
A Framework for the Verification of

Infinite-State Graph Transformation Systems 1

Paolo Baldan a,∗, Andrea Corradini b, Barbara König c,

aDipartimento di Matematica Pura e Applicata, Università di Padova, Italia
bDipartimento di Informatica, Università di Pisa, Italia

cAbt. für Informatik und Ang. Kognitionswissenschaft, Universität
Duisburg-Essen, Germany

Abstract

We propose a technique for the analysis of infinite-state graph transformation
systems, based on the construction of finite structures approximating their be-
haviour. Following a classical approach, one can construct a chain of finite under-
approximations (k-truncations) of the Winskel style unfolding of a graph grammar.
More interestingly, also a chain of finite over-approximations (k-coverings) of the
unfolding can be constructed. The fact that k-truncations and k-coverings approx-
imate the unfolding with arbitrary accuracy is formalised by showing that both
chains converge (in a categorical sense) to the full unfolding. We discuss how the
finite over- and under-approximations can be used to check properties of systems
modelled by graph transformation systems, illustrating this with some small exam-
ples. We also describe the Augur tool, which provides a partial implementation
of the proposed constructions, and has been used for the verification of larger case
studies.

Key words: Graph transformation, Petri nets, category theory, abstraction,
verification.
2000 MSC: 68Q42, 68Q60, 68Q55

∗ Corresponding author.
Email addresses: baldan@math.unipd.it (Paolo Baldan), andrea@di.unipi.it

(Andrea Corradini), barbara koenig@uni-due.de (Barbara König).
1 Research partially supported by the EC RTN 2-2001-00346 Project Seg-

raVis, the MIUR Project ART, the DFG project SANDS, Programma Vigoni
(CRUI/DAAD) “Models based on Graph Transformation Systems: Analysis and
Verification”, and project SENSORIA, IST-2005-016004.

Preprint submitted to Elsevier 15 February 2008

1 Introduction

With the advent of mobile and ubiquitous computing, modern software and
computer systems are frequently characterised by a high level of dynamic-
ity. Features such as flexible topologies, the dynamic creation and deletion of
objects, and an infinite-state space make them very hard to analyse and verify.

In this context, graph transformation systems (gtss) [52] emerge as a powerful
specification formalism for concurrent, distributed and mobile systems [23],
generalising another classical model of concurrency, namely Petri nets [46]. For
instance, graphs can be used to represent the logical and topological relations
among the components of a distributed system, the connectivity in a network,
the rights that system entities have over resources, the structure of the heap
for a program with dynamic pointer structures. For highly dynamic systems,
where, e.g., changes in the connectivity or in the structure of the network are
part of the normal behaviour, the dynamics of the system can be naturally
expressed by means of graph rewriting rules. Graph transformation systems
can be used as a specification language in themselves (see, e.g., [23]), or as a
kind of meta-language where other formalisms and languages for concurrency,
e.g., process calculi, can be encoded (see, e.g., [26,43]).

Along the years the concurrent behaviour of gtss has been deeply studied and
a consolidated theory of concurrency is now available [52,23]. In particular,
by exploiting the relationship with Petri nets, several concurrent semantics
developed for nets, like process and unfolding semantics, have been extended to
gtss (see, e.g., [16,51,8,9]). However, concerning automated verification, which
is crucial in the analysis of dynamically evolving systems, the rich literature on
gtss contains just a few contributions dealing with the static analysis of such
systems (see [32,27,29,57,47] and the remarks about related work in Section 6).

Instead, several approaches have been successfully proposed for the analysis of
Petri nets, ranging from the calculus of invariants [46] to model checking based
on finite complete prefixes [41,25]. Some of such approaches, most notably the
one originally proposed by McMillan in [41], are based on the concurrent se-
mantics of nets, and more precisely on their unfolding semantics. This allows to
avoid the combinatorial explosion arising when one explores all possible inter-
leavings of concurrent events, thus contributing to alleviate the state explosion
problem typical in the analysis of concurrent systems. Briefly, the unfolding
of a Petri net is a single structure which fully describes the concurrent be-
haviour of the given system, including all possible transition occurrences and
their mutual dependencies, as well as all reachable markings. In general, the
unfolding is an infinite structure for any non-trivial net, but it has been shown
that if the net is bounded (i.e., the set of reachable markings is finite), then
it is possible to construct a finite, initial part of the unfolding, called finite

2

complete prefix, which provides as much information as the full unfolding.

From these considerations, a natural question arises: By exploiting the re-
lationship between nets and graph transformation systems, is it possible to
devise automated verification techniques for gtss which exploit their concur-
rent semantics? This question has been answered positively recently for finite
state gtss in [6], where a first contribution to a theory of finite complete
prefixes for such systems has been presented.

In the present paper, by elaborating and generalising the work presented
in [4,10], we go further in this direction, presenting the foundations of a
methodology for verifying infinite-state graph transformation systems. A com-
mon pattern used in the literature for verifying infinite-state systems, consists
of considering an abstraction A of a concrete semantical model, providing a
simpler description of the behaviour of the original system. Such a description
is approximative, but still useful to check some properties of interest. More
specifically, a class L of properties of interest is singled out, such that given
any property ϕ in L, the validity of ϕ in the abstraction A implies its validity
in the original system. In some optimal cases, also the converse holds, i.e., the
abstraction is “exact” for the properties in L.

In this paper we follow this pattern, by providing a characterisation of several
finite approximations of the full unfolding of gtss, and showing how they
can be used for verification. The approach is constructive, and a prototypical
tool for the construction of such approximations has been implemented, as
discussed in Section 5.3. As in the case of Petri nets, the full unfolding of a gts

is a structure which fully describes the concurrent behaviour of the system,
including all possible rewriting steps and their mutual dependencies, as well
as all reachable states [51,9]. Given a graph grammar, i.e., a gts equipped
with a start hypergraph, we show how to construct finite approximations of
the full unfolding of the grammar, at any chosen level k of accuracy. The
approximations can be arbitrarily close to the real behaviour of the systems, in
a way that the corresponding chain of (both under- and over-) approximations
converges to the exact behaviour.

More specifically, we will approximate gtss by Petri nets, a conceptually sim-
pler formalism which shares with the gts model several interesting properties,
such as locality (state changes are only described locally) and concurrency (no
unnecessary interleaving of events), and for which several verification tech-
niques have already been developed.

In more detail, in the paper we will consider the following two kinds of ap-
proximations:

3

Under-approximations (k-truncations). The unfolding of a graph grammar G
can be defined as the union (categorically, the colimit) of its prefixes of finite
causal depth. Hence “under-approximations” of the behaviour of G can be eas-
ily produced by stopping the construction of the unfolding at a finite causal
depth k, thus obtaining the so-called k-truncation T k(G) of the unfolding of
G. In the case of Petri nets this is at the basis of the finite prefix approach
mentioned above: if the system is finite state and if the stop condition is suit-
ably chosen, the prefix turns out to be complete, i.e., it contains the same
information as the full unfolding [41,25]. In general, for infinite-state systems,
any truncation of the unfolding will be just an under-approximation of the
behaviour of the system, in the sense that any computation in the truncation
can be executed in the original system as well, but not vice versa. Never-
theless, finite truncations can still be used to check interesting properties of
the grammar, e.g., some liveness properties of the form “eventually A” for a
predicate A (see Section 5.1).

Over-approximations (k-coverings). A more challenging issue is to provide sen-
sible over-approximations of the behaviour of a grammar G, i.e., finite approx-
imations of the unfolding which “represent” all computations of the original
system, but possibly more. To this aim, we propose an algorithm which, given
a graph grammar G, produces a finite structure, called Petri graph, consisting
of a hypergraph and of a P/T net (possibly not safe, and potentially cyclic)
over it, which can be seen as an (over-)approximation of the unfolding. The
outcome of the algorithm is not uniquely determined by the graph grammar,
but changes according to the chosen level of accuracy: essentially one can
require the approximation to be exact up to a certain causal depth k, thus
obtaining the so-called k-covering Ck(G) of the unfolding of G.

The covering Ck(G) over-approximates the behaviour of G in the sense that
every computation in G is mapped to a valid computation in Ck(G) and every
hypergraph reachable from the start graph can be mapped homomorphically
to (the graphical component of) Ck(G), and its image is reachable in the Petri
graph. This allows us to identify a suitable class of graph properties (those re-
flected by graph morphisms) such that, if they hold for all graphs reachable in
the covering Ck(G) then they also hold for all reachable graphs in G. Important
properties of this kind are the non-existence or non-adjacency of edges with
specific labels, the absence of certain paths (which could be used for check-
ing security properties) or cycles (for checking deadlock-freedom). Temporal
properties, such as several safety properties of the form “always A”, can be
proved directly on the Petri net component of the coverings (see Section 5.1).

The theory is developed in this paper for graph transformation systems defined
according to the double-pushout (dpo) approach [22], where nodes cannot be
deleted. Note that, for modelling purposes the deletion of a node can often be

4

simulated by leaving it isolated, as we shall discuss in Section 2.1. Preliminary
results were presented in [4,10], where additional restrictions were imposed on
rules:

• rewriting rules could not check for the presence of edges which were not
deleted (formally, the interface graph was discrete). Lifting this restriction
does not make the formalism more expressive (since the preservation of
edges can be simulated by deleting and recreating edges), but avoids an
unnecessary loss of concurrency in the approximations.
• no pair of edges in the left-hand side graph of a rule could have the same

label.

These two restrictions allowed a simpler technical treatment in the referred
papers, because the Petri net component of a Petri graph was a standard
Place/Transition net. Here, for the sake of greater generality, we shall use a
more elaborated model of nets. More precisely, in order to handle rules with a
possibly non-discrete interface (modelling read-only access to edges), we shall
use contextual Petri nets, i.e., Petri nets enriched with read arcs [44,58,30], as
the net component of a Petri graph. Furthermore, in order to allow for multiple
edges with the same label in the left-hand side of a rule, it is technically
convenient to resort to a variation of nets called pre-nets [13]. In a pre-net, a
total ordering is imposed on the places occurring in the pre- and post-set of
transitions.

The rest of the paper is structured as follows. In Section 2 we introduce the
class of (hyper)graph transformation systems we will deal with, some basics of
(contextual) Petri nets and the notion of pre-net. Then we present the notion of
Petri graph, the structure used to represent and approximate the behaviour of
gtss. In Section 3 we define the k-truncations of the unfolding of a grammar,
and the full unfolding itself as colimit of the truncations. In Section 4 we
introduce the k-coverings of the unfolding, proving their main properties. In
particular, the main result of this section shows that the algorithm computing
k-coverings is correct, terminating and confluent. Furthermore we prove that
the full unfolding is the categorical limit of the chain of the k-coverings. We
discuss applications, some simple examples of mobile systems modelled as
gtss and the tool Augur in Section 5. Finally, in Section 6 we draw some
conclusions and indicate directions of further investigations.

In this paper we will use basic notions from category theory in order to describe
some concepts in a concise way and in order to simplify the proofs. Specifically
we are using the notions of limit and colimit. For an introduction see [1,40].

5

2 Hypergraph rewriting, Petri nets and Petri graphs

In this section we first present the class of (hyper)graph transformation sys-
tems considered in the paper. Then, after recalling some basic notions about
Petri nets, we will introduce Petri graphs, the structures combining hyper-
graphs and Petri nets which will be used to represent the (approximations of
the) behaviour of gtss.

2.1 Graph transformation systems

In the following, given a set A we denote by A∗ the set of finite sequences of
elements of A (i.e., the elements of the free monoid over A). Given u ∈ A∗ we
write |u| to indicate the length of u and [u]i to denote the i-th element of u.
Furthermore, if f : A → B is a function then we denote by f ∗ : A∗ → B∗ its
extension to sequences. Throughout the paper Λ denotes a fixed set of labels,
where each label l ∈ Λ is associated with an arity ar(l) ∈ N.

Definition 1 (hypergraph) A (Λ-)hypergraph G is a tuple (VG, EG, cG, lG),
where VG is a set of nodes, EG is a set of edges, cG : EG → VG

∗ is a connec-
tion function and lG : EG → Λ is the labelling function for edges satisfying
ar(lG(e)) = |cG(e)| for every e ∈ EG. Nodes are not labelled.

A node v ∈ VG is called isolated if it is not connected to any edge, i.e., if there
are no edges e ∈ EG and u, w ∈ VG

∗ such that cG(e) = uvw.

Let G,G′ be (Λ-)hypergraphs. A hypergraph morphism ϕ : G→ G′ consists of
a pair of total functions 〈ϕV : VG → VG′, ϕE : EG → EG′〉 such that for every
e ∈ EG it holds that lG(e) = lG′(ϕE(e)) and ϕV

∗(cG(e)) = cG′(ϕE(e)). An
edge-bijective hypergraph morphism is bijective on edges (but not necessarily
on nodes). The category of hypergraphs and hypergraph morphisms is denoted
by Graph.

In the sequel, we shall often call hypergraphs simply graphs, and we will omit
the subscripts V and E when referring to the components of a hypergraph
morphism.

We introduce graph rewriting rules and their applications to graphs according
to the classical Double-Pushout (dpo) approach [22].

Definition 2 (rewriting rule) A graph rewriting rule is a span of injective

graph morphisms r = (L
ϕL
←֓ K

ϕR
→֒ R), where the left-hand side L, the interface

K, and the right-hand side R are finite graphs.

6

The rewriting rule r is called node-preserving if (i) ϕL is surjective (and thus
bijective) on nodes, (ii) L does not contain isolated nodes, (iii) each isolated
node in R belongs to ϕR(K). Rule r is consuming if (iv) L − ϕL(K) is not
empty.

In the paper a rule r = (L
ϕL

←֓ K
ϕR

→֒ R) will be written simply as r = (L ←֓
K →֒ R), assuming, without loss of generality, that ϕR and ϕL are inclusions
and that K = L ∩ R. In this case the union L ∪ R is well-defined. We next
introduce the rewriting mechanism adopted in the paper. This will allow also
to clarify the meaning of conditions (i)-(iv) in the definition of rewriting rule.

Definition 3 (graph rewriting) Let r = (L ←֓ K →֒ R) be a rewriting
rule. A match of r in a graph G is a morphism ϕ : L→ G, injective on edges.
In this case, we write G⇒r,ϕ H (or simply G⇒r H) if there exists a diagram

L
ϕ
��

K?
_oo � � //

��

R

��

G D?
_oo � � //H

where both squares are pushouts in Graph.

Intuitively, once a match ϕ(L) of a (node-preserving) rule r = (L ←֓ K →֒ R)
is found in a graph G, then G can be rewritten to a graph H that is obtained
by first removing the images in G of the edges in L−K, and then by adding the
items in R−K. The images in G of the items in K instead are left unchanged:
they are, in a sense, preserved or read by the rewriting step. Graph D is called
the context of the rewriting step. For the reader who is familiar with the dpo

approach, we remark that there are no application conditions. In fact, the
dangling condition and the identification condition are automatically satisfied
since rules do not delete nodes and the matches are injective on edges.

Two sample graph rewriting rules are shown in Fig. 1(a). Rule q1 replaces an
edge labelled A with two edges labelled A and C, respectively. The second
rule q2 replaces an edge labelled A again with two edges labelled A and C,
but connected in a different way and only if there exists an edge labelled B in
the context. For the sake of readability, graphs are enclosed in dotted boxes. If
no ambiguity can arise, we usually give rules in their short form, as depicted
at the bottom of Fig. 1(a), where the nodes in the interface are numbered,
edges in the interface are drawn with dashed lines and edge names disappear.
In this running example we consider only binary edges, i.e., edges of arity 2.

Hereafter we shall consider only rules which are node-preserving and consum-
ing. In particular, Condition (i) of Definition 2 guarantees that nodes are never
deleted. This is a mild restriction, because the deletion of a node can usually
be simulated by leaving the node isolated. Indeed, Conditions (ii) and (iii)
essentially state that we are interested only in rewriting up to isolated nodes.

7

Rewriting rules (short form):

B

A

1

2

3

1 2

3

A

C

B

q1
A

1 2 1 2
A C

1 2

q2

B

3

A

C

B 2B
21 1

A
3

2

1

3

e1 e2 e3

e2

e1

e2

e3

e2

e4

Rewriting rules (as spans):

1 12A 2A C

(a) The set of rewriting rules R = {q1, q2}.

A

B

(b) The start graph Gs.

Fig. 1. The running example graph grammar G.

More precisely, by (iii) no node is isolated when created, and by (ii) nodes that
become isolated have no influence on further reductions: hence one can safely
assume that they are removed by some kind of garbage collection. Finally,
Condition (iv) is standard in unfolding-based approaches: every rule must
delete some graph items. This ensures that in the unfolding each rule can only
be fired once (a fact that will be used later in the technical development).

Definition 4 (graph transformation systems) A graph transformation
system (gts) R is a finite set of graph rewriting rules. We write G⇒R H if
G⇒r H for some r ∈ R. Furthermore⇒∗

R denotes the reflexive and transitive
closure of ⇒R. A graph grammar is a pair G = (R, GR), where R is a gts

and GR is (finite) graph, without isolated nodes, called start graph.

For instance, the rewriting rule q2 of grammar G in Fig. 1(a) can be applied
to the graph on the left-hand side of Fig. 2, producing the graph on the
right-hand side. Both graphs in Fig. 2 are reachable in G from its start graph
Gs depicted in Fig. 1(b). More generally, the graphs reachable in G consist
of several parallel paths: one consisting only of a B-edge, one starting with
an A-edge followed by arbitrarily many (possibly 0) C-edges, and arbitrarily
many paths consisting only of C-edges. More meaningful examples, modelling
distributed systems with process mobility, can be found in Section 5.2.

To simplify later the presentation of Petri graphs it will be useful to have
a total ordering on the edges of the graphs in any gts considered. For this

8

⇒R

A

B

CC

B

A C

Fig. 2. A graph rewriting step.

reason, we fix throughout the paper a totally ordered set (E,≤) and we assume
that for any gts all the involved graphs have edges taken from this set. The
ordering can be chosen arbitrarily and is needed in order to distinguish two
edges with the same label in a left-hand side. Graph morphisms need not
preserve the order, but we will later require that it is preserved by Petri graph
morphisms (see Definition 15).

Definition 5 (ordered gts and grammar) An ordered gts R is a gts

such that the left-hand side, right-hand side and interface graph of any rewrit-
ing rule have edges taken from E. An ordered graph grammar G = (R, GR)
is a graph grammar such that R is an ordered gts and the edges of the start
graph GR are taken from E.

Given a graph G of an ordered gts (i.e., the start graph or the constituent of a
rule) and a subset of its edges X = {e1, . . . , en} ⊆ EG, we denote by λ(X) the
sequence consisting of the edges in X taken according to the total ordering,
i.e., λ(X) = ei1 . . . ein, where ij ∈ {1, . . . , n} and j < h implies eij < eih.

All graph grammars and gtss in the paper will be implicitly ordered. We
remark that this will be useful for presentation issues, but it is inessential for
the operational behaviour of graph grammars: matches, rewriting steps and
derivations are defined as usual, independently from the ordering of edges. For
instance, the graph grammar G in Fig. 1 can be ordered by assuming that for
all edges ei and ej , ei < ej iff i < j.

2.2 Contextual Petri nets and pre-nets

We now fix some basic notation for Petri nets [46,42] and contextual
nets [44,58,30], i.e., Petri nets extended with read arcs. Then we will briefly
discuss pre-nets, a variation of Petri nets introduced in [13].

Given a set A we will denote by A⊕ the free commutative monoid over A,
whose elements will be called multisets over A. Given a function f : A → B,
by f⊕ : A⊕ → B⊕ we denote its monoidal extension.

On multisets m,m′ ∈ A⊕, we use some common relations and operations,
like inclusion, defined by m ≤ m′ when there exists m′′ ∈ A⊕ such that

9

N0

t1t0

a b

d e

c
N1

t1t0

a b

d e

c

Fig. 3. Ordinary nets do not allow for concurrent read-only operations.

m ⊕ m′′ = m′ and difference, which, in the same situation, is defined by
m′ −m = m′′. A multiset m ∈ A⊕ will be sometimes written as a formal sum
m =

⊕

a∈Ama · a and given m we will write m(a) to denote the coefficient ma

(i.e., m(a) = max{k | k · a ≤ m}). The join of two multisets m⊔m′ is defined
as the smallest multiset including m and m′, i.e.,

⊕

a∈A max{ma, m
′
a} · a.

Furthermore, for m ∈ A⊕ and a ∈ A we write a ∈ m for a ≤ m. The set
underlying a multiset m ∈ A⊕ is defined by [[m]] = {a ∈ A | a ∈ m}. Often we
will confuse a subset X ⊆ A with the multiset

⊕

x∈X x.

We denote by m : A∗ → A⊕ the function mapping any sequence to the
corresponding multiset. We will write a ∈ s if a appears in the sequence s,
i.e., if a ∈ [[m(s)]]. Similarly, we write s1 ∩ s2 for [[m(s1)]] ∩ [[m(s2)]].

Let us introduce now contextual Petri nets and their token game.

Definition 6 (contextual Petri net) Let A be a finite set of action labels.
An A-labelled (contextual) Petri net is a tuple N = (S, T, •(), ()•, (), p)

where S is a set of places, T is a set of transitions, •(), ()•, () : T → S⊕

assign to each transition its pre-set, post-set and context, and p : T → A

assigns an action label to each transition. A marking m is a multiset m ∈ S⊕.
A marked Petri net is a pair (N,mN), where N is a Petri net and mN ∈ S

⊕

is the initial marking.

Contextual nets are depicted like net N0 in Fig. 3: circles and boxes represent
places and transitions, respectively, directed edges link transitions to places in
their pre- and post-sets, while undirected edges represent the read-arcs, con-
necting the transitions with the places in their contexts. The initial marking
m is represented by inserting in any place s the corresponding number m(s)
of tokens, depicted as black circles.

Definition 7 (token game) Given a contextual net N =
(S, T, •(), ()•, (), p), a transition t ∈ T is enabled at a marking m ∈ S⊕ if
•t⊕ t ≤ m. When enabled, the firing of t produces a new marking m′ obtained
by removing the pre-set of t and adding its post-set, i.e., m′ = m− •t⊕ t•: in
this case we write m [t〉m′.

A firing sequence of a marked contextual net (N,mN) is a sequence of fir-

10

ings mN [t0〉m1 [t1〉 · · ·mn−1 [tn−1〉mn of transitions of N , starting from the
initial marking. A marking m is reachable in (N,mN) if there is a firing se-
quence ending with m; it is coverable if there is a firing sequence ending with
a marking m′ such that m ≤ m′.

A multiset of transitions U ∈ T⊕ is concurrently enabled by a marking m ∈ S⊕

if
⊕

t∈U

U(t) · •t⊕
⊔

t∈U

t ≤ m.

In this case, the firing of U produces the new marking

m′ = m−
⊕

t∈U

U(t) · •t⊕
⊕

t∈U

U(t) · t•.

This is denoted m [U〉m′, and it is called a step.

Intuitively, read arcs allow a transition to check for the presence of a token
in a place, without removing the token itself. Furthermore, as just formalised,
the same token can be read by several transitions at the same time: in fact, a
multiset of transitions U ∈ T⊕ is concurrently enabled by a marking m ∈ S⊕

if m contains the sum of all the pre-sets of the transitions in U (each one with
its multiplicity) and, additionally, the join of all the contexts of the transitions
in U .

Because of this notion of concurrent enabling, the (standard) net obtained
from a contextual net by replacing read arcs with self-loops would not be
equivalent to the original one: both nets would have the same reachable mark-
ings, but the contextual one would allow a greater amount of concurrency. For
instance, consider the net N1 in Fig. 3 and compare it to the net N0 in the
same figure, where place c is connected to transitions t0 and t1 by read arcs,
meaning that c represents a resource accessed in a read-only manner. While
in N0 the transitions t0 and t1 can fire concurrently, in N1 the two transitions
have to be interleaved. In practice the possibility of having concurrent read-
only accesses to shared resources can lead to smaller unfoldings and hence to
smaller approximations.

For technical reasons, it is convenient in the following to stick to a slightly
more concrete model of nets, the so-called pre-nets, where a total ordering is
imposed on the places occurring in the pre-, post-set and context of transitions.
Any pre-net can be seen as a concrete “implementation” of its underlying Petri
net, obtained by forgetting about the ordering of places. 2

2 Pre-nets have been introduced in [13] to obtain a fully satisfactory categorical
semantics for nets, where the construction of the model of computation yields an
adjunction between the category of nets and the category of models (symmetric
monoidal categories).

11

Total orderings on places will allow us to have a canonical one-to-one cor-
respondence between the places of two transitions related by a morphism
(needed for the folding steps introduced later) and to uniquely reconstruct
matches (see Proposition 13).

Definition 8 (contextual pre-nets) Let A be a finite set of action labels.
An A-labelled (contextual) pre-net is a tuple N = (S, T, •(), ()•, (), p) where
S is a set of places, T is a set of transitions, •(), ()•, () : T → S∗ assign to
each transition its pre-set, post-set and context, which are sequences of places,
and p : T → A assigns an action label to each transition.

A marked Petri pre-net is a pair (N, uN), where N is a Petri pre-net and
uN ∈ S

∗.

Observe that, given a transition t in a pre-net, •t and t• are deliberately
called, as for ordinary nets, the pre-set and post-set of t, although they are
not (multi-)sets, but sequences. As in the case of ordered graph grammars, the
ordering over places is inessential as far as the firing behaviour is concerned.
In other words, the token game of a pre-net is defined by referring to the
underlying Petri net. For example, we will speak of a marking of a pre-net
as a multi-set of places, and say that a marking is reachable or coverable in
a pre-net whenever it is reachable or coverable in the underlying Petri net.
Also the dependency relations between transitions are defined exactly as in
the underlying Petri net, as follows.

We will now define a relation of causal dependence on places and transitions.
It will be essential for computing coverings or over-approximations (see Defi-
nition 26).

Definition 9 (causality relation) Let N be a (marked) pre-net. The
causality relation <N over N is the least transitive relation on S ∪ T such
that, for all t, t′ ∈ T , s ∈ S, we have (i) s <N t if s ∈ •t, (ii) t <N s if s ∈ t•

and (iii) t <N t′ if t• ∩ t′ 6= ∅. For any x ∈ S ∪ T we define its sets of causes
⌊x⌋ = {y ∈ S ∪ T | y <N x} and consequences ⌈x⌉ = {y ∈ S ∪ T | x <N y}.
The definitions are extended in the obvious way to subsets X of S ∪ T , e.g.,
⌊X⌋ =

⋃

x∈X⌊x⌋.

A pre-net N is called acyclic if the relation <N is acyclic.

For instance, consider the Petri net N depicted in Fig. 4. It holds that s2 <N

t3 <N s3, furthermore t1 <N s1 <N t2 and t1 <N t3, while s1 and t3 are not
causally related.

A Petri net satisfies the irredundancy condition if no two distinct transitions
have the same label, pre-set and context.

12

t1

s0

s3

s2
N

t3

t2

s1

Fig. 4. Causality for contextual nets.

Definition 10 (irredundancy) A pre-net N = (S, T, •(), ()•, (), p) is
called irredundant if for any t, t′ ∈ T

p(t) = p(t′) ∧ •t = •t′ ∧ t = t′ ⇒ t = t′. (1)

The above property is typically considered in the theory of branching processes
of nets [24], where it allows one to interpret each transition of a process as an
occurrence of firing of a transition in the original net, uniquely determined by
its causal history. Here it will play a role when proving the confluence of the
algorithm computing the coverings of graph grammars (see Proposition 39).

2.3 Petri graphs

We now introduce the structures, called Petri graphs, that will be used to
represent approximations of graph transformation systems. They are a slight
variation of the notion introduced in [4], and consist of a graph and of a
contextual pre-net whose places are the edges of the graph.

Definition 11 (Petri graph) Let R be a gts. A Petri graph (for R) is a
tuple P = (G,N) where G is a graph, N = (EG, TN ,

•(), ()•, (), pN) is an
irredundant R-labelled pre-net where the places are the edges of G, and for
each transition t ∈ TN , with pN (t) = (L ←֓ K →֒ R), there exists a graph
morphism µ(t) : L ∪ R→ G such that

•t = µ(t)∗(λ(EL−EK)) ∧ t = µ(t)∗(λ(EK))∧ t• = µ(t)∗(λ(ER −EK)) (2)

Condition (2) guarantees that each transition t in the pre-net can be viewed as
an “occurrence” of rule pN(t) ∈ R. More precisely, let pN(t) = (L ←֓ K →֒ R)
and let µ(t) : L ∪ R → G be the morphism associated with the transition.
Then µ(t)|L : L→ G is a match of the rule in G such that the images in G of
the sequences of edges in L−K and K, produced as explained in Definition 5,
coincide with the pre-set and context of t, respectively. Furthermore µ(t)|R :
R→ G is a match of the right-hand side such that the image of the sequence

13

of edges in R−K, i.e., the edges produced by the application of the rewriting
rule to the considered match in G, coincides with the post-set of t.

Note that the total orderings on places and edges are needed to uniquely
reconstruct the matches of left-hand and right-hand sides (see Proposition 13).
Without using sequences the morphism µ would not necessarily be unique,
especially when the graphs contained in a rule have non-trivial automorphisms.

A sample Petri graph P = (G,N) for the grammar G of the running example
is shown in Fig. 5(a). Transitions are represented by small black rectangles,
and the connections between transitions and places/edges are drawn as dashed
lines in order to distinguish them from the lines connecting edges and nodes.
Transitions t1 and t2 correspond to the rewriting rules q1 and q2, respectively,
i.e., pN (t1) = q1 and pN(t2) = q2. Although not explicitly represented in the
picture, the order of pre- and post-set and contexts of transitions are those
induced by edge indexes, for instance, •t2 = e′1, t2 = e′2 and t2

• = e′1e
′
3. Note

that there are morphisms µ(t1), µ(t2) as required in Definition 11. For instance
the graph in Fig. 5(b) is the union L∪R of the left- and right-hand sides of rule
q2, and there exists a morphism µ(t2) from this graph to the graph underlying
P , mapping edges e1 and e3 to e′1, e2 to e′2 and e4 to e′3.

e′2

C

B

A

C

e′1
e′4

e′3
t1

t2

(a)

e4

A

C

B

A

e1

e2

e3

(b)

Fig. 5. (a) An example Petri graph P = (G,N) and (b) the graph L∪R for rule q2.

A Petri graph for a graph grammar is a Petri graph for the underlying gts,
equipped with an initial state which must correspond to the start graph of the
grammar. These Petri graphs will be used to approximate the unfolding of a
graph grammar and, as such, they play a role similar to occurrence nets ([24]),
where each place represents an occurrence of a token and each transition
represents an occurrence of a firing. Therefore, as it happens for occurrence
nets, we require that in a Petri graph each item is covered by some reachable
marking and each transition can be fired.

Definition 12 (marked Petri graph) A Petri graph for a graph grammar
G = (R, GR), called a marked Petri graph, is a pair (P, u) where P = (G,N)
is a Petri graph for R and u is a sequence of places of the Petri graph, called
the initial state, such that there exists a graph morphism ι : GR → G with
ι∗(λ(EGR

)) = u. Furthermore, the following conditions must hold:

14

• every edge of G is coverable, 3 and
• every transition t of N is firable, i.e., there is a coverable marking m ∈ EG

⊕

such that t is enabled at m.

The Petri graph in our running example in Fig. 5(a) is a Petri graph for the
grammar G in Fig. 1, with an initial state given by the sequence u = e′1e

′
2,

indicated by two black tokens.

The notion of Petri graph in this paper is a variation of the one in [4,10]. In the
original definition, the underlying net structure was a proper (not contextual)
Petri net and the µ components, i.e., the morphisms from rules to the under-
lying graph, were explicitly given. The next proposition shows that, thanks
to the use of pre-nets, in this new setting the µ components are uniquely
determined, provided that they exist.

Proposition 13 Let R be a gts and let P = (G,N) be a Petri graph for
R. Then for any transition t ∈ TN , with pN(t) = (L ←֓ K →֒ R) the graph
morphism µ(t) : L ∪ R → G satisfying Condition (2) of Definition 11 is
uniquely determined by •t, t and t•. Similarly, given a marked Petri graph
(P, u) for a graph grammar (R, GR) also the graph morphism ι : GR → G

satisfying the condition of Definition 12 is uniquely determined.

PROOF. (Sketch) The first part of the statement immediately follows from
the fact that we work with pre-nets and from the presence of a total ordering
on the edges of the graphs of each rewriting rule. The proof also uses the fact
that, by conditions (ii) and (iii) of Definition 2, a match of a left-hand side or
of the union of left- and right-hand sides of a rule is uniquely determined by
the images of the edges.

As for the second statement, it follows from the assumption that there are no
isolated nodes in the start graph of any graph grammar. 2

Notation. Given a Petri graph P = (G,N) for a gts R, in the following
we will write µ(t) to denote the unique graph morphism µ(t) : L ∪ R → G

satisfying condition (2) of Definition 11. Similarly, for a marked Petri graph
(P, u) for a graph grammar (R, GR) we will denote by ι the unique graph
morphism ι : GR → G satisfying the condition in Definition 12.

The above considerations motivate the use of pre-nets in place of ordinary Petri
nets. In fact, without pre-nets the above mentioned morphisms µ (and ι) would
not be unique since a left-hand side (the start graph) might contain several

3 A marking m ∈ EG
⊕ is called reachable (coverable) in (P, u), with P = (G,N),

if it is reachable (coverable) in the underlying marked pre-net (N,u).

15

edges with the same label. However, for the completeness of the unfolding (see
Proposition 24), it is necessary to distinguish among edges with the same label
which occur in the left-hand side of a rewriting rule. Thus, without pre-nets,
the functions µ and ι should be explicitly part of the Petri graph, making the
presentation heavier.

Given a Petri graph P = (G,N), every marking m ∈ EG
⊕ identifies a graph.

A safe marking m (i.e., such that m(e) ≤ 1 for all e ∈ EG) is intended to
represent the subgraph of G consisting of the edges in m and of the nodes
attached to these edges. For general markings, edges with multiplicity k will
result in k “parallel” edges. This is formalised in the next definition.

Definition 14 (graph generated by a marking) Let P = (G,N) be a
Petri graph and let m ∈ EG

⊕ be a marking of N . The graph generated by
m, denoted graphG(m), is the graph H defined as follows: VH = {v ∈ VG |
∃e ∈ m : v ∈ cG(e)}, EH = {(e, i) | e ∈ m ∧ 1 ≤ i ≤ m(e)}, cH((e, i)) = cG(e)
and lH((e, i)) = lG(e).

In other words, graphG(m) is obtained from G by first removing all edges that
are not covered by m, then multiplying all edges according to the number of
times they appear in m, and finally removing all isolated nodes. For instance,
the marking of the Petri graph in Fig. 5(a) generates the start graph of the
running example, depicted in Fig. 1(b).

Observe that graphG(m) is the only graph, up to isomorphism, which has no
isolated nodes and for which there exists a graph morphism ϕ : graphG(m)→
G injective on nodes such that ϕ⊕(EgraphG(m)) = m.

In the following we will sometimes confuse a marking of a Petri graph with
its generated graph, saying for example that a given graph is reachable in a
Petri graph.

For the technical development of the paper, it is convenient to look at (marked)
Petri graphs as objects of suitable categories, that we are going to define by
introducing a notion of Petri graph morphisms. This will allow us to charac-
terise the results of certain operations on Petri graphs as colimits of suitable
diagrams, and later to formalise in which sense a chain of approximations will
have the full unfolding of a graph grammar as its limit.

Definition 15 (categories of Petri graphs) Let P = (G,N), P ′ =
(G′, N ′) be Petri graphs for a given gts R. A Petri graph morphism is a
pair ψ = (ψG, ψN) : P → P ′ where

• ψG : G→ G′ is a graph morphism;

16

• (ψG|EG
, ψN) : N → N ′ is a labelled pre-net morphism, that is, ψN : TN →

TN ′ is a mapping such that for every t ∈ TN , •ψN (t) = ψG
∗(•t), ψN (t)• =

ψG
∗(t•), ψN (t) = ψG

∗(t), and pN ′ ◦ ψN = pN .

The category of Petri graphs for R and Petri graph morphisms is denoted by
PG(R).

The category of marked Petri graphs for a graph grammar G and morphisms
ψ : (P, u)→ (P ′, u′) which preserve initial states, i.e., such that ψG

∗(u) = u′,
is denoted by PGι(G).

In the following we will often omit the subscripts G and N . Moreover when the
gts R or the graph grammar G are clear from the context, the corresponding
Petri graph categories will be denoted simply by PG and PGι.

As an example, Fig. 6 shows a second Petri graph P ′ for our running example
grammar G in Fig. 1. This can be mapped to the Petri graph in Fig. 5(a) via
a Petri graph morphism which maps transitions t1 and t2 of the source Petri
graph to the corresponding transitions in the target. Concerning edges, the
morphism maps e′′1, e

′′
5 and e′′6 to e′1, e

′′
2 to e′2, e

′′
3 to e′3, and e′′4 to e′4.

e′′2

A

A C

B

A

C
e′′3

e′′4e′′5

e′′6

e′′1
t1

t2

Fig. 6. Another sample Petri graph.

We shall often exploit the following important property of categories PG(R)
and PGι(G).

Proposition 16 (cocompleteness of Petri graph categories) Let R be
a gts and G be a graph grammar. Then the category of Petri graphs PG(R)
and the category of marked Petri graphs PGι(G) are both cocomplete, i.e., they
have all colimits.

PROOF. See the Appendix. 2

17

Roughly, in order to construct the colimit first the pointwise colimit is taken
on nodes, edges and transitions, and then the resulting structure is quotiented
in order to fulfil the irredundancy condition of Petri graphs. In particular
we will later make use of pushouts and coequalizers to define unfolding and
folding operations.

3 Unfolding and under-approximations

In this section we define the unfolding of a graph grammar. Following a com-
mon approach in the literature (see, e.g., [51,54]) the unfolding is defined as
the union (categorically, the colimit) of the chain of its finite prefixes, each of
which can be seen as an under-approximation of the behaviour of the system.

The finite prefixes of the unfolding are constructed incrementally beginning
from the start graph and then applying at each step in all possible ways the
rules, without deleting the left-hand sides, and recording each occurrence of a
rule and each new graph item generated in the rewriting process. The process
stops at a given causal depth.

To define a basic unfolding step, we first need to fix some notation. Every
graph G can be considered as a Petri graph [G] = (G,N) for any gts R, by
taking N as the net with places EG and no transitions. Similarly, G can be
seen as a marked Petri graph ((G,N), u) for the graph grammar (R, G), by
taking N as above and u = λ(EG) as the initial state. If P = (N,G) is a Petri
graph and ϕ : G′ → G is a graph morphism then we will use the same symbol
ϕ : [G′]→ P to denote the corresponding Petri graph morphism.

Moreover, if r = (L ←֓ K →֒ R) is a rule, we will write P (r) to denote
the Petri graph (L ∪ R,N) where N = (EL∪R, {t},

•t = λ(EL − EK), t• =
λ(ER − EK), t = λ(EK), pN(t) = r). For instance the Petri graph P (r) for
rule q2 in Fig. 1(a) is depicted in Fig. 7. Intuitively it provides an alternative
representation of a rule where consumption, preservation and deletion of edges
is represented in the Petri net notation.

A

A

C

B

Fig. 7. A Petri graph for rewriting rule q2 of Fig. 1(a).

Definition 17 (unfolding operation) Let P = (G,N) be a Petri graph for

18

[L]
ϕ

//

idL

��

P

ψ

��

P (r) // unf(P, r, ϕ)

Fig. 8. Diagram for an unfolding step.

a gts R. Let r = (L ←֓ K →֒ R) ∈ R be a rule and let ϕ : L→ G be a match
of r in G. The unfolding of P with rule r at match ϕ, denoted unf(P, r, ϕ), is
the Petri graph obtained as pushout of ϕ : [L]→ P and idL : [L]→ P (r) (see
Fig. 8).

If (P, u) is a marked Petri graph for a graph grammar (R, GR) and ϕ⊕(EL)
is coverable, in the same situation, we define unf((P, u), r, ϕ) = (P ′, ψ∗(u)),
where P ′ = unf(P, r, ϕ) and ψ : P → P ′ is the PG morphism in the pushout
diagram defining the unfolding operation (see Fig. 8).

Roughly, given a Petri graph P = (G,N), whenever a rule r admits a match
ϕ in G, the unfolding operation allows to extend P by adding an occurrence
of rule r at match ϕ. The resulting Petri graph unf(P, r, ϕ) is obtained by
merging P with the Petri graph P (r), representing the rule, along the match.
Categorically, this corresponds to a pushout. Fig. 9 shows two unfolding steps
for the running example grammar G. Matches are specified by depicting the
involved edges in grey.

A

B
B

A

A C

B

A

C

A

A C

unfold q2unfold q1

Fig. 9. Two unfolding steps for the running example grammar G in Fig. 1

Observe that in the marked case, since ϕ⊕(EL) is coverable, using the fact
that, by Definition 12, in (P, u) all places can be covered and all transitions
can be fired, we can prove that the same holds in the resulting Petri graph
unf((P, u), r, ϕ). Hence unf((P, u), r, ϕ) is a well-defined marked Petri graph.

We introduce now the depth of an item in a Petri graph. To deal with the pres-
ence of causal cycles we take as codomain of the depth function the complete
partial order 4 of natural numbers extended with “infinity”.

4 Recall that a partial order is called complete if each directed subset has a least

19

Definition 18 We denote by Nω the partially ordered set (N ⊎ {ω},≤) where
≤ is the usual order on natural numbers and n ≤ ω for any n ∈ N. Addition
is extended to Nω by continuity, i.e., for m,n ∈ Nω:

m+ n =

m+ n if m,n ∈ N

ω otherwise

We start with a definition of depth over Petri nets, which is later extended to
Petri graphs. The function depth assigns to each item x of a pre-net its causal
depth, i.e., the length of the maximal chain of causally related items leading
from items without causes to x. In particular, an item x located in a causality
cycle will have an infinite depth, i.e., depth(x) = ω.

Definition 19 (depth of items of a Petri net) Let N be a pre-net. Let
DN be the function DN : (SN ∪ TN → Nω) → (SN ∪ TN → Nω) defined
as follows, where

⊔

X, for X ⊆ Nω, denotes the least upper bound of the set
X:

DN(d)(x) =

⊔

{d(t) | t ∈ TN ∧ x ∈ t•} if x ∈ SN
⊔

{d(s) | s ∈ SN ∧ s ∈ •x · x}+ 1 if x ∈ TN

Then the function depth : SN ∪ TN → Nω that assigns depth information to
every item of N is defined as depth = fix (DN), i.e., the least fixed point of
DN .

Observe that SN ∪ TN → Nω, endowed with the pointwise order, is a com-
plete partial order, since N

ω is itself complete. Moreover DN is monotone and
continuous, and thus depth is the least upper bound of the chain 〈Dn

N(0)〉n∈N

obtained by iterating DN over the constant function 0 mapping every item
to 0. This follows directly from the fixpoint theorem for complete partial or-
ders [18].

If the considered pre-net is finite, then the depth function can be computed
constructively. In fact, it is easy to check that the least fixed point can be
obtained by iterating the operator DN defined above on the zero function
n = 2 · (|TN | + 1) times. For any item x, if Dn

N (0)(x) = h ≤ |TN | then
depth(x) = h else depth(x) = ω.

The definition is extended to Petri graphs in a straightforward way: Places
become edges and we have to take into account also the presence of nodes.

Definition 20 (depth of items in a Petri graph) Let P = (G,N) be a
Petri graph. The function depth : EG∪TN → Nω is defined as in Definition 19.

upper bound.

20

This function is extended to nodes by defining, for v ∈ VG

depth(v) =
⊔

{depth(t) | t ∈ TN ∧ v ∈ µ(t)(VR − VK)}

where for each t ∈ TN with pN (t) = (L ←֓ K →֒ R), µ(t) : L ∪ R → G is the
unique morphism which exists by definition of Petri graph (see Definition 11
and Proposition 13).

Therefore the depth of a node v is the maximal depth of rules with left-hand
side L and right-hand side R where v appears in R − L, i.e., intuitively, of
rules which can “generate” node v.

As an example, Fig. 10 shows two Petri graphs seen before, enriched with the
indication of the depth of the various items.

t1

A

A C

B

A

C
1

1

11

1
0 0

0

0

1

1

1

t2

(a)

t1

C

B

A

C

0

0

ω

ω
ω ω

ω
ω t2

(b)

Fig. 10. Depth of items in a Petri graph.

We are now ready to define the prefix of the unfolding of a graph grammar
up to a given causal depth k, called the k-truncation of the unfolding.

Definition 21 (algorithm for k-truncation) Let k ∈ N and let G =
(R, GR) be a graph grammar. The algorithm generates a sequence (Pi, ui)i∈N

of Petri graphs, as follows.

(Step 0) Initialise (P0, u0) = ([GR], λ(EGR
)).

(Step i + 1) Let (Pi, ui), with Pi = (Gi, Ni), be the Petri graph produced at
step i.

⋆ Unfolding: Find a rule r = (L ←֓ K →֒ R) in R and a match ϕ : L → Gi

such that
· ϕ⊕(EL) is a coverable marking in Pi;
· there is no transition t ∈ TNi

such that pNi
(t) = r and •t = ϕ∗(λ(EL −

EK)) and t = ϕ∗(λ(EK));

21

· for any edge or node x ∈ ϕ(L) it holds that depth(x) < k.
Then set (Pi+1, ui+1) = unf((Pi, ui), r, ϕ).

If no unfolding step can be performed, the algorithm terminates. The resulting
marked Petri graph is called k-truncation of the unfolding of G and denoted
by T k(G).

For any i we will denote by ψi : (Pi, ui) → (Pi+1, ui+1) the PGι morphism
arising in the unfolding operation (see Definition 17).

It can be easily proved that the unfolding procedure described above is termi-
nating and confluent (up to isomorphisms). The proof of termination essen-
tially relies on the finiteness of start graph, set of rules and right-hand sides of
rules, and on the fact that the grammar is consuming. Confluence is an easy
consequence of the commutativity of colimits. As an example, the 1-truncation
of the running example grammar in Fig. 1 is the Petri graph in Fig. 10(a).
Note that it can be obtained from the start graph executing two unfolding
steps, corresponding to the application of the two rules of the grammar.

For any k ∈ N we consider a Petri graph morphism λk : T k(G) → T k+1(G),
defined as follows. Let P0, . . . , Pn = T k+1(G) be a sequence of Petri graphs
generated by the algorithm of Definition 21 for the construction of T k+1(G).
By confluence of the unfolding procedure, we can assume that all the unfolding
steps up to level k are performed first, and thus that there exists j ≤ n such
that Pj = T k(G). In this case we define λk = ψn−1 ◦ . . . ◦ ψj , where ψi (for
i ∈ {j, . . . , n− 1}) is as in Definition 21.

Definition 22 (truncation tower) The following diagram, where the λi are
defined as above,

T 0(G)
λ0→ . . .T k(G)

λk→ T k+1(G)
λk+1

→ . . .

is called the truncation tower of graph grammar G.

The next definition introduces the full unfolding of a graph grammar as the
colimit of its finite truncations, which exists by cocompleteness.

Definition 23 (unfolding as colimit of the k-truncations) The (full)
unfolding U(G) of a graph grammar G is the colimit in the category PGι of its
truncation tower.

As mentioned in the introduction, the unfolding fully represents the concur-
rent behaviour of the original grammar: the possible applications of rewriting
rules which can appear in any computation, the causal dependencies and the
conflicts (mutual exclusion) between such applications. This is formalised by
expressing the unfolding construction as a categorical adjunction (see [12,9]).

22

The unfolding that we obtain here is exactly the one presented in the cited
papers, up to a different syntactical presentation.

In particular, the proposition below states a property of the unfolding which
is crucial for this paper: Any graph reachable in a graph grammar can be
mapped isomorphically to a reachable subgraph of its unfolding, and, vice
versa, any reachable subgraph of the unfolding is the isomorphic image of a
reachable graph in the original grammar. Furthermore, steps in the original
grammar correspond to steps in the unfolding.

Proposition 24 (reachable graphs are subgraphs of the unfolding)
Let G = (R, GR) be a graph grammar and let U(G) = ((U,N), u) be its
unfolding. Let G be the set of graphs reachable in G, let M be the set of
markings of N reachable from the marking m0 = m(u), corresponding to the
start graph of G.

Then there exists a relation B ⊆ G×M, satisfying the following properties:

(i) (GR, m0) ∈ B.
(ii) B is a bisimulation, i.e., for any (G,m) ∈ B,
• if G ⇒r G

′, then there are a transition t in U(G) and a marking m′

such that m [t〉m′, pN (t) = r, and (G′, m′) ∈ B.
• if m [t〉m′, then there is a graph G′ such that G⇒pN (t) G

′ and (G′, m′) ∈
B.

(iii) For every pair (G,m) ∈ B there exists an injective morphism ϕG : G→ U

such that ϕ⊕(EG) = m.

PROOF. The proof is lengthy, but it follows quite straightforwardly from
the construction. 2

Obviously, for each k ∈ N the k-truncation T k(G) represents, in general, only
an under-approximation of the behaviour of the original grammar G. More
precisely, there exists a relation Bk between the graphs reachable in G and the
markings of T k(G) which is a simulation: it satisfies conditions (i) and (iii) of
Proposition 24, but only the second part of condition (ii). Actually, the first
part of condition (ii) also holds, but only for graphs reachable in G in at most
k (possibly concurrent) steps. Still, as we will see in Section 5.2, k-truncations
can be useful for proving some interesting properties of the original grammar.

23

4 Folding operation and over-approximations

In this section we present an algorithm which, given a graph grammar G and
a level of accuracy k, produces a finite Petri graph Ck(G), called k-covering,
which can be seen as an over-approximation of the behaviour of the grammar
G.

We have already mentioned that the full unfolding is usually infinite. To obtain
a finite over-approximation we modify the unfolding procedure by considering,
besides the unfolding operation, also a folding operation which allows us to
“merge” two occurrences of the left-hand side of a rule whenever one of them
causally depends, in a sense made precise later, on the other. Intuitively, the
presence of such two occurrences of a left-hand side indicates a cyclic behaviour
and applying the folding rule one avoids to unfold the corresponding infinite
path. While guaranteeing finiteness, the folding operation causes a loss of
information, in the sense that the resulting structure over-approximates the
behaviour of the original system: As it happens in the full unfolding, every
graph reachable in the original grammar G corresponds to a marking which is
reachable in the covering and every valid derivation in G corresponds to a valid
firing sequence in the covering, but there are reachable markings and valid
firing sequences in the covering which have no counterpart in the grammar.

In order to compute better over-approximations of the behaviour, the idea is
to delay folding steps, constraining the algorithm to apply only unfolding steps
until a given causal depth is reached. Roughly, this is obtained by “freezing”
an initial part of the approximated unfolding, up to a given causal depth
k, and by allowing only unfolding and no folding steps to affect that part.
The resulting over-approximation Ck(G) is “exact” up to causal depth k, in
the sense that any graph reachable in G in less than k (possibly concurrent)
steps will have a reachable isomorphic image in Ck(G). Instead, graphs which
are reachable in a larger number of steps, in general, will be mapped only
homomorphically in Ck(G).

In this way one can obtain arbitrarily accurate approximations, a fact which is
formalised by proving that the chain of k-coverings for a grammar G converges
to the full unfolding U(G). In categorical terms, U(G) is shown to be the limit
of the chain of coverings in the category of marked Petri graphs.

4.1 Computing k-coverings

The folding operation is the new ingredient needed to introduce the algorithm
for computing k-coverings.

24

Definition 25 (folding operation) Let P = (G,N) be a Petri graph for a
gts R. Let r = (L ←֓ K →֒ R) ∈ R be a rule and let ϕ′, ϕ : L→ G be matches
of r in G. The folding of P at the matches ϕ′, ϕ, denoted by fold(P, r, ϕ′, ϕ) =
P ′, is the Petri graph P ′, equipped with a morphism ψ : P → P ′, obtained as
the coequalizer of ϕ, ϕ′ : [L]→ P in the category PG. 5

If (P, u) is a marked Petri graph for a graph grammar (R, GR), in the same
situation, we define fold((P, u), r, ϕ′, ϕ) = (P ′, ψ∗(u)) where P ′ and ψ : P →
P ′ are as above.

Roughly speaking, the folding operation merges the two matches of rule r in
P producing a new Petri graph P ′. Actually, due to the irredundancy require-
ment for Petri graphs, as a side-effect of the identification of the images of ϕ
and ϕ′, other items can be merged. Note that whenever two transitions are
merged, the order of places in the post-set is quite relevant since it determines
how the items in the post-sets are to be merged.

We can now describe the algorithm which produces the k-covering Ck(G) of
the unfolding of a graph grammar G. The algorithm generates a sequence of
Petri graphs, beginning from the start graph of G and applying at each step,
non-deterministically, a folding or unfolding operation, until no such steps are
possible anymore. Folding steps will be applied only at depth k or greater.
Note that as soon as folding steps are applied, the Petri graph will contain
cycles.

Definition 26 (algorithm for k-covering) Let G = (R, GR) be a graph
grammar and let k ∈ N. The algorithm generates a sequence (Pi, ui)i∈N of
Petri graphs, as follows.

(Step 0) Initialise (P0, u0) = ([GR], λ(EGR
)).

(Step i+1) Let (Pi, ui), with Pi = (Gi, Ni), be the Petri graph produced at step
i. Choose non-deterministically one of the following actions

⋆ Folding: Find a rule r = (L ←֓ K →֒ R) in R and two matches ϕ′, ϕ :
L→ Gi of r such that
(F1) ϕ′ and ϕ are different.
(F2) ϕ⊕(EL) is a coverable 6 marking in Pi;

5 Existence of the coequaliser is ensured by Proposition 16. More explicitly, the pair
〈P ′, ψ〉 is characterised uniquely, up to isomorphism, by the fact that ψ ◦ϕ′ = ψ ◦ϕ,
and that for any other pair 〈P ′′, ψ′′ : P → P ′′〉 such that ψ′′ ◦ ϕ′ = ψ′′ ◦ ϕ there
exists a unique k : P ′ → P ′′ such that k ◦ ψ = ψ′′.
6 Note that coverability may be expensive to check once the Petri graph has
been folded. Incremental techniques for coverability checking are described in [35].

25

(F3) there exists a transition t ∈ TNi
such that

(i) pNi
(t) = r ∧ ϕ′∗(λ(EL −EK)) = •t ∧ ϕ′∗(λ(EK)) = t;

(ii) ∀e ∈ EL : (ϕ(e) = ϕ′(e) ∨ t <Ni
ϕ(e)).

(F4) for every edge or node x ∈ EL ∪ VL it holds that

ϕ(x) = ϕ′(x) ∨ (depth(ϕ(x)) ≥ k ∧ depth(ϕ′(x)) ≥ k).

Then set (Pi+1, ui+1) = fold((Pi, ui), r, ϕ
′, ϕ).

⋆ Unfolding: Find a rule r = (L ←֓ K →֒ R) in R and a match ϕ : L→ Gi

such that
(U1) ϕ⊕(EL) is a coverable marking in Pi;
(U2) there is no transition t ∈ TNi

such that pNi
(t) = r ∧ •t = ϕ∗(λ(EL−

EK)) ∧ t = ϕ∗(λ(EK));
(U3) there is no other match ϕ′ : L→ Gi such that the pair ϕ′, ϕ satisfies

the folding condition.
Then set (Pi+1, ui+1) = unf((Pi, ui), r, ϕ).

If no folding or unfolding step can be performed, the algorithm terminates.
The resulting marked Petri graph is called k-covering of the unfolding of G
and denoted by Ck(G).

For any i we will denote by ψi : (Pi, ui) → (Pi+1, ui+1) the PGι morphism
arising in the unfolding or folding operations (see Definitions 17 and 25).

=
e′2

e′1

t

ϕ′

ϕ

e3

e3

e2

L

L′

e1

Fig. 11. Graphical representation of the folding condition (F3).

Condition (F3) basically states that we can fold two matches ϕ′, ϕ of a rule
r whenever the first one has been already unfolded producing a transition t,
and the second match depends on the first one, in the sense that any edge
in the second match appears already in the first one or causally depends
on t. A graphical intuition of this condition is given in Fig. 11. We can see
two matches L′ and L of the same left-hand side, both consisting of three
interconnected edges. The folding condition is satisfied since the first match
L′ has been already unfolded, generating transition t, and the first two edges
e1, e2 of L are causally dependent on t, while the third one e3 coincides with
the corresponding edge of L′.

It is also possible to drop this condition, obtaining however less precise over-
approximations.

26

Roughly, the idea is that we should not unfold a left-hand side if, in its causal
history, we have already done the same unfolding step, since this might lead
to infinitely many steps. A similar idea is developed in [28], where the sets of
descendants and of normal forms of term rewriting systems are approximated
by constructing an approximation automaton.

It is worth stressing that the equality ϕ(e) = ϕ′(e) in the disjunction in con-
dition (F3) is really needed. Its omission would permit to construct an input
grammar on which the algorithm does not terminate. For instance, in the ex-
ample of Fig. 12, which is commented in more detail later, we would never be
allowed to fold two matches for rule q2, since all transitions labelled by this
rule contain the same B-edge in their context.

Notice also that by Condition (F4) only items of depth k or greater can be
merged. This ensures that the prefix up to depth k of the unfolding is not
involved in any folding operation. Actually, in order to guarantee termination,
some items of depth smaller than k can be involved in a folding operation,
but they will be left unchanged by the step (intuitively they are merged with
themselves).

A main result of this paper, presented next in Section 4.2, is that the non-
deterministic algorithm just described is terminating and confluent, and thus
for any k ≥ 0 the k-covering of a graph grammar is uniquely determined, up
to isomorphisms.

Fig. 12 shows two possible runs of the non-deterministic algorithm of Def-
inition 26 applied to the running example grammar G, with k = 0. As a
consequence of the confluence result proved in the next section, both runs ter-
minate with the same Petri graph. It is worth stressing that the irredundancy
condition for Petri graphs is essential for this result. A step where the effect
of this condition can be seen is marked in Fig. 12 by “irredundancy!”: in this
step, because of irredundancy, not only the two bottom A-edges are merged,
but also the two transitions consuming them and hence the two top A-edges
and two C-edges.

4.2 Termination, confluence and over-approximation

In this section, after some technical preliminaries, we shall first prove that
the algorithm described in Definition 26 is terminating and confluent. Hence,
by a classical result, the k-covering of a graph grammar is uniquely deter-
mined, up to isomorphisms. Next we show that the algorithm produces over-
approximations of the original graph grammar, namely, that for a given graph
grammar G, if we consider the k-covering Ck(G) produced by the algorithm

27

A
unfold q2

C

B

A

C

C

C

C

edges being merged
(due to irredundancy)

edge involved in
an unfolding step

edge involved in
a folding step

A

fold q1

unfold q2

fold q2

unfold q2

fold q1
(irredundancy!)

B

A

A C

B

A

C

C

A

B

A

C

A

A

A

B B

A

C

A

A C

unfold q1

B

Fig. 12. Two different computations leading to the same 0-covering.

then every graph reachable in G has a homomorphic image in Ck(G). Finally,
we conclude by showing that Ck(G) is “exact” up to causal depth k.

Let us start by introducing a few technical definitions and lemmata that will
be exploited in the main proofs.

Lemma 27 Let ψ : P → P ′ be a PG morphism where P = (G,N). Then for
any node, edge or transition x ∈ VG ∪ EG ∪ TN it holds that depth(ψ(x)) ≥
depth(x).

PROOF. See the Appendix. 2

We introduce now the notions of k-monomorphisms and k-isomorphisms be-
tween Petri graphs. These are morphisms that are injective (respectively, bi-

28

jective) when restricted to items of depth smaller than k in the source and
target Petri graphs, and that preserve the depth of such items. Next we will
show that the morphisms ψi relating the marked Petri graphs (Pi, ui) gen-
erated at successive steps of the construction of the k-covering are indeed
k-monomorphisms.

Definition 28 (k-monomorphism, k-isomorphism) Let ψ : P → P ′ be a
PG morphism where P = (G,N) and P ′ = (G′, N ′). For k ≥ 0, we say that ψ
is a k-monomorphism if for all x, y ∈ EG ∪ VG ∪ TN

(i) depth(x) < k ∧ ψ(x) = ψ(y) ⇒ x = y;
(ii) depth(x) < k ⇒ depth(x) = depth(ψ(x)), i.e., ψ preserves depth infor-

mation up to k.

We say that ψ is a k-isomorphism if it is a k-monomorphism and additionally
it is surjective on items of depth smaller than k, i.e.,

(iii) ∀x′ ∈ EG′∪VG′∪TN ′ . (depth(x′) < k ⇒ ∃x ∈ EG∪VG∪TN . ψ(x) = x′).

A marked Petri graph morphism ψ : (P, u) → (P ′, u′) is a k-monomorphism
(k-isomorphism, respectively) if so is its Petri graph component ψ : P → P ′.

Every Petri graph morphism is trivially a 0-isomorphism, hence this holds also
for the only morphism from the Petri graph in Fig. 10(a) to that in Fig. 10(b)
(mapping transitions t1 and t2 of the first Petri graph to the corresponding
transitions in the second one). However, it is not a 1-monomorphism since it
“merges” two A-edges whose depths are 0 and 1, respectively.

The next lemma shows that for surjective PG morphisms the conditions of
Definition 28 can be greatly simplified. Then we make explicit some closure
properties of k-monomorphisms and k-isomorphisms.

Lemma 29 Let k ≥ 0 and let ψ : P → P ′ be a surjective PG morphism
satisfying Condition (i) in Definition 28. Then ψ is a k-isomorphism.

PROOF. See the Appendix. 2

Lemma 30 The class of k-monomorphisms and the class of k-isomorphisms
are closed under composition. If ψ1 ◦ ψ2 is a k-monomorphism, then ψ2 is
a k-monomorphism. And furthermore if ψ1 ◦ ψ2 is a k-isomorphism and ψ2

satisfies Condition (iii), then both ψ1 and ψ2 are k-isomorphisms.

PROOF. Straightforward. 2

29

As anticipated above, the relevance of the classes of morphisms just introduced
lies in the fact that given a k ≥ 0, for each i ≥ 0 the morphism ψi : (Pi, ui)→
(Pi+1, ui+1) relating the Petri graphs generated by the algorithm for k-covering
of Definition 26 are k-monomorphisms. Conceptually, this means that once an
item is generated at depth smaller than k, its depth does not change later.
Furthermore, from a certain point on, when all items of depth smaller than k
have already been generated, the above morphisms are also k-isomorphisms.

Lemma 31 For a fixed k ≥ 0, the PGι morphisms ψi : (Pi, ui)→ (Pi+1, ui+1)
from Definition 21 and Definition 26 are k-monomorphisms.

PROOF. See the Appendix. 2

4.2.1 Termination

The fact that the algorithm computing the k-covering always terminates is
not obvious. In the proof of termination, a crucial role is played by Lemma 34
below, stating that it is not possible to perform infinitely many unfolding
steps, without having the folding condition (F3) satisfied at some stage. This
lemma is actually independent of the graphical structure and can be proved
by considering only the causality structure of a Petri graph, as expressed by
the underlying pre-net. More formally, we show that in any infinite pre-net,
satisfying suitable acyclicity and well-foundedness requirements, there exists
a pair of transitions t, t′ (called a folding pair) such that the pre-set of t′ is
dependent on t in the sense of Condition (F3) of Definition 26. Let us start
by formalising the notion of folding pair.

Definition 32 (folding pair) Let N = (S, T, •(), ()•, (), p) be a pre-net. A
folding pair in N is a pair of transitions t, t′ ∈ T such that t 6= t′, p(t) = p(t′),
| •t| = | •t′|, |t| = |t′|, and for all 1 ≤ j ≤ | •t| + |t| it holds that either
[•t · t]j = [•t′ · t′]j or t <N [•t′ · t′]j.

We will also need an operation which removes from a given pre-net a subnet
and all its consequences, as expressed by the following definition. Recall that
a backward conflict in a (pre-)net N occurs if there is a place s which belongs
to the post-set of more than one transition, i.e., s ∈ t•∩ t′• for two transitions
t 6= t′.

Definition 33 Let N = (S, T, •(), ()•, (), p) be an acyclic pre-net without
backward conflicts and let Q ⊆ T . We define

N −Q = (S ′, T ′, •()|T ′, ()•|T ′, ()
|T ′
, p|T ′),

30

where S ′ = S−{s | ∃t ∈ Q : t <N s} and T ′ = T −{t′ | ∃t ∈ Q : (t <N t′ ∨ t =
t′)}, i.e., all elements of Q and their consequences are removed from N .

The next key lemma ensures that in any infinite net obtained by applying
unfolding steps only, there exists a folding pair. More specifically, it shows
that given a net N of this kind, if we consider an infinite set of transitions Q
with the same label, either it contains a folding pair or we can remove almost
all (namely all but finitely many) elements of Q from N in a way that the
resulting net remains infinite. Using this fact if N did not contain any folding
pair we would reach a contradiction: since the set of labels is finite, we could
remove in a finite number of steps almost all the transitions of N , still getting
at the end an infinite net.

Lemma 34 Let N = (S, T, •(), ()•, (), p) be an infinite irredundant pre-net,
labelled over a finite set A, and satisfying the following conditions:

(i) the relation <N is acyclic;
(ii) there are no backward conflicts;
(iii) for any x ∈ S ∪ T the set ⌊x⌋ (the causes of x) is finite;
(iv) the set Min(N) = {s | ⌊s⌋ = ∅} is finite, i.e., only finitely many places

have an empty set of causes;
(v) for t, t′ ∈ T with p(t) = p(t′) it holds that | •t| = | •t′| and |t| = |t′|.

Let Q ⊆ T be a set of transitions with the same action label, i.e., ∃a ∈ A.∀t ∈
Q. p(t) = a, such that Q does not contain a folding pair. Then there exists a
set Q′ ⊆ Q such that Q−Q′ is finite and N −Q′ is infinite.

PROOF. See the Appendix. 2

We can now show that there cannot be an infinite net without a folding pair.

Lemma 35 If N = (S, T, •(), ()•, (), p) is a pre-net satisfying the conditions
of Lemma 34, then it contains a folding pair.

PROOF. Let A′ = {a ∈ A | ∃ωt : p(t) = a}, i.e., the set of all action labels
that occur infinitely often in the net. The set A′ is obviously finite, since A is
finite. Hence the proof can proceed by induction on |A′|.

• If |A′| = 0, then N is finite and the lemma is trivially true, since the premise
of the implication is false.
• Assume that the lemma holds for |A′| = k and consider the case |A′| = k+1.

Consider any a ∈ A′ and the set Qa = {t ∈ T | p(t) = a}. Then according
to Lemma 34, either Qa contains a folding pair and we are done, or we can

31

remove almost all the elements of Qa, obtaining an infinite net N ′. Since
in N ′ only k action labels occur infinitely often, but N ′ is still infinite, by
induction hypothesis, it follows that N ′ contains a folding pair, which is also
a folding pair of N . 2

The above lemma ensures that in our algorithm a folding step will be even-
tually performed. We are now ready to show termination of the algorithm.
We will use the notion of marked pre-net morphism, i.e., the net compo-
nent of a Petri graph morphism. Explicitly, a marked pre-net morphism
β : (N,m) → (N ′, m′) is a pair of functions β = 〈βS : S → S ′, βT : T → T ′〉
such that βS

∗(m) = m′ and for any t ∈ T , βS
∗(•t) = •βT (t), βS

∗(t) = βT (t)
and βS

∗(t•) = βT (t)•.

Proposition 36 (termination) The algorithm computing the k-covering
(see Definition 26) terminates for every graph grammar G and every k ∈ N.

PROOF. (Sketch - See the Appendix for full proof) In parallel to the com-
putation of the k-covering Ck(G) we construct a second acyclic pre-net N ′ as
follows. For every unfolding step, we extend N ′ with a new transition, corre-
sponding to the transition added in Ck(G). Instead N ′ is left unchanged in a
folding step. The construction ensures the existence of a surjective net mor-
phism from N ′ to its “folded” counterpart, i.e., the pre-net underlying the
Petri graph constructed by the algorithm.

Suppose by contradiction that the algorithm does not terminate and thus
that N ′ grows without bounds. Enrich the labels of the transitions in N ′ by
adding, besides the name of the corresponding rewriting rule, also the edges
of depth smaller than k occurring in the pre-set and in the context of the
corresponding transition of the k-covering, and the nodes attached to these
edges. Since there are only finitely many items of depth smaller than k, there
will be finitely many such labels.

Thus, by Lemma 35, N ′ contains a folding pair û, t̂. The image of such a
folding pair through the net morphism fromN ′ to the pre-net underlying Ck(G)
provides a folding pair u, t in Ck(G). The way in which the transition labels in
N ′ have been enriched allows to show that the second transition t in the pair
could never have been added to the Petri graph since this would have been a
violation of the third condition of the unfolding step in Definition 26. 2

32

4.2.2 Confluence

In order to prove that the algorithm produces a uniquely determined result,
independently of the order in which folding and unfolding steps are applied,
we show that the rewriting relation on Petri graphs induced by folding and
unfolding steps is locally confluent.

We first need two preliminary lemmata. The first one observes that the cover-
ability property of markings is preserved under pre-net morphisms (and thus
also under Petri graph morphism).

Lemma 37 Let (N,mN), (N ′, mN ′) be marked pre-nets and let β : N → N ′

be a marked pre-net morphism. If a marking m is coverable in (N,mN), then
β⊕(m) is coverable in (N ′, mN ′).

PROOF. Trivial, since pre-net morphisms are simulations. 2

The second lemma shows that, under specific conditions, folding and unfolding
steps have no effect on the Petri graph. However, notice that in both these
cases the corresponding application conditions would not be satisfied.

Lemma 38 Let (P, u) with P = (G,N) be a Petri graph for a graph grammar
G, let r = (L ←֓ K →֒ R) be a rewriting rule of G and let ψ : L → G be a
match of the left-hand side in G. Then fold((P, u), r, ψ, ψ) ∼= (P, u).

If furthermore P contains a transition t ∈ TN such that pN(t) = r and •t =
ψ∗(λ(EL −EK)) and t = ψ∗(λ(EK)), then unf((P, u), r, ψ) ∼= (P, u).

PROOF. Immediate. Only note that the second part of the lemma, con-
cerning unfoldings, requires the irredundancy condition: The newly unfolded
transition is immediately merged with t. 2

We fix some notational conventions. We write (P, u) ;
unf
r,ψ (P ′, u′) when-

ever (P ′, u′) ∼= unf((P, u), r, ψ) . We write (P, u) 99K
unf
r,ψ (P ′, u′) whenever

(P, u) ;
unf
r,ψ (P ′, u′) and the application conditions (U1)–(U3) of the un-

folding step are satisfied. In the same way (P, u) ;
fold
r,ψ,η (P ′, u′) whenever

(P ′, u′) ∼= fold((P, u), r, ψ, η), and again (P, u) 99K
fold
r,ψ,η (P ′, u′) whenever

(P, u) ;
fold
r,ψ,η (P ′, u′) and the application conditions (F1)–(F4) of the folding

step are satisfied.

33

Furthermore we write (P, u) 99K (P ′, u′) whenever (P, u) 99K
unf
r,ψ (P ′, u′) or

(P, u) 99K
fold
r,ψ,η (P ′, u′), for suitable rule r and morphisms ψ, η.

We are now ready to prove the confluence result.

Proposition 39 (local confluence) Let (P, u) 99K (Pi, ui) for i ∈ {1, 2}.
Then there is a Petri graph (P ′, u′) such that (Pi, ui) 99K

∗ (P ′, u′) for i ∈
{1, 2}.

PROOF. (Sketch - See the Appendix for full proof) The proof mainly re-
lies on the fact that both folding and unfolding operations can be described
as colimits in a suitable category of Petri graphs. Then a general categorical
result that ensures the commutativity of colimits can be exploited. Finally,
things must be accommodated to take into account also the applicability con-
ditions of folding and unfolding steps as described in the algorithm (see Defi-
nition 26). 2

For instance, in Fig. 12 the reader can find two confluent runs of the algorithm
computing the 0-covering of the running example grammar G.

A general result ensures that for a rewriting system, local confluence and
termination imply confluence. Hence we immediately get the following result.

Proposition 40 (confluence) For any grammar G and k ∈ N the algorithm
computing the k-covering terminates with a result Ck(G), unique up to isomor-
phism.

PROOF. Recall that, by Proposition 39, the algorithm computing the k-
covering is confluent and, by Proposition 36, it is also terminating. Then
uniqueness follows from the Newman’s Lemma [19], which states that local
confluence and termination imply global confluence. 2

We can also show that the approximated unfolding algorithm produces a
unique result, even if we violate Condition (U3) of the unfolding step a fixed
number of times. This will be useful for constructing morphisms between the
various k-truncations and k-coverings.

Lemma 41 If Condition (U3) is violated a finite number of times during the
construction of the covering, the algorithm of Definition 26 still terminates
with the same unique result.

34

PROOF. See the Appendix. 2

4.2.3 Over-approximation

We first show that the computed Petri graph Ck(G) provides an over-
approximation of the behaviour of the given graph grammar, which is exact up
to causal depth k. More precisely we prove that from any graph reachable in
G, there is a morphism into the covering Ck(G) such that the image of its edge
set corresponds to a reachable marking. Furthermore, if a graph is reachable
in G in less than k steps, then it can be mapped injectively to (the graphical
component of) Ck(G).

Rather than proving this result directly, we will show that there is a k-
isomorphism from the full unfolding U(G) into each covering Ck(G). In order
to obtain this result and some further results in Section 4.3, we will now first
define morphisms υk : Ck+1(G)→ Ck(G) and δi,k : T i(G)→ Ck(G).

Proposition 42 (k-Monomorphisms υk and δi,k) For any k, i ∈ N there
are k-monomorphisms υk : Ck+1(G) → Ck(G) and δi,k : T i(G) → Ck(G) such
that the following diagram commutes, where the morphisms λi : T

i(G) →
T i+1(G) are those forming the truncation tower, as introduced in Definition 22.
Furthermore, the morphisms υk and δi,k for i ≥ k are k-isomorphisms.

T i(G)
λi //

δi,k
��

δi,k+1

%%J
JJJJJJJJ
T i+1(G)

δi+1,k+1

��

Ck(G) Ck+1(G)
υkoo

PROOF. See the Appendix. 2

We are now ready to show that there is a k-isomorphism from the full unfolding
into every covering Ck(G). This will be used to prove that the k-covering
represents in an exact way the behaviour of the grammar up to causal depth k.

Proposition 43 For every index k there is a marked PG morphism which
is a k-isomorphism θk : U(G) → Ck(G) and such that the following diagram
commutes.

U(G)
θk+1

zzttttttttt
θk

##H
HH

HH
HH

HH

Ck+1(G)
υk // Ck(G)

35

PROOF. See the Appendix. 2

The correctness of the algorithm, specifically the fact that it computes an
over-approximation or abstraction of the original system that is exact up to
depth k, now follows as a corollary of the last proposition.

Corollary 44 (over-approximation) Let G = (R, GR) be a graph grammar
and assume that the algorithm computing the k-covering terminates producing
the Petri graph Ck(G) = ((U,N), u). Let G be the set of graphs reachable in G,
let M be the set of markings of N reachable from the marking m0 = m(u).

Then there exists a relation S ⊆ G×M, satisfying the following properties:

(i) (GR, m0) ∈ S.
(ii) S is a simulation, i.e., if (G,m) ∈ S and G⇒r G

′ for some rule r ∈ R,
then m [t〉m′ where pN(t) = r and (G′, m′) ∈ S.

(iii) For every pair (G,m) ∈ S there exists a morphism ϕG : G→ U such that
ϕG

⊕(EG) = m. If GR ⇒
∗
R G with a derivation of length smaller than k,

then ϕG is injective.
(iv) If GR ⇒

∗
R G with a derivation of length smaller than k and furthermore

(G,m) ∈ S and m [t〉m′, then G ⇒∗
r G

′ for some rule r ∈ R where
pN(t) = r and (G′, m′) ∈ S.

PROOF. By Proposition 43 there is a marked Petri graph morphism
θk : U(G)→ Ck(G) and thus there is obviously a simulation between the mark-
ings of U(G) and the markings of Ck(G). Since θk is a k-isomorphism, this
simulation is a bisimulation for markings which can be reached in less than k
derivation steps.

Recall from Proposition 24 that the full unfolding U(G) provides an “exact”
representation of the behaviour of G, in the sense that there is a bisimulation
relating the reachable graphs of G and the reachable markings of U(G). Hence
the result immediately follows. 2

Observe that the existence of a morphism θk : U(G) → Ck(G) for any k (see
Proposition 43) allows also to trivially deduce that causality in each covering
Ck(G) provides an approximation of causality in the full unfolding. More pre-
cisely, for any k, if U(G) = ((U,N), u) and Ck(G) = ((Uk, Nk), uk) then for all
x, y ∈ EU ∪ TU , if x <N y then θk(x) <Nk

θk(y).

36

4.3 Full unfolding as limit of the coverings

Intuitively, the sequence of k-coverings Ck(G), with growing k, represents the
behaviour of the graph grammar G with arbitrary high accuracy. This is for-
malised by showing that the sequence of k-coverings (Ck(G))k∈N converges to
the full unfolding U(G), or, in categorical terms, that U(G) is the limit of the
chain (Ck(G))k∈N in the category PGι of marked Petri graphs.

Using the morphisms constructed in Section 4.2, we define the notion of cov-
ering tower, which is the counterpart of the truncation tower.

Definition 45 (covering tower) The following diagram, where the υk are
defined as in Proposition 42,

C0(G)
υ0← . . . Ck(G)

υk← Ck+1(G)
υk+1

← . . .

is called the covering tower.

Now we can show that the full unfolding can be obtained as the limit of the
covering tower.

Proposition 46 (unfolding as limit of the coverings) The limit in the

category PGι of the covering tower C0(G)
υ0← . . . Ck(G)

υk← Ck+1(G)
υk+1

← . . .

is the full unfolding U(G) of the graph grammar.

PROOF. See the Appendix. 2

5 Applications

We will now discuss how truncations (under-approximations) and coverings
(over-approximations) can be used for verification purposes. We will illustrate
this with several examples and give a short introduction to available tool
support.

5.1 Verification

In Sections 3 and 4 we constructed k-truncations T k(G) and k-coverings Ck(G)
for a given graph transformation system G. The former have a Petri graph mor-
phism into the full unfolding U(G) whereas for the latter there is a morphism
from the full unfolding. The situation is summarized in Figure 13. Note also

37

T 0(G)

,,XXXXXXXXXXXXXXXXXX // T 1(G)

((RRRRRR T k(G)
��

// T k+1(G)

uukkkkkkk
. . .

U(G)

rrffffffffffffffffff

vvlllllll
��))SSSSSSS

C0(G) C1(G)oo Ck(G) Ck+1(G)oo . . .

Fig. 13. Unfolding as the colimit of truncations and limit of coverings.

that U(G) is the colimit of the chain of truncations and the limit of the chain
of coverings.

There are two ways in which we can exploit the existence of these morphisms
for verification purposes: in order to obtain simulations and in order to ap-
proximate causality.

Petri graph morphisms are simulations, i.e., a step of the source Petri graph
can always be simulated by the target. Then, a general issue when model
checking approximated transition systems is that usually only fragments of the
temporal logic CTL∗ such as ACTL or LTL can be considered [15]. In general,
properties involving existential quantifications over computations, like “there
exists a path such that . . . ”, cannot be checked for over-approximations, since
spurious runs, not appearing in the original system, may be introduced by the
approximation. Similarly, properties involving universal quantification, like
“for all paths it holds that . . . ”, cannot be checked on under-approximations.

A second issue is concerned with the fact that truncations and coverings ap-
proximate, not only the transition system of the original grammar, but also its
states: graphs reachable in the original grammar are represented by markings
in the Petri graphs. Consequently, in order to be able to transfer verification
results from one transition system to the other, some restrictions will need to
be imposed on the considered state properties.

The situation can hence be summarized as follows:

Proposition 47 (simulation) Let ψ : (P, u) → (P ′, u′) be a morphism be-
tween marked Petri graphs. Then there is a relation R on the reachable mark-
ings of P and P ′ which is a simulation with respect to the firing relation of
the underlying nets.

Furthermore if (P, u) = T k(G) and (P ′, u′) = U(G) for some graph trans-
formation system G, then there is a simulation relation R such that for ev-
ery (m,m′) ∈ R there exists a bijective graph morphism ϕ : graphG(m) →
graphG′(m′).

Similarly if (P, u) = U(G) and (P ′, u′) = Ck(G) for some graph transformation

38

system G, then there is a simulation relation R such that for every (m,m′) ∈ R
there exists an edge-bijective graph morphism ϕ : graphG(m)→ graphG′(m′).

Note that for truncations we obtain bijective morphisms, whereas for coverings
we get only edge-bijective morphisms due to the folding steps and the resulting
node fusions. Furthermore the set of all graphs generated from the reachable
markings of the full unfolding corresponds exactly to the set of reachable
graphs of G (up to isolated nodes). From this we can conclude that whenever
we have a property on graphs that is reflected by edge-bijective graph mor-
phisms and which holds for all graphs generated by markings reachable on the
covering, then it will also hold for all graphs reachable in the original graph
transformation system. A typical example for a property that is reflected by
edge-bijective morphisms is non-adjecency of edges or the absence of certain
paths or cycles. That is, for a graph morphism ϕ : G→ G′, whenever G′ does
not contain such a forbidden structure, then this is also true for G. Addition-
ally we can transfer information on the number of edges with a certain label
due to edge-bijectivity.

In [10,11,7] we have shown how to formulate and verify reachability properties
and other properties using temporal logics and second-order monadic logic on
graphs. Furthermore [10] also explains how to view our technique as a specific
instance of abstract interpretation [39].

A second, different use of Petri graph morphisms is that they over-approximate
causality. That is, if there is no causal relation between certain transitions
on the over-approximation, then there is no causal dependence between the
corresponding rule applications in the graph transformation system. This is
explained in more detail in Example 2 below.

5.2 Examples

Based on these ideas we now present some examples taken from the area of
mobile systems and processes. These are simple examples meant to clarify the
concepts introduced earlier. More complex examples and case studies have
been conducted with the help of the tool support presented in Section 5.3.

Example 1: Consider the simple graph grammar S in Fig. 14, where edge
labels have the following meaning: C (connections), Spub (public servers), Sprv

(private servers), Pint (internal processes) and Pext (external processes). Fur-
thermore edges Gpub and Gprv are intended to represent generators, which
produce public and private servers, respectively. The rules of the grammar
allow to generate an arbitrary network of servers connected by C-edges, with

39

the only restriction that no connections are allowed from a public to a private
server. Connections in the other direction are admissible.

Furthermore servers may create processes—public servers create external pro-
cesses and private servers create internal processes—and processes are mobile
and can wander around in the network. Observe that in the rule describing
a process crossing a connection, the C-edge is in the context (denoted by a
dashed line), i.e., it is preserved, and not first deleted and then created again.
We want to show that an external process will never be connected to a private
server, thus accessing classified data. It can easily be seen that this prop-
erty, which talks about non-adjacency of edges, is reflected by (edge-bijective)
graph morphisms.

pcc

Gpub

private server

public server

create

create

delete private
generator

SpubGpub

Gprv Sprv

Gprv Gpub

Gprv

delete public
generatorGpub

Sy

21

Sx

Spub

1

1 C 2

Px

Pint

create connection
(x 6= pub ∨ y 6= prv)

1

Spub Pext

internal process

create
external process

1 C 2

Px
process crosses
connection
(x = int ∨ x = ext)

1

Sx

C

Sy

2

create
Sprv

1

Sprv

1

Start graph:

Rules of the grammar:

Gprv

crs

cbs

drg

dbg

cc

cip

cep

Fig. 14. The example graph grammar S.

The algorithm in Definition 26, applied to the graph grammar S in order to

40

drg

Pint C Pext

Gpub

Spub Sprv

2 2

C
2 2

C

Pint

Gprv

pcc

cc
pcc

cep

cbs

cc

pcc

pcc

cip

cc

crs

dbg

Fig. 15. The 0-covering C0(S) of grammar S in Fig. 14.

compute the 0-covering C0(S), produces the Petri graph in Fig. 15. Observe
that transitions are annotated with the corresponding rule names. Inspecting
C0(S) we can establish that the above mentioned property holds by simply
examining the graph structure underlying the 0-covering, since edges of the
form Sprv and of the form Pext do not share a common node.

Example 2: In order to show that, to be able to prove a property of interest,
it might be useful to compute the k-covering for some k strictly greater than 0,
we consider a simple graph grammar S ′ in Fig. 16, related to the one analysed
in the previous example. Edges represent either servers (S), or mobile processes
(P , Q), or connections (C). It contains a rule for process creation, similar to
the one in Fig. 14. Processes may cross connections and may also change their
state (from P to Q and back).

The 0-covering of S ′ is the Petri graph C0(S ′) in Fig. 17. Note that the two
distinct nodes of the start graph are fused in the approximation. Using C0(S ′)
we cannot prove a property such as “no two servers are ever attached to the
same port”, although this property holds for the original system. Another
property, satisfied by S ′, but not verifiable in C0(S ′) is the fact that processes
created by the right-hand server may not cross the connection.

Computing the 1-covering we obtain the Petri graph C1(S ′) in Fig. 18, where
each edge, node and transition is decorated with a number representing its
depth. Now, using C1(S ′) we can first show that indeed no two servers are
attached to the same port. This is not directly visible in the underlying graph
since in fact two hyperedges labelled S are attached to the rightmost node, but
it can be proved by observing that there is no reachable marking that covers
them both at the same time. Secondly, recalling that the causality in C1(S ′)
approximates the causality in the original system, we can conclude that there
is no causal dependency between a process on the right and a process on the
left, and thus that processes on the right will never cross the connection.

41

ps2

connection

pcc

C

S S

1 1

processQ P

create
process

1 1

S S P

1 C 2 1 C 2

1 1

P Q process

Rules of the grammar:

Start graph:

changes state (1)

changes state (2)

P P

cp

ps1

process crosses

Fig. 16. Graph transformation system S ′ with process state change.

pcc

S S

C
P

Q

P

Q
ps2 ps2ps1ps1

cp cp

pcc

Fig. 17. The 0-covering C0(S ′) of grammar S ′ in Fig. 16.

Example 3: In the last example we show how contextual arcs can help to
decrease the size of an unfolding. Consider the graph grammar S ′′ in Fig. 19.
It contains only one rule describing processes crossing connections. The rule
comes in two variants: either the connection is in the context, i.e., it is pre-
served (variant A), or it is deleted and recreated (variant B). If we compute
the 0-coverings of the two variants, we obtain the Petri graphs in Fig. 20. Ob-
serve that the number of transitions in the left-hand Petri graph (variant A)
coincides with the number of processes waiting to cross the connection. In-
stead, in variant B, we obtain a combinatorial explosion since in this case the
order of crossings is relevant: either the first process crosses first and then
the second, or vice versa, and the two situations are represented in different
branches of the unfolding. In general, for n processes, variant A would lead

42

ω C

P

S

PQ

Q

P

SQ

P S

Q

P

P Q

Q

0

S

0

0

0 0

1
1

ω

ωω

ω

ω

ω
ω

ω

ω ω ω

ω

ω

ω

ωω

ω

ω

ω

ωω ω

ω

ω

ω

ω

ω

ω

ω

Fig. 18. The 1-covering C1(S ′) of grammar S ′ in Fig. 16.

to n transitions, whereas variant B would produce n + n · (n − 1) + · · · + n!
transitions.

PStart graph:

Rules of the grammar:

1 C 2 1 C 2

P P

1 C 2 1 C 2

P P process crosses
connection (variant A)

process crosses
connection (variant B)

C

P

Fig. 19. Graph transformation system S ′′.

5.3 Tool Support

Although some parts of this article are fairly abstract and theoretical in na-
ture, the application of our results to system verification is quite immedi-
ate. We have implemented the algorithm computing the k-covering of a given
graph transformation system. The tool—called Augur—can be downloaded
at http://www.ti.inf.uni-due.de/research/augur 1/ (see also [33,36]).

43

P

C

C

C

C

P PP

PCP P

P P

C

P

Fig. 20. The 0-covering of grammar S ′′ in Fig. 19 in variant A (left) and variant B
(right).

The input and output of Augur is in GXL and GTXL, which are XML
standards for the exchange of graphs and graph transformation systems, re-
spectively. Suitable converters have been added in order to visualise rules and
Petri graphs and to extract the Petri net component of a Petri graph, which
can then be used as input for a Petri net analysis tool such as LoLA [55] and
other tools which are included in the implementation. We have used this imple-
mentation in order to conduct case studies, analysing dynamic data structures
such as red-black trees [3], properties of communication protocols such as mu-
tual exclusion [21] and absence of deadlocks. Furthermore we have studied a
simplified network with a firewall [5].

The current implementation supports only rewriting rules with discrete in-
terfaces (i.e., edges cannot be preserved). An implementation dealing with
general rules, and thus fully supporting the theory in this paper, is under de-
velopment. Actually, observe that general rules which preserve edges can be
simulated by rules which delete and recreate the same edges. As already dis-
cussed, this encoding does not alter the set of reachable graphs, but it could
possibly reduce the concurrency in the system and thus lead to the generation
of a larger covering (as shown in Example 3 of Section 5.2). Unfortunately,
the reduction of the level of concurrency in the system, with the insertion of
new causal dependencies, can also enable additional folding steps which can
affect the provability of certain properties.

For example, let us consider the graph grammar S in Fig. 14: in order to
feed it into the tool, we changed the last rule in such a way that the edge
labelled C is deleted and recreated, instead of being preserved. The 0-covering
computed by the tool is shown in Fig. 21 and Fig. 22. The Petri graph is split
into a Petri net component (Fig. 21) and a graph component (Fig. 22). As
expected, the places of the net (depicted by ovals) and the hyperedges of the

44

graph (depicted by boxes) coincide.

Pext
_867

crossing external process
_895

1

create external process
_891

1

Spub
_872

1

1

C
_868

1

1

crossing internal process
_894

1

create connection pub pub
_887
1

2

create connection prv prv
_888

1

Sprv
_873

2
create connection prv pub

_889
1

1

1

1

Pint
_869

1

1

create internal process
_8901
1

Gpub
_870

create public server
_886

1

delete public server axiom
_893

1

1
1

Gprv
_871

create private server
_885

1

delete private server axiom
_892

1

1
1

1

2

1

2
1

1

Fig. 21. The Petri net component of the 0-covering (computed by Augur).

It is worth observing that unlike in the 0-covering with read arcs depicted in
Fig. 15, the property under consideration cannot be verified in the 0-covering
of Figures 21 and 22, because of the coarser approximation.

The identification of folding and unfolding pairs requires to establish the cov-
erability of given markings. This can be decided by computing the coverability
graph of the Petri net underlying a Petri graph, as described in [46], by in-
cremental coverability checking [35], or alternatively by employing backward
reachability [2]. If this gets too costly, the condition of coverability (see Con-
dition (F2) in Definition 26) can be relaxed or checked in an approximated
way, a choice which does not compromise the result of correctness (see Corol-
lary 44), but only reduces the “precision” of the algorithm: it will generate
a less precise approximation, where less properties of the given gts can be
proved. Indeed Augur permits to switch off the coverability checking.

Runtime results concerning test cases with discrete interfaces analysed with

45

Pext
_867

0

C
_868

01

Pint
_869

0

Gpub
_870

Gprv
_871

Spub
_872

0
Sprv
_873

0

Fig. 22. The graph component of the 0-covering (computed by Augur).

Augur are presented in [34,37]. Unfortunately, for the examples of the present
paper performance results are not available, as they heavily rely on non-
discrete interfaces which, as mentioned above, are not yet implemented in
Augur.

6 Related Work and Conclusions

We have presented a technique for computing under- and over-approximations
of the behaviour of graph transformation systems and we have identified suit-
able classes of properties of a gts which can be inferred by analysing its
approximations. We envision a scenario where a property of a given gts can
be checked by computing better and better approximations and verifying the
property for each of them. Because of undecidability issues, this process might
never terminate and it could also be costly from a complexity point of view,
but with appropriate heuristics and fine-tuning of the technique, it seems that
several interesting properties for non-trivial gtss can be effectively verified.

Work on verification and analysis of graph transformation systems is rather
recent. Roughly, two lines of research can be distinguished: One pursues the
idea of translating graph transformation systems into the input language of a
model checker [57,20]. However, existing tools usually do not directly support
the creation (and deletion) of an arbitrary number of objects while still main-
taining a finite state space, making entirely non-trivial their use for checking
finite-state gtss. Similar problems arise for process calculi agents with name
creation, which has also led to specialised techniques in this area such as
HD-automata [45]. Hence we pursue in this paper an approach which is de-
veloped specifically for graph transformation system. The same is true for
work presented in [50,48,49,47], which proposes a different approach in which

46

gtss are approximated by abstract graph transformation, and not by Petri
nets as in our work. The transition system generated by a gts is abstracted
by a so-called abstract graph transition systems, where abstract graphs (or
shape graphs) summarize several graph items (nodes and edges) into one item
and contain additional summary information concerning node degrees and the
number of summarized items. A distinguishing feature of our approach is the
fact that it is based on a partial order semantics, a fact that allows to allevi-
ate the state explosion problem typical of the analysis of concurrent systems.
Roughly, our approach is expected to be effective for systems with a high
degree of concurrency.

Our work also has connections to the area of shape analysis [53], i.e., the
analysis of dynamically evolving pointer structures on a program heap. While
shape analysis is specialised to data structures—especially linked lists and
trees—our approach aims at the analysis of more general graph transformation
systems and we do not rely on manually defined predicates and predicate
transformers. Furthermore we can derive bounds on the number of occurrences
of certain objects, which is, to our knowledge, not possible in existing shape
analysis techniques. On the other hand, shape analysis as presented in [53]
allows one to obtain fairly precise analysis results concerning reachability and
acyclicity in pointer structures, which can not yet be matched by our approach
due to its more general nature. In the future we plan to study ways to integrate
the 3-valued logic of shape analysis into our approach.

Shape analysis has a technique for abstraction refinement [38], which is based
on inductive learning. Also in our work the possibility of computing the k-
covering at a chosen level of accuracy already provides a method for abstrac-
tion refinement. However when the check over the k-covering, for a given k,
fails because of a false negative, passing to the (k + 1)-covering we refine the
abstraction in a way which is independent of the specific counterexample. The
paper [34], using counterexample-guided abstraction refinement inspired by
[14], shows how to refine only those parts of a covering that contribute to the
spurious counterexamples not occurring in the original system. However, in
this setting we do not have any convergence result similar to Proposition 46.

Temporal logics—briefly discussed in Section 5.1—can be further developed, in
order to have a powerful specification language for graph transformation sys-
tems. We have introduced a monadic second-order graph logic in [11], which
can be used to specify the interpretation of atomic propositions. We have
shown how to translate such formulae into formulae describing Petri net mark-
ings. Furthermore we have studied a logic which interleaves temporal opera-
tors and first-order quantification [7], which is related to the logics introduced
in [59,47].

While in this paper we have considered an approximation where information

47

concerning the identity of nodes is lost, it seems conceivable to reason not
only about disconnectedness but also about connectedness using a modified
approximation. It seems also possible to extend the set of permissible tem-
poral operators by using both the truncations and the coverings at the same
time, i.e., by exploiting over- and under-approximations for model-checking,
similarly to what is done in [31,17].

Although not strictly related to our work, it is worth mentioning that analy-
sis techniques for gtss are not restricted to reachability analysis and model
checking. Other properties (such as termination and confluence via critical
pair analysis) can be analyzed using the AGG tool [56].

A different issue is to develop efficient techniques for the verification of finite-
state graph transformation systems. In [47,49] it is described how to store and
use finite graph transition systems. In [6] we have presented a partial-order
method based on finite complete prefixes of an unfolding (see also the remarks
at the end of Section 3).

Acknowledgements: We would like to thank Vitali Kozioura for developing
and maintaining the tool Augur.

48

A Proofs of results in the paper

Proposition 16 (cocompleteness of Petri graph categories). Let R be
a gts and G be a graph grammar. Then the category of Petri graphs PG(R)
and the category of marked Petri graphs PGι(G) are both cocomplete, i.e., they
have all colimits.

PROOF. (Sketch) Let ∆ = 〈D,F〉 be a diagram in PG, i.e., D is a graph with
nodes VD and (binary) arcs ED, and F : D → |PG| is a graph morphism fromD
to the graph underlying PG. Then ∆ has a colimit 〈P ′, {ψv : F(v)→ P ′}v∈VD〉
which is obtained as follows.

• The Petri graph P ′ is the disjoint union of all the Petri graphs in F(VD),
modulo the least equivalence relation ≡ such that

(i) if x1 is a node, edge (place) or transition of F(v1) and f : v1 → v2 is an
arc in D, then x1 ≡ F(f)(x1);

(ii) if t1 ≡ t2 then t1
• ≡ t2

•;
(iii) if e1 ≡ e2 then cG1

(e1) ≡ cG2
(e2).

(iv) if pN1
(t1) = pN2

(t2),
•t1 ≡

•t2 and t1 ≡ t2 then t1 ≡ t2;
where P1 = (G1, N1) and P2 = (G2, N2) are in F(VD), and equivalence is
extended to sequences in the obvious way.
• For any v ∈ VD, the morphism ψv : F(v) → P ′ is defined on nodes, edges

(places) and transitions as ψv(x) = [x]≡.

It is easy to verify that the above construction produces a well-defined Petri
graph. In particular, conditions (ii)-(iv) above are used to ensure the irredun-
dancy of the resulting Petri graph. The proof of universality is straightforward.

In the marked case, for a diagram ∆ as above in category PGι the construction
of the colimit object (P ′, u′) is identical for the Petri net component P ′, while
the initial state is obtained as u′ = [uP]≡ for any (P, uP) ∈ F(VD). The fact
that in (P ′, u′) every edge is coverable and every transition is firable is a
consequence of two facts: the morphisms ψv for v ∈ VD are jointly surjective
(i.e., for any x′ in P ′ there exists a v ∈ VD and an x ∈ F(v) such that ψv(x) =
x′), and Petri graph morphisms are simulations between the underlying pre-
nets, i.e., they preserve firing sequences. 2

Lemma 27. Let ψ : P → P ′ be a PG morphism where P = (G,N). Then for
any node, edge or transition x ∈ VG ∪ EG ∪ TN it holds that depth(ψ(x)) ≥
depth(x).

49

PROOF. Recall that the function depth for a net N is given by fix (DN),
where DN is as in Definition 19. In turn fix (DN) =

⊔

{Dn
N(0) | n ∈ N}, where

0 is the constant function mapping each item to 0.

We first show by induction that Dn
N(0) ≤ Dn

N ′(0) ◦ψ for every n ≥ 0. Clearly
this holds for n = 0. Now, for any edge e ∈ EG we have

Dn+1
N (0)(e) =

⊔

{Dn
N(0)(t) | e ∈ t•}

≤
⊔

{Dn
N ′(0)(ψ(t)) | e ∈ t•} (induction hypothesis)

≤
⊔

{Dn
N ′(0)(ψ(t)) | ψ(e) ∈ ψ(t)•}

≤
⊔

{Dn
N ′(0)(t′) | ψ(e) ∈ t′•}

=Dn+1
N ′ (0)(ψ(e)).

It follows that Dn
N(0)(e) ≤ (Dn

N ′(0) ◦ ψ)(e) for all n ≥ 0, which implies
depth(ψ(e)) ≥ depth(e) for every edge e of the graph underlying P . The
corresponding cases for transitions and nodes are handled similarly. 2

Lemma 29. Let k ≥ 0 and let ψ : P → P ′ be a surjective PG morphism
satisfying Condition (i) in Definition 28. Then ψ is a k-isomorphism.

PROOF. If k = 0, then Conditions (ii) and (iii) trivially hold true. Therefore
let k > 0, assume that ψ : P → P ′ satisfies Condition (i) in Definition 28, and
suppose, by contradiction, that (ii) is not satisfied, i.e., Z = {x ∈ VG∪EG∪TN |
depth(x) < k ∧ depth(x) < depth(ψ(x))} 6= ∅. Take x ∈ Z with minimal
depth. If there are edges, transitions and nodes with the same depth, edges
and nodes are preferred. Let us show that this leads to a contradiction, by
distinguishing the following cases:

• If depth(x) = 0, then x is either an edge or a node. If x is an edge, then
it is not in the post-set of a transition, but ψ(x) ∈ t′• for some t′ since
depth(ψ(x)) > 0. Since ψ is surjective, t′ = ψ(t) for some t ∈ TN . Since
ψ(x) ∈ ψ(t)• = ψ∗(t•), there is an edge e ∈ t• with ψ(e) = ψ(x). But since
depth(e) > 0, it holds that e 6= x, contradicting Condition (i).

If x is a node, then, as above, we can conclude that ψ(x) ∈
µ(ψ(t))(VR\VK) for some transition t, reaching a similar contradiction.
• If depth(x) = i with 0 < i < k, then x might either be a transition or

an edge or a node. If x is a transition, since depth(ψ(x)) > depth(x) = i,
then there exists an edge e′ ∈ •ψ(x) · ψ(x) such that depth(e′) ≥ i. And
since e′ ∈ ψ∗(•x · x) there must be an edge e ∈ •x · x such that ψ(e) = e′.

50

Now, since depth(x) = i, it holds that depth(e) ≤ i − 1, which means that
depth(ψ(e)) > depth(e). But this contradicts our choice of x in Z.

A similar contradiction arises when x is an edge or a node. 2

Lemma 31. For a fixed k ≥ 0, the PGι morphisms ψi : (Pi, ui)→ (Pi+1, ui+1)
from Definition 21 and Definition 26 are k-monomorphisms.

PROOF. We distinguish the following cases:

• Unfolding step: If the (i + 1)-st step of the algorithm is an unfolding step,
the result easily follows by showing that morphism ψi is injective, and, by
induction, that it preserves the depth of all items (for those of depth 0, this
follows from the preservation of the initial state).

• Folding step: If the (i + 1)-st step of the algorithm is a folding step, it is
easily shown that morphism ψi is surjective. Then, using Lemma 29, we can
show that ψi is a k-isomorphism by proving that for each x, y in Pi it holds
depth(x) < k ∧ ψi(x) = ψi(y)⇒ x = y.

In order to obtain a contradiction, let x be an item of Pi of minimal
depth k′ < k such that there exists a y 6= x with ψi(x) = ψi(y). This
means that x ≡ y, where ≡ is the relation induced on the items of Pi by
the construction of the coequalizer of ϕ, ϕ′ : [L] → P (see Definition 25),
according to Proposition 16. Therefore either there exists an item z ∈ [L]
such that ϕ(z) = x and ϕ′(z) = y, or x ≡ y follows by points (ii)-(iv)
of the definition of ≡. In the first case, depth(x) ≥ k by Condition (F4)
of Definition 26, contradicting the assumption. In all the other cases, it is
easy to show that there are items x′ 6= y′ in Pi with ψi(x

′) = ψi(y
′) and

depth(x′) < k′ = depth(x), contradicting the minimality of k′. 2

Lemma 34. Let N = (S, T, •(), ()•, (), p) be an infinite irredundant pre-net,
labelled over a finite set A, and satisfying the following conditions:

(i) the relation <N is acyclic;
(ii) there are no backward conflicts;
(iii) for any x ∈ S ∪ T the set ⌊x⌋ (the causes of x) is finite;
(iv) the set Min(N) = {s | ⌊s⌋ = ∅} is finite, i.e., only finitely many places

have an empty set of causes;
(v) for t, t′ ∈ T with p(t) = p(t′) it holds that | •t| = | •t′| and |t| = |t′|.

Let Q ⊆ T be a set of transitions with the same action label a, i.e., ∀t ∈
Q. p(t) = a, such that Q does not contain a folding pair. Then there exists a
set Q′ ⊆ Q such that Q−Q′ is finite and N −Q′ is infinite.

51

PROOF. Let Q ⊆ T be a subset of transitions as in the hypotheses. If Q is
empty, the lemma is trivially true.

Otherwise, let ℓ be the number of places in each pre-set and context of tran-
sitions in Q, i.e., ℓ = | •t · t|, for t ∈ Q. The proof proceeds by induction on
n = |I(Q)| where I(Q) = {i | 1 ≤ i ≤ ℓ ∧ ∃t, t′ ∈ Q. [•t · t]i 6= [•t′ · t′]i}, i.e.,
the set of indices i for which there are two transitions in Q having different
places at position i in their pre-set/context.

(n = 0)
In this case, for all t, t′ ∈ Q, it holds •t = •t′, t = t′ and, by the assumptions
on Q, p(t) = p(t′). Thus, since N is irredundant, it follows that t = t′ for
all t, t′ ∈ Q, i.e., Q contains at most one element. Since Q is finite we can
conclude by setting Q′ = ∅.

(n > 0)
Assume that the lemma holds for all sets Q′ such that |I(Q′)| < n and consider
the case |I(Q)| = n. Let M be the set of minimal elements of Q with respect
to <N . We distinguish the following cases:

• M is infinite.
In this case we consider the set of places in the pre-set and context of
transitions in M , namely S ′ =

⋃

t∈M m(•t · t).
We first observe that S ′ is infinite. In fact, if S ′ were finite, since all

transitions in M have the same label a, by the irredundancy of N we could
conclude that M is finite, contradicting the hypothesis.

Since the transitions in M are minimal, the set S ′ is still contained in the
places of N−M = N−Q. Hence N−Q includes infinitely many places. This
fact, together with the hypothesis that N has finitely many minimal places,
implies the presence of infinitely many transitions in N−Q. Therefore N−Q
is still infinite and we can set Q′ = Q.

• M is finite.
We show by induction on |M | that there is a Q′ ⊆ Q such that Q − Q′ is
finite and N −Q′ is infinite.

(|M | = 0). In this case Q itself is empty, since no transition has an empty
pre-set, a fact which follows from Definition 2. It suffices to set Q′ = ∅.

(|M | = k + 1). Assume that the thesis holds for |M | ≤ k and consider the
case |M | = k+1. Let t ∈M be any transition. Since there is no folding pair,
for every t′ ∈ Q−{t} there must be an index it′ such that t 6< [•t′ · t′]it′ and

[•t · t]it′ 6= [•t′ · t′]it′ . Observe that, in particular, it′ ∈ I(Q). We distinguish
two cases:
· The set {([•t′ · t′]it′ , it

′) | t′ ∈ Q − {t}} is finite, i.e., it has the form

{(s1, i1), . . . , (sl, il)}. We can thus define Qj = {t′ ∈ Q | [•t′ · t′]it′ =

52

sj ∧ it′ = ij} and it holds that Q = {t} ∪Q1 ∪ . . . ∪Ql.
For each of the Qi we have |I(Qi)| < n and, by the (outer) induction

hypothesis, we can—one after the other—remove almost all of the tran-
sitions of Q1, . . . , Ql from N obtaining a net which is still infinite. Hence
there is a set Q′ ⊆ Q−{t} such that Q−Q′ is finite and N−Q′ is infinite.

Note that by removing Qi, we might also remove some elements of Qj

with j > i. More formally one could resort to an inductive reasoning on l.

· The set {([•t′ · t′]it′ , it
′) | t′ ∈ Q − {t}} is infinite. First observe that, in

this case, the set of places S ′ = {[•t′ · t′]it′ | t
′ ∈ Q − {t}} is infinite,

and, by construction, the places in S ′ do not causally depend on t. Hence
N ′ = N −{t} still contains infinitely many places and therefore infinitely
many transitions.

Furthermore the set of minimal elements of P = Q ∩ TN ′ is M − {t}
which has cardinality k. Thus the (inner) induction hypothesis can be
applied to deduce that there is a set P ′ ⊆ P such that P −P ′ is finite and
N ′ − P ′ is infinite.

Finally, if we set Q′ = P ′ ∪ {t} ∪ {t′ ∈ Q | t <N t′}, clearly Q′ ⊆ Q.
Furthermore Q−Q′ = (Q∩ TN ′)−P ′ = P −P ′ is finite and it holds that
N −Q′ = N ′ − P ′ which is infinite, as desired. 2

Proposition 36 (termination). The algorithm computing the k-covering
(see Definition 26) terminates for every graph grammar G and every k ∈ N.

PROOF. Let G = (R, GR) be the input grammar, where R is a set of
rewrite rules and GR the start graph. The algorithm produces a sequence
P0 = (G0, N0), P1 = (G1, N1), . . . of Petri graphs. Our aim is to show that this
sequence will eventually terminate.

• In parallel to the construction of the covering Ck(G) we define a sequence of
tuples (N ′

0, β0), (N
′
1, β1), All the N ′

i are irredundant Petri nets satisfying
the conditions of Lemma 34 and the βi : N ′

i → Ni are net morphisms (see
Fig. A.1 for a graphical representation of this situation).

(Gi, Ni)N ′i

βi

Fig. A.1. Schematic representation of the morphisms βi.

This sequence is constructed in the following way:

53

Start tuple: N ′
0 = N0, β0 : N ′

0 → N0 is the identity.

Unfolding step: Assume that Pi+1 is obtained from Pi = (Gi, Ni) by an
unfolding step. Let t be the transition added to Ni, with pNi+1

(t) = (L ←֓
K →֒ R) = r, and let ψi+1 : (Pi, ui)→ (Pi+1, ui+1) be the PGι morphism
as in Definition 26.

Let | •t| = k, |t| = m and |t•| = l. For every index j with 1 ≤ j ≤ k+m

take a place s′j in N ′
i such that βi(s

′
j) = [•t · t]j (as we will show later, all

the βi are surjective and thus such an s′j always exists).

Furthermore let t̂ be a new transition, not in N ′
i , and let ŝ1, . . . , ŝl be

new places. We construct N ′
i+1 as follows. 7

N ′
i+1 = (SN ′

i
∪ {ŝ1, . . . , ŝl}, TN ′

i
∪ {t̂},

•() ∪ {t̂ 7→ s′1 . . . s
′
k}, ()• ∪ {t̂ 7→ ŝ1 . . . ŝl},

() ∪ {t̂ 7→ s′k+1 . . . s
′
k+m}, pN ′

i
∪ {t̂ 7→ r}).

Moreover βi+1 is set to

βi+1 = ((ψi+1)N ◦ βi) ∪ {ŝj 7→ [t•]j | 1 ≤ j ≤ l} ∪ {t̂ 7→ t}

where (ψi+1)N denotes the net component part of the PGι morphism ψi+1.

Folding step: Assume that Pi+1 is obtained from Pi by a folding step. Let
ψi+1 : (Pi, ui) → (Pi+1, ui+1) be a PGι morphism as in Definition 22. Set
βi+1 = (ψi+1)N ◦ βi.

Note that the described procedure is non-deterministic since the places
s′j in the unfolding step are not uniquely determined.
• By induction on i we can easily show that the following invariants hold:
(i) every net N ′

i satisfies the conditions of Lemma 34;
(ii) the mappings βi are surjective;
(iii) the βi are pre-net morphisms, i.e., for every transition t′ ∈ TN ′

i
, βi

∗(•t′) =
•(βi(t

′)), βi
∗(t′) = (βi(t

′)), and βi
∗(t′•) = (βi(t

′))•, and, furthermore, pN ′

i
=

pNi
◦ βi.

(From this we deduce that x <N ′

i
y for x, y ∈ SN ′

i
∪TN ′

i
implies βi(x) <Ni

βi(y).)
Moreover, from the fact that the βi are net morphisms, we can also show,

by contradiction, that every N ′
i is irredundant. Assume that a new transition

t̂ with t = βi(t̂) is added to N ′
i in an unfolding step and suppose that there is

already a transition û ∈ TN ′

i
with the same label such that •û = •t̂ and û = t̂.

Considering u = βi(û), we have •u = βi
∗(•û) = βi

∗(•t̂) = •t, u = βi
∗(û) =

βi
∗(t̂) = t and pNi

(u) = pN ′

i
(û) = r. This implies that Condition (U2) of the

unfolding step was violated, leading to a contradiction.

7 For a function f : A → B and a 6∈ A we denote by f̄ = f ∪ {a 7→ b} its natural
extension with f̄(a) = b and f̄(a′) = f(a′) for a′ ∈ A.

54

• Now assume that the algorithm does not terminate. This implies that in-
finitely many unfolding steps are performed (folding steps decrease the size
of the graph Gi). Since unfolding steps increase the size of N ′

i , while folding
steps do not alter its size, it follows that N ′ =

⋃∞
i=1N

′
i (where union is

defined in the obvious way) is infinite. It is easy to check that, since any N ′
i

satisfies the conditions of Lemma 34 then also the infinite net N ′ does. In
particular, any transition has a finite set of causes and < is acyclic, since
adding a new transition t̂ and new places ŝ1, . . . , ŝl in the unfolding step
does not alter the causes of already existing transitions and places. Also,
every place has at most one transition as a direct cause. Moreover we never
introduce places with no causes, and therefore the size of Min(N ′

i) is finite
and constant.

Let ((P, ι), {ξi : Pi → P}i) be the colimit of the chain ((Pi, ιi), ψi)i, which
exists by Proposition 16. Since all ψi are k-monomorphisms, we can show
that the ξi are k-monomorphisms as well.

Let P = (N,G) and for any transition t′ in N ′, such that pN ′(t′) = L ←֓
K →֒ R, define a function d′(t′) : VL ∪ EL → VG ∪ EG ∪ {k} as follows:

d′(t′)(x) =

µ(ξi(βi(t
′)))(x) if depth(ξi(βi(t

′)))(x)) < k,

k otherwise

where i is an index such that t′ occurs in N ′
i and µ(ξi(βi(t

′))) : L ∪ R→ G

denotes the function associated to transition ξi(βi(t
′)) in the Petri graph

P (see Definition 11). Since ξi+1(βi(t
′)) = ξi(βi(t

′)), which follows from the
properties of the colimit and the definition of the βi, we can infer that the
mapping d′(t′) is well-defined for every transition t′ in N ′. Intuitively, d′(t′)
records the items of depth smaller than k which are used by the rewriting
rule application associated to the transition.

Then we relabel N ′, by taking as label for each transition t′ the pair
〈pN(t′), d′(t′)〉. It is easy to realize that, by construction, there are are only
finitely many rules in the grammar and finitely many nodes and edges of
depth smaller than k in P , and thus the set of such new labels is finite.

Therefore we can apply Lemma 35 and obtain the existence of a folding
pair û, t̂ ∈ TN ′ where û 6= t̂, both transitions have the same label and for all
j with 1 ≤ j ≤ | •û · û| = | •t̂ · t̂| it holds that either [•û · û]j = [•t̂ · t̂]j or

û < [•t̂ · t̂]j .

• Assume that t̂ was added when N ′
i+1 was constructed from N ′

i , by means
of a step which is (necessarily) an unfolding step, adding the transition
βi+1(t̂) = t to Ni. We will show that this unfolding step could never have
been applied, thus obtaining a contradiction.

Since the causes of an already existing transition are never altered during
the construction of the nets N ′

i , the folding pair û, t̂ is already present in
N ′
i+1. Let u = βi+1(û). Since û appears in N ′

i , it holds that u = βi+1(û) =
ψi+1(βi(û)) 6= t, since unfolding steps do not merge any transitions. Since the

55

labelling p of the pre-nets is preserved by βi+1, it also holds that pNi+1
(u) =

pNi+1
(t) = r = (L ←֓ K →֒ R).

We first show that u, t is a folding pair: for every index j it holds that
βi+1([

•û · û]j) = [•u · u]j and βi+1([
•t̂ · t̂]j) = [•t · t]j. As mentioned above

it either holds that [•û · û]j = [•t̂ · t̂]j which implies [•u · u]j = [•t · t]j, or

û < [•t̂ · t̂]j which implies u < [•t · t]j (immediate by definition of pre-net
morphisms).
• Let ϕu = µi+1(u)|L and ϕt = µi+1(t)|L. Consider any node or edge x ∈
VL ∪ EL. Since the mappings d′ are part of the transition labels, we have
d′(û) = d′(t̂). Since ξi+1 is a Petri graph morphism and the µ-components are
unique, it holds that ξi+1◦µi+1(t) = µ(ξi+1(t)) for every t ∈ TNi+1

. Hence for
every x in VL∪EL either ξi+1(ϕu(x))) = ξi+1(ϕt(x)) or depth(ξi+1(ϕu(x))) ≥
k and depth(ξi+1(ϕt(x))) ≥ k. Thus, since ξi+1 is a k-monomorphism, either
ϕu(x) = ϕt(x) or depth(ϕu(x)) ≥ k and depth(ϕt(x)) ≥ k.

Since the causes of ϕt(EL) do not change during the unfolding step, the
condition for the application of the folding step is satisfied, which forbids
the application of the unfolding step, leading to a contradiction (see Con-
dition (U3) in Definition 26). 2

Proposition 39 (local confluence). Let (P, u) 99K (Pi, ui) for i ∈ {1, 2}.
Then there is a Petri graph (P ′, u′) such that (Pi, ui) 99K

∗ (P ′, u′) for i ∈
{1, 2}.

PROOF. The proof mainly relies on the fact that both folding and unfolding
operations can be described as colimits in a suitable category of Petri graphs.
Then a general categorical result that ensures the commutativity of colimits
can be exploited. Finally, things must be accommodated to take into account
also the applicability conditions of folding and unfolding steps as described in
the algorithm (see Definition 26).

Confluence without application conditions. If (P, u) 99K (Pi, ui), then
there are PGι morphisms ϕi : (P, u) → (Pi, ui). Both folding and unfolding
steps are expressed in terms of colimits. Thus, since colimits “commute”, it
holds that:

• (P, u) 99K
unf
ri,ψi

(Pi, ui), i ∈ {1, 2} implies (P1, u1) ;
unf
r2,ϕ1◦ψ2

(P ′, ϕ′
1(u1)) and

(P2, u2) ;
unf
r1,ϕ2◦ψ1

(P ′, ϕ′
2(u2)) for some Petri graph P ′.

• (P, u) 99K
fold
ri,ψi,ηi

(Pi, ui), i ∈ {1, 2} implies (P1, u1) ;
fold
r2,ϕ1◦ψ2,ϕ1◦η2

(P ′, u′)

and (P2, u2) ;
fold
r1,ϕ2◦ψ1,ϕ2◦η1

(P ′, u′) for some Petri graph (P ′, u′).

• (P, u) 99K
fold
r1,ψ1,η1

(P1, u1) and (P, u) 99K
unf
r2,ψ2

(P2, u2) implies

(P1, u1) ;
unf
r2,ϕ1◦ψ2

(P ′, u′) and (P2, u2) ;
fold
r1,ϕ2◦ψ1,ϕ2◦η1

(P ′, u′) for some Petri

56

unf

fold fold

unf

unf

unf

fold

unf

unf

unf

unf

(P, u)

(P1, u1) (P2, u2)

(P ′, u′)

(P1, u1) (P2, u2)

(P, u)

(P1, u1)

(P i
1, u

i
1)

(P k
1 , u

k
1)

(P ′i , u
′
i)

(P ′k, u
′
k)

(P ′, u′)

(P2, u2)

(P, u)

(P, u)

(P ′, u′)

(P1, u1) (P2, u2)

(P, u)

(P ′, u′)

(P1, u1) (P2, u2)

(P, u)

(P ′, u′)

(P1, u1) (P2, u2)

folding/folding

unfolding/unfolding

unfunf

foldfold

fold fold

fold fold

fold

fold

fold

fold

folding/unfolding

(P, u)

(P1, u1) (P2, u2)

fold

fold

fold

fold

fold

∗

∼=

∼=

∼=

or

∼=

∗

∗

∼=

∗

Fig. A.2. Confluence of the rewriting system.

graph (P ′, u′).

Confluence with application conditions. The above considerations show
a confluence result, but in a setting where the application conditions are not
considered. Next we show that the rewriting system is still confluent if we take
into account such conditions. To this aim we prove that, when the algorithm
can perform two diverging steps, it is always possible to perform other steps in
order to produce a common Petri graph. We distinguish several cases according
to the kind of diverging steps:

unfolding/unfolding: Let (P, u) 99K
unf
ri,ψi

(Pi, ui), i ∈ {1, 2} where P =
(G,N), Pi = (Gi, Ni), ri = (Li ←֓ Ki →֒ Ri) and ψi : Li → G.

We consider Conditions (U1)–(U3) for the unfolding of rule r2 at the
match ϕ1◦ψ2 : L2 → G1, showing that either they are satisfied, thus allowing
to reach a common Petri graph, or (P1, u1) ∼= (P2, u2) (see Fig. A.2). (The
same argument applies to the unfolding of the match ϕ2 ◦ ψ1 of rule r1 in
P2.)
(U1) The state (ϕ1 ◦ ψ2)

⊕(EL2
) is coverable. This follows, by Lemma 37,

from the fact that ψ2
⊕(EL2

) is coverable.
(U2) If this condition is not satisfied, i.e., if there is a transition t ∈

57

TN1
such that pN1

(t) = r2,
•t = (ϕ1 ◦ ψ2)

∗(λ(EL2
− EK2

)) and t =
(ϕ1 ◦ ψ2)

∗(λ(EK2
)), then, necessarily, t has been introduced by the last

unfolding step, since otherwise the unfolding of r2 would not have been
possible in P .

This implies that pN1
(t) = r1 = r2 and ϕ1 ◦ ψ1 = ϕ1 ◦ ψ2, since left-

hand sides do not contain isolated nodes and thus a match is determined
uniquely by the images of the edges. Since ϕ1 is injective it follows that
ψ1 = ψ2. Therefore both steps unfold the same match of a left-hand side
and thus the resulting Petri graphs P1, P2 are isomorphic.

(U3) Since the unfolding step does not change the causes of
(ϕ1 ◦ ψ2)

∗(EL2
−EK2

) and (ϕ1 ◦ ψ2)
∗(λ(EK2

)), and depth is not changed
by unfolding steps, there cannot be other matches ψ′

2 of L2 such that the
folding condition holds for the pair ψ′

2 and ϕ1 ◦ ψ2.
folding/folding: Let (P, u) 99K

fold
ri,ψi,ηi

(Pi, ui), i ∈ {1, 2} where P = (G,N),
Pi = (Gi, Ni), ri = (Li ←֓ Ki →֒ Ri) and ψi, ηi : Li → G. We show
that either the application conditions for the folding of the two occurrences
ϕ1 ◦ ψ2, ϕ1 ◦ η2 : L2 → G1 are satisfied or that (P1, u1) ∼= (P ′, u′) (see
Fig. A.2). (The same argument applies for the corresponding folding in P2.)

Assume that (P1, u1) 6∼= (P ′, u′). Then:
(F1) The matches ϕ1 ◦ ψ2, ϕ1 ◦ η2 : L2 → G1 are distinct. In fact, if they

were equal, since by the observation in the first part (P1, u1) ;r2,ϕ1◦ψ2,ϕ1◦η2

(P ′, u′), using Lemma 38 we would conclude that (P1, u1) ∼= (P ′, u′).
(F2) The match (ϕ1 ◦ η2)

⊕(EL2
) is coverable. This follows, by Lemma 37,

from the fact that η2
⊕(EL2

) is coverable.
(F3) By hypothesis, the folding condition for the occurrences ψ2, η2 : L2 →
G is satisfied, i.e., there is a transition t with pN(t) = r2 and ψ2

∗(λ(EL2
−

EK2
)) = •t, ψ2

∗(λ(EK2
)) = t and for every e ∈ EL it either holds that

ψ2(e) = η2(e) or t < η2(e). Since ϕ1 is a PGι morphism and morphisms
preserve causality, the folding condition (F3) is satisfied also for ϕ1 ◦ ψ2

and ϕ1 ◦ η2, as witnessed by transition t′ = ϕ1(t).
(F4) Since ϕ1 is a PGι morphism, by Lemma 27, it never decreases depth.

Hence the depth condition for the new matches is surely satisfied.
folding/unfolding: Let (P, u) 99K

fold
r1,ψ1,η1

(P1, u1) and (P, u) 99K
unf
r2,ψ2

(P2, u2) = (G2, N2) where P = (G,N) and Pi = (Gi, Ni). This is the most
difficult case, since the application of the folding step might invalidate Con-
dition (U3) of the unfolding step.
(F1)–(F4), (U1), (U2) With the same argument as above (case fold-

ing/folding), we can show either that the matches ϕ2 ◦ ψ1, ϕ2 ◦ η1 in
(P2, u2) satisfy the folding condition (Conditions (F1)–(F4)) and there-
fore (P2, u2) 99K

fold
r1,ϕ2◦ψ1,ϕ2◦η1

(P ′, u′), or (P2, u2) ∼= (P ′, u′).
Furthermore it immediately follows that Condition (U1) (coverability)

is also satisfied for the match ϕ1 ◦ ψ2. Finally Condition (U2) is either
satisfied or, by Lemma 38, (P2, u2) ∼= (P ′, u′).

(U3) In order to close the diamond, it is necessary to deal with Condition
(U3). This is done according to the steps below (see Fig. A.2):

58

• In P1 the morphism ϕ1 ◦ ψ2 : L2 → G1 might be part of a folding
pair ζ1, ϕ1 ◦ψ2 : L2 → G1, which forbids unfolding, and after folding
this pair, the image of L2 might again be part of a folding pair, etc.
More precisely, there is a (possibly empty) sequence of transitions of
the form

(P1, u1) = (P 0
1 , u

0
1) 99K

fold
r2,ζ1,ϕ1◦ψ2

(P 1
1 , u

1
1) 99K

fold

r2,ζ2,ϕ1◦ϕ1◦ψ2

. . . 99K
fold

r2,ζk,ϕ
k◦...◦ϕ1◦ϕ1◦ψ2

(P k
1 , u

k
1)

where the ϕi+1 : (P i
1, u

i
1) → (P i+1

1 , ui+1
1) are PGι morphisms. We

assume that no further folding steps of this form are applicable in
the Petri graph P k

1 . Observe that such a finite sequence exists since
a folding step decreases the size of a Petri graph.
• Now we can construct another sequence of Petri graphs starting from

(P ′, u′) of the form (P ′, u′) = (P ′
0, u

′
0), . . . , (P

′
k, u

′
k) such that (P ′

i , u
′
i)

and (P ′
i+1, u

′
i+1) are either isomorphic, or there is a folding step from

one to the other, and furthermore

(P i
1, u

i
1) ;

unf

r2,ϕi◦...◦ϕ1◦ϕ1◦ψ2
(P ′

i , u
′
i) (A.1)

This is shown by induction on i:
(i = 0) Trivial.
(i → i + 1) Assume that (A.1) holds and let ϕ′

i :
(P i

1, u
i
1) → (P ′

i , u
′
i) be the corresponding PGι morphism. As

in the case (folding/folding) we can argue that the mor-
phisms ϕ′

i ◦ ζi and ϕ′
i ◦ ϕ

i ◦ . . . ◦ ϕ1 ◦ ϕ1 ◦ ψ2 are ei-
ther equal or satisfy the conditions for the application of
a folding rule. In the former case we set (P ′

i+1, u
′
i+1) =

(P ′
i , u

′
i) and in the latter case we define (P ′

i+1, u
′
i+1) =

fold((P ′
i , u

′
i), r2, ϕ

′
i ◦ ζi, ϕ

′
i ◦ ϕ

i ◦ . . . ◦ ϕ1 ◦ ϕ1 ◦ ψ2).
Since colimits commute it also holds that

(P i+1
1 , ui+1

1) ;
unf

r2,ϕi+1◦...◦ϕ1◦ϕ1◦ψ2
(P ′

i+1, u
′
i+1)

• Finally we reach two Petri graphs (P k
1 , u

k
1), with P k

1 = (Gk
1, N

k
1),

and (P ′
k, u

′
k), with P ′

k = (G′
k, N

′
k). The first one is produced from

(P1, u1), the second one from (P2, u2), by a sequence of folding steps,
and condition (A.1) holds for i = k.

Now Condition (U3) is satisfied and the occurrence of L2 in
Gk

1 is still coverable since coverability is preserved by applica-
tion of morphisms (see Lemma 37) and also the depth condition
still holds. The only condition that might forbid the application
of the unfolding step is the existence of a transition t ∈ TNk

1

such that •t = (ϕk ◦ . . . ◦ ϕ1 ◦ ϕ1 ◦ ψ2)
∗
λ(EL2

− EK2
) and t =

(ϕk ◦ . . . ◦ ϕ1 ◦ ϕ1 ◦ ψ2)
∗
λ(EK2

). But in this case, by Lemma 38, we

59

deduce that (P k
1 , u

k
1)
∼= (P ′

k, u
′
k). Otherwise, in absence of such a

transition, we directly obtain (P k
1 , u

k
1) 99K

unf

r2,ϕk◦...◦ϕ1◦ϕ1◦ψ2
(P ′

k, u
′
k).

Observe, in particular, that all conditions, apart from Condition (U3), allow
us to close the diamond in at most one step. 2

Lemma 41. If Condition (U3) is violated a finite number of times during the
construction of the covering, the algorithm of Definition 26 still terminates
with the same unique result.

PROOF. (Sketch) The proof can be carried out by slightly changing the
proofs of the previous results:

• The algorithm still terminates, even if we violate Condition (U3) a finite
number of times. This result can be obtained by a slight modification of
the proof of Proposition 36. Attach a special label to all transitions which
have been created in violation of Condition (U3), in order to distinguish
them from all other transitions. The set of labels remains finite and thus
the termination proof can be carried out as before. Note that none of the
two transitions belonging to the detected folding pair will be marked by
such a special label.
• The folding and unfolding steps of Definition 26 are globally confluent, even

if we do not check Condition (U3) (although, however, the algorithm might
not terminate without (U3)). This follows from the fact that every diamond
can be completed in at most one step (see the remark at the end of the
proof of Proposition 39). Then one can show global confluence by simple
induction on the number of steps.
• Finally observe that the result of the algorithm is unique, even if Condi-

tion (U3) is violated a finite number of times. The argument goes as follows:
Let [G0] be the initial Petri graph, let U be the result of the standard ap-
proximated unfolding procedure and let U ′ be the Petri graph one obtains
by violating Condition (U3) finitely often. Global confluence implies that
there is a Petri graph U ′′ which is reachable from both U and U ′. But since
no folding/unfolding steps are possible in U and U ′ we can infer that U and
U ′ are isomorphic. 2

Proposition 42 (k-Monomorphisms υk and δi,k). For any k, i ∈ N there
are k-monomorphisms υk : Ck+1(G) → Ck(G) and δi,k : T i(G) → Ck(G) such
that the following diagram commutes. The morphisms υk and δi,k for i ≥ k

are k-isomorphisms. The morphisms λi : T
i(G) → T i+1(G) are those forming

the truncation tower, as introduced in Definition 22.

60

T i(G)
λi //

δi,k
��

δi,k+1

%%J
JJJJJJJJ
T i+1(G)

δi+1,k+1

��

Ck(G) Ck+1(G)
υkoo

PROOF. To obtain morphism υk : Ck+1(G)→ Ck(G) proceed as follows: Con-
struct Ck+1(G) according to the algorithm in Definition 26. Now, the sequence
of folding and unfolding steps can be considered as part of the algorithm for
the construction of Ck(G), where Condition (U3) might have been violated a
certain number of times. Hence, one can continue folding and unfolding, now
respecting Condition (U3), and Lemma 41 implies that we terminate with a
unique Petri graph, which must be isomorphic to Ck(G). Since any step in the
algorithm transforms a Petri graph Pi into a Petri graph Pi+1 and there is a
PGι morphism ψi : (Pi, ui)→ (Pi+1, ui+1), composing such morphisms we can
obtain the desired υk : Ck+1(G)→ Ck(G).

Furthermore according to Lemma 31, the morphisms ψi are k-monomorphism.
Since no new item of depth smaller than k is created, they are in fact k-
isomorphisms as well. Hence, by Lemma 30, also their composition, υk, is a
k-isomorphism.

By a similar argument one can obtain the morphisms δi,k : T i(G) → Ck(G),
which are k-monomorphisms for k > i and k-isomorphisms for k ≤ i.

It can be shown, by induction on i that for any i, j ∈ N, δi,j : T
i(R, GR) →

Cj(R, GR) is the unique morphism between the two marked Petri graphs (the
image of the start graph is fixed and the rest follows by exploiting irredun-
dancy). Hence the commutativity of the diagram immediately follows. 2

Proposition 43. For every index k there is a marked PG mor¡phism which
is a k-isomorphism θk : U(G) → Ck(G) and such that the following diagram
commutes.

U(G)
θk+1

zzttttttttt
θk

##H
HH

HH
HH

HH

Ck+1(G)
υk // Ck(G)

PROOF. Since the triangle, consisting of the Petri graphs T i(G), T i+1(G)
and Ck(G) in the diagram in Proposition 42 commutes and the full unfolding

61

U(G) is the colimit of the truncation tower, consisting of the morphisms λi
(see Definition 23), it follows that there are mediating morphisms θk : U(G)→
Ck(G) such that the following diagram commutes:

T i(G)

$$I
III

III
II

λi //

δi,k

��
66

66
66

66
66

66
66

66
T i+1(G)

yyttttttttt

δi+1,k

����
��

��
��

��
��

��
��

�

U(G)

θk

��

Ck(G)

It is easy to show that every morphism T k(G)→ U(G) satisfies Condition (iii)
of Definition 28. Since the morphism δk,k is a k-isomorphism, we can apply
Lemma 30 and conclude that the morphisms θk are k-isomorphisms.

Since we can show again that θk is the unique PGι morphism from U(G)
to Ck(G) (the image of the initial marking is fixed and the rest follows by
exploiting irredundancy), we obtain υk ◦ θk = θk+1. 2

Proposition 46 (unfolding as limit of the coverings). The limit in the

category PGι of the covering tower C0(G)
υ0← . . . Ck(G)

υk← Ck+1(G)
υk+1

← . . . is
the full unfolding U(G) of the graph grammar.

PROOF. We show that the covering tower

C0(G)
υ0← . . . Ck(G)

υk← Ck+1(G)
υk+1

← . . .

has a limit
((A, uA), πk : (A, uA)→ Ck(G))

in the category PGι which is defined as follows. The Petri graph A with initial
marking uA is a subset of the (componentwise) product Πk∈N C

k(G): Given an
item (node, edge, transition) x ∈ Πk∈N C

k(G)

x = 〈xk〉k ∈ A iff
(i) ∀k. xk = υk(xk+1)

(ii) ∃h. ∀k > h. depth(xk) = h

The connection function, the pre- and post-set function and the context are
defined componentwise. E.g., if x = 〈xk〉k ∈ A is an edge, then the i-th node
connected to the edge is

[cG(x)]i = 〈[cGk
(xk)]i〉k

62

where Gk is the graph underlying Ck(G). The initial marking uA is a sequence
with |u0| elements such that [uA]i = 〈[uk]i〉k where ui is the initial marking of
Ck(G).

A long but straightforward calculation allows to prove that A is a well-defined
Petri graph. Let us verify, for instance, that when x is an edge in the graph
G underlying A then [cG(x)]i = 〈[cGk

(xk)]i〉k is actually a node in G, i.e.,
there exists some h′ ∈ N such that depth([cGk

(xk)]i) = h′ for any k > h′. By
hypothesis, since x is an edge in A, there exists h such that depth(xk) = h for
any k > h. Now, it is easy to show that if for an edge e in Ck(R, GR) it holds
depth(e) = h < k, then depth(v) ≤ h for all its attached nodes v. Therefore we
can deduce that depth([cGh+1

(xh+1)]i) = h′ < h+1. Therefore, since morphisms
υk are k-isomorphisms (see Proposition 42) we deduce depth([cGk

(xk)]i) = h′

for any k > h′, as desired.

Let us show that (A, uA) is an object in PGι. Let t = 〈tk〉k be a transition in
A. To show that t can be fired, first observe that, according to Condition (ii)
above, there exists an index h such that for all k > h, depth(tk) = h. Since the
(h+1)-covering is an element of PGι, it holds that th+1 can be fired, i.e., there
is a firing sequence t1h+1, . . . , t

m
h+1 = th+1 in Ch+1(G). Since all υk for k > h

are h-isomorphisms, for each k > h there are unique transitions t1k, . . . , t
m
k

such that (υh+1 ◦ · · · ◦ υk−1)(t
j
k) = t

j
h+1. Moreover, since each υk preserves the

initial marking and it is a k-isomorphism, every sequence t1k, . . . , t
m
k is a firing

sequence. The same holds for the sequence t1ℓ , . . . , t
m
ℓ with ℓ ≤ h defined by

t
j
ℓ = (υℓ ◦ · · · ◦ υh)(t

j
h+1). Hence 〈t1k〉k, . . . , 〈t

m
k 〉k is a firing sequence in A and

〈tmk 〉k = t. A similar argument shows that every edge in A can be covered.

The projections πk : (A, uA) → Ck(G) from the limit into the coverings are
defined in the obvious way, i.e., for any x ∈ A we define πk(x) = xk. A tedious
but trivial calculation allows to prove that each πk is a well-defined marked
Petri graph morphism. Commutativity of the diagrams

(A, uA)
πk

}}{{
{{

{{
{{ πk+1

""
FFF

FF
FF

F

Ck(G) Ck+1(G)
υkoo

immediately follows by construction.

To verify that ((A, uA), πk : (A, uA) → Ck(G)) is the limit of the covering
tower, let us consider another cone ((A′, uA′), π′

k : (A′, uA′) → Ck(G)). The
unique mediating Petri graph morphism ϕ : (A′, uA′)→ (A, uA) is defined, on
any item y in A′, as

ϕ(y) = 〈π′
k(y)〉k

63

Observe that ϕ is a well-defined Petri graph morphism. The only delicate point
concerns the proof of the fact that

ϕ(y) = 〈π′
k(y)〉k

is an element of A. Clearly, by construction for any k we have υk(π
′
k+1(y)) =

π′
k(y). Hence it only remains to verify that there exists a h′ such that
∀k > h′. depth(π′

k(y)) = h′. Fix an element y ∈ A′. Since each item in
A′ is coverable/firable, we can consider the least number h of steps neces-
sary to cover/fire y. Then also π′

h+1(y) is coverable/firable in h steps. Hence
depth(π′

h+1(y)) = h′ < h, since every item reachable in Ck(G)) in h < k steps
has depth smaller than or equal to h. Furthermore, since morphisms υk are
isomorphisms on items of depth smaller than k, we can conclude that for any
k > h′ we have depth(π′

k(y)) = h′, as desired. A similar argument is valid for
nodes.

Note that to ensure commutativity, i.e., to guarantee that πk ◦ ϕ = π′
k we are

forced to define ϕ in this way. Hence uniqueness of the mediating morphism
ϕ follows.

We finally prove that (A, uA) and U(G) are isomorphic. We know from Propo-
sition 43 that (U(G), θk) is a cone for the covering tower and thus, by limit
properties, we obtain a unique mediating morphism κ : U(G)→ (A, uA) with
πk ◦ κ = θk.

Let us show that κ is an isomorphism:

• κ is injective: Let x and y in U(G) such that κ(x) = κ(y). By construction
of the colimit U(G) (see Proposition 16), if we denote by ηi : T i(G) →
U(G) the embeddings of each truncation into the colimit, there must be
h, k ∈ N, x′ in T h(G) and y′ in T k(G) such that ηh(x

′) = x and ηk(y
′) = y.

Since for any i, we have ηi+1 ◦ λi = ηi, we can safely assume that h = k.
By Propositions 42 and 43, we know that δk,k : T k(G) → Ck(G) is a k-
isomorphism and δk,k = θk ◦ηk = πk ◦κ◦ηk (see the proof of Proposition 43).
Thus δk,k(x

′) = πk(κ(ηk(x
′))) = πk(κ(ηk(y

′))) = δk,k(y
′). Hence x′ = y′ and

thus x = y.
• κ is surjective: Let (xh)h in (A, uA). Hence, by construction, there exists k

such that for any h ≥ k, depth(xh) = k. Since θk, as defined in Proposi-
tion 43, is a k-isomorphism, it follows that there exists x in U(G) such that
θk(x) = xk. Now it is easy to conclude that κ(x) = (xh)h. In fact, for any in-
dex h ≤ k, notice that πh(κ(x)) = θh(x) = vh◦. . .◦vk−1◦θk(x) = xh. Instead,
if h > k, we have that vk ◦ . . .◦vh−1◦θh(x) = θk(x) = xk = vk ◦ . . .◦vh−1(xh).
Since morphisms vh are k-isomorphisms for h ≥ k we conclude that
xh = θh(x), which is the desired result since θh(x) = πh(κ(x)).

64

T i(G)
λi //

ηi

AA
AA

AA
AA

T i+1(G)

ηi+1
||zz

zz
zz

zz

U(G)

κ

��θj

��

θj+1

��

(A, uA)
πj

~~}}
}}

}}
}} πj+1

""
DD

DD
DD

DD

Cj(G) Cj+1(G)
υj

oo

Therefore the limit (A, uA) of the covering tower is isomorphic to U(G). 2

References

[1] J. Adamek, H. Herrlich, and G.E. Strecker. Abstract and Concrete Categories
- The Joy of Cats. Wiley, 1990.

[2] P. Aziz Abdulla, B. Jonsson, M. Kindahl, and D. Peled. A general approach to
partial order reductions in symbolic verification. In A.J. Hu and M.Y. Vardi,
editors, Proceedings of CAV ’98, volume 1427 of Lecture Notes in Computer
Science, pages 379–390. Springer Verlag, 1998.

[3] P. Baldan, A. Corradini, J. Esparza, T. Heindel, B. König, and V. Kozioura.
Verifying red-black trees. In Proceedings of COSMICAH ’05, 2005. Proceedings
available as report RR-05-04 (Queen Mary, University of London).

[4] P. Baldan, A. Corradini, and B. König. A static analysis technique for graph
transformation systems. In K.G. Larsen and M. Nielsen, editors, Proceedings
of CONCUR ’01, volume 2154 of Lecture Notes in Computer Science, pages
381–395. Springer Verlag, 2001.

[5] P. Baldan, A. Corradini, and B. König. Static analysis of distributed systems
with mobility specified by graph grammars—a case study. In H. Ehrig,
B. Krämer, and A. Ertas, editors, Proceedings of IDPT ’02 (Sixth International
Conference on Integrated Design & Process Technology). Society for Design and
Process Science, 2002.

[6] P. Baldan, A. Corradini, and B. König. Verifying finite-state graph grammars:
an unfolding-based approach. In P. Gardner and N. Yoshida, editors,
Proceedings of CONCUR 2004, volume 3170 of Lecture Notes in Computer
Science, pages 83–98. Springer Verlag, 2004.

[7] P. Baldan, A. Corradini, B. König, and A. Lluch Lafuente. A temporal
graph logic for verification of graph transformation systems. In Proceedings
of WADT’06, volume 4409 of Lecture Notes in Computer Science, pages 1–20.
Springer Verlag, 2007.

65

[8] P. Baldan, A. Corradini, and U. Montanari. Concatenable graph processes:
relating processes and derivation traces. In S. Larsen, K. Skyum and G. Winskel,
editors, Proceedings of ICALP’98, volume 1443 of Lecture Notes in Computer
Science, pages 283–295. Springer Verlag, 1998.

[9] P. Baldan, A. Corradini, U. Montanari, and L. Ribeiro. Unfolding Semantics
of Graph Transformation. Information and Computation, 205:733–782, 2007.

[10] P. Baldan and B. König. Approximating the behaviour of graph transformation
systems. In A. Corradini, H. Ehrig, H.-J. Kreowski, and G. Rozenberg, editors,
Proceedings of ICGT’02, volume 2505 of Lecture Notes in Computer Science,
pages 14–30. Springer Verlag, 2002.

[11] P. Baldan, B. König, and B. König. A logic for analyzing abstractions of
graph transformation systems. In R. Cousot, editor, Proceedings of SAS’03
(International Static Analysis Symposium), volume 2694 of Lecture Notes in
Computer Science, pages 255–272. Springer Verlag, 2003.

[12] Paolo Baldan. Modelling concurrent computations: from contextual Petri nets
to graph grammars. PhD thesis, Department of Computer Science, University
of Pisa, 2000. Available as technical report n. TD-1/00.

[13] R. Bruni, J. Meseguer, U. Montanari, and V. Sassone. Functorial models for
Petri nets. Information and Computation, 170(2):207–236, 2001.

[14] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In E. Allen Emerson and A. Prasad Sistla,
editors, Proceedings of CAV 2000, volume 1855 of Lecture Notes in Computer
Science, pages 154–169. Springer Verlag, 2000.

[15] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems (TOPLAS),
16(5):1512–1542, 1994.

[16] A. Corradini, U. Montanari, and F. Rossi. Graph processes. Fundamenta
Informaticae, 26:241–265, 1996.

[17] D. Dams, R. Gerth, and O. Grumberg. Abstract interpretation of reactive
systems. ACM Transactions on Programming Languages and Systems
(TOPLAS), 19(2):253–291, 1997.

[18] B.A. Davey and H.A. Priestley. Introduction to lattices and order. Cambridge
University Press, 2002.

[19] N. Dershowitz and J.-P. Jouannaud. Rewrite systems. In Jan van Leeuwen,
editor, Formal Models and Semantics, Handbook of Theoretical Computer
Science, volume B, pages 243–320. Elsevier Science, 1990.

[20] F.L. Dotti, L. Foss, L. Ribeiro, and O. Marchi Santos. Verification of distributed
object-based systems. In E. Najm, U. Nestmann, and P. Stevens, editors,
Proceedings of FMOODS ’03, volume 2884 of Lecture Notes in Computer
Science, pages 261–275. Springer Verlag, 2003.

66

[21] F.L. Dotti, B. König, O. Marchi dos Santos, and L. Ribeiro. A case study:
Verifying a mutual exclusion protocol with process creation using graph
transformation systems. Technical Report 08/2004, Universität Stuttgart, 2004.

[22] H. Ehrig. Introduction to the algebraic theory of graph grammars. In V. Claus,
H. Ehrig, and G. Rozenberg, editors, Proceedings of the 1st International
Workshop on Graph-Grammars and Their Application to Computer Science
and Biology, volume 73 of Lecture Notes in Computer Science, pages 1–69.
Springer Verlag, 1979.

[23] H. Ehrig, H.-J. Kreowski, U. Montanari, and G. Rozenberg, editors.
Handbook of Graph Grammars and Computing by Graph Transformation, Vol.3:
Concurrency, Parallellism, and Distribution. World Scientific, 1999.

[24] J. Engelfriet. Branching processes of Petri nets. Acta Informatica, 28:575–591,
1991.

[25] J. Esparza. Model checking using net unfoldings. Science of Computer
Programming, 23(2–3):151–195, 1994.

[26] F. Gadducci. Graph rewriting for the π-calculus. Mathematical Structures in
Computer Science, 17(3):407–437, 2007.

[27] F. Gadducci, R. Heckel, and M. Koch. A fully abstract model for graph-
intepreted temporal logic. In H. Ehrig, G. Engels, H.-J. Kreowski, and
G. Rozenberg, editors, 6th International Workshop on Theory and Application
of Graph Transformations, volume 1764 of Lecture Notes in Computer Science.
Springer Verlag, 1998.

[28] T. Genet. Decidable approximations of sets of descendants and sets of normal
forms. In T. Nipkow, editor, Proceedings of 9th International Conference
on Rewriting Techniques and Applications, volume 1379 of Lecture Notes in
Computer Science, pages 151–165. Springer Verlag, 1998.

[29] R. Heckel. Compositional verification of reactive systems specified by graph
transformation. In E. Astesiano, editor, Proceedings of FASE’98, volume 1382
of Lecture Notes in Computer Science, pages 138–153. Springer Verlag, 1998.

[30] R. Janicki and M. Koutny. Semantics of inhibitor nets. Information and
Computation, 123:1–16, 1995.

[31] P. Kelb. Abstraktionstechniken für automatische Verifikationsmethoden. PhD
thesis, Carl-von-Ossietzky-Universität Oldenburg, 1995.

[32] M. Koch. Integration of Graph Transformation and Temporal Logic for the
Specification of Distributed Systems. PhD thesis, Technische Universität Berlin,
2000.

[33] B. König and V. Kozioura. Augur—a tool for the analysis of graph
transformation systems. EATCS Bulletin, 87:125–137, November 2005.
Appeared in The Formal Specification Column.

67

[34] B. König and V. Kozioura. Counterexample-guided abstraction refinement for
the analysis of graph transformation systems. In H. Hermanns and J. Palsberg,
editors, Proceedings of TACAS ’06, volume 3920 of Lecture Notes in Computer
Science, pages 197–211. Springer Verlag, 2006.

[35] B. König and V. Kozioura. Incremental construction of coverability graphs.
Information Processing Letters, 103(5):203–209, 2007.

[36] B. König and V. Kozioura. Augur 2—a new version of a tool for the analysis
of graph transformation systems. In Proceedings of GT-VMT ’06 (Workshop
on Graph Transformation and Visual Modeling Techniques), Electronic Notes
in Theoretical Computer Science. Elsevier Science, 2008.

[37] Vitali Kozioura. Verification of random graph transformation systems. In Arend
Rensink, Reiko Heckel, and Barbara König, editors, Proc. of GT-VC ’06 (Graph
Transformation for Verification and Concurrency), volume 175.4 of ENTCS,
2006.

[38] A. Loginov, T.W. Reps, and M. Sagiv. Abstraction refinement via inductive
learning. In Proc. of CAV ’05, volume 3576 of Lecture Notes in Computer
Science, pages 519–533. Springer Verlag, 2005.

[39] C. Loiseaux, S. Graf, J. Sifakis, A. Bouajjani, and S. Bensalem. Property
preserving abstractions for the verification of concurrent systems. Formal
Methods in System Design, 6:1–35, 1995.

[40] S. Mac Lane. Categories for the Working Mathematician. Springer Verlag,
1971.

[41] K.L. McMillan. Symbolic Model Checking. Kluwer, 1993.

[42] J. Meseguer and U. Montanari. Petri nets are monoids. Information and
Computation, 88:105–155, 1990.

[43] R. Milner. Bigraphical reactive systems. In K. G. Larsen and M. Nielsen,
editors, Proceedings of CONCUR’01, volume 2154 of Lecture Notes in Computer
Science, pages 16–35. Springer Verlag, 2001.

[44] U. Montanari and F. Rossi. Contextual nets. Acta Informatica, 32(6), 1995.

[45] M. Pistore. History Dependent Automata. PhD thesis, Department of Computer
Science, University of Pisa, 1999.

[46] W. Reisig. Petri Nets: An Introduction. EACTS Monographs on Theoretical
Computer Science. Springer Verlag, 1985.

[47] A. Rensink. Model checking graph grammars. In Proceedings of AVOCS ’03
(Workshop on Automated Verification of Critical Systems), 2003.

[48] A. Rensink. Canonical graph shapes. In D.A. Schmidt, editor, Proceedings of
ESOP ’04, volume 2986 of Lecture Notes in Computer Science, pages 401–415.
Springer Verlag, 2004.

68

[49] A. Rensink. State space abstraction using shape graphs. In Proceedings of AVIS
’04 (Third International Workshop on Automatic Verification of Infinite-State
Systems), Electronic Notes in Theoretical Computer Science. Elsevier Science,
2004.

[50] A. Rensink and D. Distefano. Abstract graph transformation. In Proceedings of
SVV ’05 (3rd International Workshop on Software Verification and Validation),
volume 157(1) of Electronic Notes in Theoretical Computer Science, pages 39–
59. Elsevier Science, 2005.

[51] L. Ribeiro. Parallel Composition and Unfolding Semantics of Graph Grammars.
PhD thesis, Technische Universität Berlin, 1996.

[52] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by Graph
Transformation, Vol. 1: Foundations. World Scientific, 1997.

[53] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. ACM Transactions on Programming Languages and Systems (TOPLAS),
24(3):217–298, 2002.

[54] V. Sassone. On the Semantics of Petri Nets: Processes, Unfolding and Infinite
Computations. PhD thesis, University of Pisa - Department of Computer
Science, 1994.

[55] K. Schmidt. Distributed verification with LoLA. Fundamenta Informaticae,
54(2–3):253–262, 2003.

[56] G. Taentzer. AGG: A tool environment for algebraic graph transformation.
In M. Nagl, A. Schürr, and M. Münch, editors, Proceedings of AGTIVE
’99 (Applications of Graph Transformations with Industrial Relevance,
International Workshop), volume 1779 of Lecture Notes in Computer Science,
pages 481–488. Springer Verlag, 1999.

[57] D. Varró. Towards symbolic analysis of visual modeling languages. In Workshop
on Graph Transformation and Visual Modeling Techniques ’02, volume 72 of
Electronic Notes in Theoretical Computer Science. Elsevier Science, 2002.

[58] W. Vogler. Efficiency of asynchronous systems and read arcs in Petri nets. In
P. Degano, R. Gorrieri, and A. Marchetti-Spaccamela, editors, Proceedings of
ICALP’97, volume 1256 of Lecture Notes in Computer Science, pages 538–548.
Springer Verlag, 1997.

[59] E. Yahav, T.W. Reps, S. Sagiv, and R. Wilhelm. Verifying temporal heap
properties specified via evolution logic. Logic Journal of the IGPL, 14(5):755–
783, 2006.

69

