
Acta Informatica
https://doi.org/10.1007/s00236-018-0314-0

ORIGINAL ARTICLE

Petri nets are dioids: a new algebraic foundation
for non-deterministic net theory

Paolo Baldan1 · Fabio Gadducci2

Received: 6 September 2016 / Accepted: 14 January 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract In a seminal paper Montanari and Meseguer have shown that an algebraic inter-
pretation of Petri nets in terms of commutative monoids can be used to provide an elegant
characterisation of the deterministic computations of a net, accounting for their sequential
and parallel composition. A smoother and more complete theory for deterministic computa-
tions has been later developed by relying on the concept of pre-net, a variation of Petri nets
with a non-commutative flavor. This paper shows that, along the same lines, by adding an
(idempotent) operation and thus considering dioids (idempotent semirings) rather than just
monoids, one can faithfully characterise the non-deterministic computations of a net.

1 Introduction

Petri nets [30] are one of the most studied and best known models for concurrent systems.
Due to the conceptual simplicity of the model and its intuitive graphical presentation, since
their introduction, which dates back to the Sixties [29], they have attracted the interest of
both theoreticians and practitioners.

The basic operational behaviour of Petri nets can be straightforwardly defined in terms of
sequences of transition firings, according to the “token game”. Concurrency in computations
can be made explicit by resorting to a semantics given in terms of (non-sequential) deter-
ministic processes à la Goltz and Reisig [15]. A process describes the transition firings in
a computation and their mutual dependency relations. Concretely, a deterministic processes
is an acyclic, deterministic net whose structure induces a partial order on transitions, which
can be seen as occurrences of transition firings in the original net. A deterministic process

B Fabio Gadducci
fabio.gadducci@unipi.it

Paolo Baldan
baldan@math.unipd.it

1 Dipartimento di Matematica, Università di Padova, Via Trieste 63, 35121 Padua, Italy

2 Dipartimento di Informatica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-018-0314-0&domain=pdf
http://orcid.org/0000-0001-9357-5599
http://orcid.org/0000-0003-0690-3051

P. Baldan, F. Gadducci

captures an abstract notion of concurrent computation, in the sense that it can be seen as a
representative of a full class of firing sequences differing only for the order of independent
firings, i.e., all the firing sequences corresponding to linearisations of the underlying partial
ordering.

The concurrent nature of Petri net computations has been expressed in an elegant way
in the “Petri nets are monoids” approach [26]. Processes can be naturally seen as arrows
of a symmetric monoidal category, called the computational model of the net, where arrow
composition is sequential composition on processes and the monoidal operation is parallel
composition. The crux is that such computationalmodel can be characterised as the symmetric
monoidal category P(N) freely generated from N , in the same way as the same way as the
cartesian category L (�) of terms and substitutions is freely generated from a signature �.
Processes of N are arrows ofP(N) and the functoriality of the monoidal operator⊗ capture
the essence of concurrency in net computations. Since P(N) can be finitely axiomatised,
one also gets an algebraic characterisation of deterministic processes (see also the summary
in [24]).

A smoother theory has been later developed relying on pre-nets [7], a variant of ordinary
nets where a total ordering is imposed on the places in the pre- and post-sets of transitions.
Using strings rather than multisets allows one to uniquely characterise an element by its
position. The algebraic presentation of the model of computation based on pre-nets turns
out to be simpler and more satisfactory as the construction yields an adjunction between the
category of pre-nets and the category of models (i.e., of symmetric monoidal categories [23]).
Since any pre-net can be seen as a concrete “implementation” of the Petri net obtained by
forgetting the ordering of places in pre- and post-sets and any two such implementations
generate isomorphic categories of processes, this yields also an unequivocal construction for
ordinary Petri nets.

Besides concurrency, a crucial aspect in the behaviour of a distributed system is the
non-deterministic interaction between its components. Indeed, most process calculi provide
parallel composition and non-deterministic sum as basic structuring operators. For Petri nets,
non-determinism naturally arises when distinct transitions compete for the same resources
(see e.g. [31], and [1] or the recent book [16] for a survey on net encodings of process
calculi).At the level of Petri net processes, different deterministic computations from the same
starting state can be merged into a single non-deterministic process [12,28], a structure that,
besides concurrency, also captures the intrinsic non-determinismof a net.A non-deterministic
process is again a net satisfying suitable acyclicity requirement, but where, roughly speaking,
transitions can compete for the use of tokens, thus leading to a branching structure.

Even if non-deterministic Petri net processes have been widely investigated and used for
verification purposes (see e.g. [13]), to the best of our knowledge they have always been
formalised set-theoretically and no formal connection has been drawn from a categorical
model to a set-theoretical notion of non-deterministic process.

In this paper we show that the “Petri nets are monoids” approach can be naturally gen-
eralised in order to capture the non-deterministic computations of a Petri net. In brief, we
prove that an algebraic model of the non-deterministic computations of Petri nets can be
obtained by resorting to what we call diodal categories, where, besides the monoidal oper-
ator ⊗ for parallel composition, a second monoidal operator ⊕ is used for modelling the
non-deterministic composition of computations.

The presence of two symmetric monoidal operators ⊗ and ⊕, the former distributing
over the latter, naturally leads to consider bimonoidal (or rig) categories. Roughly speaking,
they are a categorical counterpart of semirings (or rigs) pretty much as monoidal categories
corresponds to monoids, and as such they have surfaced in the literature on distributed

123

Petri nets are dioids: a new algebraic foundation for…

systems (e.g. in the specification of flowchart schemes [35]). The branching structure of non-
deterministic computations further requires the presenceof a natural transformation∇a : a →
a⊕a. Roughly, it allows for the duplication of a resource a into the non-deterministic choice
between two copies of a, which can be used in conflicting, non-deterministic computations.
Naturality enforces the property that the non-deterministic choice between two copies of a
computation is the same as a single copy of such computation, exposing non-deterministically
two copies of the target state. For instance, in the simple case of a computation consisting of
a single transition t : u → v, we have that ∇u; t : u → v ⊕ v is the same as t; ∇v . The fact
that this recalls the idempotency axioms of ⊕ in tropical semirings or dioids, led us to refer
the corresponding categorical structure as a dioidal category.

More technically, as in the deterministic case, we focus on pre-nets and since different pre-
nets corresponding to the same Petri net have isomorphic models of computation, this gives
indirectly a construction for Petri nets. For any pre-net R we introduce the corresponding
category of concatenable non-deterministic processesNP(R). Thenwe show that the category
NP(R) of concatenable non-deterministic processes can be characterised as the free dioidal
categoryANP(R) built over R. As a consequence, the non-deterministic processes of a Petri
net N , as introduced in [12], turn out to be in a one-to-one correspondence with the arrows
of ANP(R), for any pre-net R implementing N , quotiented under suitable axioms.

The paper is organised as follows. In Sect. 2, after recalling some basics about Petri
nets and pre-nets, we review the notions of deterministic and non-deterministic process.
In Sect. 3 we present the construction of the category of concatenable non-deterministic
processes for a Petri net. In Sect. 4 we recall some basic notions on symmetric monoidal
categories, we introduce dioidal categories and we present the main theorem, concerning the
correspondence between non-deterministic processes and arrows of a free dioidal category.
Finally, in Sect. 5 we highlight the connection of our work with PROP theory and we provide
a topological interpretation of our algebraic construction of non-deterministic processes. The
paper is rounded up with some further categorical remarks on our proposal and some pointers
to further works.

The paper is a follow-up to [3]. A relevant difference concerns the use of pre-nets with
respect to Petri nets, and their interpretation in terms of graph theory. This required a large
rewriting of the visual and set-theoretical presentation of Petri nets, yet ensuring a smoother
axiomatisationof the overall algebraic structure,which takes advantageof the current research
on the graphical representation of PROPs (product and permutation categories) [5,19,21].

2 Petri nets and non-deterministic processes

Given a set X , we denote by X∗ the free semigroup over X (finite non-empty strings of
elements of X) andby X� the free commutative semigroupover X (finite non-emptymultisets
over X). We write μ : X∗ → X� for the function mapping a string to the underlying
multiset. Moreover, given a function f : X → Y ∗ we denote by f ∗ : X∗ → Y ∗ its
obvious semigroup extension. Similarly, given a function f : X → Y� we denote by
f � : X� → Y� its commutative semigroup extension. Given u ∈ X∗ or u ∈ X�, we
denote by �u� the underlying subset of X defined in the obvious way, e.g., for u ∈ X∗,
�u� = {x ∈ X | ∃u′, u′′ ∈ X�. u = u′xu′′}. When set relations are used over strings or
multisets, we implicitly refer to the underlying set. E.g., for u, v ∈ X∗ (or in X�) by x ∈ u
we mean x ∈ �u� and by u ∩ v we mean �u� ∩ �v�.

123

P. Baldan, F. Gadducci

Definition 1 (P/T net) A P/T Petri net is a 4-tuple N = (δ0, δ1, S, T), where S is a non-
empty set of places, T is a set of transitions, and δ0, δ1 : T → S� are functions assigning
multisets called pre- and post-set, respectively, to each transition.

Hereafter, for any net N we assume N = (δ0, δ1, S, T), with subscripts and superscripts
carrying over the names of the components. Observe that, since the pre- and post-set of a
transition are elements of S�, they are necessarily non-empty. This requirement, which is
quite common in Petri net theory, allows us to simplify the presentation, but the theory could
be adapted to deal with transitions having possibly empty pre- and post-sets. The issue is
discussed in Sect. 5.

Given a net N , a multiset u ∈ S�, representing a state of the net, is referred to as amarking
of N . It is safe if any place occurs at most once in it, i.e., u = �u�.

The operational behaviour is expressed in terms of the “token game”. A transition t is
enabled by a marking m if its pre-set is “covered” by m. In this case, t can be fired: this
consumes the tokens in the pre-set and produces those in the post-set. Formally, the firing
rule is

δ0(t) � u →t δ1(t) � u

for u ∈ S� and t ∈ T .
The notion of net morphism naturally arises from an algebraic view, where places and

transitions play the role of sorts and operators.

Definition 2 (Net morphism) A Petri net morphism f = 〈 fs, ft〉 : N → N ′ is a pair where
fs : S� → S′� is a (commutative) semigroup homomorphism and ft : T → T ′ is a function
such that δ′

i ◦ ft = fs ◦ δi , for any i ∈ {0, 1}. The category of P/T nets (as objects) and their
morphisms (as arrows) is denoted by Petri.

In the sequel, when the meaning is clear from the context, we omit the subscripts from
the morphism components, thus writing f instead of fs and ft .

2.1 Pre-nets and their morphisms

A pre-net is roughly a Petri netwhere the resources (i.e., tokens in places) are linearly ordered.
In other words, the state as well as the pre- and post-sets of transitions are strings rather than
multisets of places.

Definition 3 (Pre-net) A pre-net is a 4-tuple R = (ζ0, ζ1, S, T), where S is a non-empty set
of places, T is a set of transitions, and ζ0, ζ1 : T → S∗ are functions assigning strings called
pre- and post-set, respectively, to each transition.

For a pre-net R we will denote by SR and TR its sets of places and transitions.
The pictorial representation of Petri nets played an important role in their large diffusion

as a specification framework. This graphical presentation (places represented as circles,
transitions as boxes, pre- and post-set multirelations as weighted arcs, tokens as black bullets)
is extended to pre-nets by adopting the following convention: weighted arcs are replaced by
arcs labelled with the ordered list of positions in which the place appears in either the pre- or
the post-set of the transition. An example of pre-net R0 is depicted in the right part of Fig. 1,
and it is going to be used throughout the paper to illustrate definitions and concepts. The arc
from a to t is decorated with the annotation 1, 3, which means that the firing of t requires
two tokens from a, to be taken as first and third consumed resources, while the second token

123

Petri nets are dioids: a new algebraic foundation for…

(a) (b)

Fig. 1 a The P/T Petri net N0 and b one of its pre-net implementation R0

to be consumed by t must be taken from b, as expressed by annotation 2 of the arc from b to
t (we stress that for pre-nets 2 denotes a position, not the number of tokens to be consumed).
The decoration is omitted when the pre-set or the post-set of a transition includes just a single
place. For instance, for transition t it is intended that ζ0(t) = aba and ζ1(t) = c.

Also pre-nets, when viewed as algebraic structures, can be naturally endowedwith a notion
of morphism.

Definition 4 (Pre-net morphism) A pre-net morphism is a pair f = 〈 fs, ft〉 : R → R′
where fs : S∗ → S′∗ is a semigroup homomorphism, and ft : T → T ′ is a function such
that ζ ′

i ◦ ft = fs ◦ζi , for i ∈ {0, 1}. The category of pre-nets (as objects) and their morphisms
(as arrows) is denoted by Pre.

Pre-nets can thus be seen as a specification formalism (slightly) more concrete than Petri
nets. In particular, any pre-net R can be thought of as an “implementation” of the Petri net that
is obtained from R by replacing any string with the correspondingmultiset. This construction
is formalised as a functor A : Pre → Petri defined as

– any pre-net R = (ζ0, ζ1, S, T) is mapped to A (R) = (δ0, δ1, S, T), where δi (t) =
μ(ζi (t)) for each t ∈ T and i ∈ {0, 1};

– any pre-net morphism f : R → R′ is mapped to A (f) = 〈g�
s , ft〉, where gs(s) =

μ(fs(s)) for each s ∈ S.

For instance, referring to Fig. 1, the ordinary Petri net N0 on the left is implemented by
the pre-net R0 on the right, i.e., we have A (R0) = N0. The transition t : 2a � b → c in
N0 is implemented as t : aba → c in R0 and u : c → e � f in N0 as u : c → f e in R0.
Alternative implementations are possible via different linearisations.

A computation of a pre-net consists, intuitively, of a sequence of “explicit” steps, firings
of transitions that consume and produce resources, and of “implicit” steps, which rearrange
the order of the resources to allow for the application of transitions. The operational rules are

– u ∗ ζ0(t) ∗ u′ →t u ∗ ζ1(t) ∗ u′ and
– u ∗ a ∗ b ∗ u′ → u ∗ b ∗ a ∗ u′

for u, u′ ∈ S∗, t ∈ T , and a, b ∈ S.

123

P. Baldan, F. Gadducci

All the sequences of implicit steps that implement the same permutation of a given state
are indistinguishable. This will be formalised later in the paper for deterministic and non-
deterministic computations. It can be shown that given a pre-net R and two states u, v ∈ S∗,
the state v is reachable from u if and only ifμ(v) is reachable fromμ(u) inA (R) [7]. For this
reason, abusing the terminology, we sometime informally say that in a pre-net R a marking
m′ is reachable from a marking m, meaning that from u ∈ S∗ such that μ(s) = m we can
reach u′ such that μ(u′) = m′.

More generally, given any P/T net N all its pre-net implementations have essentially the
same behaviour, in the sense that they have isomorphic deterministic models of computa-
tion [7]. As we are going to see, the same happens in the non-deterministic case, hence from
now on we will focus mainly on the semantics of pre-nets.

2.2 Occurrence pre-nets

Let R be a pre-net. The causality relation is the least transitive relation<R⊆ (S∪T)×(S∪T)

such that

– if s ∈ ζ0(t) then s <R t ;
– if s ∈ ζ1(t) then t <R s.

Given a place or transition x ∈ S ∪ T , the set of causes of x in T is defined as �x� =
{t ∈ T | t <R x} ∪ {x}; and, for X ⊆ S ∪ T , �X� = ⋃

x∈X�x�. The conflict relation
#R ⊆ (S ∪ T) × (S ∪ T) is the least symmetric relation such that

i. if t �= t ′ and ζ0(t) ∩ ζ0(t ′) �= ∅ then t#Rt ′;
ii. if x#Rx ′ and x ′ <R x ′′ then x#Rx ′′.

Definition 5 (Occurrence pre-net) An occurrence pre-net is a pre-net O where μ(ζo(t)),
μ(ζ1(t)) are safe for all t ∈ TO and (i) causality <O is a strict partial order; (ii) there are no
backward conflicts, i.e., ζ1(t) ∩ ζ1(t ′) = ∅ for any t �= t ′; (iii) conflict #O is irreflexive. The
sets of minimal and maximal places of O with respect to <O are denoted by min(O) and
max(O). An occurrence pre-net is deterministic if it has no forward conflicts, i.e., for any
t �= t ′, ζ0(t) ∩ ζ0(t ′) = ∅.

An occurrence pre-net O can be seen as the representation of a possibly non-deterministic
computation starting from (some sequence of places corresponding to) min(O). Since each
place can occur at most once in the pre- and post-set of a transition of an occurrence pre-net,
in the graphical representation the labelling of the arcs is sometimes omitted, meaning that
the pre- or post-set should be read from left to right. For instance, for the occurrence pre-net
in the left part of Fig. 2, ζ0(t1) = a1ba2, similarly ζ0(t2) = a1ba2, while ζ0(v1) = c1d1.
Reachable states in O can be characterised statically by using the dependency relations, via
the notion of cut.

Definition 6 (Cuts) Let O be an occurrence pre-net. A cut in O is a maximal (with respect to
set inclusion) subset of places X ⊆ SO such that neither s <O s′ nor s#Os′ for all s, s′ ∈ X .
The set of cuts of O is denoted by cuts(O). A subset of cutsW ⊆ cuts(O) is called a covering
of O if max(O) ⊆ ⋃

X∈W X .

It can be shown that any cut X ∈ cuts(O) is reachable from min(O) by executing all the
transitions in �X� in any order compatible with <O (see, e.g., [36]). The notion of covering
is original to this paper: intuitively, if a subset W of cuts is intended to represent the set of
final states of a set of computations of O , thenW is a covering for O if each maximal place of

123

Petri nets are dioids: a new algebraic foundation for…

(a) (b)

Fig. 2 a A redundant process ξ : O → N and b its collapsing π(ξ) : O ′ → N

O is eventually filled in at least one of those computations. It is easy to see that the covering
condition amounts to ask TO = ⋃

X∈W �X�, i.e., each transition of O is used in at least one
of the computations reaching the states in W .

2.3 Processes

We now review the notion of deterministic and non-deterministic process for pre-nets. A
process is represented as a morphism π : O → R from an occurrence pre-net O to the
original pre-net R [15]. Since morphisms are simulations, they map computations of O into
computations of R in such a way that a process can be seen as a representative of a set of
possible computations of R. The occurrence pre-net makes explicit the causal structure of
such computations since each transition is fired at most once and each place is filled with
at most one token during each computation. Transitions and places of O can be thought of,
respectively, as firing of transitions and tokens in places of the original net. Actually, to allow
for such an interpretation, further restrictions have to be imposed on the morphism π , namely
it must map places into places (rather than into strings of places).

Definition 7 (Process) Let R be a pre-net. A non-deterministic redundant process of R is
a pre-net morphism π : O → R′ where O is a finite occurrence pre-net and for all s ∈ S,
fs(s) ∈ S′. We call π : O → R a non-deterministic process when it further satisfies that if
π(t) = π(t ′) and ζ0(t) = ζ0(t ′) then t = t ′ for any t, t ′ ∈ TO (irredundancy).

The process π is deterministic if the underlying occurrence pre-net O is so. For a process
π we write min(π), max(π) and cuts(π) to refer to the sets min(O), max(O) and cuts(O)

in the underlying occurrence pre-net.

Intuitively, a process π represents a set of possible computations starting at some u ∈ SR∗,
determined by a chosen ordering on the minimal places min(π) of π . The irredundancy con-
dition is motivated by the common assumption that the non-deterministic composition of a
computation with itself should give back the original computation. Requiring irredundancy
prevents to have different processes representation of the same set of concurrent computa-
tions [12]. Hereafter, consistently with the literature, all non-deterministic processes will be

123

P. Baldan, F. Gadducci

implicitly assumed to be irredundant. The qualification “irredundant” will be omitted and,
only when referring to processes not satisfying the irredundancy condition, we will explic-
itly qualify them as redundant processes and denote them with the letter ξ , possibly with
subscripts. Some hints at the theory arising in the absence of the irredundancy assumption
and the graphical interpretation of (ir)redundancy are further discussed in Sect. 5.

We next observe that, if we fix an ordering on the minimal places of a process π , namely
we view them as a string, we can identify a canonical form for π along the lines of what is
done in [12] for ordinary Petri nets.

Definition 8 (Canonical process) Let R be a pre-net, π : O → R a non-deterministic
process such that TO ⊆ TR × SO∗ and α ∈ SO∗ a string such that μ(α) = min(π). We call
π α-canonical if

– α = 〈s1, 1〉 . . . 〈sn, n〉 with si ∈ SR and π(〈si , i〉) = si ;
– π(t̂) = t , ζ0(t̂) = u, and ζ1(t̂) = 〈s1, t̂〉 . . . 〈sm, t̂〉 with s j ∈ SR and π(〈s j , t̂〉) = s j for

t̂ = 〈t, u〉 ∈ TO .

Observe that, by the definition above, we have that π(x) is the projection on the first
component for any x ∈ SO ∪ TO and that ζ0(t) is the projection on the second component
for any t ∈ TO .

Given the inductive nature of the notion of canonicity, for any process π : O → R
and string α ∈ SO∗ such that μ(α) = min(π) we can uniquely define a canonical process
π ′ : O ′ → R and an isomorphism f : O → O ′ such that π ′ is f ∗(α)-canonical.

More generally, any redundant process ξ : O → R can be turned into a canonical
process. The point is that, once a source state is fixed, the process is uniquely determined
(up to isomorphism) and it is obtained via a construction that builds a canonical form for
the process. Observe, in fact, that a canonical process implicitly satisfies the irredundancy
condition since, because of the naming scheme, it prevents to have two transitions with the
same pre-set and same image in the original net.

Proposition 1 (Collapsing) Let R be a pre-net, ξ : O → R a redundant process and
α ∈ SO∗ a string such that μ(α) = min(O). Then there exists a unique factorisation
ξ = β;π(ξ), where β is epi and π(ξ) is a β∗(α)-canonical process. The process π(ξ) is
called the α-collapsing of ξ .

Proof Assume min(O) = {s1, . . . , sn} with α = s1 . . . sn . The canonical process π(ξ) is
determined by the place and transition sets of the underlying occurrence pre-net O ′. We
define such sets and the morphism β, inductively, as follows

– for any i ∈ {1, . . . , n}, let s′
i = 〈ξ(si), i〉 ∈ SO ′ and β(si) = s′

i ;
– for any t ∈ TO , let

– t ′ = 〈ξ(t), β∗(ζ0(t))〉 ∈ TO ′ ;
– ζ0(t ′) = β∗(ζ0(t));
– if ζ1(t) = s1 . . . sk then let s′

j = 〈ξ(s j), t ′〉 ∈ SO ′ for j ∈ {1, . . . , k}, and define
ζ1(t ′) = s′

1 . . . s′
k .

– β(t) = t ′ and β(si) = s′
i for j ∈ {1, . . . , k}.

It is immediate to see that β and π(ξ) are well-defined and that ξ = β;π(ξ). ��
The occurrence pre-net in Fig. 2a represents a redundant process of the pre-net R0 in

Fig. 1b. The α-collapsing of such a process, for α = d1a1ba2d2, is depicted in Fig. 2b. The

123

Petri nets are dioids: a new algebraic foundation for…

morphisms are implicitly represented by naming places and transitions of the occurrence
pre-net as their images over R0, possibly with subscripts. For the sake of readability, items
are not named according to Definition 8. For instance, places denoted d1, a1, b, a2, and
d2 in π(ξ) are actually 〈d, 1〉, 〈a, 2〉, 〈b, 3〉, 〈a, 4〉, and 〈d, 5〉, respectively. Transition t is
〈t, 〈a, 2〉〈b, 3〉〈a, 4〉〉, and so on.

Given two α-canonical processesπ1 andπ2 for a pre-net R, it is immediate to see that their
point-wise union π1 ∪ π2 is again a α-canonical process. More generally, mimicking [12],
one can show that the set of α-canonical processes ordered by sub-set inclusion is a lattice,
with union and intersection as join and meet.

We finally prove that each process can be obtained as the union of its deterministic sub-
processes. In order to formalise this fact, first note that given an occurrence pre-net O , any
causally closed subset of transitions T ′ ⊆ TO (i.e., such that if t ∈ TO then �t� ⊆ TO)
induces a non-deterministic sub-net O ′ of O , with set of transitions T ′ and set of places
S′ = min(O) ∪ ⋃

t∈T ′(�ζ0(t)� ∪ �ζ1(t)�).

Definition 9 (Sub-processes) Let R be a pre-net, π : O → R a process and X ∈ cuts(π) a
cut. The projection of π on the cut X , denoted π ↓ X , is the deterministic process π ′ : O ′ →
R, where O ′ is the sub-net of O induced by �X� and π ′ is the corresponding restriction of
π .

It is immediate to see that π ↓ X is indeed deterministic (since its transitions �X� cannot
include conflicts by the definition of cut).

Proposition 2 (Process decomposition) Let R be a pre-net, π : O → R a α-canonical
process for some α, and W ⊆ cuts(π). Then π ↓ X is α-canonical for any X ∈ W.
Moreover, if W is a covering, then π = ⋃

X∈W π ↓ X.

Proof Just observe that by construction the set of transitions of the occurrence pre-net O ′
underlying the process

⋃
X∈W π ↓ X is T ′ = ⋃

X∈W �X�.
IfW is a covering of π , then T ′ is the entire set of transitions TO of the occurrence pre-net

underlying π and therefore O ′ = O . Since a canonical process is completely determined by
the underlying occurrence pre-net, we conclude. ��

By exploiting the result above, we show that we can perform on a process an operation
that is a sort of converse of collapsing, meaning that it maximises redundancy.

Definition 10 (Maximally redundant process) Let R be a pre-net. A redundant process ξ :
O → R is called maximally redundant whenever irredundancy may fail only on minimal
places, i.e., if ξ(t) = ξ(t ′) and ζ0(t) = ζ0(t ′) then either ζ0(t) ⊆ min(ξ) or t = t ′ for any
t, t ′ ∈ TO .

By Proposition 2, given a process π : O → R and a coveringW ⊆ cuts(π), we can build
a corresponding maximally redundant (canonical) process ξ : O ′ → R, whose collapsing is
π . If min(π) = {s1, . . . , sk} and W = {X1, . . . , Xn}, just take the disjoint union ⋃n

i=1(π ↓
Xi)×{i} (where all operations are taken componentwise), quotiented under the equivalence
that equates different instances of the same minimal place, namely 〈si , h′〉 ∼ 〈si , h′′〉, for
i ∈ {1, . . . , k} and h′, h′′ ∈ {1, . . . , n}.

Going back to Fig. 2, the process ξ on the left is actually a maximally redundant process
for the pre-net R0 in Fig. 1b, and indeed, it is the maximally redundant canonical process
associated to the process π(ξ) on the right.

123

P. Baldan, F. Gadducci

3 Concatenable processes

In this section, after reviewing the theory of concatenable deterministic process of pre-
nets from [7] (generalising [11,32]), we propose a notion of concatenable non-deterministic
process. This leads to a categoryNP(R) of non-deterministic processes for a pre-net R, where
objects are states and arrows model non-deterministic computations of R. In turn, this gives
a category for the corresponding Petri net.

3.1 Concatenable deterministic processes

Concatenable deterministic processes for Petri nets have been introduced [11,32] as a refine-
ment of Goltz-Reisig deterministic processes, endowed with operations of sequential and
parallel composition that are consistent with the causal structure of computations. In order
to properly define such operations, for ordinary nets, a suitable ordering have to be imposed
over the places in min(π) and max(π) for each process π . Such an ordering allows to dis-
tinguish among “interface” places of Oπ that are mapped to the same place of the original
net, a capability that is essential to track causal dependencies. For pre-nets this is built-in in
the notion of state itself.

Definition 11 (Concatenable deterministic process) A concatenable deterministic process
δ of a pre-net R is a triple 〈α, π, ω〉, where π is a deterministic process of R and α, ω ∈ SO∗
are such that

μ(α) = min(π) and μ(ω) = max(π).

We denote by ζ0(δ) the string π∗(α) and by ζ1(δ) the string π∗(ω).

Given two concatenable deterministic processes 〈α, π, ω〉 and 〈α′, π ′, ω′〉, an isomor-
phism between them is an isomorphism of the underlying pre-nets f : O → O ′, consistent
with the mapping to the original pre-net and with the linearisations of minimal and maximal
places, i.e., π ′ ◦ f = π , f ∗(α) = α′, and f ∗(ω) = ω′. The isomorphism class of a concaten-
able deterministic process δ is written [δ] and called an abstract concatenable deterministic
process. Often the word “abstract” is omitted and δ is used to denote the corresponding
isomorphism class.

Concatenable deterministic processes 〈α, π, ω〉 of pre-nets are graphically represented as
follows: (1) places and transitions are named by their images through π , with subscripts;
(2) the source α and target ω are represented explicitly at the top and bottom of the process,
respectively; (3) pre- and post-set of transitions are to be read from left to right, unless arcs
are decorated for giving a different order. The representation is one-to-one, meaning that
isomorphic processes are mapped to the same representation up-to graph isomorphism. See
Sect. 5 for a discussion.

In Fig. 3 we report some deterministic processes for the pre-net R0 of Fig. 1b that cor-
respond to single transitions. Also basic processes corresponding to place identities and
permutations are shown. The latters play a role in computations: as observed before, since
states are strings of places, sometimes a reordering can be necessary for concatenating two
computations (Fig. 4).

Definition 12 (Sequential and parallel composition) Let δ1 = 〈α1, π1, ω1〉 and δ2 =
〈α2, π2, ω2〉 be two concatenable deterministic processes of a pre-net N .

123

Petri nets are dioids: a new algebraic foundation for…

Fig. 3 Graphical representation of simple deterministic processes

Fig. 4 Tensor product and sequential composition of simple deterministic processes

– Let ζ1(δ1) = ζ0(δ2) and assume T1 ∩ T2 = ∅ and S1 ∩ S2 = max(π1) = min(π2),
with ω1 = α2. Then δ1; δ2 is the concatenable deterministic process 〈α1, π, ω2〉, where
process π is the (component-wise) union of π1 and π2.

– Assume T1∩T2 = S1∩S2 = ∅. Then δ1∗δ2 is the concatenable process 〈α1α2, π, ω1ω2〉,
where process π is the (component-wise) union of π1 and π2.

The premise of the first item means that δ1 and δ2 overlap only on max(π1) = min(π2),
and on such places the labelling on the original pre-net and the ordering coincide. Then, their
concatenation is the process obtained by gluing the maximal places of π1 and the minimal
places of π2 according to their ordering. Parallel composition is obtained by juxtaposing the
two processes: under the assumption that the underlying pre-nets have disjoint sets of places
and transitions, this reduces to point-wise union.

123

P. Baldan, F. Gadducci

Concatenation and parallel composition, as it can be routinely checked, induce well-
defined operations on abstract deterministic processes, which are independent of the choice
of representatives.

Definition 13 (Category of concatenable deterministic processes) Let R be a pre-net. The
category of (abstract) concatenable deterministic processes of R, denoted byP(R), is defined
as follows: objects are non-empty strings of places of R, i.e. elements of S∗; each (abstract)
concatenable process [δ] of R is an arrow from ζ0(δ) to ζ1(δ).

Wewill discuss later how parallel composition actually induces the structure of amonoidal
category on P(R).

3.2 Concatenable non-deterministic processes

Intuitively, a concatenable non-deterministic process is a set of non-deterministic processes
that, starting from a set of possible initial states, produces a set of possible final states. For
technical reasons, analogous to those which suggested to move from nets to pre-nets, it is
preferable to consider sequences, rather than sets, of processes.

Definition 14 (Concatenable non-deterministic process) Let R be a pre-net. A concatenable
non-deterministic process η for R is a triple of non-empty lists 〈α,π ,ω〉 with
– π = π1 . . . πn is a list of (pair-wise disjoint) non-deterministic processes;
– α = α1 . . . αn is a list of strings such that αi ∈ SOi

∗ and μ(αi) = min(πi);
– ω = ω1 . . . ω� is a list of strings such that

– ω j ∈ SOi
∗ for some i ∈ {1, . . . , n} and μ(ω j) ∈ cuts(πi);

–
⋃n

i=1 max(πi) ⊆ ⋃l
j=1 μ(ω j), i.e., for any i ∈ {1, . . . , n} the cuts of πi occurring

in μ∗(ω) are a covering of πi .

The source of η is the list ζ0(η) = π1
∗(α1) . . . πn

∗(αn), i.e., the list of the sources of
the component processes, while the target of η is ζ1(η) = u1 . . . u�, where u j = πi

∗(ω j) if
μ(ω j) ∈ cuts(πi).

The covering requirement guarantees that all the maximal places of each underlying
deterministic process appear on the target, thus ensuring that all transitions are actually
executed in some computation and the produced state is visible in the output. A weakening
of this condition, which allows to discard (and thus hide) the result of some deterministic
sub-computation, is discussed in Sect. 5.

In order to ease notation we fix the above naming scheme: unless stated otherwise, we
assume concatenable non-deterministic processes to be of the kind 〈α,π ,ω〉, with α =
α1 . . . αn , π = π1 . . . πn , and ω = ω1 . . . ωl . In turn, for each process πi in π we assume
πi : Oi → N , where Oi has Si and Ti as place and transition sets, respectively.

Two concatenable non-deterministic processes 〈α,π ,ω〉 and 〈α′,π ′,ω′〉 are isomorphic
if |π | = |π ′| and there exist non-deterministic process isomorphisms fi : πi → π ′

i , with
i ∈ {1, . . . , |π |}, consistent with the decorations and the ordering of sources and targets, i.e.,
such that, for all i ∈ {1, . . . , n}, f ∗

i (αi) = α′
i and for all j ∈ {1, . . . , �}, if μ(ω j) ∈ cuts(πi),

then f ∗
i (ω j) = ω′

j .
The canonical form for processes can easily be transferred to concatenable processes, thus

getting a choice for the canonical representative in an isomorphism class.

Definition 15 (Canonical concatenable processes) Let R be a pre-net. A concatenable pro-
cess 〈α,π ,ω〉 of R is canonical if for any i ∈ {1, . . . , |π |} the process πi is αi -canonical.

123

Petri nets are dioids: a new algebraic foundation for…

Fig. 5 A concatenable non-deterministic process

It is easy to show that two concatenable non-deterministic processes are isomorphic if
and only if they have the same canonical representation. Thus, abstract concatenable non-
deterministic processes, i.e., isomorphism classes of processes, are often identified with their
canonical representatives: we write η to refer to the corresponding abstract process.

Graphically, a concatenable non-deterministic process 〈α,π ,ω〉 is represented by a list of
occurrence pre-nets O1 . . . On , underlying the component sub-processes, each one enclosed
in a separate box. Places and transitions of Oi are named by their images through πi , with
subscripts. The sourceαi of each processπi is represented at the top of the process itself, while
in the bottom part of the boxwe representω as a list of boxes, one for eachω j . As an example,
a concatenable process for the pre-net R0 in Fig. 1b is reported in Fig. 5. The process is
〈α1α2, π1π2, ω1ω2ω3ω4〉 consisting of two component processesπ1 andπ2 with four targets.
Concerning the targets, {e1, f1, d1, b2}, { f2, g1} ∈ cuts(π1) and {g2}, {b4} ∈ cuts(π2). It is
easy to see that the cuts {e1, f1, d1, b2}, { f2, g1} are a covering of O1, and similarly {g2}, {b4}
are a covering for O2. As for deterministic processes, there is a one-to-one correspondence
between canonical non-deterministic processes and their graphical representation.

Sequential and non-deterministic composition for concatenable non-deterministic pro-
cesses of a given pre-net R can be defined as follows.

Definition 16 (Sequential composition) Let η = 〈α,π ,ω〉 and η′ = 〈α′,π ′,ω′〉 be con-
catenable non-deterministic processes of a pre-net R such that ζ1(η) = ζ0(η

′) (thus
|ω| = |α′|). Assume, for any i, j , that Ti ∩ T ′

j = ∅ and if μ(ω j) ∈ cuts(πi) then
Si ∩ S′

j = μ(ω j) = min(π ′
j), with ω j = α′

j . We define η1; η2 = 〈α′′,π ′′,ω′′〉, where
– π ′′ = π ′′

1 . . . π ′′|π | and each process π ′′
i is obtained as follows: take the (component-wise)

union of πi with all processes π ′
1, . . . , π

′
h such thatμ(ω j) ∈ cuts(πi) for j ∈ {1, . . . , h},

123

P. Baldan, F. Gadducci

Fig. 6 Basic non-deterministic
processes

thus getting a redundant process ξi : O ′′
i → R; consider the αi -collapsing βi ;π(ξi) of

such morphism and let π ′′
i = π(ξi);

– α′′ = β1
∗(α1) . . . β|π |∗(α|π |) and ω′′ = β1

∗(ω′
1) . . . β|ω′|∗(ω′

|ω′|).

Roughly, for any j ∈ {1, . . . , |ω|}, ifμ(ω j) is a cut in πi , then the process π ′
j in η′ must be

attached to the set of places μ(ω j) in πi . Assuming that πi and π ′
j overlap only on min(π ′

j),
and that on such places the labelling on the original pre-net and the ordering imposed by the
two processes coincide, attaching π j to πi reduces to taking their component-wise union.
Thus the composition has |π | components, where the i-th component is obtained as the
component-wise union of πi with all the π ′

j that must be connected to πi .
We can easily define also a notion of non-deterministic composition, which is obtained

by juxtaposing the two processes.

Definition 17 (Non-deterministic composition) Let η = 〈α,π ,ω〉 and η′ = 〈α′,π ′,ω′〉 be
concatenable non-deterministic processes of a pre-net R. Assume Ti ∩ T ′

j = Si ∩ S′
j = ∅ for

any i, j . Then η ⊕ η′ = 〈αα′,ππ ′,ωω′〉, where the juxtaposition of two lists denotes their
concatenation.

Differently from parallel composition, note that the two component processes π and π ′
are kept separate in a way that η ⊕ η′ represents the non-deterministic choice between the
execution of π from α and the execution of π ′ from α′.

It is easy to prove that non-deterministic and parallel composition induce well-defined
operations on abstract processes, independent of the choice of representatives.

Some concatenable non-deterministic processes that does not involve transitions are used
to perform some “re-organisation” of the resources. In particular, since the non-deterministic
components are ordered in a list, their sequential composition may require a rearrangement
as expressed by the permutation process ρa,b in Fig. 6(left). Moreover, the same target can be
exposed non-deterministically in two copies, as in the duplicator process ∇a in Fig. 6(right).
In Fig. 7 we show the composition δu ⊕ δv and the processes (δt ∗ δd); ∇c∗d ; [(δu ∗ δd)⊕ δv]
and δt ; δu; ∇e∗ f , which are obtained by using the processes in Fig. 3.

Definition 18 (Category of concatenable non-deterministic processes) Let R be a pre-
net. The category of (abstract) concatenable non-deterministic processes of R, denoted by
NP(R), is defined as follows: objects are elements of S〈∗〉, i.e., non-empty lists of elements
of S∗; each (abstract) concatenable non-deterministic process of R is an arrow.

The non-deterministic processes of a pre-net R, given in Definition 7, correspond to the
arrows of NP(R) consisting of a list of processes of length one, i.e., of the kind 〈α1, π1, ω〉,

123

Petri nets are dioids: a new algebraic foundation for…

Fig. 7 Some non-deterministic processes arising from the processes in Fig. 3

once we forget the decoration. An immediate adaptation of a result for deterministic pro-
cesses [7, Theorem 3.1] shows that different pre-net implementations of the same Petri net
have isomorphic categories of non-deterministic processes.

Proposition 3 Let R and R′ be pre-nets such thatA (R) = A (R′). ThenNP(R) = NP(R′).

3.3 A decomposition theorem

Relying on the canonical form for concatenable processes we can provide a decomposition
theorem for their non-deterministic counterpart. As a first step, we introduce a notation for
processes representing general forms of permutations and duplications. In the sequel, given
an equivalence ∼ and a permutation φ on [1, k] we say that φ is stable with respect to ∼ if
it preserves the relative order of elements in the same class, i.e., for i, j ∈ [1, k], i ≤ j and
i ∼ j implies φ(i) ≤ φ(j).

Definition 19 (Permutationandduplicator processes)Let R be apre-net.Givenu1, . . . , uk ∈
S∗ and a permutation φ : [1, k] → [1, k], we write ρ

φ
u1,...,uk : u1 ⊕ · · · ⊕ uk →

uφ(1) ⊕· · ·⊕ uφ(k) for the process offering as target the φ-permutation of the source. We say

that ρφ
u1,...,uk is stable with respect to an equivalence ∼ on [1, k] if φ is stable. Given u ∈ S∗

and an integer k ≥ 1, we denote by∇k
u : u → u⊕· · ·⊕u the concatenable non-deterministic

process with source u and target k copies of u.

As an example, if φ : [1, 2] → [1, 2] is the permutation defined by φ(1) = 2 and
φ(2) = 1, then ρ

φ
a,b is the process ρa,b in the left part of Fig. 6.

Lemma 1 (Decomposition for concatenable non-deterministic processes) Let R be a pre-net
and η = 〈α,π ,ω〉 a concatenable process of R.

123

P. Baldan, F. Gadducci

1. If |π | = 1 then η can be decomposed uniquely as

∇|ω|
α1

; (η1 ⊕ · · · ⊕ η|ω|)

with η j = 〈α1, π1 ↓ μ(ω j), ω j 〉, where j ∈ {1, . . . , |ω|}.
2. If |π | > 1 then η can be decomposed as

η = (η1 ⊕ · · · ⊕ η|π |); ρ

with ηi = 〈αi , πi , ωi1 . . . ωi j 〉, where ωi1 , . . . , ωi j are the components of ω such that
μ(ωih) ∈ cuts(πi) and i1 ≤ i2 ≤ · · · ≤ i j .
The decomposition is unique if we additionally require that ρ does not alter the relative
order of the targets of the ηi , i.e., if ρ is stable with respect to the equivalence �h−1

j=0 i j +
k1 ∼ �h−1

j=0 i j + k2, for h ∈ [1, |π |] and k1, k2 ∈ [1, ih].

Proof 1. We can assume, without loss of generality, that π1 is α1-canonical. By Propo-
sition 2, each process π1 ↓ μ(ω j) is α1-canonical, namely η j is canonical for j ∈
{1, . . . , |ω|}. According to Definitions 16 and 17, ∇|ω|

α1 ; (η1 ⊕ · · · ⊕ η|ω|) is obtained by
taking the disjoint union of η1, . . . , η|ω|, keeping only ω in common, and then consid-
ering the collapsing. It is immediate to see that this corresponds to take the pointwise
union of the η j , which by Proposition 2 gives η, as desired.
Concerning uniqueness, suppose that there is another decomposition of the same shape
∇|ω|

α1 ; (η′
1 ⊕ · · · ⊕ η′|ω|). If we assume that each η′

j is canonical, then η = η′
1 ∪ · · · ∪ η′|ω|.

However, since each η′
j is uniquely determined by the cut, then we have that η j = η′

j for
j = {1, . . . , |ω|}.

2. Just note that η1 ⊕ · · · ⊕ η|π |, according to Definition 17, is obtained by taking the
disjoint union of the η j ’s and thus it has the same source and same underlying process
as η. Instead, in the target we have first the components ω j of the target of η which are
in η1, then those which are in η2 and so on. This means that the target of η1 ⊕ · · · ⊕ η|π |
is a permutation of the target of η, whence the thesis.
Uniqueness follows by observing that the target of each ηi is uniquely determined by the
request of preserving the order of the strings in ω, and also the symmetry ρ is determined
by the requirement of stability. ��

In the second case each process can be further decomposed in the normal form stated in the
first case, thus also the combined decomposition is unique. The construction of the normal
form mimics, at the categorical level, the construction of a maximally redundant process
corresponding to the given process, as described at the end of Sect. 2.3: we further elaborate
on this in the following sections, when providing our algebraic characterisation for (possibly
redundant) non-deterministic processes.

4 Embedding processes into terms

This section presents the core result of the paper, namely, the description of the abstract
concatenable non-deterministic processes of a pre-net R, as defined in Sect. 3, in terms of
a suitable algebra. Along the Petri nets are monoids paradigm, this is a sort of monoidal
category, freely generated from the pre-net itself.

123

Petri nets are dioids: a new algebraic foundation for…

4.1 Categorical notions

Herewe introduce the relevant categorical notions that are needed for the algebraic description
of processes. Most definitions are standard: for the presentation of monoidal categories we
closely follow [6], while for PROPs and bipermutative categories we refer to [19] and [25],
respectively.

Definition 20 (Permutative categories) A (strict) monoidal category is a pair 〈C , _ ⊗ _〉,
where C is the underlying category, the tensor product _ ⊗ _ : C × C −→ C is a functor
such that the objects (a ⊗ b) ⊗ c and a ⊗ (b ⊗ c) coincide, and satisfying the coherence
axioms ιa⊗b = ιa ⊗ ιb (for ιa the identity of object a) and

a⊗(b⊗c)
=

t1⊗(t2⊗t3)

(a⊗b)⊗c

(t1⊗t2)⊗t3

a1⊗(b1⊗c1) = (a1⊗b1)⊗c1

A permutative category is a triple 〈C , _⊗ _, γ 〉, where 〈C , _⊗ _〉 is a monoidal category
and γ : _1 ⊗ _2 ⇒ _2 ⊗ _1 : C × C −→ C is a natural isomorphism1 satisfying the
coherence axioms below

a⊗b⊗c
ιa⊗γb,c

γa⊗b,c

a⊗c⊗b

γa,c⊗ιb

c⊗a⊗b

a⊗b
γa,b

ιa⊗ιb

b⊗a

γb,a

a⊗b

Since themonoidal operation⊗of permutative categories is associative onboth objects and
arrows, from now on we will drop parenthesis. Often, they are also referred to as symmetric
(strict) monoidal categories. However, in order to ease the presentation, with respect to the
standard definitions we removed the requirement of a unity object. Hence, with an abuse of
terminology, we call a monoidal category what should be called a semigroup category. We
will return on this issue in Sect. 5.

There is a tight connection with PROP categories, as witnessed by the definition below
(see [19, Remark 16]).

Definition 21 (PROPs) A PROP is a 4-tuple 〈S,C , _ ⊗ _, γ 〉, where 〈C , _ ⊗ _, γ 〉 is a
permutative category such that the objects of C are elements of S∗, and ⊗ acts as string
concatenation on objects, i.e., s1 ⊗ s2 = s1s2.

We now enrich the set of arrows, in order to consider idempotent operators.

Definition 22 (G-monoidal categories) A g-monoidal category is a 4-tuple 〈C , _⊕_, ρ,∇〉,
where 〈C , _⊕ _, ρ〉 is a permutative category and ∇ : _1 ⇒ _1 ⊕ _1 : C −→ C is a natural
transformation satisfying the coherence axioms

a
∇a

∇a

a⊕a

ιa⊕∇a

a⊕a ∇a⊕ιa
a⊕a⊕a

a
∇a

∇a

a⊕a

ρa,a

a⊕a

a⊕b
∇a⊕∇b

∇a⊕b

a⊕a⊕b⊕b

ιa⊕ρa,b⊕ιb

a⊕b⊕a⊕b

1 Given functors F,G : A → B, a transformation τ : F ⇒ G : A → B is a family τ = {τa : F(a) →
G(a) | a ∈ OA } of arrows in B indexed by objects of A . We say that τ is natural if τa;G(f) = F(f); τb
for every arrow f : a → b in A and an isomorphism if all its components τa ’s are so.

123

P. Baldan, F. Gadducci

While symmetric monoidal categories are a staple of theoretical computer science, at least
since the seminal work byMeseguer andMontanari [26], g-monoidal were introduced for the
functorial semantics of partial algebras [9]. In the present context, they turns out to capture
the idempotency of our additive operator.

Making each object s a co-monoid object (more precisely, a co-semigroup object, since
the unity e and the arrows a → e are missing [23]) and requiring the naturality of ∇ provide
some form of idempotency for the sum of terms and it is connected to the irredundancy
requirement for concrete processes. Still, we have to ban the identity t = t ⊕ t : that would
be problematic as it would lead to undesirable equalities between terms, and on this we will
offer further remarks in the concluding section.

Definition 23 (GPROPs) A GPROP is a 5-tuple 〈S,C , _⊕_, γ,∇〉, where 〈C , _⊕_, γ,∇〉
is a g-monoidal category such that the objects of C are elements of S∗ and ⊕ acts as string
concatenation on objects, i.e., s1 ⊕ s2 = s1s2.

Bimonoidal categories, and their coherence laws, have been considered early on in the
literature [22]. Recently they surfaced, sometimes with the name rig or semiring categories,
in the definition of models for quantum programming [17].

We introduce dioidal categories in order to obtain a categorical counterpart of dioids, i.e.,
semirings where the additive operator is idempotent. In the following, we consider dioidal
categories satisfying an additional requirement.

Definition 24 (Bipermutative and dioidal categories) A bipermutative category is a 6-tuple
〈C , _⊕ _, ρ, _⊗ _, γ, ψ〉, where 〈C , _⊕ _, ρ〉 and 〈C , _⊗ _, γ 〉 are permutative categories
such that the objects (a ⊕ b) ⊗ c and (a ⊗ c) ⊕ (b ⊗ c) coincide and ψ : _1 ⊗ (_2 ⊕ _3) ⇒
(_1⊗_2)⊕ (_1 ⊗ _3) : C ×C ×C −→ C is a natural isomorphism satisfying the coherence
axioms

(a ⊕ b) ⊗ c
=

(t1⊕t2)⊗t3

(a ⊗ c) ⊕ (b ⊗ c)

(t1⊗t3)⊕(t2⊗t3)

(a1 ⊕ b1) ⊗ c1 = (a1 ⊗ c1) ⊕ (b1 ⊗ c1)

a⊗(b⊕c)
ψa,b,c

γa,b⊕c

(a⊗b)⊕(a⊗c)

γa,b⊕γa,c

(a1⊕b1)⊗c1 = (a1⊗c1)⊕(b1⊗c1)

(a⊕b)⊗c
=

ρa,b⊗c

(a⊗c)⊕(b⊗c)

ρa⊗c,b⊗c

(b⊕a)⊗c = (b⊗c)⊕(a⊗c)

(a⊕b)⊗(c⊕d)

ψa⊕b,c,d

=
((a⊕b)⊗c)⊕((a⊕b)⊗d)

=
(a⊗c)⊕(b⊗c)⊕(a⊗d)⊕(b⊗d)

(ιa⊗ιc)⊕ρb⊗c,a⊗d⊕(ιb⊗ιd)

(a⊗(c⊕d))⊕(b⊗(c⊕d))
ψa,c,d⊕ψb,c,d

(a⊗c)⊕(a⊗d)⊕(b⊗c)⊕(b⊗d)

Finally, a dioidal category is a 7-tuple 〈C , _⊕_, ρ,∇, _⊗_, γ, ψ〉, where 〈C , _⊕_, ρ,∇〉
is a g-monoidal category and 〈C , _⊕_, ρ, _⊗_, γ, ψ〉 is a bipermutative category satisfying
the coherence axiom

a⊗b
∇a⊗ιb

∇a⊗b

(a⊕a)⊗b

=
(a⊗b)⊕(a⊗b)

123

Petri nets are dioids: a new algebraic foundation for…

Fig. 8 The set of rules generating AP(R)

Fig. 9 The set of axioms quotienting AP(R)

Once again, we simplified the definition dropping the requirement of a unity object with
respect to⊕. Observe that the underlying semiring of objects is only right-distributive, as wit-
nessed by the top axioms above for bipermutative categories. Requiring also left-distributivity
would boil down to have that ψa,b,c is an identity, and this seems unreasonable unless the ⊕
operator is commutative (see [25, Section 12]).

We next introduce the PROP counterpart of bipermutative and dioidal categories.

Definition 25 (BI- and DPROPS) A BIPROP is a 8-tuple 〈S,C , _ ⊕ _, ρ, _ ⊗ _, γ, ψ〉,
where 〈S,C _ ⊕ _, ρ, _ ⊗ _, γ, ψ〉 is a bipermutative category such that the objects of C
are elements of S〈∗〉, i.e., non-empty lists 〈s1, . . . , sn〉 of elements si ∈ S∗, ⊕ acts as list
concatenation on objects, and ⊗ acts as a right distributive string concatenation on objects,
i.e., 〈s1, . . . , sm〉 ⊗ 〈t1, . . . , tn〉 = 〈s1t1, . . . , s1tn, . . . , smt1, . . . , smtn〉.

A DPROP is a BIPROP based on a dioidal category.

4.2 Categories of processes

This section introduces two categories, out of the transitions of a pre-net, which are shown to
form a PROP and aGPROP, respectively: they capture themonoidal structure of deterministic
and non-deterministic processes of pre-nets.

We start by recalling the categorical characterisation of deterministic processes for pre-
nets. This is just a rephrasing in the PROP-terminology of the results developed in [7] along
the lines of the original proposal in [11] for Petri nets.

Lemma 2 Let R be a pre-net. Then, the 4-tuple 〈S,P(R), _ ⊗ _, γ 〉 is a PROP.

In other terms, the category of concatenable processes has a monoidal structure, and
actually, a permutative one, where the objects are freely generated. In fact, the arrows are
freely generated, too. The formal statement is reported below.

Proposition 4 (The PROP of deterministic processes) Let R be a pre-net and AP(R) the
permutative category whose objects are elements of S∗, ⊗ acts as string concatenation, and
arrows are generated according to the rules in Fig. 8, subject to the axioms in Fig. 9. Then,
〈S,AP(R), _ ⊗ _, γ 〉 is isomorphic (as a PROP) to 〈S,P(R), _ ⊗ _, γ 〉.

Since the composition operator is partial, some of the axioms in Fig. 9 are required to
hold only whenever both sides are defined. The objects ofAP(R) are thus non-empty strings
representing sources and targets of deterministic processes. Its arrows are equivalence classes
of concrete elements generated by the set of inference rules in Fig. 8, modulo the equations
making it a permutative category.

123

P. Baldan, F. Gadducci

Fig. 10 The set of rules generating ANP(R)

Fig. 11 The set of axioms quotienting ANP(R)

Being isomorphic as aPROPmeans that the isomorphism functor preserves the symmetries
γ and the elements of S. Moreover, the monoidal operator on objects is preserved on-the-
nose, as expected since in both categories the objects are strings of places. In fact, the functor
is freely induced by the function mapping the arrow t to the corresponding concatenable
process δt for each transition t of the pre-net.

As already mentioned, the result for deterministic processes is well-known in the Petri
net literature. Looking at the recent categorical literature, it might be derived by the concrete
characterisation of the free PROP built out of an hyper-graph, as detailed in [19].2 A direct
proof can be carried out by obtaining a normal forms for the arrows of AP(R), and then
providing a concrete function between those arrows and processes ofCP(R). Indeed, we are
going to proceed this way for non-deterministic processes.

Firstly, we observe that the category of non-deterministic processes is a GPROP.

Lemma 3 Let R be a pre-net. Then, the 5-tuple 〈S∗,NP(R), _ ⊕ _,∇, ρ〉 is a GPROP.

Proof The proof just consists in a lengthy but straightforward check of the naturality of ∇
and ρ, and of the validity of the coherence laws. ��

Thus, also the category of concatenable non-deterministic processes of a pre-net has a
monoidal structure, and in fact, a g-monoidal one, where the objects are freely generated:
the constants are the strings of S, and the objects are lists of strings. Once again, the arrows
are freely generated, too. The formal statement is reported below: its proof will be carried
out throughout the rest of this subsection.

Theorem 1 (The GPROP of non-deterministic processes) Let R be a pre-net and ANP(R)

the g-monoidal category whose objects are elements of S〈∗〉, ⊕ acts as list concatenation on
objects, and arrows are generated according to the rules in Fig. 10, subject to the axioms in
Fig. 11. Then, 〈S∗,ANP(R), _ ⊕ _,∇, ρ〉 is isomorphic (as a GPROP) to 〈S∗,NP(R), _ ⊕
_,∇, ρ〉.

2 Even if, despite the common usage, the terminology adopted in [19] is that of mega-graphs.

123

Petri nets are dioids: a new algebraic foundation for…

Axioms 〈χ1〉; 〈χ2〉 = 〈χ1;χ2〉 and ι〈a〉 = 〈ιa〉 guarantee that the categorical structure of
AP(R) is lifted to ANP(R).3 Furthermore, axiom ιa⊕b = ιa ⊕ ιb ensures that the identities
in ANP(R) are obtained as composition of those in AP(R).4

As in the case of AP(R), being isomorphic as a GPROP means that the isomorphism
functor preserves the symmetries, the duplicators, and the elements of S∗, and as before the
monoidal operator on objects is preserved on-the-nose. In fact, the functor is built on top
(i.e., it lifts) the functor mapping AP(R) into P(R), so that in fact it preserves the elements
of S as well as the deterministic processes.

To the best of our knowledge, the result is new in the Petri net literature: no algebraic
structure has been proposed for non-deterministic processes either for nets or for pre-nets. The
proof is carried out below and it follows the same lines as the one for deterministic processes:
it first obtains a normal form for the arrows of ANP(R), and then it provides a concrete
function between such arrows and the processes of NP(R). A key point in the procedure
is the collapsing phase that is required in the composition of non-deterministic processes,
which is mimicked by the naturality of∇, i.e., by the axiom∇; (η⊕η) = η; ∇. In order to get
some intuition, let us consider the arrow η = 〈t〉 for some transition t . If we interpret arrows
as concrete processes, the concatenation of ∇ followed by η ⊕ η, as in the left-hand side of
the naturality axiom, produces a redundant process consisting of a non-deterministic choice
between two occurrences of transition t . Its collapsing is the irredundant process consisting
of a single t whose target is duplicated and offered twice. Instead, the concatenation of
η followed by ∇, as in the right-hand side of the axiom, produces immediately the latter
irredundant process. We will comment further the issue of redundancy in Sect. 5.

We next proceed with the proof of Theorem 1. As a first step, along the lines of the
decomposition for non-deterministic processes in Lemma 1, we can decompose arrows of
ANP(R) in a “maximally redundant” shape. Before, we need to introduce a shorthand: given
a ∈ S〈∗〉, we let ∇n

a denote the n-times duplication of a, uniquely obtained by induction as
∇1
a = ιa and ∇k+1

a = ∇a; (∇k
a ⊕ ιa).

Lemma 4 (Normal form) Let R be a pre-net and η : 〈s1, . . . , sn〉 → 〈t1, . . . , tm〉 an arrow
of ANP(R).

1. If n = 1, then η can be decomposed as

∇m〈s1〉; (〈χ1〉 ⊕ · · · ⊕ 〈χm〉)
such that χk ∈ AP(R) for k ∈ {1, . . . ,m}.

2. If n > 1 then η can be decomposed as

(η1 ⊕ · · · ⊕ ηn); ρ

with ηi : 〈si 〉 → 〈ti1 , . . . , ti j 〉, where ti1 . . . ti j are strings occurring in t1 . . . tm such that
i1 ≤ i2 ≤ · · · ≤ i j .
Moreover, ρ does not alter the relative order of the targets of the ηi , i.e., ρ is stable with
respect to the equivalence�h−1

j=0 i j+k1 ∼ �h−1
j=0 i j+k2, for h ∈ [1, n] and k1, k2 ∈ [1, ih].

Proof We first focus on point (1). Observe that the arrows of ANP(R) are equivalence
classes of terms built out of the rules in Fig. 10, quotiented by the axioms in Fig. 11. Objects
of ANP(R) are tuples of strings. Since the generators (i.e., the arrows from AP(R)) have a

3 In abstract data types terms, an order-sorted algebra with type AP(R) included in type ANP(R).
4 Indeed, also for ρ and ∇ would suffice to consider only those instances associated to the objects of AP(R),
and consider the axioms involving them as definitions of derived operators.

123

P. Baldan, F. Gadducci

unary source and target (i.e., both source and target are tuples consisting of a single string),
it is immediate to see that all the symmetries can be moved to the far left. The desired shape
is then obtained by observing that any arrow that originates from a ∈ S∗ and contains no
generator from AP(R) is equated by the axioms to an arrow of the shape ∇k

a .
Concerning point (2), the desired shape is readily recovered by exploiting the naturality

of ∇ and ρ and the functoriality of⊕. The fact that the number of components of η coincides
with the number of strings in the originating object is due again to the fact that the arrows
generating ANP(R) have a unary source.

Recalling, again, that arrows with unary source and containing no generators fromAP(R)

are equivalent arrows of the shape ∇k
a , it follows that the requirement on the stability of the

symmetry ρ can be satisfied. ��
The normal form for the arrows of ANP(R) does mimic the one for non-deterministic

processes in Lemma 1. Hence, as mentioned before, to a certain extent it describes the
maximally non-deterministic shape: Each resource is duplicated as many times as needed,
and then each copy is used for a single deterministic process (see also Sect. 5). E.g., a term
t; ∇ leads to the normal form ∇; (t ⊕ t). This can be used to provide a proof for Theorem 1.

Proof of Theorem 1 We prove Theorem 1 by relying on Lemmas 4 and 1.
First, by Proposition 4, we can consider a functor D : AP(R) → P(R), establishing

an isomorphism between AP(R) and the category of deterministic processes P(R), seen as
PROPs. Observing that the arrows of ANP(R) are built inductively, according to the rules
of Fig. 10, using the arrows of AP(R) as generators, we deduce that such functor can be
extended to a functor N : ANP(R) → NP(R) preserving the GPROP structure, since the
axioms of Fig. 11 are clearly preserved.

Now, a simple, but fundamental observation is that the functor N maps terms of
ANP(R) in normal form (as in Lemma 4) to normal form decompositions of concaten-
able non-deterministic processes (as in Lemma 1). This is immediate since duplicators and
permutations are mapped to the corresponding duplicator and permutation processess, and
for each term of shape 〈χ〉, with χ arrow in P(R), by construction N (〈χ〉) = 〈D(χ)〉 with
D(χ) a concatenable deterministic process in P(R).

The mapping is clearly surjective, whence the functorN is full. Moreover if two normal
form terms t1 and t2 in ANP(R) are mapped to the same concrete concatenable non-
deterministic process in NP(R), necessarily they have the same “shape”, i.e., for i ∈ {1, 2},
we have ti = (ηi1⊕· · ·⊕ηin); ρi , with ηij = ∇m j

〈s j 〉; (〈χ i, j
1 〉⊕· · ·⊕〈χ i, j

m j 〉). Since ρ1 and ρ2 are

mapped to the same permutation process, they are equivalent ρ1 ∼ ρ2. Additionally, exploit-
ing the faithfulness of the functor fromAP(R) intoP(R)we conclude that for j ∈ {1, . . . , n},
h ∈ {1, . . . ,m j } it holds χ

1, j
h = χ

2, j
h . Therefore t1 ∼ t2. This allows us to conclude that the

functor N is also faithful. (A detailed proof could be given as an adaptation of the proof of
correspondence between term graphs and gs-monoidal categories in [8, Section 4]: see also
Sect. 5).

Recalling that the categories ANP(R) and NP(R) have the same objects, and the functor
is the identity on objects, we conclude that N is an isomorphism. ��
4.3 A dioidal category for non-deterministic processes

In this section we show that the category of concatenable non-deterministic processesNP(R)

is a dioidal one. We first prove that the free diodal category generated from the net, seen as
a GPROP, is isomorphic to ANP(R), the free g-monoidal category built over concaten-

123

Petri nets are dioids: a new algebraic foundation for…

Fig. 12 The set of rules generating ADP(R)

Fig. 13 The natural transformation ψ

Fig. 14 The set of axioms quotienting ADP(R)

able deterministic processes. Then we conclude exploiting the algebraic characterisation of
NP(R), which in Theorem 1 is shown to be isomorphic to ANP(R). In terms of concrete
processes, the result provides a notion of parallel composition for non-deterministic pro-
cesses, extending the parallel composition for deterministic processes. The formal statement
is reported below, its proof will be carried out throughout the rest of this subsection.

Proposition 5 (TheDPROPof non-deterministic processes)Let R be a pre-net andADP(R)

the dioidal category whose objects are elements of S〈∗〉, where ⊕ acts as list concate-
nation on objects, ⊗ acts as a right distributive string concatenation on objects, i.e.,
〈a1, . . . , am〉 ⊗ 〈b1, . . . , bn〉 = 〈a1b1, . . . , a1bn, . . . , anb1 . . . , anbm〉, and the arrows are
generated according to the rules in Fig. 12, subject to the axioms in Fig. 14. Then,
〈S∗,ADP(R), _ ⊕ _,∇, ρ〉 is isomorphic (as a GPROP) to 〈S∗,NP(R), _ ⊕ _,∇, ρ〉.

Note that the natural transformationψ in Fig. 13,whichmakesADP(R) a dioidal category,
is actually a derived operator: it is a chosen permutation with source a ⊗ (b ⊕ c) and target
(a ⊗ b) ⊕ (a ⊗ c). It allows us to simplify the presentation of the axioms concerning γ in
Fig. 14.

Lemma 5 (ADP(R) is dioidal) Let R be a pre-net. Then, 〈S,ADP(R), _ ⊕ _,∇, ρ, _ ⊗
_, γ, ψ〉 is a DPROP.

Proof We just need to show that ψ is natural and that ψa⊕b,c,d verifies the decomposition
property stated as a coherence axiom in Definition 24. The latter can be shown by induction
on the length of a ⊕ b, while the former is proved by the diagram below.

123

P. Baldan, F. Gadducci

a1⊗(a2⊕a3)

γa1,a2⊕a3

ψa1,a2,a3

η1⊗(η2⊕η3)

(a2⊕a3)⊗a1
(η2⊕η3)⊗η1

=
(b2⊕b3)⊗b1

γb2⊕b3,b1

=
b1⊗(b2⊕b3)

ψb1,b2,b3

(a1⊗a2)⊕(a1⊗a3)

γa1,a2⊕γa1,a3

(η1⊗η2)⊕(η1⊗η3)

(a2⊗a1)⊕(a3⊗a1)

(η2⊗η1)⊕(η3⊗η1)

(b2⊗b1)⊕(b3⊗b1)

γb2,b1
⊕γb3,b1

(b1⊗b2)⊕(b1⊗b3)

��

Proposition 5 states that the category of concrete non-deterministic processes has a dioidal
structure, induced by the g-monoidal one. The proof relies on the way the arrows ofADP(R)

are generated, and it is a consequence of the lemma below.

Lemma 6 (Reducing the dioidal complexity) Let R be a pre-net. Then, 〈S∗,ADP(R), _ ⊕
_,∇, ρ〉 is isomorphic (as a GPROP) to 〈S∗,ANP(R), _ ⊕ _,∇, ρ〉.

Proof We first note that there exists a functor ANP(R) → ADP(R) that preserves the
GPROP structure. In fact, each term obtained via the rules for ANP(R) in Fig. 10, which in
turn is built on top of those for AP(R) in Fig. 8, is indeed generated also by the rules for
ADP(R) in Fig. 12. The same goes for the corresponding sets of axioms, thus the functor
does exist.

The next step is to prove that such a functor is full and faithful.
As for fullness, it suffices to note that each term generated in ADP(R) can be expressed

via the axioms of Fig. 14 as a composition of terms inANP(R). This is true for the generators:
it just needs to be shown for γa,b, which is now defined for all lists of strings a, b ∈ S〈∗〉.
To this aim observe that the second argument of γ can be simplified by repeatedly using the
right-most axiom of the line before the last in Fig. 14, namely γa,b⊕c = ψa,b,c; (γa,b ⊕γa,c).
Similarly, thefirst argument ofγ can be simplified by the equalityγa⊕b,c;ψc,a,b = γc,a⊕γc,b,
which is derived by rewriting the same axiom. Combining the two, we prove that γa⊕b,c⊕d

identifies a chosen permutation with source (a ⊕ b) ⊗ (c ⊕ d) and target (a ⊗ b) ⊕ (c ⊗ d)

in ANP(R).
We then move to show that the decomposition holds for those terms whose top operator

is ⊗. First of all, distributivity. Since ⊗ is strictly right-distributive on arrows, as it is for
objects, it suffices to show that left-distributivity holds, up-to isomorphism. This boils down
to prove the naturality of ψ , which is shown in the proof of Lemma 5.

The two axioms of the last line in Fig. 14 guarantee the decomposition of ρa,b ⊗ ιc and
∇a ⊗ ιb. By the naturality of γ we have γa⊕b,c; (ιc ⊗ ρa,b) = (ρa,b ⊗ ιc); γb⊕a,c, and finally
we have (ιb ⊗ ∇a);ψb,a,a = ∇b⊗a , as shown by the diagram below.

b⊗(a⊕a) ιb⊗(ιa⊕ιa)

γb,a⊗a

b⊗a
γb,a

ιb⊗ιa

ιb⊗∇a

a⊗b
∇a⊗ιb

γa,b ∇a⊗b

(a⊕a)⊗b

=

γa⊕a,b
b⊗(a⊕a)

ψb,a,a

b⊗a

∇b⊗a

(a⊗b)⊕(a⊗b)
γa,b⊕γa,b

(b⊗a)⊕(b⊗a)

123

Petri nets are dioids: a new algebraic foundation for…

As for faithfulness, note that the extra axioms involving γ , ρ, and ∇ actually boil down to
a coherence property stating the one-to-one correspondence between the arrows in ADP(∅)

with source a and target b, and the arrows in ANP(∅) with same source and target (which
correspond to surjective functions up-to permutation from b to a, as it occurs to the ρ and
∇ fragment: see e.g. [8, Lemma 15]). The only relevant axiom is thus right-distributivity.
However, it can be considered as a right-to-left rewriting rule, resulting in a normal form for
any equivalence class of terms. ��

We finally go back to the main result of this subsection: it is now straightforward.

Proof of Proposition 5 Immediate consequence of Lemma 6 and Theorem 1. ��

5 On neutral elements and redundancy

In this section we elaborate on two themes. First we discuss the choice of omitting the neutral
element for the monoidal operators representing parallel and non-deterministic composition.
We argue that while for parallel composition the presence of the neutral element would be
inessential, in the case of non-deterministic composition it has interesting consequences and
a natural interpretation in terms of concrete processes. Secondly, we elaborate on the choice
of requiring irredundancy on processes, outlining the theory that would arise omitting this
requirement and discussing the corresponding graphical interpretation.

5.1 Neutral elements

Adding the neutral element (corresponding to the empty marking) for parallel composition
would not require relevant changes in the algebraic theory of deterministic processes. At the
level of pre-nets, this change would be naturally imply the relaxation of the constraint of
non-emptyness for the pre- and post-sets of transitions. This would not hinder the notion of
process but the corresponding theory of (concrete) concatenable processes would be more
complex. First of all, the presence of transitions with empty pre-set invalidates the current
notion of canonical process. In fact, the canonical name for a transition is made unique by
using the list of places in the pre-set of the transition. It would be possible to adapt the notion
of canonical process with a special treatment of minimal transitions with empty pre-set, but
the resulting construction would be notably more complex. This additional complication
would not be suitably rewarded since, from an operational point of view, allowing for empty
pre-sets just implies the unrealistic possibility of firing an unbounded number of transition in
parallel. Allowing empty post-sets would instead be less problematic. The main difference
would be that cuts lose their operational interpretation as snapshots of a computation, since
the firing of transitions with empty post-set would not be witnessed by maximal places.
However, since the addition of a sink place for any transition with empty post-set results in a
operationally equivalent net, it is quite standard to require that also post-sets are not empty.

For the above reasons we do not deepen further the theory that would arise by adding the
neutral element for parallel composition and, in the rest of this section, we continue to work
without such neutral element and with the assumption that transitions have non-empty pre-
and post-sets.

The insertion of the neutral element for non-deterministic composition is instead more
interesting. It fits naturally with a relaxed notion of non-deterministic process, where the
result of some deterministic sub-computations can be discarded.

123

P. Baldan, F. Gadducci

Fig. 15 The process !a

Definition 26 (Loose concatenable non-deterministic process) Let R be a pre-net. A loose
concatenable non-deterministic process η for R is a triple of lists 〈α,π ,ω〉 with

– π = π1 · · · πn is a list of (pairwise disjoint) non-deterministic processes;
– α = α1 . . . αn is a list of strings such that αi ∈ SOi

∗ and μ(αi) = min(πi);
– ω = ω1 . . . ω� is a list of strings such that ω j ∈ SOi

∗ for some i ∈ {1, . . . , n} and
μ(ω j) ∈ cuts(πi).

The source of η is the list ζ0(η) = π1
∗(α1) . . . πn

∗(αn), i.e., the list of the sources of
the component processes, while the target of η is ζ1(η) = u1 . . . u�, where u j = πi

∗(ω j) if
μ(ω j) ∈ cuts(πi).

With respect to Definition 14, the lists α, π , andω are possibly empty and the requirement
thatW is a covering is removed. Consider e.g. the non-deterministic process of Fig. 5. Should
the target be 〈{e1, f1, d1, b2}{g2}{ f2, g1}〉, it would not be a covering anymore, since the post-
set {b4} of the transition z does not appear in the target. With such an additional freedom
we have two new relevant basic processes (which play a role in the correspondence with the
algebraic characterisation), namely the process !a that discards its source and has an empty
list of targets, depicted in Fig. 15, and the empty process, consisting of an empty list of
components, with empty lists of sources and targets. The corresponding obviously defined
category of loose concatenable non-deterministic processes is denoted as NPl(R).

We now move to the algebraic characterisation of loose processes. As a start, note that
with respect to Definition 20, the monoidal operator ⊕ for non-deterministic composition is
equipped with a neutral object ε such that ε ⊕ a = a and the coherence axiom ιε ⊕ t = t is
verified. Correspondingly, a permutative category is a monoidal one verifying the coherence
axiom ρε,ε = ιε (from which e.g. ρε,a = ιa follows).

The notion of bipermutative category as given in Definition 24 also generalises smoothly:
assuming ⊗ still being a semi-group category and ε the neutral element of ⊕, it suffices to
require that the objects ε ⊗ a and ε coincide and impose the coherence axioms ιε ⊗ t = ιε
(from which e.g. γε,a = ιε follows).

The adaptation of the notion of g-monoidal and hence of dioidal categories is slightly
more complex, but, interestingly enough, the corresponding notions are well-studied in the
literature (see e.g. [8,9], where they are used for modelling term graphs and providing a
functorial semantics for multi-algebras). We provide an explicit definition below, basically
taken from [9]. It includes also some variations of g-monoidal categories which are going to
be at hand in the following subsection.

Definition 27 (Diodal categories) A gs-monoidal category is a 6-tuple 〈C , _⊕_, ε, ρ,∇, !〉,
where 〈C , _ ⊕ _, ε, ρ〉 is a permutative category and ! : _1 ⇒ ε : C −→ C and ∇ : _1 ⇒

123

Petri nets are dioids: a new algebraic foundation for…

_1 ⊕ _1 : C −→ C are transformations satisfying the coherence axioms !ε = ιε and

a
∇a

ιa

a⊕a

ιε⊕!a
a = ε⊕a

a⊕b
!a⊕!b

!a⊕b

ε⊕ε

=
ε

a
∇a

∇a

a⊕a

ιa⊕∇a

a⊕a ∇a⊕ιa
a⊕a⊕a

a
∇a

∇a

a⊕a

ρa,a

a⊕a

a⊕b
∇a⊕∇b

∇a⊕b

a⊕a⊕b⊕b

ιa⊕ρa,b⊕ιb

a⊕b⊕a⊕b

A gs-monoidal category is g-monoidal if ∇ is a natural transformation.
A pre-dioidal (dioidal) category is a 9-tuple 〈C , _ ⊕ _, ε, ρ,∇, !, _ ⊗ _, e, γ, ψ〉, where

〈C , _⊕_, ε, ρ,∇, !〉 is a gs-monoidal (g-monoidal) category and 〈C , _⊕_, ε, ρ, _⊗_, γ, ψ〉
is a bipermutative category satisfying the coherence axioms

a⊗b
∇a⊗ιb

∇a⊗b

(a⊕a)⊗b

=
(a⊗b)⊕(a⊗b)

a⊗b
!a⊗ιb

!a⊗b

ε⊗b

=
ε

We then extend the notion of GPROP such that its objects are now possibly empty lists of
non-empty strings over S. The correspondence with loose processes can still be recovered,
as it is stated by the lemma below, which generalises Lemma 3.

Lemma 7 Let R be a pre-net. Then, the 7-tuple 〈S∗,NPl(R), _⊕ _, ε, ρ,∇, !〉 is a GPROP.
We leave to the reader the reformulation of Theorem 1 and Proposition 5.

5.2 Redundancy

We hinted in several places in the paper to the fact that most of the notions concerning
the theory of pre-net processes could be actually recast in terms of suitable graphs with
interfaces, hence in the end in terms of PROPs. In this section we comment further on such
correspondence and observe that it can become even tighter by relaxing the requirement of
irredundancy on pre-net processes.

A deterministic process π : O → R can be naturally seen as a typed graph, i.e., as a graph
morphism from a directed acyclic hyper-graph, the occurrence pre-net O , to R, which plays
the role of a type graph. The requirement of absence of forward and backward conflicts in
O amounts to imposing that in the correspoding graph any node has at most one outgoing or
one ingoing, respectively, edge. Concatenable processes have, additionally, an interface, i.e.,
in graph theoretical terms, a pair of morphisms In → O , Out → O for discrete graphs In
and Out. In a well-defined process, In and Out are just the minimal and the maximal places,
respectively, of the process.

The axioms on the category AP(R) of concatenable processes (see Proposition 4) have
an immediate graphical interpretation: they are aimed at establishing a one-to-one corre-
spondence between the graphical and the set-theoretical presentation of processes. Hence
Proposition 4 is just rephrasing in terms of PROPs the classical results about deterministic
processes [10,26], i.e., that deterministic processes are the arrows of the free symmetric

123

P. Baldan, F. Gadducci

Fig. 16 Direct interpretation of the interchange axiom

(strict) monoidal category generated by R (and see also the recent survey on graphical lan-
guages of monoidal categories [33]). In other words, the axioms are immaterial since they
are hard-wired in the visual representation. Consider, e.g., two transitions t : a → b and
u : c → d and the derived law δt ⊗ δu = (id ⊗ δu); (δt ⊗ id), as shown by Fig. 16.

Following the seminal work on traced monoidal categories [20], there has been a renewed
interest in graphical languages for concurrent computational systems, as witnessed by the
survey mentioned above. However, while the characterisation of parallel composition as a
monoidal operation is well-understood, the situation is not equally established for those for-
malisms mixing parallel and non-deterministic behaviour. Indeed, tight connections has been
established between such mixed structures and e.g. suitable notions of multi-relations [34],
but, to the best of our knowledge there has been so far no proposal for a purely graphical
interpretation of bipermutative categories. Thus, we believe that our correspondence result
for pre-net processes highlights the role of such categories in the graphical representation of
non-determinism.

With hindsight, our proposal is in the end quite simple: a non-deterministic process is
just a list of graphs with interface αi → Oi , ω j → Oi . We can then focus on a single non-
deterministic process, and thus most axioms have an immediate graphical interpretation, in
the sense they identify terms having the same graphical representation as processes. The only
exception is the naturality of∇, i.e., t; ∇ = ∇; (t⊕t): as alreadymentioned, it is related to the
irredundancy conditions for non-deterministic processes and aims at identifying redundant
processes with the same collapsing.

This can be made more precise by elaborating a bit on an algebraic characterisation of
possibly irredundant processes. LetRNPl(R) be the category of concatenable redundant non-

123

Petri nets are dioids: a new algebraic foundation for…

Fig. 17 Three redundant processes

deterministic processes: parallel composition is the same as for non-deterministic processes,
while sequential composition is as in Definition 16, but avoiding the collapsing phase. Then
we have the following.

Lemma 8 Let R be a pre-net. Then, the 7-tuple 〈S∗,RNPl(R), _ ⊕ _, ε, ρ,∇, !〉 is a
GSPROP.

Relying on the representation result concerning gs-monoidal categories [8] we now
could reformulate Theorem 1 and give an algebraic characterisation of the redundant non-
deterministic processes of a net R as the arrows of the free gs-monoidal category (see
Definition 27) built over a net R (as well as an equivalent of Proposition 5 for pre-dioidal
categories).

As an example, consider the three (possibly redundant) processes for the pre-net R0 in
Fig. 1 depicted in Fig. 17 (the left-most and central ones are redundant, while the right-most,
which has been presented already in Fig. 7c, is irredundant).

The three terms∇a∗b∗a; [(δt ; δu)⊕(δt ; δu)], δt ; ∇c; (δu⊕δu), and δt ; δu; ∇e∗ f correspond
to processes that just differ for the degree of sharing. They would be collapsed to the same
irredundant process (the right-most) once the irredundancy condition is imposed and indeed
the three terms are equated by the axioms defining ANP(R).

In other terms, while possibly redundant processes can be seen as graphs and the categor-
ical axioms naturally corresponds to the graphical interpretation, the irredundancy condition
and the related collapsing phase corresponds to maximising the sharing, thus identifying
redundant processes differing only for the degree of sharing. The move from redundant to
irredundant processes is formalised in terms of a functor from theGSPROPcategory of redun-
dant processes in Lemma 8 to the GPROP category of irredundant processes in Lemma 7.

123

P. Baldan, F. Gadducci

Such a functor exists as the latter category differs from the former just for the addition of an
axiom, i.e., the naturality of ∇.

6 Conclusions and further works

Along the lines of the seminal paper [26], our work offers an algebraic presentation for the
non-deterministic computations of Petri (pre-)nets.

As a first step we introduced concatenable non-deterministic processes for Petri nets,
building on the (non-concatenable) processes originally defined by Engelfriet [12]. Then we
investigated the algebraic structure of the resulting category, showing that it has a tight link
with a class of bimonoidal categories, whichwe called dioidal categories: the category of non-
deterministic processes of a net arises as the dioidal category freely generated from the net
itself. To the best of our knowledge, putting dioidal categories into the limelight represents
a small addition to the categorical lore. The idea of mixing two monoidal structures for
representing parallel and non-deterministic behaviours in (possibly distributed) systems has
surfaced in the literature. In particular, our formalism shares with semiringal categories [18]
the emphasis on the distributivity laws between the two monoidal operators. Among the
former proposals for the characterisation of non-deterministic net computations, the most
reminiscent of our solution is the one based on linear categories [24], i.e., categories with
a monoidal and a cartesian structure. It is precisely our choice of working with the less
structured bimonoidal categories that allows us to establish the central result of our paper: a
functorial bijection between the concatenable non-deterministic processes of a net and the
arrows of a suitable free category built out of it.

An established trend in formal methods has been the adoption of graphical presenta-
tions for modelling concurrent and distributed systems, such as network algebras [35] and
bigraphs [27]. With similar aims, a larger attention has been recently devoted to visual lan-
guages for (extensions of) monoidal categories [33]. The main tool for such monoidal case
are PROPs, whose connection with linear algebra and flow/signal graphs has been the focus
of much work (see e.g. [5]). Our introduction of GPROPs can thus be considered as a further
validation of the paradigm, offering a visual tool for bipermutative/dioidal categories, and
pave the way to further research on the area. Indeed, considering also the characterisation of
redundant processes in Sect. 5.2, we believe that redundancy can be characterised by giving
a direction ∇; (t ⊕ t) → t; ∇ to the naturality axioms and then introducing a suitable graph
rewriting system, along the lines of what has been done for Frobenius categories [4].

As for further refinements on the categorical model, as e.g. the self-dual category for
modelling processes of contextual nets proposed in [14], let us just mention that we toyed
with the idea of capturing the idempotency of⊕ by making∇ a natural isomorphism (hence,
more in tune with the algebraic notion of dioids). The concrete description of concatenable
non-deterministic processes does not allow it, since there would be no possible interpretation
for the arrow (∇a)

−1 : a ⊕ a → a. However, this is not unfortunate, since the naturality of
∇ would make the diagram below commute

a⊕a
(∇a)

−1

∇a⊕∇a

a
∇a

a⊕a

a⊕a⊕a⊕a
ιa⊕γa,a⊕ιa

a⊕a⊕a⊕a

(∇a)
−1⊕(∇a)

−1

123

Petri nets are dioids: a new algebraic foundation for…

We would infer that (t1 ⊕ t2); (t3 ⊕ t4) is equated by functoriality to (t1; t3) ⊕ (t2; t4) and by
naturality to (t1; t3) ⊕ (t1; t4) ⊕ (t2; t3) ⊕ (t2; t4), while those terms should intuitively repre-
sent different non-deterministic processes. Idempotency and functoriality look like clashing
properties for the ⊕ operator, and we could not let the latter go.

As a final remark, we believe that, from the point of view of net theory, the categorical
presentation of non-deterministic processes can also contribute to a clearer presentation of
the relation between the (deterministic) process semantics and the unfolding semantics. In
fact, given a net R and an initial state u, consider the slice category u ↓ NP(R). Relying also
on the results in [12], it should be easy to show that such category is a pre-order, whose ideal
completion is a lattice having as top element the unfolding of R (from u) as defined in [2].

Acknowledgements We are indebted to Professor Peter May for the interaction and the fruitful discussions
on bimonoidal categories, as well as to the reviewers for their remarks and pointers to the literature.

References

1. Baldan, P., Bonchi, F., Gadducci, F.,Monreale, G.V.:Modular encoding of synchronous and asynchronous
interactions using open Petri nets. Sci. Comput. Program. 109, 96–124 (2015)

2. Baldan, P., Bruni, R., Montanari, U.: Pre-nets, read arcs and unfolding: a functorial presentation. In:
Wirsing, M., Pattinson, D., Hennicker, R. (eds.) Algebraic Development Techniques (WADT 2002),
Lecture Notes in Computer Science, vol. 2755, pp. 145–164. Springer (2003)

3. Baldan, P., Gadducci, F.: Petri nets are dioids. In: Meseguer, J., Rosu, G. (eds.) Algebraic Methodologies
and Software Technology (AMAST 2008), Lecture Notes in Computer Science, vol. 5140, pp. 51–66.
Springer (2008)

4. Bonchi, F., Gadducci, F., Kissinger, A., Sobocinski, P., Zanasi, F.: Rewriting modulo symmetric monoidal
structure. In: Grohe, M., Koskinen, E., Shankar, N. (eds.) Logic in Computer Science (LICS 2016), pp.
710–719. ACM, New York (2016)

5. Bonchi, F., Sobocinski, P., Zanasi, F.: Full abstraction for signal flow graphs. In: Rajamani, S.K., Walker,
D. (eds.) Principles of Programming Languages (POPL 2015), pp. 515–526. ACM, New York (2015)

6. Bruni, R., Gadducci, F., Montanari, U.: Normal forms for algebras of connections. Theor. Comput. Sci.
286(2), 247–292 (2002)

7. Bruni, R., Meseguer, J., Montanari, U., Sassone, V.: Functorial models for Petri nets. Inf. Comput. 170(2),
207–236 (2001)

8. Corradini, A., Gadducci, F.: An algebraic presentation of term graphs, via gs-monoidal categories. Appl.
Categ. Struct. 7(4), 299–331 (1999)

9. Corradini, A., Gadducci, F.: A functorial semantics for multi-algebras and partial algebras, with applica-
tions to syntax. Theor. Comput. Sci. 286, 293–322 (2002)

10. Degano, P., Meseguer, J., Montanari, U.: Axiomatizing net computations and processes. In: Logic in
Computer Science (LICS 1989), pp. 175–185. IEEE Computer Society (1989)

11. Degano, P., Meseguer, J., Montanari, U.: Axiomatizing the algebra of net computations and processes.
Acta Inform. 33(7), 641–667 (1996)

12. Engelfriet, J.: Branching processes of Petri nets. Acta Inform. 28(6), 575–591 (1991)
13. Esparza, J., Heljanko, K.: Unfoldings: a partial order approach to model checking. Springer, Berlin (2008)
14. Gadducci, F., Montanari, U.: Axioms for contextual net processes. In: Larsen, K., Skyum, S., Winskel,

G. (eds.) Automata, Languages and Programming (ICALP 1998), Lecture Notes in Computer Science,
vol. 1443, pp. 296–308. Springer (1998)

15. Goltz, U., Reisig, W.: The non-sequential behaviour of Petri nets. Inf. Control 57(2/3), 125–147 (1983)
16. Gorrieri, R.: Process algebras for Petri nets: the alphabetization of distributed systems. Springer, Berlin

(2017)
17. Green, A., Altenkirch, T.: From reversible to irreversible computations. In: Selinger, P. (ed.) Quantum

Programming Languages (QPL 2006), Electronic Notes in Theoretical Computer Science, vol. 210, pp.
65–74. Elsevier, Amsterdam (2008)

18. Grosu, R., Lucanu, D., Stefanescu, G.: Mixed relations as enriched semiringal categories. Univers. Com-
put. Sci. 6(1), 112–129 (2000)

19. Hackney, P., Robertson, M.: On the category of PROPs. Appl. Categ. Struct. 23(4), 543–573 (2015)

123

P. Baldan, F. Gadducci

20. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. Math. Proc. Camb. Philos. Soc. 119(3),
447–468 (1996)

21. Lack, S.: Composing PROPs. Theory Appl. Categ. 13(9), 147–163 (2004)
22. Laplaza, M.: Coherence for distributivity. In: Coherence in Categories, Lecture Notes in Mathematics,

vol. 281, pp. 29–72. Springer (1972)
23. Mac Lane, S.: Categories for the Working Mathematician. Springer, Berlin (1971)
24. Martì-Oliet, N., Meseguer, J.: From Petri nets to linear logic through categories: a survey. Found. Comput.

Sci. 2(4), 297–399 (1991)
25. May, J.: The construction of E∞ ring spaces from bipermutative categories. Geom. Topol. Monogr. 16,

283–330 (2009)
26. Meseguer, J., Montanari, U.: Petri nets are monoids. Inf. Comput. 88(2), 105–155 (1990)
27. Milner, R.: The Space and Motion of Communicating Agents. Cambridge University Press, Cambridge

(2009)
28. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains, part 1. Theor. Comput.

Sci. 13, 85–108 (1981)
29. Petri, C.: Kommunikation mit automaten. Ph.D. Thesis, Institut für Instrumentelle Matematik, Bonn

(1962)
30. Reisig, W.: Petri nets: an introduction. Springer, Berlin (1985)
31. Sangiorgi, D., Walker, D.: The Pi-Calculus: A Theory of Mobile Processes. Cambridge University Press,

Cambridge (2001)
32. Sassone, V.: An axiomatization of the category of Petri net computations. Math. Struct. Comput. Sci.

8(2), 117–151 (1998)
33. Selinger, P.: A survey of graphical languages for monoidal categories. Spring. Lect. Notes Phys. 13(813),

289–355 (2011)
34. Stefanescu, G.: Reaction and control I. Mixing additive andmultiplicative network algebras. Log. J. IGPL

6(2), 348–369 (1998)
35. Stefanescu, G.: Network Algebra. Springer, Berlin (2000)
36. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.) Petri Nets: Applications

and Relationships to Other Models of Concurrency, Lecture Notes in Computer Science, vol. 255, pp.
325–392. Springer (1987)

123

	Petri nets are dioids: a new algebraic foundation for non-deterministic net theory
	Abstract
	1 Introduction
	2 Petri nets and non-deterministic processes
	2.1 Pre-nets and their morphisms
	2.2 Occurrence pre-nets
	2.3 Processes

	3 Concatenable processes
	3.1 Concatenable deterministic processes
	3.2 Concatenable non-deterministic processes
	3.3 A decomposition theorem

	4 Embedding processes into terms
	4.1 Categorical notions
	4.2 Categories of processes
	4.3 A dioidal category for non-deterministic processes

	5 On neutral elements and redundancy
	5.1 Neutral elements
	5.2 Redundancy

	6 Conclusions and further works
	Acknowledgements
	References

