A Framework for the Verification of

Infinite-State Graph Transformation Systems !

Paolo Baldan ®*, Andrea Corradini”, Barbara Konig®©,

& Dipartimento di Matematica Pura e Applicata, Universita di Padova, Italia
b Dipartimento di Informatica, Universita di Pisa, Italia

CAbt. fir Informatik und Ang. Kognitionswissenschaft, Universitdt
Duisburg-Essen, Germany

Abstract

We propose a technique for the analysis of infinite-state graph transformation
systems, based on the construction of finite structures approximating their be-
haviour. Following a classical approach, one can construct a chain of finite under-
approximations (k-truncations) of the Winskel style unfolding of a graph grammar.
More interestingly, also a chain of finite over-approximations (k-coverings) of the
unfolding can be constructed. The fact that k-truncations and k-coverings approx-
imate the unfolding with arbitrary accuracy is formalised by showing that both
chains converge (in a categorical sense) to the full unfolding. We discuss how the
finite over- and under-approximations can be used to check properties of systems
modelled by graph transformation systems, illustrating this with some small exam-
ples. We also describe the AUGUR tool, which provides a partial implementation
of the proposed constructions, and has been used for the verification of larger case
studies.

Key words: Graph transformation, Petri nets, category theory, abstraction,
verification.
2000 MSC: 68Q42, 68Q60, 68Q55

* Corresponding author.

Email addresses: baldan@math.unipd.it (Paolo Baldan), andrea®@di.unipi.it
(Andrea Corradini), barbara koenig@uni-due.de (Barbara Konig).
I Research partially supported by the EC RTN 2-2001-00346 Project SEG-
RAVIS, the MIUR Project ART, the DFG project SANDS, Programma Vigoni
(CRUI/DAAD) “Models based on Graph Transformation Systems: Analysis and
Verification”, and project SENSORIA, IST-2005-016004.

Preprint submitted to Elsevier 15 February 2008

1 Introduction

With the advent of mobile and ubiquitous computing, modern software and
computer systems are frequently characterised by a high level of dynamic-
ity. Features such as flexible topologies, the dynamic creation and deletion of
objects, and an infinite-state space make them very hard to analyse and verify.

In this context, graph transformation systems (GTSs) [52] emerge as a powerful
specification formalism for concurrent, distributed and mobile systems [23],
generalising another classical model of concurrency, namely Petri nets [46]. For
instance, graphs can be used to represent the logical and topological relations
among the components of a distributed system, the connectivity in a network,
the rights that system entities have over resources, the structure of the heap
for a program with dynamic pointer structures. For highly dynamic systems,
where, e.g., changes in the connectivity or in the structure of the network are
part of the normal behaviour, the dynamics of the system can be naturally
expressed by means of graph rewriting rules. Graph transformation systems
can be used as a specification language in themselves (see, e.g., [23]), or as a
kind of meta-language where other formalisms and languages for concurrency,
e.g., process calculi, can be encoded (see, e.g., [26,43]).

Along the years the concurrent behaviour of GTSs has been deeply studied and
a consolidated theory of concurrency is now available [52,23]. In particular,
by exploiting the relationship with Petri nets, several concurrent semantics
developed for nets, like process and unfolding semantics, have been extended to
GTSs (see, e.g., [16,51,8,9]). However, concerning automated verification, which
is crucial in the analysis of dynamically evolving systems, the rich literature on
GTSs contains just a few contributions dealing with the static analysis of such
systems (see [32,27,29,57,47] and the remarks about related work in Section 6).

Instead, several approaches have been successfully proposed for the analysis of
Petri nets, ranging from the calculus of invariants [46] to model checking based
on finite complete prefixes [41,25]. Some of such approaches, most notably the
one originally proposed by McMillan in [41], are based on the concurrent se-
mantics of nets, and more precisely on their unfolding semantics. This allows to
avoid the combinatorial explosion arising when one explores all possible inter-
leavings of concurrent events, thus contributing to alleviate the state explosion
problem typical in the analysis of concurrent systems. Briefly, the unfolding
of a Petri net is a single structure which fully describes the concurrent be-
haviour of the given system, including all possible transition occurrences and
their mutual dependencies, as well as all reachable markings. In general, the
unfolding is an infinite structure for any non-trivial net, but it has been shown
that if the net is bounded (i.e., the set of reachable markings is finite), then
it is possible to construct a finite, initial part of the unfolding, called finite

complete prefiz, which provides as much information as the full unfolding.

From these considerations, a natural question arises: By exploiting the re-
lationship between nets and graph transformation systems, is it possible to
devise automated verification techniques for GTSs which exploit their concur-
rent semantics? This question has been answered positively recently for finite
state GTSs in [6], where a first contribution to a theory of finite complete
prefixes for such systems has been presented.

In the present paper, by elaborating and generalising the work presented
in [4,10], we go further in this direction, presenting the foundations of a
methodology for verifying infinite-state graph transformation systems. A com-
mon pattern used in the literature for verifying infinite-state systems, consists
of considering an abstraction A of a concrete semantical model, providing a
simpler description of the behaviour of the original system. Such a description
is approximative, but still useful to check some properties of interest. More
specifically, a class £ of properties of interest is singled out, such that given
any property ¢ in £, the validity of ¢ in the abstraction A implies its validity
in the original system. In some optimal cases, also the converse holds, i.e., the
abstraction is “exact” for the properties in L.

In this paper we follow this pattern, by providing a characterisation of several
finite approximations of the full unfolding of GTss, and showing how they
can be used for verification. The approach is constructive, and a prototypical
tool for the construction of such approximations has been implemented, as
discussed in Section 5.3. As in the case of Petri nets, the full unfolding of a GTs
is a structure which fully describes the concurrent behaviour of the system,
including all possible rewriting steps and their mutual dependencies, as well
as all reachable states [51,9]. Given a graph grammar, i.e., a GTS equipped
with a start hypergraph, we show how to construct finite approximations of
the full unfolding of the grammar, at any chosen level k£ of accuracy. The
approximations can be arbitrarily close to the real behaviour of the systems, in
a way that the corresponding chain of (both under- and over-) approximations
converges to the exact behaviour.

More specifically, we will approximate GTSs by Petri nets, a conceptually sim-
pler formalism which shares with the GTS model several interesting properties,
such as locality (state changes are only described locally) and concurrency (no
unnecessary interleaving of events), and for which several verification tech-
niques have already been developed.

In more detail, in the paper we will consider the following two kinds of ap-
proximations:

Under-approzimations (k-truncations). The unfolding of a graph grammar G
can be defined as the union (categorically, the colimit) of its prefixes of finite
causal depth. Hence “under-approximations” of the behaviour of G can be eas-
ily produced by stopping the construction of the unfolding at a finite causal
depth k, thus obtaining the so-called k-truncation T%(G) of the unfolding of
G. In the case of Petri nets this is at the basis of the finite prefix approach
mentioned above: if the system is finite state and if the stop condition is suit-
ably chosen, the prefix turns out to be complete, i.e., it contains the same
information as the full unfolding [41,25]. In general, for infinite-state systems,
any truncation of the unfolding will be just an under-approximation of the
behaviour of the system, in the sense that any computation in the truncation
can be executed in the original system as well, but not vice versa. Never-
theless, finite truncations can still be used to check interesting properties of
the grammar, e.g., some liveness properties of the form “eventually A” for a
predicate A (see Section 5.1).

Over-approximations (k-coverings). A more challenging issue is to provide sen-
sible over-approximations of the behaviour of a grammar G, i.e., finite approx-
imations of the unfolding which “represent” all computations of the original
system, but possibly more. To this aim, we propose an algorithm which, given
a graph grammar G, produces a finite structure, called Petri graph, consisting
of a hypergraph and of a P/T net (possibly not safe, and potentially cyclic)
over it, which can be seen as an (over-)approximation of the unfolding. The
outcome of the algorithm is not uniquely determined by the graph grammar,
but changes according to the chosen level of accuracy: essentially one can
require the approximation to be exact up to a certain causal depth k, thus
obtaining the so-called k-covering C*(G) of the unfolding of G.

The covering C¥(G) over-approximates the behaviour of G in the sense that
every computation in G is mapped to a valid computation in C*(G) and every
hypergraph reachable from the start graph can be mapped homomorphically
to (the graphical component of) C¥(G), and its image is reachable in the Petri
graph. This allows us to identify a suitable class of graph properties (those re-
flected by graph morphisms) such that, if they hold for all graphs reachable in
the covering C¥(G) then they also hold for all reachable graphs in G. Important
properties of this kind are the non-existence or non-adjacency of edges with
specific labels, the absence of certain paths (which could be used for check-
ing security properties) or cycles (for checking deadlock-freedom). Temporal
properties, such as several safety properties of the form “always A”, can be
proved directly on the Petri net component of the coverings (see Section 5.1).

The theory is developed in this paper for graph transformation systems defined
according to the double-pushout (DPO) approach [22], where nodes cannot be
deleted. Note that, for modelling purposes the deletion of a node can often be

simulated by leaving it isolated, as we shall discuss in Section 2.1. Preliminary
results were presented in [4,10], where additional restrictions were imposed on
rules:

e rewriting rules could not check for the presence of edges which were not
deleted (formally, the interface graph was discrete). Lifting this restriction
does not make the formalism more expressive (since the preservation of
edges can be simulated by deleting and recreating edges), but avoids an
unnecessary loss of concurrency in the approximations.

e 1o pair of edges in the left-hand side graph of a rule could have the same
label.

These two restrictions allowed a simpler technical treatment in the referred
papers, because the Petri net component of a Petri graph was a standard
Place/Transition net. Here, for the sake of greater generality, we shall use a
more elaborated model of nets. More precisely, in order to handle rules with a
possibly non-discrete interface (modelling read-only access to edges), we shall
use contextual Petri nets, i.e., Petri nets enriched with read arcs [44,58,30], as
the net component of a Petri graph. Furthermore, in order to allow for multiple
edges with the same label in the left-hand side of a rule, it is technically
convenient to resort to a variation of nets called pre-nets [13]. In a pre-net, a
total ordering is imposed on the places occurring in the pre- and post-set of
transitions.

The rest of the paper is structured as follows. In Section 2 we introduce the
class of (hyper)graph transformation systems we will deal with, some basics of
(contextual) Petri nets and the notion of pre-net. Then we present the notion of
Petri graph, the structure used to represent and approximate the behaviour of
aTSs. In Section 3 we define the k-truncations of the unfolding of a grammar,
and the full unfolding itself as colimit of the truncations. In Section 4 we
introduce the k-coverings of the unfolding, proving their main properties. In
particular, the main result of this section shows that the algorithm computing
k-coverings is correct, terminating and confluent. Furthermore we prove that
the full unfolding is the categorical limit of the chain of the k-coverings. We
discuss applications, some simple examples of mobile systems modelled as
aTSs and the tool AUGUR in Section 5. Finally, in Section 6 we draw some
conclusions and indicate directions of further investigations.

In this paper we will use basic notions from category theory in order to describe
some concepts in a concise way and in order to simplify the proofs. Specifically
we are using the notions of limit and colimit. For an introduction see [1,40].

2 Hypergraph rewriting, Petri nets and Petri graphs

In this section we first present the class of (hyper)graph transformation sys-
tems considered in the paper. Then, after recalling some basic notions about
Petri nets, we will introduce Petri graphs, the structures combining hyper-
graphs and Petri nets which will be used to represent the (approximations of
the) behaviour of GTSs.

2.1 Graph transformation systems

In the following, given a set A we denote by A* the set of finite sequences of
elements of A (i.e., the elements of the free monoid over A). Given u € A* we
write |u| to indicate the length of v and [u];, to denote the i-th element of w.
Furthermore, if f : A — B is a function then we denote by f*: A* — B* its
extension to sequences. Throughout the paper A denotes a fixed set of labels,
where each label [€ A is associated with an arity ar(l) € N.

Definition 1 (hypergraph) A (A-)hypergraph G is a tuple (Vi, Eq, ca,la),
where Vg is a set of nodes, Eq is a set of edges, cq : Eq — Vg™ is a connec-
tion function and lg : Eg — A is the labelling function for edges satisfying
ar(lg(e)) = |ca(e)| for every e € Eg. Nodes are not labelled.

A node v € Vg is called isolated if it is not connected to any edge, i.e., if there
are no edges e € Eg and u,w € V5" such that cg(e) = uvw.

Let G, G" be (A-)hypergraphs. A hypergraph morphism ¢ : G — G’ consists of
a pair of total functions (py : Vg — Vg, vg: Eq — Eg) such that for every
e € Eg it holds that lg(e) = la(pp(e)) and ov*(ca(e)) = ca(pr(e)). An
edge-bijective hypergraph morphism is bijective on edges (but not necessarily
on nodes). The category of hypergraphs and hypergraph morphisms is denoted
by Graph.

In the sequel, we shall often call hypergraphs simply graphs, and we will omit
the subscripts V' and E when referring to the components of a hypergraph
morphism.

We introduce graph rewriting rules and their applications to graphs according
to the classical Double-Pushout (DPO) approach [22].

Definition 2 (rewriting rule) A graph rewriting rule is a span of injective
graph morphismsr = (L LR R), where the left-hand side L, the interface
K, and the right-hand side R are finite graphs.

The rewriting rule r is called node-preserving if (i) ¢ is surjective (and thus
bijective) on nodes, (ii) L does not contain isolated nodes, (iii) each isolated
node in R belongs to pr(K). Rule r is consuming if (iv) L — @ (K) is not
empty.

In the paper a rule r = (L E RS R) will be written simply as r = (L <
K — R), assuming, without loss of generality, that ¢r and ¢ are inclusions
and that K = L N R. In this case the union L U R is well-defined. We next
introduce the rewriting mechanism adopted in the paper. This will allow also
to clarify the meaning of conditions (i)-(iv) in the definition of rewriting rule.

Definition 3 (graph rewriting) Let r = (L <« K <— R) be a rewriting
rule. A match of r in a graph G is a morphism ¢ : L — G, injective on edges.
In this case, we write G =, H (or simply G =, H) if there exists a diagram

L+——K——R

1 1

G+——D——H

where both squares are pushouts in Graph.

Intuitively, once a match ¢(L) of a (node-preserving) rule r = (L «— K — R)
is found in a graph G, then GG can be rewritten to a graph H that is obtained
by first removing the images in G of the edges in L— K, and then by adding the
items in R — K. The images in G of the items in K instead are left unchanged:
they are, in a sense, preserved or read by the rewriting step. Graph D is called
the context of the rewriting step. For the reader who is familiar with the bPO
approach, we remark that there are no application conditions. In fact, the
dangling condition and the identification condition are automatically satisfied
since rules do not delete nodes and the matches are injective on edges.

Two sample graph rewriting rules are shown in Fig. 1(a). Rule ¢; replaces an
edge labelled A with two edges labelled A and C| respectively. The second
rule ¢o replaces an edge labelled A again with two edges labelled A and C,
but connected in a different way and only if there exists an edge labelled B in
the context. For the sake of readability, graphs are enclosed in dotted boxes. If
no ambiguity can arise, we usually give rules in their short form, as depicted
at the bottom of Fig. 1(a), where the nodes in the interface are numbered,
edges in the interface are drawn with dashed lines and edge names disappear.
In this running example we consider only binary edges, i.e., edges of arity 2.

Hereafter we shall consider only rules which are node-preserving and consum-
ing. In particular, Condition (i) of Definition 2 guarantees that nodes are never
deleted. This is a mild restriction, because the deletion of a node can usually
be simulated by leaving the node isolated. Indeed, Conditions (ii) and (iii)
essentially state that we are interested only in rewriting up to isolated nodes.

Rewriting rules (as spans):

@

Rewriting rules (short form):

10 o2 —> 12

(a) The set of rewriting rules R = {q1, ¢2}. (b) The start graph Gj.

Fig. 1. The running example graph grammar G.

More precisely, by (iii) no node is isolated when created, and by (ii) nodes that
become isolated have no influence on further reductions: hence one can safely
assume that they are removed by some kind of garbage collection. Finally,
Condition (iv) is standard in unfolding-based approaches: every rule must
delete some graph items. This ensures that in the unfolding each rule can only
be fired once (a fact that will be used later in the technical development).

Definition 4 (graph transformation systems) A graph transformation
system (GTS) R is a finite set of graph rewriting rules. We write G =r H if
G =, H for somer € R. Furthermore =7 denotes the reflexive and transitive
closure of =xr. A graph grammar is a pair G = (R,Gr), where R is a GTS
and Gg is (finite) graph, without isolated nodes, called start graph.

For instance, the rewriting rule ¢, of grammar G in Fig. 1(a) can be applied
to the graph on the left-hand side of Fig. 2, producing the graph on the
right-hand side. Both graphs in Fig. 2 are reachable in G from its start graph
Gy depicted in Fig. 1(b). More generally, the graphs reachable in G consist
of several parallel paths: one consisting only of a B-edge, one starting with
an A-edge followed by arbitrarily many (possibly 0) C-edges, and arbitrarily
many paths consisting only of C-edges. More meaningful examples, modelling
distributed systems with process mobility, can be found in Section 5.2.

To simplify later the presentation of Petri graphs it will be useful to have
a total ordering on the edges of the graphs in any GTS considered. For this

Fig. 2. A graph rewriting step.

reason, we fix throughout the paper a totally ordered set (E, <) and we assume
that for any GTs all the involved graphs have edges taken from this set. The
ordering can be chosen arbitrarily and is needed in order to distinguish two
edges with the same label in a left-hand side. Graph morphisms need not
preserve the order, but we will later require that it is preserved by Petri graph
morphisms (see Definition 15).

Definition 5 (ordered GTS and grammar) An ordered GTS R is a GTS
such that the left-hand side, right-hand side and interface graph of any rewrit-
ing rule have edges taken from E. An ordered graph grammar G = (R,Gr)
s a graph grammar such that R is an ordered GTS and the edges of the start
graph G are taken from E.

Given a graph G of an ordered GTS (i.e., the start graph or the constituent of a
rule) and a subset of its edges X = {e1,...,e,} C Eqg, we denote by A\(X) the
sequence consisting of the edges in X taken according to the total ordering,
i.e., MX) =e ...e,, wherei; € {1,...,n} and j < h implies e;; < e;,.

All graph grammars and GTSs in the paper will be implicitly ordered. We
remark that this will be useful for presentation issues, but it is inessential for
the operational behaviour of graph grammars: matches, rewriting steps and
derivations are defined as usual, independently from the ordering of edges. For
instance, the graph grammar G in Fig. 1 can be ordered by assuming that for
all edges ¢; and ¢, ¢; < e; iff i < j.

2.2 Contextual Petri nets and pre-nets

We now fix some basic notation for Petri nets [46,42] and contextual
nets [44,58,30], i.e., Petri nets extended with read arcs. Then we will briefly
discuss pre-nets, a variation of Petri nets introduced in [13].

Given a set A we will denote by A% the free commutative monoid over A,
whose elements will be called multisets over A. Given a function f: A — B,
by f%: A® — B% we denote its monoidal extension.

On multisets m,m’ € A%, we use some common relations and operations,
like inclusion, defined by m < m' when there exists m” € A% such that

No M

d e d e
Fig. 3. Ordinary nets do not allow for concurrent read-only operations.

m @& m” = m’ and difference, which, in the same situation, is defined by
m' —m =m". A multiset m € A® will be sometimes written as a formal sum
m = @,c 4 Ma - a and given m we will write m(a) to denote the coefficient my
(i.e., m(a) = max{k | k-a < m}). The join of two multisets m Lm' is defined
as the smallest multiset including m and m/, ie., @, ., max{m,, m,} - a.
Furthermore, for m € A® and a € A we write a € m for a < m. The set
underlying a multiset m € A® is defined by [m] = {a € A | a € m}. Often we
will confuse a subset X C A with the multiset @xe ¥ T

We denote by m : A* — A% the function mapping any sequence to the
corresponding multiset. We will write a € s if a appears in the sequence s,
i.e., if a € [m(s)]. Similarly, we write s; N sy for [m(sy)] N [m(s2)].

Let us introduce now contextual Petri nets and their token game.

Definition 6 (contextual Petri net) Let A be a finite set of action labels.
An A-labelled (contextual) Petri net is a tuple N = (S,T, *(),()%, (),p)
where S is a set of places, T is a set of transitions, *(),()*, () : T — S®
assign to each transition its pre-set, post-set and context, and p : T — A
assigns an action label to each transition. A marking m is a multiset m € S.
A marked Petri net is a pair (N, my), where N is a Petri net and my € S®
15 the initial marking.

Contextual nets are depicted like net Ny in Fig. 3: circles and boxes represent
places and transitions, respectively, directed edges link transitions to places in
their pre- and post-sets, while undirected edges represent the read-arcs, con-
necting the transitions with the places in their contexts. The initial marking
m is represented by inserting in any place s the corresponding number m(s)
of tokens, depicted as black circles.

Definition 7 (token game) Given a contertual net N =
(S, T, °(),()*(),p), a transition t € T is enabled at a marking m € S% if
*t®t < m. When enabled, the firing of t produces a new marking m' obtained
by removing the pre-set of t and adding its post-set, i.e., m' = m — *tHt*: in

this case we write m [t) m'.

A firing sequence of a marked contextual net (N,my) is a sequence of fir-

10

ings my [to) my [t1) -+ mpu_1 [tn_1) my of transitions of N, starting from the
initial marking. A marking m is reachable in (N, my) if there is a firing se-
quence ending with m; it is coverable if there is a firing sequence ending with
a marking m' such that m < m/.

A multiset of transitions U € T is concurrently enabled by a marking m € S®

if
PBuw)-cte| |t<m

teU teU
In this case, the firing of U produces the new marking

m' =m—PUE) - tePue) -t

teU teU

This is denoted m [U) m/, and it is called a step.

Intuitively, read arcs allow a transition to check for the presence of a token
in a place, without removing the token itself. Furthermore, as just formalised,
the same token can be read by several transitions at the same time: in fact, a
multiset of transitions U € T'® is concurrently enabled by a marking m € S¢
if m contains the sum of all the pre-sets of the transitions in U (each one with
its multiplicity) and, additionally, the join of all the contexts of the transitions
in U.

Because of this notion of concurrent enabling, the (standard) net obtained
from a contextual net by replacing read arcs with self-loops would not be
equivalent to the original one: both nets would have the same reachable mark-
ings, but the contextual one would allow a greater amount of concurrency. For
instance, consider the net N; in Fig. 3 and compare it to the net Ny in the
same figure, where place ¢ is connected to transitions tg and ¢; by read arcs,
meaning that ¢ represents a resource accessed in a read-only manner. While
in Ny the transitions ¢y and ¢; can fire concurrently, in N7 the two transitions
have to be interleaved. In practice the possibility of having concurrent read-
only accesses to shared resources can lead to smaller unfoldings and hence to
smaller approximations.

For technical reasons, it is convenient in the following to stick to a slightly
more concrete model of nets, the so-called pre-nets, where a total ordering is
imposed on the places occurring in the pre-, post-set and context of transitions.
Any pre-net can be seen as a concrete “implementation” of its underlying Petri
net, obtained by forgetting about the ordering of places. 2

2 Pre-nets have been introduced in [13] to obtain a fully satisfactory categorical
semantics for nets, where the construction of the model of computation yields an
adjunction between the category of nets and the category of models (symmetric
monoidal categories).

11

Total orderings on places will allow us to have a canonical one-to-one cor-
respondence between the places of two transitions related by a morphism
(needed for the folding steps introduced later) and to uniquely reconstruct
matches (see Proposition 13).

Definition 8 (contextual pre-nets) Let A be a finite set of action labels.
An A-labelled (contextual) pre-net is a tuple N = (S, T, °(), ()*,(),p) where
S is a set of places, T is a set of transitions, *(),()*,():T — S* assign to
each transition its pre-set, post-set and context, which are sequences of places,
and p: T — A assigns an action label to each transition.

A marked Petri pre-net is a pair (N,uy), where N is a Petri pre-net and
un € S*.

Observe that, given a transition ¢ in a pre-net, °t and t* are deliberately
called, as for ordinary nets, the pre-set and post-set of ¢, although they are
not (multi-)sets, but sequences. As in the case of ordered graph grammars, the
ordering over places is inessential as far as the firing behaviour is concerned.
In other words, the token game of a pre-net is defined by referring to the
underlying Petri net. For example, we will speak of a marking of a pre-net
as a multi-set of places, and say that a marking is reachable or coverable in
a pre-net whenever it is reachable or coverable in the underlying Petri net.
Also the dependency relations between transitions are defined exactly as in
the underlying Petri net, as follows.

We will now define a relation of causal dependence on places and transitions.
It will be essential for computing coverings or over-approximations (see Defi-
nition 26).

Definition 9 (causality relation) Let N be a (marked) pre-net. The
causality relation <y over N is the least transitive relation on S UT such
that, for allt,t' € T, s € S, we have (i) s <y t if s € *t, (ii)) t <y s if s € t*
and (i) t <y t' if t* Nt #D. For any x € SUT we define its sets of causes
lz] ={y € SUT |y <y x} and consequences [z] ={y € SUT | = <y y}.
The definitions are extended in the obvious way to subsets X of SUT, e.g.,

[X = Usex 2]

A pre-net N is called acyclic if the relation <y is acyclic.

For instance, consider the Petri net N depicted in Fig. 4. It holds that s, <y
t3 <y s3, furthermore t; <y s1 <y t2 and t; <y t3, while s; and t3 are not

causally related.

A Petri net satisfies the irredundancy condition if no two distinct transitions
have the same label, pre-set and context.

12

S0

t

S1 t3

tg Q S3

Fig. 4. Causality for contextual nets.

Definition 10 (irredundancy) A pre-net N = (S,T, *(),()* (),p) is
called irredundant if for any t,t' € T o

pt)=pt') N t="t At=t = t=t. (1)

The above property is typically considered in the theory of branching processes
of nets [24], where it allows one to interpret each transition of a process as an
occurrence of firing of a transition in the original net, uniquely determined by
its causal history. Here it will play a role when proving the confluence of the
algorithm computing the coverings of graph grammars (see Proposition 39).

2.8 Petri graphs

We now introduce the structures, called Petri graphs, that will be used to
represent approximations of graph transformation systems. They are a slight
variation of the notion introduced in [4], and consist of a graph and of a
contextual pre-net whose places are the edges of the graph.

Definition 11 (Petri graph) Let R be a GTS. A Petri graph (for R) is a
tuple P = (G, N) where G is a graph, N = (Eqg,Tn, *(),()* (),pn) is an
irredundant R-labelled pre-net where the places are the edges of G, and for
each transition t € Ty, with py(t) = (L <« K — R), there exists a graph

morphism p(t) : LU R — G such that

t=p(t) (AMEL— Ex)) A L=p(t) MEK)A = pt) (MER— Ex)) (2)

Condition (2) guarantees that each transition ¢ in the pre-net can be viewed as
an “occurrence” of rule py(t) € R. More precisely, let py(t) = (L «— K — R)
and let p(t) : LU R — G be the morphism associated with the transition.
Then pu(t)L : L — G is a match of the rule in G such that the images in G of
the sequences of edges in L — K and K, produced as explained in Definition 5,
coincide with the pre-set and context of ¢, respectively. Furthermore ju(t)z :
R — G is a match of the right-hand side such that the image of the sequence

13

of edges in R — K, i.e., the edges produced by the application of the rewriting
rule to the considered match in GG, coincides with the post-set of t.

Note that the total orderings on places and edges are needed to uniquely
reconstruct the matches of left-hand and right-hand sides (see Proposition 13).
Without using sequences the morphism p would not necessarily be unique,
especially when the graphs contained in a rule have non-trivial automorphisms.

A sample Petri graph P = (G, N) for the grammar G of the running example
is shown in Fig. 5(a). Transitions are represented by small black rectangles,
and the connections between transitions and places/edges are drawn as dashed
lines in order to distinguish them from the lines connecting edges and nodes.
Transitions ¢; and ¢, correspond to the rewriting rules ¢; and ¢, respectively,
i.e., py(t1) = ¢1 and py(t2) = go. Although not explicitly represented in the
picture, the order of pre- and post-set and contexts of transitions are those
induced by edge indexes, for instance, *t, = ¢/, t, = €, and t,* = e}ej. Note
that there are morphisms p(t1), p(t2) as required in Definition 11. For instance
the graph in Fig. 5(b) is the union LUR of the left- and right-hand sides of rule
@2, and there exists a morphism p(ty) from this graph to the graph underlying
P, mapping edges e; and e3 to €], es to €}, and ey to €.

Fig. 5. (a) An example Petri graph P = (G, N) and (b) the graph LU R for rule gs.

A Petri graph for a graph grammar is a Petri graph for the underlying GTs,
equipped with an initial state which must correspond to the start graph of the
grammar. These Petri graphs will be used to approximate the unfolding of a
graph grammar and, as such, they play a role similar to occurrence nets ([24]),
where each place represents an occurrence of a token and each transition
represents an occurrence of a firing. Therefore, as it happens for occurrence
nets, we require that in a Petri graph each item is covered by some reachable
marking and each transition can be fired.

Definition 12 (marked Petri graph) A Petri graph for a graph grammar
G =(R,GRr), called a marked Petri graph, is a pair (P,u) where P = (G, N)
is a Petri graph for R and u is a sequence of places of the Petri graph, called
the initial state, such that there exists a graph morphism ¢ : Gr — G with
(M Egy)) = u. Furthermore, the following conditions must hold:

14

e cvery edge of G is coverable,® and
o cvery transitiont of N is firable, i.e., there is a coverable marking m € Eq®
such that t is enabled at m.

The Petri graph in our running example in Fig. 5(a) is a Petri graph for the
grammar G in Fig. 1, with an initial state given by the sequence u = €/éj,
indicated by two black tokens.

The notion of Petri graph in this paper is a variation of the one in [4,10]. In the
original definition, the underlying net structure was a proper (not contextual)
Petri net and the g components, i.e., the morphisms from rules to the under-
lying graph, were explicitly given. The next proposition shows that, thanks
to the use of pre-nets, in this new setting the pu components are uniquely
determined, provided that they exist.

Proposition 13 Let R be a GTS and let P = (G, N) be a Petri graph for
R. Then for any transition t € Ty, with py(t) = (L <« K — R) the graph
morphism p(t) : LU R — G satisfying Condition (2) of Definition 11 is
uniquely determined by °t, t and t*. Similarly, given a marked Petri graph
(P,u) for a graph grammar (R,Ggr) also the graph morphism v : G — G
satisfying the condition of Definition 12 is uniquely determined.

PROOF. (Sketch) The first part of the statement immediately follows from
the fact that we work with pre-nets and from the presence of a total ordering
on the edges of the graphs of each rewriting rule. The proof also uses the fact
that, by conditions (ii) and (iii) of Definition 2, a match of a left-hand side or
of the union of left- and right-hand sides of a rule is uniquely determined by
the images of the edges.

As for the second statement, it follows from the assumption that there are no
isolated nodes in the start graph of any graph grammar. O

Notation. Given a Petri graph P = (G, N) for a GTS R, in the following
we will write p(t) to denote the unique graph morphism p(t) : LUR — G
satisfying condition (2) of Definition 11. Similarly, for a marked Petri graph
(P,u) for a graph grammar (R,Ggr) we will denote by ¢ the unique graph
morphism . Gg — G satisfying the condition in Definition 12.

The above considerations motivate the use of pre-nets in place of ordinary Petri
nets. In fact, without pre-nets the above mentioned morphisms p (and ¢) would
not be unique since a left-hand side (the start graph) might contain several

3 A marking m € Eg? is called reachable (coverable) in (P,u), with P = (G, N),
if it is reachable (coverable) in the underlying marked pre-net (N, u).

15

edges with the same label. However, for the completeness of the unfolding (see
Proposition 24), it is necessary to distinguish among edges with the same label
which occur in the left-hand side of a rewriting rule. Thus, without pre-nets,
the functions p and ¢ should be explicitly part of the Petri graph, making the
presentation heavier.

Given a Petri graph P = (G, N), every marking m € Eg® identifies a graph.
A safe marking m (i.e., such that m(e) < 1 for all e € Eg) is intended to
represent the subgraph of GG consisting of the edges in m and of the nodes
attached to these edges. For general markings, edges with multiplicity k& will
result in k& “parallel” edges. This is formalised in the next definition.

Definition 14 (graph generated by a marking) Let P = (G,N) be a
Petri graph and let m € Eg%® be a marking of N. The graph generated by
m, denoted graphq(m), is the graph H defined as follows: Vi = {v € Vg |
deem:vecgle)}, By ={(e,i) |[eemAl<i<mle)}, cul(e,i)) = cale)
and lg((e,1)) = lg(e).

In other words, graphg(m) is obtained from G by first removing all edges that
are not covered by m, then multiplying all edges according to the number of
times they appear in m, and finally removing all isolated nodes. For instance,
the marking of the Petri graph in Fig. 5(a) generates the start graph of the
running example, depicted in Fig. 1(b).

Observe that graphg(m) is the only graph, up to isomorphism, which has no
isolated nodes and for which there exists a graph morphism ¢: graph(m) —
G injective on nodes such that 0% (Egupng(m)) = m.

In the following we will sometimes confuse a marking of a Petri graph with
its generated graph, saying for example that a given graph is reachable in a
Petri graph.

For the technical development of the paper, it is convenient to look at (marked)
Petri graphs as objects of suitable categories, that we are going to define by
introducing a notion of Petri graph morphisms. This will allow us to charac-
terise the results of certain operations on Petri graphs as colimits of suitable
diagrams, and later to formalise in which sense a chain of approximations will
have the full unfolding of a graph grammar as its limit.

Definition 15 (categories of Petri graphs) Let P = (G,N), P' =
(G',N') be Petri graphs for a given GTS R. A Petri graph morphism is a
pair v = (Vg,¥y) : P — P' where

e Vg : G — G is a graph morphism;

16

o (Vglgg,¥n): N — N’ is a labelled pre-net morphism, that is, ¥y : Ty —
T+ is a mapping such that for every t € Ty, *Yn(t) = e*(°t), Yn(t)® =
Ya* (1), Yn(t) = ¥e"(t), and pyr o by = pn.

The category of Petri graphs for R and Petri graph morphisms is denoted by

PG(R).

The category of marked Petri graphs for a graph grammar G and morphisms
v (Pyu) — (P u') which preserve initial states, i.e., such that vg*(u) =/,
is denoted by PG,(G).

In the following we will often omit the subscripts G and N. Moreover when the
GTS R or the graph grammar G are clear from the context, the corresponding
Petri graph categories will be denoted simply by PG and PG,.

As an example, Fig. 6 shows a second Petri graph P’ for our running example
grammar G in Fig. 1. This can be mapped to the Petri graph in Fig. 5(a) via
a Petri graph morphism which maps transitions ¢; and ¢y of the source Petri
graph to the corresponding transitions in the target. Concerning edges, the
morphism maps €Y, e? and ef to €], e to €}, €4 to €}, and €] to €.

"
5

Fig. 6. Another sample Petri graph.

We shall often exploit the following important property of categories PG(R)
and PG,(G).

Proposition 16 (cocompleteness of Petri graph categories) Let R be
a GTS and G be a graph grammar. Then the category of Petri graphs PG(R)

and the category of marked Petri graphs PG,(G) are both cocomplete, i.e., they
have all colimits.

PROOF. See the Appendix. O

17

Roughly, in order to construct the colimit first the pointwise colimit is taken
on nodes, edges and transitions, and then the resulting structure is quotiented
in order to fulfil the irredundancy condition of Petri graphs. In particular
we will later make use of pushouts and coequalizers to define unfolding and
folding operations.

3 Unfolding and under-approximations

In this section we define the unfolding of a graph grammar. Following a com-
mon approach in the literature (see, e.g., [51,54]) the unfolding is defined as
the union (categorically, the colimit) of the chain of its finite prefixes, each of
which can be seen as an under-approximation of the behaviour of the system.

The finite prefixes of the unfolding are constructed incrementally beginning
from the start graph and then applying at each step in all possible ways the
rules, without deleting the left-hand sides, and recording each occurrence of a
rule and each new graph item generated in the rewriting process. The process
stops at a given causal depth.

To define a basic unfolding step, we first need to fix some notation. Every
graph G can be considered as a Petri graph [G] = (G, N) for any GTS R, by
taking N as the net with places Eg and no transitions. Similarly, G can be
seen as a marked Petri graph ((G, N),u) for the graph grammar (R, G), by
taking N as above and u = A(E() as the initial state. If P = (N, G) is a Petri
graph and ¢: G’ — G is a graph morphism then we will use the same symbol
¢: [G"] — P to denote the corresponding Petri graph morphism.

Moreover, if r = (L « K — R) is a rule, we will write P(r) to denote
the Petri graph (L U R, N) where N = (Epugr, {t}, °t = MEL — Fg),t* =
AMERr — Fx),t = MEk),pn(t) = r). For instance the Petri graph P(r) for
rule ¢; in Fig. 1(a) is depicted in Fig. 7. Intuitively it provides an alternative
representation of a rule where consumption, preservation and deletion of edges
is represented in the Petri net notation.

Fig. 7. A Petri graph for rewriting rule g2 of Fig. 1(a).

Definition 17 (unfolding operation) Let P = (G, N) be a Petri graph for

18

L] —F——P

ok

P(r)——unf(P,r,p)

Fig. 8. Diagram for an unfolding step.

aGTS R. Letr = (L «— K — R) € R be a rule and let p : L — G be a match
of r in G. The unfolding of P with rule r at match ¢, denoted unf(P,r,p), is
the Petri graph obtained as pushout of ¢ : [L] — P and idy, : [L] — P(r) (see
Fig. 8).

If (P,u) is a marked Petri graph for a graph grammar (R,Gr) and ¢®(Ey)
is coverable, in the same situation, we define unf((P,u),r, @) = (P',¥*(u)),
where P = unf(P,r