFirstChild("y").intValue();
System.out.println("Got request for " + x + " and " + y);
return Integer.parseInt(x + y); // JS represents any number as

 // ac64-bit floating point number.
}

●The JS service (Calculator.js)

Embedding Javascript

// port for connecting to the local port of the Javascript service
outputPort CalculatorJS {
Interfaces: CalculatorInterface
}

// embeds the JS service
embedded {
JavaScript:

"Calculator.js" in CalculatorJS
}

// port for exposing the embedded service (verbatim of the JS service)
inputPort Service {
Location: "socket://localhost:8000"
Protocol: sodep
Interfaces: CalculatorInterface
}

main
{

sum (request)(response) {
sum@CalculatorJS(request)(response)

}
}

Aggregation

● A service can expose operations which are delegated to other services

// external service
outputPort A {

Location: "socket://urlA.com:80/"
Protocol: soap
Interfaces: InterfaceA

}

// external service
outputPort B {

Location: "socket://urlB.com:80/"
Protocol: xmlrpc
Interfaces: InterfaceB

}

// Expose the services from A, B and a locally implemented one
inputPort Input {

Location: "socket://url.com:8000/"
Protocol: sodep
Interfaces: MyInterface
Aggregates: A, B

}

main {
// implement the operations specified in MyInterface

}

Aggregation

● Could be just a forwarder (or protocol connector)

// external service
outputPort A {

Location: "socket://urlA.com:80/"
Protocol: soap
Interfaces: InterfaceA

}

// external service
outputPort B {

Location: "socket://urlB.com:80/"
Protocol: xmlrpc
Interfaces: InterfaceB

}

// Expose the services from A, B and a locally implemented one
inputPort Input {

Location: "socket://url.com:8000/"
Protocol: sodep
Aggregates: A, B

}

And More ...

● Redirection

● Couriers (aggregation with code addition)

● Web Services …
 (use web-services and export Jolie service as a web-service)

Session Management

Multiple executions: sessions

● The calculator works, but it terminates after executing once ...

● We would like it to keep going and accept further requests

● We introduce sessions.

● A session is an execution instance of a service behaviour.

Multiple executions: sessions

● In JOLIE, sessions can be executed concurrently or sequentially

execution { concurrent } execution { sequential }

sum(request)(response) {
response = request.x + request.y

};
print(message);
println@Console(message)()

sum(request)(response) {
response = request.x + request.y

};
print(message);
println@Console(message)()

sum(request)(response) {
response = request.x + request.y

};
print(message);
println@Console(message)()

● execution { single } is the default and can be omitted

Multiple executions: sessions

● In the sequential and concurrent cases, the behavioural definition
 inside main must be an input statement
 - input
 - input choice

● Kind of guarded pi-calculus “!” …

● Such inputs are called starting operations and determine the activation
 of a new service instance

More on sessions

● It may engage in different separate conversations with other parties
● Example: a chat service managing different chat rooms.

● Each conversation needs to be supported by a private execution state.
● Example: each chat room needs to keep track of the posted messages.

Service

Session

● A service may have multiple sessions running in parallel
 (conceptually several sessions running inside the service)

Message routing

● What happens when a service receives a message from the network?

● We need to assign the message to a session!

Network

Service
Mesg

● How can we establish which session the message is meant for?

Session identifiers

● A widely used mechanism for routing messages to sessions.

● Each session has a session identifier (sid).

● All received messages contain a sid (e.g., cookie in http header reqs).

● The service gives the message to the session with the same sid.

Network

Service

sid = 21

2

3
4

5

Correlation sets

● A generalisation of session identifiers.

● A session is identified by the values of some of its variables.
● These variables form a correlation set (or cset).
● Similar to unique keys in relational databases.

● Example:
● in a service where we have a session for every person in the world

a correlation set could be formed by the national identification number
and the country.

Network

Service

nin = nin5
country = IT

nin=nin1
country=CY

...more
data...

nin=nin5
country=IT

...more
data...

...

mailto:println@Console
mailto:println@Console
mailto:println@Console

Session identifiers VS correlation sets
Session identifiers

Correlation sets

● Pros
● Usually handled by the middleware: hard to make mistakes.

● Cons
● All clients must send the sid as expected: no support for integration.

● Pros
● Programmability of correlation can be used for integration.
● Each cset is a different way of identifying a session: support for multiparty

interactions.

● Cons
● Almost totally controlled by the programmer: easy to make mistakes

(static analysis and typing support).

Example: chat service

● We model a chat service handling separate chat rooms. Each room is a session.

main
{

openRoom(openRequest)(response) {
// Create the chat room...

}; run = true;
while (run) {

[publish(message)] { println@Console(message.content)() }
[close(closeRequest)] { run = false }

}
}

Chat service

Sports

Fun

Travel

interface ChatInterface {
RequestResponse:

openRoom(OpenRequest)(OpenResponse)
OneWay:

publish(PublishMesg),
close(CloseMesg)

}

Session starter

Correlating chats

● We want:
● to publish messages in the right rooms;
● to let the room creator close it, but only her!

● So we create two correlation sets:

main
{

openRoom(openRequest)(csets.adminToken) {
csets.adminToken = new

}; run = true;
while (run) {

[publish(message)] { println@Console(message.content)() }
[close(closeRequest)] { run = false }

}
}

interface ChatInterface {
RequestResponse: openRoom(OpenRequest)(OpenResponse)
OneWay: publish(PublishMesg), close(CloseMesg)
}

cset { name: OpenRequest.room PublishMesg.roomName }
cset { adminToken: CloseMesg.adminToken }

1

2

2

1

Fresh value generator

Correlating chats

● Two correlation sets (both identifying the instance):
- name for the name of the chat,
- adminToken unique key for closing the chat

● openRoom:
starting message which creates a new instance, initialising the correlation
set to name=openRequest.room, adminToken=fresh value

● publish
destination determined by message.room

● close
destination determined by closeRequest.adminToken

Correlation sets

● Exactly one correlation set linking all its variables to (the type of)
 an operation → the correlation set for the operation!

→

● Given a message the instance it refers to (if any) is determined

cset { correlation_var1 : alias_11 alias_12 ...
 ...

 correlation_varn : alias_n1 alias_n2 ... }

● Syntax

Correlation sets

● When a service receives a message through an input port, there are
 three possibilities

 - The msg correlates with an instance
 → passed over to the instance

- The msg does not correlate with any instance and its operation
 is a starting operation
 → new behaviour instance is created
 correlation set of the starting operation (if any) initialized atomically

- The msg does not correlate with any behaviour instance and its operation
 is not a starting operation

 → CorrelationError fault

Exercise (together)

● We design an SOA for handling exams between students and professors.
● A student can start an examination session.
● A professor can ask a question in the session.
● The student answers and the professor can either accept or reject.
● The student is notified.

● Questions

● Architecture: roles and services.
● What are the involved services? Roles.
● Who controls the execution flow? Orchestrator.

● Work flow: operations, data types and activity composition.
● Who starts the session?
● How does the session behave?

Exercise

student examinerexam

startExam(request)

makeQuestion(q)(a)

makeQuestion(q)(a)

pass(m) | fail(m)

sendMessage(string)

Some other things you can do with Jolie

Leonardo

● A web server in pure Jolie.

● Can fit in a slide.
 (ok, I reduced the font size a little)

● ~50 LOCs

include "console.iol"
include "file.iol"
include "string_utils.iol"
include "config.iol"

execution { concurrent }

interface HTTPInterface {
RequestResponse:

default(undefined)(undefined)
}

inputPort HTTPInput {
Protocol: http {

.debug = DebugHttp; .debug.showContent = DebugHttpContent;

.format -> format; .contentType -> mime;

.default = "default"
}
Location: Location_Leonardo
Interfaces: HTTPInterface
}

init {
documentRootDirectory = args[0]

}

main {
default(request)(response) {

scope(s) {
install(

FileNotFound =>
println@Console("File not found: " + file.filename)()

);
s = request.operation;
s.regex = "\\?";
split@StringUtils(s)(s);
file.filename = documentRootDirectory + s.result[0];
getMimeType@File(file.filename)(mime);
mime.regex = "/";
split@StringUtils(mime)(s);
if (s.result[0] == "text") {

file.format = "text";
format = "html"

} else {
file.format = format = "binary"

};
readFile@File(file)(response)

}
}

}

Jolie and DBMS

● Equipped with protection from SQL injection.

query@Database
(“select * from people”)(result);

print@Console(result.row[1].surname)() // “Duck”

id name surname

1 John Smith

2 Donald Duck

Jolie and Java

public class StringUtils
extends JavaService

{
public String trim(String s)
{

return s.trim();
}

}

include “string_utils.iol”

main
{

trim@StringUtils
(“ Hello “)(s)

// now s is “Hello”
}

Also...

● Jolie is based on the service-oriented programming paradigm, but it is
 a general purpose programming language.

● You can use it even for controlling a media player (ECHOES), or the
 brightness level of your Apple keyboard (Jabuka).

● Lots of other applications... ask about them!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	page0
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

