
ORC
Almost an introduction

Paolo Baldan
Linguaggi e Modelli per il Global Computing

AA 2013/2014

Monday, July 7, 2014

Aims

• A concurrent language should

• Describe entities and their interactions

• Allow birth and death of entities.

• Allow programming of novel interactions.

• Support hierarchical structure.

• Describe passage of time.

Monday, July 7, 2014

Idea

• Internet scripting language: integrate and
coordinate existing services (ORChestrate)

• Contact two airlines simultaneously for price quotes.

• Buy a ticket if the quote is at most $300.

• Buy the cheapest ticket if both are above $300.

• Buy a ticket if the other airline does not give a timely
quote.

• Notify client if neither airline provides a timely quote.

Monday, July 7, 2014

Idea

• Start from a (functional) core including only
concurrency

• Hierarchical structure: larger components
by composition

• Few basic composition mechanisms
(combinators)

Monday, July 7, 2014

Sites

• Site: basic service or component (the only
concept!)

• Combinators for integrating sites

• Data types, processes, ... are programmed
via sites

Monday, July 7, 2014

Sites

• A site is called like a procedure with
parameters.

• Site returns at most one value.

• The value is published.

Monday, July 7, 2014

ORC programs

• Orc program has

• a set of definitions

• a goal expression

• The goal expression is executed.

• Its execution calls sites, publishes values.

Monday, July 7, 2014

ORC expressions

• Site call

call site Google with parameter Pippo, and
publish the result.

• Composition

include "search.inc"
Google("Pippo")

Monday, July 7, 2014

Composition

• Symmetric

• Sequential

 f | g

 f >x> g

do f and g in parallel

for all x from f do g

Monday, July 7, 2014

Composition

• Pruning

• Otherwise f ; g

 f <x< g

for some x from g do f

if f halts without publishing do g

Monday, July 7, 2014

Site calls: examples

• Prompt("What is your name?")

• 2 + 3

• true && false

• Println("Hello World")
(publishes a signal - value with no info)

Monday, July 7, 2014

Other sites

• + − * && || =

• Println, Random, Prompt, Email ...

• Mutable Ref, Semaphore, Channel, ...

• Timer

• External Services: Google Search

• Any Java Class instance ...

Monday, July 7, 2014

Symmetric composition

• Evaluate f and g independently.

• Publish all values from both.

• No direct communication or interaction
between f and g.

 f | g

Monday, July 7, 2014

Example

• Call Bing and Google simultaneously

• Publish results from both (0, 1 or 2)

• Ex. with Prompt site:

Bing(query) | Google(query)

Prompt("Choice 1:") | Prompt("Choice 2:")

Monday, July 7, 2014

Sequential Composition

• Execute f and g in parallel

• All values published by f are passed to g
through x

f >x> g

Monday, July 7, 2014

Example

• Get the results from Yahoo and Google,
Filter both

• Example with Prompt:

(Bing(query) | Google(query)) >x> Filter(x)

(Prompt("Choice 1:") | Prompt("Choice 2:"))
 >x> x

Monday, July 7, 2014

Pruning

• Execute f and g in parallel

• Site calls which need x are suspended

• When g returns a first value

• Bind it to x

• Kill g

• Resume suspended calls

f <x< g

Monday, July 7, 2014

Example

• Get the results from Bing or Google (only
first answer is taken) and Filter

• Example with Prompt:

Filter(x) <x< (Bing(query) | Google(query))

x <x<
 (Prompt(" Choice 1:") | Prompt("Choice 2:"))

Monday, July 7, 2014

Otherwise

• Execute f

• If f halts without publishing, then do g

• Expression halts if

• its execution can take no more steps

• all called sites have respondend or will
never respond

f ; g

Monday, July 7, 2014

Fork-Join

• Call Bing and Google in parallel

• Get their results as a tuple, when both
responds

((b,g) <b< Bing(query))
 <g< Google(query)

Monday, July 7, 2014

Example

• Call Google only if Bing will never respond
(site must be helpful)

Bing(query) ; Google(query)

Monday, July 7, 2014

Fundamental sites

• Ift(b),	

 Iff (b):	

 boolean b
signal if b is true/false; silent otherwise.

• Rwait(t): integer t, t ≥ 0
signal t time units later.

• stop :
never responds.

• signal:
returns a signal immediately.

Monday, July 7, 2014

Example

• Output: “Stopped”

Prompt("Value") >> stop ; Println("Stopped!")

Monday, July 7, 2014

Guarded commands

Ift(b) >> c |
Ift(b') >> c' |
Ift(b'') >> c''

3 >x>
(Ift(x :> 1) >> Println(">1") >> stop
 |
 Ift(x<=3) >> Println("<=1") >> stop
)

Monday, July 7, 2014

Function definition
def QueryLoop(query, t) =
 Google(query)
 >x> Println(x)
 >> Rwait(t)
 >> QueryLoop(query,t)

def metronome(t) =
 signal
 | Rwait(t) >> metronome(t)

Monday, July 7, 2014

With clauses and lists
def Sum([]) = 0
def Sum(h:t) = h + Sum(t)

Sum([1,2,3,3])

each(inviteList)
 >address>
 Email(address, invite)

Monday, July 7, 2014

Fibonacci

def H(0) = (1,1)
def H(n) = H(n-1) >(x,y)> (y,x+y)
def Fib(n) = if (n <: 0) then 0
 else H(n) >(x,_)> x

def Fib(0) = 1
def Fib(1) = 1
def Fib(n) = if (n <: 0) then 0
 else Fib(n-1) + Fib(n-2)

Monday, July 7, 2014

Java classes as sites

import class String = "java.lang.String"
val s = String("Pippo")
s.concat(" Baudo")

Monday, July 7, 2014

Channels

• factory site Channel():
creates and publishes an asynchronous
unbounded FIFO channel

Monday, July 7, 2014

Philosophers
def Fork(i, take, leave) =
 take.get() >>
 leave.get() >>
 Fork(i, take, leave)

def Phil(i, ltake, lleave, rtake, rleave) =
 Println(i + "think") >>
 ltake.put(1) >>
 rtake.put(1) >>
 Println(i + "eat") >>
 lleave.put(1) >>
 rleave.put(1) >>
 Phil(i, ltake, lleave, rtake, rleave)

def list(i) =
 if (i >= 0) then (i | list(i-1)) else stop

def Sys(i) =
 val take = Table0(i, Channel)
 val leave = Table0(i, Channel)
 list(i-1) >j> (Fork(j, take(j), leave(j)) |
 Phil(j, take(j), leave(j), take(i(j+1)%i), leave((j+1)%i)))

Monday, July 7, 2014

