
Petri nets are dioids⋆

Paolo Baldan1 and Fabio Gadducci2

1 Dipartimento di Matematica Pura e Applicata, Università Padova
Via Trieste 63, 35121 Padova, Italia

2 Dipartimento di Informatica, Università di Pisa
Polo “Guglielmo Marconi”, via dei Colli 90, 19100 La Spezia, Italia

baldan@math.unipd.it, gadducci@di.unipi.it

Abstract. In a seminal paper Montanari and Meseguer showed that an
algebraic interpretation of Petri nets in terms of commutative monoids
can be used to provide an elegant characterisation of the deterministic
computations of a net, accounting for their sequential and parallel com-
position. Here we show that, along the same lines, by adding an (idem-
potent) operation and thus taking dioids (commutative semirings) rather
than monoids, one can faithfully characterise the non-deterministic com-
putations of a Petri net.

Introduction

Petri nets [12] are one of the best studied and most widely known models for con-
current systems. Due to the conceptual simplicity of the model and its intuitive
graphical presentation, since their introduction, which dates back to the 60’s [11],
Petri nets have attracted the interest of both theoreticians and practitioners.

The basic operational behaviour of a Petri net can be straightforwardly de-
fined in terms of the so-called token game and of firing sequences. Concurrency in
computations can be made explicit by resorting to a semantics given in terms of
(non-sequential) deterministic processes à la Goltz-Reisig [5]. A process describes
the events occurring in a computation and their mutual dependency relations.
Concretely, a deterministic processes is an acyclic, deterministic net whose struc-
ture induces a partial order on transitions which can be seen as occurrences of
transition firings in the original net. A deterministic process thus captures an
abstract notion of concurrent computation, in the sense that it can be seen as
a representative of a full class of firing sequences differing only for the order of
independent events, i.e., all the firing sequences corresponding to linearisations
of the underlying partial ordering.

Different (concurrent) computations can be merged into a single non-
deterministic process [3], a structure which, besides concurrency, captures also
the intrinsic non-deterministic nature of Petri nets. A non-deterministic process
is again a special Petri net, satisfying suitable acyclicity requirement, but where,
roughly speaking, transitions can compete for the use of tokens, thus leading to
a branching structure.

⋆ Supported by the EU IST-2004-16004 SEnSOria and the MIUR Project ART.

The concurrent nature of Petri net computations has been expressed in an
elegant algebraic way in the so-called “Petri nets are monoids” approach [10].
A Petri net N is seen as a kind of signature Σ, and the computational model
of the net is characterised as a symmetric monoidal category P(N) freely gen-
erated from N , in the same way as the cartesian category L(Σ) of terms and
substitutions is freely generated from Σ. As (tuples of) terms in the free algebra
TΣ(X) are arrows of L(Σ), processes of N are arrows of P(N). The functoriality
of the monoidal operator ⊗ is shown to capture the essence of concurrency in
net computations. The construction of P(N) provides a concise description of
the concurrent operational semantics of P/T nets, and, as P(N) can be finitely
axiomatized, one also gets an axiomatization of deterministic processes.

After the original paper, further proposals for adding suitable operators to
the category of (deterministic) net computations were introduced, as summed up
in [9]. However, to the best of our knowledge, no explicit connection was drawn
from a categorical model to any set-theoretical notion of non-deterministic pro-
cess, thus re-establishing the same connection as with P(N) and the determin-
istic processes of N . In this paper we show how the algebraic approach of [10]
can be naturally generalised in order to capture the non-deterministic compu-
tations of Petri nets. The algebraic model of a net described above is extended
by adding a second monoidal operator ⊕ which is intended to exactly model the
non-deterministic composition of computations.

The presence of two symmetric monoidal operators ⊗ and ⊕, where the
former distributes over the latter, naturally leads to consider the so-called bi-
monoidal (or rig) categories which, roughly speaking, are the categorical coun-
terpart of semirings (or rigs) pretty much as monoidal categories corresponds
to monoids. Additionally, the branching structure of non-deterministic compu-
tations is captured by the presence of a natural transformation ∇a : a → a ⊕ a.
As this recalls the idempotency axioms of ⊕ in tropical semirings or dioids, we
denoted the corresponding categorical structure as a diodal category.

More in detail, we introduce a category of concatenable non-deterministic
processes CNP(N) for a Petri net N which generalises the category of deter-
ministic processes originally defined in [2,14]. Then we show that the category of
concatenable non-deterministic processes can be characterised as the free diodal
category NP(N) built over N . As a consequence the non-deterministic processes
of a net N , as introduced in [3], turn out to be in one to one correspondence
with a suitable class of arrows of NP(N), quotiented under natural axioms.

The rest of the paper is organised as follows. In Section 1, after recalling
some basics about Petri nets, we review the notions of deterministic and non-
deterministic process. In Section 2 we present the construction of the category
of concatenable non-deterministic processes for a Petri net. Section 3 recalls
some basic notions on symmetric monoidal categories, introduces diodal cate-
gories and presents the main theorem, concerning the correspondence between
non-deterministic processes and arrows of a free diodal category. The paper is
rounded up with some remarks on our construction and pointers to further works.

2

1 Petri nets and non-deterministic processes

Given a set X , we denote by X⊗ the free commutative monoid over X (finite
multisets over X) with unit the empty set ∅. Furthermore, given a function
f : X → Y ⊗ we denote by f⊗ : X⊗ → Y ⊗ its commutative monoidal extension.
Given u ∈ X⊗, we denote by [[u]] the underlying subset of X defined in the
obvious way. When set relations are used over multisets, we implicitly refer to
the underlying set. E.g., for u, v ∈ X⊗ by x ∈ u we mean x ∈ [[u]] and similarly
u ∩ v means [[u]] ∩ [[v]].

Definition 1 (P/T net). A P/T Petri net is a tuple N = (ζ0, ζ1, S, T), where
S is a set of places, T is a set of transitions, and ζ0, ζ1 : T → S⊗ are functions
assigning multisets called source and target, respectively, to each transition.

Hereafter, for any net N we assume N = (ζ0, ζ1, S, T), with subscripts and
superscripts carrying over the names of the components. In order to simplify the
presentation, we require that for any net N , for all t ∈ T , ζ0(t) 6= ∅ 6= ζ1(t).

Given a net N , a multiset u ∈ S⊗, representing a state of the net, is often
referred to as a marking of N . It is called safe if any place occurs at most once
in it, i.e., u = [[u]].

The notion of net morphism naturally arises from an algebraic view, where
places and transitions play the role of sorts and operators.

Definition 2 (net morphism). A Petri net morphism f = 〈fs, ft〉 : N → N ′

is a pair where fs : S⊗ → S′⊗ is a monoid homomorphism, and ft : T → T ′ is a
function such that ζ′i ◦ ft = fs ◦ ζi, for any i ∈ {0, 1}. The category of P/T nets
(as objects) and their morphisms (as arrows) is denoted by Petri.

In the sequel, when the meaning is clear from the context, we omit the
subscripts from the morphism components, thus writing f instead of fs and ft.

Let N be a P/T net. The causality relation is the least transitive relation
<N⊆ (S ∪ T) × (S ∪ T) such that

i. if s ∈ ζ0(t) then s <N t; ii. if s ∈ ζ1(t) then t <N s.

Given a place or transition x ∈ S ∪ T , the set of causes of x in T is defined as
⌊x⌋ = {t ∈ T | t <N x}∪{t}; and, for X ⊆ S ∪T , ⌊X⌋ =

⋃
x∈X⌊x⌋. The conflict

relation #N ⊆ (S ∪ T) × (S ∪ T) is the least symmetric relation such that

i. if t 6= t′ and ζ0(t) ∩ ζ0(t
′) 6= ∅ then t#N t′;

ii. if x#Nx′ and x′ <N x′′ then x#Nx′′.

Definition 3 (occurrence net). An occurrence net is a P/T net N where
ζo(t), ζ1(t) are safe for all t ∈ T and (i) causality <N is a strict partial order
and, for any transition t, the set of causes ⌊t⌋ is finite; (ii) there are no backward
conflicts, i.e., for any t 6= t′, ζ1(t) ∩ ζ1(t

′) = ∅; (iii) conflict #N is irreflexive.
The sets of minimal and maximal places of N w.r.t. <N are denoted by min(O)
and max(O). An occurrence net is deterministic if it has no forward conflicts,
i.e., for any t 6= t′, ζ0(t) ∩ ζ0(t

′) = ∅.
A monomorphism e : O1 → O2 such that e⊗(min(O1)) = min(O2) is referred

to as an embedding of O1 in O2.

3

An occurrence O net can be seen as the representation of a possibly non-
deterministic computation starting from min(O). Reachable states in O can be
characterised statically by using the dependency relation.

Definition 4 (cuts). Let O be an occurrence Petri net. A cut in O is a maximal
subset X of places such that neither s <O s′ nor s#Os′ for all s, s′ ∈ X. The
set of cuts of O is denoted by cuts(O). A subset of cuts W ⊆ cuts(O) is called
a covering of O if T =

⋃
{⌊X⌋ : X ∈ W}.

It can be shown that any cut X ∈ cuts(O) is reachable by executing all
the transitions in ⌊X⌋ in any order compatible with <O. The only nonstandard
notion is that of covering: if a subset W of cuts is intended to represent the final
states of a set of possible computations of O, then W is a covering for O if any
possible transition in O is used in one of those computations.

We next review the notion of deterministic and non-deterministic process for
P/T nets. A process is represented as a morphism π : O → N from an occurrence
Petri net O to the original net N [5]. Since morphisms are simulations, the
morphism maps computations of O into computations of N in such a way that
the process can be seen as a representative of a set of possible computations of
N . The occurrence net makes explicit the causal structure of such computations
since each transition is fired at most once and each place is filled with at most one
token during each computation. In this way transitions and places of O can be
thought of, respectively, as firing of transitions and tokens in places of the original
net. Actually, to allow for such an interpretation, some further restrictions have
to be imposed on the morphism π, namely it must map places into places (rather
than into multisets of places).

Let us call a net morphism f : N → N ′ elementary if for any s ∈ S, fs(s) ∈ S′

(places are sent to single places rather than to proper multisets).

Definition 5 (process). Let N be a P/T net. A non-deterministic process of N

is an elementary net morphism π : O → N where O is a finite occurrence net and
if π(t) = π(t′) and ζ0(t) = ζ0(t

′) then t = t′ for any t, t′ ∈ TO (irredundancy).
The process π is deterministic if the underlying occurrence net O is so. For a

finite process π we write min(π), max(π) and cuts(π) to refer to the sets min(O),
max(O) and cuts(O) in the underlying occurrence net. We also write ζ0(π) for
π⊗(min(π)) and ζ1(π) for π⊗(max(π)).

Intuitively, a process π represents a set of possible computations starting at
the marking ζ0(π). Not every elementary morphism is a process, as it might fail
to satisfy the irredundancy condition, which essentially imposes that the non-
deterministic composition of a computation with itself gives back the original
computation [3]. However we can easily show that the following result holds.

Proposition 1 (collapsing). Let N be a P/T net, O an occurrence net and
ξ : O → N an elementary morphism. Then there exists a unique (up to isomor-
phism) factorisation ξ = β; π(ξ), where β is epi and π(ξ) is a process such that
ζ0(π(ξ)) = ξ⊗(min(O)). The process π(ξ) is called the collapsing of ξ.

4

ξ : O → N

t

vuvu

a

d e d e

b

t

c b c

π(ξ) : O′ → N

c b c

de e

a

u vv

t

Fig. 1. An elementary morphism and its collapsing.

Intuitively, the collapsing of ξ is obtained from ξ by merging pairs of transi-
tions which violate the irredundancy requirement. As an example, Fig. 1 presents
on the left an elementary morphism from an occurrence net to a Petri net, and
on the right its collapsing. The morphism is represented by labelling places and
transitions of the occurrence net by their images over N (and the net N which
they are mapped to is not relevant here and thus omitted).

2 Concatenable processes

In this section, after reviewing the theory of concatenable deterministic pro-
cess [2,14], we propose a notion of concatenable non-deterministic process. This
leads to a category CNP(N) of non-deterministic processes for a net N , where
objects are states and arrows model non-deterministic computations of N .

2.1 Concatenable deterministic processes

Concatenable processes for Petri nets have been introduced in [2,14] as a re-
finement of Goltz-Reisig deterministic processes, endowed with operations of
sequential and parallel composition that are consistent with the causal structure
of computations. In order to properly define such operations we need to impose
a suitable ordering over the places in min(π) and max(π) for each process π.
Such an ordering allows to distinguish among “interface” places of Oπ which are
mapped to the same place of the original net, a capability which is essential to
track causal dependencies.

Definition 6. Let A, B be sets and f : A → B a function. An f -indexed
ordering is a family α = {αb | b ∈ B} of bijections αb : f−1(b) → [|f−1(b)|],
where [i] denotes the subset {1, . . . , i} of N, and f−1(b) = {a ∈ A | f(a) = b}.

The f -indexed ordering α is often identified with the function from A to N

that it naturally induces (formally defined as
⋃

b∈B αb). Let f1 : A1 → B and
f2 : A2 → B, with A1 ∩ A2 = ∅, so that f = f1 ∪ f2 : A1 ∪ A2 → B is a
function. Consider two fi-indexed orderings αi, i ∈ {1, 2}. Then we denote by
α1 ⊗ α2 the f -indexed ordering defined by α1 ⊗ α2(a) = α1(a) if a ∈ A1 and
α1 ⊗ α2(a) = α2(a) + |f−1

1 (f2(a))|, otherwise.

5

Definition 7 (concatenable process). A concatenable process of a net N is
a triple δ = 〈µ, π, ν〉, where π is a deterministic process of N , µ is a π-indexed
ordering of min(π) and ν is a π-indexed ordering of max(π).

Isomorphism of concatenable processes is defined in the usual way (see
e.g. [2]) and an isomorphism class of processes is called (abstract) concaten-
able process and denoted by [δ], for δ is a member of the class. Often the word
“abstract” is omitted and δ denotes the corresponding isomorphism class.

Definition 8 (sequential and parallel composition). Let δ1 = 〈µ1, π1, ν1〉
and δ2 = 〈µ2, π2, ν2〉 be two concatenable processes of a net N .

– Let ζ1(π1) = ζ0(π2). Suppose T1∩T2 = ∅ and S1∩S2 = max(π1) = min(π2),
with π1(s) = π2(s) and ν1(s) = µ2(s) for each s ∈ S1∩S2. Then δ1; δ2 is the
concatenable process δ = 〈µ1, π, ν2〉, where the process π is the (component-
wise) union of π1 and π2.

– Suppose T1 ∩ T2 = S1 ∩ S2 = ∅. Then δ1 ⊗ δ2 is the concatenable process
δ = 〈µ, π, ν〉, where the process π is the (component-wise) union of π1 and
π2, µ = µ1 ⊗ µ2 and ν = ν1 ⊗ ν2.

The premise of the first item means that δ1 and δ2 overlap only on max(π1) =
min(π2), and on such places the labelling on the original net and the ordering co-
incide. Then, their concatenation is the process obtained by gluing the maximal
places of π1 and the minimal places of π2 according to their ordering. Parallel
composition is instead obtained simply by juxtaposing the two processes.

Concatenation and parallel composition clearly induce well-defined opera-
tions on abstract processes, independent of the choice of representatives.

Definition 9 (category of concatenable processes). Let N be a net. The
category of (abstract) concatenable processes of N , denoted by CP(N), is de-
fined as follows. Objects are multisets of places of N , namely elements of S⊗.
Each (abstract) concatenable process [〈µ, π, ν〉] of N is an arrow from ζ0(π) to
ζ1(π). Parallel composition ⊗ makes CP(N) a symmetric monoidal category.

2.2 Concatenable non-deterministic processes

Intuitively, a concatenable non-deterministic process is a set of non-deterministic
processes, which, starting from a set of possible initial states, produces a set of
possible final states. For technical reasons, it is preferable to consider sequences
of processes rather than sets. Additionally, as in the deterministic case, in order
to allow for a sequential composition of computations keeping track of the causal
dependencies, initial and final states of computations are decorated.

Definition 10 (concatenable non-deterministic process). Let N be a net.
A concatenable non-deterministic process for N is a triple of finite non-empty
lists η = 〈α, π, ω〉 with

– π = π1 . . . πn, where each πi is a non-deterministic process;

6

– α = α1 . . . αn, where each αi is a πi-indexed ordering of min(πi);
– ω = ω1 . . . ωℓ, where

• for each j ∈ {1, . . . , ℓ}, ωj : X → N with X ∈ cuts(πi) for some i and
ωj a πi-indexed ordering of X;

• for any i the cuts of Oi which occur in ω, i.e., {X ∈ cuts(πi) | ∃j. wj :
X → N}, are a covering of Oi.

The source of η is the list ζ0(η) = ζ0(π1) . . . ζ0(πn), i.e., the list of the sources
of the component processes, while the target of η is ζ1(η) = u1 . . . uℓ where uj =
π⊗

i (X) if ωj : X → N and X ∈ cuts(Oi).

In order to ease notation we fix a naming scheme. We assume concatenable
non-deterministic processes to be of the kind η = 〈α, π, ω〉, with π = π1 . . . πn

and n = |π|. In turn, for each process πi in π we assume πi : Oi → N , where
Oi has Si and Ti as place and transition sets. Processes πi are supposed to be
pairwise disjoint. Superscripts carry over the name of the components.

Two concatenable non-deterministic processes η = 〈α, π, ω〉, η′ = 〈α′, π′, ω′〉
are isomorphic if |π| = |π′| and there exist non-deterministic process isomor-
phisms between πi and π′

i, with i ∈ {1, . . . , |π|}, consistent with the decorations
and the ordering of sources and targets. Abstract concatenable non-deterministic
processes, i.e., isomorphism classes of processes, are often identified with one of
the representatives, i.e., we write η to refer to the corresponding abstract process.

Graphically, a concatenable non-deterministic process η = 〈α, π, ω〉, with
π = 〈π1 . . . πn〉, is represented by enclosing in a box the list of the nets O1, . . . ,
On, underlying the component subprocesses, separated by vertical bars. Places
and transitions of Oi are labelled by their images through πi (the net N which
they are mapped to is not relevant here and thus omitted). The decoration of
the source of each process πi is represented by listing on the top of the process
itself the places in min(πi) in an order compatible with αi, i.e., if s, s′ ∈ min(Oi)
and πi(s) = πi(s

′) and αi(s) < αi(s
′) then s is listed first. Similarly, in the

bottom part of the box, we represent w = w1 . . . ωℓ as a list of elements, one
for each ωj . If ωj : X → N, with X ∈ cuts(πi), then the corresponding element
is itself a sequence which lists the places in X in an order compatible with ωj .
A process η = 〈α1α2, π1π2, ω1ω2ω3〉 consisting of two component processes π1

and π2, with three targets can be found in Fig. 2. In this case, for instance, α1

is the function α1(s1) = 0, α1(s2) = 0 and α1(s3) = 1. Concerning the targets,
{s5, s3}, {s6, s7} ∈ cuts(π1) and {s10} ∈ cuts(π2). It is easy to see that the cuts
{s5, s3}, {s6, s7} form a covering of O1, and similarly {s10} is a covering for O2.

Sequential and parallel composition for concatenable non-deterministic pro-
cesses can be defined as follows.

Definition 11 (sequential composition). Let η = 〈α, π, ω〉 and η′ =
〈α′, π′, ω′〉 be two concatenable non-deterministic processes of a net N such that
ζ1(η) = ζ0(η

′), and thus |ω| = |α′|. Suppose that for any i, j it holds Ti ∩ T ′
j = ∅

and, for all j, if ωj : X → N, with X ∈ cuts(πi) then Si ∩ S′
j = X = min(π′

j),
with πi(s) = π′

j(s) and ωi(s) = α′
j(s) for each s ∈ X. Then η1; η2 is the con-

catenable process η = 〈α, π′′, ω′〉, where π
′′ = π′′

1 . . . π′′
|π| and each process π′′

i is

7

s5s3 , s10 , s6s7

t

d s4

wv

u

a

e

s3

s7

e s9

u

a

s8

a

s10

z

s3s1s2 s8

π1 s1 s2

ba

e

s5 s6

f

π2

Fig. 2. A concatenable non-deterministic process.

obtained as follows: take the (component-wise) union of πi with all processes π′
j

such that ωj : X → N with X ∈ cuts(πi) thus getting an elementary morphism
ξi : O′′

i → N and then consider the collapsing π(ξi) of such morphism.

Roughly, for any j ∈ {1, . . . , |ω|}, if ωj : X → N where X is a cut in πi, then
the process π′

j in η′ must be attached to the set of places X in πi. Assuming
that πi and π′

j overlap only on X = min(π′
j), and on such places the labelling

on the original net and the ordering imposed by the two processes coincide,
then attaching πj to πi reduces to taking their component-wise union. Therefore
the composition has |π| components, each one obtained as the component-wise
union of each πi with all π′

j which must be connected to πi.

Definition 12 (parallel composition). Let η = 〈α, π, ω〉 and η′ = 〈α′, π′, ω′〉
be two concatenable non-deterministic processes. Suppose |π| = n, |π′| = n′,
and Ti ∩ T ′

j = Si ∩ S′
j = ∅ for any i, j. Then η ⊗ η′ is the concatenable process

η′′ = 〈α′′, π′′, ω′′〉, with

π
′′ = π1,1 . . . πn,1π1,2 . . . πn,2 . . . πn′,1 . . . πn′,n

where each πi,j is the (component-wise) union of πi and π′
j . Similarly α′′ =

α1,1 . . . αn′,n with αi,j = αi ⊗ α′
j and ω′′ = ω1,1 . . . ωℓ′,ℓ with ωi,j = ωi ⊗ ω′

j.

Note that when composing in parallel two non-deterministic processes η and
η′, we compose each component of η with each component of η′. Intuitively, this
means that parallel composition distributes over non-deterministic composition.

Finally, we can easily define a notion of non-deterministic composition, which
is obtained by juxtaposing the two processes.

Definition 13 (non-deterministic composition). Let η = 〈α, π, ω〉 and
η′ = 〈α′, π′, ω′〉 be concatenable non-deterministic processes. Then η ⊕ η′ =
〈αα′, ππ

′, ωω′〉, where the juxtaposition of two lists denotes their concatenation.

It can be shown that, as in the deterministic case, concatenation and parallel
composition induce well-defined operations on abstract processes, independent
of the particular choice of the representatives.

8

η1

t

s1

s′1 , s′1

s1

a

b

s′
1

v

s′3

s′
3

c

b

s3

s3

u

s2

s′2

s2

b

c

s′
2

η3η2

s′2s
′
3

v

b

s3

c

s′
3

u

η2 ⊗ η3

s2s3

b

s2

s′
2

c

s′2 , s′3

u v

b

s3

c

s′
3

η2 ⊕ η3

s2 s3

b

s2

s′
2

c

s′2 , s′3

v

a

s1

b s′
1

vu

η1; (η2 ⊕ η3)

s1

c

s′
3

s′
2

c

s′2 , s′2

v

a

s1

b s′
1

u

c

s′
2

η1; (η2 ⊕ η2)

s1

Fig. 3. Three simple concatenable non-deterministic processes η1, η2, η3 and some
processes arising from their composition.

As an example consider the three simple processes η1, η2, η3 in Fig. 3, con-
sisting of one transition only. Note that η1 nondeterministically offers two copies
of s′1 as target. The same figure reports the parallel composition η2⊗η3, the non-
deterministic composition η2⊕η3, the processes η1; (η2⊕η3) and η1; (η2⊕η2). For
the last process observe that the two non-deterministic copies of u are joined as
an effect of the composition (yet the composite process still non-deterministically
offers two copies of s′2 as target).

Definition 14 (category of concatenable non-deterministic processes).
Let N be a net. The category of (abstract) concatenable non-deterministic pro-
cesses of N , denoted by CNP(N), is defined as follows. Objects are finite non-
empty lists of elements of S⊗. Each (abstract) concatenable non-deterministic
process of N is an arrow. Both parallel ⊗ and non-deterministic ⊕ composition
make CNP(N) a symmetric monoidal category.

Obviously, the non-deterministic processes of a net N , as given in Defini-
tion 5, correspond to the arrows of CNP(N) consisting of a single process
η = 〈α1, π1, ω〉, once we forget the decoration.

9

3 Embedding processes into terms

This section presents the main result of the paper, namely, the description of
the abstract concatenable non-deterministic processes of a net N , as defined
in Section 2, as terms of a suitable algebra. Along the Petri nets are monoids
paradigm, this is a sort of monoidal category, freely generated from the net itself.

3.1 Categorical notions

Here we introduce the relevant categorical notions that are needed for the alge-
braic description of processes. Most definitions are standard: for the presentation
of monoidal categories we closely follow [1].

Definition 15 (monoidal categories). A (strict) monoidal category is a
triple 〈C, ⊕ , e〉, where C is the underlying category, the tensor product
⊕ : C×C −→ C is a functor satisfying the law (t1⊕t2)⊕t3 = t1⊕(t2⊕t3), and e

is an object of C satisfying the law t⊕e = t = e⊕ t, for all arrows t, t1, t2, t3 ∈ C.
A symmetric monoidal category is a 4-tuple 〈C, ⊕ , e, γ〉, where 〈C, ⊕ , e〉

is a monoidal category, and γ : 1 ⊕ 2 ⇒ 2 ⊕ 1 : C × C −→ C is a natural
isomorphism3 satisfying the coherence axioms γa,e = a and

a⊕b⊕c
a⊕γb,c

γa⊕b,c

a⊕c⊕b

γa,c⊕b

c⊕a⊕b

a⊕b
γa,b

a⊕b

b⊕a

γb,a

a⊕b

A i-monoidal category is a 5-tuple 〈C, ⊕ , e, γ,∇〉, where 〈C, ⊕ , e, γ〉 is
a symmetric monoidal category and ∇ : 1 ⇒ 1 ⊕ 1 : C −→ C is a natural
transformation satisfying the coherence axioms ∇e = e and

a
∇a

∇a

a⊕a

a⊕∇a

a⊕a
∇a⊕a

a⊕a⊕a

a
∇a

∇a

a⊕a

γa,a

a⊕a

a⊕b
∇a⊕∇b

∇a⊕b

a⊕a⊕b⊕b

a⊕γa,b⊕b

a⊕b⊕a⊕b

While symmetric monoidal categories are a staple of theoretical computer
science, at least since the seminal work by Meseguer and Montanari [10], we
introduced i-monoidality in order to capture the idempotency of the additive
operator. Making each object s a cosemigroup object (not yet a comonoid object,
since the arrow s → e is missing [8]) and requiring the naturality of ∇ are
suggested by the need of equating somehow the addition of terms, yet banning
the identity t = t ⊕ t: we offer further remarks in the concluding section.

3 Given functors F, G : A → B, a natural transformation τ : F ⇒ G : A → B is a
family of arrows of B indexed by objects of A, τ = {τa : F (a) → G(a) | a ∈ OA},
such that for every arrow f : a → a′ in A, τa; G(f) = F (f); τa′ in B. We say that τ

is an isomorphism if all its components τa’s are so.

10

Definition 16 (diodal categories). A bimonoidal category is a 8-tuple 〈C, ⊕
, e, γ, ⊗ , o, ρ, δ〉, where 〈C, ⊕ , e, γ〉 and 〈C, ⊗ , o, ρ〉 are symmetric monoidal

categories satisfying the law t ⊗ e = e for all arrows t ∈ C and the coherence
axiom ρa,e = e, and δ : 1 ⊗ (2 ⊕ 3) ⇒ (1 ⊗ 2)⊕ (1 ⊗ 3) : C ⊗ C ⊗ C −→ C is
a natural isomorphism satisfying the axioms δo,b,c = b ⊕ c, δa,b,e = a ⊗ b and

a⊗(b⊕c)
δa,b,c

a⊗γb,c

(a⊗b)⊕(a⊗c)

a⊗(c⊕b)
δa,c,b

(a⊗c)⊕(a⊗b)

γa⊗c,a⊗b

Finally, a diodal category is a 9-tuple 〈C, ⊕ , o, ρ,∇, ⊗ , e, γ, δ〉, where
〈C, ⊕ , o, ρ,∇〉 is a i-monoidal category and 〈C, ⊕ , o, ρ, ⊗ , e, γ, δ〉 is a
bimonoidal category, satisfying the coherence axiom

a⊗b
a⊗∇b

∇a⊗b

a⊗(b⊕b)

δa,b,b

(a⊗b)⊕(a⊗b)

Bimonoidal categories, and their coherence laws, have been considered quite
early on in the literature [7]. Recently they surfaced, sometimes with the name rig
or semiring categories, in the definition of models for quantum programming [6].

We introduced diodal categories in order to obtain a categorical counter-
part of dioids, i.e., semirings where the additive operator is idempotent. In the
following, we consider diodal categories satisfying an additional requirement.

Definition 17 (bipermutative and dipermutative categories). A biper-
mutative category is a bimonoidal category such that δ is an identity, so that the
objects a⊗(b⊕c) and (a⊗b)⊕(a⊗c) coincide; and moreover ρa,b⊕c = ρa,b⊕ρa,c.
Dipermutative categories are diodal categories based on bipermutative categories.

3.2 Categories of processes

In this part we introduce a concrete category, out of the transitions of the net, and
we prove that it forms a diodal category. More importantly, those arrows exactly
correspond to non-deterministic processes, along the lines of the characterisation
of deterministic processes via the category P(N) in [2].

Notation. Given a monoid 〈M,⊗, 1〉, we denote by M⊕ the free monoid over M

(finite non-empty lists over M): the unit of ⊕ is the list 〈1〉 containing only the
unit of the monoid. Note that the ⊗ operator can be extended set-wise to the
monoid M⊕, resulting in a semiring (not yet a dioid, since ⊕ is not idempotent).
So, assuming that M is X⊗, the resulting structure is denoted simply as X⊗,⊕,
and it coincides with the free ⊗-commutative semiring on X .

11

s ∈ S
⊗,⊕
N

ids : s → s ∈ NP(N)

t ∈ TN

t : ζ0(t) → ζ1(t) ∈ NP(N)

s, s′ ∈ S
⊗,⊕
N

ρs,s′ : s ⊗ s′ → s′ ⊗ s ∈ NP(N)

t : s → s′, t1 : s′ → s1 ∈ NP(N)

t; t1 : s → s1 ∈ NP(N)

t : s → s′, t1 : s1 → s′1 ∈ NP(N)

t ⊗ t1 : s ⊗ s1 → s′ ⊗ s′
1
∈ NP(N)

Fig. 4. The deterministic fragment of the set of inference rules generating NP(N).

t; ids′ = t = ids; t t = t ⊗ id∅ (t1 ⊗ t2); (t3 ⊗ t4) = (t1; t3) ⊗ (t2; t4)

ρs,s′ ; ρs′,s = ids⊗s′ = ids ⊗ ids′ ρs,s′⊗s′′ = (ids ⊗ ρs′,s′′); (ρs,s′′ ⊗ ids′) ρs,∅ = ids

ρs1,s2
; (t1 ⊗ t2) = (t2 ⊗ t1); ρs′

2
,s′

1
ρa,b = ida⊗b for a 6= b ∈ SN ρ; t = t; ρ′ for t ∈ TN

Fig. 5. The set of axioms for deterministic processes quotienting DP(N).

Definition 18 (a category for deterministic processes). Let N be a P/T
net. Then, DP(N) is the category whose objects are markings of N (i.e., elements
of S⊗

N), while the arrows are freely generated according to the rules in Fig. 4,
subject to the axioms in Fig. 5.4

Since the composition operator ; is partial, axioms in Fig. 5 hold when both
sides are defined; additionally, note that a, b denote places in SN , instead of
elements of S⊗

N . The objects of DP(N) are thus markings of N , representing
sources and targets of deterministic processes. Its arrows are equivalence classes
of concrete elements generated by the set of inference rules in Fig. 4, modulo the
equations making it a symmetric monoidal category.

The further equations ρa,b = ida ⊗ idb and ρ; t = t; ρ′ (for permutations ρ, ρ′,
i.e., arrows built out of identities and ρa,b’s) represent a well-known idiosyncrasy
of the concrete representation of deterministic processes [13], so that e.g. for
transitions t1 and t2 with distinct sources and targets, the processes t1 ⊗ t2 and
t2 ⊗ t1 have to be identified, since, as discussed for concrete processes, the order
of distinct places is irrelevant. Analogous issues appear in the category below,
extending the former in order to include non-determinism.

Definition 19 (a category for non-deterministic processes). Let N be a
P/T net. Then, NP(N) is the category whose objects are finite non-empty lists
of markings of N (i.e., elements of S

⊗,⊕
N), while the arrows are freely generated

according to the rules in Fig. 4 and 6, subject to the axioms in Fig. 5 and 7.

Given a net N , the objects of NP(N) are lists of markings of N , each one rep-
resenting the source of one non-deterministic component of the non-deterministic

4 For the sake of space saving, we overloaded some symbols, so that for the current
definition S

⊗,⊕
N and NP(N) in Fig. 4 should read as S⊗

N and DP(N).

12

s, s′ ∈ S⊗⊕
N

γs,s′ : s ⊕ s′ → s′ ⊕ s ∈ NP(N)

s ∈ S
⊗,⊕
N

∇s : s → s ⊕ s ∈ NP(N)

t : s → s′, t1 : s1 → s′1 ∈ NP(N)

t ⊕ t1 : s ⊕ s1 → s′ ⊕ s′
1
∈ NP(N)

Fig. 6. The inference rules for non-determinism generating NP(N).

t = t ⊕ id〈∅〉 (t1 ⊕ t2); (t3 ⊕ t4) = (t1; t3) ⊕ (t2; t4)

γs,s′ ; γs′,s = ids⊕s′ = ids ⊕ ids′ γs,s′⊕s′′ = (ids ⊕γs′,s′′); (γs,s′′ ⊕ ids′) γs,〈∅〉 = ids

∇s; γs,s = ∇s ∇s; (ids ⊗∇s) = ∇s; (∇s ⊗ ids) ∇s⊕s = (∇s ⊕∇s); (ids ⊕ γs,s ⊕ ids)

γs1,s2
; (t1 ⊕ t2) = (t2 ⊕ t1); γs′

2
,s′

1
∇〈∅〉 = id〈∅〉 = ρs,〈∅〉 ids ⊗∇s′ = ∇s⊗s′

t ⊗ (t1 ⊕ t2) = (t ⊗ t1) ⊕ (t ⊗ t2) ρs,s′⊕s′′ = ρs,s′ ⊕ ρs,s′′

Fig. 7. The set of axioms quotienting NP(N).

process. Instead, arrows are equivalence classes of elements generated by the in-
ference rules in Fig. 4 and 6, modulo a set of equations making it a dipermutative
category. Note the lack of the equation γa,b = ida⊕b.

The objects of NP (N) are obtained by constructing the free ⊗-commutative
semiring, out of the initial set of places of the net N . As for arrows, the analogy
with the semiring construction out of a monoid is confirmed by the charac-
terization result stated below. For a marking s, we let sk denote the k-times
composition s ⊕ . . . ⊕ s; while we let ∇k

s denote the unique arrow with source s

and target sk, inductively built as ∇1
s = ids and ∇k+1

s = ∇k
s ; (ids ⊕∇s).

Proposition 2. Let s1, . . . , sl ∈ S⊗
N and t ∈ NP(N) an arrow with source

s1 ⊕ . . . ⊕ sl. Then, t can be decomposed as (∇k1

s1
⊕ . . . ⊕∇kl

sl
); γ; (t1 ⊕ . . . ⊕ tn),

for n = k1 + . . . + kl, γ a permutation and ti’s in DP(N).

The permutation γ is just an arrow built out of identities and γa,b’s. The
normal form can be proved unique, up-to a syntactic ordering on arrows. The
corollary below exploits the axiom equating ∇s; γs,s to ∇s for s ∈ S⊗

N .

Corollary 1. Let s ∈ S⊗
N and t ∈ NP(N) an arrow with source s. Then, t can

be decomposed as ∇k
s ; (t1 ⊕ . . . ⊕ tk), for ti’s in DP(N).

As shown above, and hinted at in the beginning of the section, the insertion of
the ⊕ operator mimics the well-known generation of a semiring from a monoid.
The arrows of the resulting category NP(N) can indeed be seen as suitable
list of arrows of DP(N). Recalling that DP(N), the sub-category obtained by
restricting to the ⊗-fragment of NP(N), coincides with the symmetric category
P(N) of deterministic processes [2,13], we can view arrows in NP(N) as lists of
deterministic processes. This fact is deepened and formalised in the next section.

13

p∇,b

t

cc

a b

s′
1

s′1s
′
2

s′
2

s1s2

s2s1

s1

d d

s2

s1s2

s2s1

b

s

s

s , s

f

s1

f

s2

s2 , s1

s1 s2

s

e

s

s

pt pe pγ,fpρ,d

Fig. 8. Basic concatenable processes.

3.3 Processes as terms

Let us begin the section by recalling the main result concerning DP(N) and the
category of concatenable (deterministic) processes.

For stating this result and its generalisation to the non-deterministic case we
need the five basic processes represented in Fig. 8. In the discussion t represents
a generic transition of a fixed net N and a, b, c, d, e, f are names for places.
Any transition t can be seen as a concatenable (deterministic) process pt. As an
example, on the far left of the figure, we have a representation of the process pt,
for a transition t such that ζ0(t) = a ⊗ b and ζ1(t) = c ⊗ c. Next, there is the
representation of pe, the unique (deterministic) process with no transitions from
e to itself. Process pρ,d is the deterministic process from d ⊗ d to itself, simply
swapping the multiset ordering. Then p∇,b is the non-deterministic processes
consisting of one place b only, with source b and as target twice the maximal cut
{b}, i.e., b ⊕ b. Finally, pγ,f represents the permutation for the two underlying
identity processes: source and target are f, f .

Proposition 3 (deterministic correspondence [13]). Let N be a net. The
function CN from the class of generating arrows of the category DP(N) to the
class of basic processes of N , defined by

CN (ida) = pa and CN (ρa,a) = pρ,a for a ∈ SN

CN (t) = pt for t ∈ TN

lifts to a full and faithful (symmetric monoidal) functor PN : DP(N) → CP(N).

Note that the functor induces a bijective correspondence between the arrows
of the category DP(N) and the concatenable (deterministic) processes of the
net N itself. Finally, our main result is now stated below.

Theorem 1 (non-deterministic correspondence). Let N be a net. The
function CNN from the class of generating arrows of the category NP(N) to
the class of basic processes of N , defined by extending CN with

14

CNN (∇a) = p∇,a and CNN (γa,a) = pγ,a for a ∈ SN

lifts to a full and faithful (diodal) functor NPN : NP(N) → CNP(N).

The theorem clearly exploits the decomposition result discussed in Proposi-
tion 2. For our purposes, it basically states that the arrows of NP(N) do capture
the essence of the non-deterministic processes of a net. Note that the introduc-
tion of concatenable non-deterministic processes is indeed pivotal, since e.g. the
encodings CNN (∇s; (t ⊕ ids)) and CNN (t) have the same underlying process,
even if the decoration of their targets differ.

4 Conclusions and further works

Along the lines of the seminal paper [10], our work offered an algebraic presen-
tation for non-deterministic processes of Petri nets.

A first contribution of our work is the introduction of the concatenable ver-
sion of non-deterministic processes, building on the original proposal by Engel-
friet [3]. To the best of our knowledge, also putting diodal categories into the
limelight represents a small addition to the categorical lore. With respect to
former proposals for the categorical characterization of non-determinism, our
solution closely recalls linear categories [9]: our diodal categories lack a suitable
terminal object, in order to be monoidal categories with finite products. It is
precisely such a weaker structure that allows us to establish our main result: a
functorial bijection between concatenable non-deterministic processes of a net
N and the arrows of the free diodal category built out of N .

As for further refinements on the categorical model, as e.g. the self-dual
category for modelling processes of contextual nets proposed in [4], let us just
mention that we toyed with the idea of capturing the idempotency of ⊕ by
making ∇ a natural isomorphism (hence, more in tune with the algebraic notion
of dioids). The concrete description of concatenable non-deterministic processes
does not allow it, since there would be no possible interpretation for the arrow
(∇a)−1 : a ⊕ a → a. However, this is not unfortunate, since the naturality of ∇
would actually make the diagram below commute

a⊕a
(∇a)−1

∇a⊕∇a

a
∇a

a⊕a

a⊕a⊕a⊕a
a⊕γa,a⊕a

a⊕a⊕a⊕a

(∇a)−1⊕(∇a)−1

We would e.g. infer that (t1 ⊕ t2); (t3 ⊕ t4) is equated by functoriality to
(t1; t3) ⊕ (t2; t4) and by naturality to (t1; t3) ⊕ (t1; t4) ⊕ (t2; t3) ⊕ (t2; t4), while
those two expressions should intuitively represent different non-deterministic
processes. Idempotency and functoriality do look like clashing properties for the
⊕ operator, and we were not ready to let the latter go.

15

References

1. R. Bruni, F. Gadducci, and U. Montanari. Normal forms for algebras of connec-
tions. Theor. Comp. Sci., 286(2):247–292, 2002.

2. P. Degano, J. Meseguer, and U. Montanari. Axiomatizing the algebra of net com-
putations and processes. Acta Informatica, 33(7):641–667, 1996.

3. J. Engelfriet. Branching processes of Petri nets. Acta Informatica, 28(6):575–591,
1991.

4. F. Gadducci and U. Montanari. Axioms for contextual net processes. In K.G.
Larsen, S. Skyum, and G. Winskel, editors, Colloquium on Automata, Languages

and Programming, volume 1443 of Lecture Notes in Computer Science, pages 296–
308. Springer, 1998.

5. U. Goltz and W. Reisig. The non-sequential behaviour of Petri nets. Information

and Control, 57(2/3):125–147, 1983.
6. A. Green and Th. Altenkirch. From reversible to irreversible computations. In

Workshop on Quantum Programming Languages, Electronic Notes in Theoretical
Compuer Science. Elsevier, 2006. To appear.

7. M. Laplaza. Coherence for distributivity. In Coherence in Categories, volume 281
of Lecture Notes in Mathematics, pages 29–72. Springer, 1972.

8. S. Mac Lane. Categories for the Working Mathematician. Springer, 1971.
9. N. Mart̀ı-Oliet and J. Meseguer. From Petri nets to linear logic through categories:

A survey. Intl. Journal of Foundations of Computer Science, 2(4):297–399, 1991.
10. J. Meseguer and U. Montanari. Petri nets are monoids. Information and Compu-

tation, 88(2):105–155, 1990.
11. C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle

Matematik, Bonn, 1962.
12. W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical

Computer Science. Springer, 1985.
13. V. Sassone. An axiomatization of the algebra of Petri net concatenable processes.

Theor. Comp. Sci., 170(1-2):277–296, 1996.
14. V. Sassone. An axiomatization of the category of Petri net computations. Mathe-

matical Structures in Computer Science, 8(2):117–151, 1998.

16

