
Hereditary History-Preserving Bisimilarity:

Logics and Automata�

Paolo Baldan and Silvia Crafa

Dipartimento di Matematica, Università di Padova, Italy
baldan,crafa@math.unipd.it

Abstract. We study hereditary history-preserving (hhp-) bisimilarity,
a canonical behavioural equivalence in the true concurrent spectrum, by
means of logics and automata. We first show that hhp-bisimilarity on
prime event structures can be characterised in terms of a simple logic
whose formulae just observe events in computations and check their exe-
cutability. The logic suggests a characterisation of hhp-bisimilarity based
on history-dependent automata, a formalism for modelling systems with
dynamic allocation and deallocation of resources, where the history of
resources is traced over time. Prime event structures can be naturally
mapped into history-dependent automata in a way that hhp-bisimilarity
exactly corresponds to the canonical behavioural equivalence for history-
dependent automata.

1 Introduction

Behavioural equivalences play a key role in the formal analysis of system speci-
fications. They can be used to equate specifications that, although syntactically
different, denote the same system behaviour, or to formally state that a system
enjoys a desired property. A number of behavioural equivalences have been de-
fined which take into account different concurrency features of computations. In
particular, true concurrent equivalences (see, e.g., [1]) are a natural choice when
one is interested in analysing properties concerning the dependencies between
computational steps (e.g. causality). They can be convenient also because they
provide some relief to the so-called state-space explosion problem in the analysis
of concurrent systems (see, e.g., [2]).

Hereditary history preserving (hhp-)bisimilarity [3], the finest equivalence in
the true concurrent spectrum in [1], has been shown to arise as a canonical be-
havioural equivalence when considering partially ordered computations [4]. True
concurrent models, such as Winskel’s event structures [5], often describe the be-
haviour of systems in terms of events in computations and dependency relations
between such events, like causal dependency or concurrency. Hhp-bisimilarity
then precisely captures the interplay between branching, causality and concur-
rency. Roughly, hhp-bisimilarity requires that events of one system are simu-
lated by events of the other system with the same causal history and the same

� Work partially supported by the MIUR PRIN project CINA.

J. Garrigue (Ed.): APLAS 2014, LNCS 8858, pp. 469–488, 2014.
c© Springer International Publishing Switzerland 2014

470 P. Baldan and S. Crafa

concurrency. The last constraint is often captured by means of a sort of back-
tracking condition: for any two related computations, the computations obtained
by reversing a pair of related events must be related too. As a consequence,
hhp-bisimilarity, together with other variants of forward-reverse equivalences,
are considered appropriate behavioural equivalences for systems with reversible
computations [6,7,8].

Recently, the logical characterisation of hhp-bisimilarity has received a re-
newed interest and corresponding event-based logics have been introduced, where
formulae include variables which can be bound to events. The logic L in [9] ex-
plicitly refers to relations between events, namely causality and concurrency.
More precisely, L includes two main operators. The formula (x, y < a z)ϕ is sat-
isfied in a state when an a-labelled future event exists, which causally depends
on the event bound to x, and is independent from the event bound to y; such
an event is bound to variable z and then ϕ is required to hold. In general, x
and y can be replaced by tuples of variables. The formula 〈z〉ϕ says that the
event bound to z is enabled in the current state, and after its execution ϕ holds.
Instead, the logic EIL (Event Identifier Logic) in [10] relies on a backward step
modality: the formula 〈〈x〉ϕ holds when the event bound to x can be undone
and then ϕ holds. This is similar to the past tense or future perfect modality
studied in [4,11,3,12].

In this paper we provide a logical characterisation of hhp-bisimilarity in terms
of a simple logic L0, a core fragment of L, which only predicates over existence
and executability of events, without explicitly referring to their dependencies.
Formally, the operator (x, y < a z)ϕ is replaced by (a z)ϕ. Syntactically, L0 is
also a subset of EIL, but it is different in spirit (as quantification is performed
only on future events and it does not include a backward modality). In particular,
although all such logics characterise hhp-bisimilarity, the modalities of EIL and
L are not interdefinable.

The fact that the logic L0 allows one to observe and track events in
computations suggests a connection with history-dependent automata (HD-
automata) [13], a computational formalism for modelling systems with dynamic
allocation and deallocation of resources, tracing the history of such resources over
time. Indeed, by considering events in computations as resources manipulated
by automata, we identify a class of HD-automata, called HDE-automata, where
prime event structures (pess) can be naturally mapped, in a way that the canon-
ical behavioural equivalence for HD-automata coincides with hhp-bisimilarity
over pess. More precisely, transitions of HDE-automata correspond to planning
an activity or event (which could be not immediately executable due to unsatis-
fied dependencies with other activities), executing a previously planned activity
and dismissing a planned activity (without executing it). We provide an en-
coding of any prime event structure E into an HDE-automaton H(E) such that
two prime event structures are hhp-bisimilar if and only if the corresponding
HDE-automata are bisimilar. The proof relies on a logical characterisation of
bisimilarity on HDE-automata in terms of a logic Lhd, a slight variant of the
logic L0, which adds an operator for deallocation, i.e., for forgetting an event

Hereditary History-Preserving Bisimilarity: Logics and Automata 471

planned and not yet executed. Mappings of logic L0 into Lhd and back are
provided, in a way that a pes E satisfies a formula in L0 if and only if H(E)
satisfies the corresponding formula in Lhd and vice versa. Although developed
for a specific class of HD-automata, in our opinion the logical characterisation
of HD-bisimilarity has an interest which goes beyond the specific application in
this paper and deserves to be further investigated.

Moreover, our characterisation of hhp-bisimilarity in terms of HD-automata,
besides shedding light on the nature of this behavioural equivalence, can be
helpful in studying the decidability boundary for hhp-bisimilarity, which is un-
decidable for many basic models of concurrency, even in the finite state case (e.g.,
it is known that hhp-bisimilarity is undecidable for safe finite Petri nets [14]).
Indeed, the characterisation in terms of HD-automata naturally suggests effec-
tive approximations of hhp-bisimilarity, which can be obtained by establishing
bounds k on the distance in the future of planned events. The detailed study of
such approximations is postponed to the extended version of the paper. We focus
here on an insightful investigation about the logical and the automata-theoretic
characterisations of hhp-bisimilarity.

The rest of the paper is structured as follows. In Section 2 we review the
definition of hhp-bisimilarity over prime event structures. In Section 3 we define
the logic L0 and show that hhp-bisimilarity is the logical equivalence induced
by L0 on (image finite) pess. In Section 4 we study HDE-automata: the class of
HD-automata operating over resources which can be seen as activities or events
in a computation. In Section 5 we provide a bisimilarity-preserving encoding of
prime event structures into HDE-automata. In Section 6 we comment on some
related work and outline future research.

2 Event Structures and hhp-Bisimilarity

Prime event structures [5] are a widely known model of concurrency. They de-
scribe the behaviour of a system in terms of events and dependency relations
between such events. Throughout the paper E is a fixed countable set of events,
Λ a set of labels ranged over by a, b, c . . . and λ : E → Λ a labelling function.

Definition 1 (prime event structure). A (Λ-labelled) prime event structure
(pes) is a tuple E = 〈E,≤,#〉, where E ⊆ E is the set of events and ≤, # are
binary relations on E, called causality and conflict respectively, such that:

1. ≤ is a partial order and �e� = {e′ ∈ E | e′ ≤ e} is finite for all e ∈ E;
2. # is irreflexive, symmetric and hereditary with respect to ≤, i.e., for all

e, e′, e′′ ∈ E, if e#e′ ≤ e′′ then e#e′′.

In the following, we will assume that the components of an event structure E
are named as in the definition above, possibly with subscripts.

Definition 2 (consistency, concurrency). Let E be a pes. We say that e, e′ ∈
E are consistent, written e� e′, if ¬(e#e′). A subset X ⊆ E is called consistent
if e� e′ for all e, e′ ∈ X. We say that e and e′ are concurrent, written e || e′, if
e� e′ and ¬(e ≤ e′), ¬(e′ ≤ e).

472 P. Baldan and S. Crafa

Causality and concurrency will be sometimes used on set of events. Given
X ⊆ E and e ∈ E, by X < e we mean that for all e′ ∈ X , e′ < e. Similarly
X || e, resp. X � e, means that for all e′ ∈ X , e′ || e, resp. e′ � e.

The concept of (concurrent) computation for event structures is captured by
the notion of configuration.

Definition 3 (configuration). Let E be a pes. A (finite) configuration in E is
a (finite) consistent subset of events C ⊆ E closed w.r.t. causality (i.e., �e� ⊆ C
for all e ∈ C). The set of finite configurations of E is denoted by C(E).

Observe that the empty set of events ∅ is always a configurations, which can
be interpreted as the initial state of the computation. Hereafter, unless explicitly
stated otherwise, all configurations will be assumed to be finite.

Definition 4 (residual). Let E be a pes. For a configuration C ∈ C(E), the
residual of E after C, is defined as E [C] = {e | e ∈ E \ C ∧ C � e}.
Concurrent behavioural equivalences can then be defined on the transition sys-
tem where configurations are states.

Definition 5 (transition system). Let E be a pes and let C ∈ C(E). Given

e ∈ E [C], if C ∪ {e} ∈ C(E) then we write C
e−→ C ∪ {e}.

A pes E is called image finite if for every C ∈ C(E) and a ∈ Λ, the set of

events {e ∈ E | C e−→ C′ ∧ λ(e) = a} is finite. All the pess considered in this
paper will be assumed to be image finite, a standard requirement for getting a
logical characterisation of a behavioural equivalence based on a finitary logic.

Several equivalences have been defined in order to capture the concurrency fea-
tures of a system to different extents (see, e.g., [1]). Hereditary history-preserving
(hhp-)bisimilarity arises as a canonical equivalence for pess [4] which fully takes
into account the interplay between causality, concurrency and nondeterminism
of events.

We need to fix some further notation. A consistent subset X ⊆ E of events
will be often seen as a pomset (partially ordered multiset) (X,≤X , λX), where
≤X and λX are the restrictions of ≤ and λ to X . Given X,Y ⊆ E we will write
X ∼ Y if X and Y are isomorphic as pomsets and write f : X

∼→ Y for a pomset
isomorphism.

Definition 6 (posetal product). Given two pess E1, E2, the posetal product
of their configurations, denoted C(E1)×̄C(E2), is defined as

{(C1, f, C2) | C1 ∈ C(E1), C2 ∈ C(E2), f : C1
∼→ C2}

A subset R⊆C(E1)×̄C(E2) is called a posetal relation. We say that R is
downward closed whenever for any (C1, f, C2), (C

′
1, f

′, C′
2) ∈ C(E1)×̄C(E2), if

(C1, f, C2) ⊆ (C′
1, f

′, C′
2) pointwise and (C′

1, f
′, C′

2) ∈ R then (C1, f, C2) ∈ R.

Given a function f : X1 → X2 we will use the notation f [x1 �→ x2] : X1 ∪
{x1} → X2 ∪ {x2} for the function defined by f [x1 �→ x2](x1) = x2 and f [x1 �→
x2](z) = f(z) for z ∈ X1 \ {x1}. Note that this can represent an update of f ,
when x1 ∈ X1, or an extension of its domain, otherwise.

Hereditary History-Preserving Bisimilarity: Logics and Automata 473

Definition 7 ((hereditary) history-preserving bisimulation). A history-
preserving (hp-)bisimulation is a posetal relation R ⊆ C(E1)×̄C(E2) such that if

(C1, f, C2) ∈ R and C
e1−→ C′

1 then C2
e2−→ C′

2, with (C′
1, f [e1 �→ e2], C

′
2) ∈ R, and

vice versa. We say that E1, E2 are history preserving (hp-)bisimilar and write
E1 ∼hp E2 if there exists a hp-bisimulation R such that (∅, ∅, ∅) ∈ R.

A hereditary history-preserving (hhp-)bisimulation is a downward closed hp-
bisimulation. When E1, E2 are hereditary history-preserving (hhp-)bisimilar we
write E1 ∼hhp E2.

3 A Logic for hhp-Bisimilarity

In this section we introduce the syntax and the semantics of a logic L0, used to
characterise hhp-bisimilarity. The formulae of L0 predicate over existence and
executability of events in computations. As already mentioned, L0 is a small
core of the logic L in [9], where the operators do not explicitly refer to the
dependencies between events. Still L0 is sufficiently powerful to capture such
dependencies and its logical equivalence is the same as that of the full logic in
that they both correspond to hhp-bisimilarity.

Definition 8 (syntax). Let Var be a countable set of variables ranged over by
x, y, z.... The logic L0 over the set of labels Λ is defined by the following syntax:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | (a z)ϕ | 〈z〉ϕ
Disjunction ϕ ∨ ψ is defined, as usual, by duality as the formula ¬(¬ϕ ∧ ¬ψ).
Similarly, we write F for ¬T.

The operator (a z) acts as a binder for the variable z. Accordingly, the free
variables of a formula ϕ are defined as follows:

fv((a z)ϕ) = fv (ϕ) \ {z} fv (〈z〉ϕ) = fv (ϕ) ∪ {z}
fv(T) = ∅ fv (¬ϕ) = fv(ϕ) fv (ϕ1 ∧ ϕ2) = fv(ϕ1) ∪ fv(ϕ2)

Formulae are considered up to α-conversion of bound variables. The logic L0

is interpreted over pess. In particular, the satisfaction of a formula is defined
with respect to pairs (C, η), where C ∈ C(E) is a configuration representing the
state of the computation, and η : Var → E is a function, called environment,
that maps the free variables of ϕ to events.

Since, intuitively, a formula ϕ describes possible future computations, the
environment should map variables to events consistent with C and pairwise
consistent. The first condition ensures that the formula actually refers to events
that belong to the future (residual) of the current state. The second condition
prevents the direct observation of conflicts, in accordance with the observational
power of hhp-bisimilarity (Some examples are provided below, after defining the
semantics.) Formally, this is captured by the notion of legal pair.

Definition 9 (legal pair). Given a pes E, let EnvE denote the set of envi-
ronments, i.e., of functions η : Var → E. Given a formula ϕ in L0, a pair
(C, η) ∈ C(E)×EnvE is legal for ϕ if C ∪ η(fv (ϕ)) is a consistent set of events.
We write lpE(ϕ) for the set of legal pairs for ϕ.

474 P. Baldan and S. Crafa

b d

a c a b

b a

a b
E1 E2 E3

Fig. 1. The pes E1 for a.b+ c.d, E2 for a | b and E3 for a.b+ b.a

We omit the subscripts and write Env and lp(ϕ) when the pes E is clear from
the context.

Definition 10 (semantics). Let E be a pes. The denotation of a formula ϕ,
written {|ϕ|}E ∈ 2C(E)×Env is defined inductively as follows:

{|T|}E = C(E)× EnvE

{|ϕ1 ∧ ϕ2|}E = {|ϕ1|}E ∩ {|ϕ2|}E ∩ lp(ϕ ∧ ψ)

{|¬ϕ|}E = lp(ϕ) \ {|ϕ|}E

{|(a z)ϕ|}E = {(C, η) | ∃e ∈ E [C].e� η(fv (ϕ) \ {z})
λ(e) = a ∧ (C, η[z �→ e]) ∈ {|ϕ|}E}

{|〈z〉 ϕ|}E = {(C, η) | C
η(z)−−→ C′ ∧ (C′, η) ∈ {|ϕ|}E }

When (C, η) ∈ {|ϕ|}E we say that the pes E satisfies the formula ϕ in the con-
figuration C and environment η : Var → E, and write E , C |=η ϕ. For closed
formulae ϕ, we write E |= ϕ, when E , ∅ |=η ϕ for some η.

In words, the formula (a z)ϕ holds in (C, η) when in the future of the con-
figuration C there is an a-labelled event e consistent with the events already
observed (which are bound to free variables in ϕ) and binding such event e to
the variable z, the formula ϕ holds. The formula 〈z〉ϕ states that the event
bound to z is currently enabled, hence it can be executed producing a new con-
figuration which satisfies the formula ϕ. An environment η is a total function,
but it can be shown that the semantics of a formula ϕ depends only on the value
of the environment on the free variables fv (ϕ). In particular, for closed formulae
the environment is irrelevant. Moreover, it can be easily seen that α-equivalent
formulae have the same semantics.

As an example, consider the pes E1 in Fig. 1 corresponding to the CCS process
a.b + c.d, where dotted lines represent immediate conflict and the causal order
proceeds upwards along the straight lines. The empty configuration satisfies the
formula ϕ = (bx)T, i.e., E1 |= ϕ since in the future of the empty configuration
there is a b-labelled event. However E1 �|= (bx)〈x〉T since such event is not
immediately executable.

Observe also that E1 |= (bx)T∧(d y)T, since there are two possible (incompat-
ible) future computations starting from the empty configuration that contain,
respectively, a b-labelled and a d-labelled event. For a similar reason, we have

Hereditary History-Preserving Bisimilarity: Logics and Automata 475

b

a

b b

a a
E4 E5

Fig. 2. The pes E4 for a.b, E5 for a.b+ a.b.

also E1 |= (ax)〈x〉T ∧ (c y)〈y〉T. Finally observe that E1 |= (ax)(c y)T since in
this case, after binding the variable x to the a-labelled event, we can bind y to
the c-labelled event because x is not free in the remaining subformula T.

As a further example, consider the pess E2 and E3 in Fig. 1, corresponding
to the CCS processes a | b and a.b+ b.a, respectively. They are distinguished by
the formula (ax)(b y)(〈x〉 〈y〉T∧〈y〉 〈x〉T) that states that there are two events,
labelled a and b, that can be executed in any order. The formula is satisfied by
the first but not by the second pes. In a similar way, the processes a | a and a.a
are distinguished by the formula (ax)(a y)(〈x〉 〈y〉T ∧ 〈y〉 〈x〉T).

On the other hand, the pess E4 and E5 in Fig. 2, corresponding to the processes
a.b and a.b+ a.b, are hhp-equivalent; accordingly, they both satisfy the formula
ϕ1 = (ax)(a y)T and falsify ϕ2 = (ax)(a y)〈x〉 〈y〉T. In particular, for E4 to
satisfy ϕ1 both x and y must be bound to the unique a-labelled event. These
pess can be also used for clarifying the need of restricting to legal pairs in
the semantics. Consider the formula ϕ = (ax)(b y)〈x〉 ¬〈y〉T. While, clearly,
E4 �|= ϕ, one could believe that E5 |= ϕ since after binding the variable x to the
right a-labelled event, we could think of binding y to the left b-labelled event,
thus satisfying the remaining subformula 〈x〉 ¬〈y〉T. However, this is not correct:
since x occurs free in the subformula 〈x〉 ¬〈y〉T, the event bound to y must be
consistent to that bound to x in order to lead to a legal pair, hence the only
possibility is to choose the b-labelled event caused by that bound to x.

Roughly speaking, the logic L0 observes conflicting futures, as long as conflict-
ing events are kept separate and not combined in a computation. This corresponds
to the observational power of hhp-bisimilarity, which captures the interplay be-
tween branching and causality/concurrencywithout explicitly observing conflicts.
We observe that the fragment L0 is less expressive than the full logic L. For in-
stance, it can be shown that the formula (ax)(x < a y)T in L, which states the
existence of two causally dependent a-labelled events at arbitrary causal distance,
is not encodable by a finite formula of L0. Still, L0 is sufficiently expressive to cap-
ture the same logical equivalence of L, i.e., hhp-bisimilarity.

In the following we will denote lists of variables like x1, ..., xn by x.

Theorem 1 (hhp-bisimilarity, logically). Let E1, E2 be two pess. Then
E1 ∼hhp E2 iff E1 and E2 satisfy the same closed formulae in L0.

Proof (Sketch). The only if part follows from [9, Theorem 1], since the logic L0

is a fragment of L. For the converse implication, fix a surjective environment
η1 : Var → E1. Then given an event e ∈ E1, we let xe denote a chosen variable

476 P. Baldan and S. Crafa

such that η1(xe) = e. For a configuration C1 = {e1, . . . , en} we denote by XC1

the set of variables {xe1 , . . . , xen}.
Then one can prove that the posetal relation R ⊆ C(E1)×̄C(E2) defined by:

R = { (C1, f, C2) | ∀ϕ ∈ L0. fv (ϕ) ⊆ XC1

(E1, ∅ |=η1 ϕ iff E2, ∅ |=f◦η1 ϕ) } (1)

is a hhp-bisimulation. Above, given an isomorphism of pomsets f : C1 → C2,
we denote by f ◦ η1 an environment such that f ◦ η1(x) = f(η1(x)) for x ∈ XC1

and f ◦ η1(x) has any value, otherwise (the semantics of ϕ only depends on
the value of the environment on fv (ϕ) and fv(ϕ) ⊆ XC1 by construction). Note
that R relates two configurations C1 and C2 when the same formulae ϕ are
satisfied by the empty configuration (rather than by the configurations C1 and
C2 themselves). The formulae ϕ considered in (1) refer to events in C1 and in
C2 by means of their free variables. This is according to the intuition that hhp-
bisimilarity does not only compare the future of two configurations but also their
alternative evolutions, that is evolutions from the past. ��

Similarly to what has been done in [9] for the full logic L, one can identify
fragments of L0 that characterise various other behavioural equivalences in the
true concurrent spectrum [1]. First of all notice that the standard Hennessy-
Milner logic can be recovered as the following fragment of L0, where whenever
we state the existence of an event we are forced to execute it:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | (ax)〈x〉ϕ
In such a fragment variables are irrelevant: the formula (ax)〈x〉ϕ states the
existence of an a-labelled event, which is immediately executable from the cur-
rent configuration and whose execution produces a new configuration in which ϕ
holds. The event is bound to variable x which, however, is no longer referred to
in the formula. Hence (ax)〈x〉 is completely analogous to the diamond modal-
ity of standard Hennessy Milner logic and the induced logical equivalence is
(interleaving) bisimilarity [15].

Along the lines of [9, Theorem 4], one can prove that history-preserving bisim-
ilarity (Definition 7) corresponds to the logical equivalence induced by the fol-
lowing fragment of L0:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | 〈|x,y < a z|〉ϕ
where x, y are lists of variables and 〈|x,y < a z|〉ϕ denotes the formula

(a z)(〈x〉 〈z〉 〈y〉T ∧ 〈x〉 〈y〉T ∧
∧

x′⊂x

¬〈x′〉 〈z〉T ∧ ϕ). (2)

Above, given a list of variables x = x1 . . . xn the abbreviation 〈x〉 is used as
a shortcut for 〈x1〉 . . . 〈xn〉 . Intuitively, the formula (2) states the existence of
an a-labelled event, which is bound to z, that causally depends on the events
bound to x and that is concurrent with the events bound to y. In fact, z can be

Hereditary History-Preserving Bisimilarity: Logics and Automata 477

executed only after x, while y can be executed after or before z. The event is
required to be immediately executable, and once executed, formula ϕ holds. For
the above to work, the events bound to x and y must form a ≤-closed set, i.e.,
�η(w)� ⊆ η(x ∪ y) for any w ∈ x ∪ y. More formally, it is not difficult to prove
that {|〈|x,y < a z|〉ϕ|}E is

{〈C, η〉 | ∃e ∈ E [C]. e� η(fv (ϕ) \ {z}) ∧
C

e−→ C ∪ {e} ∧ λ(e) = a ∧
η(x) < e ∧ η(y) || e ∧ η(x ∪ y) ≤-closed ∧
〈C ∪ {e}, η[z �→ e]〉 ∈ {|ϕ|}E}

Incidentally, this derived operator illustrates how L0 formulae can be used to
express causal (in)dependence between events.

The fact that this fragment has a reduced expressivity, corresponding exactly
to hd-bisimilarity can be intuitively explained as follows. As noticed above, a
formula in the fragment can “observe” an event only by executing it. Hence the
observation of an event automatically discards all future conflictual events. As a
consequence it is not possible to observe alternative conflicting futures involving
common events, namely the fragment cannot fully describe the interplay between
causality/concurrency and branching as required for hhp-bisimilarity. Still, it
allows one to capture the dependencies of the observed events with previously
executed events, a capability which corresponds to the observational power of
hp-bisimilarity.

Analogously, fragments of L0 inducing pomset and step bisimilarity can be
identified.

4 History-Dependent Automata over Events

The logic L0 for hhp-bisimilarity, singled out in the previous section, allows one
to trace events in computations and check their executability. This hints at a
connection with HD-automata, a generalised model of automata that has been
indeed introduced to describe systems with dynamic allocation and deallocation
of resources, tracing the history of such resources over time [13]. In this section
we lay the basis of such a connection by identifying a class of HD-automata
where pess can be naturally mapped and providing a logical characterisation of
bisimilarity for this class of automata in terms of a mild extension of L0.

4.1 HDE-Automata and HD-Bisimilarity

HD-automata extend ordinary automata in order to manipulate resources gener-
ically identified as names. The allocation of a resource is modelled by the gen-
eration of a fresh name and the usage of a resource in a transition is modelled
by observing the corresponding name in the transition label. Concretely, with
respect to an ordinary automaton, states of an HD-automaton are enriched with
a set of local names corresponding to the resources that are active at that states.

478 P. Baldan and S. Crafa

Transitions, in turn, modify these sets and explicitly trace the correspondence
between the local names of the source and the target states.

We introduce a class of HD-automata, referred to as HDE-automata, where
pess will be naturally encodable. In HDE-automata the names can be thought
of as activities or events in a computation. HDE transitions are of three kinds:
plan(e) , exec(e) , drop(e) which can be interpreted, respectively, as planning an
activity or event e (which might be not immediately executable due to unsatisfied
dependencies with other activities), executing a previously planned activity and
dismissing a planned activity (without executing it).

Formally, as before, we fix a countable set E whose elements are thought of
as activities, labelled by λ : E → Λ. Given two subsets A1, A2 ⊆ E, a labelled
bijection, denoted δ : A1

∼→ A2, is a bijection such that for any e1 ∈ A1, it holds
that λ(e1) = λ(δ(e1)). Let R(E) be the set of renamings, i.e., label preserving
partial injective functions ρ : E → E. Given ρ ∈ R(E), we write dom(ρ) and
cod(ρ) for the domain and codomain of ρ, respectively. The set of labels for the
automata transitions is L(E) = {plan(e) , exec(e) , drop(e) | e ∈ E}.
Definition 11 (HDE-automata). A HDE-automaton H is a tuple
〈Q,n, q0,→〉 where Q is a set of states, n : Q → 2E associates with each
state a set of activities and → ⊆ Q × L(E) ×R(E)×Q is a transition relation,

written q
�−→ρ q′ for (q,
, ρ, q′) ∈ →, such that dom(ρ) ⊆ n(q′) and cod(ρ) ⊆ n(q)

(hence ρ is a partial injection n(q′) → n(q)) and

– if q
plan(e)−−−−−→ρ q′ then cod(ρ)=n(q), dom(ρ)=n(q′) \ {e};

– if q
exec(e)−−−−−→ρ q′ or q

drop(e)−−−−−→ρ q′ then cod(ρ)=n(q) \ {e} and dom(ρ)=n(q′).

For a plan(e) transition the mapping ρ is a bijection between n(q) and
n(q′)\{e}. Intuitively, e is the newly planned activity, while n(q′)\{e} represents,
via the renaming ρ, activities already planned in q. In an exec(e) transition the
activity e is executed, while in a drop(e) transition the activity e is dropped
without being executed. In both cases the other activities planned in the source
state are kept, and the correspondence between source and target is established
by ρ which is a bijection between n(q)\{e} and n(q′).

Note that when dealing with event structures, states of a computation are
given by configurations, namely sets of events which have been already exe-
cuted. Logic L0 observes events in the future of a configuration, but these are
not part of the state and are implicitly garbage collected when they are no longer
referred by the formula. Instead, the states of a HDE-automaton have a richer
structure as they explicitly include a set of activities planned but not yet exe-
cuted (which intuitively correspond to events observed and not yet executed). As
a consequence, also dismissing a planned activity is an explicit operation which
requires a drop(·) transition.

We write q →ρ q′ when q
�−→ρ q′ for some label
 ∈ L(E), and we denote by →∗

ρ

the reflexive and transitive closure of the transition relation, with ρ resulting as
the composition of the involved renamings, i.e., q →∗

id q and if q →∗
ρ q′ →ρ′ q′′

then q →∗
ρ′◦ρ q′′.

Hereditary History-Preserving Bisimilarity: Logics and Automata 479

n(q1)

∼δ
��

n(q′1)
ρ1��

∼δ′
��

n(q2) n(q′2)ρ2
��

Fig. 3. HD-bisimulation

The theory of HD-automata [13] provides a notion of behavioural equivalence,
which we specialise in the following to the case of HDE-automata. First, accord-
ing to the general theory, it is not restrictive to assume that all HDE-automata
are irredundant, i.e. that all names occurring in a state are eventually used. Ac-
tually, we work with a slightly strengthened notion of irredundancy, i.e., we will
assume that for any e ∈ n(q) there exists a state reachable from q where e can
be executed. Formally, we assume that for any q ∈ Q and any e ∈ n(q) there

exists some q′ ∈ Q such that q →∗
ρ q′ and q′

exec(e′)−−−−−→ρ′ q′′ with ρ(e′) = e.

Definition 12 (HD-bisimilarity). Let H1 and H2 be two HDE-automata. A
HD-bisimulation is a relation

R = {(q1, δ, q2) | q1 ∈ Q1 ∧ q2 ∈ Q2 ∧ δ : n1(q1)
∼→ n2(q2)}

such that, whenever (q1, δ, q2) ∈ R,

1. if q1
plan(e1)−−−−−→ρ1 q′1, then there exists a transition q2

plan(e2)−−−−−→ρ2 q′2 such that
(q′1, δ

′, q′2) ∈ R;

2. if q1
exec(e1)−−−−−→ρ1 q′1, resp. q1

drop(e1)−−−−−→ρ2 q′1, then there exists a transition

q2
exec(e2)−−−−−→ρ1 q

′
2, resp. q2

drop(e2)−−−−−→ρ2 q
′
2, such that δ(e1)=e2 and (q′1, δ

′, q′2)∈R;

where both for 1) and 2) it holds ρ2 ◦ δ′ = δ ◦ ρ1 (see Fig. 3). Dually, transitions
of H2 are simulated in H1.

We say that H1 and H2 are HD-bisimilar, written H1 ∼hd H2, when there
exists a HD-bisimulation R such that (q01, δ, q02) ∈ R for some δ.

Observe that, by commutativity of the diagram in Fig. 3, in case (1) we get
that δ′ = ρ−1

2 ◦ δ ◦ ρ1 ∪ {(e1, e2)} and in case (2) δ = ρ2 ◦ δ′ ◦ ρ−1
1 ∪ {(e1, e2)}.

Hence, since the δ-component in R is a labelled bijection, whenever we match
two transitions, the involved activities are required to have the same label.

The behavioural equivalence is referred to as HD-bisimilarity rather than
HDE-bisimilarity since it is just the general notion [13] instantiated to our spe-
cific subclass of HD-automata.

4.2 Logical Characterisation of HD-Bisimilarity

We next show that HD-bisimilarity admits a natural logical characterisation in
terms of a mild extension of the logic L0 introduced in Section 3.

480 P. Baldan and S. Crafa

Definition 13 (Lhd syntax). Let Var be a countable set of variables ranged
over by x, y, z.... The logic Lhd over the set of labels Λ is defined as:

ϕ ::= T | ϕ ∧ ϕ | ¬ϕ | (a z)ϕ | 〈z〉ϕ | ↓z ϕ

The logic Lhd, besides the operators of L0 for planning and executing ac-
tivities, includes an additional operator ↓ z that represents the dismissal of a
planned activity. More precisely, the formula ↓z ϕ holds if η(z) ∈ n(q), i.e., η(z)
is a planned activity in the current state (namely, an active name), and after
dismissing such activity (i.e., forgetting the corresponding name) ϕ holds.

The free variables of a formula in Lhd are defined as in Section 3, with the
additional clause fv (↓z ϕ) = fv (ϕ)∪{z}. Concerning the semantics, Lhd formulae
are now interpreted over HDE-automata. More precisely, let Env be the set of
environments, i.e., functions η : Var → E. Given a HDE-automaton H and a
formula ϕ in Lhd, the denotation of ϕ will be a set of pairs (q, η) ∈ Q × Env .
Note that the semantics of Lhd does not involve a notion of legal pair, which was
essential in Section 3 to correctly deal with the conflict relation distinctive of
pess. In fact, as observed before, the states of HDE-automata explicitly include
a set of planned activities which intuitively corresponds to events observed and
not yet executed in pess. The activities planned in a state are pairwise consistent
by construction: for a state q of a HDE-automaton, the fact that a new activity
e is in conflict with some activities which have been already planned in q is
represented by the absence of a plan(e) transition from state q, i.e., by the
impossibility of planning activity e in state q.

Below given a renaming ρ ∈ R(E) and an environment η : Var → E we write
η; ρ−1 for the environment defined by η; ρ−1(x) = ρ−1(η(x)) when η(x) ∈ cod(ρ)
and η; ρ−1(x) = η(x), otherwise.

Definition 14 (semantics). Let H be a HDE-automaton. The denotation of
a formula ϕ, written {|ϕ|}H ∈ 2Q×Env , is inductively defined as follow:

{|T|}H = Q× Env

{|ϕ1 ∧ ϕ2|}H = {|ϕ1|}H ∩ {|ϕ2|}H

{|¬ϕ|}H = (Q × Env) \ {|ϕ|}H

{|(a z)ϕ|}H = {(q, η) | ∃q plan(e)−−−−−→ρ q′ ∧ λ(e) = a ∧
(q′, η; ρ−1[z �→ e]) ∈ {|ϕ|}H }

{|〈z〉 ϕ|}H = {(q, η) | q exec(η(z))−−−−−−−→ρ q′ ∧ (q′, η; ρ−1)∈{|ϕ|}H}

{|↓z ϕ|}H = {(q, η) | q drop(η(z))−−−−−−−→ρ q′ ∧ (q′, η; ρ−1)∈{|ϕ|}H}
When (q, η) ∈ {|ϕ|}H we say that the automaton H satisfies the formula ϕ in the
state q and environment η : Var → E, and write H, q |=η ϕ. For closed formulae
ϕ, we write H |= ϕ, when H, q0 |=η ϕ for some η.

Hereditary History-Preserving Bisimilarity: Logics and Automata 481

The logical equivalence induced by Lhd over HDE-automata can be shown
to be HD-bisimilarity. Actually, as it commonly happens when dealing with a
finitary logic (with finite conjunctions), the result holds under suitable hypothe-
ses which restrict the branching cardinality of HDE-automata. The standard
requirement is image-finiteness, which, however, for HDE-automata would be
too restrictive as plan(·) steps allow one to plan activities which are executable
unboundedly far in the future. Instead, we assume the following weaker notion
of boundedness for HDE-automata.

Definition 15 (bounded HDE-automata). A HDE-automaton H is called
bounded if for any q ∈ Q, k ∈ N and A ⊆fin Λ the set below is finite:

q(k,A) = {e ∈ E | q plan(e)−−−−−→ρ q′ �1−→ρ1 q1 . . .
�k−→ρk

qk
exec(e′)−−−−−→ qk+1

∧ ρk ◦ . . . ◦ ρ1(e′) = e ∧ λ(e) ∈ A ∧
for i ∈ {1, . . . , k}, if
i = plan(ei) then λ(ei) ∈ A}.

In words, q(k,A) is the set of activities labelled over A which can be planned
in the current state and executed in k steps, using only already planned activities
or new activities labelled in A. This set is required to be finite when A is finite.
We will show later that the automaton corresponding to a pes is bounded if
and only if the original pes is image finite. Under the boundedness hypothesis,
we can prove that the logical equivalence induced by Lhd on HDE-automata is
HD-bisimilarity.

Proposition 1 (HD-bisimilarity, logically). Let H1, H2 be bounded HDE-
automata. Then H1 ∼hd H2 iff H1, H2 satisfy the same closed formulae in Lhd.

The boundedness hypothesis is essential to ensure the existence of a finite
formula distinguishing any two non bisimilar HDE-automata. Roughly, the point
is that a plan(e1) transition of an automaton could be simulated, in principle, by
infinitely many plan(e2) transitions of the other. However, by the irredundancy
assumption on the class of HDE-automata, we know that e1 is executable in some
reachable state. Let k be the number of transitions of a run leading to a state
where e1 is executable and let A be the set of labels of events planned in such
run. Then it is not difficult to see that the event e2 of the simulating transition
plan(e2) must be itself executable within k steps, involving only already planned
events or events labelled in the set A. By the boundedness hypothesis there are
only finitely many such events, a fact which plays a basic role in the proof of
Proposition 1.

5 Hhp-Bisimilarity via HD-Automata

In order to obtain a characterisation of hhp-bisimilarity in terms of HD-automata
we proceed as follows: first we provide an encoding of pess into the class of HDE-
automata. Then we encode the logic L0 into Lhd and back, in a way that a pes
satisfies a formula in L0 if and only if the corresponding automaton satisfies the

482 P. Baldan and S. Crafa

({a}, ∅) plan(b) �� ({a}, {b}) exec(b) ��

drop(b)

��
({a, b}, ∅)

(∅, {a})

exec(a)

��

plan(b) ��drop(a)

��

(∅, {a, b})

exec(a)

��

drop(b)��

drop(a)		(∅, ∅)

plan(a)

���������������
plan(b) ��

plan(c)

��

��

drop(c)

(∅, {b})

plan(a)

drop(b)��

(∅, {c}) exec(c) �� ({c}, ∅)

Fig. 4. HDE automaton corresponding to the CCS process a.b+ c.

formula in Lhd. Finally we rely on the logical characterisations of HD-bisimilarity
and of hhp-bisimilarity to show that two pess are hhp-bisimilar if and only if
their corresponding HDE-automata are HD-bisimilar.

5.1 From Event Structures to HDE-Automata

We next provide an encoding of pess into HDE-automata which is later shown
to preserve and reflect behavioural equivalence. Throughout this section, the
correspondence between activities in the source, label and target of a transition
are given by (partial) identities and hence kept implicit.

Definition 16 (from PES to HDE-automata). Let E be a pes. The HDE-
automaton H(E)=(Q, q0, n,→) is defined as

– Q={〈C,X〉 | C ∈ C(E) ∧ X ⊆fin E [C] ∧ X×X ⊆ � }
– q0 = (∅, ∅)
– n(〈C,X〉) = X
– the transition relation is given as follows where it is assumed that e �∈ X

• 〈C,X〉 plan(e)−−−−−→ 〈C,X ∪ {e}〉 when e ∈ E [C] and e�X;

• 〈C,X ∪ {e}〉 exec(e)−−−−−→ 〈C ∪ {e}, X〉 when C ∪ {e} ∈ C(E) ;
• 〈C,X ∪ {e}〉 drop(e)−−−−−→ 〈C,X〉.

In words, a pes E corresponds to an automaton H(E) whose states are pairs
〈C,X〉 where C ∈ C(E) represents the current state of the computation, and X is
a set of events belonging to a possible future computation extending C, planned
but not yet executed. Note that, in order to represent a set of events which can
occur in a computation starting from C, the events in X must be both pairwise

Hereditary History-Preserving Bisimilarity: Logics and Automata 483

consistent and consistent with C. Instead, we do not require X to be causally
closed, that is we do not require C ∪X ∈ C(E).

According to this intuition, given a state 〈C,X〉, the transition plan(e) allows
one to plan a new event e whenever e is compatible both with C and its future
X . On the other hand, any event planned and not yet executed, i.e., any event
e ∈ X can be dismissed by means of a drop(e) transition. Finally, an event
e can be executed if it belongs to the planned future X and it is enabled by
the configuration C. As an example, the automaton corresponding to the (pes
associated with the) CCS process a.b+c is given in Fig. 4. Observe that the HDE-
automaton obtained from a pes is irredundant. Roughly, plan(·) and drop(·)
transitions allow one to construct alternative futures of the current configuration.
The concurrent structure of such futures can then be analysed by means of
exec(·) moves.

Note that, as mentioned above, the ρ-component of transitions is omitted and

it is implicitly assumed to be a partial identity. More precisely when 〈C,X〉 �−→
〈C′, X ′〉, the renaming is ρ = idX∩X′ . For instance, when 〈C,X〉 plan(e)−−−−−→ 〈C,X∪
{e}〉, the renaming ρ : X ∪ {e} → X is defined by ρ(e′) = e′ for e′ ∈ X and ρ(e)
undefined.

The image finiteness property for pess exactly corresponds, through the en-
coding, to the boundedness property for HDE-automata as introduced in Defi-
nition 15.

Proposition 2 (image finiteness). Let E a pes. Then E is image finite iff
H(E) is bounded.

5.2 From L0 to Lhd and Back: Hhp-Bisimilarity via hd-Bisimilarity

In order to prove that behavioural equivalence is preserved and reflected by the
encoding of pess into HDE-automata we rely on the logical characterisation of
such equivalences, which is given in terms of very similar logics. Specifically, here
we prove that a tight link exists between satisfaction of L0 formulae by pess and
satisfaction of Lhd formulae by the corresponding HDE-automata, in a way that
the two logical equivalences can then be shown to coincide. Below, we write |=L0

and |=Lhd in order to clarify to which notion of satisfaction we are referring to.
First of all, notice that although L0 is syntactically a subset of Lhd, for a pes

E and a formula ϕ in L0, it is not the case that if E |=L0 ϕ then H(E) |=Lhd

ϕ. As an example, consider the pes E1 in Fig. 1 associated with the process
a.b+ c.d and the formula ϕ = (ax)((c y)〈y〉T ∧ (b z)〈x〉 〈z〉T). Then E1 |=L0 ϕ,
because ∅ |=L0

η[x→a] (c y)〈y〉T and ∅ |=L0

η[x→a] (b z)〈x〉 〈z〉T. In fact, for the first

subformula, note that y can be bound to the c-labelled event even though it is
in conflict with a, since x is no longer free in the subformula.

Instead, H(E1) �|=Lhd ϕ since satisfaction reduces to (∅, {a})|=Lhd

η[x→a](c y)〈y〉T
and (∅, {a})|=Lhd

η[x→a](b z)〈x〉 〈z〉T. The first is false since the automaton cannot

perform a plan(c) step as long as the conflicting event a belongs to the planned
future. However, H(E1) |=Lhd (ax)(↓x (c y)〈y〉T ∧ (b z)〈x〉 〈z〉T) since, in this

484 P. Baldan and S. Crafa

case, after planning a, the left branch forgets it in a way that b can be planned
and executed.

More generally, a L0 formula ϕ can be encoded into a Lhd formula that
uses the ↓ operator to explicitly drop planned events that intuitively no longer
pertain to the future that the formula describes, i.e., events planned but no longer
referred to by free variables in the remaining part of the formula. Formally, given
ϕ ∈ L0, we define an encoding of ϕ into Lhd which is parametric on a set of
variables X such that fv (ϕ) ⊆ X , representing the events planned in the past.
Given a set of variables Z = {z1, . . . , zn} we write ↓Z for ↓x1 . . . ↓xn .

Definition 17 (from L0 to Lhd). The encoding function [[·]] : L0 × 2Var→Lhd

is inductively defined as follows:

[[T]]X = T

[[¬ϕ]]X = ¬[[ϕ]]X
[[ϕ1 ∧ ϕ2]]X = [[ϕ1]]X ∧ [[ϕ2]]X

[[〈x〉ϕ]]X = 〈x〉 [[ϕ]]X
[[(a x)ϕ]]X = ↓Z (ax)[[ϕ]]fv (ϕ)∪{x}

where, in the last clause, Z = X\(fv (ϕ)\{x}).
In words, before binding a new event to x, the Lhd encoding drops any (pre-

viously planned) event that is not bound to the free variables of the subformula.
As an example, consider the formula ϕ = (ax)((c y)〈y〉T ∧ (b z)〈x〉 〈z〉T) in

L0 discussed at the beginning of the section, satisfied by E1 but not by H(E1).
The formula [[ϕ]]∅ is exactly the Lhd formula previously constructed by hand in
order to be satisfied by the automaton, i.e., (ax)(↓x (c y)〈y〉T ∧ (b z)〈x〉 〈z〉T).
As a further example, consider the L0 formulae ϕ1 = (ax)(b y)(c z)〈z〉T and
ϕ2 = (ax)(b y)(〈y〉T ∧ (c z)〈z〉T), which are both true for the pes consisting
of three pairwise conflicting events. Then we have that [[ϕ1]]∅ = (ax) ↓x (b y) ↓
y (c z)〈z〉T and [[ϕ2]]∅ = (ax) ↓x (b y)(〈y〉T∧ ↓y (c z)〈z〉T).

We next prove a technical lemma. It roughly asserts that, given a formula
ϕ ∈ L0, the satisfaction of its encoding in Lhd by a state of the HD-automaton
does not depend on planned events bound to variables which are not free in the
formula, as long as the encoding takes care of dropping such events.

Lemma 1. Let E be a pes. Let ϕ ∈ Lhd be a formula, η : Var → E an environ-
ment and X1, X2 ⊆ Var sets of variables such that fv(ϕ) ⊆ Xi and C ∪ η(Xi) is
compatible for i ∈ {1, 2}. Then in the HDE-automata H(E) it holds

〈C, η(X1) \ C〉 |=η [[ϕ]]X1 iff 〈C, η(X2) \ C〉 |=η [[ϕ]]X2 .

Then we can prove the following.

Lemma 2 (from L0 to Lhd). Let E be a pes. For any closed formula ϕ∈L0 it
holds E|=L0ϕ iff H(E)|=Lhd [[ϕ]]∅.

Hereditary History-Preserving Bisimilarity: Logics and Automata 485

Conversely, we show how formulae of Lhd can be encoded in L0. This is
somehow more difficult since the notion of satisfaction in L0 relies on simpler
states, those of pess, consisting only of a configuration (executed events), while
states of HDE-automata, where Lhd satisfaction is defined, include explicitly
also those events which have been planned and not executed. In order to fill this
gap the idea is to “keep” events planned but not yet executed as free variables
in the formulae of L0.

Definition 18 (from Lhd to L0). Given a set of variables X={x1, . . . , xn} ⊆
Var, let st(X) denote the formula in L0

st(X) = (
∨n

i=1〈xi〉T) ∨ T

The encoding function ‖·‖ : Lhd × 2Var → L0 is inductively defined as follows:

‖T‖X = T

‖¬ϕ‖X = ¬‖ϕ‖X
‖ϕ1 ∧ ϕ2‖X = ‖ϕ1‖X ∧ ‖ϕ2‖X
‖(ax)ϕ‖X = (ax)(‖ϕ‖X∪{x} ∧ st(X))

‖↓x ϕ‖X =

{‖ϕ‖X\{x} if x ∈ X

F otherwise

‖〈x〉 ϕ‖X =

{ 〈x〉 ‖ϕ‖X\{x} if x ∈ X

F otherwise

Observe that the encoding of a formula of Lhd into L0 is parametric w.r.t. a
set of variables which represent those events which have been planned but not
yet dropped or executed. In order to understand this, note that in the formula
st(X) the disjunction with T does not make it trivially equivalent to true. In fact
fv(st(X)) = X , and thus st(X) is satisfied only by pairs (C, η) which are legal,
i.e., such that η(X) ⊆ C[E] and pairwise consistent. The role of st(X) is exactly
to keep alive the events associated with variable in X and impose that they are
consistent. It can be proved inductively that, more generally, fv(‖ϕ‖X) ⊆ X .

Lemma 3 (from Lhd to L0). Let E be a pes, let H(E) be the corresponding
automaton. For any closed formula ϕ ∈ Lhd, H(E) |=Lhd ϕ iff E |=L0 ‖ϕ‖∅.

Combining the results above we can immediately deduce that hhp-bisimilarity
between pess is faithfully captured by bisimilarity of the corresponding HDE-
automata.

Theorem 2 (hhp-bisimilarity vs. hd-bisimilarity). Let E1 and E2 be pess.
Then E1 ∼hhp E2 iff H(E1) ∼hd H(E2).

486 P. Baldan and S. Crafa

6 Conclusions: Related and Future Work

We studied hhp-bisimilarity, a canonical behavioural equivalence in the true con-
current spectrum, by means of logics and automata. We provided a characteri-
sation in terms of an event-based logic L0 that predicates over the existence and
executability of events. This in turn suggests a connection with HD-automata.
More precisely, we defined a class of HD-automata whose transitions allow one
to plan the execution of an activity, execute a planned activity and to dismiss
a planned activity. We then showed that pess can be mapped into such class of
automata in a way that the canonical behavioural equivalence for HD-automata
coincides with hhp-bisimilarity over the corresponding pess.

Both characterisations show that, in order to capture hhp-bisimilarity, the ob-
server must be able to compare states by checking unboundedly large concurrent
computations in the future of such states. Intuitively, this can be seen as a source
of ineffectiveness of hhp-bisimilarity which indeed is known to be undecidable
for many basic models of concurrency, even in the finite state case (e.g., it is
known that hhp-bisimilarity is undecidable for safe finite Petri nets [14]).

The results in the paper can be helpful in the study of decidable approxi-
mations of hhp-bisimilarity, possibly opening the road to the development of
verification techniques. This represents an interesting line of future research. In-
deed, some preliminary investigations show that fixing a bound on the distance
of the future that an observer is allowed to check, one gets effective approxima-
tions of hhp-bisimilarity. More precisely, when fixing such a bound, regular pess
(which typically arise as semantics of finite state systems [16]) can be trans-
formed into finite HD-automata for which bisimilarity checking is decidable. On
these bases, algorithms for checking such approximations of ∼hhp-bisimilarity
can be obtained by simply providing an explicit construction of the finite HD-
automata for specific formalisms. E.g., for finite (n-)safe Petri nets this could
be done along the lines of the work in [17,18] for history preserving bisimilarity.
The construction could also take inspiration from that in [19], used for proving
decidability of approximations of hhp-bisimilarity on finite safe Petri nets.

The fact that HDE-automata deal with infinite sets of events, but with the
possibility of testing only equality and labels, suggests a connection with register
automata and, more generally, with the recent line of work on nominal automata
(see, e.g., [20] and references therein), which would be interesting to deepen.

In order to capture hhp-bisimilarity in the setting of HD-automata, we pro-
vided a characterisation of HD-bisimilarity in terms of a logic Lhd that enriches
L0 with an operator for explicitly dropping activities planned but not yet exe-
cuted. Interestingly, even if it is defined over HDE-automata, we think that the
logic Lhd will be useful to establish a precise connection with the logic EIL in [10],
which includes a reverse step-modality which is related to the drop transitions
and the ↓ · modality in Lhd. We believe a further investigation of the relation
between L0 and EIL (and the other logics for concurrency in the literature) can
bring some interesting insights, at least at conceptual level. This, despite the
fact that it is clear that some modalities of L0 and EIL are not interdefinable.
For instance, the formula (x : a)ϕ in EIL which binds x to an a-labelled event in

Hereditary History-Preserving Bisimilarity: Logics and Automata 487

the current configuration is not encodable in L0. Conversely, the formula (ax)ϕ
where x is bound to an a-labelled event in the future of the current configuration
is not encodable in EIL. A connection to be further investigated seems to exist
also with the work on higher-dimensional automata and ST-configuration struc-
tures in [21], where a logic, again with backward step modalities, is proposed for
hhp-bisimilarity.

We also believe that the logical characterisation of HD-bisimilarity has an
interest which goes beyond the specific class of HD-automata considered in this
paper and deserves to be studied further.

Acknowledgments. We are grateful to Alberto Meneghello for several insight-
ful discussions on this work at its early stages of development. We are also
indebted with the anonymous reviewers for providing detailed comments and
insightful suggestions which helped us to improve our work.

References

1. van Glabbeek, R., Goltz, U.: Refinement of actions and equivalence notions for
concurrent systems. Acta Informatica 37(4/5), 229–327 (2001)

2. Esparza, J., Heljanko, K.: Unfoldings - A Partial order Approach to Model Check-
ing. EACTS Monographs. Springer (2008)

3. Bednarczyk, M.A.: Hereditary history preserving bisimulations or what is the
power of the future perfect in program logics. Technical report, Polish Academy of
Sciences (1991)

4. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Information and
Computation 127(2), 164–185 (1996)

5. Winskel, G.: Event Structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)

6. Phillips, I., Ulidowski, I.: A hierarchy of reverse bisimulations on stable configu-
ration structures. Mathematical Structures in Computer Science 22(2), 333–372
(2012)

7. Phillips, I., Ulidowski, I.: Reversing algebraic process calculi. Journal of Logic and
Algebraic Programming 73(1-2), 70–96 (2007)

8. Cristescu, I., Krivine, J., Varacca, D.: A compositional semantics for the reversible
p-calculus. In: Proc. of LICS 2013, pp. 388–397. IEEE Computer Society (2013)

9. Baldan, P., Crafa, S.: A logic for true concurrency. Journal of the ACM 61(4),
24:1–24:36 (2014)

10. Phillips, I., Ulidowski, I.: Event identifier logic. Mathematical Structures in Com-
puter Science 24(2), 1–51 (2014)

11. Nielsen, M., Clausen, C.: Games and logics for a noninterleaving bisimulation.
Nordic Journal of Computing 2(2), 221–249 (1995)

12. Hennessy, M., Stirling, C.: The power of the future perfect in program logics.
Information and Control 67(1-3), 23–52 (1985)

13. Montanari, U., Pistore, M.: History-Dependent automata: An introduction. In:
Bernardo, M., Bogliolo, A. (eds.) SFM-Moby 2005. LNCS, vol. 3465, pp. 1–28.
Springer, Heidelberg (2005)

14. Jurdzinski, M., Nielsen, M., Srba, J.: Undecidability of domino games and hhp-
bisimilarity. Information and Computation 184(2), 343–368 (2003)

488 P. Baldan and S. Crafa

15. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency.
Journal of the ACM 32(1), 137–161 (1985)

16. Thiagarajan, P.S.: Regular event structures and finite petri nets: A conjecture.
In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa, A. (eds.) Formal and Natural
Computing. LNCS, vol. 2300, pp. 244–256. Springer, Heidelberg (2002)

17. Vogler, W.: Deciding history preserving bisimilarity. In: Leach Albert, J., Monien,
B., Rodŕıguez-Artalejo, M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 495–505.
Springer, Heidelberg (1991)

18. Montanari, U., Pistore, M.: Minimal transition systems for history-preserving
bisimulation. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200,
pp. 413–425. Springer, Heidelberg (1997)

19. Fröschle, S., Hildebrandt, T.: On plain and hereditary history-preserving bisimu-
lation. In: Kuty�lowski, M., Wierzbicki, T., Pacholski, L. (eds.) MFCS 1999. LNCS,
vol. 1672, pp. 354–365. Springer, Heidelberg (1999)

20. Bojanczyk, M., Klin, B., Lasota, S.: Automata with group actions. In: Proc. of
LICS 2011, pp. 355–364. IEEE Computer Society (2011)

21. Prisacariu, C.: The glory of the past and geometrical concurrency. CoRR
abs/1206.3136 (2012)

	Hereditary History-Preserving Bisimilarity:
Logics and Automata

	1 Introduction
	2 Event Structures and hhp-Bisimilarity
	3 A Logic for hhp-Bisimilarity
	4 History-Dependent Automata over Events
	4.1 HDE-Automata and HD-Bisimilarity
	4.2 Logical Characterisation of HD-Bisimilarity

	5 Hhp-Bisimilarity via HD-Automata
	5.1 From Event Structures to HDE-Automata
	5.2 From L0 to Lhd and Back: Hhp-Bisimilarity via hd-Bisimilarity

	6 Conclusions: Related and Future Work
	References

