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The paper is devoted to an analysis of the concurrent features of asynchronous systems.

A preliminary step is represented by the introduction of a non-interleaving extension of

barbed equivalence. This notion is then exploited in order to prove that concurrency

cannot be observed through asynchronous interactions, i.e., that the interleaving and

concurrent versions of a suitable asynchronous weak equivalence actually coincide. The

theory is validated on some case studies, related to nominal calculi (π-calculus) and

visual specification formalisms (Petri nets). Additionally, we prove that a class of

systems which are deemed (output-buffered) asynchronous, according to a

characterisation that was previously proposed in the literature, falls into our theory.

Introduction

Since the introduction of process calculi, one of the richest sources of foundational inves-

tigations stemmed from the analysis of behavioural equivalences. The rationale is that in

any formalism, specifications which are syntactically different may intuitively denote the

same system, and it is pivotal to equate specifications at the right level of abstraction.

† Supported by the MIUR project SisteR and the University of Padova project AVIAMO.
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One of the most influential synthesis on the issue is offered by the taxonomy proposed

in the so-called linear time/branching time spectrum (van Glabbeek 1990). Since then,

a major dichotomy among equivalences was established between interleaving and truly

concurrent semantics, according to the possibility of capturing the parallel composition

of two systems by means of a non-deterministic selection. Concretely, adopting a ccs-like

syntax, the system represented by the specification a|b either coincides with (interleaving)

or differs from (truly concurrent) the system represented by a.b+ b.a.

Behavioural equivalences for process calculi often rely on labelled transitions: each evo-

lution step of a system is tagged by some information aimed at capturing the possible

interactions of the system with the environment. Nowadays, though, the tendency is to

adopt operational semantics based on unlabelled transitions. This is due to the intricacies

of the intended behaviour of a system, especially in the presence of topological or trans-

actional features (see, e.g., calculi such as Mobile Ambients (Cardelli and Gordon 2000)

or Join (Fournet and Gonthier 1996)).

This paradigmatic shift stimulated the adoption of barbed congruence (Milner and

Sangiorgi 1992), a behavioural equivalence based on a family of predicates over the states

of a system, called barbs. Even if they are defined ad hoc for each formalism, in general

terms barbs are intended to capture the ability of a system of performing an interaction

with the environment. For instance, in the calculus of Mobile Ambients (Cardelli and

Gordon 2000), ambient names can be used as barbs: for a name n the corresponding barb

verifies the occurrence of an ambient named n at top level in the process (Merro and

Nardelli 2003); this reveals the possibility for the process of engaging an interaction with

another process that aims at opening or entering into an ambient n. In ccs (Milner 1989),

channel names can be used as barbs: for a name a the corresponding barb checks if the

process may input on a (Milner and Sangiorgi 1992).

Assuming that systems interact with a form of synchronous communication, barbs can

be explained by a scenario where a system is just a black box with several buttons, one

for each possible interaction with the environment. An observer can push a button only

if the system is able to perform the corresponding interaction. In this scenario, barbs

check if buttons can be pushed. Similarly, an asynchronous system can be seen as a black

box equipped with several bags (unordered buffers) that are used to exchange messages

with the environment. At any time the observer can insert a message in a bag or remove

one, whenever present. In this case, barbs check the presence of messages inside bags.

Additionally, in order to properly capture the scenario outlined above, internal steps

should not be visible to an observer. For this reason we will focus on weak equivalences.

To the best of our knowledge, barbed congruences capturing concurrent features of a

system have not been considered so far in the literature, i.e., barbs have not been yet

used to abstractly characterise the possibility for a system of performing simultaneously

more than just one single interaction.

It is intuitively clear, however, that in the synchronous scenario, the possibility of

checking concurrent interactions would increase the discriminating power of the observer.

Let us consider again the systems specified by a.b + b.a and a|b: they are distinguished

by an observer that is able to push two buttons at the same time, since only a|b allows

for the simultaneous pressing of buttons a and b.
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The situation is less clearly-cut for asynchronous systems. Indeed, one of the assump-

tions of this communication style is that message sending is non-blocking: a system may

send a message with no agreement with the receiver, and then continue its execution.

Hence, an observer interacting with a system by message exchanges cannot know if or

when a message has been received and thus message reception is deemed unobservable.

And since message sending is non-blocking, a system that may emit a sequence of mes-

sages can also hold them, proceed with internal computation and make them available

at once at a later time. So, the simultaneous observation of many sendings seems to add

no discriminating power to the observer. Concretely, systems a.b+ b.a and a|b should be

equated in an asynchronous setting, even if observing concurrent barbs.

Moving from this intuition, we propose a framework where the slogan concurrency can’t

be observed, asynchronously is formalised. We work in a setting where an operator for

parallel composition of systems is available and we define a notion of concurrent barbed

congruence by assuming that concurrent barbs can be constructed from basic ones by

using a binary operator ⊗. Although, in the general case, we just assume that basic barbs

form a set of generators for concurrent barbs, the intuition is that a system will exhibit a

concurrent barb a1⊗a2 if it includes two parallel subcomponents exhibiting barbs a1 and

a2, respectively. We then identify a set of axioms which are intended to capture essential

features of asynchronous systems in a barbed setting, showing that for any formalism

satisfying them barbed congruence and its concurrent variant coincide.

The appropriateness of the axioms is checked by proving that they are satisfied by

several concrete formalisms. Specifically, we consider the asynchronous π-calculus (Honda

and Tokoro 1991, Boudol 1992) endowed with two distinct concurrent semantics, differing

for the fact that one imposes a bound on the capacity of the channels (disallowing for

concurrent communications on the same channel), and open Petri nets (Kindler 1997,

Milner 2003, Sassone and Sobociński 2005, Baldan, Corradini, Ehrig and Heckel 2005),

a reactive variant of Petri nets. In the latter case the barbed concurrent equivalence is

shown to coincide with standard step semantics. We finally consider a class of systems

abstractly characterised as (output-buffered) asynchronous in (Selinger 1997), showing

that also these fit in our theory.

The impossibility of observing concurrency through asynchronous interactions is no

longer true for process calculi with priorities, even though asynchronous, and, more gen-

erally, for formalisms where some transitions of a system can be inhibited by a system

running in parallel. We show that indeed such formalisms escape our framework, by

focusing, as a case study, on an asynchronous CCS with priorities.

This is an extended version of the conference paper (Baldan, Bonchi, Gadducci and

Monreale 2010). In particular, here we consider a more general notion of concurrent barbs

(technically, in (Baldan et al. 2010) concurrent barbs were defined as multisets of barbs,

while here we consider a generic abelian semigroup) which allows to simplify our theory

and widen its scope. In particular, as mentioned above, the theory now applies also

to calculi with bounded-capacity channels and calculi featuring notions of asynchrony

based on buffers which are not just unordered bags, but ordered structures like queues

(see e.g. (Bergstra, Klop and Tucker 1984, de Boer, Klop and Palamidessi 1992, Beauxis,

Palamidessi and Valencia 2008)).
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Synopsis. Section 1 introduces our framework (the notion of concurrent barb and the

corresponding behavioural equivalence) and states the unobservability of concurrency

through asynchronous interactions. Sections 2 and 3 show how our theory captures asyn-

chronous π-calculus and open Petri nets, respectively. Section 4 proves that systems

deemed as (output-buffered) asynchronous in (Selinger 1997) fall into our theory. Sec-

tion 5 shows that our theory does not apply to asynchronous CCS with priorities, a

paradigmatic example of formalism with inhibitory effects between transitions. Finally,

Section 6 draws some conclusions, discusses related works and outlines directions for

further research.

1. A Theory of Concurrent Barbs and Asynchrony

This section introduces a notion of equivalence based on concurrent barbs. It is then

argued that, for a reasonable notion of asynchronous system, the possibility of observing

concurrent barbs does not add any discriminating power.

1.1. Transition Systems and Barbs

In order to develop a general theory, applicable to a range of different examples, we work

on (suitably enriched) transition systems rather than focusing on some specific calculus.

Definition 1 (transition systems). A transition system is a pair 〈P,→〉, where P is a

set of systems (ranged over by p, q . . . ) and→⊆ P×P is a binary relation over P, called

transition relation. We write p→ q for 〈p, q〉 ∈→, and we denote by→∗ the reflexive and

transitive closure of →.

We work in a fixed transition system 〈P,→〉, and we additionally assume to have a

commutative and associative parallel composition operator on systems | : P × P → P,

satisfying the axiom below

(P)
p→ p′

p|q → p′|q
In other terms, the parallel operator must preserve the transition relation: the require-

ment concerning its associativity and commutativity, making 〈P, |〉 an abelian semigroup,

would not be essential for our theory, but it simplifies the presentation.

Definition 2 (barbs). A barb is a predicate over the set P. The set of barbs, ranged

over by a, b, x, y, . . ., is denoted B and we write p ↓a when the system p satisfies the

barb a. A system p weakly satisfies a, written p⇓a, if p′ ↓a for some p′ such that p→∗ p′.
Moreover, p permanently satisfies a, written p2↓a, if p′ ↓a for all p′ such that p →∗ p′.
We write p2⇓a if p′⇓a for all p′ such that p→∗ p′.

With these ingredients we can define a behavioural equivalence which equates two

systems when they cannot be distinguished by an observer that can add components in

parallel and observe the barbs which are exposed. In the paper we focus only on weak

equivalences, hence the qualification “weak” is omitted.
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synchronous asynchronous

p ::= m, p1|p2

m ::= τ.p, a.p, ā.p, m1 +m2, 0

p ::= m, p1|p2, ā

m ::= τ.p, a.p, m1 +m2, 0

(syn) (a.p+m)|(ā.q + n)→ p|q (asyn) (a.p+m)|ā→ p

(tau) τ.p+m→ p (par)
p→ q

p|r → q|r

p|q ≡ q|p p|(q|r) ≡ (p|q)|r p|0 ≡ p
m+ n ≡ n+m m+ (n+ o) ≡ (m+ n) + o m+ 0 ≡ m

Fig. 1. The syntax and the reduction semantics of sccs and accs.

Definition 3 (saturated barbed bisimilarity). A symmetric relation R⊆ P × P is

a saturated barbed bisimulation if whenever p R q then

— ∀a ∈ B, if p⇓a then q⇓a
— if p→∗ p′ then q →∗ q′ and p′ R q′

— ∀r ∈ P, p|r R q|r
We say that p and q are saturated barbed bisimilar, written p ∼ q, if there exists a

saturated barbed bisimulation relating them.

Note that ∼ is, by definition, closed with respect to the parallel composition operator†.

It differs from barbed congruence (Milner and Sangiorgi 1992) since in the latter the

observer is allowed to add a parallel component only at the beginning of the computation

and not at any step. Hence, in general, barbed congruence is coarser than saturated

barbed bisimilarity, although in many cases the two definitions coincide (as e.g. in the

asynchronous π-calculus (Fournet and Gonthier 2005)).

The following simple observation will be needed later to prove our main result.

Lemma 1. Let p, q ∈ P be systems such that p ∼ q. Then p2⇓a iff q2⇓a.

Proof. Assume that p2⇓a, i.e., p′⇓a for all p′ such that p →∗ p′. For all q′ such that

q →∗ q′, by the fact that p ∼ q we deduce that there exists p′ such that p →∗ p′ and

p′ ∼ q′. And since p′⇓a, necessarily also q′⇓a. This means that also q2⇓a.

As a running example for illustrating our theory we use the finite, restriction-free

fragment of ccs (Milner 1989) and its asynchronous counterpart, with the reduction

semantics in (Milner 1999), but our considerations would extend to the full calculus

(with some care in the treatment of the restriction operator, as discussed in detail for

the π-calculus in Section 2). A set of names N is fixed (ranged over by a, b, . . . ) with

τ 6∈ N . The syntax of synchronous ccs (sccs) processes is defined by the grammar on

the left of Figure 1, the one for asynchronous ccs (accs) processes by the grammar

† Requiring ∼ to be closed under all unary contexts (see (Honda and Yoshida 1995, Merro and Nardelli
2003)), would not substantially change our theory, yet it would make its presentation more complex.
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on the right. In both cases processes are considered up to structural congruence ≡. The

transition relation→ for the synchronous calculus sccs is defined by rules syn, tau, and

par. In particular, rule syn allows a process a.p + m that is ready to receive an input

on a to synchronise with a process ā.q+n ready to send an output on the same channel.

For the asynchronous calculus accs, rule syn is replaced by asyn: the occurrence of an

unguarded ā indicates a message that is available on some communication media named

a. The message disappears whenever it is received. Note that output prefixes ā.p are

absent in accs, the intuition being that message sending is non-blocking and thus the

reception of a message cannot enable a continuation.

1.2. Witnesses for barbs

The definition of the “right” class B of barbs is not a trivial task. For sccs both input and

output barbs are considered (see e.g. (Milner and Sangiorgi 1992)). Intuitively, a process

has an input (output) barb on a if it is ready to perform an input (output) on a. Formally,

if α ∈ {a, ā}, then p ↓α when p ≡ α.p1 +m|p2 for processes p1, p2,m. Following (Amadio,

Castellani and Sangiorgi 1996), for accs only output barbs are considered, defined by

p ↓ā when p ≡ ā|p1 for a process p1. The idea is that, since message sending is non-

blocking, an external observer can just send messages without knowing if they will be

received or not. Hence inputs are deemed unobservable.

Several works (e.g. (Honda and Yoshida 1995, Rathke, Sassone and Sobociński 2007,

Bonchi, Gadducci and Monreale 2010)) have proposed abstract criteria for defining

“good” barbs independently from the formalism at hand. Here, inspired by (Rathke et

al. 2007), we propose to formalise the intuition that barbs should capture the possibility

of exhibiting an observable behaviour by introducing a notion of test.

Definition 4 (barbs witnessed by a test). A concrete test for a barb a ∈ B on a

system p ∈ P is a pair 〈t, x〉, denoted tx for short, where t ∈ P and x ∈ B such that

p ↓a iff p|t→ p′ and p′2↓x.

We say that the concrete test tx for a on p is stable if tx is a concrete test for any p′

such that p→∗ p′ and for any p′, p′′ such that p = p′|p′′.
A test for a barb a ∈ B is a family T = {tx : x ∈ B} such that for any p ∈ P there

exists x ∈ B such that tx is a stable concrete test for a on p. In this case we say that the

test witnesses the barb a with respect to →.

Intuitively, a concrete test for a barb a on a system p will be chosen as a system t

capable of exposing a barb x, which instead would never be observable in the evolution of

p. System t releases a (permanent) barb x only after interacting with a system exposing

barb a. Since x can never be generated by p, observing x in the evolution of p|t witnesses

that p has exposed the barb a. The stability condition ensures that a concrete test on p

can be used also for any reduct and any parallel subsystem of p.

When the transition relation is clear from the context, we will simply say that a test

witnesses a barb a. Moreover, abusing the notation, we will often denote by tx both a

concrete test and the underlying system.
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p→ p′

p p′
p p′ q  q′

p|q  p′|q′

Fig. 2. Parametric rules for a concurrent transition relation.

Hereafter, we assume that any barb a ∈ B is witnessed by some test and that we may

uniquely choose such a test, referred to as the canonical test for a and denoted T a

(B) For any a ∈ B there exists a test T a witnessing a with respect to →.

The assumption above holds for any calculus endowed with reduction semantics and

barbs that we are aware of (see e.g. (Milner 1999, Amadio et al. 1996, Cardelli and

Gordon 2000, Fournet and Gonthier 1996)). For instance, in the asynchronous calculus

accs each output barb ā is witnessed by the test T ā = {a.x̄ : x ∈ N}. Indeed, for all

processes p, a stable concrete test for ā on p can be tāx = a.x̄, for x ∈ N a name that

does not occur syntactically in p. Note that input barbs cannot be witnessed by any test

in accs, since there are no output prefixes. In sccs, instead, for the presence of both

input and output prefixes, an input barb a is witnessed by the test {ā.x̄ : x ∈ N}.

The existence of tests witnessing barbs will be pivotal for the results in Section 1.4: the

chosen witnesses for (concurrent) barbs will be used in the formulation of our Axiom of

Asynchrony (AA), which abstractly characterises a basic feature of asynchronous systems

with reduction semantics and barbs.

1.3. Concurrent Transitions, Concurrent Barbs and Non-Interleaving Semantics

Most semantics for interactive systems are interleaving, meaning that parallelism is re-

duced to non-determinism, or, in terms of processes, a.b+ b.a ∼ a|b. Here we propose a

non-interleaving semantics based on barbs. For this, we first need a concurrent transition

relation on systems  ⊆ P ×P: the concurrent transition system 〈P, 〉, built upon the

non-concurrent one 〈P,→〉, is assumed to satisfy the axiom

(C) → ⊆  ⊆ →∗

The assumption is quite natural: it just means that (1) each non-concurrent transition

can be seen as a special concurrent transition and (2) each concurrent transition p  q

can be simulated by a sequence of non-concurrent ones p→ . . .→ q.

An immediate consequence of axiom (C) is that reachability with respect to the se-

quential or the concurrent transition relation coincide.

Lemma 2 (concurrent vs. sequential reachability). The transitive closure of the

concurrent and non-concurrent transition relations coincide, i.e.,  ∗=→∗

As an example, for both sccs and accs the concurrent transition relation  can

be defined by the rules in Figure 2. Note that processes running in parallel can always

perform transitions concurrently. Alternative definitions of  could be given, in order

e.g. to avoid several concurrent communications on the same channel. Still, the theory

would be applicable (see Section 2.3) since we abstract from the actual definition of  
and we only rely on property (C) above.
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p ↓a
p ↓ca

p ↓cA q ↓cB
p|q ↓cA⊗B

Fig. 3. Parametric rules for concurrent barbs.

As a second ingredient, we introduce concurrent barbs as an extension of the set of

barbs. Given an abelian semigroup 〈S,⊗〉, i.e., a set S with an associative and commu-

tative operation ⊗, we say that X ⊆ S is a set of generators for S if for any a ∈ S there

exists x1, . . . , xn ∈ X such that a = x1 ⊗ . . .⊗ xn.

Definition 5 (concurrent barbs). A set of concurrent barbs CB is a set of predicates

on P, endowed with an associative and commutative operation ⊗ such that B ⊆ CB is a

set of generators for 〈CB,⊗〉 and for all barbs a, a1, . . . , an ∈ B
1 if p ↓a, then p ↓ca
2 if p ↓ca1⊗...⊗an , then p ↓ai for all i ∈ {1, . . . , n}
where ↓c denotes the satisfaction relation for CB.

Concurrent barbs in CB will be ranged over by A, B, X, Y , . . . Weak and permanent

satisfaction for concurrent barbs are then defined in the obvious way. A system p weakly

satisfies A, written p⇓cA, if p′ ↓cA for some p′ such that p ∗ p′. Moreover, p permanently

satisfies A, written p2↓cA, if p′ ↓cA for all p′ such that p  ∗ p′. We also write p2⇓cA if

p′⇓cA for all p′ such that p ∗ p′.
According to the definition above, concurrent barbs are built from basic barbs by using

the operator ⊗. Condition (1) says that the satisfaction relation for basic barbs remains

unchanged when they are seen as concurrent barbs, while condition (2) guarantees that

the satisfaction of a concurrent barb implies the satisfaction of its components in B.

For the running examples of sccs and accs, we can take CB = B⊗ (the free commuta-

tive monoid over B). The elements of B⊗ are multisets of barbs in B and the operator ⊗
is multiset composition. Then the satisfaction relation is defined by the rules in Figure 3:

concurrent barbs essentially check the presence of several parallel inputs and outputs.

We remark that the definition of what a concurrent barb is depends on the choice of

the concurrent transition relation. The link is established by the fact that, as clarified in

the next section, also concurrent barbs must be witnessed by a test.

Definition 6 (concurrent saturated barbed bisimilarity). Concurrent saturated

barbed bisimilarity ∼c is obtained by replacing→ with and ⇓a with ⇓cA in Definition 3.

The concurrent equivalence may distinguish systems that are identical in the inter-

leaving semantics. For example, in sccs a.b + b.a 6∼c a|b since a.b + b.a does not satisfy

⇓ca⊗b, while a|b does. Instead, it is easy to see that in accs, where only output barbs are

available, the two processes are equivalent with respect to ∼c. Indeed, it can be shown

that in accs, ∼c=∼. In the next section we will argue that this is a general fact that

applies to any formalism where systems can only interact asynchronously. Here we show

that, by only relying on the definition of concurrent barbs, and on the axioms introduced

so far, concurrent saturated barbed equivalence ∼c refines the non-concurrent one ∼.
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We first prove a technical lemma which relates concurrent and non-concurrent barbs.

Lemma 3. Let p be a system and a, a1, . . . , an ∈ B barbs. Then

1 if p⇓a, then p⇓ca
2 if p⇓ca1⊗...⊗an , then p⇓ai for all i ∈ {1, . . . , n}
3 if p2↓ca1⊗...⊗an , then p2↓ai for all i ∈ {1, . . . , n}

Proof. (1) If p⇓a, then p′ ↓a for some p′ such that p→∗ p′. By Lemma 2, p ∗ p′ and

by Definition 5 (property 1) p′ ↓ca. Hence p⇓ca. (2) Let A = a1⊗ . . .⊗ an and assume that

p⇓cA. Thus p′ ↓cA for some p′ such that p ∗ p′. By Definition 5 (property 2), p′ ↓ai for all

i ∈ {1, . . . , n}. Moreover, by Lemma 2 we have that p →∗ p′ and, by definition of weak

barbs, we have that p⇓ai for all i ∈ {1, . . . , n}. (3) Assume that for A = a1 ⊗ . . .⊗ an, it

holds p2↓cA. Then p′ ↓cA for all p′ such that p  ∗ p′. Now, for all p′ such that p →∗ p′,
by Lemma 2, p  ∗ p′ and thus p′ ↓cA. By Definition 5 (property 2), this in turn implies

that p′ ↓ai for all i ∈ {1, . . . , n}. Thus we have p2↓ai for all i ∈ {1, . . . , n}.

The first two items are the weak counterparts of the properties holding for concurrent

barbs (see Definition 5). The third result is needed in later sections (see Lemma 4).

Now, the desired result follows immediately.

Proposition 1. Concurrent saturated barbed bisimilarity refines saturated barbed bisim-

ilarity, i.e., ∼c⊆∼.

Proof. We prove that ∼c is a saturated barbed bisimulation according to Definition 3.

Let p, q ∈ P such that p ∼c q.
— If p⇓a, then by Lemma 3(1) p⇓ca and, since p ∼c q, then q⇓ca. By Lemma 3(2) q⇓a.

— If p →∗ p′, then by Lemma 2 p  ∗ p′ and, since p ∼c q, then q  ∗ q′ and p′ ∼c q′.
Again by Lemma 2 q →∗ q′.

— For any r, since ∼c is a congruence, p|r ∼c q|r.
By the three properties above the proposition holds.

1.4. Concurrency Can’t Be Observed, Asynchronously

This section focuses on the observability of concurrency through asynchronous interac-

tions, arguing that ∼c=∼ in formalisms with asynchronous communication. Tests are

thus needed that witness concurrent barbs. For this reason, we require that (B) actually

holds for concurrent barbs and we fix a canonical test TA for each A ∈ CB.

(CB) For any A ∈ CB there exists a test TA witnessing A with respect to  .

It is easy to see that axiom (CB) holds for our running examples. In accs, every

concurrent barb A = a1⊗ . . .⊗an ∈ CB is witnessed by the test TA = {a1.x1| . . . |an.xn :

∀i, xi ∈ N}. Indeed, for any process p, a stable concrete test for A on p can be tAX =

a1.x1| . . . |an.xn, where X = x1⊗ . . .⊗xn for x1, . . . , xn ∈ N different names that do not

occur syntactically in p. In sccs, tests are defined analogously, i.e., given a concurrent

barb A = α1 ⊗ . . .⊗ αn (where now each αi can be either an input or an output), a test

is given by TA = {α1.x1| . . . |αn.xn : xi ∈ N for i ∈ {1, . . . , n}}.
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Next lemma relates tests witnessing concurrent barbs in CB with barbs in B and →∗.

Lemma 4. Let A ∈ CB be a concurrent barb, p a system and tAX a stable concrete test

for A on p with respect to  such that X = x1 ⊗ . . . ⊗ xm for x1, . . . , xm ∈ B. If p⇓cA,

then there exists p′ such that p|tAX →∗ p′ and p′2⇓xi for all i ∈ {1, . . . ,m}.

Proof. If p⇓cA then there exists q such that p  ∗ q and q ↓cA. By stability, tAX is also

a concrete test on q, hence we have q|tAX  p′ and p′2↓cX . By Lemma 3(3), for all

i ∈ {1, . . . ,m} we have that p′2↓xi , and thus p′2⇓xi . In order to conclude we just need

to prove that p|tAX →∗ p′. Since p  ∗ q and q|tAX  p′, by Lemma 2, p →∗ q and

q|tAX →∗ p′, and thus, by axiom (P), we have that p|tX →∗ q|tAX →∗ p′.

A further assumption is now needed, ensuring the inverse of the above lemma. As it

is intended to capture an essential feature of asynchronous communication, it is referred

to as the Axiom of Asynchrony

(AA) Let A ∈ CB be a concurrent barb and let TA be the canonical test for A. Let p be a

system and tAX a stable concrete test for A on p with X = x1 ⊗ · · · ⊗ xm for x1, . . . , xm ∈ B.

If p|tAX →∗ p1 →∗ . . .→∗ pn, with pi ↓xi for i ∈ {1, . . . , n}, then p⇓cA.

Informally, the axiom can be explained as follows. We may think of A as a multiset

of output messages. The fact that tAX is a concrete test for A on p and that p|tAX →∗
p1 ↓x1

→∗ . . . →∗ pn ↓xn means that p can emit the messages in A one after the other.

Then the intuition is that, if the system is asynchronous and thus sending is non-blocking,

the messages can be also kept internally and made all available concurrently at the end.

As for our running examples, axiom (AA) holds in accs for the previously defined

concurrent barbs and canonical tests. Instead, it fails for sccs. In fact, take the sccs

process p = ā.b̄. A concrete test for the concurrent barb A = ā ⊗ b̄ on p can be tAX =

a.x1|b.x2 with X = x1 ⊗ x2. Yet, p|tAX → b̄|x1|b.x2 → x1|x2, with b̄|x1|b.x2 ↓x1
and

x1|x2 ↓x2 , but p 6 ⇓cA. Without going any further, it might be possible to argue that the

axiom would still fail for any choice of a concrete stable test for A = ā⊗ b̄ on p in sccs

and thus (AA) could never be satisfied.

Relying on the Axiom of Asynchrony, we prove that an inverse of Lemma 4 holds.

Lemma 5. Let A ∈ CB be a concurrent barb, p a system and tAX a stable concrete test

for A on p such that X = x1 ⊗ . . . ⊗ xm for x1, . . . , xm ∈ B. If there exists p′ such that

p|tAX →∗ p′ and p′2⇓xi for all i ∈ {1, . . . ,m}, then p⇓cA.

Proof. The lemma easily follows from the Axiom of Asynchrony (AA). Indeed, assume

that p|tAX →∗ p′ and p′2⇓xi for all i ∈ {1, . . . ,m}. Then, in particular, p′⇓x1
hence

p′ →∗ p1 for some p1 such that p1 ↓x1
and p12⇓xi for all i ∈ {1, . . . , n}. From the latter

we have that p1 →∗ p2, with p2 ↓x2 and p22⇓xi for all i ∈ {1, . . . , n}. Iterating this

reasoning, we have that

p′ →∗ p1 →∗ p2 →∗ . . .→∗ pn
with pi ↓xi for all i ∈ {1, . . . , n}. Thus by using (AA) we conclude p⇓cA.
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Lemmata 4 and 5 above are the real key for our main theorem: they state that con-

current barbs add no observational power. With these results, it is easy to prove that if

two processes are “sequential” bisimilar then they satisfy the same concurrent barbs.

Proposition 2. If p ∼ q then it holds that p⇓cA iff q⇓cA for all A ∈ CB.

Proof. Let A ∈ CB be a concurrent barb and let tAX a concrete test for A on both p

and q. Observe that we can find a common concrete test on the two systems by taking a

stable concrete test tAX for A on p|q. Then stability ensures that it is also a concrete test

for A on p and q.

Since p ∼ q then p|tAX ∼ q|tAX . Now suppose that p⇓cA. Since, according to Definition 5,

B is a set of generators for CB, X = x1 ⊗ . . . ⊗ xn for some x1, . . . , xn ∈ B. Hence, by

Lemma 4, p|tAX →∗ p′ and p′2⇓xi for all i ∈ {1, . . . ,m}. Since p|tAX ∼ q|tAX , then also

q|tAX →∗ q′ with p′ ∼ q′. By Lemma 1, q′2⇓xi for all i ∈ {1, . . . ,m}. Now, by Lemma 5

we have that q⇓cA.

With the above proposition and Lemma 2, it is easy to prove that saturated barbed

bisimilarity ∼ is finer than its concurrent version ∼c.

Proposition 3. ∼⊆∼c

Proof. In order to prove that ∼⊆∼c, we show that ∼ is a saturated concurrent barbed

bisimulation according to Definition 6. Let p, q ∈ P such that p ∼ q.

— If p⇓cA, then by Proposition 2 also q⇓cA.

— If p  ∗ p′, then by Lemma 2 also p →∗ p′. Since p ∼ q, then q →∗ q′ with p′ ∼ q′.

Again by Lemma 2, q  ∗ q′.
— For any r, since ∼ is a congruence, p|r ∼ q|r.

By the three properties above the proposition holds.

From Proposition 3 and Proposition 1, our main result immediately follows.

Theorem 1 (concurrency can’t be observed, asynchronously). For any formalism

satisfying axioms (P), (CB), (C), and (AA), concurrent saturated barbed bisimilarity and

saturated barbed bisimilarity coincide, i.e., ∼=∼c.

2. Asynchronous π-calculus

This section shows that the asynchronous π-calculus fits in the theory of Section 1, and

thus saturated barbed bisimilarity (which coincides with barbed congruence (Amadio et

al. 1996)) and its concurrent version coincide. We prove the result for two concurrent

semantics, which differ on the possibility of performing multiple concurrent communica-

tions on the same channel. As a side effect, the behavioural equivalences induced by the

two concurrent semantics are thus proved to coincide.
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p ::= ab, p1|p2, (νa)p, !m, m m ::= 0, α.p, m1 +m2 α ::= a(b), τ

p|q ≡ q|p (p|q)|r ≡ p|(q|r) p|0 ≡ p
m+ n ≡ n+m (m+ n) + o ≡ m+ (n+ o) m+0 ≡ m
(νa)(νb)p ≡ (νb)(νa)p (νa)(p|q) ≡ p|(νa)q if a /∈ fn(p) (νa)0 ≡ 0

(νa)p ≡ (νb)(p{b/a}) if b /∈ fn(p) a(b).p ≡ a(c).(p{c/b}) if c /∈ fn(p) !p ≡ p|!p

ab|(a(c).p+m)→ p{b/c} τ.p+m→ p
p→ q

(νa)p→ (νa)q

p→ q

p|r → q|r

Fig. 4. Syntax, structural congruence and reduction relation of the asynchronous π.

2.1. Asynchronous π-calculus

The asynchronous π-calculus has been introduced in (Honda and Tokoro 1991) as a

model of distributed systems interacting via asynchronous message passing. Its syntax

is shown in Figure 4: we assume an infinite set N of names, ranged over by a, b, . . .,

with τ 6∈ N , and we let p, q, . . . range over the set Pπ of processes. Free names of a

process p (denoted by fn(p)) are defined as usual. Processes are taken up to a structural

congruence, axiomatised in Figure 4 and denoted by ≡. The reduction relation, denoted

by →, describes process evolution: it is the least relation →⊆ Pπ × Pπ closed under ≡
and inductively generated by the axioms and rules in Figure 4.

As for accs (Section 1), barbs account only for outputs. More precisely, the set of

barbs for the asynchronous π-calculus is Bπ = {ā : a ∈ N} and a process p ∈ Pπ satisfies

the barb a, in symbols p ↓a, if p ≡ (νc)(ab|q), where a 6= c (Amadio et al. 1996).

2.2. Concurrent Semantics with Unbounded Capacity Channels

A non-interleaving semantics for the calculus can be obtained by introducing a concurrent

transition relation  , as defined by the rules in Figure 2 plus the additional rule below,

taking into account the restriction operator

p p′

(νa)p (νa)p′

Note that processes running in parallel (possibly under a restriction) can always per-

form transitions concurrently. This is due to the fact that we assume that channels have no

bounded capacity and thus multiple communications over the same channel are allowed,

as in the semantics proposed in (Busi and Gorrieri 1995, Montanari and Pistore 1995).

Different approaches are conceivable, see e.g. (Lanese 2007): next section shows how they

can be accommodated in our theory.

Concurrent barbs are multisets of outputs, and they check for the presence of several

parallel outputs. Formally, CBπ = Bπ⊗ and the satisfaction relation ↓c is defined by the

rules in Figure 3, extended with the rules in Figure 5, where ∅ is the empty multiset and

A \ a is the multiset obtained from A by removing all the occurrences of a.
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p ↓c∅
p ↓cA

(νa)p ↓cA\a

Fig. 5. Additional rules for concurrent barbs in asynchronous π.

The rightmost rule takes into account concurrent processes running under a restriction.

Consider for instance the process (νb)(ab|bc|cb): it cannot be decomposed into the parallel

composition of sub-processes, yet, intuitively, barbs ā and c̄ should be observable, while

b should be not. Indeed, since ab|bc|cb ↓c
ā⊗b̄⊗c̄, using the rightmost rule in Figure 5 we

get that (νb)(ab|bc|cb) ↓cā⊗c̄. The removal of barbs due to restrictions may end up in

concurrently observing the empty multiset, as it happens, e.g., for the process (νb)bc,

hence all processes should intuitively observe it. This calls for the leftmost rule in Figure 5.

Now, let ∼π denote saturated barbed bisimilarity for the asynchronous π-calculus

and let ∼cπ denote the concurrent one. It is worth remarking that ∼π coincides with

the standard semantics for the calculus, namely, asynchronous bisimilarity (Amadio et

al. 1996), as shown in (Fournet and Gonthier 2005). Then we have the following result.

Corollary 1 (concurrency can’t be observed in asynchronous π). ∼π=∼cπ.

Proof. The result follows from Theorem 1 as all the needed axioms are satisfied. Indeed,

axioms (P) and (C) clearly hold. Concerning axiom (CB), given any concurrent barb

A = a1 ⊗ . . .⊗ an a test witnessing A is TA = {tAC : C = c1 ⊗ . . .⊗ cn} where

tAC = a1(b1).c1c1| . . . |an(bn).cncn with bi 6= ci for all i.

For a processes p, we obtain a stable concrete test tAC for A on p by taking C =

c1 ⊗ . . .⊗ cn containing only names ci that do not occur syntactically in p.

With the above definition, it is easy to prove that the axiom (AA) holds. In fact, for

the sake of simplicity, take A = a1 ⊗ a2 (the general case is analogous) and consider

the test tAC = a1(b1).c1c1|a2(b2).c2c2, where c1 and c2 do not occur in p. Assume that

p|tAC →∗ p1 ↓c1 →∗ p2 ↓c2 . We need to prove that p⇓cA. Since p|tAC →∗ p1 ↓c1 we have that

p→∗ (νd1)(a1e1|p′), (1)

where a1 6= d1. With this setup, p1 = (νd1)(p′|c1c1)|a2(b2).c2c2 ≡ (νd1)(p′|c1c1|a2(b2).c2c2),

assuming with no loss of generality that d1 6= a2 (moreover d1 6= c2 by hypothesis).

Now, from p1 →∗ p2 ↓c2 , an analogous reasoning allows us to conclude that

p′ →∗ (νd2)(a2e2|p′′), (2)

with a2 6= d2. Putting together (1) and (2), and assuming that d2 6∈ {a1, e1} we conclude

p→∗ p′′′ = (νd1)(a1e1|(νd2)(a2e2|p′′)) ≡ (νd1)(νd2)(a1e1|a2e2|p′′)

and by case analysis on d1, d2 it holds p′′′ ↓ca1⊗a2 , i.e., p′′′ ↓cA. Thus, as desired, p⇓cA.
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ab|(a(c).p+m)→a p{b/c} τ.p+m→τ p
p→α q

p|r →α q|r
p→α q a 6= α

(νa)p→α (νa)q

p→a q

(νa)p→τ (νa)q

p→α p
′

p {α} p
′

p A p
′ q  B q′ A ∩B ⊆ {τ}
p|q  A∪B p′|q′

p A p
′ a 6∈ A

(νa)p A (νa)p′
p A p

′ a ∈ A
(νa)p (A\{a})∪{τ} (νa)p′

Fig. 6. Semantics for the asynchronous π with 1-bounded channels.

2.3. Concurrent Semantics with Bounded Capacity Channels

The concurrent transition relation that we introduced above (as well as the one in Sec-

tion 1.3) always allows processes running in parallel to perform transitions concurrently.

However, since interactions are message exchanges on a channel, it can be reasonable to

assume a bound on the number of concurrent communications on the same channel (see

e.g. (Lanese 2007)). Here we consider 1-bounded channels, i.e., we allow for the transition

a(c1).p|ad1|b(c2).q|bd2  p{d1/c1}|q{d2/c2}

but forbid

a(c1).p|ad1|a(c2).q|ad2 6 p{d1/c1}|q{d2/c2}.
This choice becomes mandatory when considering systems interacting through ordered

buffers (such as queues and stacks). Indeed, only one input (output) at a time can be

performed on such buffers (Beauxis et al. 2008).

A concurrent transition relation  capturing the above intuition can be defined by

keeping track of the channels where synchronisations occur and avoiding two concurrent

synchronisations on the same channel. This is formalised by the rules in Figure 6. The

(sequential) transition relation → is labelled either by the name of the channel where

a synchronisation occurs or by τ , in case of internal actions or restricted channels (α

stands for a generic label). Then the concurrent transition relation  is labelled by sets

containing channel names (those where synchronisations occur) and τ . Two transitions

can happen concurrently only if they are labelled with sets whose intersection includes

at most τ . It is important to note that the label on the transition is just a syntactical

device that allows for properly defining the relation itself, but it is not considered when

defining the corresponding saturated barbed bisimilarity, which is denoted ∼cπa.

In this perspective, we also have to change the notion of concurrent barb. Indeed,

multisets barbs would not be witnessed by a test with the new definition of  . As an

example, consider the process p = ā|ā|a|a (names exchanged along channel a are omitted

since they are irrelevant here) and the barb A = ā ⊗ ā. We have that p ↓A, but there

exists no stable concrete test for A on p, essentially because there exists no process that

can consume both outputs concurrently. More formally, assume by contradiction that

tAX is a stable test for A on p. This means that p|tAX  p′ and p′2↓cX . Since channels

are 1-bounded, the reaction can involve at most a single synchronisation on a, hence

p′ = ā|a|p′′, with

ā|a|tAX  p′′ (3)
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Now, observe that p′ → p′′ and hence, recalling that p′2↓cX , it must hold p′′2↓cX . This,

together with (3) and the fact that, by stability, tAX is a concrete test also on ā|a, would

imply that ā|a ↓cA, which is false.

The problem above can be solved by defining concurrent barbs just as sets (rather then

multisets) of barbs in Bπ, i.e. by taking CBπ = 2Bπ , the powerset of Bπ. The satisfaction

relation ↓cA is still defined by the rules in Figure 3 and Figure 5, where the operator ⊗
denotes set union (instead of multiset composition) and the operator \ now stands for

set difference. For A = {a1, . . . , an}, we have

p ↓cA if p ≡ (νc1) . . . (νck)(a1b1| . . . |anbn|q) and ai 6= cj for all i, j.

Note that several outputs might occur on each channel ai, but their multiplicity is not

taken into account as concurrent outputs on the same channel are not allowed.

With the above characterisation it is immediate to see that the properties 1 and 2 of

Definition 5 hold. Also note that since concurrent barbs are now sets, {ā}⊗ {ā} is equal

to {ā}, which clearly can be witnessed by some test. More generally, the concurrent barb

A = {a1, . . . , an} is witnessed by TA = {tAC : C = {c1, . . . , cn}} where

tAC = a1(b1).c1c1| . . . |an(bn).cncn with bi 6= ci for all i.

For any process p, a stable concrete test tAC for A on p can be obtained by considering

a set C containing only names ci that do not occur in p. Therefore all concurrent barbs

are witnessed, i.e., axiom (CB) holds.

Along the same lines of the unbounded semantics we can obtain, as a corollary of

Theorem 1, the following result.

Corollary 2 (concurrency can’t be observed in (bounded) asynchronous π).

∼π=∼cπa.

It is also interesting to observe that, as a consequence of Corollaries 1 and 2, we obtain

∼cπ=∼cπa, i.e., allowing or disallowing multiple synchronisations on the same channel in

the asynchronous π-calculus does not affect saturated barbed bisimilarity.

3. Open Petri Nets

Open Petri nets (Kindler 1997, Milner 2003, Sassone and Sobociński 2005, Baldan et

al. 2005) are a reactive extension of ordinary P/T nets, equipped with a distinguished

set of open places that represent the interfaces through which the environment interacts

with a net. This kind of interactions is inherently asynchronous (see e.g. (Baldan, Bonchi

and Gadducci 2009)) and thus it represents an ideal testbed for our theory.

This section shows that indeed the interleaving and concurrent equivalences defined in

the literature for open Petri nets (see e.g. (Baldan et al. 2005)) are instances of ∼ and

∼c, respectively. Then, since all the axioms of our theory are satisfied, these equivalences

coincide.

As in the previous sections, we denote by X⊗ the free commutative monoid generated

by a set X, whose elements are called multisets. Moreover, the symbol 0 denotes the

empty multiset, and for any x1, x2 ∈ X⊗, we write x1 ⊆ x2 if x1 = x2 ⊗ x for some

x ∈ X⊗.
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a b

x

N | Nb,xNb,x

b

x

a b

x

N

Fig. 7. Marked open nets and their parallel composition.

(tr)
m = •t⊗m′ t ∈ T

m
0−→ t• ⊗m′

(in)
s ∈ O

m
s+−→ m⊗ s

(out)
m = m′ ⊗ s s ∈ O

m
s−−→ m′

Fig. 8. Firing semantics for open nets.

Definition 7 (open nets). An open net is a tuple N̂ = (S, T, •(.), (.)•, O) for S a set

of places, T a set of transitions, •(.), (.)• : T → S⊗ functions mapping each transition

to its pre- and post-set, and O ⊆ S a set of open places. A marked (open) net is a pair

N = 〈N̂ ,m〉 for N̂ an open net and m ∈ S⊗ a marking. The interface of N is the set of

open places O of N̂ .

Examples of marked nets can be found in Figure 7. As usual, circles represent places and

rectangles transitions. Arrows from places to transitions represent function •(.), arrows

from transitions to places represent (.)•. An open net is enclosed in a box (representing

the interface of the net) and open places are on the border of such a box.

We assume a fixed infinite set S of place names. The set of interactions (ranged over

by i) is IS = {s+, s− : s ∈ S}. The set of labels (ranged over by `) consists in {0} ] IS .

The firing (interleaving) semantics of open nets is expressed by the rules in Figure 8,

where we write •t and t• instead of •(t) and (t)•. The rule (tr) is the standard rule of

P/T nets (seen as multiset rewriting) modelling internal transitions, which are labelled

with 0 for subsequent use. The other two rules model the possible interactions with the

environment: at any moment a token can be inserted in (rule (in)) or removed from (rule

(out)) an open place.

Weak transitions are defined as usual, i.e.,
0⇒ denotes the reflexive and transitive

closure of
0−→ and

i⇒ denotes
0⇒ i−→ 0⇒. We write N

i⇒ N ′ when N = 〈N̂ ,m〉, N ′ = 〈N̂ ,m′〉
and m

i⇒ m′.

Definition 8 (firing bisimilarity). A symmetric relation R over marked nets is a firing

bisimulation if whenever N1RN2 then

— if N1
`⇒ N ′1 then N2

`⇒ N ′2 and N ′1RN
′
2.

We say that N1 and N2 are firing bisimilar (written N1 ≈ N2) if there exists a firing

bisimulation R relating them.
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(cfir) m
`−→ m′

m
`
 m′

(cstep)
m1

c1 m′1 m2
c2 m′2

m1 ⊗m2
c1⊗c2 m′1 ⊗m′2

Fig. 9. Step semantics for open nets.

In order to ease the intuition, nets can be thought of as black boxes, where only

the interfaces are visible. Two nets are bisimilar if they cannot be distinguished by an

observer that may only insert and remove tokens in open places.

Steps of open nets ( ) are defined in Figure 9. Step labels (ranged over by c, c1, c2 . . .)

are multisets of interactions IN . By rule (cfir), each firing is also a step and, in partic-

ular, the label 0 is interpreted as the empty multiset. Rule (cstep) allows to construct

concurrent steps. Weak transitions are defined as usual:
07→ denotes the reflexive and tran-

sitive closure of
0
 and

c7→ denotes
07→ c
 

07→. Step bisimilarity (≈c) is defined by replacing

⇒ with 7→ in Definition 8.

We now show that ≈ and ≈c are instances of ∼ and ∼c, respectively. The parallel

composition of open nets N1, N2 is obtained by gluing them on their open places. In

order to simplify the definition, given two open nets N1 and N2, we will assume, without

loss of generality, that T1 ∩ T2 = ∅ and (S1 − O1) ∩ (S2 − O2) = ∅. This is possible as

the identity of transitions and non-open places is irrelevant.

Definition 9 (parallel composition). Given two marked open nets N1 and N2, their

parallel composition is the marked open net N1|N2 = (S1 ∪ S2, T1 ∪ T2,
•(.), (.)•, O1 ∪

O2,m1 ⊗m2).

In words, N1|N2 is obtained by taking the disjoint union of the nets, merging open

places with the same name and summing the markings. An example of composition is

shown in Figure 7.

Transitions
0−→ of marked nets correspond to transitions → in the theory of Section 1,

and
0
 corresponds to  . Barbs check the presence of tokens in open places. Formally,

the set of barbs for open nets is

BN = {b : b ∈ S},
and the marked net N = 〈N̂ ,m〉 satisfies the barb b ∈ BN , denoted N ↓b, if b ∈ O (i.e., b

is an open place of N̂) and b ⊆ m. The set of concurrent barbs is the free commutative

monoid over BN , i.e.,

CBN = BN⊗

A concurrent barb m′ ∈ CBN checks for the presence of a multiset of tokens in open

places, namely, satisfaction is defined by N ↓cm′ if m′ ∈ O⊗ and m′ ⊆ m.

In order to apply the theory in Section 1, we need to show that the behavioural

equivalences considered on open nets, i.e., firing bisimilarity and step bisimilarity, coincide

with saturated barbed bisimilarity and its concurrent version, respectively.

Proposition 4. Let N1, N2 be two marked nets with the same interface. Then N1 ≈ N2

iff N1 ∼ N2 and N1 ≈c N2 iff N1 ∼c N2.
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Proof. We first show that equivalences ≈ and ∼ coincide, proving the two inclusions.

(≈ ⊆ ∼) In order to prove this inclusion we show that ≈ is a saturated barbed bisim-

ulation, according to Definition 3. Let N1 ≈ N2.

— If N1⇓a, then N1 →∗ N ′1 and N ′1 ↓a. This means that N ′1
−a−→. Therefore

N1
−a⇒ N ′′1

and since N1 ≈ N2

N2
−a⇒ N ′′2

which implies N2⇓a.

— If N1 →∗ N ′1, then, since N1 ≈ N2, also N2 →∗ N ′2, with N ′1 ≈ N ′2, as desired.

— For any marked net N , since ≈ is a congruence (as proved in (Baldan et al. 2005)),

we have that N1|N ≈ N2|N .

(∼ ⊆ ≈) In order to prove this inclusion we show that ∼ is a firing bisimulation.

Instead of using the condition of Definition 8, we will use the following equivalent one

if N1
`−→ N ′1, then N2

`⇒ N ′2 and N ′1RN
′
2.

Suppose that N1 ∼ N2.

— If N1
0−→ N ′1, then N1 → N ′1 and N1 →∗ N ′1. By definition of ∼, N2 →∗ N ′2 (and thus

N2
0⇒ N ′2) with N ′1 ∼ N ′2.

— Let N1
+b−→ N ′1. Since b is open in N1 it must be open also in N2. Hence N2

+b−→ N ′2,

and clearly N ′1 = N1|N+b and N ′2 = N2|N+b, where N+b is the net consisting of a

single place b, which is open and marked. Since N1 ∼ N2 and ∼ is a congruence, we

deduce that N ′1 ∼ N ′2.

— Let N1
−b−→ N ′1 and let x ∈ S not belonging to the open places of N1 and N2. Therefore

if M b
x is the net below on the left

M b
x M ′b

x

x x

b b

we have that N1|M b
x → N ′1|M ′bx 2⇓x. Since N1 ∼ N2 and ∼ is a congruence, it holds

N2|M b
x →∗ N ′′2

with N ′1|M ′bx ∼ N ′′2 and thus N ′′2 2⇓x. It is not difficult to see that the only way in

which this can hold is that in N ′′2 a token in x has been produced, and thus a token

in b has been consumed, i.e., N ′′2 = N ′2|M ′bx . Therefore

N2
−b⇒ N ′2.

Now, since N ′1|M ′bx ∼ N ′2|M ′bx and since the transitions in M ′bx never fire, we have

that N ′1 ∼ N ′2.
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Concerning the concurrent equivalences, the proof that ≈c⊆∼c is obtained from the

one of ≈⊆∼, simply by replacing barbs with concurrent barbs and firings with steps. The

same applies to the converse inclusion, ∼c⊆≈c. Only note that in the third item, the net

M b
x must be replaced by the parallel composition M b1

x1
|M b2

x2
| . . . |M bn

xn .

Note that requiring N1 and N2 to have the same interface is needed for having that

∼⊆ ≈. Indeed, for any set B ⊆ S, let NB be the net consisting of all and only the places

in B which are all open, without marking and without transitions. For all nets N , we

have that N ∼ N |NB , while this is not generally true for ≈.

However this requirement is far from being restrictive and it is indeed quite common

(see e.g., (Milner 2003, Baldan et al. 2009)). At a more general level, one could argue

that all equivalent systems should have the same interface because otherwise they could

immediately be distinguished by an external observer.

We can finally apply Theorem 1 in order to prove that firing and step bisimilarity

coincide for open nets.

Corollary 3 (concurrency can’t be observed in open nets). Firing and step bisim-

ilarity coincide, i.e., ≈=≈c.

Proof. We prove that all the axioms required by Theorem 1 are satisfied by open nets.

This is immediate for (P) and (C). Instead, concerning (CB), first notice that for any

barb b ∈ BN , a test witnessing b is given by T b = {tbx : x ∈ S}, where tbx = Nb,x is the

net in Figure 7, middle. Then, for a concurrent barb B = b1 ⊗ . . .⊗ bn ∈ CBN , a test is

given by

TB = {tBX : tBX = tb1x1
| . . . |tbnxn ∧ X = x1 ⊗ . . .⊗ xn}

With this definition of test, the Axiom of Asynchrony (AA) can be easily shown to hold.

Therefore, we can apply Theorem 1 to conclude that ∼ and ∼c coincide. Then using

Proposition 4, we immediately get the thesis.

4. On Selinger’s Axiomatisation

An axiomatisation of different classes of systems with asynchronous communication has

been proposed in (Selinger 1997). Roughly speaking, a system is said to be asynchronous

if its observable behaviour is not changed by filtering its input and/or output through

a suitable communication medium, which can store messages and release them later on.

Different choices of the medium (queues, unordered buffers) are shown to lead to different

notions of asynchrony, and suitable sets of axioms are then identified which are shown

to precisely capture the various classes of asynchronous systems.

In order to further check the appropriateness of our framework, we prove that the

class of systems characterised as asynchronous in (Selinger 1997) satisfy the require-

ments in Section 1. More precisely, we focus on so-called out-buffered asynchrony with

feedback (Selinger 1997, Section 3.2), where output is asynchronous, the order of mes-

sages is not preserved, and the output of a process can be an input for the process itself

(feedback). The corresponding axioms (Selinger 1997, Table 3) are listed in Figure 10.
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p′′ p′′
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feedback (FB4) output-tau (FB5)

Fig. 10. Axioms for out-buffered agents with feedback.

p
α−→ p′

p|q α−→ p′|q
q
α−→ q′

p|q α−→ p|q′
p

out a−−→ (
τ−→)k

in a−→ r

p (
τ−→)k+1 r

Fig. 11. Rules for the parallel operator.

They are given for labelled transition systems, with labels in a, out a and τ , denoting

input, output and internal transitions, respectively. The names a of inputs and outputs

are taken respectively from (possibly equal) sets X and Y, and α denotes a generic label.

In order to bring the correspondence to a formal level, we must overcome two problems.

Firstly, the theory in (Selinger 1997) is developed for a labelled semantics, while we are

concerned with barbed reduction semantics, and secondly, the theory in (Selinger 1997)

does not consider concurrent transitions, which are pivotal in our setting.

On issue is solved by taking as reductions p→ p′ the τ -transitions p
τ−→ p′ and letting

barbs check if system can perform a transition labelled with an out action: the set of

barbs is B = {a : a ∈ Y} and a system p satisfies the barb a, in symbols p ↓a, if p
out a−−→.

As a parallel operator for out-buffered agents with feedback, we use the parallel com-

position with interaction (Selinger 1997, Section 3.1) given by the rules in Figure 11‡.

As far as concurrent barbs are concerned, they are multisets of elements of Y, formally

CB = B⊗, and we define p ↓cA, where A =
⊗n

i=1 ai, whenever p
out a1−−→ . . .

out an−−−→. This

is motivated by the fact that, in this situation, by axiom (FB1), the same outputs can

be performed by p in any order (in particular, p
out ai−−→ for any i ∈ {1, . . . , n}). In words,

although the labelled transition system does not provide any information on concurrency,

we assume that outputs which can be observed in any order are generated concurrently.

‡ Actually, this operator is associative and commutative only up-to isomorphism of the underlying

transition space of the system, which is implicitly assumed here. Also, we adopted a restrained version

of the right-most rule, in order to account for the number of internal transitions performed by a system:
it simplifies the presentation, and it is sound since we consider weak semantics anyhow.
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Finally, let L(p) be the set of labels occurring in any transition p
α−→ and let N (p) be

the set of names in the labels occurring in any transition p′
α−→ for p′ reachable from p.

Lemma 6 (existence of tests for barbs). Let a ∈ B. It is witnessed by the test

T a = {tax : L(tax) = {in a} ∧ (tax
in a−→ t′ =⇒ L(t′) = {out x})}

For any p such that N (p) is finite§ and x 6∈ N (p), tax is a stable concrete test for a on p.

Proof. Let p be a system such that x 6∈ N (p). Let us assume that p|tax
τ−→ p′ with

p′2↓x: since x 6∈ N (p) and tax 6 ↓x, according to the rules in Figure 11 p|taxp1
out a−−→ in a−→ p′

with tax contributing to the derivation. Since L(tax) = {in a}, again according to the rules

in Figure 11 it must be p
out a−−→ p′′ and tax

in a−→ t′, hence we conclude p ↓a.

Vice versa, let p ↓a. Then p
out a−−→ p′ and p|tax

out a−−→ p′|tax
in a−→ p′|t′, with t′

out x−−→. Using the

rules in Figure 11 we deduce that p|tax
τ−→ p′|t′, and p′|t′ out x−−→. Since x 6∈ N (p), we deduce

that p′′
out x−−→ for any p′′ such that p′|t′ τ−→

∗
p′′. Hence, p′|t′2↓x.

Concurrent reductions can now be defined as in Figure 2. With this definition it is

not difficult to see that assumptions (P) and (C) hold, and that (CB) is an immediate

consequence of (B). In fact, it can be easily proved that a test witnessing a concurrent

barb A = a1 ⊗ . . .⊗ an is TA = {tAX : X = x1 ⊗ . . .⊗ xn} where

tAX = ta1x1
| . . . |tanxn with taixi ∈ t

ai for all i.

With this set up we can finally prove that the Axiom of Asynchrony (AA) holds for any

out-buffered system p with feedback. Hence the result on unobservability of concurrency

as expressed by Theorem 1 applies to systems in this class.

Lemma 7 (validity of (AA)). Let A ∈ CB be a concurrent barb, p a system satisfying

the axioms in Figure 10, and tAX a stable concrete test for A on p such that X = x1 ⊗
. . .⊗ xn for x1, . . . , xn ∈ B. If p|tAX →∗ p1 ↓x1

→∗ . . .→∗ pn ↓xn then p⇓cA.

Proof. Let A = a1 ⊗ . . . ⊗ an for a1, . . . , an ∈ B. By hypothesis p|tAX →∗ p1 ↓x1
, thus

the action in a1 has been consumed by a τ transition, hence p|tAX →∗ q1
out a1−−→ q2

in a1−−→ p1.

Since tAX offer no action labelled out a1, then we have that p →∗ p′′1
out a1−−→ p′1 and q2 =

p′1|tAX . Now, since p1 ↓x1 , then tAX
in a1−−→ t1, and so p1 = p′1|t1.

Now, by applying the same reasoning starting from p1, we have that p′1 →∗ p′′2
out a2−−→ p′2,

t1
in a2−−→ t2 and so p2 = p′2|t2. If we continue to apply this reasoning to all agents p3, . . . , pn,

we obtain that p→∗ p′′1
out a1−−→ p′1 →∗ p′′2

out a2−−−→ p′2 . . .→∗ p′′n
out an−−−→ p′n. Now, since p satisfies

the axiom FB1, then there exists p′ such that

p→∗ p′ out a1−−→ . . .
out an−−−→.

This implies p′ ↓cA and thus p⇓cA.

§ This requirement is far from restrictive. For instance, it holds in the π-calculus since for all processes
p, q such that p −→∗ q we have fn(q) ⊆ fn(p).
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p ::= m, p1|p2, 0, ā m ::= τ.p, a.p� b.q, m1 +m2

p|q ≡ q|p p|(q|r) ≡ (p|q)|r p|0 ≡ p
m+ n ≡ n+m m+ (n+ o) ≡ (m+ n) + o

(asyn) a.p� b.q +m|ā→ p (Pasyn) a.p� b.q +m|b̄→ā q

(tau) τ.p+m→ p

(par)
p→ q

p|r → q|r
(Ppar)

p→ā q r 6 ↓ā
p|r →ā q|r

Fig. 12. The syntax and reduction semantics of Paccs.

5. Asynchronous CCS with priorities

We have already seen that in those formalisms not satisfying the Axiom of Asynchrony

(AA) (like, e.g., sccs), concurrent saturated bisimilarity (∼c) is strictly finer than the

interleaving one (∼). One might wonder wheter the other axioms of our theory are needed

in order to guarantee ∼c=∼. Axioms (P) and (C) are quite natural, they hold in most

of the languages we are aware of, but they may not for languages where a transition of a

system can be inhibited by a system running in parallel. This is e.g. the case for ccs with

priorities (Phillips 2008), Petri nets with inhibitor arcs (Agerwala and Flynn 1973) and

graph rewriting with negative application conditions (Habel, Heckel and Taentzer 1996).

In this section we consider Paccs, a toy calculus that extends accs with priorities.

It is interesting because it shows that whenever the axioms (P) and (C) do not hold

unobservability of concurrency may fail, even if the calculus has an asynchronous flavour.

The syntax of Paccs is presented in Figure 12. The only difference with respect to

accs consists in the priority input prefixes: a.p � b.q can execute either an input on a

(and then behave like p) or an input on b (and then behave like q), but the latter can be

performed only when the former is not possible (namely, if there are no pending messages

on a). Note that the input prefix a.p of accs can be implemented in Paccs as a.p� a.p.

Barbs are defined as in accs, i.e., p ↓ā when p ≡ ā|p1 for a process p1. The reduction

semantics is defined by the rules and the axioms in Figure 12, where p 6 ↓ā means that p

does not satisfy the barb ā. Note that the transitions can be either labelled or unlabelled.

It is important to remark here that, as in Figure 6, labels are just syntactical devices that

allow for defining the transition relation, but they are not considered when defining ∼.

The label ā on the transitions generated by the rule (Pasyn) denotes that the transition

can be executed only when there are no outputs on a. The unlabelled transitions instead

can be always executed. This is implemented by the rules (Ppar) and (par): a transition

→ā can be executed only if the parallel process r does not contain outputs on a, while

the transition → can be executed in parallel with any process r. For instance,

a.p� b.q +m|b̄→ q but a.p� b.q +m|b̄|ā 6→ q|ā

(the only possible transition of the second process is a.p� b.q+m|b̄|ā→ p|b̄). The above

example also shows that Paccs does not satisfy the axiom (P).
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p→ p′

p ∅ p′
p→ā p

′

p {ā} p
′

p A p
′ q  B q′ ∀b̄ ∈ B, p 6 ↓b̄ ∀ā ∈ A, q 6 ↓ā

p|q  A∪B p′|q′

Fig. 13. Concurrent semantics of Paccs.

The concurrent transition relation of Paccs is defined by the rules in Figure 13: the

label A in a concurrent transition  A means that it can be executed only if all the

messages ā ∈ A are not present in the environment. As for the transition relation→, the

labels of  are just syntactical devices and do not play any role in the definition of ∼c.
It is easy to see that  does not satisfy the axiom (C). Consider the processes

p1 = a1.0 � b1.a2, p2 = a2.0 � b2.a1 and p = p1|b1|p2|b2.

We have that

p a2|a1 but p 6→∗ a2|a1.

Indeed, if p1 consumes b1

p→ a2|p2|b2,

then p2 cannot consume b2 because a2 has higher priority. Similarly, if p2 consumes b2

p→ p1|b1|a1,

then p2 cannot consume b1 because a1 has has higher priority.

Concurrent barbs and the corresponding witnessing tests are defined as for accs: the

barb A = a1 ⊗ . . . ⊗ an is witnessed by the test TA = {a1.x1| . . . |an.xn : ∀i. xi ∈ N}
(where a.p is a shorthand for a.p� a.p). With these definitions it is easy to see that the

Axiom of Asynchrony (AA) holds. However, since (P) and (C) do not hold, our theorem

does not apply and, indeed, ∼6=∼c. Consider the process

q = (a1.p2 � b1.(a2|p2)) + (a2.p1 � b2.(a1|p1))|b1|b2.

Like the process p above

either q → a2|p2|b2 or q → a1|p1|b1

but, differently from p, q 6 a2|a1 and, more generally, q 6 ⇓ca1⊗a2 . Thus p 6∼c q.
We conclude by proving that instead p ∼ q. First, we observe that p and q exhibit

the same weak barbs and perform the same transitions →. Then, we note that for all

processes r, a reduction p|r → p′ either is generated by p (i.e., p→ p1 and p′ = p1|r) or

is generated by r (i.e., r → r1 and p′ = p|r1) or by an interaction between p and r. In the

latter case either r consumes the messages b1, b2 of p or p consumes the messages a1, a2

of r. The same arguments can be applied to the process q and thus the only case to check

is the behaviour of p and q when they consume messages a1, a2 of r. Take r = a1|r1 for

some process r1. We have that

p|a1|r1 → 0|b1|p2|b2|r1 and q|a1|r1 → p2|b1|b2|r1.

Since an analogous argument applies to the process r = a2|r1, we conclude that p ∼ q.
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6. Conclusions, Related and Future Works

In this paper, building on the notion of concurrent barbs, we introduced a novel non-

interleaving observational congruence for systems, and we proved in a rather general

and abstract framework that concurrency cannot be observed through asynchronous

interactions, i.e., that concurrent barbs add no observational power.

As case studies, we considered open Petri nets and the asynchronous π-calculus, show-

ing that they fall in our framework. In particular, for Petri nets we recovered the ordinary

firing and step semantics (as defined in (Baldan et al. 2005)), which are thus proved to

coincide. For the π-calculus, to the best of our knowledge, no concurrent barbed equiva-

lence was previously defined. We considered two notions of concurrent barbed equivalence

which differ on the possibility of performing multiple concurrent communications on the

same channel and proved that both fall into our theory. As a consequence they both co-

incide with the “interleaving” equivalence (and hence, as a side effect, they are identical).

We also prove that systems abstractly characterised as (output-buffered) asynchronous

in (Selinger 1997) fall into our theory. As a consequence our result extends to other inter-

esting concrete formalisms as well, such as the Join calculus (Fournet and Gonthier 1996).

The generalisation of the theory with respect to the conference version makes it po-

tentially applicable to calculi with bounded capacity channels (e.g., in Section 2.3 we

explicitly treated the case of asynchronous π-calculus with 1-bounded capacity chan-

nels), as well as to languages featuring notions of asynchrony based on buffers which

are not just unordered bags, but ordered structures like queues (see e.g. (Bergstra et

al. 1984, de Boer et al. 1992, Selinger 1997, Beauxis et al. 2008)). A preliminary investi-

gation on the calculi πQ and πS in (Beauxis et al. 2008) (where buffers are, respectively,

queues and stacks) suggests that the results on the unobservability of concurrency should

easily extend also to “ordered asynchrony”. In fact, since these ordered buffers should

not allow concurrent operations, the situation appears to be similar to that of languages

with bounded-capacity channels, where concurrent barbs are sets of barbs.

The non-interleaving equivalence we introduced intuitively corresponds to step seman-

tics. This has been shown for open Petri nets, even if it seems hard to raise the corre-

spondence at an abstract level. Some ideas might come from the observation that once

a concurrent reduction relation has been defined, steps could arise from the theory of

reactive systems (Leifer and Milner 2000) when replacing→ with . Since p
a−→ q means

that −|ā is the smallest context c[−] such that c[p] → q, analogously the step p
a⊗b−→ q

would mean that −|ā|b̄ is the smallest c[−] such that c[p]  q. As a side remark, note

that one of the compelling arguments against step semantics (i.e., that it is not preserved

by action refinement (van Glabbeek and Goltz 1989)) loses its strength in the paradigm

of reduction semantics and barbed equivalences, since actions (labels) disappear.

As for ST-equivalences (van Glabbeek and Vaandrager 1987), it seems conceivable to

develop an ST-operational semantics in an asynchronous setting, making production and

consumption of messages (tokens) non-instantaneous (see, e.g., (van Glabbeek, Goltz and

Schicke 2009) for a net model where token consumption is non-instantaneous and (Busi,

Gorrieri and Zavattaro 2000) for a similar study on Linda-like languages) and we con-

jecture that unobservability of concurrency would hold true also in this setting.
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Close to our spirit are also equivalences with localities (Boudol, Castellani, Hennessy

and Kiehn 1991) that distinguish (interleaving equivalent) processes by observing the

locations where interactions occur. We chose of not adopting this kind of equivalence for

two main reasons: (1) localities are usually structured as trees, but this does not make

much sense either in a calculus featuring joins (e.g. (Fournet and Gonthier 1996)) or in

a graphical formalism such as open Petri nets; (2) equivalence with localities have never

been defined for reduction semantics and, more importantly, for asynchronous formalisms.

It seems apparent though that equivalences with localities are not comparable with

ours. Consider e.g. located bisimilarity for ordinary ccs (Boudol et al. 1991). Processes

(νb)a.b.c|e.b̄ and (νb)a.b|e.b̄.c are not located bisimilar (in the former c always occurs in

a sub-locality of a), but they are equated by ∼c (since the both satisfy the concurrent

barb a⊗ e). On the other hand, a|c and (νb)((a.b̄|b.c) + (c.b̄|b.a)) are not equated by ∼c
(the former satisfies a⊗ c), but they are located bisimilar.

Nevertheless, we conjecture that our slogan “concurrency can’t be observed, asyn-

chronously” still holds for equivalences with localities. Indeed, since in the asynchronous

case inputs are not observable, also their locations should not be observable. Therefore,

only the locations of outputs could be observed, but these are all independent (since

outputs have no continuations). A formal study of equivalences with localities for asyn-

chronous systems is left as future work.

Our proposal is far from other non-interleaving semantics, such as those in (Darondeau

and Degano 1989, Degano, Nicola and Montanari 1988, van Glabbeek and Goltz 1989):

these consider causal properties of the systems, either by direct inspection of the state

structure or by suitably enriching the labels of the transition steps, thus being of a more

extensional nature. For these semantics, the fact that the internals of the systems are

directly inspected clearly implies that the unobservability of concurrency will not hold.

The different distinguishing power of concurrent equivalences in the synchronous and

asynchronous case could also be inspiring for the development of additional separation

results between the two paradigms, along the style of (Palamidessi 2003). In more gen-

eral terms, integrating our framework with the one proposed in (Gorla 2008) seems to

represent a promising direction for future investigations.

So far, few papers (such as e.g. (Boreale and Sangiorgi 1998, Crafa, Varacca and

Yoshida 2007, Bruni, Melgratti and Montanari 2006)) tackled the study of the concur-

rency features of asynchronous systems. And to the best of our knowledge our result,

albeit quite intuitive, has never been shown on any specific formalism, let alone for a

general framework as in our paper. Indeed, besides the catchy slogan, we do believe that

our work unearthed some inherent features of asynchronous systems that should hope-

fully shed some further light on the issue. That is, it should represent a further step

towards a satisfactory characterisation of the synchronous/asynchronous dichotomy.
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